Solutions to Exercise Problems for Input-Output Analysis: Foundations and Extensions

Contents

Chapter 2, Foundations: Solutions to Problems	1
Chapter 3, Regional Input-Output Analysis: Solutions to Exercise Problems	7
Chapter 4, Basic Data: Solutions to Exercise Problems	17
Chapter 5, Commodity by Industry: Solutions to Exercise Problems	24
Chapter 6, Multipliers: Solutions to Exercise Problems	27
Chapter 7, Supply, Linkages, & Important Coefficients: Solutions to Exercise Problems	29
Chapter 8, Structural Decomposition Analysis: Solutions to Exercise Problems	35
Chapter 9, Nonsurvey Methods, Foundations: Solutions to Exercise Problems	39
Chapter 10, Nonsurvey Methods, Extensions: Solutions to Exercise Problems	46
Chapter 11, Social Accounting Matrices: Solutions to Exercise Problems	57
Chapter 12, Energy: Solutions to Exercise Problems	62
Chapter 13, Environment: Solutions to Exercise Problems	69
Chapter 14, Mixed & Dynamic Models: Solutions to Exercise Problems	77

Chapter 2, Foundations: Solutions to Problems

PROBLEM 2.1

(a)
$$\mathbf{f} = \mathbf{x} - \mathbf{Z}\mathbf{i} = \begin{bmatrix} 150 \\ 120 \end{bmatrix}$$
. (b) $\mathbf{i} \quad \mathbf{A} = \mathbf{Z}\hat{\mathbf{x}}^{-1} = \begin{bmatrix} .5 & .4375 \\ .32 & .45 \end{bmatrix}$, $\mathbf{f}^{new} = \begin{bmatrix} 200 \\ 100 \end{bmatrix}$, $\tilde{\mathbf{x}}^{new} = (\mathbf{I} + \mathbf{A} + \mathbf{A}^2 + \mathbf{A}^4)\mathbf{f}^{new} = \begin{bmatrix} 650.81 \\ 453.98 \end{bmatrix}$. (b) $\mathbf{ii} \quad \mathbf{x}^{new} = \mathbf{L}\mathbf{f}^{new} = \begin{bmatrix} 1138.90 \\ 844.40 \end{bmatrix}$ where $\mathbf{L} = (\mathbf{I} - \mathbf{A})^{-1} = \begin{bmatrix} 4.07 & 3.24 \\ 2.37 & 3.7 \end{bmatrix}$. In this case, the power series converges very slowly. For example, $\tilde{\mathbf{x}}^{new} = (\mathbf{I} + \mathbf{A} + \dots + \mathbf{A}^{25})\mathbf{f}^{new} = \begin{bmatrix} 1122.80 \\ 831.60 \end{bmatrix}$.

(a)
$$\mathbf{A}^{t} = \begin{bmatrix} .35 & 0 & 0 \\ .05 & .5 & .15 \\ .2 & .3 & .55 \end{bmatrix}$$
, $\mathbf{L}^{t} = \begin{bmatrix} 1.538 & 0 & 0 \\ .449 & 2.5 & .833 \\ .983 & 1.667 & 2.778 \end{bmatrix}$. (b) $\mathbf{x}^{t+1} = \mathbf{L}^{t} \mathbf{f}^{t+1} = \begin{bmatrix} 2000 \\ 1000 \\ 2000 \end{bmatrix}$ for

(a)
$$\mathbf{A}^{t} = \begin{bmatrix} .35 & 0 & 0 \\ .05 & .5 & .15 \\ .2 & .3 & .55 \end{bmatrix}$$
, $\mathbf{L}^{t} = \begin{bmatrix} 1.538 & 0 & 0 \\ .449 & 2.5 & .833 \\ .983 & 1.667 & 2.778 \end{bmatrix}$. (b) $\mathbf{x}^{t+1} = \mathbf{L}^{t} \mathbf{f}^{t+1} = \begin{bmatrix} 2000 \\ 1000 \\ 2000 \end{bmatrix}$ for $\mathbf{f}^{t+1} = \begin{bmatrix} 1300 \\ 100 \\ 200 \end{bmatrix}$; (c) $\mathbf{f}^{t} = \mathbf{x}^{t} - \mathbf{Z}^{t} \mathbf{i} = \begin{bmatrix} 650 \\ 50 \\ 100 \end{bmatrix}$ for $\mathbf{x}^{t} = \begin{bmatrix} 1000 \\ 500 \\ 1000 \end{bmatrix}$. This illustrates linearity, e.g, since

$$\mathbf{f}^{t+1} = 2\mathbf{f}^t$$
 it follows that $\mathbf{x}^{t+1} = 2\mathbf{x}^t$ since $\mathbf{x}^{t+1} = \mathbf{L}^t \mathbf{f}^{t+1} = 2\mathbf{L}^t \mathbf{f}^t = 2\mathbf{x}^t$.

PROBLEM 2.3

We use superscripts "c" for the closed model and "o" for the open model. Here

$$\mathbf{Z}^{c} = \begin{bmatrix} 500 \ 350 \ 90 \\ 320 \ 360 \ 50 \\ 100 \ 60 \ 40 \end{bmatrix} \text{ and } \mathbf{x}^{c} = \begin{bmatrix} 1000 \\ 800 \\ 300 \end{bmatrix} \text{ so } \mathbf{A}^{c} = \begin{bmatrix} .5 & .438 & .3 \\ .32 & .45 & .167 \\ .1 & .075 & .133 \end{bmatrix} \text{ and } \mathbf{L}^{c} = \begin{bmatrix} 5.820 \ 5.036 \ 2.983 \\ 3.686 \ 5.057 \ 2.248 \\ 0.990 \ 1.019 \ 1.693 \end{bmatrix}.$$

Using the original final demand in the new closed model, $\tilde{\mathbf{f}}^c = \begin{bmatrix} 200 \\ 100 \\ 0 \end{bmatrix}$ and $\tilde{\mathbf{x}}^c = \mathbf{L}^c \tilde{\mathbf{f}}^c = \begin{bmatrix} 1667.5 \\ 1242.9 \\ 300 \end{bmatrix}$.

In problem 2.1, we found $\mathbf{x}^o = \mathbf{L}^o \mathbf{f}^o = \begin{bmatrix} 1138.9 \\ 844.4 \end{bmatrix}$ for $\mathbf{f}^0 = \begin{bmatrix} 200 \\ 100 \end{bmatrix}$. The increases in outputs for both sectors 1 and 2 reflect increased production due to the inclusion of households in the model.

PROBLEM 2.4

(a)
$$\mathbf{Z} = \begin{bmatrix} 2.5 & 10.0 & 2.5 \\ 2.5 & 5.0 & 2.5 \\ 30.0 & 30.0 & 15.0 \end{bmatrix}$$
, $\mathbf{f} = \begin{bmatrix} 35 \\ 40 \\ 25 \end{bmatrix}$ so $\mathbf{x} = \mathbf{Z}\mathbf{i} + \mathbf{f} = \begin{bmatrix} 50 \\ 50 \\ 100 \end{bmatrix}$ and $\mathbf{A} = \mathbf{Z}\hat{\mathbf{x}}^{-1} = \begin{bmatrix} .05 & .2 & .025 \\ .05 & .1 & .025 \\ .6 & .6 & .15 \end{bmatrix}$. The

Hawkins-Simon conditions require positivity of all principal minors of

$$(\mathbf{I} - \mathbf{A}) = \begin{bmatrix} .95 & -.2 & -.025 \\ -.05 & .9 & -.025 \\ -.6 & -.6 & .85 \end{bmatrix}$$
. Here the three first-order principal minors are 0.95, 0.9 and 0.85

(main diagonal elements); the three second-order principal minors are 0.845, 0.75 and 0.793 and the third-order principal minor is just the determinant $|\mathbf{I} - \mathbf{A}| = 0.687$. (b)

$$\mathbf{L} = (\mathbf{I} - \mathbf{A})^{-1} = \begin{bmatrix} 1.092 & 0.269 & 0.040 \\ 0.084 & 1.154 & 0.036 \\ 0.830 & 1.005 & 1.230 \end{bmatrix}. \quad (c) \quad \mathbf{x}^{new} = \begin{bmatrix} 39.317 \\ 44.606 \\ 87.181 \end{bmatrix} \text{ for } \mathbf{f}^{new} = \begin{bmatrix} (.75)f_1 \\ (.90)f_2 \\ (.95)f_3 \end{bmatrix} = \begin{bmatrix} 26.25 \\ 36.00 \\ 23.75 \end{bmatrix}. \quad (d)$$

$$\mathbf{Z}^{new} = \mathbf{A}(\hat{\mathbf{x}}^{new}) = \begin{bmatrix} 1.97 & 8.92 & 2.18 \\ 1.97 & 4.46 & 2.18 \\ 23.59 & 26.76 & 13.08 \end{bmatrix}, \text{ so } (\mathbf{v}^{new})' = (\mathbf{x}^{new})' - \mathbf{i}'(\mathbf{Z}^{new}) = [11.795 \ 4.461 \ 69.744]$$
 and
$$\mathbf{u}^{new} = (\mathbf{Z}^{new})\mathbf{i} = \begin{bmatrix} 13.067 \\ 8.606 \\ 63.431 \end{bmatrix}.$$

(a)
$$\mathbf{Z} = \begin{bmatrix} 2 & 8 \\ 6 & 4 \end{bmatrix}$$
 and $\mathbf{f} = \begin{bmatrix} 20 \\ 20 \end{bmatrix}$ so $\mathbf{x} = \mathbf{f} + \mathbf{Z}\mathbf{i} = \begin{bmatrix} 30 \\ 30 \end{bmatrix}$. (b) $\mathbf{A} = \mathbf{Z}\hat{\mathbf{x}}^{-1} = \begin{bmatrix} .067 & .267 \\ .2 & .133 \end{bmatrix}$ so $(1 - a_{11}) = 0.993$, $(1 - a_{22}) = 0.867$ and $|\mathbf{I} - \mathbf{A}| = 0.756$. (c) $\mathbf{L} = (\mathbf{I} - \mathbf{A})^{-1} = \begin{bmatrix} 1.147 & .353 \\ .265 & 1.235 \end{bmatrix}$ and $\mathbf{x}^{new} = \mathbf{L}\mathbf{f}^{new} = \begin{bmatrix} 23.559 \\ 26.206 \end{bmatrix}$ for $\mathbf{f}^{new} = \begin{bmatrix} 15 \\ 18 \end{bmatrix}$ and $\mathbf{Z}^{new} = \mathbf{A}\hat{\mathbf{x}}^{new} = \begin{bmatrix} 1.571 & 6.988 \\ 4.712 & 3.494 \end{bmatrix}$

PROBLEM 2.6

(a)
$$\mathbf{v}' = \begin{bmatrix} 10 & 11 \end{bmatrix}$$
 and $\mathbf{f} = \begin{bmatrix} 12 \\ 9 \end{bmatrix}$. $\mathbf{A} = \mathbf{Z}\hat{\mathbf{x}}^{-1} = \begin{bmatrix} .3 & .133 \\ .2 & .133 \end{bmatrix}$, $(1 - a_{11}) = 0.7$, $(1 - a_{22}) = 0.867$ and $|\mathbf{I} - \mathbf{A}| = 0.58$. (b) $\mathbf{x} = \begin{bmatrix} 20 \\ 15 \end{bmatrix}$ and $\tilde{\mathbf{x}} = \sum_{i=0}^{r} \mathbf{A}^{i} \mathbf{f}$ so $x_{j} - \tilde{x}_{j} < 0.05$ for $j = 1, 2$ at $r = 6$:

r	1	2	3	4	5	6	7	8	9	10
\tilde{x}_1	16.800	18.720	19.488	19.795	19.918	19.967	19.987	19.995	19.998	19.999
\tilde{x}_2	12.600	14.040	14.616	14.846	14.939	14.975	14.990	14.996	14.998	14.999

(c) $C_r = c_1 r + c_2 (r - 1.5)$ so $C_r = 0.5 c_2 r + c_2 r - 1.5 c_2 = (0.5 r + r - 1.5) c_2 = (1.5 r - 1.5) c_2$. Hence, for $x_j - \tilde{x}_j < 0.2$ then r = 5 so $C_r = 6c_2$; hence, for one **f**, $C_r = 6c_2 < C_e + C_f = 21c_2$, so use round-by-round. (d) For 5 **f** vectors. $C_r = 5(6c_2) = 30c_2 > C_e + 4C_f = 20c_2 + 4c_2 = 24c_2$, so use the exact method. (e) For 4 **f** vectors. $C_r = 4(6c_2) = 24c_2 = C_e + 4C_f = 20c_2 + 4c_2 = 24c_2$, the costs of both methods are the same.

(a)
$$\mathbf{A} = \mathbf{Z}\hat{\mathbf{x}}^{-1} = \begin{bmatrix} .228 & .179 & .191 & .074 & .005 & .025 & .004 & .022 \\ .040 & .155 & .149 & .086 & .016 & .033 & .004 & .018 \\ .003 & .001 & .000 & .010 & .027 & .001 & .007 & .002 \\ .027 & .023 & .003 & .223 & .021 & .020 & .004 & .014 \\ .116 & .099 & .180 & .066 & .142 & .155 & .103 & .092 \\ .057 & .001 & .014 & .030 & .001 & .073 & .002 & .042 \\ .013 & 0 & .004 & 0 & .011 & 0 & .323 & .165 \\ .141 & .042 & .065 & .026 & .067 & .039 & .109 & .288 \end{bmatrix}$$

$$\mathbf{L} = \begin{bmatrix} 1.339 & .296 & .312 & .172 & .034 & .058 & .030 & .067 \\ .089 & 1.214 & .209 & .153 & .038 & .057 & .025 & .051 \\ .013 & .009 & 1.011 & .019 & .034 & .008 & .018 & .013 \\ .065 & .056 & .034 & 1.306 & .038 & .041 & .021 & .041 \\ .265 & .215 & .320 & .174 & 1.207 & .230 & .229 & .240 \\ .100 & .029 & .045 & .059 & .011 & 1.089 & .018 & .074 \\ .109 & .049 & .068 & .035 & .054 & .030 & 1.547 & .372 \\ .321 & .162 & .210 & .117 & .135 & .103 & .269 & 1.506 \end{bmatrix}$$

(b) From
$$\mathbf{f} = \mathbf{x} - \mathbf{A}\mathbf{x}$$
, $\mathbf{f} = \begin{bmatrix} 3,994 \\ 19,269 \\ 39,348 \\ 22,625 \\ 137,571 \\ -653 \\ 8,327 \\ 82,996 \end{bmatrix}$ so $\mathbf{x}^{new} = \mathbf{L}\mathbf{f}^{new} = \begin{bmatrix} 39,998 \\ 51,181 \\ 45,455 \\ 40,404 \\ 177,756 \\ 11,182 \\ 54,929 \\ 158,687 \end{bmatrix}$ for $\mathbf{f}^{new} = \begin{bmatrix} 5,192 \\ 25,050 \\ 39,348 \\ 22,625 \\ 110,057 \\ -653 \\ 8,327 \\ 82,996 \end{bmatrix}$.

PROBLEM 2.8

$$\mathbf{A} = \mathbf{Z}(\hat{\mathbf{x}})^{-1} = \begin{bmatrix} 10 & 40 \\ 30 & 25 \end{bmatrix} \begin{bmatrix} \frac{1}{100} & 0 \\ 0 & \frac{1}{140} \end{bmatrix} = \begin{bmatrix} .1 & .286 \\ .3 & .179 \end{bmatrix} \text{ so } \mathbf{A}' = \begin{bmatrix} .1 & .3 \\ .286 & .179 \end{bmatrix} \text{ and hence}$$

$$\mathbf{L}' = (\mathbf{I} - \mathbf{A}')^{-1} = \begin{bmatrix} 1.257 & .459 \\ .437 & 1.377 \end{bmatrix}. \quad \mathbf{v}_c^0 = \begin{bmatrix} 60/100 \\ 75/140 \end{bmatrix} = \begin{bmatrix} .6 \\ .536 \end{bmatrix} \text{ so the normalized prices are found by}$$

$$\tilde{\mathbf{p}}^0 = \mathbf{L}' \mathbf{v}_c^0 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}. \text{ The new value added coefficients are } \mathbf{v}_c^1 = \begin{bmatrix} 1.25 & 0 \\ 0 & .75 \end{bmatrix} \mathbf{v}_c^0 = \begin{bmatrix} .75 \\ .402 \end{bmatrix}, \text{ so the new normalized prices are found as } \tilde{\mathbf{p}}^1 = \mathbf{L}' \mathbf{v}_c^1 = \begin{bmatrix} 1.127 \\ .881 \end{bmatrix}.$$

$$\mathbf{L'} = (\mathbf{I} - \mathbf{A'})^{-1} = \begin{bmatrix} 1.262 & 0.009 & 0.008 & 0.229 & 0.149 & 0.238 & 0.024 \\ 0.006 & 1.075 & 0.003 & 0.119 & 0.085 & 0.293 & 0.024 \\ 0.013 & 0.012 & 1.005 & 0.262 & 0.137 & 0.270 & 0.023 \\ 0.057 & 0.034 & 0.006 & 1.342 & 0.156 & 0.292 & 0.037 \\ 0.004 & 0.019 & 0.007 & 0.069 & 1.089 & 0.271 & 0.028 \\ 0.007 & 0.003 & 0.011 & 0.086 & 0.060 & 1.412 & 0.030 \\ 0.007 & 0.007 & 0.025 & 0.126 & 0.085 & 0.314 & 1.034 \end{bmatrix}.$$
 The value added

coefficients are found as $\mathbf{v}_c^0 = \mathbf{i} - \mathbf{i}' \mathbf{A} = \begin{bmatrix} .486 & .633 & .580 & .470 & .699 & .629 & .640 \end{bmatrix}'$, so that $\tilde{\mathbf{p}}^0 = \mathbf{L}' \mathbf{v}_c^0 = \mathbf{i}$. We define the vector of value added growth factors as

 $\mathbf{d} = [1.1 \ 1.1 \ 1.15 \ 1.15 \ 1.2 \ 1.2]'$ and we can find the new vector of value added

coefficients by
$$\mathbf{v}_{c}^{1} = \hat{\mathbf{d}}\mathbf{v}_{c}^{0} = \begin{bmatrix} 1.1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1.1 & 0 & 0 & 0 & 0 & 0 & 0 & .633 \\ 0 & 0 & 1.15 & 0 & 0 & 0 & 0 & .58 \\ 0 & 0 & 0 & 1.15 & 0 & 0 & 0 & .47 \\ 0 & 0 & 0 & 0 & 1.2 & 0 & 0 & .699 \\ 0 & 0 & 0 & 0 & 0 & 1.2 & 0 & .629 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1.2 & 0 & .64 \end{bmatrix} \begin{bmatrix} .534 \\ .696 \\ .667 \\ .540 \\ .839 \\ .754 \\ .768 \end{bmatrix}.$$
 Hence the new

normalized prices are found as
$$\tilde{\mathbf{p}}^1 = \mathbf{L}' \mathbf{v}_c^1 = \begin{bmatrix} 1.133 \\ 1.129 \\ 1.163 \\ 1.197 \\ 1.197 \\ 1.195 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} .4 & 1 & .5 \\ .2 & 0 & 0 \\ .4 & 0 & .5 \end{bmatrix}$$
, so $|\mathbf{I} - \mathbf{A}| = 0$. Hence, $(\mathbf{I} - \mathbf{A})$ is singular and \mathbf{L} does not exist. The domestic

transactions matrix is found by "opening" the economy to imports. If this is a "U.S. style" inputoutput table, then since competitive imports are included in the transactions matrix a corresponding negative entry for imports is included in final demand so, in order to "scrub" the transactions table of imports we need to subtract the value of imports from the first and third entries in the personal computers column and add those amounts to the first and third entries of final demand.

Thus
$$\mathbf{Z} = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 0 & 0 \\ 2 & 0 & 1 \end{bmatrix}$$
 becomes $\mathbf{D} = \begin{bmatrix} 2 & 2 & 1 - 1 \\ 1 & 0 & 0 \\ 2 & 0 & 1 - 1 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 0 \\ 1 & 0 & 0 \\ 2 & 0 & 0 \end{bmatrix}$ and \mathbf{f} is $\mathbf{g} = \begin{bmatrix} 0 + 1 \\ 1 \\ -1 + 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$

Here **D** is the matrix of domestic transactions where the values of competitive imports are subtracted to remove them from the transactions matrix and \mathbf{g} is new vector of final demands where the values of competitive imports are added to remove imports from final demand (recall that they were included originally in final demand as negative values). The vector of total outputs, x, is unchanged, but the new vector of total value added is $\overline{\mathbf{v}}' = \mathbf{x}' - \mathbf{i}\mathbf{D} = \begin{bmatrix} 0 & 0 & 2 \end{bmatrix}$ and, hence, gross domestic product is $\mathbf{v'i} = \mathbf{i'f} = 2$. We then can compute the matrix of direct

requirements as $\overline{\mathbf{A}} = \begin{bmatrix} .4 & 1 & 0 \\ .2 & 0 & 0 \\ .4 & 0 & 0 \end{bmatrix}$, for which $(\mathbf{I} - \overline{\mathbf{A}})$ is non-singular and the matrix of total requirements is $\overline{\mathbf{L}} = (\mathbf{I} - \overline{\mathbf{A}})^{-1} = \begin{bmatrix} 2.5 & 2.5 & 0 \\ .5 & 1.5 & 0 \\ 1 & 1 & 1 \end{bmatrix}$

requirements is
$$\overline{\mathbf{L}} = (\mathbf{I} - \overline{\mathbf{A}})^{-1} = \begin{bmatrix} 2.5 & 2.5 & 0 \\ .5 & 1.5 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

Chapter 3, Regional Input-Output Analysis: Solutions to Exercise Problems

PROBLEM 3.1

Here
$$\mathbf{p} = \begin{bmatrix} 0.60 \\ 0.90 \\ 0.75 \end{bmatrix}$$
; using the **A** matrix from problem 2.2, we find that $\mathbf{A}^R = \hat{\mathbf{p}}\mathbf{A} = \begin{bmatrix} .210 & 0 & 0 \\ .045 & .450 & .135 \\ .150 & .225 & .413 \end{bmatrix}$. Therefore $(\mathbf{I} - \mathbf{A}^R)^{-1} = \begin{bmatrix} 1.266 & 0 & 0 \\ .202 & 2.007 & .461 \\ .401 & .759 & 1.879 \end{bmatrix}$ and, hence, $\mathbf{x}^{new} = (\mathbf{I} - \mathbf{A}^R)^{-1} \mathbf{f}^{new} = \begin{bmatrix} 1645.570 \\ 555.346 \\ 973.257 \end{bmatrix}$ for $\mathbf{f}^{new} = \begin{bmatrix} 1300 \\ 100 \\ 200 \end{bmatrix}$.

$$\mathbf{x}^{new} = (\mathbf{I} - \mathbf{A}^R)^{-1} \mathbf{f}^{new} = \begin{bmatrix} 1645.570 \\ 555.346 \\ 072.257 \end{bmatrix} \text{ for } \mathbf{f}^{new} = \begin{bmatrix} 1300 \\ 100 \\ 200 \end{bmatrix}.$$

PROBLEM 3.2

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}^{rr} & \mathbf{A}^{rs} \\ \mathbf{A}^{sr} & \mathbf{A}^{ss} \end{bmatrix} = \begin{bmatrix} 0.110 & 0.130 & 0.056 & 0.070 \\ 0.164 & 0.026 & 0.130 & 0.070 \\ 0.137 & 0.156 & 0.093 & 0.125 \\ 0.192 & 0.182 & 0.093 & 0.078 \end{bmatrix}$$
so that
$$\mathbf{L} = \begin{bmatrix} 1.205 & 0.202 & 0.115 & 0.123 \\ 0.263 & 1.116 & 0.189 & 0.131 \\ 0.273 & 0.262 & 1.177 & 0.200 \\ 0.330 & 0.289 & 0.179 & 1.156 \end{bmatrix}$$
and $\Delta \mathbf{x} = \mathbf{L} \Delta \mathbf{f} = \begin{bmatrix} 409.981 \\ 475.665 \\ 170.619 \\ 196.240 \end{bmatrix}$ for $\Delta \mathbf{f} = \begin{bmatrix} 280 \\ 360 \\ 0 \\ 0 \end{bmatrix}$.

$$\mathbf{L} = \begin{bmatrix} 1.205 & 0.202 & 0.115 & 0.123 \\ 0.263 & 1.116 & 0.189 & 0.131 \\ 0.273 & 0.262 & 1.177 & 0.200 \\ 0.330 & 0.289 & 0.179 & 1.156 \end{bmatrix} \text{ and } \Delta \mathbf{x} = \mathbf{L} \Delta \mathbf{f} = \begin{bmatrix} 409.981 \\ 475.665 \\ 170.619 \\ 196.240 \end{bmatrix} \text{ for } \Delta \mathbf{f} = \begin{bmatrix} 280 \\ 360 \\ 0 \\ 0 \end{bmatrix}$$

PROBLEM 3.3

We begin with
$$\mathbf{Z} = \begin{bmatrix} 40 & 50 & 0 & 0 \\ 60 & 10 & 0 & 0 \\ 0 & 0 & 30 & 45 \\ 0 & 0 & 70 & 45 \end{bmatrix}$$
. If we configure the shipments of Goods 1 and 2 in a

matrix defined as
$$\mathbf{Q} = \begin{bmatrix} z_1^{rr} & 0 & z_1^{rs} & 0 \\ 0 & z_2^{rr} & 0 & z_2^{rs} \\ z_1^{sr} & 0 & z_2^{ss} & 0 \\ 0 & z_2^{sr} & 0 & z_2^{ss} \end{bmatrix} = \begin{bmatrix} 50 & 0 & 60 & 0 \\ 0 & 50 & 0 & 80 \\ 70 & 0 & 70 & 0 \\ 0 & 50 & 0 & 50 \end{bmatrix}$$
 so the row sums of \mathbf{Q} ,

$$\mathbf{x} = \mathbf{Qi} = \begin{bmatrix} 110 \\ 130 \\ -140 \\ 100 \end{bmatrix}$$
 is the vector of total deliveries of commodities of each type for each region and

the column sums of \mathbf{Q} , $\mathbf{q} = \mathbf{i'Q} = \begin{bmatrix} 120 & 100 & 130 & 130 \end{bmatrix}$, is the vector of total availability of each

commodity in each region. Hence,
$$\mathbf{A} = \mathbf{Z}\hat{\mathbf{x}}^{-1} = \begin{bmatrix} \mathbf{A}^r & 0 \\ 0 & \mathbf{A}^s \end{bmatrix} = \begin{bmatrix} .364 & .385 & 0 & 0 \\ .545 & .077 & 0 & 0 \\ 0 & 0 & .214 & .45 \\ 0 & 0 & .5 & .45 \end{bmatrix}$$
 and

$$\mathbf{C} = \mathbf{Q}\hat{\mathbf{q}}^{-1} = \begin{bmatrix} \hat{\mathbf{C}}^{rr} & \hat{\mathbf{C}}^{rs} \\ \hat{\mathbf{C}}^{sr} & \hat{\mathbf{C}}^{ss} \end{bmatrix} = \begin{bmatrix} .417 & 0 & .462 & 0 \\ 0 & .5 & 0 & .615 \\ .583 & 0 & .538 & 0 \\ 0 & .5 & 0 & .385 \end{bmatrix}. \text{ Now we compute}$$

$$(\mathbf{I} - \mathbf{C}\mathbf{A})^{-1}\mathbf{C} = \begin{bmatrix} 0.971 & 0.556 & 1.024 & 0.524 \\ 0.882 & 1.197 & 0.889 & 1.251 \\ 1.297 & 0.714 & 1.264 & 0.677 \\ 0.663 & 1.010 & 0.673 & 0.854 \end{bmatrix}$$
so that $\mathbf{x}^{new} = (\mathbf{I} - \mathbf{C}\mathbf{A})^{-1}\mathbf{C}\mathbf{f}^{new} = \begin{bmatrix} 148.778 \\ 214.539 \\ 191.718 \\ 161.772 \end{bmatrix}$ for

$$\mathbf{f}^{new} = \begin{bmatrix} \mathbf{f}^r \\ \mathbf{f}^s \end{bmatrix} = \begin{bmatrix} 50 \\ 50 \\ 40 \\ 60 \end{bmatrix}.$$

PROBLEM 3.4

From the table we have $\mathbf{Z}^{A} = \begin{bmatrix} 200 & 100 \\ 100 & 100 \end{bmatrix}$, $\mathbf{Z}^{B} = \begin{bmatrix} 700 & 400 \\ 100 & 200 \end{bmatrix}$ and $\mathbf{Z}^{C} = \begin{bmatrix} 100 & 0 \\ 50 & 0 \end{bmatrix}$.

(a) We can construct regional technical coefficients tables as $\mathbf{A}^r = \mathbf{Z}^r (\hat{\mathbf{x}}^r)^{-1}$ for regions r = A, B and C as $\mathbf{A}^A = \begin{bmatrix} 0.333 & 0.333 \\ 0.167 & 0.333 \end{bmatrix}$, $\mathbf{A}^B = \begin{bmatrix} 0.583 & 0.571 \\ 0.083 & 0.286 \end{bmatrix}$, and $\mathbf{A}^C = \begin{bmatrix} 0.500 & 0 \\ 0.250 & 0 \end{bmatrix}$; (b) Yes, we

can construct the national transactions table as the sum of the regional transactions matrices,

$$\mathbf{Z}^{N} = \mathbf{Z}^{A} + \mathbf{Z}^{B} + \mathbf{Z}^{C} = \begin{bmatrix} 1000 & 500 \\ 250 & 300 \end{bmatrix}$$
, and the vector of national total outputs as the sum of

regional total output vectors, $\mathbf{x}^N = \mathbf{x}^A + \mathbf{x}^B + \mathbf{x}^C = \begin{bmatrix} 2,000\\1,000 \end{bmatrix}$. Hence, the national technical coefficients matrix is found by $\mathbf{A}^N = \mathbf{Z}^N (\hat{\mathbf{x}}^N)^{-1} = \begin{bmatrix} .500 & .500 \\ .125 & .300 \end{bmatrix}$. (c) We do not have any origindestination data on shipments of each good. (d) Using A^N , we compute

$$(\mathbf{I} - \mathbf{A}^N)^{-1} = \begin{bmatrix} 2.435 & 1.739 \\ 0.435 & 1.739 \end{bmatrix}$$
. With $\mathbf{f}^{new} = \begin{bmatrix} 5,000 \\ 4,500 \end{bmatrix}$, we find that $\mathbf{x}^{new} = \begin{bmatrix} 20,000 \\ 10,000 \end{bmatrix}$. (e) The

original national gross output vector was $\mathbf{x}^N = \begin{bmatrix} 2,000 \\ 1,000 \end{bmatrix}$; the corresponding national final demand

vector is
$$\mathbf{f}^N = \begin{bmatrix} 500 \\ 450 \end{bmatrix}$$
, found as $\mathbf{f}^N = \mathbf{x}^N - \mathbf{Z}^N \mathbf{i}$ or as $\mathbf{f}^N = \mathbf{f}^A + \mathbf{f}^B + \mathbf{f}^C$ where $\mathbf{f}^r = \mathbf{x}^r - \mathbf{Z}^r \mathbf{i}$ for

regions r = A, B and C. This illustrates the linearity of the input-output model, since $\mathbf{x}^{new} = 10\mathbf{x}^N$ follows directly from $\mathbf{f}^{new} = 10\mathbf{f}^N$. (See also the solution to problem 2.2.)

PROBLEM 3.5

(a) The total regional final demand vector is found as
$$\mathbf{f} = \mathbf{x} - \mathbf{Z}\mathbf{i} = \begin{bmatrix} \mathbf{f}^{N} \\ \mathbf{f}^{S} \end{bmatrix} = \begin{bmatrix} 111,595 \\ 2,186,205 \\ 1,663,741 \\ 76,675 \\ 3,612,485 \end{bmatrix}$$
. Hence

the regional technical coefficients are $\mathbf{A}^{NN} = \mathbf{Z}^{NN} (\hat{\mathbf{x}}^N)^{-1} = \begin{bmatrix} 0.076 & 0.005 & 0.157 \\ 0.000 & 0.003 & 0.055 \\ 0.094 & 0.053 & 0.619 \end{bmatrix}$ and

$$\mathbf{A}^{SS} = \mathbf{Z}^{SS} (\hat{\mathbf{x}}^S)^{-1} = \begin{bmatrix} 0.069 & 0.005 & 0.116 \\ 0.000 & 0.005 & 0.046 \\ 0.086 & 0.048 & 0.580 \end{bmatrix}; \text{ the interregional trade coefficients are found as}$$

$$\mathbf{A}^{SS} = \mathbf{Z}^{SS}(\hat{\mathbf{x}}^S)^{-1} = \begin{bmatrix} 0.069 & 0.005 & 0.116 \\ 0.000 & 0.005 & 0.046 \\ 0.086 & 0.048 & 0.580 \end{bmatrix}; \text{ the interregional trade coefficients are found as}$$

$$\mathbf{A}^{SN} = \mathbf{Z}^{SN}(\hat{\mathbf{x}}^N)^{-1} = \begin{bmatrix} 0.002 & 0.000 & 0.009 \\ 0.000 & 0.000 & 0.001 \\ 0.020 & 0.011 & 0.185 \end{bmatrix} \text{ and } \mathbf{A}^{NS} = \mathbf{Z}^{NS}(\hat{\mathbf{x}}^S)^{-1} = \begin{bmatrix} 0.002 & 0.000 & 0.012 \\ 0.000 & 0.000 & 0.002 \\ 0.012 & 0.005 & 0.107 \end{bmatrix}.$$

(b) For this two-region interregional model,
$$\mathbf{A} = \begin{bmatrix} \mathbf{A}^{NN} & \mathbf{A}^{NS} \\ \mathbf{A}^{SN} & \mathbf{A}^{SS} \end{bmatrix}$$
. The new constrained total

outputs vector can be computed as
$$\mathbf{x}^{new} = \hat{\mathbf{r}}\mathbf{x} = \begin{bmatrix} 3,633,382\\743,965\\ \frac{10,384,473}{3,697,202}\\766,751\\ 13,004,947 \end{bmatrix}$$
 where the vector \mathbf{r} is defined as

 $\mathbf{r} = \begin{bmatrix} 1 & 1 & .95 & 1 & 1 & .9 \end{bmatrix}$, reflecting the specified reduced total outputs for construction and manufacturing in the two regions. The corresponding new vector of final demands is found by

$$\mathbf{f}^{new} = \mathbf{x}^{new} - \mathbf{A}\mathbf{x}^{new} = \begin{bmatrix} 1,556,842\\144,617\\\frac{2,132,819}{1,835,571}\\144,444\\3,107,061 \end{bmatrix}.$$
 (c) The modified final demand vector can be computed as

$$\mathbf{f}^{new} = \hat{\mathbf{r}}\mathbf{f} = \begin{bmatrix} 1,453,353 \\ 111,595 \\ \frac{1,858,274}{1,663,741} \\ 76,675 \\ 3,612,485 \end{bmatrix}$$
 where $\mathbf{r} = \begin{bmatrix} 1 & 1 & .85 & | & 1 & 1 \end{bmatrix}$ which reflects the specified reduction in

final demand for construction and from the North region. The corresponding impact on total outputs is found as $\mathbf{x}^{new} = (\mathbf{I} - \mathbf{A})^{-1} \mathbf{f}^{new}$

$$\begin{bmatrix}
1.145 & 0.038 & 0.567 & 0.028 & 0.012 & 0.188 \\
0.020 & 1.014 & 0.180 & 0.007 & 0.004 & 0.054 \\
0.348 & 0.183 & 3.218 & 0.124 & 0.058 & 0.875 \\
0.0033 & 0.016 & 0.219 & 1.111 & 0.024 & 0.365 \\
0.011 & 0.006 & 0.075 & 0.014 & 1.012 & 0.135 \\
0.215 & 0.112 & 1.500 & 0.284 & 0.147 & 2.868
\end{bmatrix}
\begin{bmatrix}
1,453,353 \\
111,595 \\
1,858,274 \\
1,663,741 \\
76,675 \\
3,612,485
\end{bmatrix}
=
\begin{bmatrix}
3,447,445 \\
684,913 \\
9,875,755 \\
3,625,440 \\
742,265 \\
13,957,983
\end{bmatrix}$$
 and for the North

region, in particular,
$$\mathbf{x}^{N,new} = \begin{bmatrix} 3,447,445 \\ 684,913 \\ 9,875,755 \end{bmatrix}$$
. (d) Using \mathbf{A}^{NN} from part (a), we find

$$(\mathbf{I} - \mathbf{A}^{NN})^{-1} = \begin{bmatrix} 1.131 & 0.031 & 0.468 \\ 0.016 & 1.011 & 0.152 \\ 0.282 & 0.149 & 2.760 \end{bmatrix}. \text{ Hence, in conjunction with } \mathbf{f}^{N,new} = \begin{bmatrix} 1,453,353 \\ 111,595 \\ 1,858,274 \end{bmatrix} \text{ we}$$

find
$$\mathbf{x}^{N,new} = (\mathbf{I} - \mathbf{A}^{NN})^{-1} \mathbf{f}^{N,new} = \begin{bmatrix} 2,517,159\\417,336\\5,554,462 \end{bmatrix}$$
. Compared with the results in part (c), we can

conclude that interregional linkages are very important in this economy since the outputs found using region *N* alone are 27, 39 and 44 percent below their corresponding values for each industry respectively using the full two-region interregional model.

PROBLEM 3.6

Using the MRIO transactions table specified, remove the transactions from the 3×3 matrix partition showing transactions from South to North (i.e., each element becomes zero) and add those transactions, element-by-element, to the partition showing transactions from the Rest of Chine to the North (lower left 3×3 partition). This change corresponds to the situation where all inputs to the North from the South came instead from the Rest of China, and the resulting transactions table would be:

	China 2000		North Manuf. &			South Manuf. &		R	Rest of China Manuf. &		
	Clinia 2000	Nat. Res.	Const.	Services	Nat. Res.	Const.	Services	Nat. Res.	Const.	Services	
Ч	Natural Resources	1,724	6,312	406	188	1,206	86	14	49	4	
North	Manuf. & Const.	2,381	18,458	2,987	301	3,331	460	39	234	57	
Z	Services	709	3,883	1,811	64	432	138	5	23	5	
Ч	Natural Resources	0	0	0	3,564	8,828	806	103	178	15	
South	Manuf. & Const.	0	0	0	3,757	34,931	5,186	202	1,140	268	
N.	Services	0	0	0	1,099	6,613	2,969	31	163	62	
7)	Natural Resources	158	707	46	33	254	18	1,581	3,154	293	
ROC	Manuf. & Const.	494	4,106	613	123	1,062	170	1,225	6,704	1,733	
N	Services	53	321	105	25	168	47	425	2,145	1,000	
	Total Output	16,651	49,563	15,011	27,866	81,253	23,667	11,661	21,107	8,910	

The revised direct requirements table becomes:

			North			South		R	est of Chir	ıa
	China 2000	Manuf. &				Manuf. &		Manuf. &		
		Nat. Res.	Const.	Services	Nat. Res.	Const.	Services	Nat. Res.	Const.	Services
h	Natural Resources	0.1035	0.1273	0.0270	0.0067	0.0148	0.0036	0.0012	0.0023	0.0005
North	Manuf. & Const.	0.1430	0.3724	0.1990	0.0108	0.0410	0.0194	0.0034	0.0111	0.0064
Z	Services	0.0426	0.0783	0.1206	0.0023	0.0053	0.0058	0.0004	0.0011	0.0006
h	Natural Resources	0.0000	0.0000	0.0000	0.1279	0.1087	0.0340	0.0089	0.0084	0.0017
South	Manuf. & Const.	0.0000	0.0000	0.0000	0.1348	0.4299	0.2191	0.0173	0.0540	0.0301
S	Services	0.0000	0.0000	0.0000	0.0394	0.0814	0.1255	0.0026	0.0077	0.0070
7)	Natural Resources	0.0095	0.0143	0.0030	0.0012	0.0031	0.0008	0.1356	0.1494	0.0329
ROC	Manuf. & Const.	0.0297	0.0828	0.0408	0.0044	0.0131	0.0072	0.1050	0.3176	0.1945
Y	Services	0.0032	0.0065	0.0070	0.0009	0.0021	0.0020	0.0364	0.1016	0.1122

The revised total requirements table becomes:

	CI: 2002		North Manuf. &			South Manuf. &		Rest of China Manuf. &			
	China 2003	Nat. Res.	Const.	Services	Nat. Res.	Const.	Services	Nat. Res.	Const.	Services	
	Natural Resources	1.1603	0.2494	0.0929	0.0225	0.0575	0.0264	0.0064	0.0159	0.0084	
North	Manuf. & Const.	0.2938	1.7104	0.3988	0.0530	0.1579	0.0840	0.0189	0.0523	0.0311	
Z	Services	0.0826	0.1651	1.1775	0.0114	0.0303	0.0200	0.0034	0.0092	0.0054	
rl.	Natural Resources	0.0032	0.0077	0.0041	1.1897	0.2441	0.1081	0.0237	0.0438	0.0220	
South	Manuf. & Const.	0.0137	0.0332	0.0180	0.3165	1.8924	0.4892	0.0710	0.1923	0.1136	
S	Services	0.0026	0.0063	0.0034	0.0834	0.1879	1.1943	0.0137	0.0362	0.0244	
7)	Natural Resources	0.0365	0.0775	0.0367	0.0087	0.0236	0.0120	1.1966	0.2816	0.1075	
ROC	Manuf. & Const.	0.1028	0.2545	0.1374	0.0258	0.0714	0.0399	0.2096	1.5757	0.3577	
1	Services	0.0202	0.0471	0.0298	0.0060	0.0158	0.0098	0.0735	0.1930	1.1724	

For the final demand $(\Delta \mathbf{f}^N)' = \begin{bmatrix} 0 & 100 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$, the corresponding vector of total outputs is $(\Delta \mathbf{x})' = (\mathbf{L}\Delta \mathbf{f}^N)' = \begin{bmatrix} 24.9 & 171.0 & 16.5 & 0.8 & 3.3 & 0.6 & 7.7 & 25.4 & 4.7 \end{bmatrix}$. If we recast $\Delta \mathbf{x}$ in the format of Table 3.10 we have the following table which shows the changes in production by region and sector generated by the shift in the location of inputs to production from the South to the Rest of China:

	Produced in the North (original) Produced in the No (revised)					North		
Sector	North	South	ROC	North South RO				
Nat. Res.	25.6	6.8	0.8	24.9 0.8 7.7				
Mfg. &Const.	172.8	29.4	2.5	171 3.3 25.				
Services	16.9	4.5	0.5	16.5 0.6 4.				
Total	215.3	40.7	3.8	212.4 4.7 37.8				

PROBLEM 3.7

PROBLEM 3.8

$$[\Delta \mathbf{x}]' = [.386 .024 13.061 0.892 3.024 .145 .021 3.669 1.376 .339 3.634 .475 181.630 56.029 42.904]$$

PROBLEM 3.9

The table of interregional transactions (\mathbf{Z}) and vector of total outputs (\mathbf{x}) are :

			United State	es		Japan			China			Rest of Asia	a
	2000	Nat. Res.	Manuf. & Const.	Services	Nat. Res.	Manuf. & Const.	Services	Nat. Res.	Manuf. & Const.	Services	Nat. Res.	Manuf. & Const.	Services
	Nat. Res.	75,382	296,016	17,829	351	4,764	473	174	403	17	103	2,740	83
U.S	Manuf. & Const.	68,424	1,667,042	960,671	160	21,902	3,775	587	8,863	1,710	383	45,066	4,391
	Services	95,115	1,148,999	3,094,357	118	6,695	807	160	1,466	296	197	7,393	953
n	Nat. Res.	7	52	53	8,721	78,936	11,206	13	66	2	14	180	27
Japan	Manuf. & Const.	859	41,484	11,337	28,088	1,414,078	484,802	764	20,145	2,809	462	72,258	4,108
J	Services	97	4,390	1,424	24,901	662,488	1,001,832	107	2,763	335	270	7,816	1,189
ıa	Nat. Res.	72	343	147	50	2,316	229	49,496	183,509	15,138	102	2,430	99
China	Manuf. & Const.	331	15,657	6,442	93	10,199	1,989	89,384	892,227	181,932	157	15,093	1,237
	Services	38	2,218	1,099	17	1,780	280	25,391	210,469	136,961	23	2,078	132
4	Nat. Res.	322	1,068	203	64	11,906	266	64	1,475	14	12,153	92,647	6,402
ROA	Manuf. & Const.	503	56,287	18,129	278	35,418	3,562	1,141	41,496	4,685	23,022	566,274	144,417
I	Services	152	4,578	1,921	41	3,982	447	138	3,669	422	15,163	213,470	239,053
ТО	TAL OUTPUT	468,403	5,866,935	11,609,307	140,622	3,883,455	4,658,191	408,153	2,000,741	702,248	173,080	1,727,367	1,225,460

The corresponding table of direct requirements, $\mathbf{A} = \mathbf{Z}\mathbf{x}^{-1}$ is:

			United State	es		Japan			China			Rest of Asia	ı
2000		Nat. Res.	Manuf. & Const.	Services	Nat. Res.	Manuf. & Const.	Services	Nat. Res.	Manuf. & Const.	Services	Nat. Res.	Manuf. & Const.	Services
	Nat. Res.	0.1609	0.0505	0.0015	0.0025	0.0012	0.0001	0.0004	0.0002	0.0000	0.0006	0.0016	0.0001
U.S	Manuf. & Const.	0.1461	0.2841	0.0828	0.0011	0.0056	0.0008	0.0014	0.0044	0.0024	0.0022	0.0261	0.0036
	Services	0.2031	0.1958	0.2665	0.0008	0.0017	0.0002	0.0004	0.0007	0.0004	0.0011	0.0043	0.0008
ц	Nat. Res.	0.0000	0.0000	0.0000	0.0620	0.0203	0.0024	0.0000	0.0000	0.0000	0.0001	0.0001	0.0000
Japan	Manuf. & Const.	0.0018	0.0071	0.0010	0.1997	0.3641	0.1041	0.0019	0.0101	0.0040	0.0027	0.0418	0.0034
ſ	Services	0.0002	0.0007	0.0001	0.1771	0.1706	0.2151	0.0003	0.0014	0.0005	0.0016	0.0045	0.0010
ıa	Nat. Res.	0.0002	0.0001	0.0000	0.0004	0.0006	0.0000	0.1213	0.0917	0.0216	0.0006	0.0014	0.0001
China	Manuf. & Const.	0.0007	0.0027	0.0006	0.0007	0.0026	0.0004	0.2190	0.4459	0.2591	0.0009	0.0087	0.0010
	Services	0.0001	0.0004	0.0001	0.0001	0.0005	0.0001	0.0622	0.1052	0.1950	0.0001	0.0012	0.0001
A	Nat. Res.	0.0007	0.0002	0.0000	0.0005	0.0031	0.0001	0.0002	0.0007	0.0000	0.0702	0.0536	0.0052
RO ₂	Manuf. & Const.	0.0011	0.0096	0.0016	0.0020	0.0091	0.0008	0.0028	0.0207	0.0067	0.1330	0.3278	0.1178
	Services	0.0003	0.0008	0.0002	0.0003	0.0010	0.0001	0.0003	0.0018	0.0006	0.0876	0.1236	0.1951

The table of total requirements, $L = (I - A)^{-1}$ is:

			United State	S		Japan			China			Rest of Asia	a
	2000	Nat. Res.	Manuf. & Const.	Services	Nat. Res.	Manuf. & Const.	Services	Nat. Res.	Manuf. & Const.	Services	Nat. Res.	Manuf. & Const.	Services
	Nat. Res.	1.2103	0.0889	0.0126	0.0043	0.0036	0.0008	0.0013	0.0019	0.0010	0.0022	0.0071	0.0016
U.S	Manuf. & Const.	0.2953	1.4643	0.1660	0.0071	0.0164	0.0039	0.0082	0.0183	0.0113	0.0147	0.0641	0.0163
	Services	0.4140	0.4158	1.4113	0.0054	0.0096	0.0021	0.0040	0.0083	0.0051	0.0079	0.0289	0.0076
п	Nat. Res.	0.0002	0.0005	0.0001	1.0755	0.0366	0.0082	0.0004	0.0010	0.0006	0.0007	0.0027	0.0006
Japan	Manuf. & Const.	0.0085	0.0201	0.0048	0.3924	1.6463	0.2196	0.0161	0.0420	0.0233	0.0235	0.1117	0.0238
J	Services	0.0026	0.0061	0.0015	0.3280	0.3663	1.3236	0.0052	0.0136	0.0074	0.0090	0.0345	0.0083
ıa	Nat. Res.	0.0007	0.0012	0.0004	0.0013	0.0024	0.0005	1.1997	0.2184	0.1025	0.0020	0.0061	0.0013
China	Manuf. & Const.	0.0043	0.0096	0.0028	0.0046	0.0108	0.0027	0.5518	2.0243	0.6666	0.0077	0.0317	0.0075
0	Services	0.0009	0.0021	0.0007	0.0011	0.0026	0.0006	0.1649	0.2816	1.3374	0.0018	0.0071	0.0016
A	Nat. Res.	0.0015	0.0018	0.0005	0.0024	0.0070	0.0011	0.0022	0.0060	0.0028	1.0906	0.0914	0.0205
RO.	Manuf. & Const.	0.0081	0.0239	0.0062	0.0101	0.0261	0.0051	0.0255	0.0711	0.0368	0.2440	1.5530	0.2293
1	Services	0.0023	0.0055	0.0015	0.0028	0.0070	0.0014	0.0061	0.0166	0.0086	0.1562	0.2487	1.2798

The original vector of final demands is computed by $\mathbf{f} = \mathbf{x} - \mathbf{Z}\mathbf{i}$, so

$$\mathbf{f'} = \begin{bmatrix} 70,067 & 3,083,962 & 7,252,751 & 41,344 & 1,802,261 & 2,950,579 & 154,222 & 786,002 & 321,762 & 46,495 & 832,154 & 742,423 \end{bmatrix}$$

For a level of growth in China at 8%, in the U.S. and Japan at 4%, and in the rest of Asia at 3%, the final demand in the next year is found by multiplying the first three elements of **f** (U.S. final demand) by 1.04, the next three (Japanese final demand) by 1.04, the next three (Chinese final demand) by 1.08, and the last three (final demand for the other nations in Asia) by 1.03, to yield

$$(\mathbf{f}^{\text{\tiny new}})' = \begin{bmatrix} 72,869 & 3,207,321 & 7,542,861 & 42,998 & 1,874,352 & 3,068,602 & 166,560 & 848,883 & 347,503 & 47,890 & 857,119 & 764,696 \end{bmatrix}$$

The corresponding vector of total outputs is then found as $\mathbf{x}^{new} = \mathbf{L}\mathbf{f}^{new}$:

$$(\mathbf{x}^{\text{\tiny mer}})' = \begin{bmatrix} 487,149 & 6,101,723 & 12,073,729 & 146,262 & 4,039,397 & 4,844,723 & 440,002 & 2,156,077 & 757,348 & 178,822 & 1,784,590 & 1,263,502 \end{bmatrix}$$

Finally, the vector of the percentage growth in total output for each and all regions and sectors is then found as

$$100 \times \frac{(\mathbf{x}^{new} - \mathbf{x})}{\mathbf{x}} = \begin{bmatrix} 4.002 & 4.002 & 4.000 & 4.011 & 4.016 & 4.004 & 7.803 & 7.764 & 7.846 & 3.317 & 3.313 & 3.104 \end{bmatrix}.$$

PROBLEM 3.10

(a) Partition
$$(\mathbf{I} - \mathbf{A})$$
 as $(\mathbf{I} - \mathbf{A}) = \begin{bmatrix} 1.0 & -0.1 & | & -0.3 & -0.2 & -0.2 \\ -0.1 & 0.9 & | & -0.1 & 0.0 & 0.0 \\ -0.2 & 0.0 & | & 0.9 & -0.3 & -0.1 \\ -0.3 & 0.0 & | & 0.0 & 0.9 & -0.3 \\ -0.3 & -0.2 & | & -0.1 & -0.1 & 0.8 \end{bmatrix} = \begin{bmatrix} \mathbf{E} & \mathbf{F} \\ \mathbf{G} & \mathbf{H} \end{bmatrix}$ and further

partition **H** by
$$\mathbf{H} = \begin{bmatrix} 0.9 & -0.3 & | & -0.1 \\ 0 & 0.9 & | & -0.3 \\ -0.1 & -0.1 & | & 0.8 \end{bmatrix} = \begin{bmatrix} \mathbf{H}_1 & | & \mathbf{H}_2 \\ \mathbf{H}_3 & | & \mathbf{H}_4 \end{bmatrix}$$
. We define $(\mathbf{I} - \mathbf{A})^{-1} = \begin{bmatrix} \mathbf{S} & | & \mathbf{T} \\ \mathbf{U} & | & \mathbf{V} \end{bmatrix}$ where

matrices in similar positions in $(\mathbf{I} - \mathbf{A})$ and $(\mathbf{I} - \mathbf{A})^{-1}$ have the same dimensions. From the results on the inverse of a partitioned inverse (Appendix A), we find that we need \mathbf{E}^{-1} and \mathbf{H}^{-1} , the inverses of a 2×2 and a 3×3 matrix. Therefore, to find \mathbf{H}^{-1} we again use the results on the inverse of a partitioned matrix, where \mathbf{H} is partitioned as above. This requires that \mathbf{H}_1^{-1} and \mathbf{H}_4^{-1} be found; since these are 2×2 and 1×1 matrices, respectively, this is easily done. Hence, we

be found; since these are
$$2 \times 2$$
 and 1×1 matrices, respectively, this is easily done. Hence, we have $\mathbf{H}^{-1} = \begin{bmatrix} 1.144 & 0.415 & 0.299 \\ 0.050 & 1.177 & 0.448 \\ 0.149 & 0.199 & 1.343 \end{bmatrix}$. This in conjunction with \mathbf{E}^{-1} , \mathbf{F} and \mathbf{G} allows us to find \mathbf{S} ,

T, U and V which comprise
$$(\mathbf{I} - \mathbf{A})^{-1}$$
: $\mathbf{S} = \begin{bmatrix} 1.566 & 0.332 \\ 0.253 & 1.172 \end{bmatrix}$, $\mathbf{T} = \begin{bmatrix} 0.638 & 0.640 & 0.711 \\ 0.231 & 0.150 & 0.148 \end{bmatrix}$, $\mathbf{U} = \begin{bmatrix} 0.708 & 0.217 \\ 0.802 & 0.270 \\ 0.839 & 0.478 \end{bmatrix}$ and $\mathbf{V} = \begin{bmatrix} 1.441 & 0.707 & 0.622 \\ 0.388 & 1.509 & 0.815 \\ 0.525 & 0.554 & 1.733 \end{bmatrix}$. Therefore
$$\begin{bmatrix} 1.566 & 0.332 & 0.638 & 0.640 & 0.711 \\ 0.253 & 1.172 & 0.231 & 0.150 & 0.148 \\ 0.708 & 0.217 & 1.441 & 0.707 & 0.622 \\ 0.802 & 0.270 & 0.388 & 1.509 & 0.815 \\ 0.839 & 0.478 & 0.525 & 0.554 & 1.733 \end{bmatrix}$$
. (b) In this problem we used the method

of partitioning repeatedly (sometimes called recursive application of the method) on subpartitions of the original four partitions of (I-A). We can in theory invert an infinitely large matrix by recursively partitioning into smaller and smaller submatrices.

Chapter 4, Basic Data: Solutions to Exercise Problems

PROBLEM 4.1

	Production (Domestic Product Account)								
Debits Credits									
Income (Q)		1000		Sales of consumption goods (C) Sales of capital goods (I)	900 100				
Total		1000		Total	1000				

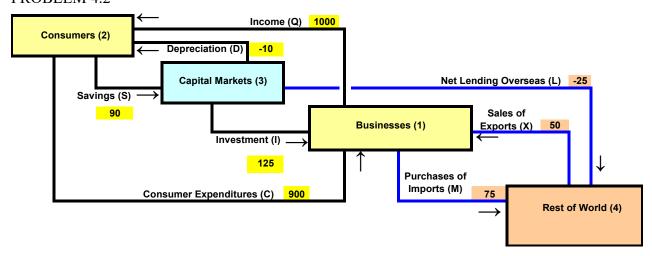
Consumption (Income and Outlay Account)								
Debits Credits								
Purchases of consumption goods (C) Savings (S)	900 90	Income (Q) Depreciation (D)	1000 -10					
Total	990	Total	990					

Accumulation (Capital Transactions Account)							
Debits Credits							
Purchase of capital goods (<i>I</i>) Depreciation (<i>D</i>)	100 -10	Savings (S)	90				
Total	90	Total	90				

$$Q = 1,000 = C + I = 900 + 100 = 1,000$$

 $C + S = 900 + 90 = Q + D = 1000 - 10 = 990$
 $I + D = 100 - 10 = S = 90$

PROBLEM 4.2



Production (Domestic Product Account) Debits Credits							
Income (Q) Imports (W)		1000 75		Sales of consumption goods (C) Sales of capital goods (I) Exports (X)	900 125 50		
Total		1075		Total	1075		

Consumption (Income and Outlay Account)								
Debits		Credits						
Purchases of consumption goods (C) Savings (S)	900 90	Income (Q) Depreciation (D)	1000 -10					
Total	990	Total	990					

Accumulation	Accumulation (Capital Transactions Account)							
Debits		Credits						
Purchase of capital goods (<i>I</i>) Depreciation (<i>D</i>) Net Lending Overseas (<i>L</i>)	125 -10 -25	Savings (S)	90					
Total	90	Total	90					

Rest of World (Balance of Payments Account)							
Debits Credits							
Sales of exports (X)	50	Purchases of Imports (W) Net Overseas Lending (L)	75 -25				
Total	50	Total	50				

Production: Q + M = 1,000 + 75 = C + I + X = 900 + 125 + 50 = 1,075

Consumption: C + S = 900 + 90 = Q + D = 1000 - 10 = 990

Capital Accumulation: I + D + L = 100 - 10 - 25 = S = 90

Rest of World: X = 50 = L + M = -25 + 75 = 50

PROBLEM 4.3

(a) The corresponding balance equations are:

Domestic Product Account: Q + M = C + I + X + G

Income and Outlay Account: C + S + T = Q + D

Capital Transactions Account: I + D + B = S

Balance of Payments Account: X = M

Government Account: G = T + B

(b)

	Prod.	Cons.	Сар.	ROW	Govt.	Total
Production		475	54	46	25	600
Consumption	554		-29			525
Capital Accum.		30				30
Rest of World	46					46
Govt.		20	5			25
Total	600	525	30	46	25	

PROBLEM 4.4

The vector of price indices is $\mathbf{p} = \begin{bmatrix} 2/5 & 3/6 & 5/9 & 7/12 \end{bmatrix} = \begin{bmatrix} 0.400 & 0.500 & 0.556 & 0.583 \end{bmatrix}$. This vector is comprised of the ratios of the year 2000 prices to the year 2005 prices. Hence, \mathbf{Z}^{2000} , \mathbf{A}^{2000} and \mathbf{x}^{2000} can be computed as

$$\mathbf{Z}^{2000} = \hat{\mathbf{p}} \mathbf{Z}^{2005} = \begin{bmatrix} .4 & 0 & 0 & 0 \\ 0 & .5 & 0 & 0 \\ 0 & 0 & .556 & 0 \\ 0 & 0 & 0 & .583 \end{bmatrix} \begin{bmatrix} 24 & 86 & 56 & 64 \\ 32 & 15 & 78 & 78 \\ 104 & 49 & 62 & 94 \\ 14 & 16 & 63 & 78 \end{bmatrix} = \begin{bmatrix} 9.6 & 34.4 & 22.4 & 25.6 \\ 16 & 7.5 & 39 & 39 \\ 57.78 & 27.22 & 34.44 & 52.22 \\ 8.17 & 9.33 & 36.75 & 45.5 \end{bmatrix}$$

$$\text{and } \mathbf{A}^{2000} = \mathbf{Z}^{2000} (\hat{\mathbf{x}}^{2000})^{-1} = \hat{\mathbf{p}} \mathbf{Z}^{2005} (\hat{\mathbf{p}} \hat{\mathbf{x}}^{2005})^{-1} = \hat{\mathbf{p}} \mathbf{Z}^{2005} (\hat{\mathbf{x}}^{2005})^{-1} \hat{\mathbf{p}}^{-1} = \hat{\mathbf{p}} \mathbf{A}^{2005} \hat{$$

$$\begin{bmatrix} .0603 & .2191 & .0860 & .0967 \\ .1005 & .0478 & .1497 & .1473 \\ .3629 & .1734 & .1322 & .1972 \\ .0513 & .0594 & .1410 & .1718 \end{bmatrix} \text{ and } \mathbf{x}^{2000} = \hat{\mathbf{p}} \mathbf{x}^{2005} = \begin{bmatrix} 159.1 \\ 157 \\ 260.56 \\ 264.83 \end{bmatrix}.$$

PROBLEM 4.5

The impact of the sum of total outputs is indicated in the following table at each level of aggregation:

Aggregation	χΊ		Agregated Sector Total Output								
Level	ΧI	1	2	3	4	5	6	7	8		
8	16.26	2.31	1.84	1.12	1.60	2.88	1.43	2.26	2.82		
7	16.56	2.48	3.33	1.13	1.61	2.87	2.28	2.87			
6	15.54	4.85	3.14	1.15	1.58	2.20	2.62				
5	15.62	4.78	3.11	3.86	1.58	2.29					
4	15.72	4.73	5.51	3.91	1.57						
3	15.53	6.15	5.44	3.94							

PROBLEM 4.6

First, compute
$$\mathbf{Z} = \mathbf{A}\hat{\mathbf{x}} = \begin{bmatrix} 26370 & 9 & 465 & 41257 & 377 & 2768 & 193 \\ 160 & 1647 & 1511 & 22531 & 6038 & 104 & 322 \\ 579 & 857 & 50 & 3273 & 5887 & 13734 & 2676 \\ 12056 & 2865 & 58464 & 287046 & 15360 & 46582 & 1257 \\ 5172 & 1462 & 17314 & 59830 & 36984 & 23082 & 3256 \\ 7262 & 4470 & 11387 & 44987 & 43664 & 84651 & 1693 \\ 193 & 191 & 697 & 8906 & 4453 & 5013 & 532 \end{bmatrix}.$$
 The aggregation matrix is $\mathbf{S} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \end{bmatrix}$ so $\mathbf{Z}^* = \mathbf{S}\mathbf{Z}\mathbf{S}' = \begin{bmatrix} 28186 & 65763 & 9804 \\ 18358 & 348834 & 85496 \\ 18750 & 143121 & 203328 \end{bmatrix}$, $\mathbf{X}^* = \mathbf{S}\mathbf{X} = \begin{bmatrix} 114341 \\ 927192 \\ 1060811 \end{bmatrix}$ and $\mathbf{A}^* = \mathbf{Z}^*(\mathbf{X}^*)^{-1} = \begin{bmatrix} .247 & .071 & .009 \\ .143 & .376 & .081 \\ .164 & .154 & .192 \end{bmatrix}$. Hence,
$$\begin{bmatrix} 174.5 \\ 120.9 \\ 116.5 \\ 329.7 \\ 184.6 \\ 218.3 \end{bmatrix}$$
. The first

order bias is found by
$$\mathbf{\phi} = (\mathbf{A}^*\mathbf{S} - \mathbf{S}\mathbf{A})\Delta\mathbf{f} = \begin{bmatrix} 17.069 \\ 7.726 \\ 5.790 \end{bmatrix}$$
 and $\mathbf{i}'\mathbf{\phi} = 30.585$, and the total aggregation bias is found by $\mathbf{\tau} = \mathbf{\tilde{x}}^* - \mathbf{S}\mathbf{\tilde{x}} = \begin{bmatrix} 19.751 \\ 14.326 \\ 10.025 \end{bmatrix}$ and $\mathbf{i}'\mathbf{\tau} = 44.102$.

bias is found by
$$\tau = \tilde{\mathbf{x}}^* - \mathbf{S}\tilde{\mathbf{x}} = \begin{bmatrix} 19.751 \\ 14.326 \\ 10.025 \end{bmatrix}$$
 and $\mathbf{i}'\tau = 44.102$

PROBLEM 4.7

Compute the missing quantities: C = Q + D - S - T, I = -D + S - L - B, X = L + M, and G = T + B summarized in the following table:

	Prod.	Cons.	Сар.	ROW	Govt.	Total
Prod.		C=410	I=80	X=55	G=30	575
Cons.	Q=500		D=-10			490
Cap.		S=60				60
ROW	M=75		L=-20			55
Govt.		T=20	B=10			30
Total	575	490	60	55	30	

PROBLEM 4.8

		Agric.	Commo	odities Manuf.	Serv.	l Nat. Res.	ndustries Manuf.	Serv.	Final Demand	Total Output
Comm.	Agriculture Mining Manufacturing Services	rigito.	Willing	Wanar.	GCIV.	20 5 10 12	12 30 13 17	18 12 11 40	57 102 115 101	107 149 149 170
lnd.	Natural Resources Manufacturing Services	99 8	143 6	137 12	10 10 150					109 298 168
	Value Added Total Output	107	149	149	170	62 109	226 298	87 168	375	575

PROBLEM 4.9

(a) First we compute
$$\mathbf{f} = \mathbf{x} - \mathbf{Z}\mathbf{i} = \begin{bmatrix} 500 \\ 250 \\ 100 \end{bmatrix}$$
 and $\mathbf{u} = \begin{bmatrix} 500 \\ 500 \\ 900 \end{bmatrix}$. The import similarity scaling factors are $r_i = \frac{m_i}{u_i + f_i}$, or $\mathbf{r} = \begin{bmatrix} .15 \\ .24 \\ .21 \end{bmatrix}$. We can then compute $\mathbf{\overline{D}} = \mathbf{Z} - \hat{\mathbf{r}}\mathbf{Z} = \begin{bmatrix} 425 & 0 & 0 \\ 43 & 258 & 129 \\ 158 & 118.5 & 434.5 \end{bmatrix}$,

$$r_i = \frac{m_i}{u_i + f_i}$$
, or $\mathbf{r} = \begin{bmatrix} .15 \\ .24 \\ .21 \end{bmatrix}$. We can then compute $\mathbf{\bar{D}} = \mathbf{Z} - \hat{\mathbf{r}} \mathbf{Z} = \begin{bmatrix} 425 & 0 & 0 \\ 43 & 258 & 129 \\ 158 & 118.5 & 434.5 \end{bmatrix}$,

$$\overline{\mathbf{M}} = \hat{\mathbf{r}} \mathbf{Z} = \begin{bmatrix} 75 & 0 & 0 \\ 7 & 42 & 21 \\ 42 & 31.5 & 115.5 \end{bmatrix}, \ \mathbf{h} = \hat{\mathbf{r}} \mathbf{f} = \begin{bmatrix} 75 \\ 35 \\ 21 \end{bmatrix} \text{ and } \overline{\mathbf{g}} = \mathbf{g} - \hat{\mathbf{r}} \mathbf{f} = \begin{bmatrix} 575 \\ 320 \\ 289 \end{bmatrix}. \text{ Note that } \mathbf{x} = \overline{\mathbf{D}} \mathbf{i} + \overline{\mathbf{g}} \text{ still}$$

holds, but this balance equation now accounts for only domestic transactions with interindustry imports reassigned to total value added. The new total value added vector is $\overline{\mathbf{v}}' = \mathbf{x}' - \mathbf{i}'\overline{\mathbf{D}} = \begin{bmatrix} 374 & 373.5 & 436.5 \end{bmatrix}$, which inflates the original vector of total valued added, $\mathbf{v}' = \begin{bmatrix} 250 & 300 & 300 \end{bmatrix}$ by interindustry imports to each industry, i.e., $\mathbf{\bar{m}}' = \begin{bmatrix} 124 & 73.5 & 136.5 \end{bmatrix}$, excluding the value of imports consumed directly in final demand.

(b) Since
$$\mathbf{M} = \begin{bmatrix} 150 & 0 & 0 \\ 25 & 50 & 30 \\ 35 & 75 & 100 \end{bmatrix}$$
, we can compute $\mathbf{D} = \mathbf{Z} - \mathbf{M} = \begin{bmatrix} 350 & 0 & 0 \\ 25 & 250 & 120 \\ 165 & 75 & 450 \end{bmatrix}$ and

(b) Since
$$\mathbf{M} = \begin{bmatrix} 150 & 0 & 0 \\ 25 & 50 & 30 \\ 35 & 75 & 100 \end{bmatrix}$$
, we can compute $\mathbf{D} = \mathbf{Z} - \mathbf{M} = \begin{bmatrix} 350 & 0 & 0 \\ 25 & 250 & 120 \\ 165 & 75 & 450 \end{bmatrix}$ and $\mathbf{m} = \mathbf{M}\mathbf{i} = \begin{bmatrix} 150 \\ 105 \\ 210 \end{bmatrix}$, and $\mathbf{g} = \mathbf{f} + \mathbf{m} = \begin{bmatrix} 650 \\ 355 \\ 310 \end{bmatrix}$ where $\mathbf{f} = \mathbf{x} - \mathbf{Z}\mathbf{i} = \begin{bmatrix} 500 \\ 250 \\ 100 \end{bmatrix}$. Note that the balance

equation $\mathbf{x} = \mathbf{Di} + \mathbf{g}$ holds. Then the new total value added vector, $\tilde{\mathbf{v}}' = \mathbf{x}' - \mathbf{i}'\mathbf{D} = \begin{bmatrix} 460 & 425 & 430 \end{bmatrix}$, inflates the original vector of total valued added, $\mathbf{v}' = \mathbf{x}' - \mathbf{i}'\mathbf{Z} = \begin{bmatrix} 250 & 300 & 300 \end{bmatrix}$, by the total value of all imports to each industry, $\tilde{\mathbf{m}}' = \begin{bmatrix} 210 & 125 & 130 \end{bmatrix}$, i.e. $\tilde{\mathbf{m}}' = \tilde{\mathbf{v}}' - \mathbf{v}'$. (c) We compute the Leontief inverse for (a) as

$$\mathbf{L}^{I} = (\mathbf{I} - \mathbf{A}^{I}) = \begin{bmatrix} 1.739 & 0 & 0 \\ .222 & 1.613 & .368 \\ .548 & .451 & 1.871 \end{bmatrix} \text{ for } \mathbf{A}^{I} = \overline{\mathbf{D}}\hat{\mathbf{x}}^{-1} = \begin{bmatrix} .425 & 0 & 0 \\ .043 & .344 & .129 \\ .158 & .158 & .435 \end{bmatrix} \text{ and }$$

$$\mathbf{L}^{II} = (\mathbf{I} - \mathbf{A}^{II}) = \begin{bmatrix} 1.538 & 0 & 0 \\ .146 & 1.551 & .338 \\ .488 & .282 & 1.88 \end{bmatrix} \text{ for } \mathbf{A}^{II} = \mathbf{D}\hat{\mathbf{x}}^{-1} = \begin{bmatrix} .35 & 0 & 0 \\ .025 & .333 & .12 \\ .165 & .1 & .45 \end{bmatrix}. \text{ The mean absolute}$$

deviation between \mathbf{L}^{I} and \mathbf{L}^{II} is found to be MAD = $(1/9)\sum_{i=1}^{3}\sum_{j=1}^{3}\left|l_{ij}^{I}-l_{ij}^{II}\right|=.067$.

PROBLEM 4.10

First, to aggregate the North and South regions and leave the Rest of China region unaggregated,

and $\mathbf{x}^{(a)} = \mathbf{S}\mathbf{x}$, which are shown in the following table:

		No	orth and So	uth	F	Rest of Chin	ıa
China 2000			Manuf &			Manuf &	
			Const	Services	Nat Res	Const	Services
å r th	Natural Resources	5,625	17,001	1,339	117	227	19
North	Manuf. & Const.	6,902	60,554	9,203	241	1,374	325
žő	Services	1,920	11,225	5,017	35	186	68
O	Natural Resources	43	305	22	1,581	3,154	293
ROC	Manuf. & Const.	155	1,334	212	1,225	6,704	1,733
	Services	29	193	53	425	2,145	1,000
	Total Output	44,517	130,816	38,678	11,661	21,107	8,910

The corresponding technical coefficients matrix and Leontief inverse are

$$\mathbf{A}^{(a)} = \begin{bmatrix} .126 & .13 & .035 & .01 & .011 & .002 \\ .155 & .463 & .238 & .021 & .065 & .037 \\ .043 & .086 & .13 & .003 & .009 & .008 \\ .001 & .002 & .001 & .136 & .149 & .033 \\ .003 & .01 & .005 & .105 & .318 & .194 \\ .001 & .001 & .001 & .036 & .102 & .112 \end{bmatrix}$$
 and

$$\mathbf{L}^{(a)} = \begin{bmatrix} 1.207 & .315 & .135 & .031 & .062 & .032 \\ .395 & 2.055 & .580 & .093 & .252 & .149 \\ .099 & .219 & 1.213 & .018 & .046 & .03 \\ .005 & .013 & .006 & 1.196 & .279 & .106 \\ .015 & .039 & .022 & .207 & 1.567 & .353 \\ .004 & .009 & .006 & .073 & .191 & 1.171 \end{bmatrix}.$$
 For the reference final demands

 $\tilde{\mathbf{f}} = \begin{bmatrix} 100 & 100 & 100 & 100 & 100 & 100 & 100 \end{bmatrix}'$ we can write $\tilde{\mathbf{f}}^{(a)} = \mathbf{S}\tilde{\mathbf{f}} = \begin{bmatrix} 200 & 200 & 200 & 100 & 100 \end{bmatrix}'$. We can now compute $\tilde{\mathbf{x}} = \mathbf{L}\tilde{\mathbf{f}} = \begin{bmatrix} 165 & 284 & 151 & 178 & 371 & 164 & 163 & 227 & 147 \end{bmatrix}'$ and $\tilde{\mathbf{x}}^{(a)} = \mathbf{L}^{(a)}\tilde{\mathbf{f}}^{(a)} = \begin{bmatrix} 344 & 655 & 316 & 163 & 228 & 147 \end{bmatrix}'$. Hence, we can compute the aggregation bias as $100 \times \frac{\left| \mathbf{S}\tilde{\mathbf{x}} - \tilde{\mathbf{x}}^{(a)} \right| \mathbf{i}}{\mathbf{S}\tilde{\mathbf{x}} \mathbf{i}} = .114$ percent.

Chapter 5, Commodity by Industry: Solutions to Exercise Problems

PROBLEM 5.1

(a)
$$\mathbf{x} = \mathbf{V}\mathbf{i} = \begin{bmatrix} 30 \\ 30 \end{bmatrix}$$
, $\mathbf{q} = (\mathbf{i}'\mathbf{V})' = \begin{bmatrix} 20 \\ 30 \\ 10 \end{bmatrix}$, $\mathbf{v}' = \mathbf{x}' - \mathbf{i}'\mathbf{U} = \begin{bmatrix} 23 & 15 \end{bmatrix}$, $\mathbf{e} = \mathbf{x} - \mathbf{U}\mathbf{i} = \begin{bmatrix} 12 \\ 21 \\ 5 \end{bmatrix}$,

and
$$\mathbf{B} = \mathbf{U}\hat{\mathbf{x}}^{-1} = \begin{bmatrix} .1 & .167 \\ .067 & .233 \\ .067 & .1 \end{bmatrix}$$
. (b) $\mathbf{D} = \mathbf{V}\hat{\mathbf{q}}^{-1} = \begin{bmatrix} .75 & 0.167 & 1 \\ .25 & 0.833 & 0 \end{bmatrix}$ so we can compute

$$(\mathbf{I} - \mathbf{D}\mathbf{B})^{-1}\mathbf{D} = \begin{bmatrix} 1.021 & .555 & 1.22 \\ .435 & 1.149 & 0.129 \end{bmatrix}.$$

PROBLEM 5.2

(a)
$$\mathbf{B} = \mathbf{U}\hat{\mathbf{x}}^{-1} = \begin{bmatrix} .083 & .25 \\ .25 & .5 \end{bmatrix}$$
. (b) $\mathbf{D} = \mathbf{V}\hat{\mathbf{q}}^{-1} = \begin{bmatrix} 1.0 & .2 \\ 0 & .8 \end{bmatrix}$, $\mathbf{C} = \mathbf{V}'\hat{\mathbf{x}}^{-1} = \begin{bmatrix} .833 & 0 \\ .167 & 1 \end{bmatrix}$. Therefore, $(\mathbf{I} - \mathbf{D}\mathbf{B})^{-1}\mathbf{D} = \begin{bmatrix} 1.333 & 0.889 \\ .444 & 1.63 \end{bmatrix}$ and $(\mathbf{I} - \mathbf{C}^{-1}\mathbf{B})^{-1}\mathbf{C}^{-1} = \begin{bmatrix} 1.412 & .706 \\ .235 & 2.118 \end{bmatrix}$. (c) Under an industry-

based technology assumption, $\Delta \mathbf{x} = \begin{bmatrix} 12.44 \\ 10.81 \end{bmatrix}$. Under a commodity-based technology assumption,

 $\Delta \mathbf{x} = \begin{bmatrix} 12 \\ 12 \end{bmatrix}$. These are different because the accounting of secondary production is different in the two assumptions.

PROBLEM 5.3

Since **V** is nonsquare, **C** will be nonsquare and hence no unique \mathbf{C}^{-1} exists. We therefore cannot use the mixed-technology assumption requiring computation of \mathbf{C}^{-1} ; that is, we cannot find $(\mathbf{I} - \mathbf{C}^{-1}\mathbf{B})^{-1}\mathbf{C}^{-1}$ or $\mathbf{R}(\mathbf{I} - \mathbf{B}\mathbf{R})^{-1}$ where $\mathbf{R} = [\mathbf{C}_1^{-1}(\mathbf{I} - \langle \mathbf{D}_2' \rangle) + \mathbf{D}_2]$. We can use the industry-based technology assumption with $\mathbf{T} = \begin{bmatrix} .333 & .333 & 1.333 \\ .667 & .667 & -.333 \end{bmatrix}$ and $\mathbf{T}(\mathbf{I} - \mathbf{B}\mathbf{T})^{-1} = \begin{bmatrix} .685 & .685 & 1.476 \\ .949 & .949 & -.264 \end{bmatrix}$.

PROBLEM 5.4

For
$$\mathbf{V}_1 = \begin{bmatrix} 10 & 0 \\ 0 & 2 \end{bmatrix}$$
 and $\mathbf{V}_2 = \begin{bmatrix} 0 & 2 \\ 0 & 6 \end{bmatrix}$, $\mathbf{x}_1 = \mathbf{V}_1 \mathbf{i} = \begin{bmatrix} 10 \\ 2 \end{bmatrix}$, $\mathbf{q} = (\mathbf{i}'\mathbf{V})' = \begin{bmatrix} 10 \\ 10 \end{bmatrix}$, $\mathbf{C}_1 = \mathbf{V}_1'(\hat{\mathbf{x}}_1)^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $\mathbf{D}_2 = \mathbf{V}_2(\hat{\mathbf{q}})^{-1} = \begin{bmatrix} 0 & .2 \\ 0 & .6 \end{bmatrix}$, $\mathbf{C}_1^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$,

$$\mathbf{R} = \mathbf{C}_{1}^{-1}(\mathbf{I} - \langle \mathbf{D}_{2}' \mathbf{i} \rangle) + \mathbf{D}_{2} = \begin{bmatrix} 1 & 0.2 \\ 0 & 0.8 \end{bmatrix}, \ \mathbf{R}(\mathbf{I} - \mathbf{B}\mathbf{R})^{-1} = \begin{bmatrix} 1.333 & .889 \\ .444 & 1.630 \end{bmatrix}, \ \mathbf{q}_{1} = \mathbf{i}'\mathbf{V}_{1} = \begin{bmatrix} 10 \\ 2 \end{bmatrix}, \\
\mathbf{D}_{1} = \mathbf{V}_{1}(\hat{\mathbf{q}}_{1})^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ \mathbf{C}_{2} = \mathbf{V}_{2}'(\hat{\mathbf{x}})^{-1} = \begin{bmatrix} 0 & 0 \\ 0.167 & 0.750 \end{bmatrix}, \\
\mathbf{T} = (\mathbf{I} + \mathbf{D}_{1}\mathbf{C}_{2} - \langle \mathbf{C}_{2}' \mathbf{i} \rangle)^{-1}\mathbf{D}_{1} = \begin{bmatrix} 1.2 & 0 \\ -0.2 & 1 \end{bmatrix} \text{ and } \mathbf{T}(\mathbf{I} - \mathbf{B}\mathbf{T})^{-1} = \begin{bmatrix} 1.412 & .706 \\ .235 & 2.118 \end{bmatrix}. \text{ There are}$$

alternative partitions of the V matrix into its V_1 and V_2 components. The requirement, of course, is that $V_1 + V_2 = V$.

PROBLEM 5.5

(a) From table 5.5, the commodity by industry total requirements matrix with the assumption of industry-based technology is $\mathbf{D}^{-1}(\mathbf{I} - \mathbf{B}\mathbf{D})^{-1}$. Since there are more commodities than industries, \mathbf{D} is non-square and \mathbf{D}^{-1} does not exist so it is impossible to compute $\mathbf{D}^{-1}(\mathbf{I} - \mathbf{B}\mathbf{D})^{-1}$. (b) For industry-by-commodity total requirements using the assumption of industry-based technology,

we have
$$\mathbf{D}(\mathbf{I} - \mathbf{B}\mathbf{D})^{-1} = \begin{bmatrix} 1.164 & .077 & .082 & .25 \\ .321 & 1.159 & 1.122 & .321 \\ .182 & .148 & .197 & .1.187 \end{bmatrix}$$
. (c) $\mathbf{V}_1 = \mathbf{V} - \mathbf{V}_2 = \begin{bmatrix} 99 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 30 \end{bmatrix}$,

$$\mathbf{q} = \mathbf{V'i} \begin{bmatrix} 256 \\ 149 \\ 170 \end{bmatrix}, \ \mathbf{x} = \mathbf{Vi} = \begin{bmatrix} 109 \\ 298 \\ 168 \end{bmatrix}$$
 and $\mathbf{x}_1 = \mathbf{V}_1 \mathbf{i} = \begin{bmatrix} 99 \\ 10 \\ 30 \end{bmatrix}$. Since \mathbf{V}_1 is diagonal, $\mathbf{x}_1 = \mathbf{V}_1 \mathbf{i} = \mathbf{q}_1 = \mathbf{V}_1' \mathbf{i}$ and,

$$\mathbf{C}_{1} = \mathbf{V}_{1}'\hat{\mathbf{x}}_{1}^{-1} = \mathbf{C}_{1}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}. \text{ Next } \mathbf{D}_{2} = \mathbf{V}_{2}(\hat{\mathbf{q}})^{-1} = \begin{bmatrix} 0 & 0 & .059 \\ .59 & .852 & .059 \\ .023 & .081 & .706 \end{bmatrix} \text{ so that }$$

$$\mathbf{R} = \mathbf{C}_{1}^{-1} \left[\mathbf{I} - \left\langle \mathbf{D}_{2}' \mathbf{i} \right\rangle \right] + \mathbf{D}_{2} = \begin{bmatrix} .387 & 0 & .059 \\ .59 & .925 & .059 \\ .023 & .081 & .882 \end{bmatrix} \text{ and } \mathbf{R}^{-1} = \begin{bmatrix} 2.573 & .015 & -.173 \\ -1.656 & 1.084 & .038 \\ .083 & -.099 & 1.134 \end{bmatrix} \text{ (note the } \mathbf{R}^{-1} = \begin{bmatrix} 2.573 & .015 & -.173 \\ -1.656 & 1.084 & .038 \\ .083 & -.099 & 1.134 \end{bmatrix}$$

negative elements in \mathbb{R}^{-1}). We can now compute the family of total requirements matrices as

regative elements in
$$\mathbf{R}^{-}$$
). We can now compute the family of total requirement $(\mathbf{I} - \mathbf{B}\mathbf{R})^{-1} = \begin{bmatrix} 1.260 & .213 & .308 \\ .093 & 1.070 & .111 \\ .141 & .121 & 1.324 \end{bmatrix}, \quad (\mathbf{I} - \mathbf{B}\mathbf{R})^{-1}\mathbf{R}^{-1} = \begin{bmatrix} 2.916 & .22 & .14 \\ -1.524 & 1.15 & .15 \\ .272 & .001 & 1.483 \end{bmatrix},$

$$\mathbf{R}(\mathbf{I} - \mathbf{B}\mathbf{R})^{-1} = \begin{bmatrix} .496 & .09 & .197 \\ .837 & 1.117 & .362 \\ .161 & .198 & 1.185 \end{bmatrix} \text{ and } (\mathbf{I} - \mathbf{R}\mathbf{B})^{-1} = \begin{bmatrix} 1.144 & .085 & .141 \\ .334 & 1.187 & .309 \\ .186 & .099 & 1.324 \end{bmatrix}.$$

$$\mathbf{R}(\mathbf{I} - \mathbf{B}\mathbf{R})^{-1} = \begin{bmatrix} .496 & .09 & .197 \\ .837 & 1.117 & .362 \\ .161 & .198 & 1.185 \end{bmatrix} \text{ and } (\mathbf{I} - \mathbf{R}\mathbf{B})^{-1} = \begin{bmatrix} 1.144 & .085 & .141 \\ .334 & 1.187 & .309 \\ .186 & .099 & 1.324 \end{bmatrix}.$$

PROBLEM 5.6

We start with $C = V'\hat{x}^{-1}$. The column sums of C are found by premultiplying by i', so $i'C = i'V'\hat{x}^{-1}$. Since (AB)' = B'A', we rewrite this as $i'C = (Vi)'\hat{x}^{-1}$ and substituting x = Viyields $\mathbf{i'C} = \mathbf{x'\hat{x}^{-1}} = \mathbf{i'}$. Similarly, if we start with $\mathbf{D} = \mathbf{V\hat{q}^{-1}}$, the column sums of \mathbf{D} are found with $\mathbf{i'D} = \mathbf{i'V\hat{q}^{-1}}$, using the same property of the transpose of a product of matrices yields $\mathbf{i'D} = (\mathbf{V'i})'\hat{\mathbf{q}}^{-1}$ and substituting $\mathbf{q} = \mathbf{V'i}$ yields $\mathbf{i'D} = \mathbf{q'}\hat{\mathbf{q}}^{-1} = \mathbf{i'}$.

PROBLEM 5.7

For the problem specified we need the total industry-by-commodity requirements using an

industry-based technology:
$$\mathbf{D}(\mathbf{I} - \mathbf{B}\mathbf{D})^{-1} = \begin{bmatrix} 1.164 & .078 & .082 & .25 \\ .321 & 1.160 & 1.122 & .321 \\ .182 & .148 & .197 & 1.187 \end{bmatrix}$$
. For the final demand of 100 for manufactured products, we have $\Delta \mathbf{x} = \mathbf{D}(\mathbf{I} - \mathbf{B}\mathbf{D})^{-1}\Delta \mathbf{f} = \begin{bmatrix} 25.02 \\ 32.08 \\ 118.65 \end{bmatrix}$ for

of 100 for manufactured products, we have
$$\Delta \mathbf{x} = \mathbf{D}(\mathbf{I} - \mathbf{B}\mathbf{D})^{-1}\Delta \mathbf{f} = \begin{bmatrix} 25.02 \\ 32.08 \\ 118.65 \end{bmatrix}$$
 for

$$\Delta \mathbf{f} = \begin{bmatrix} 0 & 0 & 0 & 100 \end{bmatrix}'.$$

PROBLEM 5.8

We can derive $\mathbf{D} = \mathbf{V}(\hat{\mathbf{q}})^{-1}$ where $\mathbf{q} = \mathbf{i}'\mathbf{V}$. The standard calculation for producing the commodity-by-commodity transactions matrix is $\mathbf{Z} = \mathbf{U}(\mathbf{D}')^{-1}$, so for this case,

$$\mathbf{D} = \begin{bmatrix} .75 & 0 & 0 \\ .25 & .667 & .189 \\ 0 & .333 & .811 \end{bmatrix} \text{ so } \mathbf{Z}_C = \mathbf{U}(\mathbf{D}')^{-1} = \begin{bmatrix} 26.667 & 7.019 & 19.315 \\ 6.667 & 43.359 & -3.025 \\ 13.333 & 17.151 & 6.516 \end{bmatrix}. \text{ Applying the Almon}$$

purifying algorithm (Appendix 5.2) to yield a non-negative transactions matrix results in

$$\tilde{\mathbf{Z}}_C = \mathbf{U}(\mathbf{D}')^{-1} = \begin{bmatrix} 26.667 & 7.019 & 19.314 \\ 6.667 & 40.333 & 0 \\ 13.333 & 17.151 & 6.516 \end{bmatrix}.$$

PROBLEM 5.9

If the net exports are reduced by a rise in imports of \$1 trillion, then final demand is reduced by the same amount and, all other values remaining constant, GDP is also reduced by the same amount. The corresponding changes in total outputs are found as

$$\Delta \mathbf{x} = \mathbf{D}(\mathbf{I} - \mathbf{B}\mathbf{D})^{-1} \Delta \mathbf{f} = -\begin{bmatrix} 75840 & 91880 & 7742 & 1550525 & 184877 & 355257 & 48461 \end{bmatrix}'.$$

Chapter 6, Multipliers: Solutions to Exercise Problems

PROBLEM 6.1

In each case, we want the column sums of the appropriate Leontief inverse:

Problem	Output	t Multip	oliers					
2-1	6.444	6.944						
2-2	2.970	4.167	3.611					
2-3	6.444	6.944						
2-4	2.006	2.428	1.307					
2-5	1.412	1.588						
2-6	1.839	1.437						
2-7	2.301	2.031	2.209	2.035	1.551	1.616	2.156	2.364
2-8	1.716	1.814						
2-9	1.919	1.605	1.722	1.925	1.487	1.608	1.599	
2-10	4.000	5.000	1.000					

PROBLEM 6.2

Using problem 2.2 as an example, the row vector of output multipliers is $\mathbf{m}(o) = [2.970 \ 4.167]$

Using problem 2.2 as an example, the row vector of output multipliers is
$$\mathbf{m}(o) = [2.970 \ 4.167]$$

3.611]. In conjunction with the final-demand vector used in that problem, namely $\mathbf{f}^{t+1} = \begin{bmatrix} 1300 \\ 100 \\ 200 \end{bmatrix}$,

we find
$$\mathbf{m}(o)\mathbf{f}^{t+1} = 5000$$
. In the solution to problem 2.2, we had $\mathbf{x}^{t+1} = \begin{bmatrix} 2000 \\ 1000 \\ 2000 \end{bmatrix}$, and the sum of

these elements is 5000; that is, $\mathbf{i}'\mathbf{x}^{t+1} = 5000$.

PROBLEM 6.3

Output multipliers for the three-sector model, closed with respect to households, are

 $\mathbf{m}(o) = [10.496 \ 11.112 \ 6.924]$. The type I income multipliers require that we have the laborinput coefficients, which are $a_{31} = 0.100$ and $a_{32} = 0.075$, along with the Leontief inverse of the model that is open with respect to households. This was $(\mathbf{I} - \mathbf{A})^{-1} = \begin{bmatrix} 4.074 & 3.241 \\ 2.370 & 3.704 \end{bmatrix}$. Then $m(h)_1 = (0.1)(4.074) + (0.075)(2.370) = 0.5852$ and $m(h)_2 = (0.1)(3.241) + (0.075)(3.704) =$ 0.6019; $m(h)_1^I = 0.5852/0.1 = 5.852$ and $m(h)_2^I = 0.6019/0.075 = 8.025$. The total household income multipliers can be found as the first two elements in the bottom row of the Leontief inverse of the model closed with respect to households. From problem 2.3, these are $\overline{m}(h)_1 =$ 0.990 and $\overline{m}(h)_2 = 1.019$, so the type II income multipliers are therefore

 $m(h)_1^H = 0.990/0.1 = 9.90$ and $m(h)_2^H = 1.019/0.075 = 13.59$. For both sectors, the ratio of the type II to the type I income multiplier is 1.69.

PROBLEM 6.4

The larger effect is in sector 1. The difference, for \$100 in exogenous demand, is \$29.41.

PROBLEM 6.5

(a) Concentrate on stimulating export demand for the product of sector 1; it has the larger output multiplier. (b) Knowing $a_{31} = 0.1$ and $a_{32} = 0.18$, we can find $H_1 = 0.4451$ and $H_2 = 0.3534$. Thus, converting output effects to income earned per dollar of new final demand for each of the sectors does not change the ranking; stimulation of export demand for the output of sector 1 is still more beneficial.

PROBLEM 6.6

(a)
$$\mathbf{m}(o)^{rr} = [1.468 \ 1.318]$$
 and $\mathbf{m}(o)^{ss} = [1.356 \ 1.356]$. (b) $\mathbf{m}(o)^{r} = [2.071 \ 1.869]$ and $\mathbf{m}(o)^{s} = [1.660 \ 1.610]$. (c) $\mathbf{m}(o)^{r} = [1.478 \ 0.593 \ 0.464 \ 1.405]$ and $\mathbf{m}(o)^{rs} = [1.292 \ 0.368 \ 0.323 \ 1.287]$.

PROBLEM 6.7

(a) Sector 1 in region r; output multipliers for sectors 1 and 2 in region s are equal. (b) Sector 1 in region r. (c) In region r. (d) Still region r.

PROBLEM 6.8

(a)
$$\mathbf{m}(o)^{rr} = [1.853 \ 1.753]$$
 and $\mathbf{m}(o)^{ss} = [1.937 \ 1.531]$. (b) $\mathbf{m}(o)^{r} = [3.813 \ 3.477]$ and $\mathbf{m}(o)^{s} = [3.850 \ 3.306]$. (c) $\mathbf{m}(o)^{rr} = [2.268 \ 1.545 \ 1.270 \ 2.207]$ and $\mathbf{m}(o)^{rs} = [2.288 \ 1.562 \ 1.201 \ 2.105]$. (d) Sector 1 in region r ; sector 1 in region s . (e) Sector 1 in region s . (f) In region r .

PROBLEM 6.9

We now want the Leontief inverse matrices for each of the three regions. These are found to be:

$$(\mathbf{I} - \mathbf{A}^A)^{-1} = \begin{bmatrix} 1.714 & 0.857 \\ 0.429 & 1.714 \end{bmatrix}, \ (\mathbf{I} - \mathbf{A}^B)^{-1} = \begin{bmatrix} 2.857 & 2.286 \\ 0.333 & 1.667 \end{bmatrix}, \ (\mathbf{I} - \mathbf{A}^C)^{-1} = \begin{bmatrix} 2.0 & 0 \\ 0.5 & 1.0 \end{bmatrix}.$$
 The largest

column sum is associated with sector 2 in region B (3.952); that is, with walnuts.

PROBLEM 6.10

$$|(\mathbf{I} - \overline{\mathbf{A}})| = .5879$$
 and $|(\mathbf{I} - \mathbf{A})| = .7575$ so $|(\mathbf{I} - \overline{\mathbf{A}})| / |(\mathbf{I} - \mathbf{A})| = .7761$ and $\mathbf{g} = (1 - h) - \mathbf{h}_R \mathbf{L} \mathbf{h}_C = .7761$ and $(1/g) = 1.29$.

Chapter 7, Supply, Linkages, & Important Coefficients: Solutions to Exercise Problems

PROBLEM 7.1

(a)
$$\mathbf{G} = (\mathbf{I} - \mathbf{B})^{-1} = \begin{bmatrix} 1.468 & .455 & .558 & .692 \\ .376 & 1.393 & .384 & .418 \\ .253 & .155 & 1.300 & .375 \\ .336 & .268 & .399 & 1.466 \end{bmatrix}$$
 for $\mathbf{B} = \hat{\mathbf{x}}^{-1}\mathbf{Z} = \begin{bmatrix} .168 & .194 & .213 & .283 \\ .155 & .193 & .134 & .123 \\ .105 & .031 & .126 & .165 \\ .134 & .095 & .164 & .186 \end{bmatrix}$. (b)

Since $GDP = \mathbf{i'f} = \mathbf{v'i}$, $GDP = \mathbf{v'i} = 21,246$ for $(\mathbf{v}^{new})' = [4,558 \quad 5,665 \quad 2,050 \quad 5,079]$. (c) For $\mathbf{x}^{new} = (\mathbf{I} - \mathbf{B}')^{-1} \mathbf{v}^{new}$, $\mathbf{x}^{new} = \begin{bmatrix} 13,928.5 & 12,518.4 & 6,606.6 & 11,313.2 \end{bmatrix}'$

PROBLEM 7.2

(a)
$$\mathbf{B} = \hat{\mathbf{x}}^{-1}\mathbf{Z} = \begin{bmatrix} .049 & .285 & .171 \\ .195 & .077 & .176 \\ .150 & .152 & .208 \end{bmatrix}$$
 and, since $\mathbf{Z}^{new} = \mathbf{Z} + \Delta \mathbf{Z} = \begin{bmatrix} 13 & 80 & 45 \\ 63 & 21 & 48 \\ 67 & 68 & 108 \end{bmatrix}$ and $\mathbf{x}^{new} = \mathbf{f}^{new} + \mathbf{Z}^{new} \mathbf{i} = \begin{bmatrix} 338 \\ 432 \\ 743 \end{bmatrix}$, \mathbf{B}^{new} is found as $\mathbf{B}^{new} = (\hat{\mathbf{x}}^{new})^{-1}\mathbf{Z}^{new} = \begin{bmatrix} .038 & .123 & .133 \\ .146 & .049 & .111 \\ .090 & .092 & .145 \end{bmatrix}$.

$$\mathbf{x}^{new} = \mathbf{f}^{new} + \mathbf{Z}^{new} \mathbf{i} = \begin{bmatrix} 338 \\ 432 \\ 743 \end{bmatrix}, \mathbf{B}^{new} \text{ is found as } \mathbf{B}^{new} = (\hat{\mathbf{x}}^{new})^{-1} \mathbf{Z}^{new} = \begin{bmatrix} .038 & .123 & .133 \\ .146 & .049 & .111 \\ .090 & .092 & .145 \end{bmatrix}.$$

The MAPD between **B** and **B**^{new} is found by $MAPD = (1/n^2) \sum_{i=1}^{n} \sum_{j=1}^{n} [|b_{ij} - b_{ij}^{new}| / b_{ij}] \times 100 = 29.1$.

(b) For
$$\mathbf{G} = (\mathbf{I} - \mathbf{B})^{-1} = \begin{bmatrix} 1.195 & .427 & .353 \\ .307 & 1.235 & .341 \\ .284 & .317 & 1.394 \end{bmatrix}$$
 and $\mathbf{G}^{new} = (\mathbf{I} - \mathbf{B}^{new})^{-1} = \begin{bmatrix} 1.104 & .295 & .210 \\ .185 & 1.114 & .174 \\ .136 & .150 & 1.211 \end{bmatrix}$, the

MAPD between **G** and \mathbf{G}^{new} is 32.80

PROBLEM 7.3

For
$$\mathbf{B} = \hat{\mathbf{x}}^{-1}\mathbf{Z} = \begin{bmatrix} .154 & .208 & .332 \\ .029 & .045 & .442 \\ .224 & .003 & .127 \end{bmatrix}$$
, $\mathbf{G} = (\mathbf{I} - \mathbf{B})^{-1} = \begin{bmatrix} 1.37 & .3 & .673 \\ .205 & 1.093 & .631 \\ .352 & .08 & 1.32 \end{bmatrix}$ so the relative price

changes are $\pi = (\hat{\mathbf{x}})^{-1} \mathbf{G}' \mathbf{v}^{new} = \begin{bmatrix} 1.389 & 1.512 & 1.319 \end{bmatrix}'$.

PROBLEM 7.4

First
$$\mathbf{v}_{c}^{new} = \hat{\mathbf{x}}^{-1}\mathbf{v}^{new} = \begin{bmatrix} .8 & .833 & .5 \end{bmatrix}'$$
 so $\tilde{\mathbf{p}} = (\mathbf{I} - \mathbf{A}')^{-1}\mathbf{v}_{c}^{new} = \mathbf{L}'\mathbf{v}_{c}^{new} = \begin{bmatrix} 1.389 & 1.512 & 1.319 \end{bmatrix}'$

where
$$\mathbf{L} = \begin{bmatrix} 1.37 & .626 & .561 \\ .098 & 1.093 & .252 \\ .422 & .201 & 1.32 \end{bmatrix}$$
 and $\boldsymbol{\pi} = \tilde{\mathbf{p}}$.

PROBLEM 7.5

First,
$$\mathbf{A} = \mathbf{Z}\hat{\mathbf{x}}^{-1} = \begin{bmatrix} .090 & .134 & .111 & .324 \\ .183 & .103 & .017 & .227 \\ .090 & .137 & .172 & .265 \\ .057 & .009 & .139 & .114 \end{bmatrix}$$
, $\mathbf{L} = (\mathbf{I} - \mathbf{A})^{-1} = \begin{bmatrix} 1.207 & .227 & .264 & .579 \\ .280 & 1.182 & .138 & .447 \\ .214 & .241 & 1.332 & .539 \\ .114 & .065 & .228 & 1.256 \end{bmatrix}$
$$\mathbf{B} = \hat{\mathbf{x}}^{-1}\mathbf{Z} = \begin{bmatrix} .090 & .149 & .127 & .201 \\ .165 & .103 & .018 & .128 \\ .079 & .133 & .172 & .144 \\ .091 & .017 & .256 & .114 \end{bmatrix} \text{ and } \mathbf{G} = (\mathbf{I} - \mathbf{B})^{-1} = \begin{bmatrix} 1.207 & .251 & .303 & .360 \\ .253 & 1.182 & .142 & .251 \\ .187 & .233 & 1.332 & .293 \\ .183 & .116 & .419 & 1.256 \end{bmatrix}$$
.

(a) The direct and total backward linkages are, $\mathbf{i'A} = [.420 \ .384 \ .440 \ .930]$ and $\mathbf{i'L} = [1.815 \ 1.716 \ 1.962 \ 2.820]$. (b) The direct and total forward linkages are $\mathbf{Bi} = [0.568 \ 0.414 \ 0.528 \ 0.479]'$ and $\mathbf{Gi} = [2.121 \ 1.828 \ 2.046 \ 1.974]'$.

PROBLEM 7.6

Using the matrix notation $B(d)^{rr} = (1/n)\mathbf{i}'\mathbf{A}^{rr}\mathbf{i}$, $B(d)^{sr} = (1/n)\mathbf{i}'\mathbf{A}^{sr}\mathbf{i}$, $B(t)^{rr} = (1/n)\mathbf{i}'\mathbf{L}^{rr}\mathbf{i}$ and $B(t)^{sr} = (1/n)\mathbf{i}'\mathbf{L}^{sr}\mathbf{i}$. For the Japanese IRIO model, n = 5 and $B(d)^{c} = B(d)^{cc} + B(d)^{cr} + B(d)^{cr} + B(d)^{cs}$, $B(d)^{n} = B(d)^{nn} + B(d)^{nc} + B(d)^{ns}$ and $B(d)^{s} = B(d)^{ss} + B(d)^{sn} + B(d)^{sc}$ are the direct backward linkages for the central, north and south regions, respectively. Analogous notation applies for the total backward linkages and the direct and total forward linkages. The results are provided in the following table:

$$r = \text{Central}$$
 $r = \text{North}$
 $r = \text{South}$
 $b(d)^r$
 .865
 .741
 .939

 $b(t)^r$
 3.18
 2.731
 3.434

 $f(d)^r$
 .579
 .453
 .597

 $f(t)^r$
 2.615
 2.483
 2.595

From the table, the North region is both the least backward and forward linked among the 3 regions.

PROBLEM 7.7

First retrieve A and x for the U.S. 2005 input-output table from the supplemental resources to this text (described in Appendix B). (a) To hypothetically extract the agriculture sector (sector

1), set the first row and first column of **A** to zero [call the result $\mathbf{A}^{(1)}$] and the first element of **f** to zero [call the result $\mathbf{f}^{(1)}$]. Then compute $\mathbf{L}^{(1)} = (\mathbf{I} - \mathbf{A}^{(1)})^{-1}$ and subsequently $t_1 = \mathbf{i}'\mathbf{x} - \mathbf{i}'\mathbf{L}^{(1)}\mathbf{f}^{(1)} = 54,744,946$, which would be the reduction in total output of the economy if the agriculture sector were extracted. (b) If we define $p_i = 100 \times (\mathbf{i}' \mathbf{x} - \mathbf{i}' \mathbf{L}^{(i)} \mathbf{f}^{(i)}) / \mathbf{i}' \mathbf{x}$ as the percentage reduction in total output by extracting industry j, then we can compute all 7 p_i 's as $p = [2.4 \ 2.6 \ 11.5 \ 29.8 \ 22.0 \ 54.8 \ 18.8]'$, which indicates that the services sector (sector 6) would yield the highest reduction in output from a hypothetical extraction with a 54.8 percent reduction in output.

PROBLEM 7.8

Initially,
$$\mathbf{A} = \begin{bmatrix} 0.0267 & 0.2560 & 0.4450 \\ 0.0933 & 0.1760 & 0.3850 \\ 0.1600 & 0.0960 & 0.1400 \end{bmatrix}$$
 and $\mathbf{L} = \begin{bmatrix} 1.2107 & 0.4738 & 0.8386 \\ 0.2557 & 1.3805 & 0.7503 \\ 0.2538 & 0.2423 & 1.4026 \end{bmatrix}$

Initially,
$$\mathbf{A} = \begin{bmatrix} 0.0267 & 0.2560 & 0.4450 \\ 0.0933 & 0.1760 & 0.3850 \\ 0.1600 & 0.0960 & 0.1400 \end{bmatrix}$$
 and $\mathbf{L} = \begin{bmatrix} 1.2107 & 0.4738 & 0.8386 \\ 0.2557 & 1.3805 & 0.7503 \\ 0.2538 & 0.2423 & 1.4026 \end{bmatrix}$.

(a) If a_{13} is increased to 0.5785 ($\alpha = 30$) we find $\mathbf{L}_{(13)}^* = \begin{bmatrix} 1.2531 & 0.5144 & 1.0732 \\ 0.2647 & 1.3890 & 0.7999 \\ 0.2627 & 0.2507 & 1.4517 \end{bmatrix}$ and

consequently
$$\mathbf{P}_{(13)} = 100\{ [\mathbf{L}_{(13)}^* - \mathbf{L}] \oslash \mathbf{L} \} = \begin{bmatrix} 3.5069 & 8.5531 & 27.9806 \\ 3.5069 & 0.6201 & 6.6051 \\ 3.5069 & 3.5069 & 3.5069 \end{bmatrix}$$
. In this case, a_{13} is

identified as inverse important because a 30 percent change in its value causes a greater than 5 percent change in three inverse elements— l_{12} , l_{13} and l_{23} . Notice that, as expected, the largest impact of a change in a_{13} is on the corresponding element in L, namely l_{13} . (b) With $\alpha = 20$

and
$$\beta = 10$$
, $\mathbf{L}_{(13)}^* = \begin{bmatrix} 1.2387 & 0.5005 & 0.9932 \\ 0.2616 & 1.3861 & 0.7830 \\ 0.2597 & 0.2478 & 1.4350 \end{bmatrix}$ and $\mathbf{P}_{(13)} = \begin{bmatrix} 2.3109 & 5.6362 & 18.4382 \\ 2.3109 & 0.4086 & 4.3525 \\ 2.3109 & 2.3109 & 2.3109 \end{bmatrix}$, so

 a_{13} would still be classified as inverse important, since there is (now only) one element, l_{13} , that is changed by more than $\beta = 10$ percent. (c) With $\alpha = 10$ and $\beta = 10$,

$$\mathbf{L}_{(13)}^{*} = \begin{bmatrix} 1.2245 & 0.4870 & 0.9150 \\ 0.2586 & 1.3832 & 0.7664 \\ 0.2567 & 0.2450 & 1.4186 \end{bmatrix} \text{ and } \mathbf{P}_{(13)} = \begin{bmatrix} 1.1423 & 2.7859 & 9.1138 \\ 1.1423 & 0.2020 & 2.1514 \\ 1.1423 & 1.1423 & 1.1423 \end{bmatrix}. \text{ In this case, } \boldsymbol{a}_{13}$$

would not be labeled inverse important. The largest percentage change in an element of the Leontief inverse is less than the threshold of $\beta = 10$.

PROBLEM 7.9

The data for problem 7.7 includes the relevant data for \mathbf{A} and \mathbf{x} . We can compute $\mathbf{Z} = \mathbf{A}\hat{\mathbf{x}}$ from which we can subsequently find $\mathbf{B} = \hat{\mathbf{x}}^{-1}\mathbf{Z}$, $\mathbf{G} = (\mathbf{I} - \mathbf{B})^{-1}$ (both provided below) and $\mathbf{v}' = \mathbf{x}' - \mathbf{i}'\mathbf{Z} = \begin{bmatrix} 123,475 & 233,770 & 648,605 & 1,487,054 & 2,137,239 & 6,324,050 & 1,501,645 \end{bmatrix}$.

$$\mathbf{B} = \begin{bmatrix} 0.2258 & 0.0000 & 0.0063 & 0.5513 & 0.0014 & 0.0585 & 0.0056 \\ 0.0021 & 0.1432 & 0.0245 & 0.7635 & 0.3105 & 0.0108 & 0.0447 \\ 0.0012 & 0.0001 & 0.0010 & 0.0061 & 0.0096 & 0.0573 & 0.0417 \\ 0.0136 & 0.0078 & 0.0752 & 0.3222 & 0.0409 & 0.1323 & 0.0569 \\ 0.0076 & 0.0050 & 0.0392 & 0.1328 & 0.0704 & 0.1044 & 0.0367 \\ 0.0025 & 0.0048 & 0.0152 & 0.0502 & 0.0564 & 0.2783 & 0.0489 \\ 0.0012 & 0.0015 & 0.0048 & 0.0390 & 0.0286 & 0.0780 & 0.0240 \end{bmatrix}$$

$$\mathbf{G} = \begin{bmatrix} 1.3139 & 0.0129 & 0.1027 & 1.1313 & 0.0811 & 0.3446 & 0.0987 \\ 0.0365 & 1.1863 & 0.1691 & 1.5050 & 0.4944 & 0.4018 & 0.1883 \\ 0.0026 & 0.0010 & 1.0054 & 0.0257 & 0.0190 & 0.0930 & 0.0499 \\ 0.0301 & 0.0169 & 0.1284 & 1.5707 & 0.0997 & 0.3280 & 0.1182 \\ 0.0165 & 0.0102 & 0.0674 & 0.2631 & 1.1072 & 0.2229 & 0.0716 \\ 0.0085 & 0.0102 & 0.0379 & 0.1502 & 0.1005 & 1.4409 & 0.0868 \\ 0.0041 & 0.0036 & 0.0154 & 0.0863 & 0.0454 & 0.1363 & 1.0390 \end{bmatrix}$$

As an example, a 10 percent reduction in construction primary inputs (sector 3) would reduce v_3 to 583,745 from 648,605. If we define the new v incorporating the reduced manufacturing labor input as $\overline{\mathbf{v}}$, then we can compute

 $\overline{\mathbf{x}}' = \overline{\mathbf{v}}'\mathbf{G} = [312,584 \quad 396,496 \quad 1,237,177 \quad 4,483,860 \quad 3,354,712 \quad 10,471,611 \quad 2,523,091], \text{ which}$ represents a 0.33 percent reduction in total output $[100 \times (\mathbf{i}'\mathbf{x} - \mathbf{i}'\overline{\mathbf{x}})/\mathbf{i}'\mathbf{x}]$. For comparison, a 10 percent reduction in the services sector (sector 6) generates a 5.08 percent reduction in total output.

PROBLEM 7.10

B(d)	1	2	3	4	5	6	7	b(d)
1919	0.556	0.748	0.729	0.722	0.57	0.546	0.524	0.628
1929	0.57	0.653	0.59	0.706	0.53	0.638	0.444	0.59
1938	0.624	0.724	0.517	0.807	0.639	0.449	0.626	0.627
1947	0.38	0.467	0.58	0.657	0.348	0.358	0.161	0.422
1958	0.462	0.472	0.609	0.633	0.35	0.333	0.266	0.446
1963	0.528	0.459	0.586	0.62	0.346	0.326	0.238	0.443
1967	0.548	0.492	0.553	0.611	0.334	0.335	0.265	0.448
1972	0.541	0.488	0.596	0.619	0.302	0.335	0.239	0.446
1977	0.572	0.479	0.559	0.656	0.357	0.332	0.263	0.46
1982	0.581	0.447	0.557	0.665	0.379	0.325	0.302	0.465
1987	0.547	0.454	0.573	0.636	0.347	0.351	0.308	0.459
1992	0.546	0.494	0.544	0.629	0.344	0.347	0.294	0.457
1997	0.579	0.463	0.521	0.645	0.351	0.372	0.312	0.463
2002	0.604	0.425	0.491	0.63	0.36	0.374	0.334	0.46
2007	0.585	0.34	0.466	0.659	0.395	0.393	0.357	0.456
2012	0.603	0.415	0.485	0.666	0.412	0.374	0.363	0.474
2018	0.627	0.444	0.478	0.627	0.415	0.389	0.358	0.477
-								
B(t)	1	2	3	4	5	6	7	b(t)
B(t)	2.366	2 2.922	3 3.01	4 2.879	5 2.547	6 2.354	7 2.47	b(t) 2.65
1919	2.366	2.922	3.01	2.879	2.547	2.354	2.47	2.65
1919 1929	2.366 2.359	2.922 2.5	3.01 2.475	2.879 2.701	2.547 2.292	2.354 2.415	2.47 2.141	2.65 2.412
1919 1929 1938	2.366 2.359 2.915	2.922 2.5 3.245	3.01 2.475 2.702	2.879 2.701 3.525	2.547 2.292 2.988	2.354 2.415 2.401	2.47 2.141 2.978	2.65 2.412 2.965
1919 1929 1938 1947	2.366 2.359 2.915 1.742	2.922 2.5 3.245 1.916	3.01 2.475 2.702 2.219	2.879 2.701 3.525 2.359	2.547 2.292 2.988 1.648	2.354 2.415 2.401 1.703	2.47 2.141 2.978 1.296	2.65 2.412 2.965 1.84
1919 1929 1938 1947 1958	2.366 2.359 2.915 1.742 1.899	2.922 2.5 3.245 1.916 1.913	3.01 2.475 2.702 2.219 2.262	2.879 2.701 3.525 2.359 2.304	2.547 2.292 2.988 1.648 1.636	2.354 2.415 2.401 1.703 1.634	2.47 2.141 2.978 1.296 1.528	2.65 2.412 2.965 1.84 1.882
1919 1929 1938 1947 1958 1963	2.366 2.359 2.915 1.742 1.899 2.066	2.922 2.5 3.245 1.916 1.913 1.843	3.01 2.475 2.702 2.219 2.262 2.219	2.879 2.701 3.525 2.359 2.304 2.291	2.547 2.292 2.988 1.648 1.636 1.623	2.354 2.415 2.401 1.703 1.634 1.6	2.47 2.141 2.978 1.296 1.528 1.467	2.65 2.412 2.965 1.84 1.882 1.873
1919 1929 1938 1947 1958 1963	2.366 2.359 2.915 1.742 1.899 2.066 2.1	2.922 2.5 3.245 1.916 1.913 1.843 1.92	3.01 2.475 2.702 2.219 2.262 2.219 2.133	2.879 2.701 3.525 2.359 2.304 2.291 2.259	2.547 2.292 2.988 1.648 1.636 1.623 1.596	2.354 2.415 2.401 1.703 1.634 1.6 1.613	2.47 2.141 2.978 1.296 1.528 1.467 1.509	2.65 2.412 2.965 1.84 1.882 1.873 1.876
1919 1929 1938 1947 1958 1963 1967 1972	2.366 2.359 2.915 1.742 1.899 2.066 2.1 2.071	2.922 2.5 3.245 1.916 1.913 1.843 1.92 1.886	3.01 2.475 2.702 2.219 2.262 2.219 2.133 2.2	2.879 2.701 3.525 2.359 2.304 2.291 2.259 2.263	2.547 2.292 2.988 1.648 1.636 1.623 1.596 1.524	2.354 2.415 2.401 1.703 1.634 1.6 1.613 1.602	2.47 2.141 2.978 1.296 1.528 1.467 1.509 1.454	2.65 2.412 2.965 1.84 1.882 1.873 1.876 1.857
1919 1929 1938 1947 1958 1963 1967 1972	2.366 2.359 2.915 1.742 1.899 2.066 2.1 2.071 2.218	2.922 2.5 3.245 1.916 1.913 1.843 1.92 1.886 1.944	3.01 2.475 2.702 2.219 2.262 2.219 2.133 2.2 2.215	2.879 2.701 3.525 2.359 2.304 2.291 2.259 2.263 2.42	2.547 2.292 2.988 1.648 1.636 1.623 1.596 1.524 1.662	2.354 2.415 2.401 1.703 1.634 1.6 1.613 1.602 1.622	2.47 2.141 2.978 1.296 1.528 1.467 1.509 1.454 1.522	2.65 2.412 2.965 1.84 1.882 1.873 1.876 1.857 1.943
1919 1929 1938 1947 1958 1963 1967 1972 1977	2.366 2.359 2.915 1.742 1.899 2.066 2.1 2.071 2.218 2.23	2.922 2.5 3.245 1.916 1.913 1.843 1.92 1.886 1.944 1.862	3.01 2.475 2.702 2.219 2.262 2.219 2.133 2.2 2.215 2.179	2.879 2.701 3.525 2.359 2.304 2.291 2.259 2.263 2.42 2.41	2.547 2.292 2.988 1.648 1.636 1.623 1.596 1.524 1.662 1.707	2.354 2.415 2.401 1.703 1.634 1.6 1.613 1.602 1.622 1.604	2.47 2.141 2.978 1.296 1.528 1.467 1.509 1.454 1.522 1.595	2.65 2.412 2.965 1.84 1.882 1.873 1.876 1.857 1.943 1.941
1919 1929 1938 1947 1958 1963 1967 1972 1977 1982	2.366 2.359 2.915 1.742 1.899 2.066 2.1 2.071 2.218 2.23 2.088	2.922 2.5 3.245 1.916 1.913 1.843 1.92 1.886 1.944 1.862 1.838	3.01 2.475 2.702 2.219 2.262 2.219 2.133 2.2 2.215 2.179 2.142	2.879 2.701 3.525 2.359 2.304 2.291 2.259 2.263 2.42 2.41 2.302	2.547 2.292 2.988 1.648 1.636 1.623 1.596 1.524 1.662 1.707 1.616	2.354 2.415 2.401 1.703 1.634 1.6 1.613 1.602 1.622 1.604 1.63	2.47 2.141 2.978 1.296 1.528 1.467 1.509 1.454 1.522 1.595 1.59	2.65 2.412 2.965 1.84 1.882 1.873 1.876 1.857 1.943 1.941 1.887
1919 1929 1938 1947 1958 1963 1967 1972 1977 1982 1987 1992	2.366 2.359 2.915 1.742 1.899 2.066 2.1 2.071 2.218 2.23 2.088 2.078	2.922 2.5 3.245 1.916 1.913 1.843 1.92 1.886 1.944 1.862 1.838 1.892	3.01 2.475 2.702 2.219 2.262 2.219 2.133 2.2 2.215 2.179 2.142 2.071	2.879 2.701 3.525 2.359 2.304 2.291 2.259 2.263 2.42 2.41 2.302 2.266	2.547 2.292 2.988 1.648 1.636 1.623 1.596 1.524 1.662 1.707 1.616 1.602	2.354 2.415 2.401 1.703 1.634 1.6 1.613 1.602 1.622 1.604 1.63 1.607	2.47 2.141 2.978 1.296 1.528 1.467 1.509 1.454 1.522 1.595 1.59 1.543	2.65 2.412 2.965 1.84 1.882 1.873 1.876 1.857 1.943 1.941 1.887 1.865
1919 1929 1938 1947 1958 1963 1967 1972 1977 1982 1987 1992	2.366 2.359 2.915 1.742 1.899 2.066 2.1 2.071 2.218 2.23 2.088 2.078 2.178	2.922 2.5 3.245 1.916 1.913 1.843 1.92 1.886 1.944 1.862 1.838 1.892 1.872	3.01 2.475 2.702 2.219 2.262 2.219 2.133 2.2 2.215 2.179 2.142 2.071 2.068	2.879 2.701 3.525 2.359 2.304 2.291 2.259 2.263 2.42 2.41 2.302 2.266 2.374	2.547 2.292 2.988 1.648 1.636 1.623 1.596 1.524 1.662 1.707 1.616 1.602 1.617	2.354 2.415 2.401 1.703 1.634 1.6 1.613 1.602 1.622 1.604 1.63 1.607 1.658	2.47 2.141 2.978 1.296 1.528 1.467 1.509 1.454 1.522 1.595 1.59 1.59	2.65 2.412 2.965 1.84 1.882 1.873 1.876 1.857 1.943 1.941 1.887 1.865 1.909
1919 1929 1938 1947 1958 1963 1967 1972 1977 1982 1987 1992 1997 2002	2.366 2.359 2.915 1.742 1.899 2.066 2.1 2.071 2.218 2.23 2.088 2.078 2.178 2.211	2.922 2.5 3.245 1.916 1.913 1.843 1.92 1.886 1.944 1.862 1.838 1.892 1.872	3.01 2.475 2.702 2.219 2.262 2.219 2.133 2.2 2.215 2.179 2.142 2.071 2.068 1.974	2.879 2.701 3.525 2.359 2.304 2.291 2.259 2.263 2.42 2.41 2.302 2.266 2.374 2.294	2.547 2.292 2.988 1.648 1.636 1.623 1.596 1.524 1.662 1.707 1.616 1.602 1.617 1.622	2.354 2.415 2.401 1.703 1.634 1.6 1.613 1.602 1.622 1.604 1.63 1.607 1.658 1.649	2.47 2.141 2.978 1.296 1.528 1.467 1.509 1.454 1.522 1.595 1.59 1.543 1.599 1.62	2.65 2.412 2.965 1.84 1.882 1.873 1.876 1.857 1.943 1.941 1.887 1.865 1.909 1.877

F(d)	1	2	3	4	5	6	7	f(d)
1919	0.821	0.806	0.671	0.531	0.679	0.307	0.631	0.635
1929	0.743	0.835	0.624	0.554	0.691	0.412	0.52	0.625
1938	0.717	0.871	0.732	0.571	0.959	0.18	0.879	0.701
1947	0.866	0.812	0.161	0.555	0.406	0.41	0.123	0.476
1958	0.808	0.917	0.151	0.598	0.448	0.39	0.137	0.493
1963	0.847	0.947	0.114	0.607	0.412	0.373	0.138	0.491
1967	0.844	0.915	0.139	0.6	0.416	0.386	0.128	0.49
1972	0.846	0.976	0.162	0.601	0.42	0.383	0.12	0.501
1977	0.793	0.252	0.133	0.619	0.442	0.378	0.128	0.535
1982	0.786	0.957	0.122	0.62	0.448	0.384	0.144	0.494
1987	0.888	0.096	0.146	0.619	0.417	0.404	0.151	0.532
1992	0.8	0.115	0.173	0.6	0.412	0.39	0.163	0.522
1997	0.812	0.14	0.127	0.627	0.4	0.418	0.171	0.528
2002	0.812	0.244	0.134	0.628	0.391	0.425	0.16	0.542
2007	0.811	0.294	0.155	0.657	0.403	0.43	0.159	0.558
2012	0.848	0.197	0.218	0.643	0.404	0.416	0.159	0.555
2018	0.84	0.879	0.179	0.659	0.403	0.43	0.164	0.508

F(t)	1	2	3	4	5	6	7	f(t)
1919	3.357	3.081	2.725	2.36	2.902	1.8	2.571	2.685
1929	2.941	3.038	2.444	2.316	2.75	1.947	2.269	2.529
1938	3.153	4.006	3.379	2.789	3.981	1.579	3.702	3.227
1947	2.885	2.744	1.271	2.122	1.813	1.782	1.208	1.975
1958	2.802	3.016	1.251	2.194	1.895	1.747	1.237	2.02
1963	2.97	3.041	1.185	2.22	1.81	1.693	1.252	2.024
1967	2.989	2.949	1.229	2.197	1.809	1.712	1.226	2.016
1972	2.974	3.089	1.258	2.184	1.812	1.691	1.216	2.032
1977	2.872	3.858	1.222	2.293	1.902	1.715	1.244	2.158
1982	2.851	3.125	1.199	2.266	1.905	1.72	1.271	2.048
1987	3.105	3.388	1.231	2.224	1.812	1.725	1.276	2.109
1992	2.819	3.355	1.27	2.168	1.785	1.686	1.29	2.053
1997	2.952	3.511	1.22	2.283	1.766	1.752	1.31	2.113
2002	2.917	3.675	1.228	2.234	1.724	1.748	1.285	2.116
2007	2.976	3.966	1.268	2.334	1.77	1.772	1.29	2.197
2012	3.073	3.784	1.369	2.309	1.783	1.74	1.29	2.193
2018	3.04	2.96	1.298	2.306	1.761	1.763	1.297	2.061

Chapter 8, Structural Decomposition Analysis: Solutions to Exercise Problems

PROBLEM 8.1

First
$$\mathbf{A}^0 = \mathbf{Z}^0(\hat{\mathbf{x}}^0)^{-1} = \begin{bmatrix} .097 & .239 & .333 \\ .077 & .072 & .250 \\ .065 & .287 & .333 \end{bmatrix}$$
 and $\mathbf{A}^1 = \mathbf{Z}^1(\hat{\mathbf{x}}^1)^{-1} = \begin{bmatrix} .500 & .438 & .300 \\ .320 & .450 & .167 \\ .100 & .075 & .133 \end{bmatrix}$ so
$$\mathbf{L}^0 = (\mathbf{I} - \mathbf{A}^0)^{-1} = \begin{bmatrix} 1.199 & .562 & .455 \\ .111 & 1.221 & .308 \\ .398 & 1.125 & 1.910 \end{bmatrix}$$
 and $\mathbf{L}^1 = (\mathbf{I} - \mathbf{A}^1)^{-1} = \begin{bmatrix} 1.214 & .566 & .82 \\ .15 & 1.289 & .558 \\ .182 & 1.61 & 1.82 \end{bmatrix}$. Then
$$\Delta \mathbf{f} = \mathbf{f}^1 - \mathbf{f}^0 = \begin{bmatrix} 15 \\ 10 \\ -10 \end{bmatrix}$$
 and $\Delta \mathbf{L} = \mathbf{L}^1 - \mathbf{L}^0 = \begin{bmatrix} .015 & .004 & .365 \\ .039 & .068 & .251 \\ -.216 & -.515 & -.09 \end{bmatrix}$. By using
$$\Delta \mathbf{x} = (1/2)(\Delta \mathbf{L})(\mathbf{f}^0 + \mathbf{f}^1) + (1/2)(\mathbf{L}^0 + \mathbf{L}^1)(\Delta \mathbf{f}), \text{ the basic structural decomposition relationship, we}$$
 write
$$\Delta \mathbf{x} = \begin{bmatrix} 35 \\ 27.5 \\ -50 \end{bmatrix}, (\Delta \mathbf{L})(\mathbf{f}^0 + \mathbf{f}^1) = \begin{bmatrix} 35.3 \\ 34.6 \\ -88.8 \end{bmatrix} \text{ and } (\mathbf{L}^0 + \mathbf{L}^1)(\Delta \mathbf{f}) = \begin{bmatrix} 34.7 \\ 20.4 \\ -11.2 \end{bmatrix}.$$

write
$$\Delta \mathbf{x} = \begin{bmatrix} 35 \\ 27.5 \\ -50 \end{bmatrix}$$
, $(\Delta \mathbf{L})(\mathbf{f}^0 + \mathbf{f}^1) = \begin{bmatrix} 35.3 \\ 34.6 \\ -88.8 \end{bmatrix}$ and $(\mathbf{L}^0 + \mathbf{L}^1)(\Delta \mathbf{f}) = \begin{bmatrix} 34.7 \\ 20.4 \\ -11.2 \end{bmatrix}$

PROBLEM 8.2

Using the same procedure outlined in the solution to problem 8.1, the following table summarizes the results:

Sector	$\Delta \mathbf{x}$	Technology	Final Demand	
1	186,559	-215,862	588,981	
2	154,131	54,745	253,517	
3	801,570	-147,102	1,750,242	
4	3,089,223	-418,484	6,596,931	
5	2,434,476	-7,500	4,876,451	
6	8,426,367	2,448,634	14,404,100	
7	1,985,075	218,564	3,751,585	

PROBLEM 8.3

The changes represent uniform growth, i.e., both transactions and final demand growth uniformly by 50 percent between periods 0 and 1.

PROBLEM 8.4

First compute
$$\mathbf{x}^0 = \mathbf{f}^0 + \mathbf{Z}^0 \mathbf{i} = \begin{bmatrix} 112 \\ 100 \\ 120 \end{bmatrix}$$
 and $\mathbf{x}^1 = \mathbf{f}^1 + \mathbf{Z}^1 \mathbf{i} = \begin{bmatrix} 150 \\ 158 \\ 199 \end{bmatrix}$ from which we can compute $\mathbf{A}^0 = \mathbf{Z}^0(\hat{\mathbf{x}}^0)^{-1} = \begin{bmatrix} 0.1071 & 0.1500 & 0.2917 \\ 0.2143 & 0.1100 & 0.2500 \\ 0.3214 & 0.5000 & 0.0667 \end{bmatrix}$, $\mathbf{A}^1 = \mathbf{Z}^1(\hat{\mathbf{x}}^1)^{-1} = \begin{bmatrix} 0.1333 & 0.1899 & 0.2261 \\ 0.2333 & 0.1456 & 0.2513 \\ 0.3333 & 0.4114 & 0.1206 \end{bmatrix}$, $\mathbf{L}^0 = (\mathbf{I} - \mathbf{A}^0)^{-1} = \begin{bmatrix} 1.4909 & 0.6039 & 0.6277 \\ 0.5923 & 1.5625 & 0.6036 \\ 0.8308 & 1.0451 & 1.6110 \end{bmatrix}$ and $\mathbf{L}^1 = (\mathbf{I} - \mathbf{A}^1)^{-1} = \begin{bmatrix} 1.5405 & 0.6181 & 0.5727 \\ 0.6869 & 1.6327 & 0.6431 \\ 0.9053 & 0.9981 & 1.6551 \end{bmatrix}$. Then we can compute $\Delta \mathbf{f} = \mathbf{f}^1 - \mathbf{f}^0 = \begin{bmatrix} 5 \\ 15 \\ 34 \end{bmatrix}$, $\Delta \mathbf{x} = \mathbf{x}^1 - \mathbf{x}^0 = \begin{bmatrix} 38 \\ 58 \\ 79 \end{bmatrix}$ and $\Delta \mathbf{f} = \mathbf{f}^0 = \begin{bmatrix} 5 \\ 15 \\ 34 \end{bmatrix}$.

Then we can compute
$$\Delta \mathbf{f} = \mathbf{f}^1 - \mathbf{f}^0 = \begin{bmatrix} 5 \\ 15 \\ 34 \end{bmatrix}$$
, $\Delta \mathbf{x} = \mathbf{x}^1 - \mathbf{x}^0 = \begin{bmatrix} 38 \\ 58 \\ 79 \end{bmatrix}$ and

$$\Delta \mathbf{L} = \mathbf{L}^{1} - \mathbf{L}^{0} = \begin{bmatrix} 0.0497 & 0.0142 & -0.0549 \\ 0.0946 & 0.0701 & 0.0395 \\ 0.0745 & -0.0470 & 0.0441 \end{bmatrix}$$
 and apply the formulas in Table 8.1, the results of

which are given in the table below. For equations (8.5) and (8.6), since there are interaction terms, the percentage are normalized to the sums of the absolute values of changes due to technology, final demand, and the interaction term.

			Technology Total Output Change Change Contribution Output Percent Output Percent		Cha	Demand ange ibution	Interacti	on Term	
		Output	Percent	Output	Percent	Output	Percent	Output	Percent
	Sector 1	38	100	1.55	4.09	36.45	95.91	0.00	0.00
Equation (8.3)	Sector 2	58	100	8.21	14.15	49.79	85.85	0.00	0.00
Equation (8.5)	Sector 3	79	100	3.23	4.09	75.77	95.91	0.00	0.00
	Total	175	100	12.99	7.42	162.01	92.58	0.00	0.00
	Sector 1	38	100	0.15	0.39	37.85	99.61	0.00	0.00
E	Sector 2	58	100	11.08	19.10	46.92	80.90	0.00	0.00
Equation (8.4)	Sector 3	79	100	4.40	5.57	74.60	94.43	0.00	0.00
	Total	175	100	15.62	8.93	159.38	91.07	0.00	0.00
	Sector 1	38	100	1.55	4.09	37.85	99.61	-1.41	-3.70
Equation (8.5)	Sector 2	58	100	8.21	14.15	46.92	80.90	2.87	4.94
Equation (8.3)	Sector 3	79	100	3.23	4.09	74.60	94.43	1.17	1.48
	Total	175	100	12.99	7.42	159.38	91.07	2.63	1.50
	Sector 1	38	100	0.15	0.39	36.45	95.91	1.41	3.70
Equation (9.6)	Sector 2	58	100	11.08	19.10	49.79	85.85	-2.87	-4.94
Equation (8.6)	Sector 3	79	100	4.40	5.57	75.77	95.91	-1.17	-1.48
	Total	175	100	15.62	8.93	162.01	92.58	-2.63	-1.50
	Sector 1	38	100	0.85	2.24	37.15	97.76	0.00	0.00
E .: (0.5)	Sector 2	58	100	9.64	16.63	48.36	83.37	0.00	0.00
Equation (8.7)	Sector 3	79	100	3.81	4.83	75.19	95.17	0.00	0.00
	Total	175	100	14.31	8.17	160.69	91.83	0.00	0.00

PROBLEM 8.5

The quantities \mathbf{x}^0 , \mathbf{x}^1 , \mathbf{A}^0 , \mathbf{A}^1 , \mathbf{L}^0 , \mathbf{L}^1 , $\Delta \mathbf{f}$, $\Delta \mathbf{x}$ and $\Delta \mathbf{L}$ were computed in problem 8.4. We can now compute

$$\mathbf{d}^{0} = \begin{bmatrix} 47/111 \\ 64/111 \end{bmatrix} = \begin{bmatrix} 0.4234 \\ 0.5766 \end{bmatrix} \quad \text{and} \quad \mathbf{d}^{1} = \begin{bmatrix} 58/111 \\ 53/111 \end{bmatrix} = \begin{bmatrix} 0.5455 \\ 0.4545 \end{bmatrix}$$

and the bridge matrices are

$$\mathbf{B}^{0} = \begin{bmatrix} 20 & 30 \\ 15 & 20 \\ 12 & 14 \end{bmatrix} \begin{bmatrix} 1/47 & 0 \\ 0 & 1/64 \end{bmatrix} = \begin{bmatrix} 0.4255 & 0.4545 \\ 0.3191 & 0.3636 \\ 0.2553 & 0.1818 \end{bmatrix}$$
 and

$$\mathbf{B}^{1} = \begin{bmatrix} 25 & 30 \\ 30 & 20 \\ 35 & 25 \end{bmatrix} \begin{bmatrix} 1/90 & 0 \\ 0 & 1/75 \end{bmatrix} = \begin{bmatrix} 0.2778 & 0.4000 \\ 0.3333 & 0.2667 \\ 0.3889 & 0.3333 \end{bmatrix}$$

and

$$\Delta \mathbf{d} = \begin{bmatrix} .1220 \\ -.1220 \end{bmatrix}, \quad \Delta \mathbf{B} = \begin{bmatrix} -.1478 & -.0687 \\ .0142 & -.0458 \\ .1336 & .1146 \end{bmatrix} \text{ and } \Delta f = 54$$

Application of equation (8.31) yields the various change contributions given in the table below.

	Output		Techno	logy Cha	ange Contr	ibution	Final Demand Change Contribution			
	Change		Sector 1	Sector	2 Sector 3	Total	Level	Mix	Dist.	Total
Sector 1	Sector 1 38		7.72	4.03	-10.90	0.85	51.97	-13.43	-1.39	37.15
500001	30	Percentage	20	11	-29	2	137	-35	-4	98
Sector 2	58	Output	7.43	3.52	-1.30	9.64	50.27	-2.59	0.67	48.36
5001012	30	Percentage	13	6	-2	17	87	-4	1	83
G4 2	70	Output	8.17	-9.27	4.91	3.81	61.79	12.67	0.73	75.19
Sector 3	79	Percentage	10	-12	6	5	78	16	1	95
Total	175	Output	23.32	-1.72	-7.30	14.31	164.02	-3.34	0.01	160.69
10141	1/3	Percentage	13	-1	-4	8	94	-2	0	92

Chapter 9, Nonsurvey Methods, Foundations: Solutions to Exercise Problems

PROBLEM 9.1

The assumption of industry-based technology for an industry-by-industry technical coefficients matrix means that, generally, $\mathbf{Z} = \mathbf{D}\mathbf{B}\hat{\mathbf{x}}$ where $\mathbf{D} = \mathbf{V}\hat{\mathbf{q}}^{-1}$ and $\mathbf{B} = \mathbf{U}\hat{\mathbf{x}}^{-1}$. Using the matrices \mathbf{U} and \mathbf{V} as well as the vectors \mathbf{q} and \mathbf{x} for years 1997, 2003 and 2005, the corresponding transactions matrices are the following:

Z(1997)	1	2	3	4	5	6	7
1	74,807	27	1,170	150,337	2,897	13,738	12
2	501	19,330	4,722	115,074	53,759	6,331	35
3	997	26	739	6,665	10,450	44,999	24
4	49,998	19,663	179,517	1,362,631	175,369	428,076	1,932
5	21,358	11,509	74,280	372,728	199,152	247,197	663
6	33,123	44,541	108,369	489,159	540,798	1,562,040	3,725
7	106	825	540	34,282	20,330	28,677	4
Z(2003)	1	2	3	4	5	6	7
1	61,199	9	1,286	145,882	321	18,714	2,153
2	570	33,088	7,612	176,292	88,879	2,496	12,046
3	942	47	1,278	8,128	10,047	65,053	48,460
4	47,412	22,981	264,578	1,246,562	133,807	523,227	227,310
5	23,463	12,824	96,960	369,498	183,671	287,032	119,187
6	24,800	40,759	142,346	490,430	472,802	2,490,571	426,150
7	2,782	3,406	10,953	83,306	58,947	182,603	55,918
Z(2005)	1	2	3	4	5	6	7
1	70,629	10	1,973	172,428	435	18,296	1,739
2	832	56,798	9,707	302,783	123,117	4,273	17,745
3	1,597	74	1,329	7,886	12,449	74,678	54,282
4	61,158	34,779	337,412	1,445,451	183,602	593,372	255,282
5	25,620	16,748	131,675	445,685	236,309	350,316	123,084
6	26,352	50,611	159,600	525,827	590,537	2,915,594	511,919
7	3,091	3,773	12,087	98,416	72,256	197,062	60,628

To generate price indices relative to the year 2005, the elements in each row of the historical price indices are divided by the last element in that row to yield the following table of relative price indices:

	1997	2003	2005
Agriculture	0.815	0.925	1
Mining	0.481	0.653	1
Construction	0.865	0.900	1
Manufactuirng	0.852	0.961	1
Trade Transport & Utilities	0.923	0.947	1
Services	0.588	0.690	1
Other	0.867	0.897	1

The constant price transactions tables expressed relative to 2005 dollars are then found as $\mathbf{Z}(1997)^{(2005)} = \hat{\mathbf{p}}_{1997}^{(2005)}\mathbf{Z}(1997)$ where $\hat{\mathbf{p}}_{1997}^{(2005)}$ is a matrix with the first column of the relative price table placed along the diagonal and zeros elsewhere. Also, $\mathbf{Z}(2003)^{(2005)}$ is computed in the same manner, i.e., $\mathbf{Z}(2003)^{(2005)} = \hat{\mathbf{p}}_{2003}^{(2005)}\mathbf{Z}(2003)$, but $\mathbf{Z}(2005)^{(2005)} = \hat{\mathbf{p}}_{2005}^{(2005)}\mathbf{Z}(2005)$ is, of course, identical to the $\mathbf{Z}(2005)$.

Z(1997) ⁽²⁰⁰⁵⁾	1	2	3	4	5	6	7
1	60,967	22	953	122,524	2,361	11,197	10
2	241	9,290	2,269	55,304	25,837	3,043	17
3	863	22	640	5 <i>,</i> 766	9,041	38,932	21
4	42,605	16,755	152,973	1,161,145	149,438	364,778	1,646
5	19,715	10,624	68,566	344,057	183,832	228,182	612
6	19,485	26,202	63,749	287,754	318,131	918,889	2,191
7	92	715	469	29,737	17,635	24,874	4
Z(2003) ⁽²⁰⁰⁵⁾	1	2	3	4	5	6	7
1	56,611	8	1,190	134,944	297	17,311	1,991
2	372	21,614	4,973	115,160	58,059	1,631	7,869
3	847	42	1,150	7,315	9,042	58,544	43,612
4	45,568	22,088	254,292	1,198,098	128,605	502,885	218,472
5	22,231	12,150	91,869	350,096	174,027	271,960	112,928
6	17,105	28,112	98,179	338,258	326,100	1,717,792	293,923
7	2,494	3,053	9,820	74,687	52,848	163,709	50,132

PROBLEM 9.2

First, we must compute the technical coefficients matrices A(2005), $A(1997)^{(2005)}$ and A(1997):

A (2005)	1		2	3	4	5	6	7
1	0.22	258	0.0000	0.0015	0.0384	0.0001	0.0017	0.0007
2	0.00)27	0.1432	0.0075	0.0675	0.0367	0.0004	0.0070
3	0.00)51	0.0002	0.0010	0.0018	0.0037	0.0071	0.0215
4	0.19	955	0.0877	0.2591	0.3222	0.0547	0.0566	0.1010
5	0.08	319	0.0422	0.1011	0.0994	0.0704	0.0334	0.0487
6	0.08	343	0.1276	0.1225	0.1172	0.1760	0.2783	0.2026
7	0.00)99	0.0095	0.0093	0.0219	0.0215	0.0188	0.0240
A (1997)	1		2	3	4	5	6	7
1	0.26	511	0.0002	0.0017	0.0397	0.0012	0.0021	0.0000
2	0.00)17	0.1146	0.0070	0.0304	0.0226	0.0010	0.0000
3	0.00)35	0.0002	0.0011	0.0018	0.0044	0.0068	0.0000
4	0.17	745	0.1166	0.2679	0.3600	0.0737	0.0647	0.0020
5	0.07	745	0.0682	0.1108	0.0985	0.0836	0.0374	0.0007
6	0.11	L56	0.2641	0.1617	0.1292	0.2272	0.2363	0.0039
7	0.00	004	0.0049	0.0008	0.0091	0.0085	0.0043	0.0000
(1997) ⁽²⁰⁰⁵⁾		1	2	3	4	5	6	7
1	(0.2611	0.0003	0.0016	0.0380	0.0011	0.0029	0.0000
2	(0.0010	0.1146	0.0039	0.0171	0.0118	0.0008	0.0000
3	(0.0037	0.0003	0.0011	0.0018	0.0041	0.0100	0.0000
4	(0.1824	0.2067	0.2638	0.3600	0.0680	0.0938	0.0020
5	(0.0844	0.1311	0.1182	0.1067	0.0836	0.0587	0.0007
6	(0.0834	0.3233	0.1099	0.0892	0.1448	0.2363	0.0026
7	(0.0004	0.0088	0.0008	0.0092	0.0080	0.0064	0.0000

Then, for the constant price tables,

$$\frac{1}{7} [\mathbf{i'} | \mathbf{A}(2005) - \mathbf{A}(1997)^{(2005)} |] = [.009 \quad .062 \quad .007 \quad .02 \quad .014 \quad .017 \quad .057].$$

The most changed sectors in decreasing order are 2, 7 and 4. For the current price tables,

$$\frac{1}{7}[\mathbf{i'}|\mathbf{A}(2005) - \mathbf{A}(1997)|] = [.015 \quad .032 \quad .01 \quad .015 \quad .016 \quad .01 \quad .057].$$

The most changed sectors in decreasing order are 7, 2 and 5. Differences in rates of inflation explain the difference.

PROBLEM 9.3

The marginal input coefficients table, computed as $[\mathbf{Z}(2005) - \mathbf{Z}(1997)][\langle \mathbf{x}(2005) - \mathbf{x}(1997)\rangle]^{-1}$ is:

	1	2	3	4	5	6	7
1	-0.1594	-0.0001	0.0013	0.0315	-0.0025	0.0012	0.0011
2	0.0126	0.1644	0.0079	0.2678	0.0711	-0.0005	0.0113
3	0.0229	0.0002	0.0009	0.0017	0.0020	0.0077	0.0346
4	0.4257	0.0663	0.2498	0.1182	0.0084	0.0428	0.1618
5	0.1626	0.0230	0.0908	0.1041	0.0381	0.0267	0.0782
6	-0.2583	0.0266	0.0810	0.0523	0.0510	0.3501	0.3245
7	0.1139	0.0129	0.0183	0.0915	0.0532	0.0436	0.0387

Note that marginal coefficients deal with changes, so negative entries can appear and do in this case.

PROBLEM 9.4

From the transactions matrix, $\mathbf{Z}(0) = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, and vector of total outputs, $\mathbf{x}(0) = \begin{bmatrix} 10 \\ 10 \end{bmatrix}$, we can compute $\mathbf{A}(0) = \mathbf{Z}(0)\hat{\mathbf{x}}(0)^{-1} = \begin{bmatrix} .1 & .2 \\ .3 & .4 \end{bmatrix}$. We can compute $\mathbf{u}(1) = \mathbf{x}(1) - \mathbf{f}(1) = \begin{bmatrix} 25 \\ 20 \end{bmatrix} - \begin{bmatrix} 12 \\ 6 \end{bmatrix} = \begin{bmatrix} 13 \\ 14 \end{bmatrix}$ and $\mathbf{v}(1) = \mathbf{x}(1) - \mathbf{v}\mathbf{a}(1) = \begin{bmatrix} 25 \\ 20 \end{bmatrix} - \begin{bmatrix} 10 \\ 8 \end{bmatrix} = \begin{bmatrix} 15 \\ 12 \end{bmatrix}$. [We use $\mathbf{v}\mathbf{a}(1)$ for the value added vector in 2010 to differentiate it from $\mathbf{v}(1)$, the total intermediate inputs vector in 2010.] Performing the RAS procedure using $\mathbf{A}(0)$, $\mathbf{u}(1)$, $\mathbf{v}(1)$ and $\mathbf{x}(1)$ yields $\tilde{\mathbf{A}}(1) = \begin{bmatrix} .262 & .323 \\ .338 & .277 \end{bmatrix}$.

PROBLEM 9.5

For the 1997 input-output table, $\mathbf{A}(1997) = \mathbf{Z}(1997)\hat{\mathbf{x}}(1997)^{-1}$ is shown in the answer to problem 9.2. From the supplemental resources to this text (described in Appendix B), we can retrieve $\mathbf{x}(2005)$ and easily compute $\mathbf{u}(2005) = \mathbf{Z}(2005)\mathbf{i}$, and $\mathbf{v}(2005) = \mathbf{i}'\mathbf{Z}(2005)$ given in the table below

	1	2	3	4	5	6	7
u(2005)'	265,510	515,254	152,295	2,911,056	1,329,436	4,780,440	447,314
v (2005)′	189,279	162,793	653,783	2,998,476	1,218,705	4,153,590	1,024,680
x (2005)'	312,754	396,563				10,477,640	

Performing the RAS procedure using A(1997), $\mathbf{u}(2005)$, $\mathbf{v}(2005)$ and $\mathbf{x}(2005)$, yields $\tilde{\mathbf{A}}(2005)$, given in the table below

Ã (2005)	1	2	3	4	5	6	7
1	0.2448	0.0001	0.0015	0.0357	0.0009	0.0021	0.0007
2	0.0037	0.1423	0.0140	0.0622	0.0373	0.0022	0.0048
3	0.0052	0.0001	0.0015	0.0025	0.0050	0.0109	0.0023
4	0.1592	0.0618	0.2274	0.3148	0.0519	0.0638	0.1129
5	0.0737	0.0392	0.1020	0.0933	0.0639	0.0400	0.0420
6	0.1172	0.1557	0.1525	0.1256	0.1780	0.2588	0.2419
7	0.0015	0.0112	0.0030	0.0343	0.0261	0.0185	0.0011

For the 2005 "real" input-output table, $\mathbf{A}(2005) = \mathbf{Z}(2005)\hat{\mathbf{x}}(2005)^{-1}$ (also derived in the solution to problem 7.2), the MAPE is computed as

$$\left(\frac{1}{49}\right)\sum_{i=1}^{7}\sum_{j=1}^{7}100\times\left[\frac{\left|\tilde{a}_{ij}(2005)-a_{ij}(2005)\right|}{a_{ij}(2005)}\right]=49.028$$
 [for $a_{ij}(2005)\neq0$ and 0 otherwise].

Note that in this case the RAS estimate is very weak since the average error is nearly 50%.

PROBLEM 9.6

(a)
$$\tilde{\mathbf{Z}}^{Z}(1)$$
 computed via RAS, using $\mathbf{Z}(0)$, $\mathbf{v}(1)$ and $\mathbf{u}(1)$ yields $\tilde{\mathbf{Z}}^{Z}(1) = \begin{bmatrix} 167.5 & 104.5 & 53 \\ 61.2 & 104.1 & 69.7 \\ 36.3 & 16.5 & 202.2 \end{bmatrix}$.
(b) Knowing $\mathbf{x}(0)$, we can compute $\mathbf{A}(0) = \mathbf{Z}(0)\hat{\mathbf{x}}(0)^{-1} = \begin{bmatrix} .133 & .11 & .025 \\ .067 & .15 & .045 \\ .033 & .02 & .11 \end{bmatrix}$. Performing the RAS procedure with $\mathbf{A}(0)$, $\mathbf{u}(1)$, $\mathbf{v}(1)$ and $\mathbf{x}(1)$, yields $\tilde{\mathbf{A}}^{A}(1) = \begin{bmatrix} .168 & .139 & .035 \\ .061 & .139 & .047 \\ .036 & .022 & .135 \end{bmatrix}$. Then $\tilde{\mathbf{A}}^{Z}(1) = \tilde{\mathbf{Z}}^{Z}(1)\hat{\mathbf{x}}(1)^{-1} = \begin{bmatrix} .168 & .139 & .035 \\ .061 & .139 & .047 \\ .036 & .022 & .135 \end{bmatrix}$, the same as $\tilde{\mathbf{A}}^{A}(1)$. The explanation for why this is true is discussed in section 9.4.3.

(b) Knowing
$$\mathbf{x}(0)$$
, we can compute $\mathbf{A}(0) = \mathbf{Z}(0)\hat{\mathbf{x}}(0)^{-1} = \begin{bmatrix} .133 & .11 & .025 \\ .067 & .15 & .045 \\ .033 & .02 & .11 \end{bmatrix}$. Performing the

RAS procedure with
$$\mathbf{A}(0)$$
, $\mathbf{u}(1)$, $\mathbf{v}(1)$ and $\mathbf{x}(1)$, yields $\tilde{\mathbf{A}}^{A}(1) = \begin{bmatrix} .168 & .139 & .035 \\ .061 & .139 & .047 \\ .036 & .022 & .135 \end{bmatrix}$. Then

$$\tilde{\mathbf{A}}^{Z}(1) = \tilde{\mathbf{Z}}^{Z}(1)\hat{\mathbf{x}}(1)^{-1} = \begin{bmatrix} .168 & .139 & .035 \\ .061 & .139 & .047 \\ .036 & .022 & .135 \end{bmatrix}$$
, the same as $\tilde{\mathbf{A}}^{A}(1)$. The explanation for why this is

true is discussed in section 9.4.3

PROBLEM 9.7

We modify A(0) by setting the entry for the known coefficient, $a(1)_{32} = 0$. We define the

modified matrix as
$$\overline{\mathbf{A}}(0) = \begin{bmatrix} .133 & .11 & .025 \\ .067 & .15 & .045 \\ .033 & 0 & .11 \end{bmatrix}$$
. Thus, we can define the matrix of known

coefficients as
$$\mathbf{K} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & .033 & 0 \end{bmatrix}$$
. The "intermediate estimate" $\tilde{\mathbf{A}}(1)$ is then found by adding \mathbf{K}

to the result of applying the RAS procedure using $\overline{\bf A}(0)$, $\overline{\bf u}(1)$, $\overline{\bf v}(1)$ and $\overline{\bf x}(1)$, to yield

to the result of applying the RAS procedure using
$$\overline{\mathbf{A}}(0)$$
, $\overline{\mathbf{u}}(1)$, $\overline{\mathbf{v}}(1)$ and $\overline{\mathbf{x}}(1)$, to yield
$$\tilde{\mathbf{A}}(1)^{(case1)} = \begin{bmatrix} .164 & .151 & .032 \\ .06 & .149 & .042 \\ .041 & .033 & .142 \end{bmatrix}$$
. The MAPE for the RAS estimate, $\tilde{\mathbf{A}}(1)$, compared with the

known A(1) is 24.05. The MAPE for the modified RAS estimate, $\tilde{\mathbf{A}}(1)^{(case1)}$ (including the known coefficient), is 23.83, so the estimate with the additional information is better.

For the second case, we modify A(0) by setting the entry for the new known coefficient,

$$a(1)_{11} = 0$$
 and, as before, define the modified matrix as $\overline{\mathbf{A}}(0) = \begin{bmatrix} 0 & .11 & .025 \\ .067 & .15 & .045 \\ .033 & .02 & .11 \end{bmatrix}$. Thus, we can

 $a(1)_{11} = 0$ and, as before, define the modified matrix as $\overline{\mathbf{A}}(0) = \begin{bmatrix} 0 & .11 & .025 \\ .067 & .15 & .045 \\ .033 & .02 & .11 \end{bmatrix}$. Thus, we can define the new matrix of known coefficients as $\mathbf{K} = \begin{bmatrix} .2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, so the "intermediate estimate"

 $\tilde{\bf A}(1)$ is then found by adding ${\bf K}$ to the result of applying the RAS procedure using $\overline{\bf A}(0)$, $\overline{\bf u}(1)$,

$$\overline{\mathbf{v}}(1)$$
 and $\overline{\mathbf{x}}(1)$, to yield $\tilde{\mathbf{A}}(1)^{(case2)} = \begin{bmatrix} .2 & .24 & .097 \\ .156 & .051 & .027 \\ .109 & .009 & .093 \end{bmatrix}$. The MAPE for the modified RAS

estimate, $\tilde{\mathbf{A}}(1)^{(case2)}$ (including the new known coefficient), is 128.49, so the estimate without the additional information is better in this case.

PROBLEM 9.8

Note that $\mathbf{u}(1)$ and $\mathbf{v}(1)$ are identical to $\mathbf{u}(0)$ and $\mathbf{v}(0)$, respectively, so an RAS procedure will converge immediately and is unnecessary. By reducing $v_1(1)$ to substantially below the existing value, without any other changes, it is unlikely that both row and column constraints in the RAS procedure can be satisfied simultaneously, so the procedure will not converge.

PROBLEM 9.9

The matrices A(1997)m A(2005) and $\tilde{A}(2005)$ by using RAS with A(1997), u(2005), v(2005) and $\mathbf{x}(2005)$, were computed in problems 7.1 and 7.5. The MAPE for $\tilde{\mathbf{A}}(2005)$ compared with A(2005) is 49.03. The matrices L(2005) and $\tilde{L}(2005) = [I - A(2005)]^{-1}$ are computed as:

L(2005)	1	2	3	4	5	6	7
1	1.3139	0.0102	0.0247	0.0789	0.0076	0.0103	0.0122
2	0.0462	1.1863	0.0515	0.1331	0.0584	0.0152	0.0296
3	0.0109	0.0034	1.0054	0.0075	0.0074	0.0116	0.0257
4	0.4324	0.1907	0.4421	1.5707	0.1332	0.1404	0.2098
5	0.1773	0.0865	0.1737	0.1969	1.1072	0.0714	0.0950
6	0.2861	0.2701	0.3053	0.3508	0.3136	1.4409	0.3600
7	0.0330	0.0231	0.0300	0.0486	0.0342	0.0329	1.0390

$\tilde{\mathbf{L}}(2005)$	1	2	3	4	5	6	7
1	1.3426	0.0081	0.0218	0.0746	0.0084	0.0114	0.0126
2	0.0407	1.1812	0.0534	0.1223	0.0585	0.0188	0.0266
3	0.0124	0.0044	1.0073	0.0094	0.0095	0.0164	0.0078
4	0.3670	0.1485	0.3931	1.5503	0.1297	0.1533	0.2197
5	0.1607	0.0795	0.1686	0.1853	1.1006	0.0807	0.0876
6	0.3324	0.3030	0.3381	0.3682	0.3148	1.4147	0.3999
7	0.0254	0.0261	0.0278	0.0665	0.0398	0.0339	1.0187

The MAPE for $\tilde{L}(2005)$ compared with L(2005) is 12.33.

Chapter 10, Nonsurvey Methods, Extensions: Solutions to Exercise Problems

PROBLEM 10.1

(a) The table of value added, intermediate inputs, final demands and intermediate outputs of the economies are given below:

	Lilliput (<i>L</i>)	Brobdingnag (B)	Houyhnhnm (H)
Value Added (v')	[15 7]	[27 6]	[77.14 46.03]
Intermediate			
Inputs (i'Z	[5 8]	[8 9]	[22.86 68.97]
)			
Final	[13]	$\lceil 24 \rceil$	[49.33]
Demands (f)	[9]	[9]	73.84
Intermediate	[7]	[11]	[50.67]
Outputs (u)	$\lfloor 6 \rfloor$	[6]	[41.16]

(b) The true technical coefficients matrices are $\mathbf{A}^L = \begin{bmatrix} .050 & .400 \\ .200 & .133 \end{bmatrix}$ and $\mathbf{A}^B = \begin{bmatrix} .200 & .267 \\ .029 & .333 \end{bmatrix}$. The L estimate of the \mathbf{A}^B matrix is ${}^L\mathbf{A}^B = \begin{bmatrix} .088 & .529 \\ .141 & .071 \end{bmatrix}$; the mean absolute deviation (MAD) between ${}^L\mathbf{A}^B$ and \mathbf{A}^B is 0.187. The B estimate of \mathbf{A}^L is ${}^B\mathbf{A}^L = \begin{bmatrix} .207 & .190 \\ .043 & .343 \end{bmatrix}$, with a MAD of 0.183. Therefore the Brobdingnagian economist does slightly better. (c) The two Houyhnhmm estimates are ${}^H\mathbf{A}^L = \begin{bmatrix} .207 & .190 \\ .043 & .343 \end{bmatrix}$ and ${}^H\mathbf{A}^B = \begin{bmatrix} .200 & .267 \\ .029 & .333 \end{bmatrix}$, respectively (note that $\mathbf{A}^H = \mathbf{A}^B = {}^H\mathbf{A}^B = \begin{bmatrix} .200 & .267 \\ .029 & .333 \end{bmatrix}$). The error, as measured by MAD, is 0.183 in the first case and, of course, zero in the second case since $\mathbf{A}^H = \mathbf{A}^B$. (d) The true impact is found from $\Delta \mathbf{x}^L = \mathbf{L}^L\Delta \mathbf{f} = \begin{bmatrix} 197.3 \\ 218.6 \end{bmatrix}$ for $\Delta \mathbf{f} = \begin{bmatrix} 100 \\ 150 \end{bmatrix}$ and $\mathbf{L}^L = (\mathbf{I} - \mathbf{A}^L)^{-1} = \begin{bmatrix} 1.166 & .538 \\ .269 & 1.278 \end{bmatrix}$. Using the same final demand vector with $(\mathbf{I} - {}^H\mathbf{A}^L)^{-1} = \begin{bmatrix} 1.281 & .371 \\ .083 & 1.546 \end{bmatrix}$ yields $\Delta [{}^H\mathbf{x}^L] = \begin{bmatrix} 183.8 \\ 240.3 \end{bmatrix}$. The mean absolute deviation between these two vectors is 17.6.

PROBLEM 10.2

(a) The table of value added, intermediate inputs, final demands, and intermediate outputs of the economies are given in the following table:

	Lilliput (<i>L</i>)	Brobdingnag (B)	Houyhnhnm (H)
Value Added (v')	[11 6 4]	[21 4 14]	[60.5 33.0 22.0]
Intermediate Inputs (i'Z)	[9 9 8]	[14 11 16]	[49.5 49.5 44.0]
Final Demands (f)	$\begin{bmatrix} 7 \\ 8 \\ 6 \end{bmatrix}$	$\begin{bmatrix} 16 \\ 8 \\ 15 \end{bmatrix}$	$\begin{bmatrix} 38.5 \\ 44.0 \\ 33.0 \end{bmatrix}$
Intermediate Outputs (u)	$\begin{bmatrix} 13 \\ 7 \\ 6 \end{bmatrix}$	[19] 7 [15]	$ \begin{bmatrix} 71.5 \\ 38.5 \\ 33.0 \end{bmatrix} $

(b) For these three-sector economies we find
$$\mathbf{A}^{L} = \begin{bmatrix} .050 & .400 & .500 \\ .200 & .133 & .083 \\ .200 & .067 & .083 \end{bmatrix}$$
 and

$$\mathbf{A}^{B} = \begin{bmatrix} .200 & .267 & .267 \\ .029 & .333 & .033 \\ .171 & .133 & .233 \end{bmatrix}. \text{ The RAS estimates are } {}^{B}\mathbf{A}^{L} = \begin{bmatrix} .264 & .199 & .395 \\ .052 & .343 & .068 \\ .134 & .059 & .204 \end{bmatrix} \text{ and }$$

(b) For these three-sector economies we find
$$\mathbf{A}^{L} = \begin{bmatrix} .050 & .400 & .500 \\ .200 & .133 & .083 \\ .200 & .067 & .083 \end{bmatrix}$$
 and $\mathbf{A}^{B} = \begin{bmatrix} .200 & .267 & .267 \\ .029 & .333 & .033 \\ .171 & .133 & .233 \end{bmatrix}$. The RAS estimates are ${}^{B}\mathbf{A}^{L} = \begin{bmatrix} .264 & .199 & .395 \\ .052 & .343 & .068 \\ .134 & .059 & .204 \end{bmatrix}$ and ${}^{L}\mathbf{A}^{B} = \begin{bmatrix} .033 & .460 & .365 \\ .106 & .123 & .049 \\ .261 & .151 & .120 \end{bmatrix}$. The mean absolute deviation for the L estimate of B is 0.109, while the MAD for the B estimate of L is 0.121. (c) The Houvhnhnm estimates are

the MAD for the B estimate of L is 0.121. (c) The Houyhnhnm estimates are

$${}^{H}\mathbf{A}^{L} = \begin{bmatrix} .050 & .400 & .500 \\ .200 & .133 & .083 \\ .200 & .067 & .083 \end{bmatrix} \text{ and } {}^{H}\mathbf{A}^{B} = \begin{bmatrix} .033 & .460 & .365 \\ .106 & .123 & .049 \\ .261 & .151 & .120 \end{bmatrix}. \text{ Note in this case that } \mathbf{A}^{H} = \mathbf{A}^{L}. \text{ The}$$

error, as measured by MAD, is 0.0 in the first case and 0.109 in the second case.

PROBLEM 10.3

(a) The cost of (1), using the exact inverse, is $c_1 + c_2$; with $c_2 = 10c_1$, this cost is $11c_1$. With m =4, the cost of using the round-by-round approximation, method (2), is $4c_1$. Thus use method (2), the round-by-round approximation, in this case. (b) Since the RAS procedure converges to within a tolerance of 0.01 in 2 iterations, the cost of the RAS estimate of region 2's coefficients matrix is $5c_1$. Then utilizing it in a round-by-round application, with m = 4, gives a total cost of $6c_1$. (c) The summary of cost calculations at different levels of tolerance are given by the table below.

Impact

	Number of		Analysis	
RAS Tolerance	Iterations	RAS Cost	Cost	Total Cost
.01	3	$3c_1$	$4c_1$	$7c_1$
.001	4	$4c_1$	$4c_1$	$8c_1$
.0001	5	$5c_1$	$4c_1$	$9c_1$
.00001	6	$6c_1$	$4c_1$	$10c_1$
.000001	7	$7c_1$	$4c_1$	$11c_{1}$

Therefore, the maximum affordable tolerance is 0.01.

PROBLEM 10.4

Values for $\lambda = \{\log_2[1 + (x^r/x^n)]\}^{\delta}$ for various χ^r/χ^n and δ are shown in the table below

x^r/x^n	0.01	0.1	0.25	0.5	0.75	1.0
$\log_2[1+(x^r/x^n)]$	0.0144	0.1375	0.3219	0.5850	0.8074	1
$\{\log_2[1+(x^r/x^n)]\}^0$	1	1	1	1	1	1
$\{\log_2[1+(x^r/x^n)]\}^{0.1}$	0.6542	0.8200	0.8928	0.9478	0.9788	1
$\{\log_2[1+(x^r/x^n)]\}^{0.3}$	0.2800	0.5514	0.7118	0.8514	0.9378	1
$\{\log_2[1+(x^r/x^n)]\}^{0.5}$	0.1198	0.3708	0.5647	0.7648	0.8985	1
$\{\log_2[1+(x^r/x^n)]\}^1$	0.0144	0.1375	0.32	0.5850	0.8074	1

PROBLEM 10.5

The matrix of simple location quotients (SLQ) and corresponding estimate of the regional

technical coefficients matrix using SLQ are
$$\mathbf{SLQ} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ .8607 & .8607 & .8607 \end{bmatrix}$$
 and

$$\mathbf{A}^{(SLQ)} = \begin{bmatrix} .1830 & .0668 & .0087 \\ .1377 & .3070 & .0707 \\ .1794 & .2074 & .2581 \end{bmatrix}.$$

PROBLEM 10.6

The matrix of cross-industry location quotients (CIQ) and corresponding estimate of the regional technical coefficients matrix using CIQ are $\mathbf{CIQ} = \begin{bmatrix} 1 & .8274 & 1 \\ 1 & 1 & 1 \\ .7508 & .6212 & 1 \end{bmatrix}$ and

technical coefficients matrix using CIQ are
$$CIQ = \begin{bmatrix} 1 & 1 & 1 \\ .7508 & .6212 & 1 \end{bmatrix}$$

$$\begin{bmatrix} .1830 & .0553 & .0087 \end{bmatrix}$$

$$\mathbf{A}^{(CiQ)} = \begin{bmatrix} .1830 & .0553 & .0087 \\ .1377 & .3070 & .0707 \\ .1565 & .1497 & .2999 \end{bmatrix}.$$

PROBLEM 10.7

The intermediate inputs and outputs for the regional economy are given by

$$\mathbf{u}^{(R)} = \mathbf{A}^{(R)} \mathbf{x}^{(R)} = \begin{bmatrix} 4,615.3 & 15,877.7 & 52,584.2 \end{bmatrix}'$$
 and

$$\mathbf{v}^{(R)} = (\mathbf{i}' \mathbf{A}^{(R)} \hat{\mathbf{x}}^{(R)})' = [2,969.5 \quad 22,368.8 \quad 47,738.9]'.$$

The corresponding estimate of the matrix of regional technical coefficients is

$$\mathbf{A}^{(RAS)} = \begin{bmatrix} .1241 & .0270 & .0059 \\ .0712 & .0945 & .0367 \\ .1640 & .1129 & .2370 \end{bmatrix}$$

PROBLEM 10.8

$$\begin{split} MAD^{(SLQ)} &= (\frac{1}{49}) \sum_{i=1}^{7} \sum_{j=1}^{7} \left| a_{ij}^{(SLQ)} - a_{ij}^{(R)} \right| = .0606 \,; \; MAD^{(ClQ)} = (\frac{1}{49}) \sum_{i=1}^{7} \sum_{j=1}^{7} \left| a_{ij}^{(ClQ)} - a_{ij}^{(R)} \right| = .0558 \,; \\ MAD^{(RAS)} &= (\frac{1}{49}) \sum_{i=1}^{7} \sum_{j=1}^{7} \left| a_{ij}^{(RAS)} - a_{ij}^{(R)} \right| = .0073 \,. \; \text{The RAS technique produces the most accurate estimate in these examples.} \end{split}$$

PROBLEM 10.9

Results for Region 2 (South China) using 2000 Chinese IRIO data.

	Intraregion	al Input	Coefficients	Leo	ntief Inv	erse
	「0.1279	0.1086	0.0340	「1.1889	0.2418	0.1069
Survey	0.1348	0.4299	0.2191	0.3130	1.8828	0.4839
	0.0394	0.0814	0.1255	0.0827	0.1861	1.1933
			Using \mathbf{A}^n			
	0.1252	0.1301	0.0336	1.2033	0.3113	0.1317
LQ	0.1517	0.4605	0.2411	0.3804	2.0378	0.5751
	0.0411	0.0867	0.1235	0.0940	0.2161	1.2039
	0.1252	0.1263	0.0351	T1.2019	0.3018	0.1311
CIQ	0.1517	0.4605	0.2411	0.3806	2.0324	0.5743
	0.0429	0.0842	0.1235	0.0953	0.2099	1.2024
	0.1076	0.1085	0.0301	1.1598	0.2241	0.0950
FLQ	0.1406	0.4076	0.2228	0.3025	1.7994	0.4587
	0.0369	0.0723	0.1061	0.0724	0.1548	1.1598
	0.1076	0.1109	0.0301	T1.1613	0.2328	0.0972
FLQA	0.1406	0.4163	0.2228	0.3077	1.8307	0.4667
	0.0369	0.0739	0.1061	0.0734	0.1609	1.1613

	0.1155	0.1199	0.0310		1.1738	0.2531	0.1029
RPC	0.1350	0.4097	0.2145		0.2978	1.8187	0.4533
	0.0396	0.0837	0.1192		0.0811	0.1841	1.1830
		Using l	Round's A ^r	= A	$\hat{\rho}^r$		
	0.1263	0.1324	0.0346		1.2080	0.3242	0.1401
LQ	0.1530	0.4687	0.2483		0.3933	2.0810	0.6077
	0.0414	0.0882	0.1272		0.0971	0.2257	1.2138
	0.1263	0.1285	0.0361		1.2066	0.3143	0.1394
CIQ	0.1530	0.4687	0.2483		0.3935	2.0751	0.6068
	0.0433	0.0856	0.1272		0.0984	0.2192	1.2122
	0.1086	0.1105	0.0310		1.1629	0.2321	0.1003
FLQ	0.1418	0.4148	0.2295		0.3110	1.8281	0.4819
	0.0373	0.0736	0.1093		0.0744	0.1608	1.1668
	0.1086	0.1128	0.0310		1.1645	0.2413	0.1028
FLQA	0.1418	0.4237	0.2295		0.3166	1.8611	0.4906
	0.0373	0.0752	0.1093		0.0754	0.1672	1.1685
	0.1165	0.1221	0.0319		1.1772	0.2623	0.1089
RPC	0.1361	0.4169	0.2209		0.3064	1.8488	0.4768
	0.0400	0.0851	0.1228		0.0834	0.1914	1.1912
	-					-	

	Total Intraregional Intermediate Inputs	Percentage Differences ^a	Average Percentage Difference ^b					
Survey	0.3022 0.6199 0.3786							
	Using A^n							
LQ	0.3180 0.6773 0.3982	5.24 9.25 5.17	6.55					
CIQ	0.3198 0.6710 0.3997	5.84 8.23 5.56	6.55					
FLQ	0.2852 0.5884 0.3591	-5.63 -5.08 -5.15	-5.29					
FLQA	0.2852 0.6010 0.3591	-5.62 -3.05 -5.15	-4.61					
RPC	0.2901 0.6133 0.3646	-4.00 -1.08 -3.69	-2.92					
	Using Round's $A^r = A^n \hat{\rho}^r$							
LQ	0.3208 0.6892 0.4102	6.15 11.18 8.34	8.56					
CIQ	0.3226 0.6829 0.4117	6.76 10.15 8.74	8.55					
FLQ	0.2876 0.5989 0.3699	-4.81 -3.40 -2.30	-3.50					
FLQA	0.2876 0.6117 0.3699	-4.81 -1.34 -2.30	-2.82					

RPC 0.2926 0.6241 0.3756	-3.17 0.67 -0.79	1.54^{c}
--------------------------	------------------	------------

	Intraregional Output Multipliers	Percentage Differences ^d	Average Percentage Difference				
Survey	1.5846 2.3108 1.7841						
	Usir	$\mathbf{ng} \mathbf{A}^n$					
LQ	1.6778 2.5651 1.9108	5.88 11.01 7.10	8.00				
CIQ	1.6779 2.5441 1.9078	5.89 10.10 6.94	7.64				
FLQ	1.5347 2.1784 1.7135	-3.15 -5.73 -3.96	-4.28				
FLQA	1.5425 2.2245 1.7252	-2.66 -3.73 -3.30	-3.23				
RPC	1.5527 2.2559 1.7392	-2.01 -2.37 -2.51	-2.30				
	Using Round's $\mathbf{A}^r = \mathbf{A}^n \hat{\boldsymbol{\rho}}^r$						
LQ	1.6584 2.6309 1.9617	7.18 13.85 9.96	10.33				
CIQ	1.6985 2.6087 1.9584	7.18 12.89 9.77	9.95				
FLQ	1.5482 2.2210 1.7419	-2.30 -3.88 -1.96	-2.71				
FLQA	1.5565 2.2696 1.7619	-1.78 -1.78 -1.24	-1.60				
RPC	1.5670 2.3025 1.7769	-1.11 -0.36 -0.40	-0.62				

^a This is $\{[(\mathbf{i'\tilde{A}} - \mathbf{i'A}) \otimes \mathbf{i'A}] \times 100\}$, where " \otimes " indicates element-by-element division.

Results for Region 3 (Rest of China) using 2003 Chinese IRIO data.

	Intraregion	al Input	Coefficients	Lec	ntief Inv	erse
	0.1356	0.1494	0.0329	[1.1950	0.2773	0.1050
Survey	0.1050	0.3176	0.1945	0.2046	1.5624	0.3498
	0.0364	0.1016	0.1122	0.0725	0.1902	1.1707
Using A^n						
	0.1311	0.1362	0.0352	「1.1992	0.2861	0.1159
LQ	0.1293	0.3925	0.2055	0.2853	1.7742	0.4301
	0.0429	0.0905	0.1290	0.0887	0.1984	1.1984
	0.1311	0.1362	0.0352	「1.1886	0.2822	0.1059
CIQ	0.1015	0.3925	0.1789	0.2210	1.7506	0.3684
	0.0387	0.0905	0.1290	0.0757	0.1944	1.1910

^b This is a simple, unweighted average. Various kinds of weightings (e.g., using some measure of the size of each sector) are frequently used.

^c This is the average of the absolute values of the differences, so that the negatives and positives do not cancel out.

^dCalculated as $\{[(\mathbf{i}'\tilde{\mathbf{L}} - \mathbf{i}'\mathbf{L}) \otimes \mathbf{i}'\mathbf{L}] \times 100\}$.

FLQ $\begin{bmatrix} 0.1057 & 0.1288 & 0.0247 \\ 0.0643 & 0.2485 & 0.1133 \\ 0.0245 & 0.0772 & 0.0938 \end{bmatrix}$ $\begin{bmatrix} 1.1341 & 0.2001 & 0.0559 \\ 0.1030 & 1.3661 & 0.1735 \\ 0.0394 & 0.1218 & 1.1198 \end{bmatrix}$ FLQA $\begin{bmatrix} 0.1252 & 0.1288 & 0.0272 \\ 0.0762 & 0.2485 & 0.1250 \\ 0.0290 & 0.0772 & 0.1035 \end{bmatrix}$ $\begin{bmatrix} 1.1632 & 0.2059 & 0.0640 \\ 0.1260 & 1.3723 & 0.1951 \\ 0.0485 & 0.1248 & 1.1343 \end{bmatrix}$ RPC $\begin{bmatrix} 0.1223 & 0.1270 & 0.0328 \\ 0.1263 & 0.3835 & 0.2008 \\ 0.0397 & 0.0837 & 0.1193 \end{bmatrix}$ $\begin{bmatrix} 1.1810 & 0.2572 & 0.1026 \\ 0.2676 & 1.7322 & 0.4048 \\ 0.0786 & 0.1762 & 1.1786 \end{bmatrix}$ Using Round's A* = A* \hat{\rho}*LQ $\begin{bmatrix} 0.1251 & 0.1295 & 0.0335 \\ 0.1234 & 0.3732 & 0.1957 \\ 0.0409 & 0.0860 & 0.1228 \end{bmatrix}$ $\begin{bmatrix} 1.1844 & 0.2587 & 0.1029 \\ 0.2583 & 1.7022 & 0.3895 \\ 0.0806 & 0.1790 & 1.1830 \end{bmatrix}$ CIQ $\begin{bmatrix} 0.1251 & 0.1295 & 0.0335 \\ 0.0969 & 0.3732 & 0.1703 \\ 0.0369 & 0.0860 & 0.1228 \end{bmatrix}$ $\begin{bmatrix} 1.1754 & 0.2557 & 0.0945 \\ 0.2005 & 1.6827 & 0.3344 \\ 0.0691 & 0.1758 & 1.1768 \end{bmatrix}$ FLQ $\begin{bmatrix} 0.1009 & 0.1224 & 0.0235 \\ 0.0614 & 0.2363 & 0.1078 \end{bmatrix}$ $\begin{bmatrix} 1.1262 & 0.1855 & 0.0510 \\ 0.0956 & 1.3402 & 0.1612 \end{bmatrix}$
FLQA 0.0762 0.2485 0.1250 0.1260 1.3723 0.1951 0.0290 0.0772 0.1035 0.0485 0.1248 1.1343 0.1263 0.1270 0.0328 0.2676 0.2572 0.1026 0.0397 0.0837 0.1193 0.0786 0.1762 0.4048 0.0397 0.0837 0.1193 0.0786 0.1762 0.1786 Using Round's A' = A^n \hat{\rho}' 1.0000 0.1231 0.1295 0.0335 0.02587 0.1029 0.1234 0.3732 0.1957 0.2583 0.1702 0.3895 0.0409 0.0860 0.1228 0.0806 0.1790 0.1830 1.0000 0.0969 0.3732 0.1703 0.2005 0.03344 0.0369 0.0860 0.1228 0.0691 0.1758 0.1768 1.1768 0.0614 0.2363 0.1078 0.0956 0.13402 0.1612
$ \begin{array}{ c c c c c c c c } \hline & & & & & & & & & & & & & & & & & & $
RPC $\begin{bmatrix} 0.1223 & 0.1270 & 0.0328 \\ 0.1263 & 0.3835 & 0.2008 \\ 0.0397 & 0.0837 & 0.1193 \end{bmatrix}$ $\begin{bmatrix} 1.1810 & 0.2572 & 0.1026 \\ 0.2676 & 1.7322 & 0.4048 \\ 0.0786 & 0.1762 & 1.1786 \end{bmatrix}$ Using Round's A' = A^n $\hat{\rho}'$ LQ $\begin{bmatrix} 0.1251 & 0.1295 & 0.0335 \\ 0.1234 & 0.3732 & 0.1957 \\ 0.0409 & 0.0860 & 0.1228 \end{bmatrix}$ $\begin{bmatrix} 1.1844 & 0.2587 & 0.1029 \\ 0.2583 & 1.7022 & 0.3895 \\ 0.0806 & 0.1790 & 1.1830 \end{bmatrix}$ CIQ $\begin{bmatrix} 0.1251 & 0.1295 & 0.0335 \\ 0.0969 & 0.3732 & 0.1703 \\ 0.0369 & 0.0860 & 0.1228 \end{bmatrix}$ $\begin{bmatrix} 1.1754 & 0.2557 & 0.0945 \\ 0.2005 & 1.6827 & 0.3344 \\ 0.0691 & 0.1758 & 1.1768 \end{bmatrix}$ FLQ $\begin{bmatrix} 0.1009 & 0.1224 & 0.0235 \\ 0.0614 & 0.2363 & 0.1078 \end{bmatrix}$ $\begin{bmatrix} 1.1262 & 0.1855 & 0.0510 \\ 0.0956 & 1.3402 & 0.1612 \end{bmatrix}$
RPC 0.1263 0.3835 0.2008 0.0397 0.0837 0.1193 0.2676 0.0786 1.7322 0.1762 0.4048 0.1762 Using Round's A' = A'' $\hat{\rho}'$ LQ $\begin{bmatrix} 0.1251 & 0.1295 & 0.0335 \\ 0.1234 & 0.3732 & 0.1957 \\ 0.0409 & 0.0860 & 0.1228 \end{bmatrix}$ $\begin{bmatrix} 1.1844 & 0.2587 & 0.1029 \\ 0.2583 & 1.7022 & 0.3895 \\ 0.0806 & 0.1790 & 1.1830 \end{bmatrix}$ CIQ $\begin{bmatrix} 0.1251 & 0.1295 & 0.0335 \\ 0.0969 & 0.3732 & 0.1703 \\ 0.0369 & 0.0860 & 0.1228 \end{bmatrix}$ $\begin{bmatrix} 1.1754 & 0.2557 & 0.0945 \\ 0.2005 & 1.6827 & 0.3344 \\ 0.0691 & 0.1758 & 1.1768 \end{bmatrix}$ FLQ $\begin{bmatrix} 0.1009 & 0.1224 & 0.0235 \\ 0.0614 & 0.2363 & 0.1078 \end{bmatrix}$ $\begin{bmatrix} 1.1262 & 0.1855 & 0.0510 \\ 0.0956 & 1.3402 & 0.1612 \end{bmatrix}$
$ \begin{array}{ c c c c c c c c c } \hline & 0.0397 & 0.0837 & 0.1193 \end{bmatrix} & \begin{bmatrix} 0.0786 & 0.1762 & 1.1786 \end{bmatrix} \\ \hline & & & & & & & & \\ \hline & & & & & & \\ \hline & & & &$
$LQ = \begin{bmatrix} 0.1251 & 0.1295 & 0.0335 \\ 0.1234 & 0.3732 & 0.1957 \\ 0.0409 & 0.0860 & 0.1228 \end{bmatrix} = \begin{bmatrix} 1.1844 & 0.2587 & 0.1029 \\ 0.2583 & 1.7022 & 0.3895 \\ 0.0806 & 0.1790 & 1.1830 \end{bmatrix}$ $CIQ = \begin{bmatrix} 0.1251 & 0.1295 & 0.0335 \\ 0.0969 & 0.3732 & 0.1703 \\ 0.0369 & 0.0860 & 0.1228 \end{bmatrix} = \begin{bmatrix} 1.1754 & 0.2557 & 0.0945 \\ 0.2005 & 1.6827 & 0.3344 \\ 0.0691 & 0.1758 & 1.1768 \end{bmatrix}$ $FLQ = \begin{bmatrix} 0.1009 & 0.1224 & 0.0235 \\ 0.0614 & 0.2363 & 0.1078 \end{bmatrix} = \begin{bmatrix} 1.1262 & 0.1855 & 0.0510 \\ 0.0956 & 1.3402 & 0.1612 \end{bmatrix}$
$ LQ = \begin{bmatrix} 0.1251 & 0.1295 & 0.0335 \\ 0.1234 & 0.3732 & 0.1957 \\ 0.0409 & 0.0860 & 0.1228 \end{bmatrix} = \begin{bmatrix} 1.1844 & 0.2587 & 0.1029 \\ 0.2583 & 1.7022 & 0.3895 \\ 0.0806 & 0.1790 & 1.1830 \end{bmatrix} $ $ CIQ = \begin{bmatrix} 0.1251 & 0.1295 & 0.0335 \\ 0.0969 & 0.3732 & 0.1703 \\ 0.0369 & 0.0860 & 0.1228 \end{bmatrix} = \begin{bmatrix} 1.1754 & 0.2557 & 0.0945 \\ 0.2005 & 1.6827 & 0.3344 \\ 0.0691 & 0.1758 & 1.1768 \end{bmatrix} $ $ FLQ = \begin{bmatrix} 0.1009 & 0.1224 & 0.0235 \\ 0.0614 & 0.2363 & 0.1078 \end{bmatrix} = \begin{bmatrix} 1.1262 & 0.1855 & 0.0510 \\ 0.0956 & 1.3402 & 0.1612 \end{bmatrix} $
LQ 0.1234 0.3732 0.1957 0.2583 1.7022 0.3895 0.0409 0.0860 0.1228 0.0806 0.1790 1.1830 CIQ $\begin{bmatrix} 0.1251 & 0.1295 & 0.0335 \\ 0.0969 & 0.3732 & 0.1703 \\ 0.0369 & 0.0860 & 0.1228 \end{bmatrix}$ $\begin{bmatrix} 1.1754 & 0.2557 & 0.0945 \\ 0.2005 & 1.6827 & 0.3344 \\ 0.0691 & 0.1758 & 1.1768 \end{bmatrix}$ FLQ $\begin{bmatrix} 0.1009 & 0.1224 & 0.0235 \\ 0.0614 & 0.2363 & 0.1078 \end{bmatrix}$ $\begin{bmatrix} 1.1262 & 0.1855 & 0.0510 \\ 0.0956 & 1.3402 & 0.1612 \end{bmatrix}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$CIQ \begin{bmatrix} 0.1251 & 0.1295 & 0.0335 \\ 0.0969 & 0.3732 & 0.1703 \\ 0.0369 & 0.0860 & 0.1228 \end{bmatrix} \begin{bmatrix} 1.1754 & 0.2557 & 0.0945 \\ 0.2005 & 1.6827 & 0.3344 \\ 0.0691 & 0.1758 & 1.1768 \end{bmatrix}$ $FLQ \begin{bmatrix} 0.1009 & 0.1224 & 0.0235 \\ 0.0614 & 0.2363 & 0.1078 \end{bmatrix} \begin{bmatrix} 1.1262 & 0.1855 & 0.0510 \\ 0.0956 & 1.3402 & 0.1612 \end{bmatrix}$
CIQ 0.0969 0.3732 0.1703 0.0369 0.0860 0.1228 0.2005 1.6827 0.3344 0.0691 0.1758 1.1768 FLQ 0.1009 0.1224 0.0235 0.0614 0.2363 0.1078 0.0956 1.3402 0.1612
[0.0369] 0.0860 0.1228 [0.0691] 0.1758 1.1768 [0.1009] 0.1224 0.0235 [1.1262] 0.1855 0.0510 [0.0614] 0.2363 0.1078 [0.0956] 1.3402 0.1612
FLQ 0.1009 0.1224 0.0235 1.1262 0.1855 0.0510 0.0614 0.2363 0.1078 0.0956 1.3402 0.1612
FLQ 0.0614 0.2363 0.1078 0.0956 1.3402 0.1612
-
$\begin{bmatrix} 0.0234 & 0.0734 & 0.0893 \end{bmatrix}$ $\begin{bmatrix} 0.0366 & 0.1128 & 1.1123 \end{bmatrix}$
[0.1195 0.1224 0.0259] [1.1533 0.1905 0.0583]
FLQA 0.0727 0.2363 0.1190 0.1168 1.3455 0.1809
0.1167 0.1207 0.0312
RPC 0.1206 0.3646 0.1912 0.2432 1.6661 0.3679
0.0379 0.0796 0.1136 0.0717 0.1596 1.1651

	Total Intraregional Intermediate Inputs	Percentage Differences ^a	Average Percentage Difference ^b
Survey	0.2771 0.5687 0.3396		
LQ	0.3033 0.6192 0.3696	9.47 8.88 8.85	9.07
CIQ	0.2713 0.6192 0.3430	-2.07 8.88 1.02	3.99^{c}
FLQ	0.1945 0.4545 0.2317	-29.81 -20.08 -31.76	-27.22
FLQA	0.2304 0.4545 0.2557	-16.84 -20.08 -24.70	-20.54
RPC	0.2883 0.5942 0.3529	4.05 4.49 3.92	4.15
	Using Roun	$\mathbf{d's} \ \mathbf{A}^r = \mathbf{A}^n \hat{\boldsymbol{\rho}}^r$	

LQ	0.2895 0.5887 0.3519	4.47 3.52 3.64	3.88
CIQ	0.2590 0.5887 0.3266	-6.54 3.52 -3.81	4.62
FLQ	0.1856 0.4321 0.2206	-33.02 -24.02 -35.03	-30.69
FLQA	0.2199 0.4321 0.2434	-20.63 -24.02 -28.31	-24.32
RPC	0.2751 0.5649 0.3360	-0.70 -0.66 -1.05	-0.81

	Intraregional Output Multipliers	Percentage Differences ^d	Average Percentage Difference
Survey	1.4721 2.0299 1.6256		
	Usir	$\mathbf{ng} \mathbf{A}^n$	
LQ	1.5732 2.2587 1.7444	6.87 11.27 7.31	8.48
CIQ	1.4853 2.2272 1.6654	0.90 9.72 2.45	4.36
FLQ	1.2765 1.6880 1.3492	-13.29 -16.84 -17.00	-15.71
FLQA	1.3377 1.7031 1.3934	-9.13 -16.10 -14.28	-13.17
RPC	1.5272 2.1656 1.6860	3.75 6.68 3.72	4.72
	Using Roun	$\mathbf{d's} \ \mathbf{A}^r = \mathbf{A}^n \hat{\boldsymbol{\rho}}^r$	
LQ	1.5233 2.1400 1.6754	3.48 5.42 3.07	3.99
CIQ	1.4450 2.1142 1.6057	-1.84 4.15 -1.22	2.41 ^c
FLQ	1.2584 1.6384 1.3245	-14.51 -19.29 -18.52	-17.44
FLQA	1.3150 1.6514 1.3651	-10.67 -18.65 -16.02	-15.11
RPC	1.4828 2.0591 1.6244	0.73 1.44 -0.07	0.75^{c}

^a This is $\{[(\mathbf{i'\tilde{A}} - \mathbf{i'A}) \otimes \mathbf{i'A}] \times 100\}$, where " \otimes " indicates element-by-element division.

PROBLEM 10.10

Compute the vectors of total intermediate inputs and outputs for the real Washington State table:

$$\mathbf{u}(1) = \mathbf{Z}^{(W)}\mathbf{i} = \begin{bmatrix} 4245.9 & 369.4 & 3140.1 & 12737.6 & 12718 & 38753.8 & 1112.4 \end{bmatrix}'$$

$$\mathbf{v}(1) = (\mathbf{i}'\mathbf{Z}^{(W)})' = \begin{bmatrix} 2849.7 & 119.8 & 4423 & 17945.8 & 15384.7 & 31052.5 & 1301.7 \end{bmatrix}'$$

Apply RAS using $\mathbf{A}^{(US)}$, $\mathbf{u}(1)$, $\mathbf{v}(1)$ and $\mathbf{x}^{(W)}$, the estimated matrix of technical coefficients for

^b This is a simple, unweighted average. Various kinds of weightings (e.g., using some measure of the size of each sector) are frequently used.

^c This is the average of the absolute values of the differences, so that the negatives and positives do not cancel out.

^d Calculated as $\{[(\mathbf{i}'\tilde{\mathbf{L}} - \mathbf{i}'\mathbf{L}) \otimes \mathbf{i}'\mathbf{L}] \times 100\}$.

Washington State is
$$\mathbf{A}^{(est)} = \begin{bmatrix} .2078 & .0000 & .0013 & .0299 & .0002 & .0027 & .0013 \\ .0001 & .0099 & .0005 & .0022 & .0031 & .0000 & .0005 \\ .0061 & .0004 & .0025 & .0032 & .0109 & .0177 & .0571 \\ .0526 & .0362 & .0883 & .0836 & .0246 & .0243 & .0456 \\ .0534 & .0415 & .0664 & .0508 & .0694 & .0273 & .0490 \\ .0493 & .1151 & .0852 & .0589 & .1561 & .2070 & .1531 \\ .0016 & .0028 & .0019 & .0029 & .0057 & .0044 & .0059 \end{bmatrix}$$

The mean absolute deviation between the estimated and actual Washington State matrices of technical coefficients is $MAD = (\frac{1}{49}) \sum_{i=1}^{7} \sum_{j=1}^{7} \left| a_{ij}^{(est)} - a_{ij}^{(W)} \right| = .0098$.

PROBLEM 10.11

The exogenously specified technical coefficients are given by

inputs and outputs for the real Washington State table are found as:

$$\mathbf{u}(1) = \mathbf{x}^{(W)} - \mathbf{Z}^{(W)}\mathbf{i} - \mathbf{A}^{(exog)}\mathbf{x}^{(W)} = \begin{bmatrix} 3359.7 & 369.4 & 3140.1 & 12737.6 & 12718 & 29359.6 & 1112.4 \end{bmatrix}'$$

$$\mathbf{v}(1) = \mathbf{x}^{(W)} - (\mathbf{i}'\mathbf{Z}^{(W)})' - (\mathbf{i}'\mathbf{A}^{(exog)}\hat{\mathbf{x}}^{(W)})' = \begin{bmatrix} 1963.5 & 49.6 & 4423 & 17945.8 & 6060.7 & 31052.5 & 1301.7 \end{bmatrix}'$$

Applying RAS using $\mathbf{A}^{(US)}$, $\mathbf{u}(1)$, $\mathbf{v}(1)$ and $\mathbf{X}^{(W)}$, the estimated matrix of technical coefficients

Applying RAS using
$$\mathbf{A}$$
, $\mathbf{u}(1)$, $\mathbf{v}(1)$ and \mathbf{A} , the estimated matrix of technical coefficients $\mathbf{A}^{(est)} = \begin{bmatrix} .1154 & .0001 & .0017 & .0377 & .0002 & .0035 & .0017 \\ .0002 & .0096 & .0005 & .0023 & .0030 & .0000 & .0005 \\ .0096 & .0004 & .0025 & .0031 & .0100 & .0180 & .0576 \\ .0830 & .0337 & .0890 & .0809 & .0229 & .0248 & .0463 \\ .0850 & .0389 & .0675 & .0496 & .0649 & .0281 & .0502 \\ .0752 & .1207 & .0830 & .0551 & .1637 & .2044 & .1502 \\ .0026 & .0026 & .0020 & .0029 & .0053 & .0046 & .0060 \end{bmatrix}$

absolute deviation between the estimated and actual Washington State matrices of technical coefficients is $MAD = (\frac{1}{49})\sum_{i=1}^{7}\sum_{j=1}^{7}\left|a_{ij}^{(est)}-a_{ij}^{(W)}\right| = .0066$. In this case the constrained RAS procedure improves the estimate.

PROBLEM 10.12

The new exogenously specified technical coefficients are given by

intermediate inputs and outputs for the real Washington State table:

$$\mathbf{u}(1) = \mathbf{x}^{(W)} - \mathbf{Z}^{(W)}\mathbf{i} - \mathbf{A}^{(exog)}\mathbf{x}^{(W)} = \begin{bmatrix} 4245.9 & 369.4 & 3140.1 & 12720.9 & 8649.3 & 37827.6 & 1112.4 \end{bmatrix}'$$

$$\mathbf{v}(1) = \mathbf{x}^{(W)} - (\mathbf{i}'\mathbf{Z}^{(W)})' - (\mathbf{i}'\mathbf{A}^{(exog)}\hat{\mathbf{x}}^{(W)})' = \begin{bmatrix} 2849.7 & 103.1 & 4423 & 13877.1 & 15384.7 & 31052.5 & 375.5 \end{bmatrix}'$$

Apply RAS using $\mathbf{A}^{(US)}$, $\mathbf{u}(1)$, $\mathbf{v}(1)$ and $\mathbf{X}^{(W)}$, the estimated matrix of technical coefficients for

Washington State is
$$\mathbf{A}^{(est)} = \begin{bmatrix} .2088 & .0000 & .0013 & .0298 & .0002 & .0027 & .0007 \\ .0001 & .0104 & .0005 & .0022 & .0031 & .0000 & .0003 \\ .0063 & .0005 & .0026 & .0033 & .0113 & .0184 & .0329 \\ .0530 & .0287 & .0895 & .0834 & .0251 & .0247 & .0258 \\ .0527 & .0433 & .0659 & .0525 & .0692 & .0272 & .0271 \\ .0485 & .1200 & .0844 & .0575 & .1554 & .2059 & .2224 \\ .0016 & .0030 & .0019 & .0029 & .0058 & .0045 & .0033 \end{bmatrix}.$$
 The mean

absolute deviation between the estimated and actual Washington State matrices of technical coefficients is $MAD = (\frac{1}{49})\sum_{i=1}^{7}\sum_{j=1}^{7}\left|a_{ij}^{(est)}-a_{ij}^{(W)}\right| = .0077$ —not as good an estimate as that obtained

in problem 8.11. Finally, for the combined case, the new exogenously specified technical

vectors of total intermediate inputs and outputs for the real Washington State table:

 $\mathbf{u}(1) = \mathbf{x}^{(W)} - \mathbf{Z}^{(W)}\mathbf{i} - \mathbf{A}^{(exog)}\mathbf{x}^{(W)} = \begin{bmatrix} 3359.7 & 369.4 & 3140.1 & 12720.9 & 8649.3 & 28433.4 & 1112.4 \end{bmatrix}'$ $\mathbf{v}(1) = \mathbf{x}^{(W)} - (\mathbf{i}'\mathbf{Z}^{(W)})' - (\mathbf{i}'\mathbf{A}^{(exog)}\hat{\mathbf{x}}^{(W)})' = \begin{bmatrix} 1963.5 & 32.9 & 4423 & 13877.1 & 6060.7 & 31052.5 & 375.5 \end{bmatrix}'$

Apply RAS using
$$\mathbf{A}^{(US)}$$
, $\mathbf{u}(1)$, $\mathbf{v}(1)$ and $\mathbf{X}^{(W)}$, the estimated matrix of technical coefficients for
$$\mathbf{A}^{(US)}$$
 and $\mathbf{A}^{(US)}$, $\mathbf{u}(1)$, $\mathbf{v}(1)$ and $\mathbf{X}^{(W)}$, the estimated matrix of technical coefficients for
$$\mathbf{A}^{(est)} = \begin{bmatrix} .1154 & .0001 & .0018 & .0376 & .0002 & .0036 & .0010 \\ .0002 & .0108 & .0005 & .0022 & .0031 & .0000 & .0003 \\ .0100 & .0005 & .0026 & .0031 & .0104 & .0187 & .0327 \\ .0847 & .0287 & .0908 & .0802 & .0234 & .0254 & .0259 \\ .0835 & .0423 & .0663 & .0525 & .0639 & .0277 & .0270 \\ .0746 & .1207 & .0822 & .0531 & .1637 & .2033 & .2224 \\ .0026 & .0030 & .0020 & .0028 & .0054 & .0047 & .0034 \end{bmatrix}$$
. The mean absolute deviation between the estimated and actual Washington State matrices of technical

absolute deviation between the estimated and actual Washington State matrices of technical coefficients is $MAD = (\frac{1}{49})\sum_{i=1}^{7}\sum_{j=1}^{6}\left|a_{ij}^{(est)}-a_{ij}^{(W)}\right| = .0044$ —better than either of the previous cases.

Chapter 11, Social Accounting Matrices: Solutions to Exercise Problems

PROBLEM 11.1

In order to produce a balanced set of SAM accounts, X = 43. The SAM is

	Prod	Consumers	Capital	ROW	Total
Producers	0	552	65	43	660
Consumers	608	0	-25	17	600
Capital	0	40	0	0	40
Rest of World	52	8	0	0	60
	660	600	40	60	

The SAM reflecting allocation of 150 of consumer demand to final use and 150 of consumer inputs to valued added can be reflected by

	Prod	Intermed. Consumers	Final Consumers	Capital	ROW	Total
Producers	0	402	150	65	43	660
Intermed. Consumers	608	0	0	-25	17	600
Final Consumers	0	150	0	0	0	150
Capital	0	40	0	0	0	40
Rest of World	52	8	0	0	0	60
	660	600	150	40	60	

PROBLEM 11.2

		Produ	ıction	Consu	mption	C	DOW	Т	4. 1
			Services	Manuf.	Services	Cap.	ROW	To	tai
D 1 4	Manuf.	0	0	158	96	28	18	300	((0
Production	Services	0	0	94	203	37	25	360	660
G .:	Manuf.	284	0	0	0	-12	13	285	600
Consumption	Services	5	319	0	0	-13	4	315	600
Capi	ital	0	0	20	20	0	0	4	0
ROW		10	41	3	5	0	0	6	0
Total		300	360	276	324	40	60		
100	.aı	66	60	60	00	70	00		

PROBLEM 11.3

		Comm	nodities	Indu	stries	То	tal Final Deman	d	Tot	-1
		Manuf.	Services	Manuf.	Services	PCE	Cap.	Exports	101	aı
Commodities	Manuf.	0	0	94	96	64	28	18	300	660
Commodities	Services	0	0	94	117	86	37	25	360	000
Industrieis	Manuf.	284	0	0	0	0	-12	13	285	600
maustrieis	Services	5	319	0	0	0	-13	4	315	000
	Consumer	0	0	73	77	0	0	0	150	
Value Added	Capital	0	0	20	20	0	0	0	40	250
	Imports	10	41	4	5	0	0	0	60	
Total		300	360	285	315	150	40	60		
Tota	.1	6	60	6	00		250			

PROBLEM 11.4

(a) The matrix of total expenditure shares is

$$\overline{\mathbf{S}} = \begin{bmatrix} 0 & 0 & .331 & .305 & .427 & .7 & .3 \\ 0 & 0 & .331 & .371 & .573 & .925 & .417 \\ .95 & 0 & 0 & 0 & 0 & -.3 & .217 \\ .017 & .884 & 0 & 0 & 0 & -.325 & .067 \\ \hline 0 & 0 & .257 & .244 & 0 & 0 & 0 \\ 0 & 0 & .07 & .063 & 0 & 0 & 0 \\ .033 & .116 & .011 & .016 & 0 & 0 & 0 \\ \hline \begin{bmatrix} 0 & 0 & .331 & .305 \end{bmatrix}$$
 (b) The SAM coefficient matrix is simply

$$\mathbf{S} = \begin{bmatrix} 0 & 0 & .331 & .305 \\ 0 & 0 & .331 & .371 \\ .95 & 0 & 0 & 0 \\ .017 & .884 & 0 & 0 \end{bmatrix}, \text{ the upper left partition of } \mathbf{\overline{S}}. \text{ (c) The matrix of "direct effect"}$$

multipliers is
$$\mathbf{M} = (\mathbf{I} - \mathbf{S})^{-1} = \begin{bmatrix} 1.812 & .726 & .840 & .822 \\ .865 & 1.835 & .894 & .945 \\ 1.721 & .690 & 1.798 & .781 \\ .794 & 1.634 & .804 & 1.849 \end{bmatrix}$$
.

PROBLEM 11.5

First reorder the table so that the Surplus/Deficit and Rest of World sectors become sectors 5 and 6 in the table by $Z = S\overline{Z}S'$ where \overline{Z} is the original SAM and S is given by

$$\mathbf{S} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

. The direct, indirect, cross and total multipliers, respectively, are given

$$\mathbf{N}_1 = \begin{bmatrix} 5.7286 & 4.7756 & 4.7756 & 5.2105 & 0 & 0 \\ 7.2309 & 7.3209 & 7.3209 & 6.6610 & 0 & 0 \\ 0.5550 & 0.5605 & 1.5605 & 0.5772 & 0 & 0 \\ \hline 7.4538 & 7.5279 & 7.5279 & 8.2133 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix},$$

$$\mathbf{N}_2 = \begin{bmatrix} 0 & 0 & 0 & 0 & 26.9953 & 5.9390 \\ 0 & 0 & 0 & 0 & 34.7835 & 7.2176 \\ 0 & 0 & 0 & 0 & 3.2188 & 0.5400 \\ 0 & 0 & 0 & 0 & 42.5529 & 9.6888 \\ \hline -0.2506 & -0.2511 & -0.2511 & -0.2472 & 0 & 0 \\ 1.5382 & 1.5302 & 1.5302 & 1.6014 & 0 & 0 \end{bmatrix}$$

$$\mathbf{N}_3 = \begin{bmatrix} 1.5617 & 1.5182 & 1.5182 & 1.9068 & 0 & 0 \\ 1.4871 & 1.4301 & 1.4301 & 1.9388 & 0 & 0 \\ -0.0168 & -0.0224 & -0.0224 & 0.0271 & 0 & 0 \\ 2.8569 & 2.7889 & 2.7889 & 3.3954 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & -1 & -0.2075 \\ 0 & 0 & 0 & 0 & 6.2 & 1.3405 \end{bmatrix} \text{ and }$$

$$\mathbf{N}_T = \begin{bmatrix} 7.2903 & 6.2938 & 6.2938 & 7.1173 & 26.9953 & 5.9390 \\ 8.7180 & 8.7329 & 8.7329 & 8.5997 & 34.7835 & 7.2176 \\ 0.5382 & 0.5382 & 1.5382 & 0.6043 & 3.2188 & 0.5400 \\ 10.3106 & 10.3168 & 10.3168 & 11.6087 & 42.5529 & 9.6888 \\ \hline -0.2506 & -0.2511 & -0.2511 & -0.2472 & 0 & -0.2075 \\ 1.5382 & 1.5302 & 1.5302 & 1.6014 & 6.2 & 2.3405 \end{bmatrix}$$

PROBLEM 11.6

The resulting balanced SAM using RAS is:

	Prod.	Cons.	Capital	ROW	Totals
Producers	0	560	40	60	660
Consumers	600	0	0	0	600
Capital	0	40	0	0	40
Rest of World	60	0	0	0	60
Totals	660	600	40	60	1360

PROBLEM 11.7

The resulting balanced SAM using RAS with the additional fixed cells is the following:

	Prod.	Cons.	Capital	ROW	Totals
Producers	0	550	65	45	660
Consumers	610	0	-25	15	600
Capital	0	40	0	0	40
Rest of World	50	10	0	0	60
Totals	660	600	40	60	1360

PROBLEM 11.8

The direct, indirect, cross, and total multipliers, respectively, are given by

$$\mathbf{M}_{1} = \begin{bmatrix} 1 & .897 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ .602 & .54 & 1 & 0 & 0 & \mathbf{0} \\ .322 & .289 & 0 & 1 & 0 & \\ .306 & .274 & 0 & .95 & 1 & \\ \hline & \mathbf{0} & & & \mathbf{I} \end{bmatrix}$$

PROBLEM 11.9

The direct multipliers in the additive form are the same as those in the multiplicative form, i.e., $\mathbf{M}_1 = \mathbf{N}_1$, which will always be the case as discussed in section 11.10.5.

PROBLEM 11.10

 $\mathbf{i'M} = \begin{bmatrix} 3.245 & 3.053 & 3.38 & 3.647 & 3.581 & 2.949 & 2.769 & 2.588 & 2.645 & 1 & 1 & 1 & 3.302 & 2.691 & 4 & 3.16 & 1 & 1 \end{bmatrix}$

Chapter 12, Energy: Solutions to Exercise Problems

PROBLEM 12.1

(a) (1)
$$\mathbf{Q} = \begin{bmatrix} 0 & 1 & 0 \\ .5 & .5 & .5 \end{bmatrix}$$
. (2) $\mathbf{D} = \begin{bmatrix} 0 & .667 & 0 \\ .05 & .033 & .05 \end{bmatrix}$. (3) $\tilde{\mathbf{Q}} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & .708 & 0 \end{bmatrix}$ so $\boldsymbol{\varepsilon} = \mathbf{D}(\mathbf{I} - \mathbf{A})^{-1} + \tilde{\mathbf{Q}} = \begin{bmatrix} .077 & .769 & .077 \\ .058 & .785 & .058 \end{bmatrix}$, for $\mathbf{A} = \begin{bmatrix} 0 & .667 & 0 \\ .10 & .067 & .1 \\ 0 & 0 & 0 \end{bmatrix}$ and

 $\mathbf{L} = (\mathbf{I} - \mathbf{A})^{-1} = \begin{bmatrix} 1.077 & .769 & .077 \\ .115 & 1.154 & .115 \\ 0 & 0 & 1 \end{bmatrix}.$ The energy conservation conditions do not hold.

(b)
$$\mathbf{Z}^* = \begin{bmatrix} 0 & 20 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
, $\mathbf{f}^* = \begin{bmatrix} 0 \\ 17 \\ 20 \end{bmatrix}$ and $\mathbf{x}^* = \begin{bmatrix} 20 \\ 20 \\ 20 \end{bmatrix}$ so $\mathbf{A}^* = \begin{bmatrix} 0 & 1 & 0 \\ .05 & .05 & .05 \\ 0 & 0 & 0 \end{bmatrix}$ and

$$\mathbf{L}^* = (\mathbf{I} - \mathbf{A}^*)^{-1} = \begin{bmatrix} 1.056 & 1.111 & 0.056 \\ 0.056 & 1.111 & 0.056 \\ 0 & 0 & 1 \end{bmatrix}, \text{ which is easy to see conforms to energy conservation}$$

conditions as defined in the text.

PROBLEM 12.2

a)
$$\mathbf{\varepsilon} = \mathbf{DL} = \begin{bmatrix} .225 & .336 \\ .129 & .440 \end{bmatrix}$$
 for $\mathbf{A} = \begin{bmatrix} .02 & .04 \\ .06 & .08 \end{bmatrix}$ and $\mathbf{L} = (\mathbf{I} - \mathbf{A})^{-1} = \begin{bmatrix} 1.023 & .044 \\ .067 & 1.09 \end{bmatrix}$.

b) $\Delta \mathbf{g} = \mathbf{DL}\Delta \mathbf{f} = \begin{bmatrix} 28.5 \\ 19.8 \end{bmatrix}$ and $\Delta \mathbf{g}^{direct} = \mathbf{D}\Delta \mathbf{f} = \begin{bmatrix} 25.4 \\ 16.2 \end{bmatrix}$ so we can calculate
$$\Delta \mathbf{g}^{indirect} = \Delta \mathbf{g} - \Delta \mathbf{g}^{direct} = \begin{bmatrix} 3.1 \\ 3.6 \end{bmatrix} \text{ for } \Delta \mathbf{f} = \mathbf{f}^{new} - \mathbf{f} = \begin{bmatrix} 200 \\ 100 \end{bmatrix} - \begin{bmatrix} 94 \\ 86 \end{bmatrix} = \begin{bmatrix} 106 \\ 14 \end{bmatrix}$$
. (c) $\mathbf{D} = \begin{bmatrix} .2 & .3 \\ .1 & .3 \end{bmatrix}$
so $\mathbf{DL} = \begin{bmatrix} .225 & .336 \\ .122 & .331 \end{bmatrix}$ and, hence, $\Delta \mathbf{g} = \mathbf{DL}\Delta \mathbf{f} = \begin{bmatrix} 28.5 \\ 17.6 \end{bmatrix}$ and $\Delta \mathbf{g}^{direct} = \mathbf{D}\Delta \mathbf{f} = \begin{bmatrix} 25.4 \\ 14.8 \end{bmatrix}$ so
$$\Delta \mathbf{g}^{indirect} = \Delta \mathbf{g} - \Delta \mathbf{g}^{direct} = \begin{bmatrix} 3.1 \\ 2.8 \end{bmatrix}$$
. Hence, the differences in total energy requirements between parts c and b are given by
$$\begin{bmatrix} 28.5 \\ 19.8 \end{bmatrix} - \begin{bmatrix} 28.5 \\ 17.6 \end{bmatrix} = \begin{bmatrix} 0 \\ 2.2 \end{bmatrix}$$
. The differences in direct energy requirements are

given by $\begin{bmatrix} 25.4 \\ 16.2 \end{bmatrix} - \begin{bmatrix} 25.4 \\ 14.8 \end{bmatrix} = \begin{bmatrix} 0 \\ 1.4 \end{bmatrix}$, and the differences in indirect energy requirements are given by $\begin{bmatrix} 3.1 \\ 3.6 \end{bmatrix} - \begin{bmatrix} 3.1 \\ 2.8 \end{bmatrix} = \begin{bmatrix} 0 \\ 0.8 \end{bmatrix}$.

PROBLEM 12.3

The reference final demand vector is found by $\mathbf{f} = \mathbf{x} - \mathbf{Z}\mathbf{i} = \begin{bmatrix} 10 \\ 20 \\ 30 \end{bmatrix} - \begin{bmatrix} 9 \\ 20 \\ 6 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 24 \end{bmatrix}$ for

$$\mathbf{Z} = \begin{bmatrix} 2 & 6 & 1 \\ 0 & 0 & 20 \\ 3 & 2 & 1 \end{bmatrix} \text{ and } \mathbf{x} = \begin{bmatrix} 10 \\ 20 \\ 30 \end{bmatrix}. \text{ From the table of prices we have } \tilde{\mathbf{Q}} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1.292 \end{bmatrix} \text{ and } \mathbf{z} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1.292 \end{bmatrix}$$

$$\mathbf{P} = \begin{bmatrix} 0 & 0 & 0.408 \\ 0.333 & 0.286 & 0.5 \end{bmatrix}.$$
 (a) We can compute the energy flows as $\mathbf{E} = \begin{bmatrix} 0 & 0 & 49 \\ 9 & 7 & 2 \end{bmatrix}$ where

$$e_{kj} = z_{kj} / p_{kj}$$
 for $k = 1, 2$ and $j = 1, 2, 3$ and $\mathbf{q} = \tilde{\mathbf{Q}}\mathbf{f} = \begin{bmatrix} 0 \\ 31 \end{bmatrix}$ and $\mathbf{g} = \mathbf{E}\mathbf{i} + \mathbf{q} = \begin{bmatrix} 49 \\ 49 \end{bmatrix}$. We can express

the energy flows as the energy rows in a hybrid units transactions matrix and corresponding

vectors of final demands and total outputs:
$$\mathbf{Z}^* = \begin{bmatrix} 2 & 6 & 1 \\ 0 & 0 & 49 \\ 9 & 7 & 2 \end{bmatrix}$$
, $\mathbf{f}^* = \begin{bmatrix} 1 \\ 0 \\ 31 \end{bmatrix}$ and $\mathbf{x}^* = \begin{bmatrix} 10 \\ 49 \\ 49 \end{bmatrix}$ and

$$\mathbf{A}^* = \mathbf{Z}^* (\hat{\mathbf{x}}^*)^{-1} = \begin{bmatrix} .2 & .122 & .02 \\ 0 & 0 & 1 \\ .9 & .143 & .041 \end{bmatrix}.$$
 (b) For this economy $\mathbf{G} = \begin{bmatrix} 0 & 49 & 0 \\ 0 & 0 & 49 \end{bmatrix}$ so the direct energy

coefficients can be found as $\mathbf{G}(\hat{\mathbf{x}}^*)^{-1}\mathbf{A}^* = \begin{bmatrix} 0 & 0 & 1 \\ .9 & .143 & .041 \end{bmatrix}$. (c)

$$\mathbf{L}^* = (\mathbf{I} - \mathbf{A}^*)^{-1} = \begin{bmatrix} 1.556 & 0.229 & 0.272 \\ 1.716 & 1.428 & 1.525 \\ 1.716 & 0.428 & 1.525 \end{bmatrix} \text{ and hence } \boldsymbol{\alpha} = \mathbf{G}(\hat{\mathbf{x}}^*)^{-1}(\mathbf{I} - \mathbf{A}^*)^{-1} = \begin{bmatrix} 1.716 & 1.428 & 1.525 \\ 1.716 & 0.428 & 1.525 \end{bmatrix}.$$

For
$$\Delta \mathbf{f}^* = \begin{bmatrix} 2 \\ 0 \\ 18 \end{bmatrix}$$
 we compute total energy as $\Delta \mathbf{g} = \boldsymbol{\alpha} \Delta \mathbf{f}^* = \begin{bmatrix} 30.887 \\ 30.887 \end{bmatrix}$. (d) Using the energy prices

defined above for final demand we can compute
$$\Delta \mathbf{f} = \begin{bmatrix} 2 \\ 0 \\ 23.2 \end{bmatrix}$$
 and hence $\Delta \mathbf{g} = \boldsymbol{\varepsilon} \Delta \mathbf{f} = \begin{bmatrix} 48.2 \\ 450.9 \end{bmatrix}$

where
$$\mathbf{A} = \begin{bmatrix} .2 & .3 & .033 \\ 0 & 0 & .667 \\ .3 & .1 & .033 \end{bmatrix}$$
, $\mathbf{L} = \begin{bmatrix} 1.385 & .451 & .359 \\ .308 & 1.174 & .821 \\ .462 & .262 & 1.231 \end{bmatrix}$ and $\boldsymbol{\varepsilon} = \mathbf{DL} + \mathbf{G} = \begin{bmatrix} .754 & .427 & 2.010 \\ 1.385 & .835 & 1.984 \end{bmatrix}$.

PROBLEM 12.4

(a) $\alpha \hat{\mathbf{x}}^* = \alpha \mathbf{Z}^* + \mathbf{G}$ and $\mathbf{Z}^* = \mathbf{A}^* \hat{\mathbf{x}}^*$, so $\alpha \hat{\mathbf{x}}^* = \alpha \mathbf{A}^* \hat{\mathbf{x}}^* + \mathbf{G}$. Rearranging, $\alpha (\mathbf{I} - \mathbf{A}^*) \hat{\mathbf{x}}^* = \mathbf{G}$ or $\alpha = \mathbf{G} (\hat{\mathbf{x}}^*)^{-1} (\mathbf{I} - \mathbf{A}^*)^{-1}$. (b) The first matrix satisfies the energy conservation conditions, since $\alpha_{ref.pet} + \alpha_{elec.} = \alpha_{crude} = \begin{bmatrix} .6 & .5 & .3 \end{bmatrix}$. The second matrix fails to satisfy the energy conservation conditions, since $\alpha_{ref.pet} + \alpha_{elec.} = \begin{bmatrix} .6 & .2 & .2 \end{bmatrix} \neq \alpha_{crude}$.

PROBLEM 12.5

(a)
$$\mathbf{g} = \mathbf{E}\mathbf{i} + \mathbf{q} = \begin{bmatrix} 40 \\ 40 \end{bmatrix}$$
. (b) Here $\mathbf{A} = \begin{bmatrix} 0 & .25 & 0 \\ .5 & .13 & .25 \\ 0 & 0 & 0 \end{bmatrix}$ and $\mathbf{L} = \begin{bmatrix} 1.17 & .33 & .08 \\ .67 & 1.33 & .33 \\ 0 & 0 & 1 \end{bmatrix}$. Also $\mathbf{\epsilon} = \mathbf{D}\mathbf{L} + \tilde{\mathbf{Q}} = \begin{bmatrix} .67 & 1.33 & .33 \\ .67 & .94 & .83 \end{bmatrix}$ where $\mathbf{D} = \mathbf{E}\hat{\mathbf{x}}^{-1} = \begin{bmatrix} 0 & 1 & 0 \\ .5 & .13 & .75 \end{bmatrix}$ and $\tilde{\mathbf{Q}} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0.6 & 0 \end{bmatrix}$. (b) For

the hybrid units calculations, $\mathbf{Z}^* = \begin{bmatrix} 0 & 40 & 0 \\ 5 & 5 & 15 \\ 0 & 0 & 0 \end{bmatrix}$, $\mathbf{x}^* = \begin{bmatrix} 40 \\ 40 \\ 20 \end{bmatrix}$, $\mathbf{G} = \begin{bmatrix} 40 & 0 & 0 \\ 0 & 40 & 0 \end{bmatrix}$ and

$$\mathbf{A}^* = \begin{bmatrix} 0 & 1 & 0 \\ .13 & .13 & .75 \\ 0 & 0 & 0 \end{bmatrix}, \text{ so } \boldsymbol{\alpha} = \mathbf{G}(\hat{\mathbf{x}}^*)^{-1}(\mathbf{I} - \mathbf{A}^*)^{-1} = \begin{bmatrix} 1.167 & 1.333 & 1.0 \\ .167 & 1.333 & 1.0 \end{bmatrix}.$$

PROBLEM 12.6

Using
$$\mathbf{A}^* = \mathbf{Z}^* (\hat{\mathbf{x}}^*)^{-1}$$
 we can compute $\mathbf{A}^* = \begin{bmatrix} 0 & 0 & .4 & 0 \\ 0 & 0 & .6 & 0 \\ .05 & .05 & .12 & .24 \\ .375 & .333 & .3 & .24 \end{bmatrix}$ and

$$\mathbf{L}^* = (\mathbf{I} - \mathbf{A}^*)^{-1} = \begin{bmatrix} 1.1024 & .0945 & .6299 & .1890 \\ .1535 & 1.1417 & .9449 & .2835 \\ .2559 & .2362 & 1.5748 & .4724 \\ .6767 & .6086 & 1.2795 & 1.6339 \end{bmatrix}.$$
 The change in final demand can be

written as $(\Delta \mathbf{f}^*)' = \begin{bmatrix} 0 & 0 & 200 \end{bmatrix}$ so the corresponding change in total energy consumption can

be expressed as
$$\Delta \mathbf{g} = \mathbf{G}(\hat{\mathbf{x}}^*)^{-1}(\mathbf{I} - \mathbf{A}^*)^{-1}\Delta \mathbf{f}^* = \begin{bmatrix} 18.2677 \\ 27.4016 \\ 0 \end{bmatrix}$$
 where $\mathbf{G}(\hat{\mathbf{x}}^*)^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$. The

total primary energy intensity is $i'\Delta g = 94.4882$.

PROBLEM 12.7

Using $\mathbf{A}^* = \mathbf{Z}^* (\hat{\mathbf{x}}^*)^{-1}$, for the alternative power generation technologies we can specify the corresponding matrices of technical coefficients and total requirements as

$$\mathbf{A}^{*(I)} = \begin{bmatrix} 0 & 0 & .2 & 0 \\ 0 & 0 & .7 & 0 \\ .05 & .05 & .1 & .24 \\ .375 & .333 & .4 & .20 \end{bmatrix}, \quad (\mathbf{I} - \mathbf{A}^{*(I)})^{-1} = \begin{bmatrix} 1.0506 & .0467 & .3113 & .0934 \\ .1770 & 1.1634 & 1.0895 & .3268 \\ .2529 & .2335 & 1.5564 & .4669 \\ .6927 & .6234 & 1.3781 & 1.6634 \end{bmatrix},$$

$$\mathbf{A}^{*(II)} = \begin{bmatrix} 0 & 0 & .5 & 0 \\ 0 & 0 & .4 & 0 \\ .05 & .05 & .12 & .24 \\ .375 & .333 & .4 & .2 \end{bmatrix} \text{ and } (\mathbf{I} - \mathbf{A}^{*(II)})^{-1} = \begin{bmatrix} 1.1313 & .1212 & .8081 & .2424 \\ .1051 & 1.0970 & .6465 & .1939 \\ .2626 & .2424 & 1.6162 & .4848 \\ .7054 & .6351 & 1.4562 & 1.6869 \end{bmatrix}.$$

For
$$\Delta \mathbf{g}^{(0)} = \mathbf{G}(\hat{\mathbf{x}}^*)^{-1}(\mathbf{I} - \mathbf{A}^{*(0)})^{-1}\Delta \mathbf{f}^*$$
, $\Delta \mathbf{g}^{(I)} = \mathbf{G}(\hat{\mathbf{x}}^*)^{-1}(\mathbf{I} - \mathbf{A}^{*(I)})^{-1}\Delta \mathbf{f}^*$, and for

$$\Delta \mathbf{g}^{(II)} = \mathbf{G}(\hat{\mathbf{x}}^*)^{-1} (\mathbf{I} - \mathbf{A}^{*(II)})^{-1} \Delta \mathbf{f}^*, \text{ where } \mathbf{G}(\hat{\mathbf{x}}^*)^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \text{ and } \Delta \mathbf{f}^* = \begin{bmatrix} 0 \\ 0 \\ 20 \\ 30 \end{bmatrix}, \text{ we can write}$$

$$\Delta \mathbf{g} = \left[\Delta \mathbf{g}^{(0)} \mid \Delta \mathbf{g}^{(I)} \mid \Delta \mathbf{g}^{(I)} \right] = \begin{bmatrix} 18.2677 & 9.0272 & 23.4343 \\ 27.4016 & 31.5953 & 18.7475 \\ 0 & 0 & 0 \end{bmatrix}$$
 which provides the total energy of

each fuel type to support $\Delta \mathbf{f}^*$. The total primary energy intensity is given by $\mathbf{i}'(\Delta \mathbf{g}) = \begin{bmatrix} 45.6693 & 40.6226 & 42.1818 \end{bmatrix}$, so technology *I* consumes 1.5592 less primary energy than technology *II*. Both new technologies *I* and *II* are more efficient than the base technology.

PROBLEM 12.8

The technical coefficient matrix incorporating the new manufacturing technology is

$$\mathbf{A}^{*(new)} = \begin{bmatrix} 0 & 0 & .2 & 0 \\ 0 & 0 & .7 & 0 \\ .05 & .05 & .1 & .12 \\ .375 & .333 & .4 & .2 \end{bmatrix} \text{ and } \mathbf{L}^{*(new)} = \begin{bmatrix} 1.0580 & .0546 & .5461 & .0819 \\ .0870 & 1.0819 & .8191 & .1229 \\ .1451 & .1365 & 1.3652 & .2048 \\ .5866 & .5276 & 1.1092 & 1.4164 \end{bmatrix}.$$

$$\mathbf{i'}(\Delta \mathbf{g}) = \mathbf{i'} \begin{bmatrix} \Delta \mathbf{g}^{(0)} & \Delta \mathbf{g}^{(new)} \end{bmatrix} = \begin{bmatrix} 18.2677 & 13.3788 \\ 27.4016 & 20.0683 \\ 0.0000 & 0.0000 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 45.6693 & 33.4471 \end{bmatrix}$$
. Hence the primary

energy saved by adopting the new technology is 45.6693 - 33.4471 = 12.2222.

PROBLEM 12.9

From the original technical coefficients matrix, $A^{*(0)}$, we can compute

$$(\mathbf{I} - \mathbf{A}^{*(0)}) = \begin{bmatrix} 1 & 0 & -.4 & 0 \\ 0 & 1 & -.6 & 0 \\ -.05 & -.05 & .88 & -.24 \\ -.375 & -.333 & -.3 & .8 \end{bmatrix}$$
. The GDP for the original economy can be found by

$$GDP = \mathbf{i}'\tilde{\mathbf{Q}}\mathbf{f}^* = \mathbf{i}'\tilde{\mathbf{Q}}(\mathbf{I} - \mathbf{A}^{*(0)})\mathbf{x}^* = 105 \text{ where (from Appendix 9.1) } \tilde{\mathbf{Q}} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 0 \end{bmatrix} \text{ and }$$

 $(\mathbf{x}^*)' = \begin{bmatrix} 40 & 60 & 100 & 200 \end{bmatrix}$. For a 10% reduction in availability of oil, the vector of total outputs becomes $(\mathbf{x}^*)' = \begin{bmatrix} 36 & 60 & 100 & 200 \end{bmatrix}$. Hence we can compute the GDP as the sum of the corresponding final demand (measured in dollars) which we determine once again by $GDP = \mathbf{i}'\tilde{\mathbf{O}}\mathbf{f}^* = \mathbf{i}'\tilde{\mathbf{O}}(\mathbf{I} - \mathbf{A}^{*(0)})\mathbf{x}^* = 90.1$. The reduction in GDP due to the oil shortage is 105-90.2=14.9. When the new technologies are incorporated into the technical coefficients

matrix it becomes
$$\mathbf{A}^{*(new)} = \begin{bmatrix} 0 & 0 & .2 & 0 \\ 0 & 0 & .7 & 0 \\ .05 & .05 & .1 & .12 \\ .375 & .333 & .4 & .2 \end{bmatrix}$$
 and

matrix it becomes
$$\mathbf{A}^{*(new)} = \begin{bmatrix} 0 & 0 & .2 & 0 \\ 0 & 0 & .7 & 0 \\ .05 & .05 & .1 & .12 \\ .375 & .333 & .4 & .2 \end{bmatrix}$$
 and
$$(\mathbf{I} - \mathbf{A}^{*(new)}) = \begin{bmatrix} 1 & 0 & -.2 & 0 \\ 0 & 1 & -.7 & 0 \\ -.05 & -.05 & .9 & -.12 \\ -.375 & -.333 & -.4 & .8 \end{bmatrix}$$
 and, as before, we compute GDP by

 $GDP = \mathbf{i}'\tilde{\mathbf{Q}}\mathbf{f}^* = \mathbf{i}'\tilde{\mathbf{Q}}(\mathbf{I} - \mathbf{A}^{*(new)})\mathbf{x}^* = 205.6$. This turns out to be not a reduction at all but an increase in GDP of 100.6.

PROBLEM 12.10

The transactions and total requirements matrices are found by $\mathbf{Z}^{*(80)} = \mathbf{A}^* \hat{\mathbf{x}}^{*(80)}$ and $(\mathbf{I} - \mathbf{A}^{*(80)})^{-1}$ for 1980 and similarly for 1963. Final demand is found by $\mathbf{f}^{*(80)} = \mathbf{x}^{*(80)} - \mathbf{A}^{*(80)} \mathbf{x}^{*(80)}$ and similarly for 1963. The total requirements matrices and vectors of final demand are

										Final
1980	1	2	3	4	5	6	7	8	9	Demand
1	1.0081	0.0059	0.016	1.718	0.0099	0.0003	0.0007	0.0002	0.0002	3,258
2	0.0164	1.0923	1.0933	1.0115	1.0301	0.0014	0.0015	0.0032	0.0006	-10,684
3	0.0115	0.0076	1.0851	0.4513	0.0106	0.001	0.0007	0.003	0.0004	10,461
4	0.0038	0.0035	0.0089	1.1062	0.006	0.0002	0.0003	0.0001	0.0001	3,155
5	0.0058	0.0578	0.098	0.6569	1.1341	0.0005	0.0008	0.0004	0.0003	4,066
6	0.7803	2.1173	3.4665	15.2493	2.6707	1.154	0.1361	0.0722	0.0559	3,596,887
7	5.0854	2.9969	8.6363	27.2464	3.696	0.5453	1.7127	0.1654	0.1614	7,804,130
8	0.479	0.3575	3.3772	9.3886	0.5332	0.0517	0.0613	1.1667	0.0288	925,557
9	3.5349	4.7573	10.3297	30.9091	6.5227	0.369	0.3197	0.2444	1.3022	15,022,410
1963										
1	1.0058	0.0026	0.0094	1.9521	0.0049	0.0004	0.0011	0.0002	0.0002	2,199
2	0.0056	1.0532	0.9444	1.0968	1.0861	0.0012	0.0021	0.0026	0.0007	-2,359
3	0.0032	0.0033	1.0732	0.2727	0.0094	0.0008	0.0008	0.0026	0.0004	8,630
4	0.0019	0.0011	0.0037	1.1145	0.0016	0.0001	0.0002	0.0001	0.0001	1,037
5	0.0025	0.0061	0.0483	0.8888	1.1087	0.0004	0.0009	0.0004	0.0003	3,540
6	0.2843	0.8465	2.0483	14.2093	1.88	1.1866	0.1853	0.0793	0.0749	2,820,771
7	1.6793	1.3446	4.2429	14.2964	2.1657	0.4915	1.7788	0.1478	0.1362	4,989,750
8	0.2025	0.1894	1.7661	7.6651	0.7549	0.0485	0.0604	1.1074	0.0233	456,425
9	0.8733	3.1616	6.1679	21.3339	5.0473	0.2267	0.2346	0.202	1.2401	6,933,979

If we denote the energy rows of $(\mathbf{I} - \mathbf{A}^{*(80)})^{-1}$ as $\mathbf{\alpha}^{80}$, the vector of total energy output as \mathbf{g}^{80} , and final demand as \mathbf{f}^{80} (and now in all cases dropping the * for simplicity) with the analogous designations for 1963, we can compute the changes in energy consumption as

$$\mathbf{g}^{80} - \mathbf{g}^{63} = \boldsymbol{\alpha}^{63} (\mathbf{f}^{80} - \mathbf{f}^{63}) + (\boldsymbol{\alpha}^{80} - \boldsymbol{\alpha}^{63}) \mathbf{f}^{63} + (\boldsymbol{\alpha}^{80} - \boldsymbol{\alpha}^{63}) (\mathbf{f}^{80} - \mathbf{f}^{63}) = \begin{bmatrix} 6,121.4 \\ 6,457.3 \\ 11,337.2 \\ 4,698.8 \\ 6,049.6 \end{bmatrix}$$

where the effect caused by changing final demand is
$$\alpha^{63}(\mathbf{f}^{80} - \mathbf{f}^{63}) = \begin{bmatrix} 10,407.2 \\ 9,433.3 \\ 9,967.9 \\ 3,738.7 \\ 8,021.1 \end{bmatrix}$$
; $\begin{bmatrix} -2460.4 \end{bmatrix}$

the effect caused by changes in production functions is
$$(\boldsymbol{\alpha}^{80} - \boldsymbol{\alpha}^{63})\mathbf{f}^{63} = \begin{bmatrix} 2.106.1 \\ -1257.5 \\ 756.8 \\ 613.3 \\ -502.4 \end{bmatrix}$$
;

and the effect of interaction of final demand and production function changes is

$$(\boldsymbol{\alpha}^{80} - \boldsymbol{\alpha}^{63})(\mathbf{f}^{80} - \mathbf{f}^{63}) = \begin{bmatrix} -1885.4 \\ -1718.5 \\ 612.5 \\ 346.8 \\ -1469.1 \end{bmatrix}.$$

Chapter 13, Environment: Solutions to Exercise Problems

PROBLEM 13.1

(a)
$$\mathbf{A} = \begin{bmatrix} .1 & .3 \\ .5 & .1 \end{bmatrix}$$
 and so $\mathbf{L} = \begin{bmatrix} 1.364 & .455 \\ .758 & 1.364 \end{bmatrix}$. Forming $\mathbf{D} = \begin{bmatrix} \mathbf{u} \\ \mathbf{v} \\ \mathbf{w} \end{bmatrix}$, we find

$$\mathbf{DL} = \begin{bmatrix} .288 & .318 \\ .5 & .5 \\ .652 & .773 \\ .500 & .500 \\ .652 & .773 \end{bmatrix}$$
. The four candidate projects are represented by the following matrix, the

columns of which are the final-demand change vectors: $\Delta \mathbf{F} = \begin{bmatrix} 3 & 4.5 & 6 & 3 \\ 3 & 5.5 & 4 & 7 \end{bmatrix}$. Total allocated

budget is given by $i'[\Delta F] = \begin{bmatrix} 6 & 10 & 10 & 10 \end{bmatrix}$; that is, all four candidate projects satisfy the budget constraint. Then the corresponding matrix of total outputs, where the columns are the vectors of

total outputs corresponding to each scenario, is $\Delta \mathbf{X}^* = \mathbf{D} \mathbf{L} \Delta \mathbf{F} = \begin{bmatrix} 3.0 & 5.0 & 5.0 & 5.0 \\ 4.3 & 7.2 & 7.0 & 7.4 \\ 3.0 & 5.0 & 5.0 & 5.0 \\ 4.3 & 7.2 & 7.0 & 7.4 \end{bmatrix}$. Project 4,

using 3.1×10^{15} Btus of oil, exceeds the 3.0 limit. (b) Project 2 should be chosen since it maximizes employment, among the three feasible projects (from the bottom row of ΔX^*).

PROBLEM 13.2

Parts (a), (b) and (c) of this question can be answered simultaneously by finding

$$\mathbf{x}^* = \mathbf{DLf}^{new}$$
. Here $\mathbf{A} = \begin{bmatrix} .1 & .2 \\ .3 & .4 \end{bmatrix}$ and $\mathbf{L} = \begin{bmatrix} 1.250 & .417 \\ .625 & 1.875 \end{bmatrix}$. Following the same order in \mathbf{D} as in

Parts (a), (b) and (c) of this question can be answered simultaneously by intuing $\mathbf{x}^* = \mathbf{DLf}^{new}. \text{ Here } \mathbf{A} = \begin{bmatrix} .1 & .2 \\ .3 & .4 \end{bmatrix} \text{ and } \mathbf{L} = \begin{bmatrix} 1.250 & .417 \\ .625 & 1.875 \end{bmatrix}. \text{ Following the same order in } \mathbf{D} \text{ as in}$ the text in Table 10.2, we can form $\mathbf{D} = \begin{bmatrix} 1 & 0 \\ .05 & .2 \\ \hline 3 & 5 \\ .002 & .002 \end{bmatrix}. \text{ (It should be clear that one could list first } \mathbf{D} = \begin{bmatrix} 1 & 0 \\ .05 & .2 \\ .002 & .002 \end{bmatrix}.$

the emissions, then the energy consumption, then employment; any other order would be equally

acceptable.) In the present case,
$$\mathbf{x}^* = \begin{bmatrix} 29.167 \\ 12.708 \\ 368.75 \\ 141.667 \\ .171 \end{bmatrix}$$
. That is, (a) $\mathbf{x}^{e^*} = \begin{bmatrix} 29.167 \\ 12.708 \end{bmatrix}$ represents

29,167,000 tons of coal and 12,708,000 barrels of oil that will be consumed in production next year; (b) $\mathbf{x}^{V*} = \begin{bmatrix} 368.75 \\ 141.667 \end{bmatrix}$ indicates that 368,750,000 pounds of SO₂ and 141,667,000 pounds of NO_x will be emitted because of that production; and (c) $\mathbf{x}^{I*} = [0.171]$ represents the fact that 171,000 workers will be employed. Total output is found as $\mathbf{x}^{new} = \mathbf{L}\mathbf{f}^{new} = \begin{bmatrix} 29.167 \\ 56.25 \end{bmatrix}$; that is, $x_1^{new} = \$29,167,000$ and $x_2^{new} = \$56,250,000$.

PROBLEM 13.3

$$\mathbf{L} = \begin{bmatrix} 1.247 & .598 & .839 \\ .857 & 2.494 & 1.665 \\ 0 & 0 & 1.111 \end{bmatrix}, \mathbf{D} = \begin{bmatrix} 4.2 & 7 & 9.1 \\ 7.6 & 2.6 & .5 \\ .73 & .33 & .63 \end{bmatrix}, \text{ and } \Delta \mathbf{F} = \begin{bmatrix} 2 & 4 & 2 & 2 \\ 2 & 0 & 0 & 2 \\ 2 & 2 & 4 & 3 \end{bmatrix}, \text{ with, as before,}$$

one column in $\Delta \mathbf{F}$ for each of the projects. (a) Project 4 contributes most to gross regional product, since $\mathbf{i'}[\Delta \mathbf{F}] = \begin{bmatrix} 6 & 6 & 6 & 7 \end{bmatrix}$. (b)

$$\Delta \mathbf{X}^* = \mathbf{D} \mathbf{L} \Delta \mathbf{F} = \begin{bmatrix} 112.986 & 95.527 & 123.618 & 138.27 \\ 67.98 & 69.341 & 68.44 & 79.236 \\ 8.628 & 8.496 & 9.832 & 10.49 \end{bmatrix}$$
Project 4 also consumes the most energy

 $(79.236 \times 10^6 \text{ bbls of oil})$. (c) Project 4 also contributes the most to regional employment $(10.490 \times 10^6 \text{ workers})$.

PROBLEM 13.4

From **Z** and **x** we compute
$$\mathbf{A} = \mathbf{Z}\hat{\mathbf{x}}^{-1} = \begin{bmatrix} .14 & .35 \\ .8 & .05 \end{bmatrix}$$
 and $\mathbf{L} = \begin{bmatrix} 1.769 & .652 \\ 1.49 & 1.601 \end{bmatrix}$ so that

$$\mathbf{D}(\mathbf{I} - \mathbf{A})^{-1} = \begin{bmatrix} 1.276 & .996 \\ .113 & .115 \end{bmatrix}.$$
 Therefore, for $\mathbf{f}^{new} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\mathbf{x}^* = \begin{bmatrix} 1.276 \\ .113 \end{bmatrix}$, meaning that for each new

dollar's worth of final demand for the output of sector 1, there will be 1.276 pounds of pollutant

emitted and 0.113 new workers. Similarly, with
$$\mathbf{f}^{new} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
, we find $\mathbf{x}^* = \begin{bmatrix} .996 \\ -... \\ .115 \end{bmatrix}$, meaning that

for each new dollar's worth of final demand for the output of sector 2, there will be 0.996 pounds of pollutant emitted and 0.115 new workers. Thus, there would not be a conflict between unions and environmentalists; each dollar's worth of new demand for sector 2 generates less pollution

and also generates more employment (notice that this is true despite the fact that sector 2's direct-pollution coefficient per dollar of output is larger than sector 1's direct-pollution coefficient).

PROBLEM 13.5

We can augment the transactions matrix with the pollution abatement and elimination data to

yield
$$\overline{\mathbf{Z}} = \begin{bmatrix} 140 & 350 & 5 \\ 800 & 50 & 12 \\ 10 & 25 & 0 \end{bmatrix}$$
. Total pollution output is found by adding pollution generation in the

interindustry matrix to the pollution tolerated (reflected as a negative value in final demand), so $x_p = 10 + 25 - 12 = 23$, which we can augment to the total industry outputs vector to yield

$$\overline{\mathbf{x}} = \begin{bmatrix} 2000 & 1850 & 23 \end{bmatrix}'$$
. Hence final demands are $\overline{\mathbf{f}} = \overline{\mathbf{x}} - \overline{\mathbf{Z}}\mathbf{i} = \begin{bmatrix} 1505 & 988 & -12 \end{bmatrix}'$. Hence,

$$\overline{\mathbf{A}} = \overline{\mathbf{Z}}\hat{\overline{\mathbf{x}}}^{-1} = \begin{bmatrix} .07 & .189 & .217 \\ .4 & .027 & .522 \\ .005 & .014 & 0 \end{bmatrix} \text{ and } \overline{\mathbf{L}} = (\mathbf{I} - \overline{\mathbf{A}})^{-1} = \begin{bmatrix} 1.178 & .234 & .378 \\ .491 & 1.133 & .698 \\ .013 & .016 & 1.011 \end{bmatrix}. \text{ For }$$

 $\Delta \overline{\mathbf{f}} = \begin{bmatrix} 100 & 100 & 0 \end{bmatrix}'$ the changes in outputs and pollution are $\Delta \overline{\mathbf{x}} = \begin{bmatrix} 141.2 & 162.4 & 2.9 \end{bmatrix}'$ and hence the new levels of outputs and pollution are $\overline{\mathbf{x}}^{new} = \begin{bmatrix} 2141.2 & 2012.4 & 25.9 \end{bmatrix}'$.

PROBLEM 13.6

From the table of direct impact coefficients, $\mathbf{D} = \begin{bmatrix} 4.2 & 7 & 9.1 \\ 7.6 & 2.6 & .5 \\ 7.3 & 3.3 & 6.3 \end{bmatrix}$, so the baseline environmental,

energy, and employment impacts are found by

$$\mathbf{x}^{*N} = \mathbf{D}\mathbf{x}^{N} = \begin{bmatrix} 166,626,387.6 & 23,949,036.4 & 109,974,029.7 \end{bmatrix}'$$
 and

$$\mathbf{x}^{*R} = \mathbf{D}\mathbf{x}^{R} = \begin{bmatrix} 2,256,140.7 & 396,313.8 & 1,450,654.2 \end{bmatrix}'$$
. Then

$$\Delta \overline{\mathbf{x}}^{N} = \begin{bmatrix} \mathbf{D}^{*N} \\ (\mathbf{I} - \mathbf{A}^{N})^{-1} \end{bmatrix} \Delta \mathbf{f}^{N} = \begin{bmatrix} 10.7832 & 16.2768 & 14.7759 \\ 10.4543 & 5.2368 & 1.3729 \\ 12.5176 & 9.4836 & 10.1120 \\ 1.2516 & 0.1306 & 0.0287 \\ 0.2881 & 1.5256 & 0.1576 \\ 0.3857 & 0.5549 & 1.4892 \end{bmatrix} \begin{bmatrix} 250 \\ 3,000 \\ 7,000 \end{bmatrix} = \begin{bmatrix} 154,957.3 \\ 27,934.5 \\ 102,364.1 \\ 906.1 \\ 5,752.2 \\ 12,185.3 \end{bmatrix}$$

$$\Delta \overline{\mathbf{x}}^{R} = \begin{bmatrix} \mathbf{D}^{*R} \\ (\mathbf{I} - \mathbf{A}^{R})^{-1} \end{bmatrix} \Delta \mathbf{f}^{R} = \begin{bmatrix} 7.9150 & 9.5207 & 12.4438 \\ 9.0188 & 3.2720 & 0.8721 \\ 10.2453 & 5.0627 & 8.5550 \\ 1.1281 & 0.0409 & 0.0075 \\ 0.1223 & 1.1048 & 0.0601 \\ 0.2550 & 0.1775 & 1.3178 \end{bmatrix} \begin{bmatrix} 50 \\ 600 \\ 1,400 \end{bmatrix} = \begin{bmatrix} 23,529.5 \\ 3,635.2 \\ 15,527.0 \\ 91.5 \\ 753.1 \\ 1,964.2 \end{bmatrix}$$

where $\Delta \mathbf{f}^R = .2\Delta \mathbf{f}^N$. Hence, the comparative percentage changes from $\mathbf{x}^{*(N)}$ and $\mathbf{x}^{*(R)}$ are:

	Nation	Region
Nat. Res.	0.09	1.04
Manuf.	0.12	0.92
Services	0.09	1.07
Pollution	0.17	1.11
Energy	0.12	0.79
Employ.	0.09	1.15

PROBLEM 13.7

The levels of pollution, energy consumption, and employment accompanying the baseline levels

of total industry output are found by
$$\mathbf{x}^{*R} = \mathbf{D}\mathbf{x}^{R} = \begin{bmatrix} 4.2 & 7 & 9.1 \\ 7.6 & 2.6 & .5 \\ 7.3 & 3.3 & 6.3 \end{bmatrix} \begin{bmatrix} 8,262.7 \\ 95,450.8 \\ 170,690.3 \end{bmatrix} = \begin{bmatrix} 2,256,140.7 \\ 396,313.8 \\ 1,450,654.2 \end{bmatrix}$$
.

A ten percent reduction in energy availability defines

$$\mathbf{x}^{*new} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & .9 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2,256,140.7 \\ 396,313.8 \\ 1,450,654.2 \end{bmatrix} = \begin{bmatrix} 2,256,140.7 \\ 356,682.4 \\ 1,450,654.2 \end{bmatrix}.$$
 Hence, this limits total industry output to

A ten percent reduction in energy availability defines
$$\mathbf{x}^{*new} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & .9 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2,256,140.7 \\ 396,313.8 \\ 1,450,654.2 \end{bmatrix} = \begin{bmatrix} 2,256,140.7 \\ 356,682.4 \\ 1,450,654.2 \end{bmatrix}. \text{ Hence, this limits total industry output to}$$

$$\mathbf{x}^{new} = \mathbf{D}^{-1}\mathbf{x}^{*new} = \begin{bmatrix} -0.0766 & 0.0732 & 0.1049 \\ 0.2301 & 0.2079 & -0.3488 \\ -0.0317 & -0.1937 & 0.2199 \end{bmatrix} \begin{bmatrix} 2,256,140.7 \\ 356,682.4 \\ 1,450,654.2 \end{bmatrix} = \begin{bmatrix} 5,362.0 \\ 87,210.5 \\ 178,367.8 \end{bmatrix}, \text{ which in turn means}$$

$$\mathbf{f}^{new} = (\mathbf{I} - \mathbf{A})\mathbf{x}^{new} = \begin{bmatrix} 0.8908 & -0.0324 & -0.0036 \\ -0.0899 & 0.9151 & -0.0412 \\ -0.1603 & -0.1170 & 0.7651 \end{bmatrix} \begin{bmatrix} 5,362.0 \\ 87,210.5 \\ 178,367.8 \end{bmatrix} = \begin{bmatrix} 1,308.7 \\ 71,975.5 \\ 125,406.0 \end{bmatrix}. \text{ The change in}$$

$$\mathbf{f}^{new} = (\mathbf{I} - \mathbf{A})\mathbf{x}^{new} = \begin{bmatrix} 0.8908 & -0.0324 & -0.0036 \\ -0.0899 & 0.9151 & -0.0412 \\ -0.1603 & -0.1170 & 0.7651 \end{bmatrix} \begin{bmatrix} 5,362.0 \\ 87,210.5 \\ 178,367.8 \end{bmatrix} = \begin{bmatrix} 1,308.7 \\ 71,975.5 \\ 125,406.0 \end{bmatrix}.$$
 The change in

GDP is $\mathbf{i'f}^{new} - \mathbf{i'f} = -2,637.7$ or a 1.31% reduction in GDP, where the original final demand is

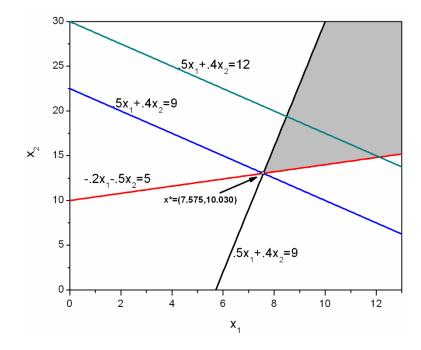
$$\mathbf{f} = \mathbf{x} - \mathbf{A}\mathbf{x} = \begin{bmatrix} 3,653.3 \\ 79,571.8 \\ 118,102.9 \end{bmatrix}.$$

PROBLEM 13.8

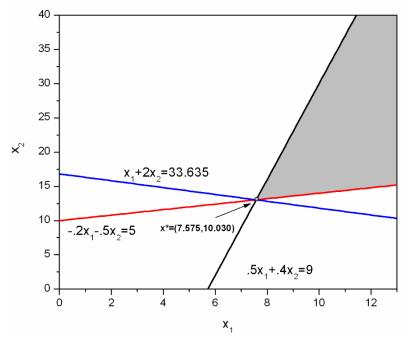
The linear programming (LP) formulation is $Min \ \mathbf{v'x}$ or $Min \ .5x_1 + .4x_2$ where the graphical

$$(\mathbf{I} - \mathbf{A})\mathbf{x} \ge \mathbf{f} \qquad .7x_1 - .1x_2 \ge 4$$
$$\mathbf{x} \ge 0 \qquad -.2x_1 + .5x_2 \ge 5$$
$$x_1, x_2 \ge 0$$

solution is



Note that it turns out that the solution to this LP problem has a "dual" formulation (discussed in Chapter 13) of maximizing the value of total final demand (or maximizing gross domestic product) subject to the technical coefficients and supply availability of value added factors, which may seem more intuitive. These dual LP problems have the same result such that maximized value of final demand equals the minimized cost of value added factors and that value is the gross domestic product, or the familiar equality of national product to national income. Applying the objective function to minimize pollution emissions, the solution is



Note that the solution is the same as with the original objective function, which shouldn't be surprising in this particular case since the minimum production levels defined in the constraints are already determined by the input-output relationships $(I-A) \ge f$.

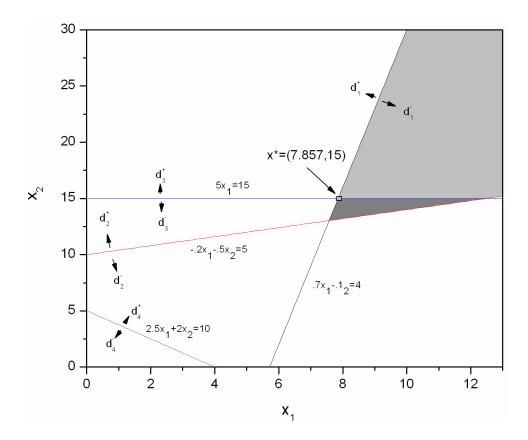
PROBLEM 13.9

We can reformulate problem 13.8 as a goal programming problem:

Min
$$P_1(d_3^-) + P_2(d_1^- + d_2^-) + P_3(d_4^+)$$

 $.7x_1 - .1x_2 + d_1^+ + d_1^- = 4$
 $-.2x_1 - .5x_2 + d_2^+ + d_2^- = 5$
 $.5x_2 + d_3^+ + d_3^- = 7.5$
 $2.5x_1 - 2x_2 + d_4^+ + d_4^- = 10$

Where the graphical solution, $\mathbf{x}^* = (7.857, 15)$, is found by



PROBLEM 13.10

From Appendix SD1, we can retrieve **S** and **U** for 1997 and 2007 and recall that $\mathbf{V} = \mathbf{S}'$. We can compute $\mathbf{x} = \mathbf{V}\mathbf{i}$ and $\mathbf{q} = \mathbf{i}'\mathbf{V}$ for both years so we can also compute $\mathbf{B} = \mathbf{U}\hat{\mathbf{x}}^{-1}$ and $\mathbf{D} = \mathbf{V}\hat{\mathbf{q}}^{-1}$. For an industry by industry technical coefficients matrix assuming industry-based technology, we can compute $\mathbf{A} = \mathbf{D}\mathbf{B}$ so we have \mathbf{A}^{1997} , \mathbf{x}^{1997} , \mathbf{A}^{2007} and \mathbf{x}^{2007} . From these quantities we can compute $\mathbf{L}^{1997} = (\mathbf{I} - \mathbf{A}^{1997})^{-1}$ and $\mathbf{L}^{2007} = (\mathbf{I} - \mathbf{A}^{2007})^{-1}$ as well as $\mathbf{f}^{1997} = \mathbf{x}^{1997} - \mathbf{A}^{1997}\mathbf{x}^{1997}$ and $\mathbf{f}^{2007} = \mathbf{x}^{2007} - \mathbf{A}^{2007}\mathbf{x}^{2007}$. The corresponding pollution coefficient vectors are $\mathbf{d}^{1997} = [2 \ 3 \ 4 \ 7 \ 10 \ 5 \ 4]'$ and $\mathbf{d}^{2007} = [2 \ 3 \ 3.4 \ 6.3 \ 10 \ 5 \ 4]'$ (the latter reflecting emissions reduction technologies). Hence the total pollution impacts are $\Delta p = \mathbf{i}'[\mathbf{T}^{2007}\mathbf{f}^{2007} - \mathbf{T}^{19997}\mathbf{f}^{1997}] = 57,916,899$ where $\mathbf{T}^{2007} = [\mathbf{d}^{2007}]'\mathbf{L}^{2007}$ and $\mathbf{T}^{1997} = [\mathbf{d}^{1997}]'\mathbf{L}^{1997}$ or equivalently $[\mathbf{d}^{2007}]'\mathbf{x}^{2007} - [\mathbf{d}^{1997}]'\mathbf{x}^{1997}$. In this case the decrease in pollution coefficients was offset by growth in output levels so the net result was an increase in pollution impacts.

PROBLEM 13.11

We can calculate the vector of the total CO₂ emissions associated with the total economic production for each sector in each region, but we can make these calculations in two different ways:

$$\mathbf{e}^{D} = \hat{\mathbf{g}} \mathbf{L} \mathbf{f}^{new} = \begin{bmatrix} 2112.0 \\ 1036.7 \\ 63.9 \\ 153.9 \\ 29.1 \\ 109.1 \end{bmatrix} \text{ and } \mathbf{e}^{C} = \mathbf{g} \mathbf{L} \hat{\mathbf{f}}^{new} = \begin{bmatrix} 2091.7 \\ 1320.2 \\ 27.64 \\ 51.33 \\ 2.7 \\ 3.1 \end{bmatrix}$$

Note that both vectors sum to the same level of total CO_2 emissions, i.e., $\mathbf{i'e}^D = \mathbf{i'e}^C = 3496.7$. However, \mathbf{e}^D attributes the pollution generated to the sectors where the emissions were generated during production while \mathbf{e}^C attributes the emissions to final consumers, i.e., final demand sectors, that generated the demand for that production. This economy is dominated by region 1, as is evident by total GDP in regions 1, 2, and 3 of 3500, 95, and 8, respectively (the sum of final demands in each region), the total emissions when attributable to final demand are 9 percent higher for region 1 and 63 and 96 percent lower in regions 2 and 3, respectively, when emissions are attributed to final consumption rather than the source of production.

PROBLEM 13.12

```
The table provides \mathbf{Z}^{2005}, \mathbf{x}^{2005}, \mathbf{Z}^{2015}, and \mathbf{x}^{2015} from which we can calculate
\mathbf{f}^{2005} = \mathbf{x}^{2005} - \mathbf{Z}^{2005}\mathbf{i} = [551 \ 1,768 \ 10,835 \ | \ 310 \ 736 \ 1,171 \ | \ 2,563 \ 5,934 \ 21,851] and
\mathbf{f}^{2015} = \mathbf{x}^{2015} - \mathbf{Z}^{2015}\mathbf{i} = [757 \ 2,296 \ 14,805 \ | \ 1,335 \ 3,069 \ 6,211 \ | \ 4,446 \ 7,849 \ 30,931].
Also we can compute \mathbf{A}^n = \mathbf{Z}^n (\hat{\mathbf{x}}^n)^{-1} and subsequently \mathbf{L}^n = (\mathbf{I} - \mathbf{A}^n)^{-1} for n = 2005 and 2015.
The vectors of generated emissions from producing sectors are
\mathbf{e}^{p2005} = \hat{\mathbf{g}} \mathbf{L}^{2005} \mathbf{f}^{2005} = [269 \ 1,370 \ 1,717 \ ] \ 254 \ 1,337
                                                                              373 | 676 3,363 3,719]
\mathbf{e}^{p2015} = \hat{\mathbf{g}} \mathbf{L}^{2015} \mathbf{f}^{2015} = [368 \ 1,585 \ 2,370 \ | \ 1,181 \ 6,214 \ 2,164 \ | \ 1,147 \ 4,498 \ 5,230].
The corresponding vectors of generated emissions attributed to consuming sectors are
\mathbf{e}^{c2005} = \mathbf{g} \mathbf{L}^{2005} \hat{\mathbf{f}}^{2005} = [229 \quad 974 \quad 2,314 \mid 200 \quad 838
                                                                              695 | 613 2,590 4,626]
\mathbf{e}^{c2015} = \mathbf{g} \mathbf{L}^{2015} \hat{\mathbf{f}}^{2015} = [303 \ 1,238 \ 3,050 \ | \ 1,025 \ 3,852 \ 3,750 \ | \ 1,108 \ 3,593 \ 6,836]. For
convenience we compute the sums of emissions for all sectors in each region, we define the
vectors of total regional emissions (from producing sectors) for the two years as
e^{rp2005} = [3,356 \quad 1,965 \quad 7,758] and e^{rp2015} = [4,323 \quad 9,558 \quad 10,874] and the vectors of total
regional emissions (attributed to consuming sectors) for the two years are
e^{rc2005} = [3,518 \ 1,733 \ 7,828] and e^{rc2015} = [4,591 \ 8,627 \ 11,538]. The percentage shifts for
each region for attributing emissions to consumption rather than production are, for 2005 a 5 and
1 percent increase in the US and ROW, respectively, and a 12 percent decrease in China. For
2015 there is a 6 percent increase in both the US and ROW and a 10 percent decrease in China.
```

Chapter 14, Mixed & Dynamic Models: Solutions to Exercise Problems

PROBLEM 14.1

For **A** and **B** provided,
$$\mathbf{G} = (\mathbf{I} - \mathbf{A} + \mathbf{B}) = \begin{bmatrix} .69 & -.103 \\ -.205 & .48 \end{bmatrix}$$
 and $\mathbf{G}^{-1} = \begin{bmatrix} 1.548 & .332 \\ .661 & 2.225 \end{bmatrix}$. The "dynamic multipliers" are $\mathbf{R} = \mathbf{G}^{-1}\mathbf{B} = \begin{bmatrix} .017 & .011 \\ .018 & .046 \end{bmatrix}$, $\mathbf{R}^2\mathbf{G}^{-1} = \begin{bmatrix} .001 & .002 \\ .003 & .006 \end{bmatrix}$ and

 $\mathbf{R}^{3}\mathbf{G}^{-1} = \begin{bmatrix} .00006 & .00009 \\ .00018 & .00029 \end{bmatrix}$. Then we can construct the difference equations in matrix terms as

$$\mathbf{D} = \begin{bmatrix} \mathbf{G} & -\mathbf{B} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{G} & -\mathbf{B} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{G} & -\mathbf{B} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{G} & -\mathbf{B} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{G} \end{bmatrix}^{-1} = \begin{bmatrix} \mathbf{G}^{-1} & \mathbf{R}\mathbf{G}^{-1} & \mathbf{R}^{2}\mathbf{G}^{-1} & \mathbf{R}^{3}\mathbf{G}^{-1} \\ \mathbf{0} & \mathbf{G}^{-1} & \mathbf{R}\mathbf{G}^{-1} & \mathbf{R}^{2}\mathbf{G}^{-1} \\ \mathbf{0} & \mathbf{0} & \mathbf{G}^{-1} & \mathbf{R}\mathbf{G}^{-1} \end{bmatrix}$$
so that
$$\begin{bmatrix} \mathbf{x}^{0} \\ \mathbf{x}^{1} \\ \mathbf{x}^{2} \\ \mathbf{x}^{3} \end{bmatrix} = \mathbf{D} \begin{bmatrix} \mathbf{f}^{0} \\ \mathbf{f}^{1} \\ \mathbf{f}^{2} \\ \mathbf{f}^{3} \end{bmatrix}$$
and
$$\mathbf{x}^{0} = \begin{bmatrix} 197.7 \\ 315 \end{bmatrix}, \ \mathbf{x}^{1} = \begin{bmatrix} 257.7 \\ 468.3 \end{bmatrix}, \ \mathbf{x}^{2} = \begin{bmatrix} 302.8 \\ 521.2 \end{bmatrix}$$
and
$$\mathbf{x}^{3} = \begin{bmatrix} 352.8 \\ 567.3 \end{bmatrix}.$$

PROBLEM 14.2

Here $\mathbf{B}^{-1} = \begin{bmatrix} 0 & 10 \\ 10 & 0 \end{bmatrix}$ and $\mathbf{Q} = \begin{bmatrix} 0 & 5 \\ 5 & 0 \end{bmatrix}$. Solving the characteristic equation $|\mathbf{Q} - \mathbf{I}| = 0$, we find $\lambda_{\text{max}} = c = 5$.

PROBLEM 14.3

(a) Here
$$\mathbf{Q} = \begin{bmatrix} 10 & -2 \\ -3 & 7 \end{bmatrix}$$
 and $\lambda_{\text{max}} = 11.37$. (b) With $\mathbf{B} = \begin{bmatrix} .1 & 0 \\ .1 & .1 \end{bmatrix}$ we find $\mathbf{Q} = \begin{bmatrix} 10 & -2 \\ -12 & 9 \end{bmatrix}$ and $\lambda_{\text{max}} = 14.42$.

PROBLEM 14.4

For **A** and **B** provided,
$$\mathbf{G} = (\mathbf{I} - \mathbf{A} + \mathbf{B}) = \begin{bmatrix} .78 & -.102 \\ -.303 & .49 \end{bmatrix}$$
 and $\mathbf{G}^{-1} = \begin{bmatrix} 1.395 & .29 \\ .863 & 2.220 \end{bmatrix}$. The "dynamic multipliers" are $\mathbf{R} = \mathbf{G}^{-1}\mathbf{B} = \begin{bmatrix} .029 & .006 \\ .024 & .024 \end{bmatrix}$, $\mathbf{R}^2\mathbf{G}^{-1} = \begin{bmatrix} .002 & .001 \\ .002 & .002 \end{bmatrix}$ and $\mathbf{R}^3\mathbf{G}^{-1} = \begin{bmatrix} .00006 & .00004 \\ .0010 & .00007 \end{bmatrix}$ such that $\Delta \mathbf{x}^{-3} = \mathbf{R}^3\mathbf{G}^{-1}\Delta \mathbf{f}^0$, $\Delta \mathbf{x}^{-2} = \mathbf{R}^2\mathbf{G}^{-1}\Delta \mathbf{f}^0$ and

$$\Delta \mathbf{x}^{-1} = \mathbf{R}\mathbf{G}^{-1}\Delta \mathbf{f}^{0} \text{ or, in expanded matrix terms,} \begin{bmatrix} \mathbf{x}^{-3} \\ \mathbf{x}^{-2} \\ \mathbf{x}^{-1} \\ \mathbf{x}^{0} \end{bmatrix} = \begin{bmatrix} \mathbf{G}^{-1} & \mathbf{R}\mathbf{G}^{-1} & \mathbf{R}^{2}\mathbf{G}^{-1} & \mathbf{R}^{3}\mathbf{G}^{-1} \\ \mathbf{0} & \mathbf{G}^{-1} & \mathbf{R}\mathbf{G}^{-1} & \mathbf{R}^{2}\mathbf{G}^{-1} \\ \mathbf{0} & \mathbf{0} & \mathbf{G}^{-1} & \mathbf{R}\mathbf{G}^{-1} \\ \mathbf{0} & \mathbf{0} & \mathbf{G}^{-1} & \mathbf{G}^{-1} \end{bmatrix} \begin{bmatrix} \mathbf{f}^{-3} \\ \mathbf{f}^{-2} \\ \mathbf{f}^{-1} \\ \mathbf{f}^{0} \end{bmatrix}$$

where $\Delta \mathbf{f}^0 = \begin{bmatrix} 100 & 100 & 125 & 160 & 150 & 175 & 185 & 200 \end{bmatrix}'$ and $\Delta \mathbf{x}^{-1} = \begin{bmatrix} 177.9 & 325.4 & 231.7 & 482.5 & 272.6 & 539.9 & 316.1 & 603.6 \end{bmatrix}'$.

PROBLEM 14.5

First we determine
$$\mathbf{x}^0 = \mathbf{f}^0 + \mathbf{Z}\mathbf{i} = \begin{bmatrix} 236 \\ 281 \\ 408 \end{bmatrix}$$
 and $\mathbf{A} = \mathbf{Z}(\hat{\mathbf{x}}_0)^{-1} = \begin{bmatrix} .059 & .270 & .113 \\ .229 & .078 & .012 \\ .288 & .253 & .230 \end{bmatrix}$. For sector 1

(manufactured goods), the level of final demand is exogenously specified and for sectors 2 and 3 (oil and electricity), levels of total output are specified for each sector, so we partition **A** as

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{bmatrix} = \begin{bmatrix} .059 & .27 & .113 \\ .229 & .078 & .012 \\ .288 & .253 & .23 \end{bmatrix}, \text{ and with a vector of exogenously specified values } \begin{bmatrix} \mathbf{\overline{f}} \\ \mathbf{\overline{x}} \end{bmatrix}$$

and the vector of endogenously determined values designated by $\begin{bmatrix} \underline{x} \\ \overline{f} \end{bmatrix}$ we write $\mathbf{M} \begin{bmatrix} \underline{x} \\ \overline{\underline{t}} \end{bmatrix} = \mathbf{N} \begin{bmatrix} \overline{f} \\ \overline{\underline{x}} \end{bmatrix}$

where
$$\mathbf{M} = \begin{bmatrix} (\mathbf{I} - \mathbf{A}_{11}) & \mathbf{0} \\ -\mathbf{A}_{21} & -\mathbf{I} \end{bmatrix} = \begin{bmatrix} .941 & 0 & 0 \\ -.229 & -1 & 0 \\ -.288 & 0 & -1 \end{bmatrix}$$
 and $\mathbf{N} = \begin{bmatrix} \mathbf{I} & \mathbf{A}_{12} \\ \mathbf{0} & -(\mathbf{I} - \mathbf{A}_{22}) \end{bmatrix} = \begin{bmatrix} 1 & .270 & .113 \\ 0 & -.922 & .012 \\ 0 & .253 & -.770 \end{bmatrix}$.

It follows that $\mathbf{M}^{-1} = \begin{bmatrix} 1.063 & 0 & 0 \\ -.243 & -1 & 0 \\ -.306 & 0 & -1 \end{bmatrix}$.

(a) For
$$\begin{bmatrix} \overline{\mathbf{f}} \\ \overline{\mathbf{x}} \end{bmatrix} = \begin{bmatrix} \frac{130}{281} \\ 408 \end{bmatrix}$$
 we find $\begin{bmatrix} \mathbf{x} \\ \overline{\mathbf{f}} \end{bmatrix} = \mathbf{M}^{-1} \mathbf{N} \begin{bmatrix} \overline{\mathbf{f}} \\ \overline{\mathbf{x}} \end{bmatrix} = \begin{bmatrix} \frac{267.9}{192.7} \\ 165.8 \end{bmatrix}$. That is, total output of manufactured

goods will be 216.7, and final demands presented to the economy for oil and electricity are 132.6

and 21.7, respectively. (b) For
$$\begin{bmatrix} \overline{\mathbf{f}} \\ \overline{\mathbf{x}} \end{bmatrix} = \begin{bmatrix} 150 \\ 281 \\ 408 \end{bmatrix}$$
 we find $\begin{bmatrix} \mathbf{x} \\ \overline{\mathbf{f}} \end{bmatrix} = \mathbf{M}^{-1} \mathbf{N} \begin{bmatrix} \overline{\mathbf{f}} \\ \overline{\mathbf{x}} \end{bmatrix} = \begin{bmatrix} 289.2 \\ 187.8 \\ 159.7 \end{bmatrix}$.

PROBLEM 14.6

(a)
$$\mathbf{A} = \begin{bmatrix} .500 & .438 \\ .320 & .450 \end{bmatrix}$$
, $\mathbf{L} = \begin{bmatrix} 4.074 & 3.241 \\ 2.370 & 3.704 \end{bmatrix}$, $\Delta \mathbf{f} = \begin{bmatrix} 0.9 \\ 63.0 \end{bmatrix}$ and, hence, $\Delta \mathbf{x} = \mathbf{L}\Delta \mathbf{f} = \begin{bmatrix} 207.8 \\ 235.47 \end{bmatrix}$.
(b) We now have $\mathbf{A} = \begin{bmatrix} .500 & .438 & .001 \\ .320 & .450 & .070 \\ .020 & .050 & .150 \end{bmatrix}$ and for $\Delta \mathbf{f} = \begin{bmatrix} 0.9 \\ 63.0 \\ 135.0 \end{bmatrix}$, $\Delta \mathbf{x} = \mathbf{L}\Delta \mathbf{f} = \begin{bmatrix} 249.7 \\ 282.9 \\ 181.3 \end{bmatrix}$ where

(b) We now have
$$\mathbf{A} = \begin{bmatrix} .500 & .438 & .001 \\ .320 & .450 & .070 \\ .020 & .050 & .150 \end{bmatrix}$$
 and for $\Delta \mathbf{f} = \begin{bmatrix} 0.9 \\ 63.0 \\ 135.0 \end{bmatrix}$, $\Delta \mathbf{x} = \mathbf{L} \Delta \mathbf{f} = \begin{bmatrix} 249.7 \\ 282.9 \\ 181.3 \end{bmatrix}$ where

$$\mathbf{L} = \begin{bmatrix} 4.130 & 3.310 & .277 \\ 2.433 & 3.782 & .314 \\ .240 & .300 & 1.201 \end{bmatrix}$$

PROBLEM 14.7

Reorder sectors so that those with exogenously specified final demands are first (here this is only sector 3) and those with exogenously specified total outputs are second (here this is sectors 1, 2,

and 4). We use the same general notation of problem 14.5, i.e., with $\left| \frac{\mathbf{f}}{\overline{\mathbf{x}}} \right|$ defining the vector of

the exogenously determined values, $\mathbf{M} \begin{bmatrix} \mathbf{x} \\ \overline{\mathbf{f}} \end{bmatrix} = \mathbf{N} \begin{bmatrix} \overline{\mathbf{f}} \\ \overline{\mathbf{x}} \end{bmatrix}$ where

$$\mathbf{M} = \begin{bmatrix} (\mathbf{I} - \mathbf{A}_{11}) & \mathbf{0} \\ -\mathbf{A}_{21} & -\mathbf{I} \end{bmatrix} = \begin{bmatrix} .832 & 0 & 0 & 0 \\ -.194 & -1 & 0 & 0 \\ -.105 & 0 & -1 & 0 \\ -.178 & 0 & 0 & -1 \end{bmatrix}$$
 and

$$\mathbf{M} = \begin{bmatrix} \mathbf{I} & \mathbf{A}_{11} & \mathbf{0} \\ -\mathbf{A}_{21} & -\mathbf{I} \end{bmatrix} = \begin{bmatrix} .832 & 0 & 0 & 0 \\ -.194 & -1 & 0 & 0 \\ -.105 & 0 & -1 & 0 \\ -.178 & 0 & 0 & -1 \end{bmatrix} \text{ and }$$

$$\mathbf{N} = \begin{bmatrix} \mathbf{I} & \mathbf{A}_{12} \\ \mathbf{0} & -(\mathbf{I} - \mathbf{A}_{22}) \end{bmatrix} = \begin{bmatrix} 1 & .155 & .213 & .212 \\ 0 & .807 & .168 & .115 \\ 0 & .025 & -.874 & .124 \\ 0 & .101 & .219 & -.814 \end{bmatrix}. \text{ It follows that } \mathbf{M}^{-1} = \begin{bmatrix} 1.202 & 0 & 0 & 0 \\ -.233 & -1 & 0 & 0 \\ -.126 & 0 & -1 & 0 \\ -.214 & 0 & 0 & -1 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} \mathbf{I} & \mathbf{A}_{12} \\ \mathbf{I} & \mathbf{A}_{12} \\ \mathbf{I} & \mathbf{A}_{12} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} &$$

and
$$\begin{bmatrix} \mathbf{x} \\ \mathbf{f} \end{bmatrix} = \mathbf{M}^{-1} \mathbf{N} \begin{bmatrix} \overline{\mathbf{f}} \\ \overline{\mathbf{x}} \end{bmatrix} = \begin{bmatrix} \frac{6,058}{967} \\ 3,572 \\ 1,355 \end{bmatrix}$$
 for $\mathbf{M}^{-1} \mathbf{N} = \begin{bmatrix} \frac{1.202}{-.233} & .186 & .256 & .255 \\ -.233 & .771 & -.218 & -.164 \\ -.126 & -.045 & .847 & -.151 \\ -.214 & -.134 & -.265 & .769 \end{bmatrix}$ and $\begin{bmatrix} \overline{\mathbf{f}} \\ \overline{\mathbf{x}} \end{bmatrix} = \begin{bmatrix} \frac{2,050}{4,558} \\ 5,665 \\ 5,079 \end{bmatrix}$.

Total output of sector 3 will be 6055, and amounts of sector 1, 2, and 4 production available for final demand are 969, 3573, and 1347, respectively. GDP is the sum of all final demands (7,944) and total gross production is the sum of all total outputs (21,360).

PROBLEM 14.8

Using the same procedures outlined in the solutions to problems 14.5 and 14.7, the following table summarizes the results:

	Endog	genous	Exogenous		
	f	X	f	X	
1 Agriculture		333,767	51,968		
2 Mining		414,773	-130,561		
3 Construction		1,426,583	1,265,103		
4 Manufactuirng		4,748,959	1,653,196		
5 Trade Transport & Utilities	2,144,061			3,557,300	
6 Services	6,034,580			11,106,299	
7 Other	2,203,480			2,677,904	