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Dynamic Assignment of Patients to Primary and
Secondary Inpatient Units: Is Patience a Virtue?

online appendix 18.a description of iws in mca

table 18.EC.1 IWs and their size in MCA

Number
IW name Abbrev. Definition of beds

2 West 2W Intensive care unit (ICU) 30
3 East 3E Orthopedics and urology surgical services 40
3 West 3W Medical/surgical organ transplant 36
4 East 4E Bone marrow transplant, hematology, and oncology 30
4 West 4W Cardiology and cardiothoracic surgery 36
5 West 5W Neurosciences and earn, nose, and throat (ENT) 36
7 East 7E Palliative care and general surgery 36

7 West 7W
Hematology and oncology patients with
medical-surgical overflow

24

online appendix 18.b definition of the functional
operators

In this part, we define the operators Tuij , which defines the cost function J(·)
after a decision uij is taken at state X̃. Here, we explicitly define this operator

for each state X̃.
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2 Patients’ Assignment to Primary and Secondary Inpatient Units

When the system state is X̃ = (X1 ≥ 1,X2 ≥ 1,a1 �= 0,a2 = 0),

T(ui1=,ui2=0)J(X̃) =J(X1,X2,a1 �= 0,a2 = 0),

T(ui1=,u12=1)J(X̃) =J(X1 −1,X2,a1 �= 0,a2 = e1)+p12

T(ui1=,u22=1)J(X̃) =J(X1,X2−1,a1 �= 0,a2 = e2).

When the state is X̃ = (X1 ≥ 2,X2 ≥ 2,a1 = 0,a2 �= 0):

T(ui1=0,ui2=0)J(X̃) =J(X1,X2,a1 = 0,a2 �= 0)

T(u11=1,ui2=0)J(X̃) =J(X1 −1,X2,a1 = e1,a2 �= 0)

T(u21=1,ui2=0)J(X̃) =J(X1,X2−1,a1 = e2,a2 �= 0)+p21.

When the system state is X̃ = (X1 ≥ 2,X2 ≥ 2,a1 = 0,a2 = 0),

Tuij=0J(X̃) =J(X1,X2,a1 = 0,a2 = 0)

T(u11=1,u22=1)J(X̃) =J(X1 −1,X2 −1,a1 = e1,a2 = e2)

T(u11=1,u12=1)J(X̃) =J(X1 −2,X2,a1 = e1,a2 = e1)+p12

T(u11=1,ui2=0)J(X̃) =J(X1 −1,X2,a1 = e1,a2 = 0)

T(ui1=0,u12=1)J(X̃) =J(X1 −1,X2,a1 = 0,a2 = e1)+p12

T(ui1=0,u22=1)J(X̃) =J(X1,X2 −1,a1 = 0,a2 = e2)

T(u21=1,ui2=0)J(X̃) =J(X1,X2 −1,a1 = e2,a2 = 0)+p21

T(u21=1,u22=1)J(X̃) =J(X1,X2 −2,a1 = e2,a2 = e2)+p21

T(u12=1,u21=1)J(X̃) =J(X1 −1,X2 −1,a1 = e2,a2 = e1)+p12 +p21.

When the state is X̃ = (X1 = 0,X2 ≥ 2,a1 = 0,a2 = 0),

Tuij=0J(X̃) =J(X1,X2,a1 = 0,a2 = 0)

T(ui1=0,u22=0)J(X̃) =J(X1,X2 −1,a1 = 0,a2 = e2)

T(u21=1,ui2=0)J(X̃) =J(X1,X2 −1,a1 = e2,a2 = 0)+p21

T(u21=1,u22=1)J(X̃) =J(X1,X2 −2,a1 = e2,a2 = e2)+p21.

When the state is X̃ = (X1 ≥ 2,X2 = 0,a1 = 0,a2 = 0),

Tuij=0J(X̃) =J(X1,X2,a1 = 0,a2 = 0)

T(u11=1,u12=1)J(X̃) =J(X1 −2,X2,a1 = e1,a2 = e1)+p12

T(u11=1,ui2=0)J(X̃) =J(X1 −1,X2,a1 = e1,a2 = 0)

T(ui1=0,u12=1)J(X̃) =J(X1 −1,X2,a1 = 0,a2 = e1)+p12



Patients’ Assignment to Primary and Secondary Inpatient Units 3

When the state is X̃ = (X1 ≥ 2,X2 = 1,a1 = 0,a2 = 0),

Tuij=0J(X̃) =J(X1,X2,a1 = 0,a2 = 0)

T(u11=1,u22=1)J(X̃) =J(X1 −1,X2 −1,a1 = e1,a2 = e2)

T(u11=1,u12=1)J(X̃) =J(X1 −2,X2,a1 = e1,a2 = e1)+p12

T(u11=1,ui2=0)J(X̃) =J(X1 −1,X2,a1 = e1,a2 = 0)

T(ui1=0,u12=1)J(X̃) =J(X1 −1,X2,a1 = 0,a2 = e1)+p12

T(ui1=0,u22=1)J(X̃) =J(X1,X2 −1,a1 = 0,a2 = e2)

T(u21=1,ui2=0)J(X̃) =J(X1,X2 −1,a1 = e2,a2 = 0)+p21

T(u12=1,u21=1)J(X̃) =J(X1 −1,X2 −1,a1 = e2,a2 = e1)+p12 +p21.

When the state is X̃ = (X1 = 1,X2 ≥ 2,a1 = 0,a2 = 0),

Tuij=0J(X̃) =J(X1,X2,a1 = 0,a2 = 0)

T(u11=1,u22=1)J(X̃) =J(X1 −1,X2 −1,a1 = e1,a2 = e2)

T(u11=1,ui2=0)J(X̃) =J(X1 −1,X2,a1 = e1,a2 = 0)

T(ui1=0,u12=1)J(X̃) =J(X1 −1,X2,a1 = 0,a2 = e1)+p12

T(ui1=0,u22=1)J(X̃) =J(X1,X2 −1,a1 = 0,a2 = e2)

T(u21=1,ui2=0)J(X̃) =J(X1,X2 −1,a1 = e2,a2 = 0)+p21

T(u21=1,u22=1)J(X̃) =J(X1,X2 −2,a1 = e2,a2 = e2)+p21

T(u12=1,u21=1)J(X̃) =J(X1 −1,X2 −1,a1 = e2,a2 = e1)+p12 +p21.

When the state is X̃ = (X1 ≥ 2,X2 = 2,a1 �= 0,a2 = 0),

Tuij=0J(X̃) =J(X1,X2,a1 �= 0,a2 = 0)

T(ui1,u12=1)J(X̃) =J(X1 −1,X2,a1 �= 0,a2 = e1)+p12.

When the state is X̃ = (X1 = 0,X2 ≥ 2,a1 �= 0,a2 = 0),

Tuij=0J(X̃) =J(X1,X2,a1 �= 0,a2 = 0)

T(ui1,u22=1)J(X̃) =J(X1,X2 −1,a1 �= 0,a2 = e2).

When the state is X̃ = (X1 ≥ 2,X2 = 0,a1 = 0,a2 �= 0),

Tuij=0J(X̃) =J(X1,X2,a1 = 0,a2 �= 0)

T(u11=1,ui2=0)J(X̃) =J(X1−1,X2,a1 = e1,a2 �= 0).
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When the state is X̃ = (X1 = 0,X2 ≥ 2,a1 = 0,a2 �= 0),

Tuij=0J(X̃) =J(X1,X2,a1 = 0,a2 �= 0)

T(u21=1,ui2=0)J(X̃) =J(X1,X2−1,a1 = e2,a2 �= 0)+p12.

online appendix 18.c proofs

18.C.1 Nonidling Policy

In this section, we show that IW j should not be idled when a patient of class
j (i.e., a patient whose primary IW is j) is boarded in the ED. We first establish
the following monotonicity result.

Lemma 18.EC.1 (Monotonicity) For any X̃ ∈ S, n ∈Z
+, β ∈ [0,1), and

k ∈ Np: Vn,β(X+ ek,a1,a2) ≥ Vn,β(X,a1,a2), where Vn,β(·) represents the
n-period discounted cost when the discount factor is β.

Proof of Lemma 18.EC.1

Similar to Eq. (18.4), the finite-horizon discounted cost optimality equation can
be written as

Vn+1,β(X̃) = 1
ψ

[
θ XT +β min

u=uij∈U(X̃)

{ ∑
i∈Np

∑
j∈Ns

λiT
uij Vn,β(X+ ei,aj)+

∑
i∈Np

∑
j∈Ns

∑
l∈Np

aljμlT
uij Vn,β(X,aj − el)

+

⎛
⎜⎝ψ−

∑
i∈Np

λi −
∑

k∈Np

akjμk

⎞
⎟⎠ ∑

j∈Ns

Vn,β(X̃)

}]
, (18.EC.1)

where Vn,β(X̃) is the optimal cost of the n-period problem starting at state X̃,
alongwith terminal conditionV0,β(X̃) = 0 for every X̃ ∈S.We prove this lemma
by induction on n. For n = 0, we have V0,β(X̃)=0. Hence, V0,β(X+ek,a1,a2) =
V0,β(X,a1,a2) = 0 (∀X̃ ∈ S,∀β ∈ [0,1),∀k ∈ Np). Assume that, for some n ∈Z

+,
the required condition holds:Vn,β(X+ek,a1,a2) ≥ Vn,β(X,a1,a2) for any X̃ ∈S,
β ∈ [0,1) and k ∈ Np. We now show that the same condition holds for n +1.
From Eq. (18.EC.1), we have

Vn+1,β(X+ ek,a1,a2) = 1
ψ

[
θ(X+ ek)T +β

{ ∑
j∈Ns

(
λ1T

u1j Vn(X+ e1 + ek,a1,a2)+ λ2T
u2j Vn(X+ e2 + ek,a1,a2)

)

+
∑

i∈Np

∑
j∈Ns

∑
l∈Np

ajl

(
pij + μlVn(X+ ek − ei,aj − el + ei)

)
+

⎛
⎜⎝ψ− λ1 − λ2 −

∑
j∈Ns

∑
l∈Np

ajlμl

⎞
⎟⎠Vn(X+ ek,a1,a2)

}]

(18.EC.2)

If the set of admissible actions are the same for both of the states (X+ek,a1,a2)
and (X,a1,a2), the proof is straightforward and follows directly from Eq.
(18.EC.2). However, because U(X + ek,a1,a2) can be a larger admissible set
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than U(X,a1,a2), the optimal action u∗ ∈ U(X + ek,a1,a2) may not belong to
U(X,a1,a2). If u∗ /∈ U(X,a1,a2),WLOG assume that k = 1 and observe that the
only possibility for u∗ /∈ U(X,a1,a2) is that queue 1 is empty at state (X,a1,a2).
We show that, if the same allocation policy u∗ is used at this state but the IW
that is assigned to class 1 patients under u∗ (say IW 1) is idled, and X + e1 is
swapped with X, a lower (or equal) value than Vn+1,β(X + ek,a1,a2) can be
obtained. That is, following a suboptimal policy at at state (X,a1,a2) yields a
cost that is not higher than Vn+1,β(X+ek,a1,a2). The proof is then established
because Vn+1,β(X,a1,a2) is the optimal cost at state (X,a1,a2).

First, rewrite the formulation by separating the action related to class 1.

Vn+1,β(X+ e1,a1,a2) = 1
ψ

[
θ(X+ e1)T +β

{ ∑
j∈Ns

(
λ1Tu1j Vn(X+ e1 + e1,aj)+ λ2Tu2j Vn(X+ e2 + e1,aj)

)

+
∑
i∈Np

∑
k∈Np

a1k
(
pi1 + μk(Vn(X+ e1 − ei,a1 − ek + ei,a2)−Vn(X+ e1,a1,a2))

)

+
∑
i∈Np

a2l
(
pi2 + μlVn(X+ e1 − ei,a1,a2 − el + ei)

)+
⎛
⎝ψ− λ1 − λ2 −

∑
l∈Np

ajlμl

⎞
⎠Vn(X+ e1,a1,a2)

}]

(18.EC.3)

From the induction assumption,we have:
(
ψ− λ1 − λ2−∑

l∈Np
ajlμl

)
×[Vn(X+

e1,a1,a2) − Vn(X,a1,a2)] ≥ 0. Now, subtracting this positive term from Eq.
(18.EC.3), we have

Vn+1,β(X+ e1,a1,a2) ≥ 1
ψ

[
θ(X+ e1)T +β

{ ∑
j∈Ns

(
λ1Tu1j Vn(X+ e1 + e1,aj)+ λ2Tu2j Vn(X+ e2 + e1,aj)

)

+
∑
i∈Np

∑
k∈Np

a1k
(
pi1 + μk(Vn(X+ e1 − ei,a1 − ek + ei,a2)−Vn(X+ e1,a1,a2))

)

+
∑
i∈Np

∑
l∈Np

a2l
(
pi2 + μlVn(X+ e1 − ei,a1,a2 − el + ei)

)+
⎛
⎝ψ− λ1 − λ2 −

∑
l∈Np

ajlμl

⎞
⎠Vn(X,a1,a2)

}]
.

(18.EC.4)

From the induction assumption, we can write

Vn+1,β(X+ e1,a1,a2) ≥ 1
ψ

[
θXT +β

{ ∑
j∈Ns

(
λ1Tu1j Vn(X+ e1,aj)+ λ2Tu2j Vn(X+ e2,aj)

)

+
∑
i∈Np

∑
k∈Np

a1k = 1
(
pi1 + μk(Vn(X− ei,a1 − ek + ei,a2))−Vn(X+ e1,a1,a2)

)

+
∑
i∈Np

∑
l∈Np

a2l
(
pi2 + μlVn(X− ei,a1,a2 − el + ei))

)+
⎛
⎝ψ− λ1 − λ2 −

∑
l∈Np

ajl = 1μl

⎞
⎠Vn(X,a1,a2)

}]
.

(18.EC.5)

Next, we show that the right-hand side of Eq. (18.EC.5) provides an upper
bound for Vn+1,β(X,a1,a2). To observe this, consider an admissible (but not
necessarily optimal) policy that idles the server allocated to class 1 and use the
same allocation as u∗ for class 2. This yields
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Vn+1,β(X+ e1,a1,a2) ≥ 1
ψ

[
θXT +β

{ ∑
j∈Ns

(
λ1Tu1j Vn(X+ e1,aj)+ λ2Tu2j Vn(X+ e2,aj)

)

+
∑
i∈Np

∑
k∈Np

a1kμk
(
Vn(X,0,a2)−Vn(X+ e1,a1,a2)

)+
∑
i∈Np

∑
l∈Np

a2l
(
pi2 + μlVn(X− ei,a1,a2 − el + ei)

)

+
⎛
⎝ψ− λ1 − λ2 −

∑
l∈Np

ajlμl

⎞
⎠Vn(X,a1,a2)

}]
. (18.EC.6)

Because this policy is an admissible (but not necessarily optimal) policy, it
provides an upper bound for Vn+1,β(X,a1,a2), which completes the proof.

Proposition 18.EC.1 (Nonidling) There exists an optimal policy
which does not allow idling any IW j when there is a patient of class j
boarded in the ED.

Proof of Proposition 18.EC.1

Let π
′
be a policy that allows idling IW j when IW j is available and the queue of

class j patients is not empty. Construct another policy π∗ that follows the same
allocation strategy as π

′
but assigns patients of class j to IW j whenever IW j is

available and the queue of class j patients is not empty. We need to show that
cost of policy π

′
is higher than π∗. This requires us to show that the following

property holds for every n and every state:

Vπ∗
n,β(X− e2,a1,a2 = e2) ≤ Vπ

′
n,β(X,a1,0), (18.EC.7)

or

Vπ∗
n,β(X− e1,a1 = e1,a2) ≤ Vπ

′
n,β(X,0,a2). (18.EC.8)

WLOG assume that j = 1. Because for n = 0 we have Vπ∗
0,β(X̃)=Vπ

′
0,β(X̃)=0,

Vπ∗
0,β(X − e1,a1 = e1,a2) = Vπ

′
0,β(X,0,a2) = 0 ∀X̃ ∈ S. Assume that, for some

n ∈ Z
+, property (18.EC.8) holds for all X̃ ∈ S, β ∈ [0,1) and k ∈ Np. We now

show that the same condition holds for n+1. From Eq. (18.EC.1), we have the
following equations:

Vπ∗
n+1,β(X− e1,a1 = e1,a2)

= 1
ψ

[
θ(X− e1)T +β

{ ∑
j∈Ns

(
λ1T

u1j Vπ∗
n (X,a1 = e1,a2)+ λ2T

u2j Vπ∗
n (X− e1 + e2,a1 = e1,a2)

)

+ μ1Vπ∗
n (X−2e1,a1 = e1,a2)+

∑
i∈Np

∑
l∈Np

a2l

(
pi2 + μlV

π∗
n (X− e1 − ei,a1 = e1,a2 − el + ei)

)

+

⎛
⎜⎝ψ− λ1− λ2− μ1 −

∑
l∈Np

a2lμl

⎞
⎟⎠Vπ∗

n (X− e1,a1 = e1,a2)

}]
(18.EC.9)
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Vπ
′

n+1,β(X,0,a2) = 1
ψ

[
θXT +β

{ ∑
j∈Ns

(
λ1T

u1j Vπ
′

n (X,0,a2)+ λ2T
u2j Vπ

′
n (X+ e2,0,a2)

)

+
∑

i∈Np

∑
l∈Np

a2l

(
pi2 + μlV

π
′

n (X− ei,0,a2 − el + ei)

)
+

⎛
⎜⎝ψ− λ1− λ2 −

∑
l∈Np

a2lμl

⎞
⎟⎠Vπ

′
n (X,0,a2)

}]

(18.EC.10)

Rewriting (18.EC.9) by separating the actions related to class 1 departure, and
subtracting the result from (18.EC.10), we have:

Vπ
′

n+1,β(X,0,a2)−Vπ∗
n+1,β(X− e1,a1 = e1,a2) = (18.EC.11)

1
ψ

[
θ1+β

{
λ1

(
Vπ

′
n (X1 +1,X2,0,a2)−Vπ∗

n (X1,X2,a1 = e1,a2)
)

+ λ2
(
Vπ

′
n (X1,X2+1,0,a2)−Vπ∗

n (X1 −1,X2 +1,a1 = e1,a2)
)

+ μl

(
Vπ

′
n (X1,X2 −1,0,a2)−Vπ∗

n (X1 −1,X2 −1,a1 = e1,a2)
)

+ μ1
(
Vπ∗

n (X1 −1,X2,a1 = e1,a2)−Vπ∗
n (X1 −2,X2,a1 = e1,a2)

)

+
⎛
⎝ψ− λ1 − λ2−

∑
l∈Np

ajlμl

⎞
⎠

(
Vπ

′
n (X1,X2,0,a2)−Vπ∗

n (X1 −1,X2,a1 = e1,a2)
)}]

≥ 0.

The inequality follows from the induction assumption as well as the mono-
tonicity of the value function, where

μ1
(
Vπ∗

n (X1 −1,X2,a1 = e1,a2)−Vπ∗
n (X1 −2,X2,a1 = e1,a2)

)
≥ 0

and shows that Eq. (18.EC.8) holds for n + 1. Note that for the proof we
considered the decision upon patient departure. However, a similar proof can
be presented for the decisions made upon patient arrival because the differences
in service rates are observed when the patient is departing the system.

Proof of Proposition 18.1

Consider a primary-secondary patient and IW pair say IW 1 and IW 2.WLOG
assume that θ1μ1 ≥ θ2μ2, and μ1 ≥ μ2. Consider the case that the expected
service time of all patient types are equal to 0 at time t = 1. Suppose that
there are patients of both classes boarding in the ED at t = 1. Let π be an
optimal policy, and we assume that π follows the θμ rule from t = 2 on.
Now suppose that π selects a patient of class 2 at t = 1. Because the service
discipline is nonpreemptive, π may select a of patient class 1 only after the
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service completion of the patient of class 2. Let π̄ be the policy that is identical
to π except that it interchanges the first time the class 1 and 2 patients are
served. The rest of the decisions of π̄ are the same as those of π. From those
defined earlier, when pij = 0 ∀i ∈ Np, j ∈ Ns:

Jπ(X̃,T)− Jπ̄(X̃,T) = θ1μ1 − θ2μ2. (18.EC.12)

If θ1μ1 ≥ θ2μ2, the equation contradicts the assumption that π is an optimal
policy.

Proof of Theorem 18.1

For the case where X1 > 0, the result is straightforward because assigning
primary type patients to IW 1 does not incur any penalty cost. From Proposition
18.1, we know that under no penalty cost, it is optimal to follow the cμ priority
policy. Hence, when we include the penalty costs only assignment of class 2
patients becomes more costly. Therefore, it is optimal to assign class 1 patients
to IW 1 whenever they are boarded in ED.

To prove the optimality of a threshold policy for IW 1 when X1 = 0, we need
to show that the difference Vn(0,X2 −1,a1 = e2,a2)− Vn(0,X2,a1 = 0,a2) is
decreasing in X2, so that assigning class 2 patients to IW 1 becomes desirable
at some level of class 2 queue length, despite the associated penalty cost. Notice
that whenever X1 > 0, IW 1 serves class 1 patients. Observe that

Vn(0,X2 −1,a1 = e2,a2)−Vn(0,X2,a1 = 0,a2)

≥ Vn(0,X2,a1 = e2,a2)−Vn(0,X2 +1,a1 = 0,a2). (18.EC.13)

We can rewrite the system state by dropping a2 because our focus is on times
when there is no class 1 patient boarded in the ED and IW 1 is available. Thus,
we rewrite the above inequality as

Vn,β(X,0)−Vn,β(X− e2,e2) ≤ Vn,β(X+ e2,0)−Vn,β(X,e2), (18.EC.14)

which is the same structure that is introduced in Koole (1995)1. Following the
proof in Koole (1995), we define a set of functions F that satisfy

f (X,0)+ f (X,e2) ≤ f (X+ e2,0)+ f (X− e2,e2),

where f ∈F for allX > 0.Now,we assume thatVn,β ∈F and show thatVn+1,β ∈
F (note that trivially V0 ∈ F). Define minu∈U(X̃)

(Tui1Vn,β(X̃)) as Wn,β(X̃) and
observe that Wn,β ∈ F . Assume that the optimal action at state (X + e2,0) is
assigning class 2 to IW 1. We have

Wn,β(X,0)+Wn,β(X,e2)

≤ Vn,β(X− e2,e2)+Vn,β(X,e2) = Wn,β(X− e2,0)+Wn,β(X+ e2,e2)

1 Koole, G. (1995). A simple proof of the optimality of a threshold policy in a two-server queueing
system. Systems & Control Letters 26(5):301–303.
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because action of assigning class 2 to IW 1 is suboptimal at state (X,e2). Now
assume that the optimal action at state (X+e2,0) is keeping IW 1 idle.We have

Wn,β(X,0)+Wn,β(X,e2) ≤ Vn,β(X,0)+Vn,β(X,e2)

≤ Vn,β(X+ e2,0)+Vn,β(X− e2,e2)

because Vn ∈ F . Note that because idleness is the optimal action at state(X +
e2,0), we can rewrite the last part of the inequality as Wn(X+e2,0)+Wn(X−
e2,e2), which in turn shows that Wn ∈ F . If we rewrite Vn+1 as

Vn+1,β(X̃) = 1
ψ

[
θXT + λ1Wn,β(X+ e1,a1)+ λ2Wn,β(X+ e2,a1)+

∑
k∈Np

∑
i∈Np

ak1μkWn,β(X,a1 − ek)

(18.EC.15)

+ (ψ−
∑
i∈Np

λi −
∑

k∈Np

ak1μk)Vn,β(X̃)
]
,

we can conclude that Vn+1,β ∈ F from the induction assumption and the fact
that Wn,β ∈ F .

Proof of Lemma 18.1

We need to show that if J ∈ F then TJ ∈ F where TJ(Y) = TθJ(Y) +
β
(
TaJ(Y)+T∗J(Y)

)
. Note that Tθ and Ta trivially satisfy properties (18.14)

and (18.15). Thus, it is sufficient to show that operator T∗ preserves properties
(18.14) and (18.15). Assume J ∈ F , θ1μ1 ≥ θ2μ2 and μ2 ≥ μ1 hold. To show
the preservation of property (i), we need to examine all possible actions at
states (Y), (Y −e1), (Y −e2), (Y +e1), and (Y +e1−e2) by using the induction
assumption.Notice that there are 25 possible cases; however, properties (18.14)
and (18.15) restrict several cases, which leave us with the cases shown in Table
18.EC.2. This table also shows the patient class that is assigned to IW 2. We
next consider each of the case shown in Table 18.EC.2 separately.

Case 1 Note that the set of actions that are defined in case 1 are feasible when
Y1 ≥ 2. Consider the state Y1 = 1,Y2 ≥ 1, and u22 = 1 as a feasible (not

table 18.EC.2 Possible actions

Cases Y + e1 Y Y − e2 Y − e1 Y + e1− e2

Case 1 1 1 1 1 1
Case 2 2 2 2 2 2
Case 3 1 2 1 2 1
Case 4 1 2 2 2 1
Case 5 2 2 2 2 1
Case 6 2 2 1 2 1
Case 7 1 1 1 2 1
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necessarily optimal) action for state Y − e1. See case 7 for the action where
patient class 2 is assigned to IW 2 at state Y − e1. We have

[μ̃1Δ1T∗J(Y)− μ̃2Δ2T∗J(Y + e1 − e2)]− [μ̃1Δ1T∗J(Y − e1)− μ̃2Δ2T∗J(Y − e2)] =
(1−Λ− μ̃1)

(
[μ̃1Δ1T∗J(Y)− μ̃2Δ2T∗J(Y + e1 − e2)]− [μ̃1Δ1T∗J(Y − e1)− μ̃2Δ2T∗J(Y − e2)]

)
+ μ̃1 [μ̃1Δ1T∗J(Y −2e1)− μ̃2Δ2T∗J(Y − e1 − e2)] ≥ 0.

The inequality in the first line follows from nonnegativity of the term
(1− Λ − μ̃1) and the induction assumptions. The second line follows from
the optimality of cμ rule when pij = 0.

Case 2 The proof of case 2 can be established similar to that of case 1 by
replacing μ̃1 by μ̃2. Again, similar to case 1, assigning class 2 patients to IW 2 is
feasible when Y2 ≥ 2. If the state is Y1 ≥ 1,Y2 = 1, the action of assigning class
2 patients to IW 2 is not feasible for the states Y −e2 and Y +e1−e2. However,
the action of assigning class 1 patients to IW 2 is a feasible (not necessarily
optimal) at these states (see case 6 for case of assigning class 1 patients at states
Y − e2 and Y + e1 − e2).

Case 3 Note that

μ̃1Δ1T∗J(Y)− μ̃2Δ2T∗J(Y + e1− e2)

= (1−Λ) [μ̃1Δ1J(Y)− μ̃2Δ2J(Y + e1− e2)]−μ1 [μ̃1Δ1J(Y)− μ̃2Δ2J(Y + e1− e2)−p12]

≥ (1−Λ) [μ̃1Δ1J(Y)− μ̃2Δ2J(Y + e1− e2)]− μ̃2 [μ̃1Δ1J(Y)− μ̃2Δ2J(Y + e1− e2)−p12]

[μ̃1Δ1T∗J(Y − e1)− μ̃2Δ2T∗J(Y − e2)] =
(1−Λ) [μ̃1Δ1J(Y − e1)− μ̃2Δ2J(Y − e2)]− μ̃2 [μ̃1Δ1J(Y − e1)− μ̃2Δ2J(Y − e2)−p12] .

Subtract the last term from the second term, we observe that

(1−Λ− μ̃2)
[(

μ̃1Δ1J(Y)− μ̃2Δ2J(Y + e1− e2)
)− (

μ̃1Δ1J(Y − e1)− μ̃2Δ2J(Y − e2)
)] ≥ 0

because J ∈ F and the fact that (1−Λ− μ̃2) is nonnegative.

Case 4 Assigning class 2 patients to IW 2 is feasible when Y2 ≥ 2. If the state
is Y1 ≥ 1,Y2 = 1, the action of assigning class 2 patients to IW 2 is not feasible
for the state Y −e2. However, the action of assigning class 1 patients to IW 2 is
feasible (not necessarily optimal) at this state (see case 3 for case of assigning
class 1 patients at state Y − e2). We have

μ̃1Δ1T∗J(Y)− μ̃2Δ2T∗J(Y + e1 − e2) ≤ (1−Λ− μ̃2) [μ̃1Δ1J(Y)− μ̃2Δ2J(Y + e1 − e2)]+ μ̃1p12
μ̃1Δ1T∗J(Y − e1)− μ̃2Δ2T∗J(Y − e2) =
(1−Λ− μ̃2) [μ1Δ1J(Y − e1)− μ̃2Δ2J(Y − e2)]+ μ̃2 [μ̃1Δ1J(Y − e1 − e2)− μ̃2Δ2J(Y −2e2)−p12]

(1−Λ− μ2) [[μ̃1Δ1J(Y)− μ̃2Δ2J(Y + e1 − e2)]− [μ̃1Δ1J(Y − e1)− μ̃2Δ2J(Y − e2)]]+p12μ̃1
≥ μ2 [μ̃1Δ1J(Y − e1 − e2)− μ̃2Δ2J(Y −2e2)−p12] ,
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where the inequality follows from J ∈ F , nonnegativity of term p12μ1, and
optimality of assigning patient class 2 at state (Y − e2).

Case 5 Assigning class 2 patients to IW 2 is feasible when Y2 ≥ 2. If the state
is Y1 ≥ 1,Y2 = 1, the action of assigning class 2 patients to IW 2 is not feasible
at state Y − e2. However, the action of assigning class 1 patients to IW 2 is a
feasible (not necessarily optimal) at this state (see case 6 for case of assigning
class 1 patients for the state Y − e2). We have

μ̃1Δ1T∗J(Y)− μ̃2Δ2T∗J(Y + e1 − e2) = (1−Λ− μ̃2) [μ̃1Δ1J(Y)− μ̃2Δ2J(Y + e1 − e2)]+ μ̃2p12
μ̃1Δ1T∗J(Y − e1)− μ̃2Δ2T∗J(Y − e2) =
(1−Λ− μ̃2) [μ̃1Δ1J(Y − e1)− μ̃2Δ2J(Y − e2)]+ μ̃2(μ̃1Δ1J(Y − e1 − e2)− μ̃2Δ2J(Y −2e2))

[μ̃1Δ1T∗J(Y)− μ̃2Δ2T∗J(Y + e1 − e2)]− [μ̃1Δ1T∗J(Y − e1)− μ̃2Δ2T∗J(Y − e2)]

= (1−Λ− μ̃2) [[μ̃1Δ1J(Y)− μ̃2Δ2J(Y + e1 − e2)]− [μ̃1Δ1J(Y − e1)− μ̃2Δ2J(Y − e2)]]

− μ̃2 [μ̃1Δ1J(Y − e1 − e2)− μ̃2Δ2J(Y −2e2)−p12] ≥ 0,

where the last inequality follows from the optimality of assignment of patient
class 2 at state (Y − e2).

Case 6 In this case, we have

μ̃1Δ1T∗J(Y)− μ̃2Δ2T∗J(Y + e1 − e2) = (1−Λ− μ̃2) [μ̃1Δ1J(Y)− μ̃2Δ2J(Y + e1 − e2)]+ μ̃2p12
μ̃1Δ1T∗J(Y − e1)− μ̃2Δ2T∗J(Y − e2) = (1−Λ− μ̃2) [μ̃1Δ1J(Y − e1)− μ̃2Δ2J(Y − e2)]+ μ̃2p12
[μ̃1Δ1T∗J(Y)− μ̃2Δ2T∗J(Y + e1 − e2)]− [μ̃1Δ1T∗J(Y − e1)− μ̃2Δ2T∗J(Y − e2)]

= (1−Λ− μ̃2) [[μ̃1Δ1J(Y)− μ̃2Δ2J(Y + e1 − e2)]− [μ̃1Δ1T∗J(Y − e1)− μ̃2Δ2T∗J(Y − e2)]] ≥ 0,

because J ∈ F .

Case 7 In this case, we have

[μ̃1Δ1T∗J(Y)− μ̃2Δ2T∗J(Y + e1− e2)]− [μ̃1Δ1T∗J(Y − e1)− μ̃2Δ2T∗J(Y − e2)]

= (1−Λ− μ̃1) [[μ̃1Δ1J(Y)− μ̃2Δ2J(Y + e1− e2)]− [μ̃1Δ1T∗J(Y − e1)− μ̃2Δ2T∗J(Y − e2)]]

+ μ̃1 [μ̃1Δ1J(Y − e1)− μ̃2Δ2J(Y − e2)−p12] ≥ 0,

where the inequality follows from J ∈ F and optimality of assigning the IW to
class 1 at state (Y).

To show the preservation of the second property, we need to consider all
possible actions at the states (Y),(Y − e1),(Y + e2). Again properties (18.14)
and (18.15) restrict several cases, which leave us with the cases presented in
Table 18.EC.3:
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table 18.EC.3 Possible actions

Cases Y + e2 Y Y − e1 Y − e1+ e2 Y − e2

Case 1 1 1 1 1 1
Case 2 2 2 2 2 2
Case 3 1 1 1 2 1
Case 4 1 1 2 2 1
Case 5 2 1 1 2 1
Case 6 2 1 2 2 1
Case 7 2 2 2 2 1

Case 1
Assigning class 1 patients to IW 2 is feasible when Y1 ≥ 2. If the state is
Y1=1,Y2 ≥ 1, the action of assigning class 1 patients to IW 2 is not feasible at
states Y − e1 and Y − e1 + e2. However, the action of assigning class 2 patients
to IW 2 is a feasible (not necessarily optimal) at these states (see case 4 for case
of assigning class 2 patients for the states Y − e1 and Y − e1 + e2). We have

[μ̃1Δ1T∗J(Y − e1)− μ̃2Δ2T∗J(Y − e2)]− [μ̃1Δ1T∗J(Y − e1 + e2)− μ̃2Δ2T∗J(Y)] =
(1−Λ− μ̃1)

[(
μ̃1Δ1J(Y − e1)− μ̃2Δ2J(Y − e2)

)− (
μ̃1Δ1J(Y − e1 + e2)− μ̃2Δ2J(Y)

)]
+ μ̃1

[(
μ̃1Δ1J(Y −2e2)− μ̃2Δ2J(Y − e1 − e2)

)− (
μ̃1Δ1J(Y −2e1 + e2)− μ̃2Δ2J(Y − e1)

)] ≥ 0.

The inequality follows from nonnegativity of the term (1−Λ− μ̃1) and the fact
that J ∈ F .

Case 2
The proof of case 2 can be shown similar to that of case 1 by replacing μ̃1 by μ̃2,
and by assigning class 2 to the IW. Similar to case 1, assigning class 2 patients
to IW 2 is feasible when Y2 ≥ 2. If the state is Y1 ≥ 1,Y2 = 1, the action of
assigning class 2 patients to IW 2 is not feasible at state Y − e2. However, the
action of assigning class 1 patients to IW 2 is feasible (not necessarily optimal)
at this state (see case 7 for case of assigning class 1 patients for the state Y −e2).

Case 3
Assigning class 1 patients to IW 2 is feasible when Y1 ≥ 2. If the state is
Y1=1,Y2 ≥ 1, the action of assigning class 1 patients to IW 2 is not feasible
at state Y − e1. However, the action of assigning class 2 patients to IW 2 is
feasible (not necessarily optimal) in this state (see case 4 for case of assigning
class 2 patients for the state Y − e1). We have

[μ̃1Δ1T∗J(Y − e1)− μ̃2Δ2T∗J(Y − e2)]− [μ̃1Δ1T∗J(Y − e1 + e2)− μ̃2Δ2T∗J(Y)] ≥
(1−Λ− μ̃1)

[(
μ̃1Δ1J(Y − e1)− μ̃2Δ2J(Y − e2)

)− (
μ̃1Δ1J(Y − e1 + e2)− μ̃2Δ2J(Y)

)]
+ μ̃1 [μ̃1Δ1J(Y −2e2)− μ̃2Δ2J(Y − e1 − e2)−p12] ≥ 0,
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where he inequality follows from the fact that J ∈ F and the optimality of
assigning class 1 at state (Y − e1).

Case 4
We have

[μ1Δ1T∗J(Y − e1)−μ2Δ2T∗J(Y − e2)]− [μ1Δ1T∗J(Y − e1+ e2)−μ2Δ2T∗J(Y)] ≥
(ψ̄−Λ−μ1)

[(
μ1Δ1J(Y − e1)−μ2Δ2J(Y − e2)

)− (
μ1Δ1J(Y − e1+ e2)−μ2Δ2J(Y)

)] ≥ 0.

The inequality follows nonnegativity of the term (1−Λ− μ̃1) and the fact that
J ∈ F .

Case 5
Assigning class 1 patients to IW 2 is feasible when Y1 ≥ 2. If the state is
Y1=1,Y2 ≥ 1, the action of assigning class 1 patients to IW 2 is not feasible
at state Y − e1. However, the action of assigning class 2 patients to IW 2 is
feasible (not necessarily optimal) at this state (see case 6 for case of assigning
class 2 patients for the state Y − e1). We have

[μ̃1Δ1T∗J(Y − e1)− μ̃2Δ2T∗J(Y − e2)]− [μ̃1Δ1T∗J(Y − e1+ e2)− μ̃2Δ2T∗J(Y)] ≥
(1−Λ)

[(
μ̃1Δ1J(Y − e1)− μ̃2Δ2J(Y − e2)

)− (
μ̃1Δ1J(Y − e1+ e2)− μ̃2Δ2J(Y)

)]
− μ̃2 [μ̃1Δ1J(Y − e1+ e2)− μ̃2Δ2J(Y)−p12] ≥ 0,

where he inequality follows from the fact that J ∈ F and from the optimality
of assigning the IW to class 2 at state (Y + e2).

Case 6
We have

[μ̃1Δ1T∗J(Y − e1)− μ̃2Δ2T∗J(Y − e2)]− [μ̃1Δ1T∗J(Y − e1+ e2)− μ̃2Δ2T∗J(Y)] ≥
(1−Λ− μ̃2)

[(
μ̃1Δ1J(Y − e1)− μ̃2Δ2J(Y − e2)

)− (
μ̃1Δ1J(Y − e1+ e2)− μ̃2Δ2J(Y)

)] ≥ 0,

where he inequality follows from nonnegativity of the term (1−Λ− μ̃2) and
the fact that J ∈ F .

Case 7
We have

[μ̃1Δ1T∗J(Y − e1)− μ̃2Δ2T∗J(Y − e2)]− [μ̃1Δ1T∗J(Y − e1 + e2)− μ̃2Δ2T∗J(Y)] =
(1−Λ− μ̃2)

[(
μ̃1Δ1J(Y − e1)− μ̃2Δ2J(Y − e2)

)− (
μ̃1Δ1J(Y − e1 + e2)− μ̃2Δ2J(Y)

)]
− μ̃2 [μ̃1Δ1J(Y − e1)− μ̃2Δ1J(Y − e2)−p12] ≥ 0,
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table 18.EC.4 Numerical test cases

Cases λ1 λ2 μ1 μ2 θ1 θ2 p1 p2

1 1 1 2 1 1 1 1 1
2 1 1 2 1 1 1 1000 1000
3 1 1 2 1 1000 1000 1 1
4 1 1 2 1 1 1 10 1
5 1 1 2 1 1 1 1 10

where the inequality follows from the fact that J ∈ F and from the optimality
of assigning the IW to class 2 at state (Y).
Additionally, we can gain further insights by using Lemma 18.1. These results
show that the threshold level depends on the model parameters because the
threshold can be defined as min{Y1 : [μ̃1Δ1T∗J(Y − e1)− μ̃2Δ2T∗J(Y − e2)] ≥
p12}. Using this, we can identify how the threshold level changes as the
model parameters change. From Lemma 18.1, we observe that the difference
[μ̃1Δ1T∗J(Y − e1)− μ̃2Δ2T∗J(Y − e2)] is nondecreasing in the number of class 1
patients in the queue. Also, consider ˆp12 where ˆp12 ≥ p12.We can conclude that
the threshold level increases as p12 increases because

min{Y1 : [μ̃1Δ1T∗J(Y − e1)− μ̃2Δ2T∗J(Y − e2)] ≥ ˆp12} ≥
min{Y1 : [μ̃1Δ1T∗J(Y − e1)− μ̃2Δ2T∗J(Y − e2)] ≥ p12}.

Similar to the earlier results, the threshold level also depends the service rates μ1
and μ2. It can be observed that the difference [μ1Δ1T∗J(Y − e1)− μ2Δ2T∗J(Y − e2)]
is nondecreasing in μ1 (nonincreasing in μ2), which means that the threshold
level increases (decrease) as these parameter increase. Proof of Theorem 18.2
directly follows from Lemma 18.1.

Computational Results

To gain insights into the structure of the optimal policy, we first generate a set
of test cases. Table 18.EC.4 presents these cases. For each case, we solve our
MDP numerically using a convergence criteria of 10−4 and truncate the queue
lengths at X1 = X2 = 70. To avoid the boundary effects (i.e., when the number
in each queue gets close to the boundary of the state space under consideration),
we only present the optimal policy for states in which the number in queues are
no more than 30.

In the Figures 18.EC.1–18.EC.5 green (dark gray) color represents serving
class 1 patients, yellow (light gray) color represent serving class 2 patients, and
dark blue (black) represents idling the server. In case 1, the effect of differences
in the service rates is analyzed (Figure 18.EC.1). In case 2, the effect of high
penalty costs, and in case 3, the effect of high holding costs is analyzed. In cases
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figure 18.EC.2 Case 2

4 and 5 (Figures 18.EC.4–18.EC.5), the effect of the penalty cost on the optimal
policy structure is analyzed. OurMDP-based numerical results show that when
θ1μ1 ≥ θ2μ2, the structure of the optimal control policy is a state-dependent
threshold-type policy, where IW 1 serves class 1 when X1 > 0, and IW 2
performs as a dedicated server, and switches to the cμ rule after the threshold.
When pij 	 θi (∀i ∈ Np, j ∈ Ns) (see, e.g., case 2), both of the units start to work
as dedicated units.Moreover,when their primary queue is empty, they idle, even
if there is a patient in the nonprimary queue waiting for assignment. Under
θi 	 pij (∀i ∈ Np, j ∈ Ns) (see, e.g., case 3) the well-known cμ rule becomes the
optimal policy. This policy gives strict priority to class 1 patients whenever there
is a class 1 patient waiting in the ED.We also observe that, when p12 increases,
(1) IW 2 delays serving class 1 patients, (2) the threshold level increases, and
(3) IW 1 still serves as a dedicated unit when X1 > 0, and switches to serves
class 2 patients when X1 = 0. When p21 increases IW 1 serves class 2 patients
when X1 = 0 and X2 > T2, where T2 is some threshold level on number of class
2 patients boarded in the ED. In addition, as the threshold on class 2 patients
increase, we observe that the threshold for class 1 patients in IW 2 increases.
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figure 18.EC.5 Case 5

online appendix 18.d birth-and-death processes

In this appendix we present the illustrations of the birth-and-death processes
used to construct the BDT heuristic policy discussed in the main chapter.
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table 18.EC.5 ROAE
cost (per time unit)
combinations in the test
suite

θ1 θ2

1 1
2 1
1 2

table 18.EC.6 Penalty cost
parameter combinations in the
test suite

p12 p21

0 0
1 1
10 10
100 100

0 T1 T+1

λ1 λ1 λ1 λ1 λ1

µ1 µ1 µ1 2µ1 2µ1

figure 18.EC.6 Birth-and-death process approximation for class 1 patients

0 i1 i+1

λ2 λ2 λ2 λ2 λ2

P2(T)μ2 P2(T)μ2 P2(T)μ2 P2(T)μ2 P2(T)μ2

figure 18.EC.7 Birth-and-death process approximation for class 2 patients

online appendix 18.e numerical cases

We generate 216 problem instances. These problem instances cover various cost
and arrival rate combinations. Tables 18.EC.5–18.EC.7 provide a summary of
the related information. More details are available upon request.
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table 18.EC.7 Arrival rate combinations
in the test suite

λ1/μ1 λ2 μ2

0.1-0.9 0.4 1
0.1-0.9 0.8 1

table 18.EC.8 p-values for comparison
on the equality of means of service times for
primary and secondary IWs

Patient Type p-value

Type 1-CP 0.750
Type 2-CP 0.216
Type 1-CHF 0.601
Type 2-CHF 0.218

table 18.EC.9 Average service time (in days) for patients in each
IW from different admission sources

IW ED admits Direct admits OR admits

4 West 3.57 7.41 4.05
5 West 3.60 4.38 2.93

online appendix 18.f data analyses

In Tables 18.EC.8–18.EC.9, we present a summary of some of the main results
from our data analyses. More details are available upon request.

online appendix 18.g simulation model

18.G.1 Cost Cases for Simulation

In our simulation model, we assume that the cost associated with the risk of
adverse events that may occur while a patient is boarded in the ED is the same
for both patient classes (patients requiring a bed from 4 West or 5 West). The
reason behind this assumption is the similarity between the ESI distribution
among 4 West and 5 West ED admit patients. Our data analyses show that
30% of ED patients that require a bed from 4 West are ESI 2 patients, and
69% of them are ESI 3 patients, while these proportions for 5 West patients are
28% and 70%, respectively. Because patients with similar severity are subject
to similar levels of adverse events, we assume that the cost associated with the
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table 18.EC.10 ROAE
cost (per hour) cases used in
the simulation model

Cases θ

Case 1 1
Case 2 5
Case 3 10

table 18.EC.11 Penalty cost
parameters used in the simulation
model

Cases Type 1 Type 2

Case 1 1 0.5
Case 2 5 2.5
Case 3 10 5

table 18.EC.12 Improvement in performance
measures due to a trigger-based policy

Performance measure Improvement (%)

Average boarding time 6.8
Average number of patients boarded 10.3
Overflow proportion –56
2-hour boarding rate 3.2

risk of adverse events are the same for 4 West and 5 West patients admitted
through the ED.

18.G.2 Performance of a Pure Trigger-Based Policy

We analyze a static pure trigger-based policy that assigns patients to their
secondary IWs only when patients’ boarding time exceeds a certain trigger level
(and when there is a bed available in the secondary IW). We use a two-hour
trigger time in our analyses because a two-hour boarding rate is an important
performance measure for EDs that we also use in other parts of our analyses.
Note that, although this trigger based policy imposes an upper bound on the
boarding time, it cannot fully eliminate boarding times that are over two hours
because patients can be assigned to their secondary IWs only when there is a
bed available in that IW.

From our results, we observe that the trigger-based policy reduces the
average boarding time (compared to the current practice in which it is not
used). However, it increases overflow proportions and, hence, penalty costs
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incurred due to secondary unit assignments. Moreover, because this policy is
not an adaptive policy and does not change based on system parameters, under
the cases where the penalty costs are high, it can lead to large increases in the
total cost (which we observe to be as high as 18% in some cases, compared
to the current practice). Overall, our results indicate that the LEWC-p policy
proposed in the main body results in improvements that are both larger and
more robust compared to those under a pure trigger-based policy.

online appendix 18.h extended simulation model

In the simulation model that is described in Section 18.6, we use the data that is
obtained from our partner hospital. Due to limitations in data, we cannot have
the exact patient flow that is described in Figure 18.3 and instead model the
patient flow as described in Figure 18.6. In this section,we generate a simulation
model that does not use the exact hospital data we have collected but models
the patient flow that is described in Figure 18.3 with additional characteristics
that is obtained from the data analyses. Additionally,wemodel 5 p.m. discharge
rounds to include a well-known concept used in some hospitals.

In the extended model, we relax our assumptions on stationary arrival rates
and consider time-dependent bed request rates. We also consider lognormal
LOS distributions for each patient type and consider multiple bed availabilities
in each IW. Additionally, we model seven IWs and seven patient classes and
model a general number of (unpooled) beds in each IW. We only focus on
patients admitted to the hospital through the ED in the extended simulation
model.

We consider the patient flow depicted in Figure 18.EC.8. In this figure, the
solid lines represent primary bed assignments, dashed lines represents ideal
secondary bed assignments, and dotted lines represents the backup secondary
IW assignments. When a patient is assigned to a backup secondary IW, the
patient experiences greater reduction in quality of care compared to assignment
to an ideal secondary IW. We additionally relax the paired primary-secondary
IW assumption and use a more general hospital network flow in the extended
model. We also include 5 p.m. discharge rounds in our simulation setting.

Our objective in using an extended simulation model is to test the per-
formance of LEWC-p compared to alternative policies in complex hospital
networks. To this end, we consider alternative patient flow policies including a
“primary-only” where patients are served only in their primary IWs (policy 1)
and a “both-primary-and-secondary” policy where IW beds are shared (policy
2). We additionally consider serving the longest queue (policy 3) and assigning
a fixed proportion of patients to ideal secondary and backup secondary IWs
(Policy 4, 40% and 30%; policy 5. 30% and 20%; policy 6, 20% and 20%).
Lastly, we consider an overflow trigger policy (policy 7) where patients are
overflowed to their secondary IWs (if there is no capacity available in the
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figure 18.EC.8 Patient flow in extended simulation model

ideal secondary IW, and then assign to the back-up secondary IW) if their
boarding time in ED exceeds two hours and if there is available capacity in
the IW.

We compare the total cost metric of the proposed LEWC-p policy with
the previsouly mentioned alternative patient flow policies under various cost
combinations. In Table 18.EC.13, we report the relative difference in the total
cost between LEWC-p and the alternative policy in each column, where rows
indicate the cost parameter combination considered.

We allow for a total of 15 alternative cost combinations to observe the
performance of the proposed policy under various cost parameters. In each
combination,we use a higher cost parameter for backup secondary assignments
than for the ideal secondary assignments. In cases 1–9, the cost of backup
overflow is twice the cost of ideal overflows (penalty costs (2,4), (5,10), (50,100)
are used when cost associated with ROAE per unit time is fixed at one, penalty
costs (10,20), (25,50), (250,500) are used when cost associated with ROAE per
unit time is fixed at five, and penalty costs (20,40), (50,100), (500,1000) are
used when cost associated with ROAE per unit time is fixed at 10). In cases 10–
15, cost of ideal overflow is 10 fold less than the back-up overflows (penalty
costs are set as (15,25), (20,30), (25,35), (30,40), (35,45), (40,50) when cost
associated with ROAE per unit time is fixed at five).

Our results indicate that in all cost parameter settings, LEWC-p performs
better than alternative policies with respect to the total cost metric. This is
because the LEWC-p policy effectively takes into account the trade-off between
ROAE and quality of care: It is not as conservative as the primary-only policy
in secondary IW assignments and yet not as aggressive as the both-primary-
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table 18.EC.13 Relative difference in total cost between LEWC-p and
alternative policies

Cost Case Policy 1 Policy 2 Policy 3 Policy 4 Policy 5 Policy 6 Policy 7

Case 1 4.20 0.46 0.43 0.36 0.25 0.52 1.95
Case 2 1.74 0.91 0.74 0.58 0.25 0.79 0.63
Case 3 0.45 2.84 2.37 1.93 1.05 2.36 0.42
Case 4 4.29 0.49 0.45 0.39 0.28 0.54 2.00
Case 5 1.91 1.03 0.86 0.68 0.33 0.90 0.74
Case 6 0.14 3.11 2.61 2.15 1.19 2.61 0.24
Case 7 4.23 0.47 0.44 0.37 0.26 0.53 1.97
Case 8 3.79 2.33 2.05 1.76 1.19 2.13 1.86
Case 9 0.09 6.54 5.62 4.76 3.02 5.61 0.14
Case 10 4.10 0.57 0.43 0.37 0.28 0.46 1.89
Case 11 3.37 0.76 0.55 0.45 0.30 0.54 1.51
Case 12 2.87 0.92 0.65 0.53 0.33 0.63 1.24
Case 13 2.19 0.89 0.60 0.47 0.24 0.56 0.87
Case 14 1.86 0.96 0.64 0.50 0.25 0.59 0.69
Case 15 1.59 1.01 0.68 0.52 0.25 0.61 0.55

and-secondary policy (where beds are fully shared) in making use of such
assignments.

The extended simulation model suggests that our proposed policy still
performs well in more complex systems. Hence, it might be an effective policy
for hospital-wide implementation.
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