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Figure 1.1. The social network of friendships within a 34-person karate club [409].
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Figure 1.2. Social networks based on communication and interaction can also be
constructed from the traces left by on-line data. In this case, the pattern of e-
mail communication among 436 employees of Hewlett Packard Research Lab is su-
perimposed on the official organizational hierarchy [6]. (Image from http://www-
personal.umich.edu/ ladamic/img/hplabsemailhierarchy.jpg)
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Figure 1.3. The network of loans among financial institutions can be used to analyze the roles
that different participants play in the financial system, and how the interactions among these
roles affect the health of individual participants and the system as a whole The network here
is annotated in a way that reveals its dense core, according to a scheme we will encounter in
Chapter 13. (Image from Bech and Atalay [49].)
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Figure 1.4. The links among Web pages can reveal densely-knit communities and prominent
sites. In this case, the network structure of political blogs prior to the 2004 U.S. Presiden-
tial election reveals two natural and well-separated clusters [5]. (Image from http://www-
personal.umich.edu/ ladamic/img/politicalblogs.jpg)
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Figure 1.5. The rapidly growing popularity of YouTube is characteristic of the way in which
new products, technologies, or innovations rise to prominence, through feedback effects
in the behavior of many individuals across a population. The plot depicts the number
of Google queries for YouTube over time. The image comes from the site Google Trends
(http://www.google.com/trends?q=youtube); by design, the units on the y-axis are suppressed
in the output from this site.
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Figure 1.6. This companion to Figure 1.5 shows the rise of the social media site Flickr; the
growth in popularity has a very similar pattern to that of other sites including YouTube. (Image
from Google Trends, http://www.google.com/trends?q=flickr)
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Figure 1.7. From the social network of friendships in the karate club from Figure 1.1, we can
find clues to the latent schism that eventually split the group into two separate clubs (indicated
by the two different shadings of individuals in the picture).
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Figure 1.8. In a network representing international trade, one can look for countries that
occupy powerful positions and derive economic benefits from these positions [258]. (Image
from http://www.cmu.edu/joss/content/articles/volume4/KrempelPlumper.html)
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Figure 1.9. In some settings, such as this map of Medieval trade routes, phys-
ical networks constrain the patterns of interaction, giving certain participants
an intrinsic economic advantage based on their network position. (Image from
http://upload.wikimedia.org/wikipedia/commons/e/e1/Late Medieval Trade Routes.jpg.)
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Figure 1.10. Cascading adoption of a new technology or service (in this case, the social-
networking site MySpace in 2005-2006) can be the result of individual incentives to use the
most widespread technology — either based on the informational effects of seeing many other
people adopt the technology, or the direct benefits of adopting what many others are already
using. (Image from Google Trends, http://www.google.com/trends?q=myspace)
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Figure 1.11. When people are influenced by the behaviors their neighbors in the network, the
adoption of a new product or innovation can cascade through the network structure. Here,
e-mail recommendations for a Japanese graphic novel spread in a kind of informational or
social contagion. (Image from Leskovec et al. [267].)
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Figure 1.12. The spread of an epidemic disease (such as the tuberculosis outbreak shown here)
is another form of cascading behavior in a network. The similarities and contrasts between
biological and social contagion lead to interesting research questions. (Image from Andre et
al. [17].)
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Figure 1.13. Prediction markets, as well as markets for financial assets such as stocks,
can synthesize individual beliefs about future events into a price that captures the ag-
gregate of these beliefs. The plot here depicts the varying price over time for two as-
sets that paid $1 in the respective events that the Democratic or Republican nom-
inee won the 2008 U.S. Presidential election. (Image from Iowa Electronic Markets,
http://iemweb.biz.uiowa.edu/graphs/graph PRES08 WTA.cfm.)
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Figure 2.1. Two graphs: (a) an undirected graphs, and (b) a directed graph.
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Figure 2.2. A network depicting the sites on the Internet, then known as the Arpanet, in
December 1970. (Image from F. Heart, A. McKenzie, J. McQuillian, and D. Walden [212];
on-line at http://som.csudh.edu/cis/lpress/history/arpamaps/.)
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Figure 2.3. An alternate drawing of the 13-node Internet graph from December 1970.
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(a) (b)
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Figure 2.4. Images of graphs arising in different domains. The depictions of airline and sub-
way systems in (a) and (b) are examples of transportation networks, in which nodes are
destinations and edges represent direct connections. Much of the terminology surrounding
graphs derives from metaphors based on transportation through a network of roads, rail lines,
or airline flights. The prerequisites among college courses in (c) is an example of a depen-
dency network, in which nodes are tasks and directed edges indicate that one task must
be performed before another. The design of complex software systems and industrial pro-
cesses often requires the analysis of enormous dependency networks, with important con-
sequences for efficient scheduling in these settings. The sculptural art in (d) is an example
of a structural network, with joints as nodes and physical linkages as edges. The internal
frameworks of mechanical structures such as buildings, vehicles, or human bodies are based
on such networks, and the area of rigidity theory, at the intersection of geometry and me-
chanical engineering, studies the stability of such structures from a graph-based perspective
[382]. (Images: (a) www.airlineroutemaps.com/USA/Northwest Airlines asia pacific.shtml, (b)
www.wmata.com/metrorail/systemmap.cfm, (c) www.cs.cornell.edu/ugrad/flowchart.htm, (d)
www.stormking.org/free ride home.htm.)
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Figure 2.5. A graph with three connected components.
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Figure 2.6. The collaboration graph of the biological research center Structural Genomics of
Pathogenic Protozoa (SGPP) [133], which consists of three distinct connected components.
This graph was part of a comparative study of the collaboration patterns graphs of nine research
centers supported by NIH’s Protein Structure Initiative; SGPP was an intermediate case between
centers whose collaboration graph was connected and those for which it was fragmented into
many small components.
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Figure 2.7. A network in which the nodes are students in a large American high school, and
an edge joins two who had a romantic relationship at some point during the 18-month period
in which the study was conducted [48].
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Figure 2.8. Breadth-first search discovers distances to nodes one “layer” at a time; each layer
is built of nodes that have an edge to at least one node in the previous layer.
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Figure 2.9. The layers arising from a breadth-first of the December 1970 Arpanet, starting at
the node mit.
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Figure 2.10. A histogram from Travers and Milgram’s paper on their small-world experiment
[385]. For each possible length (labeled “number of intermediaries” on the x-axis), the plot
shows the number of successfully completed chains of that length. In total, 64 chains reached
the target person, with a median length of six.
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Figure 2.11. The distribution of distances in the graph of all active Microsoft Instant Messenger
user accounts, with an edge joining two users if they communicated at least once during a
month-long observation period [269].
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Figure 2.12. Ron Graham’s hand-drawn picture of a part of the mathematics collaboration
graph, centered on Paul Erdös [188]. (Image from http://www.oakland.edu/enp/cgraph.jpg)
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Figure 2.13. In this example, node B is pivotal for two pairs: the pair consisting of A and C ,
and the pair consisting of A and D. On the other hand, node D is not pivotal for any pairs.
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Figure 2.14. Node A is a gatekeeper. Node D is a local gatekeeper but not a gatekeeper.
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Figure 3.1. The formation of the edge between B and C illustrates the effects of triadic closure,
since they have a common neighbor A.
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Figure 3.2. If we watch a network for a longer span of time, we can see multiple edges forming
— some form through triadic closure while others (such as the D-G edge) form even though
the two endpoints have no neighbors in common.
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Figure 3.3. The A-B edge is a bridge, meaning that its removal would place A and B in distinct
connected components. Bridges provide nodes with access to parts of the network that are
unreachable by other means.
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Figure 3.4. The A-B edge is a local bridge of span 4, since the removal of this edge would
increase the distance between A and B to 4.
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Figure 3.5. Each edge of the social network from Figure 3.4 is labeled here as either a strong
tie (S) or a weak tie (W), to indicate the strength of the relationship. The labeling in the figure
satisfies the Strong Triadic Closure Property at each node: if the node has strong ties to two
neighbors, then these neighbors must have at least a weak tie between them.
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Figure 3.6. If a node satifies Strong Triadic Closure and is involved in at least two strong ties,
then any local bridge it is involved in must be a weak tie. The figure illustrates the reason why:
if the A-B edge is a strong tie, then there must also be an edge between B and C , meaning
that the A-B edge cannot be a local bridge.
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Figure 3.7. A plot of the neighborhood overlap of edges as a function of their percentile in
the sorted order of all edges by tie strength. The fact that overlap increases with increasing tie
strength is consistent with the theoretical predictions from Section 3.2. (Image from [328].)
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Figure 3.8. Four different views of a Facebook user’s network neighborhood, showing the struc-
ture of links coresponding respectively to all declared friendships, maintained relationships,
one-way communication, and reciprocal (i.e. mutual) communication. (Image from [281].)
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Figure 3.9. The number of links corresponding to maintained relationships, one-way commu-
nication, and reciprocal communication as a function of the total neighborhood size for users
on Facebook. (Image from [281].)
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Figure 3.10. The total number of a user’s strong ties (defined by multiple directed messages)
as a function of the number of followees he or she has on Twitter. (Image from [218].)
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Figure 3.11. The contrast between densely-knit groups and boundary-spanning links is re-
flected in the different positions of nodes A and B in the underyling social network.
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Figure 3.12. A co-authorship network of physicists and applied mathematicians working on
networks [316]. Within this professional community, more tightly-knit subgroups are evident
from the network structure.
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Figure 3.13. A karate club studied by Wayne Zachary [409] — a dispute during the course of
the study caused it to split into two clubs. Could the boundaries of the two clubs be predicted
from the network structure?
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Figure 3.14. In many networks, there are tightly-knit regions that are intuitively apparent, and
they can even display a nested structure, with smaller regions nesting inside larger ones.
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Figure 3.15. A network can display tightly-knit regions even when there are no bridges or
local bridges along which to separate it.
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Figure 3.16. The steps of the Girvan-Newman method on the network from Figure 3.14(a).
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Figure 3.17. The steps of the Girvan-Newman method on the network from Figure 3.15.



P1: SBT

cuus984-net CUUS984-Easley 0 521 19533 1 November 30, 2009 16:2

45

Chakrabarti

Sen

Manna

Chatterjee

Newman

Moore

Sneppen
Park

Strogatz

Watts
Callaway

Hopcroft

Kleinberg

Girvan

Dodds

Weigt

Vazquez

Barrat

Monasson

Zecchina

Berg

Leone

Munoz

Barabasi

Castellano

Vespignani

Pastor-Satorras

Caldarelli

Ben-AvrahamCapocci

Alava

Bianconi

Kim
Choi

Kim
Jeong

Kahng

Goh

Hong

Oh

Barthelemy

Havlin
Stanley

Amaral

Scala

Kertesz

Cohen
Erez

Rozenfeld

Schwartz

Moreira

LiljerosEdling

Stroud

Minnhagen

Kim

Holme

Trusina

Redner

Mendes

Krapivsky Rodgers

Leyvraz

Vazquez

Dorogovtsev

Goltsev

Samukhin

Arenas

Guimera

Camacho

Maritan

Banavar

Giacometti

Flammini
Rinaldo

Bornholdt

Maslov

Simonsen

Eriksen

Zaliznyak

PennaHerrmann

Stauffer
Moukarzel

Szabo

Lahtinen

Kaski

Sreeram Dasgupta
Mukherjee

Tadic

Ergun

Kulkarni
Almaas

Neda

Ravasz
VicsekFarkasOltvai

Somera

Mongru

Albert

Tombor
Yook

Mason

Rajagopalan

Podani

Szathmary

Rubi

Sole

Vilone

Moreno

Boguna

Ebel

Davidsen

Schuster

Klemm

Mielsch

Han
Yoon

Holyst

Aleksiejuk

Fronczak

Jedynak

Sienkiewicz

Rothman
Smith

Kepler

Huss

Stadler

Gleiss

Wagner

Fell

Barahona

Gomez

Pacheco

Lassig

Danon

Cabrales

Selman

Ferrer i Cancho

Valverde

Andrade

Eguiluz

Pecora

Figure 3.18. The tightly-knit regions identified by the Girvan-Newman method in the co-
authorship network from Figure 3.12.
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Figure 3.19. The first step in the efficient method for computing betweenness values is to
perform a breadth-first search of the network. Here the results of breadth-first from node A are
shown; over the course of the method, breadth-first search is performed from each node in
turn.
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Figure 3.20. The second step in computing betweenness values is to count the number of
shortest paths from a starting node A to all other nodes in the network. This can be done
by adding up counts of shortest paths, moving downward through the breadth-first search
structure.
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Figure 3.21. The final step in computing betweenness values is to determine the flow values
from a starting node A to all other nodes in the network. This is done by working up from the
lowest layers of the breadth-first search, dividing up the flow above a node in proportion to
the number of shortest paths coming into it on each edge.
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Figure 3.22.
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Figure 3.24. A graph with a strong/weak labeling.
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Figure 4.1. Homophily can produce a division of a social network into densely-connected,
homogeneous parts that are weakly connected to each other. In this social network from a
town’s middle school and high school, two such divisions in the network are apparent: one
based on race (with students of different races drawn as differently colored circles), and the
other based on friendships in the middle and high schools respectively [299].
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Figure 4.2. Using a numerical measure, one can determine whether small networks such as
this one (with nodes divided into two types) exhibit homophily.
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Figure 4.3. An affiliation network is a bipartite graph that shows which individuals are affiliated
with which groups or activities. Here, Anna participates in both of the social foci on the right,
while Daniel participates in only one.
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Figure 4.4. One type of affiliation network that has been widely studied is the memberships of
people on corporate boards of directors [296]. A very small portion of this network (as of 2009)
is shown here. The structural pattern of memberships can reveal subtleties in the interactions
among both the board members and the companies.
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Figure 4.5. A social-affiliation network shows both the friendships between people and their
affiliation with different social foci.
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Figure 4.6. Each of triadic closure, focal closure, and membership influence corresponds to
the closing of a triangle in a social-affiliation network.
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Figure 4.7. In a social-affiliation network containing both people and foci, edges can form
under the effect of several different kinds of closure processes: two people with a friend in
common, two people with a focus in common, or a person joining a focus that a friend is
already involved in.
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Figure 4.8. A larger network that contains the example from Figure 4.7. Pairs of people can
have more than friend (or more than one focus) in common; how does this increase the
likelihood that an edge will form between them?
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Figure 4.9. Quantifying the effects of triadic closure in an e-mail dataset [255]. The curve
determined from the data is shown in the solid black line; the dotted curves show a comparison
to probabilities computed according to two simple baseline models in which common friends
provide independent probabilities of link formation.
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Figure 4.10. Quantifying the effects of focal closure in an e-mail dataset [255]. Again, the curve
determined from the data is shown in the solid black line, while the dotted curve provides a
comparison to a simple baseline.
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Figure 4.11. Quantifying the effects of membership closure in two large on-line datasets [32,
121].
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Selection: rapid 
increase in similarity 
before first contact

Social influence:
continued slower 

increase in similarity 
after first contact

Figure 4.12. The average similarity of two editors on Wikipedia, relative to the time (0) at
which they first communicated [121]. Time, on the x-axis, is measured in discrete units, where
each unit corresponds to a single Wikipedia action taken by either of the two editors. The
curve increases both before and after the first contact at time 0, indicating that both selection
and social influence play a role; the increase in similarity is steepest just before time 0.
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(a) Chicago, 1940 (b) Chicago, 1960

Figure 4.13. The tendency of people to live in racially homogeneous neighborhoods produces
spatial patterns of segregation that are apparent both in everyday life and when superimposed
on a map — as here, in these maps of Chicago from 1940 and 1960 [297]. In blocks colored
yellow and orange the percentage of African-Americans is below 25, while in blocks colored
brown and black the percentage is above 75.
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Figure 4.14. In Schelling’s segregation model, agents of two different types (X and O) occupy
cells on a grid. The neighbor relationships among the cells can be represented very simply as
a graph. Agents care about whether they have at least some neighbors of the same type.
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Figure 4.15. After arranging agents in cells of the grid, we first determine which agents are
unsatisfied, with fewer than t other agents of the same type as neighbors. In one round, each of
these agents moves to a cell where they will be satified; this may cause other agents to become
unsatisfied, in which case a new round of movement begins.
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(a) (b)

Figure 4.16. Two runs of a simulation of the Schelling model with a threshold t of 3, on a
150-by-150 grid with 10, 000 agents of each type.
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Figure 4.17. With a threshold of 3, it is possible to arrange agents in an integrated pattern:
all agents are satisfied, and everyone who is not on the boundary on the grid has an equal
number of neighbors of each type.
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Figure 4.18. Four intermediate points in a simulation of the Schelling model with a threshold
t of 4, on a 150-by-150 grid with 10, 000 agents of each type. As the rounds of movement
progress, large homogeneous regions on the grid grow at the expense of smaller, narrower
regions.
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Figure 4.19. A social network where triadic closure may occur.
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Figure 4.20. An affiliation network on six people labeled A–F , and three foci labeled X , Y ,
and Z.
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Figure 4.21. A graph on people arising from an (unobserved) affiliation network.
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Figure 5.1. Structural balance: Each labeled triangle must have 1 or 3 positive edges.
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Figure 5.2. The labeled four-node complete graph on the left is balanced; the one on the right
is not.
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Figure 5.3. If a complete graph can be divided into two sets of mutual friends, with complete
mutual antagonism between the two sets, then it is balanced. Furthermore, this is the only way
for a complete graph to be balanced.



P1: SBT

cuus984-net CUUS984-Easley 0 521 19533 1 November 30, 2009 16:2

77

A

B

C E

D

+

+

-

-

?

?

?

friends of A enemies of A

Figure 5.4. A schematic illustration of our analysis of balanced networks. (There may be other
nodes not illustrated here.)
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Figure 5.5. The evolution of alliances in Europe, 1872-1907 (the nations GB, Fr, Ru, It, Ge,
and AH are Great Britain, France, Russia, Italy, Germany, and Austria-Hungary respectively).
Solid dark edges indicate friendship while dotted red edges indicate enmity. Note how the
network slides into a balanced labeling — and into World War I. This figure and example are
from Antal, Krapivsky, and Redner [21].
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Figure 5.6. A complete graph is weakly balanced precisely when it can be divided into multiple
sets of mutual friends, with complete mutual antagonism between each pair of sets.
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Figure 5.7. A schematic illustration of our analysis of weakly balanced networks. (There may
be other nodes not illustrated here.)



P1: SBT

cuus984-net CUUS984-Easley 0 521 19533 1 November 30, 2009 16:2

81

1

2 3

6

11

1312

9

4

8

5

10

7

+ +

+

-

-

-

+

+

-

-

-

+
+

-

+

-

+

-

14

15

-

-
-

Figure 5.8. In graphs that are not complete, we can still define notions of structural balance
when the edges that are present have positive or negative signs indicating friend or enemy
relations.
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Figure 5.9. There are two equivalent ways to define structural balance for general (non-
complete) graphs. One definition asks whether it is possible to fill in the remaining edges
so as to produce a signed complete graph that is balanced. The other definition asks whether
it is possible to divide the nodes into two sets X and Y so that all edges inside X and inside Y
are positive, and all edges between X and Y are negative.
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Figure 5.10. If a signed graph contains a cycle with an odd number of edges, then it is not
balanced. Indeed, if we pick of one of the nodes and try to place it in X , then following the
set of friend/enemy relations around the cycle will produce a conflict by the time we get to
the starting node.
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Figure 5.11. To determine if a signed graph is balanced, the first step is to consider only the
positive edges, find the connected components using just these edges, and declare each of
these components to be a supernode. In any balanced division of the graph into X and Y , all
nodes in the same supernode will have to go into the same set.
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Figure 5.12. Suppse a negative edge connects two nodes A and B that belong to the same
supernode. Since there is also a path consisting entirely of positive edges that connects A and
B through the inside of the supernode, putting this negative edge together with the all-positive
path produces a cycle with an odd number of negative edges.
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Figure 5.13. The second step in determining whether a signed graph is balanced is to look for
a labeling of the supernodes so that adjacent supernodes (which necessarily contain mutual
enemies) get opposite labels. For this purpose, we can ignore the original nodes of the graph
and consider a reduced graph whose nodes are the supernodes of the original graph.
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Figure 5.14. A more standard drawing of the reduced graph from the previous figure. A
negative cycle is visually apparent in this drawing.
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Figure 5.15. Having found a negative cycle through the supernodes, we can then turn this
into a cycle in the original graph by filling in paths of positive edges through the inside of the
supernodes. The resulting cycle has an odd number of negative edges.



P1: SBT

cuus984-net CUUS984-Easley 0 521 19533 1 November 30, 2009 16:2

89

G

D F

C E

B A

An odd cycle is 
formed from two 

equal-length paths 
leading to an edge 

inside a single layer.

Figure 5.16. When we perform a breadth-first search of the reduced graph, there is either an
edge connecting two nodes in the same layer or there isn’t. If there isn’t, then we can produce
the desired division into X and Y by putting alternate layers in different sets. If there is such an
edge (such as the edge joining A and B in the figure), then we can take two paths of the same
length leading to the two ends of the edge, which together with the edge itself forms an odd
cycle.
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Figure 5.17. The characterization of approximately balanced complete graphs follows from
an analysis similar to the proof of the original Cartwright-Harary Theorem. However, we have
to be more careful in dividing the graph by first finding a “good” node that isn’t involved in
too many unbalanced triangles.
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Figure 5.18. A network with five positive edges and five negative edges.
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Figure 5.19. A 3-node social network in which all pairs of nodes know each other, and all
pairs of nodes are friendly toward each other.
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Figure 5.20. There are two distinct ways in which node D can join the social network from
Figure 5.19 without becoming involved in any unbalanced triangles.
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Figure 5.21. All three nodes are mutual enemies.
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Figure 5.22. Node A is friends with nodes B and C , who are enemies with each other.
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Figure 6.1. Exam or Presentation?
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Suspect 1

Suspect 2
NC C

NC −1, −1 −10, 0
C 0, −10 −4, −4

Figure 6.2. Prisoner’s Dilemma
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Athlete 1

Athlete 2
Don’t Use Drugs Use Drugs

Don’t Use Drugs 3, 3 1, 4
Use Drugs 4, 1 2, 2

Figure 6.3. Performance-Enhancing Drugs
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You

Your Partner
Presentation Exam

Presentation 98, 98 94, 96
Exam 96, 94 92, 92

Figure 6.4. Exam-or-Presentation Game with an easier exam.
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Firm 1

Firm 2
Low-Priced Upscale

Low-Priced .48, .12 .60, .40
Upscale .40, .60 .32, .08

Figure 6.5. Marketing Strategy



P1: SBT

cuus984-net CUUS984-Easley 0 521 19533 1 November 30, 2009 16:2

101

Firm 1

Firm 2
A B C

A 4, 4 0, 2 0, 2
B 0, 0 1, 1 0, 2
C 0, 0 0, 2 1, 1

Figure 6.6. Three-Client Game
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You

Your Partner
PowerPoint Keynote

PowerPoint 1, 1 0, 0
Keynote 0, 0 1, 1

Figure 6.7. Coordination Game
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You

Your Partner
PowerPoint Keynote

PowerPoint 1, 1 0, 0
Keynote 0, 0 2, 2

Figure 6.8. Unbalanced Coordination Game
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You

Your Partner
PowerPoint Keynote

PowerPoint 1, 2 0, 0
Keynote 0, 0 2, 1

Figure 6.9. Battle of the Sexes
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Hunter 1

Hunter 2
Hunt Stag Hunt Hare

Hunt Stag 4, 4 0, 3
Hunt Hare 3, 0 3, 3

Figure 6.10. Stag Hunt
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You

Your Partner
Presentation Exam

Presentation 90, 90 82, 88
Exam 88, 82 88, 88

Figure 6.11. Exam-or-Presentation Game (Stag Hunt version)
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Animal 1

Animal 2
D H

D 3, 3 1, 5
H 5, 1 0, 0

Figure 6.12. Hawk-Dove Game
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You

Your Partner
Presentation Exam

Presentation 90, 90 86, 92
Exam 92, 86 76, 76

Figure 6.13. Exam or Presentation? (Hawk-Dove version)
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Player 1

Player 2
H T

H −1, +1 +1, −1
T +1, −1 −1, +1

Figure 6.14. Matching Pennies
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Offense

Defense
Defend Pass Defend Run

Pass 0, 0 10, −10
Run 5, −5 0, 0

Figure 6.15. Run-Pass Game
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Kicker

Goalie
L R

L 0.58, −0.58 0.95, −0.95
R 0.93, −0.93 0.70, −0.70

Figure 6.16. The Penalty-Kick Games (from empirical data [331]).
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You

Your Partner
PowerPoint Keynote

PowerPoint 1, 1 0, 0
Keynote 0, 0 2, 2

Figure 6.17. Unbalanced Coordination Game
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You

Your Partner
Presentation Exam

Presentation 90, 90 86, 92
Exam 92, 86 88, 88

Figure 6.18. Exam or Presentation?
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A B C D E F

Figure 6.19. In the Facility Location Game, each player has strictly dominated strategies but
no dominant strategy.
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Firm 1

Firm 2
B D F

A 1, 5 2, 4 3, 3
C 4, 2 3, 3 4, 2
E 3, 3 2, 4 5, 1

Figure 6.20. Facility Location Game
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Firm 1

Firm 2
B D

C 4, 2 3, 3
E 3, 3 2, 4

Figure 6.21. Smaller Facility Location Game
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Firm 1

Firm 2
D

C 3, 3

Figure 6.22. Even smaller Facility Location Game
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Hunter 1

Hunter 2
Hunt Stag Hunt Hare

Hunt Stag 3, 3 0, 3
Hunt Hare 3, 0 3, 3

Figure 6.23. Stag Hunt: A version with a weakly dominated strategy
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8
4

12
6

6
12

4
2

Player 1

Player 2

A B

A B A B

Figure 6.24. A simple game in extensive form.
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Firm 1

Firm 2
AA, AB AA, BB BA, AB BA, BB

A 8, 4 8, 4 12, 6 12, 6
B 6, 12 4, 2 6, 12 4, 2

Figure 6.25. Conversion to normal form.
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-1
-1

1
1

Player 1

Stay Out Enter

Retaliate Cooperate
0
2

Player 2

Figure 6.26. Extensive-form representation of the Market Entry Game.
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Firm 1

Firm 2
R C

S 0, 2 0, 2
E −1, −1 1, 1

Figure 6.27. Normal Form of the Market Entry Game
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Player A

Player B
L M R

t 0, 3 6, 2 1, 1
m 2, 3 0, 1 7, 0
b 5, 3 4, 2 3, 1

Figure 6.28. Payoff Matrix
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Player A

Player B
L R

U 1, 2 3, 2
D 2, 4 0, 2

UnFig01-page211.
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Player A

Player B
L M R

U 1, 1 2, 3 1, 6
M 3, 4 5, 5 2, 2
D 1, 10 4, 7 0, 4

UnFig02-page211.
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Player A

Player B
L R

U 2, 15 4, 20
D 6, 6 10, 8

UnFig03-page212.
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Player A

Player B
L R

U 3, 5 4, 3
D 2, 1 1, 6

UnFig04-page212.
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Player A

Player B
L R

U 1, 1 4, 2
D 3, 3 2, 2

UnFig05-page212.
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Player A

Player B
L R

U 1, 1 3, 2
D 0, 3 4, 4

UnFig06-page213.
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Player A

Player B
L R

U 5, 6 0, 10
D 4, 4 2, 2

UnFig07-page213.
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Player A

Player B
L R

U 1, 1 0, 0
D 0, 0 4, 4

UnFig08-page213.
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Player A

Player B
L R

U 8, 4 5, 5
D 3, 3 4, 8

UnFig09-page214.
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Player A

Player B
L R

U 0, 0 −1, 1
D −1, 1 2, −2

UnFig10-page214.
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Player A

Player B
L R

U 3, 3 1, 2
D 2, 1 3, 0

UnFig11-page214.
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Player A

Player B
L M R

U 2, 4 2, 1 3, 2
D 1, 2 3, 3 2, 4

UnFig12-page215.
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Player A

Player B
L R

U 2, 4 3, 2
D 1, 2 2, 4

UnFig13-page215.
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Player A

Player B
L R

U 1, 1 1, 1
D 0, 0 2, 1

UnFig14-page216.
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Player A

Player B
L R

U 4, 4, 4 0, 0, 1
D 0, 2, 1 2, 1, 0

UnFig15-page217.
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Player A

Player B
L R

U 2, 0, 0 1, 1, 1
D 1, 1, 1 2, 2, 2

UnFig16-page217.
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Beetle 1

Beetle 2
Small Large

Small 5, 5 1, 8
Large 8, 1 3, 3

Figure 7.1. The Body-Size Game
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Virus 1

Virus 2
�6 �H2

�6 1.00, 1.00 0.65, 1.99
�H2 1.99, 0.65 0.83, 0.83

Figure 7.2. The Virus Game
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Organism 1

Organism 2
S T

S a, a b, c

T c, b d, d

Figure 7.3. General Symmetric Game
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Hunter 1

Hunter 2
Hunt Stag Hunt Hare

Hunt Stag 4, 4 0, 3
Hunt Hare 3, 0 3, 3

Figure 7.4. Stag Hunt
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Hunter 1

Hunter 2
Hunt Stag Hunt Hare

Hunt Stag 4, 4 0, 4
Hunt Hare 4, 0 3, 3

Figure 7.5. Stag Hunt: A version with added benefit from hunting hare alone
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Animal 1

Animal 2
D H

D 3, 3 1, 5
H 5, 1 0, 0

Figure 7.6. Hawk-Dove Game
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Virus 1

Virus 2
�6 �H2

�6 1.00, 1.00 0.65, 1.99
�H2 1.99, 0.65 0.50, 0.50

Figure 7.7. The Virus Game: Hypothetical payoffs with stronger fitness penalties to �H2.
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Player A

Player B
x y

x 2, 2 0, 0
y 0, 0 1, 1

UnFig01-page235.
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Player A

Player B
x y

x 4, 4 3, 5
y 5, 3 5, 5

UnFig02-page236.
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Player A

Player B
X Y

X a, a b, c

Y c, b d, d

UnFig03-page236.
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Player A

Player B
X Y

X 1, 1 2, x

Y x, 2 3, 3

UnFig04-page236.
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Player A

Player B
X Y

X a, a b, c

Y c, b d, d

UnFig05-page237.



P1: SBT

cuus984-net CUUS984-Easley 0 521 19533 1 November 30, 2009 16:2

152

BA

C

D

x/100

x/100

45

45

Figure 8.1. A highway network, with each edge labeled by its travel time (in minutes) when
there are x cars using it. When 4000 cars need to get from A to B, they divide evenly over the
two routes at equilibrium, and the travel time is 65 minutes.
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BA

C

D

x/100

45

45

x/100

0

Figure 8.2. The highway network from the previous figure, after a very fast edge has been
added from C to D. Although the highway system has been “upgraded,” the travel time at
equilibrium is now 80 minutes, since all cars use the route through C and D.
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BA

C

D T

AC

CD

AD

CB

DB

(x)=x (x)=5

(x)=0

T T

T

T (x)=5 (x)=x

(a)

BA

C

D

x

5

5

x

0

(b)

Figure 8.3. A network annotated with the travel-time function on each edge.
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BA

C

D

x

5

5

x

0

(a)

BA

C

D

x

5

5

x

0

(b)

Figure 8.4. A version of Braess’s Paradox: In the socially optimal traffic pattern (on the left),
the social cost is 28, while in the unique Nash equilibrium (on the right), the social cost is 32.
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BA

C

D

x

5

5

x

0

energy = 1+2 energy = 5+5

energy = 5+5 energy = 1+2

(a)

BA

C

D

x

5

5

x

0

energy = 1+2 energy = 5

energy = 5+5 energy = 1+2+3

(b)

BA

C

D

x

5

5

x

0

energy = 1+2 energy = 0

energy = 5+5 energy = 1+2+3+4

(c)

BA

C

D

x

5

5

x

0

energy = 1+2+3 energy = 0

energy = 5 energy = 1+2+3+4

(d)

BA

C

D

x

5

5

x

0

energy = 1+2+3+4 energy = 0

energy = 0 energy = 1+2+3+4

(e)

Figure 8.5. We can track the progress of best-response dynamics in the traffic game by watching
how the potential energy changes.
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BA

C

D

x

5

5

x

0

energy = 1+2 energy = 5+5

energy = 5+5 energy = 1+2

(a)

BA

C

D

x

5

5

x

0

energy = 1 energy = 5

energy = 5+5 energy = 1+2

(b)

BA

C

D

x

5

5

x

0

energy = 1+2 energy = 5

energy = 5+5 energy = 1+2+3

(c)

Figure 8.6. When a driver abandons one path in favor of another, the change in potential
energy is exactly the improvement in the driver’s travel time.
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......

Te(1)

Te(x)

Te(3)

Te(2)

Figure 8.7. The potential energy is the area under the shaded rectangles; it is always at least
half the total travel time, which is the area inside the enclosing rectangle.
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BA

C

D

x/100 12

12 y/100

Figure 8.8. Traffic Network.
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BA

C

D

x/100

3.1

3.1

y/100

Figure 8.9. Traffic Network
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Alternate bid bi”

Truthful bid bi = vi

Alternate bid bi’
Raised bid affects outcome only if 
highest other bid bj is in between.

If so, i wins but pays more than value.

Lowered bid affects outcome only if 
highest other bid bk is in between.

If so, i loses when it was possible 
to win with non-negative payoff

Figure 9.1. If bidder i deviates from a truthful bid in a second-price auction, the payoff is only
affected if the change in bid changes the win/loss outcome.
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Room1

Room2

Room3

Room4

Room5

Vikram

Wendy

Xin

Yoram

Zoe

(a)

Room1 

Room2

Room3

Room4

Room5

Vikram

Wendy

Xin

Yoram

Zoe

(b)

Figure 10.1. (a) An example of a bipartite graph. (b) A perfect matching in this graph, indicated
via the dark edges.
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Room1 

Room2

Room3

Room4

Room5

Vikram

Wendy

Xin

Yoram

Zoe

(a)

Room1 

Room2

Room3

Room4

Room5

Vikram

Wendy

Xin

Yoram

Zoe

(b)

Figure 10.2. (a) A bipartite graph with no perfect matching. (b) A constricted set demonstrating
there is no perfect matching.
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Room1

Room2

Room3

Xin

Yoram

Zoe

12, 2, 4

8, 7, 6

7, 5, 2

Valuations

(a)

Room1

Room2

Room3

Xin

Yoram

Zoe

12, 2, 4

8, 7, 6

7, 5, 2

Valuations

(b)

Figure 10.3. (a) A set of valuations. Each person’s valuations for the objects appears as a list
next to them. (b) An optimal assignment with respect to these valuations.
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Room1

Room2

Room3

Xin

Yoram

Zoe

(a)

Room1 

Room2

Room3

Xin

Yoram

Zoe

1, 1, 0

1, 0, 0

0, 1, 1

(b)

Figure 10.4. (a) A bipartite graph in which we want to search for a perfect matching. (b) A
corresponding set of valuations for the same nodes so that finding the optimal assignment lets
us determine whether there is a perfect matching in the original graph.
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a

b

c

x

y

z

12, 4, 2

8, 7, 6

7, 5, 2

Sellers Buyers Valuations

(a)

a

b

c

x

y

z

12, 4, 2

8, 7, 6

7, 5, 2

5

2

0

Prices Sellers Buyers Valuations

(b)

a

b

c

x

y

z

12, 4, 2

8, 7, 6

7, 5, 2

2

1

0

Prices Sellers Buyers Valuations

(c)

a

b

c

x

y

z

12, 4, 2

8, 7, 6

7, 5, 2

3

1

0

Prices Sellers Buyers Valuations

(d)

Figure 10.5. (a) Three sellers (a, b, and c) and three buyers (x , y, and z). For each buyer node,
the valuations for the houses of the respective sellers appear in a list next to the node. (b) Each
buyer creates a link to her preferred seller. The resulting set of edges is the preferred-seller graph
for this set of prices. (c) The preferred-seller graph for prices 2, 1, 0. (d) The preferred-seller
graph for prices 3, 1, 0.
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a

b

c

x

y

z

12, 4, 2

8, 7, 6

7, 5, 2

0

0

0

Prices Sellers Buyers Valuations

(a)

a

b

c

x

y

z

12, 4, 2

8, 7, 6

7, 5, 2

1

0

0

Prices Sellers Buyers Valuations

(b)

a

b

c

x

y

z

12, 4, 2

8, 7, 6

7, 5, 2

2

0

0

Prices Sellers Buyers Valuations

(c)

a

b

c

x

y

z

12, 4, 2

8, 7, 6

7, 5, 2

3

1

0

Prices Sellers Buyers Valuations

(d)

Figure 10.6. The auction procedure applied to the example from Figure 10.5. Each separate
picture shows steps (i) and (ii) of successive rounds, in which the preferred-seller graph for that
round is constructed.
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a

b

c

x

y

z

3, 0, 0

2, 0, 0

1, 0, 0

0

0

0

Prices Sellers Buyers Valuations

(a)

a

b

c

x

y

z

3, 0, 0

2, 0, 0

1, 0, 0

2

0

0

Prices Sellers Buyers Valuations

(b)

Figure 10.7. A single-item auction can be represented by the bipartite graph model: the item is
represented by one seller node, and then there are additional seller nodes for which all buyers
have 0 valuation. (a) The start of the bipartite graph auction. (b) The end of the bipartite graph
auction, when buyer x gets the item at the valuation of buyer y.
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WA

B X

(a)

WA

B X

(b)

WA

B X
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Figure 10.8. (a) A matching that does not have maximum size. (b) What a matching does not
have maximum size, we can try to find an augmenting path that connects unmatched nodes
on opposite sides while alternating between non-matching and matching edges. (c) If we then
swap the edges on this path — taking out the matching edges on the path and replacing them
with the non-matching edges — then we obtain a larger matching.
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Figure 10.9. The principle used in Figure 10.8 can be applied to larger bipartite graphs as
well, sometimes producing long augmenting paths.
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Figure 10.10. In more complex graphs, finding an augmenting path can require a more careful
search, in which choices lead to “dead ends” while others connect two unmatched nodes.
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Figure 10.11. In an alternating breadth-first search, one constructs layers that alternately use
non-matching and matching edges; if a unmatched node is ever reached, this results in an
augmenting path.
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Figure 10.12. A schematic view of alternating breadth-first search, which produces pairs of
layers of equal size.
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Figure 10.13. (a) A matching that has maximum size, but is not perfect. (b) For such a matching,
the search for an augment path using alternating breadth-first search will fail. (c) The failure of
this search exposes a constricted set: the set of nodes belonging to the even layers.
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Figure 10.14. If the alternating breadth-first search fails from any node on the right-hand side,
this is enough to expose a constricted set and hence prove there is no perfect matching.
However, it is still possible that an alternating breadth-first search could still succeed from
some other node. (In this case, the search from W would fail, but the search from Y would
succeed.)
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Figure 10.15. The map for a parking-space market. (Image from Google Maps,
http://maps.google.com/)
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BID
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(a)
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$4.00
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BID

ASK

(b)

Figure 11.1. (a) A book of limit orders for a stock with a bid of $4 and an ask of $5. (b) A book
of limit orders for a stock with a bid of $4 and an ask of $5.50.
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Figure 11.2. Trading networks for agricultural markets can be based on geographic constraints,
giving certain buyers (nodes labeled B) and sellers (nodes labeled S) greater access to traders
(nodes labeled T).
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0
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1
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vi vj

Figure 11.3. A standardized view of the trading network from Figure 11.2: Sellers are repre-
sented by circles on the left, buyers are represented by circles on the right, and traders are
represented by squares in the middle. The value that each seller and buyer places on a copy
of the good is written next to the respective node that represents them.
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(b)

Figure 11.4. (a) Each trader posts bid prices to the sellers he is connected to, and ask prices to
the buyers he is connected to. (b) This in turn determines a flow of goods, as sellers and buyers
each choose the offer that is most favorable to them.
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Figure 11.5. Relative to the choice of strategies in Figure 11.4(b), trader T 1 has a way to
improve his payoff by undercutting T 2 and performing the transaction that moves S2’s copy
of the good to B2.
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Figure 11.6. A simple example of a trading network in which the trader has a monopoly and
extracts all of the surplus from trade.
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x x

x x

Figure 11.7. A trading network in which there is perfect competition between the two traders,
T1 and T2. The equilibrium has a common bid and ask of x , where x can be any real number
between 0 and 1.
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Figure 11.8. The equilibria for the trading network from Section 11.2. This network can be
analyzed using the ideas from the simpler networks representing monopoly and perfect com-
petition.
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Figure 11.9. A form of implicit perfect competition: all bid/ask spreads will be zero in equilib-
rium, even though no trader directly “competes” with any other trader for the same buyer-seller
pair.
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Figure 11.10. (a) A single-item auction can be represented using a trading network. (b) Equi-
librium prices and flow of goods. The resulting equilibrium implements the second-price rule
from Chapter 9.
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Figure 11.11. (a) Equilibrium before the new S2-T 2 link is added. (b) When the S2-T 2 edge
is added, a number of changes take place in the equilibrium. Among these changes is the fact
that buyer B1 no longer gets a copy of the good, and B3 gets one instead.
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Figure 11.12. Whether a trader can make a profit may depend on the choice of equilibrium.
In this trading network, when x = 1, traders T 1 and T 5 make a profit, while when x = 0, only
trader T 3 makes a profit.
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Figure 11.13. Despite a form of monopoly power in this network, neither trader can make a
profit in any equilibrium.
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D
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Figure 12.1. A social network on five people, with node B occupying an intuitively powerful
position.
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Figure 12.2. Paths of lengths 2, 3, 4, and 5 form instructive examples of different phenomena
in exchange networks.
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Figure 12.3. An exchange network with a weak power advantage for node B.
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Figure 12.4. An exchange network in which negotiations never stabilize.
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sells to A for x: payoff of x 

receives good of value 1: payoff of 1-x

Figure 12.5. An exchange network built from the 4-node path can also be viewed as a buyer-
seller network with 2 sellers and 2 buyers.
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Figure 12.6. Two nodes bargaining with outside options.
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Figure 12.7. Some examples of stable and unstable outcomes of network exchange on the
3-node path and the 4-node path. The darkened edges constitute matchings showing who
exchanges with whom, and the numbers above the nodes represent the values.
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Figure 12.8. The difference between balanced and unbalanced outcomes.
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Figure 12.9. A balanced outcome on the stem graph.
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Figure 12.10. A graph used for a network exchange theory experiment.
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Figure 12.11.
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Figure 12.12. A graph used for a network exchange theory experiment.
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Figure 12.13.
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Figure 12.14. A 4-node path in a network exchange theory experiment.
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Figure 12.15. A 3-node path (right) and a 4-node path (left).
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Figure 12.16. The graph for the network exchange theory experiment in part (b).
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Figure 13.1. A set of four Web pages.
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Figure 13.2. Information on the Web is organized using a network metaphor: The links among
Web pages turn the Web into a directed graph.
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1985

Coleman
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Milgram
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Figure 13.3. The network of citations among a set of research papers forms a directed graph
that, like the Web, is a kind of information network. In contrast to the Web, however, the
passage of time is much more evident in citation networks, since their links tend to point
strictly backward in time.
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Figure 13.4. The cross-references among a set of articles in an encyclopedia forms another
kind of information network that can be represented as a directed graph. The figure shows
the cross-references among a set of Wikipedia articles on topic in game theory, and their
connections to related topics including popular culture and government agencies.
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Figure 13.5. Part of Douglas Hofstadter’s semantic network representing the rela-
tionships among concepts in his book Gödel, Escher, Bach [217]. (Image from
http://caad.arch.ethz.ch/teaching/nds/ws98/script/text/img-text/hofstadter2.gif)
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Figure 13.6. A directed graph formed by the links among a small set of Web pages.
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Figure 13.7. A directed graph with its strongly connected components identified.
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Figure 13.8. A schematic picture of the bow-structure of the Web (image from [79]).
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Figure 13.9. A directed graph of Web pages.
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Figure 14.1. Counting in-links to pages for the query “newspapers.”
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Figure 14.2. Finding good lists for the query “newspapers”: each page’s value as a list is written
as a number inside it.
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Figure 14.3. Re-weighting votes for the query “newspapers”: each of the labeled page’s new
score is equal to the sum of the values of all lists that point to it.
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Figure 14.4. Re-weighting votes after normalizing for the query “newspapers.”
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Figure 14.5. Limiting hub and authority values for the query “newspapers.”
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Figure 14.6. A collection of eight pages: A has the largest PageRank, followed by B and C
(which collect endorsements from A).
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Figure 14.7. Equilibrium PageRank values for the network of eight Web pages from Figure 14.6.
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Figure 14.8. The same collection of eight pages, but F and G have changed their links to point
to each other instead of to A. Without a smoothing effect, all the PageRank would go to F and
G.
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Figure 14.9. The rising and falling authority of key Fifth Amendment cases from the 20th

century illustrates some of the relationships among them. (Image from [165].)
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Figure 14.10. Roe v. Wade and Brown v. Board of Education acquired authority at very different
speeds. (Image from [165].)
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node 1 0 1 0 1

0 0 1 1

1 0 0 0

0 0 1 0
node 4node 3

node 2

Figure 14.11. The directed hyperlinks among Web pages can be represented using an adja-
cency matrix M: the entry Mi j is equal to 1 if there is a link from node i to node j , and Mi j = 0
otherwise.
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2

6

4

3

=

9

7

2

4
node 4node 3

node 2

Figure 14.12. By representing the link structure using an adjacency matrix, the Hub and
Authority Update Rules become matrix-vector multiplication.
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node 1 0 1/2 0 1/2

0 0 1/2 1/2

1 0 0 0

0 0 1 0
node 4node 3

node 2

Figure 14.13. The flow of PageRank under the Basic PageRank Update Rule can be represented
using a matrix N derived from the adjacency matrix M: the entry Ni j specifies the portion of
i ’s PageRank that should be passed to j in one update step.
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node 1 .05 .45 .05 .45

.05 .05 .45 .45

.85 .05 .05 .05

.05 .05 .85 .05
node 4node 3

node 2

Figure 14.14. The flow of PageRank under the Scaled PageRank Update Rule can also be
represented using a matrix derived from the adjacency matrix M (shown here with scaling
factor s = 0.8). We denote this matrix by Ñ; the entry Ñi j specifies the portion of i ’s PageRank
that should be passed to j in one update step.
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Figure 14.15.



P1: SBT

cuus984-net CUUS984-Easley 0 521 19533 1 November 30, 2009 16:2

230

F

G

H

C

AD

BE

Figure 14.16. A network of Web pages.
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Figure 14.17. A network of Web pages.
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Figure 14.18.
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Figure 14.19. A network of Web pages.
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Figure 14.20. A network of Web pages.
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Figure 14.21. A collection of 6 Web pages, with possible PageRank values.
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Figure 14.22.
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Figure 15.1. Search engines display paid advertisements (shown on the right-hand side of the
page in this example) that match the query issued by a user. These appear alongside the results
determined by the search engine’s own ranking method (shown on the left-hand side). An
auction procedure determines the selection and ordering of the ads.
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Figure 15.2. In the basic set-up of a search engine’s market for advertising, there are a certain
number of advertising slots to be sold to a population of potential advertisers. Each slot has
a clickthrough rate: the number of clicks per hour it will receive, with higher slots generally
getting higher clickthrough rates. Each advertisers has a revenue per click, the amount of
money it expects to receive, on average, each time a user clicks on one of its ads and arrives
at its site. We draw the advertisers in descending order of their revenue per click; for now,
this is purely a pictorial convention, but in Section 15.2 we will show that the market in fact
generally allocates slots to the advertisers in this order.
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13
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Figure 15.3. The allocation of advertising slots to advertisers can be represented as a matching
market, in which the slots are the items to be sold, and the advertisers are the buyers. An
advertiser’s valuation for a slot is simply the product of its own revenue per click and the
clickthrough rate of the slot; these can be used to determine market-clearing prices for the
slots.
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If x weren't there, y 
would do better by 
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for a total harm of 13.

(a)
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slots advertisers valuations

If y weren't there, x 
would be unaffected,
and z would do better 
by 5-2=3, for a total 

harm of 3.

(b)

Figure 15.4. The VCG price an individual buyer pays for an item can be determined by working
out how much better off all other buyers would be if this individual buyer were not present.
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Figure 15.5. The heart of the proof that the VCG procedure encourages truthful bidding comes
down to a comparison of the value of two matchings.
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Figure 15.6. An example of a set of advertisers and slots for which truthful bidding is not
an equilibrium in the Generalized Second Price auction. Moreover, this example possesses
multiple equilibria, some of which are not socially optimal.
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Figure 15.7. Representing the example in Figure 15.6 as a matching market, with advertiser
valuations for the full set of clicks associated with each slot.
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Figure 15.8. Determining market-clearing prices for the example in Figure 15.6, starting with
its representation as a matching market.
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Prices Sellers Buyers Valuations

Figure 15.9. A matching market, with valuations and market-clearing prices specified, and a
perfect matching in the preferred-seller graph indicated by the bold edges.
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i
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i*

k

m

There is an alternating path, 
beginning with a non-matching edge, 

from i to an item (i*) of price 0.

price 0

Figure 15.10. The key property of the preferred-seller graph for minimum market-clearing
prices: for each item of price greater than 0, there is an alternating path, beginning with a
non-matching edge, to an item of price 0.
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Figure 15.11. A matching market with market-clearing prices of minimum total sum. Note
how from each item, there is an alternating path, beginning with a non-matching edge, that
leads to the item of zero price.
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Figure 15.12. If we start with the example in Figure 15.11 and zero out buyer x , the structure
of the optimal matching changes significantly.
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Figure 15.13. However, even after we zero out buyer x , the same set of prices remain market-
clearing. This principle is true not just for this example, but in general.
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i

h k

?

j

Figure 15.14. In order for a matching edge from a buyer k to an item h to leave the preferred-
seller graph when the price of i is reduced by 1, it must be that k now strictly prefers i . In this
case, k must have previously viewed i as comparable in payoff to h, resulting in a non-matching
edge to i .
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i

h k

m

X
(1) No matching edges from a 
buyer in X to an item not in X.

(2) No non-matching edges 
from an item in X to a buyer 

not in X.

Figure 15.15. Consider the set X of all nodes that can be reached from i using an alternating
path that begins with a non-matching edge. As we argue in the text, if k is buyer in X , then the
item to which she is matched must also be in X . Also, if h is an item in X , then any buyer to
which h is connected by a non-matching edge must also be in X . Here is an equivalent way
to phrase this: there cannot be a matching edge connecting a buyer in X to an item not in X ,
or a non-matching edge connecting an item in X to a buyer not in X ,
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f

e n

X If n was matched to e but now strictly 
prefers f, then:

(1) n must have had a 
         non-matching edge to f,

(2) f must be in X, and
(3) e must not be in X.

In this case, either the f-n edge or the 
e-n edge causes a contradiction.

......

Figure 15.16. We can reduce the prices of all items in X by 1 and still retain the market-
clearing property: as we argue in the text, the only way this can fail is if some matching edge
connects a buyer in X to an item not in X , or some non-matching edge connects an item in X
to a buyer not in X . Either of these possibilities would contradict the facts in Figure 15.15.
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j

k

m

When j is matched to i in the original 
market, first find a path to a zero-

priced item i*.

Figure 15.17. The first step in analyzing the market with j zeroed out: find an alternating path
from item i — to which buyer j was matched in the original market — to a zero-priced item
i ∗.
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In the zeroed-out market, j loses its 
preferred-seller edge to i, but acquires 

a preferred-seller edge to i*.

Figure 15.18. The second step in analyzing the market with j zeroed out: build the new
preferred-seller graph by rewiring j ’s preferred-seller edges to point to the zero-priced items.



P1: SBT

cuus984-net CUUS984-Easley 0 521 19533 1 November 30, 2009 16:2

255

i

h

i*

j

k

m

We can still find a perfect matching in 
this new preferred-seller graph. This
means that the same prices are also 
market-clearing for the zeroed-out 

market.

Figure 15.19. The third and final step in analyzing the market with j zeroed out: observe that
the rewired preferred-seller graph still contains a perfect matching, in which j is now paired
with i ∗.
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A BA B

Figure 16.1. Two events A and B in a sample space, and the joint event A ∩ B.



P1: SBT

cuus984-net CUUS984-Easley 0 521 19533 1 November 30, 2009 16:2

257

Signals

States
B G

L q 1 − q

H 1 − q q

Figure 16.2. The probability of receiving a low or high signal, as a function of the two possible
states of the world (G or B).
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Figure 16.3. .
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0 1

r(1)

r(0)

Price

Consumers

price p

x

y = r(x)

y = p

Figure 17.1. When there are no network efforts, the demand for a product at a fixed market
price p can be found by locating the point where the curve y = r (x ) intersects the horizontal
line y = p.
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0 1

r(1)

r(0)

Price

Consumers

p*

y = r(x)

constant cost per unit p*

equilibrium
quantity x*

Figure 17.2. When copies of a good can be produced at a constant cost p∗ per unit, the
equilibrium quantity consumed will be the number x∗ for which r (x∗) = p∗.
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0 1

Price

Consumers

p*

z' z''

Figure 17.3. Suppose there are network effects and f (0) = 0, so that the good has no value to
people when no one is using it. In this case, there can be multiple self-fulfilling expectations
equilibria: at z = 0, and also at the points where the curve r (z) f (z) crosses the horizontal line
at height p∗.
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Shared Expectation z

Outcome

z
z = g(z)

Figure 17.4. From a model with network effects, we can define a function ẑ = g(z): if everyone
expects a z fraction of the population to purchase the good, then in fact a g(z) fraction will do
so.
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Shared Expectation z

Outcome

z

z' z''

z = z

z = g(z)

Figure 17.5. When r (x ) = 1 − x and f (z) = z, we get the curve for g(z) shown in the plot:
g(z) = 1 − p∗/z if z ≥ p∗ and g(z) = 0 if z < p∗. Where the curve ẑ = g(z) crosses the line
ẑ = z, we have self-fulfilling expectations equilibria. When ẑ = g(z) lies below the line ẑ = z,
we have downward pressure on the consumption of the good (indicated by the downward
arrows); when ẑ = g(z) lies above the line ẑ = z, we have upward pressure on the consumption
of the good (indicated by the upward arrows). This indicates visually why the equilibrium at z′

is unstable while the equilibrium at z′′ is stable.
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Shared Expectation z

Outcome

z

z' z''

z = z

z = g(z)

Figure 17.6. This curve g(z), and its relation to the line ẑ = z, illustrates a pattern that we
expect to see in settings more general than just the example used for Figure 17.5.
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z = z

z = g(z)

Figure 17.7. A “zoomed-in” region of a curve ẑ = g(z) and its relation to the line ẑ = z.



P1: SBT

cuus984-net CUUS984-Easley 0 521 19533 1 November 30, 2009 16:2

266

z = z

z = g(z)

(z   , z  )0 0

(z   , z  )0 1

(z   , z  )1 1

Figure 17.8. The audience size changes dynamically as people react to the current audience
size. This effect can be tracked using the curve ẑ = g(z) and the line ẑ = z.
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z = z

z = g(z)

(z   , z  )0 0

(z   , z  )0 1

(z   , z  )1 1

(z   , z  )1 2

(z   , z  )2 2

Figure 17.9. Successive updates cause the audience size to converge to a stable equilibrium
point (and to move away from the vicinities of unstable ones).
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Shared Expectation z

Outcome

z

z = z

z = g(z)

Figure 17.10. When f (0) > 0, so that people have value for the product even when they are
the only user, the curve ẑ = g(z) no longer passes through the point (0, 0), and so an audience
size of 0 is no longer an equilibrium.
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Shared Expectation z

Outcome

z

z = z

z = g(z)

(z   , z  )1 1

(z   , z  ) 0 0 = (0,0)

stable equilibrium (z*,z*)

stable equilibrium (z**,z**)

Figure 17.11. The audience grows dynamically from an initial size of zero to a relatively small
stable equilibrium size of z∗.
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Shared Expectation z

Outcome

z

z = z

z = g(z)

stable equilibrium

Figure 17.12. If the price is reduced slightly, the curve ẑ = g(z) shifts upward so that it no
longer crosses the line ẑ = z in the vicinity of the point (z∗, z∗).
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Shared Expectation z

Outcome
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z = z

z = g(z)

(z   , z  )1 1
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(z   , z  )2 2

(z   , z  )3 3

(z   , z  )4 4

(z   , z  )5 5

(z   , z  )6 6

stable equilibrium

Figure 17.13. The small reduction in price that shifted the curve ẑ = g(z) has a huge effect on
the equilibrium audience size that is reached starting from zero.
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Player 1

Player 2
Stay Go

Stay 0, 0 0, x

Go x, 0 −y, −y

Figure 17.14. Two-Player El Farol Problem



P1: SBT

cuus984-net CUUS984-Easley 0 521 19533 1 November 30, 2009 16:2

273

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
−4 −3 −2 −1 0 1 2 3 4

Figure 18.1. The density of values in the normal distribution.



P1: SBT

cuus984-net CUUS984-Easley 0 521 19533 1 November 30, 2009 16:2

274

In-degree (total, remote-only) distr.
1e + 10

1e + 09

1e + 08

1e + 07

1e + 06

100000

Power law, exponent 2.09

Power law, exponent 2.1

Total in-degree

Remote-only in-degree

10000

1000nu
m

be
r 

of
 p

ag
es

100

10

1 1 10 100
in-degree

100000

Figure 18.2. A power law distribution (such as this one for the number of Web page in-links,
from Broder et al. [79]) shows up as a straight line on a log-log plot.
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Figure 18.3. The distribution of popularity.
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Figure 18.4. The distribution of popularity.



P1: SBT

cuus984-net CUUS984-Easley 0 521 19533 1 November 30, 2009 16:2

277

v

w

A B

A a, a 0, 0
B 0, 0 b, b

Figure 19.1. A-B Coordination Game
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Figure 19.2. v must choose between behavior A and behavior B, based on what its neighbors
are doing.
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Figure 19.3. Starting with v and w as the initial adopters, and payoffs a = 3 and b = 2, the
new behavior A spreads to all nodes in two steps. Nodes adopting A in a given step are drawn
with dark borders; nodes adopting B are drawn with light borders.
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Figure 19.4. A larger example.
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Figure 19.5. Starting with nodes 7 and 8 as the initial adopters, the new behavior A spreads
to some but not all of the remaining nodes.
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Figure 19.6. A collection of four-node clusters, each of density 2/3.
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Figure 19.7. Two clusters of density 2/3 in the network from Figure 19.4.
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v
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Figure 19.8. The spread of a new behavior, when nodes have threshold q, stops when it
reaches a cluster of density greater than (1 − q).
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Figure 19.9. If the spread of A stops before filling out the whole network, the set of nodes that
remain with B form a cluster of density greater than 1 − q.
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Figure 19.10. The years of first awareness and first adoption for hybrid seed corn in the Ryan-
Gross study. (Image from [352].)
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Figure 19.11. The u-w and v-w edges are more likely to act as conduits for information than
for high-threshold innovations.
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Figure 19.12. A-B Coordination Game
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Figure 19.13. Starting with node 1 as the unique initial adopter, the new behavior A spreads
to some but not all of the remaining nodes.
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Figure 19.14. Each node in the network has a threshold for participation, but only knows the
threshold of itself and its neighbors.
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Figure 19.15. An infinite path with a set of early adopters of behavior A (shaded).
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Figure 19.16. An infinite grid with a set of early adopters of behavior A (shaded).
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Figure 19.17. Let the nodes inside the dark oval be the adopters of A. One step of the process
is shown, in which v and w adopt A: after they adopt, the size of the interface has strictly
decreased. In general, the size of the interface strictly decreases with each step of the process
when q > 1

2 .
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Figure 19.18. A Coordination Game with a bilingual option. Here the notation (a, b)+ denotes
the larger of a and b.
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Figure 19.19. An infinite path, with nodes r and s as initial adopters of A.
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r s u w yvxz

Start B B B A A B B B

Step 1 B B AB A A AB B B

Step 2 B AB AB A A AB AB B

Step 3 AB AB A A A A AB AB

Step 4 AB A A A A A A AB

Figure 19.20. With payoffs a = 5 and b = 3 for interaction using A and B respectively, and a
cost c = 1 for being bilingual, the strategy A spreads outward from the initial adopters r and s
through a two-phase structure. First, the strategy AB spreads, and then behind it, nodes switch
permanently from AB to A.
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payoff from choosing AB: a + 1 - c

Figure 19.21. The payoffs to a node on the infinite path with two neighbors using A and B.
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Figure 19.22. Given a node with neighbors using A and B, the values of a and c determine
which of the strategies A, B, or AB it will choose. (Here, by re-scaling, we can assume b = 1.)
We can represent the choice of strategy as a function of a and c by dividing up the (a, c)-plane
into regions corresponding to different choices.
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Figure 19.23. The payoffs to a node on the infinite path with two neighbors using AB and B.
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Figure 19.24. Given a node with neighbors using AB and B, the values of a and c determine
which of the strategies A, B, or AB it will choose, as shown by this division of the (a, c)-plane
into regions.
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Figure 19.25. There are four possible outcomes for how A spreads or fails to spread on the
infinite path, indicated by this division of the (a, c)-plane into four regions.
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Figure 19.26. The set of values for which a cascade of A’s can occur defines a region in the
(a, c)-plane consisting of a vertical line with a triangular “cut-out.”
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Figure 19.27.
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Figure 19.28.
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Figure 19.29. A social network in which a new behavior is spreading.
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Figure 19.30. A social network on which a new behavior diffuses.
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Figure 19.31.
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Figure 20.1. Social networks expand to reach many people in only a few steps.
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(a) (b)

Figure 20.2. The Watts-Strogatz model arises from a highly clustered network (such as the
grid), with a small number of random links added in.
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Figure 20.3. The general conclusions of the Watts-Strogatz model still follow even if only a
small fraction of the nodes on the grid each have a single random link.
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Figure 20.4. A drawing of one of the successful paths converging on the target person, from
Milgram’s original article in Psychology Today. (Image from [292].)
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(a) (b)

Figure 20.5. With a small clustering exponent, the random edges tend to span long distances
on the grid; as the clustering exponent increases, the random edges become shorter.
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Figure 20.6. Simulation of decentralized search in the grid-based model with clustering expo-
nent q. Each point is the average of 1000 runs on (a slight variant of) a grid with 400 million
nodes. The delivery time is best in the vicinity of exponent q = 2, as expected; but even with
this number of nodes, the delivery time is comparable over the range between 1.5 and 2 [244].
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Figure 20.7. The concentric scales of resolution around a particular node.
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Figure 20.8. The population of the LiveJournal network studied by Liben-Nowell et al. (Image
from [272].)
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distance d

rank ~ d 2
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Figure 20.9. When the population density is non-uniform, it can be useful to understand how
far w is from v in terms of its rank rather than its physical distance. In (a), we say that w has
rank 7 with respect to v because it is the 7th closest node to v, counting outward in order of
distance. In (b), we see that for the original case in which the nodes have a uniform population
density, a node w at distance d from v will have a rank that is proportional to d2, since all the
nodes inside the circle of radius d will be closer to v than w is.
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Figure 20.10. The probability of a friendship as a function of geographic rank on the blogging
site LiveJournal. (Image from [272].)
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v

Figure 20.11. When nodes belong to multiple foci, we can define the social distance between
two nodes to be the smallest focus that contains both of them. In the figure, the foci are
represented by ovals; the node labeled v belongs to five foci of sizes 2, 3, 5, 7, and 9 (with the
largest focus containing all the nodes shown).
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Figure 20.12. The pattern of e-mail communication among 436 employees of Hewlett
Packard Research Lab is superimposed on the official organizational hierarchy, show-
ing how network links span different social foci [6]. (Image from http://www-
personal.umich.edu/ ladamic/img/hplabsemailhierarchy.jpg)
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Figure 20.13. The core-periphery structure of social networks.
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Figure 20.14. The analysis of decentralized search is a bit cleaner in one dimension than in
two, although it is conceptually easy to adapt the arguments to two dimensions. As a result, we
focus most of the discussion on a one-dimensional ring augmented with random long-range
links.
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Figure 20.15. In myopic search, the current message-holder chooses the contact the lies closest
to the target (as measured on the ring), and it forwards the message to this contact.
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Figure 20.16. We analyze the progress of myopic search in phases. Phase j consists of the
portion of the search in which the message’s distance from the target is between 2 j and 2 j+1.
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Figure 20.17. Determining the normalizing constant for the probability of links involves eval-
uating the sum of the first n/2 reciprocals. An upper bound on the value of this sum can be
determined from the area under the curve y = 1/x .
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Figure 20.18. At any given point in time, the search is in some phase j , with the message
residing at a node v at distance d from the target. The phase will come to an end if v’s long-
range contact lies at distance ≤ d/2 from the target t, and so arguing that the probability of
this event is large provides a way to show that the phase will not last too long.
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there are d+1 nodes within distance 
d/2 of t, and each has prob. at least 

proportional to 1/(d log n)

Figure 20.19. Showing that, with reasonable probability, v’s long-range contact lies within
half the distance to the target.



P1: SBT

cuus984-net CUUS984-Easley 0 521 19533 1 November 30, 2009 16:2

327

t

v

w

distance d

radius d/2

Figure 20.20. The analysis for the one-dimensional ring can be carried over almost directly to
the two-dimensional grid. In two dimensions, with the message at a current distance d from
the target t, we again look at the set of nodes within distance d/2 of t, and argue that the
probability of entering this set in a single step is reasonably large.
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Figure 20.21. To show that decentralized search strategies require large amounts of time with
exponent q = 0, we argue that it is difficult for the search to cross the set of

√
n nodes closest

to the target. Similar arguments hold for other exponents q < 1.
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(b)

(c)

Figure 21.1. The branching process model is a simple framework for reasoning about the
spread of an epidemic as one varies both the amount of contact among individuals and the
level of contagion.
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Figure 21.2. The course of an SIR epidemic in which each node remains infectious for a
number of steps equal to tI = 1. Starting with nodes y and z initially infected, the epidemic
spreads to some but not all of the remaining nodes. In each step, shaded nodes with dark
borders are in the Infectious (I ) state and shaded nodes with thin borders are in the Removed
(R) state.
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Figure 21.3. In this network, the epidemic is forced to pass through a narrow “channel” of
nodes. In such a structure, even a highly contagious disease will tend to die out relatively
quickly.
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Figure 21.4. An equivalent way to view an SIR epidemic is in terms of percolation, where
we decide in advance which edges will transmit infection (should the opportunity arise) and
which will not.
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Figure 21.5. In an SIS epidemic, nodes can be infected, recover, and then be infected again.
In each step, the nodes in the Infectious state are shaded.
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Figure 21.6. An SIS epidemic can be represented in the SIR model by creating a separate copy
of the contact network for each time step: a node at time t can infect its contact neighbors at
time t + 1.
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Figure 21.7. These plots depict the number of infected people over time (the quantity ninf(t) on
the y-axis) by SIRS epidemics in networks with different proportions of long-range links. With
c representing the fraction of long-range links, we see an abscence of oscillations for small
c (c = 0.01), wide oscillations for large c (c = 0.9), and a transitional region (c = 0.2) where
oscillations intermittently appear and then disappear. (Results and image from [263].)
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Figure 21.8. Different timings for the edges in a contact network can affect the potential for a
disease to spread among individuals. For example, in (a) the disease can potentially pass all
the way from u to y, while in (b) it cannot.
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Figure 21.9. A disease tends to be able to spread more widely with concurrent partnerships
(b) than with serial partnerships (a).
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Figure 21.10. In larger networks, the effects of concurrency on disease spreading can become
particularly pronounced.
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current generation

new generation

each offspring comes from 
a single parent chosen 

uniformly at random

Figure 21.11. In the basic Wright-Fisher model of single-parent ancestry, time moves step-
by-step in generations; there are a fixed number of individuals in each generation; and each
offspring in a new generation comes from a single parent in the current generation.
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Figure 21.12. We can run the model forward in time through a sequence of generations,
ending in a set of present-day individuals. Each present-day individual can then follow its
single-parent lineage by following edges leading upward through the network.
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Figure 21.13. A re-drawing of the single-parent network fom Figure 21.12. As we move back
in time, lineages of different present-day individuals coalesce until they have all converged at
the most recent common ancestor.
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Individual j is infected if each 
contact from the root to j 

successfully transmits the disease

j

Figure 21.14. To determine the probability that a particular node is infected, we multiply the
(independent) probabilities of infection on each edge leading from the root to the node.
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k   individuals

n

n

probability p   of each being infected

Figure 21.15. The expected number of individuals infected at level n is the product of the
number of individuals at that level (kn) and the probability that each is infected (pn).
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j

prob. q

prob p

n-1

n-1 levels

Figure 21.16. In order for there to be an infection at level n, the root must infect one of its
immediate descendents, and then this descendent must, recursively, produce an infection at
level n − 1.
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y = f(x)

y = x1

1

0

Figure 21.17. To determine the limiting probability of an infection at depth n, as n goes to
infinity, we need to repeatedly apply the function f (x ) = 1 − (1 − px )k, which is the basis for
the recurrence qn = f (qn−1).
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y = f(x)

y = x1

1

0

Figure 21.18. When we repeatedly apply the function f (x ), starting at x = 1, we can follow
its trajectory by tracing out the sequence of steps between the curves y = f (x ) and y = x .
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y = f(x)

y = x1

1

0

Figure 21.19. When y = f (x ) only intersects y = x at zero, the repeated application of f (x )
starting at x = 1 converges to 0.
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Figure 21.20. We can view the search for coalescence as a backward walk through a sequence
of earlier generations, following lineages as they collide with each other.
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From 6 to 5:
waiting for an event

of prob. 15/N

From 5 to 4: 
waiting for an event

of prob. 10/N

From 4 to 3: 
waiting for an event

of prob. 6/N

From 3 to 2: 
waiting for an event 

of prob. 3/N

From 2 to 1: 
waiting for an event 

of prob. 1/N

Figure 21.21. Assuming that no three lineages ever collide simultaneously, the time to coa-
lescence can be computed as the time for a sequence of distinct collision events to occur.
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v

u x

y

z

[1,3]

[5,9]

[14,18]

[12,16]

w

s

[7,12]

[4,8]

[10,16]

Figure 21.22. Contacts among a set of people, with time intervals showing when the contacts
occurred.
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a b c d e

Figure 21.23. A contact graph on five people.
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w

payoff

Figure 22.1. When we assume that an individual’s utility is logarithmic in his wealth, this
means that utility grows at a decreasing rate as wealth increases.
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0 0.2 0.4 0.6 0.8 1

-3.5

-3

-2.5

-2
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-1
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Figure 22.2. A plot of a ln(r ) + b ln(1 − r ) as a function of r , when a = 0.75. The maximum is
achieved when r = a.
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X

W

Suppose X defeats the most 
other alternatives, but W 

defeats X.

(a)

X

W

Then by transitivity, W defeats 
everything X defeats, plus X 
itself.  So W defeats more 

than X does.

(b)

Figure 23.1. With complete and transitive preferences, the alternative X that defeats the most
others in fact defeats all of them. If not, some other alternative W would defeat X (as in (a)),
but then by transitivity W would alternatives than X does (as in (b)).
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College National Ranking Average Class Size Scholarship Money Offered
X 4 40 $3000
Y 8 18 $1000
Z 12 24 $8000

Figure 23.2. When a single individual is making decisions based on multiple criteria, the
Condorcet Paradox can lead to non-transitive preferences. Here, if a college applicants wants
a school with a high ranking, small average class size, and a large scholarship offer, it is
possible for each option to be defeated by one of the others on a majority of the criteria.
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A B

D

C

Winner of 
A vs. B

Outcome of 
A-B winner 

vs. C

Overall group 
favorite

(a)

A B DC

Winner of 
A vs. B

Overall group 
favorite

Winner of 
C vs. D

(b)

Figure 23.3. One can use majority rule for pairs to build voting systems on three of more
alternatives. The alternatives are considered according to a particular “agenda” (in the form of
an elimination tournament), and they are eliminated by pairwise majority vote according to
this agenda. This produces an eventual winner that serves as the overall group favorite.
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X Y

Z

X wins 
here

Z wins 
overall

(a)

Z Y

X

Y wins 
here

X wins 
overall

(b)

Figure 23.4. With individual rankings as in the Condorcet Paradox, the winner of the elimina-
tion tournament depends entirely on how the agenda is set.
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rank

1

2

3

4

5

X1 X2 X3 X4 X5
alternatives

(a)

rank

1

2

3

4

5

X1 X2 X3 X4 X5
alternatives

(b)

rank

1

2

3

4

5

X1 X2 X3 X4 X5
alternatives

(c)

Figure 23.5. With single-peaked preferences, each voter’s ranking of alternatives decreases on
both sides of a “peak” corresponding to her favorite choice.
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rank

Xm Xt

alternatives

All voters with peaks left 
of Xm prefer Xm to Xt

Figure 23.6. The proof that the median individual favorite X m defeats every other alternative
X t in a pairwise majority vote: if X t is to the right of X m, then X m is preferred by all voters
whose peak is on X m or to its left. (The symmetric argument applies when X t is to the left of
X m.)
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Profile 1:

Individual Ranking Ranking restricted to X and Y

1 W � X � Y � Z X � Y

2 W � Z � Y � X Y � X

3 X � W � Z � Y X � Y

Profile 2:

Individual Ranking Ranking restricted to X and Y

1 X � Y � W � Z X � Y

2 Z � Y � X � W Y � X

3 W � X � Y � Z X � Y

Figure 23.7. The two profiles above involve quite different rankings, but for each individual,
her ranking restricted to X and Y in the first profile is the same as her ranking restricted to X
and Y in the second profile. If the voting system satisfies IIA, then it must produce the same
ordering of X and Y in the group ranking for both profiles.
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Profile P :

Individual Ranking
1 X � · · · � Y � · · · � Z � · · ·
2 X � · · · � Z � · · · � Y � · · ·
3 · · · � Y � · · · � Z � · · · � X

Profile P ′:

Individual Ranking
1 X � · · · � Z � Y � · · ·
2 X � · · · � Z � · · · � Y � · · ·
3 · · · � Z � Y � · · · � X

Figure 23.8. A polarizing alternative is one that appears at the beginning or end of every indi-
vidual ranking. A voting system that satisfies IIA must put such an alternative at the beginning
or end of the group ranking as well. The figure shows the key step in the proof of this fact,
based on rearranging individual rankings while keeping the polarizing alternative in its original
position.
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Profile P0:

Individual Ranking
1 · · · � Y � · · · � Z � · · · � X

2 · · · � Z � · · · � Y � · · · � X

3 · · · � Y � · · · � Z � · · · � X

Profile P1:

Individual Ranking
1 X � · · · � Y � · · · � Z � · · ·
2 · · · � Z � · · · � Y � · · · � X

3 · · · � Y � · · · � Z � · · · � X

Profile P2:

Individual Ranking
1 X � · · · � Y � · · · � Z � · · ·
2 X � · · · � Z � · · · � Y � · · ·
3 · · · � Y � · · · � Z � · · · � X

Profile P3:

Individual Ranking
1 X � · · · � Y � · · · � Z � · · ·
2 X � · · · � Z � · · · � Y � · · ·
3 X � · · · � Y � · · · � Z � · · ·

Figure 23.9. To find a potential dictator, one can study how a voting system behaves when we
start with an alternative at the end of each individual ranking, and then gradually (one person
at a time) move it to the front of people’s rankings.
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Optimal 
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Over-utilization

Figure 24.1. In the Tragedy of the Commons, a freely shared resource can easily be overused
unless some form of property rights are established.




