272 **Optical Amplification**

- **8.3.5** An Er:fiber is doped with an Er^{3+} ion concentration of $N_t = 2.2 \times 10^{24} \text{ m}^{-3}$ in its core. This fiber is a cylindrical waveguide that has a core radius of a = 4.5 µm. At the $\lambda = 1.53 \text{ µm}$ wavelength, the Er:fiber has an absorption cross section of $\sigma_a = 5.7 \times 10^{-25} \text{ m}^2$, an emission cross section of $\sigma_e = 7.9 \times 10^{-25} \text{ m}^2$, and an upper laser level lifetime of $\tau_2 = 10 \text{ ms}$. It can be optically pumped as a three-level system at the pump wavelength of $\lambda_p = 980 \text{ nm}$, where the absorption cross section is $\sigma_a^p = 2.58 \times 10^{-25} \text{ m}^2$. At the signal wavelength of $\lambda = 1.53 \text{ µm}$ and the pump wavelength of $\lambda_p = 980 \text{ nm}$, the guided signal and pump waves respectively have effective mode radii of $\rho = 4.1 \text{ µm}$ and $\rho_p = 3.3 \text{ µm}$ for their intensity profiles. The fractions of the signal and pump intensities that overlap with the core doped with active ions are determined by the confinement factors, which are $\Gamma = 0.70$ and $\Gamma_p = 0.72$, respectively. The pump quantum efficiency is $\eta_p = 0.8$.
 - (a) Find the pumping rates for this Er:fiber to reach transparency and to have an unsaturated gain coefficient of $g_0 = 0.3 \text{ m}^{-1}$, respectively, at $\lambda = 1.53 \text{ µm}$. What are the saturation lifetime and the saturation intensity in each case?
 - (b) Find the required pump intensities at $\lambda_p = 980$ nm to pump this Er:fiber to transparency and to have an unsaturated gain coefficient of $g_0 = 0.3 \text{ m}^{-1}$, respectively.
 - (c) Find the required pump powers for transparency and for $g_0 = 0.3 \text{ m}^{-1}$ by accounting for the overlap between the guided pump beam and the active core.
 - (d) When this Er:fiber is pumped to have an unsaturated gain coefficient of $g_0 = 0.3 \text{ m}^{-1}$ at $\lambda = 1.53 \text{ }\mu\text{m}$, a guided laser beam at this wavelength that has a power of P = 1 mW is sent through this fiber. Find the saturated gain coefficient by accounting for the overlap between the guided signal beam and the active core.
- **8.4.1** If the spot sizes of both beams in Example 8.7 are increased to $w_0 = 800 \,\mu\text{m}$, what is the output power from each amplifier?
- **8.4.2** A Ti:sapphire laser rod of the characteristics described in Problem 8.3.4 has a length of l = 4 cm and a cross-sectional diameter of d = 3 mm. The refractive index of sapphire is 1.76. The laser rod is uniformly pumped to have an unsaturated gain coefficient of $g_0 = 15 \text{ m}^{-1}$ at the wavelength of $\lambda = 800 \text{ nm}$. The saturation intensity at $g_0 = 15 \text{ m}^{-1}$ is $I_{\text{sat}} > 2 \text{ GW m}^{-2}$. A collimated Gaussian signal beam at $\lambda = 800 \text{ nm}$ that has a spot size of $w_0 = 300 \text{ µm}$ in the rod and a power of $P_s^{\text{in}} = 1 \text{ W}$ is sent through the Ti:sapphire amplifier. What is the output signal power from this Ti:sapphire amplifier?
- **8.4.3** An Er:fiber amplifier of the characteristics described in Problem 8.3.5 has a length of l = 10 m. It is uniformly pumped to have an unsaturated gain coefficient of $g_0 = 0.3$ m⁻¹ at its laser wavelength of $\lambda = 1.53$ µm. After accounting for the overlap between the guided signal beam and the active core, the saturation power at $g_0 = 0.3$ m⁻¹ is $P_{\text{sat}} = 1.49$ mW. If a guided signal beam at $\lambda = 1.53$ µm that has a power of $P_s^{\text{in}} = 10$ µW is sent through the Er:fiber amplifier, what is the amplified output signal power? What is the output signal power if the input signal power is increased to $P_s^{\text{in}} = 1$ mW?
- **8.5.1** A Nd:YAG crystal is doped with a Nd³⁺ concentration of $N_t = 1.38 \times 10^{26} \text{ m}^{-3}$. For its $\lambda = 1.064 \text{ }\mu\text{m}$ laser line, the emission cross section is $\sigma_e = 4.5 \times 10^{-23} \text{ m}^2$, the absorption cross section is $\sigma_a = 0$, and the spontaneous lifetime is $\tau_{sp} = 515 \text{ }\mu\text{s}$. A ruby crystal is doped with a Cr³⁺ concentration of $N_t = 1.58 \times 10^{25} \text{ m}^{-3}$. For its $\lambda = 694.3 \text{ }n\text{m}$ laser