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Introduction to the Physical and Biological 
Oceanography of Shelf Seas 

Book Website Software Guides 

 

Introduction 

These guides are designed to help you make the most of the software which is available at the 
book website (http:www.cambridge.org/shelfseas).  The software consists of a series of 
MATLAB scripts which range from simple demonstrations of key aspects of ocean dynamics 
and mixing to numerical models of shelf sea processes.   Each of the guides provides 
suggestions for running the programmes and for varying the input parameters to illustrate 
essential points.  You will also find  that the guides pose a number of questions, some easy, 
some not so easy, to expand and test your understanding of the processes involved. 

On the following page, you will see a table showing the subject areas of each of the six 
guides along with the relevant MATLAB scripts and the book chapters to which the guide 
mainly relates.  Remember also that, in the book, reference to the relevant  software  on the 
website is indicated by the software icon:    

             

 Accessing and running software  

In order to utilise the the software suite, you will need a computer equipped with MATLAB  
(version 7 or later ).  To install the Matlab Menu, proceed as follows: 

1) From the Website, download the folder OCEANDYN2  and install in an  appropriate 
directory on your computer. 
 

2) Open MATLAB and select OCEANDYN2 as your current folder 
 

3) Click on “file” and then  “ Set Path” 
 

4)  In dialogue box, select “Add with Subfolders” 
 

5) Select  OCEANDYN2 in browser window and click OK 
 

6) In the MATLAB command window type OCEANDYN and the main menu will 
appear.  Thereafter follow the instructions in the individual guides below.   

Note that all the MATLAB programme scripts are available for you to copy, develop and use 
to explore your own ideas and enhance your understanding 
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 Software Guides 

 

Guide MENU Sub-Menu MATLAB script 

    G1 BASIC DYNAMICS (a) Inertial Occillations Spindown2 

 
(Chapter 3) (b) Wind-driven flow Ekman3 

  
(c) Tide-driven flow Tidyn 

    G2 HEATING versus STIRRING  (a)Seasonal Cycle HS3 

 
(Chapter 6) (b) Front generation TMF1 

    G3 DENSITY-DRIVEN FLOW (a) Estuarine Circulation EstCirc 

 
(Chapter 9) (b)Heaps Solution Heaps Theory 

  
(c) ROFI Circulation ROFI2 

    G4 TURBULENCE CLOSURE  (a) Run with real wind data TC22aDem 

 
MODEL (Chapter4 & 7) (b )Run with seasonal Met data TC22aY 

    G5 TIDAL ANALYSIS (a)Least Squares Demo LST2 

 
(Chapter 2) (b)Analysis of heights & currents LSPrac 

    G6 FICKIAN DISPERSION (a) 1-d channel dispersion Gauss1 

 
(Chapter 4) (b) Gaussian patches merging Gauss2 

  
(c) Dispersion by Random Walk RWalk2 

  
(d) 1-d Advection +Dispersion GPAD2 

  
(e) Steady Shear Dispersion ShDis 

  
(f) Tidal Shear Dispersion TidShDis 
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G1: BASIC DYNAMICS (Chapter 3) 

Introduction 

This suite of 3 programs is designed to enable the student to study the dynamical response of 
the water column to the principal forcing mechanisms which operate in the shelf seas.  The set 
of dynamical equations are solved under simplifying assumptions  to give profiles of velocity  
at a single  point for different types of forcing. In the exercises which follow the student is 
introduced to fundamental motions, starting with inertial oscillations and proceeding to 
classical examples of motion forced by windstress and tidal  forces. The concept of a 
boundary layer and its development over time will be illustrated for both rotating and 
oscillating systems.  The mathematical requirement is limited to appreciating the terms in the 
primitive equations (which are set out in Chapter 3 of the book) and some simple algebraic 
and arithmetic manipulations.  Most important results are presented graphically to assist in 
development of physical intuitions.  In addition to the final steady state solutions, which can 
be obtained in many cases by analytical methods, you will also see the transient time-
dependent response which occurs as the system adjusts to the imposed forcing from an initial 
state at rest.  

These exercises allow you to vary the main controlling variables to see how they affect the 
ocean’s response.  You should do this in a systematic way, based on the suggested sequence 
of runs, to educate your own intuitions about the way the dynamical processes involved. 

 As you work through the exercises below, try to answer the questions identified in the 
text (*Q*). 

PART I :Inertial Oscillations (Spindown2) 

First read through the account of inertial oscillations in Section 3.4.1 of the book to see the  
balance of forces involved in this type of motion.  In the simple scenario to be modelled here, 
we assume that a whole water column is impulsively accelerated (i.e. given a push) in the y 
direction to a speed V0 at t=0; It then proceeds to move under the influence of the Coriolis 
force which, in the northern hemisphere, means it will be deflected further and further to the 
right so that it follows a circular path.  The radius of the circle is controlled by the Coriolis 
parameter, which depends on latitude, and the initial speed V0 .  If the motion is frictionless, 
as in the analysis in the book, the whole water column would continue indefinitely in the 
same circular orbit.  In the numerical model, however, we introduce friction at the seabed 
which acts to slow the near-bed current and extracts energy from the flow so that the motion 
slowly spins down.  The frictional stress at the bottom boundary is set by a quadratic drag law 
for the magnitude of the stress where kb =0.0025 is a drag coefficient and ub is 
the current speed at the bottom boundary.  The vertical extent of the influence friction is 
controlled by the eddy viscosity Nz which is  an adjustable parameter. 

Procedure 

1) Open MATLAB and select “OCEANDYN2” as your current folder.  Set Path to 
this folder and include all subfolders. 

2) In the command window, type:  OCEANDYN then press enter 

3) From the main menu select “Basic Dynamics”, then choose “Inertial Oscillations” 
from the sub-menu 
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4) For the first run, use the default option for the selectable parameters; the program 
pauses after 3 and 6 hours to show the progressive deflection of the current ( press 
enter to continue) 

You will see in fig.1 the slowly decreasing circular motion at the surface with 
sinusoidal components (shown in fig.2) and much weaker circular motion near the bed 
(fig.1 right panel). 

5) Now try experimenting with different values of latitude from tropics (+/- 10°) to 
the poles (+/- 90°).  For the moment, keep a fixed Nz = 0.01 m 2s-1 and V0=0.5 observe 
how the period of oscillations (“the inertial period”) and the size of the inertial circle 
changes with latitude.  Note the change in the sense of rotation between northern and 
southern hemispheres. 

6) Next, try varying  Nz to see how it changes the velocity profile and controls the rate 
of loss of kinetic energy from the flow.  

*Q1: At which latitudes would you expect resonant forcing of inertial oscillations by 
(a) diurnal (sea breeze) winds which have a period of 24 hours  and (b) the M2 tidal 
constituent which has a period of 12.42 hours ?* (Hint: Resonance occurs when the 
forcing frequency coincides with the  natural period of oscillations) 

 

PART II : Wind-driven flow (Ekman3) 

This is the classic problem of an unbounded ocean forced only by a steady windstress which 
you will find in Section 3.4 of the book.  The effects of the surface stress are communicated 
down through the water column by friction between horizontal layers. There are no pressure 
gradients due to surface slopes or density changes so the steady state has to be a balance 
between the frictional stresses and the Coriolis forces. The motion, however, starts from rest 
at t = 0 when the wind is switched on, so that, initially, there are strong transient motions 
which decay as the steady state velocity profile (the Ekman Spiral) emerges.  You will see in 
the contrasting runs below that it is the effect of the earth's rotation which limits the 
penetration of the boundary stress into the interior and the net transport forced by the wind. 

 

1) Start by considering the non-rotating case in which a steady wind stress is 
applied at the surface in the x direction.  Decline default values in Ekman2 so that you 
can set latitude=0° and hence  f=0.  Select the following values for parameters: 
h=200m, dz=1, windstress T=0.1 Pa, direction =0°, latitude = 0°, Nz = 0.05 m2s-1,run 
time fin = 200 hours.  Note the direction of the flow, the acceleration of the current 
and its increasing penetration in depth until it reaches the seabed. 
 

 *Q2: How long does it take for the stress to reach the bottom ?     

  What will the steady state be like ? 

  Change the parameter values to obtain  a steady state in a run time of   
  300 hours. * (Hint: Vertical mixing time for momentum is ~h2/Nz) 
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2)  Now examine the response when rotation is involved.  Choose a steady 
windstress of 0.2 Pa at latitude 33°N  with Nz = 0.005 m2s-1 which is the default case. 

Note the limited depth penetration of the effects of the surface stress indicated by the 
exponential decay of the current speed with depth.  In the bottom right hand panel you 
see the projection of the tips of the velocity vectors into the horizontal plane, forming 
a pattern which evolves into an increasingly steady Ekman spiral.  Notice that the 
velocity vector rotates to the right with increasing depth (for the northern hemisphere).  

*Q3: - What is the nature of the transient motion ? 

  -  What is the direction of the net transport ?   

  - Compare the transport with the Ekman estimates: Qx = 0 and Qy = τx/fρ 

     where τx is the applied stress. What are the units of the transport  ? * 

3)  Try varying the latitude and the eddy viscosity independently and then together. 

 *Q4:    -How does the velocity profile vary with latitude ? (other parameters fixed) 

            - If both f and Nz are doubled at the same time, how does the solution change: 

    in amplitude ? in shape ?    

  - Compare the thickness of the boundary layer (BL) you estimate from the  
   velocity profiles generated by the model with the depth of frictional 
   influence D=π(2Nz/f)0.5 given by Ekman theory ?*  

    

Part III: Tidal Dynamics without rotation ( Tidyn) 

 

Next we consider the formation of another boundary layer in the response to tidal forcing by 
an imposed periodic surface slope in the presence of friction at the bottom boundary.  We 
start with the non-rotating case in which the latitude is set to zero so that there is no Coriolis 
force and we can examine the development of a unidirectional, oscillating boundary layer in 
which the boundary layer thickness is limited by the tidal frequency. The graphics display 
includes the stress profile so that we can see the extent of frictional influence directly. At the 
end of the run the amplitude and phase of the current at each depth is computed and displayed 
in separate figure. 

1) Run Tidyn2 from the sub-menu with the default values with the eddy viscosity Nz set to 
0.01 m2 s-1.   Note the stress profile (green curve in the top RH plot) decreasing with height 
above the bed to zero at the surface. In figure 2 you will see a phase lead in the current 
increasing towards the boundary and a weak maximum in the current  at ~30mab. 

*Q5:  - What is the amplitude of the oscillation at the surface? at the bottom ?  
  - Compare the surface value with the undamped (frictionless) response to  
   forcing by the surface slope term.       

  -  What is the thickness of the region of boundary influence on the stress and 
   velocity profiles ?  Compare with the theoretical value of  

    δ= (2Nz /ω)0.5 for decline by a factor of 1/e.* 
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2) Investigate the influence of Nz on the velocity profile for values of Nz=0.0002 -0.1 m2 s-1. 

 *Q6: -  For what values of Nz is there a maximum in the velocity amplitude  ? 

  -  Explain how the response can exceed the undamped oscillation ?  

 (Hint: examine the stress profile for change in sign of  the stress gradient 
 which determines the frictional force at each level)* 

 

Summary points to remember and think about 

1) Inertial oscillations (IOs) are circular motions at the natural period of horizontal 
motion which is set by the Earth’s rotation. 

2) IOs involve clockwise/anticlockwise circular motion in the northern/southern 
hemisphere; both the radius of the motion and its period decrease with latitude. 

3) An unbounded ocean responds to the onset of  a steady wind with a transient response 
involving inertial oscillations which decay to leave a steady spiral velocity profile. 
which has a limited downward  extent from the surface. 

4)  The downward penetration of the motion is limited to a surface boundary layer (the 
Ekman layer) whose thickness is controlled  by the Coriolis parameter f and the eddy 
viscosity Nz . 

5) An analogous bottom boundary layer develops in unidirectional tidal flow with the 
tidal frequency ω2  replacing  f  in the control of boundary layer thickness, i.e. the time 
for which the boundary can grow is now limited to the tidal period rather than the 
inertial period. 

6) A surprising feature of the tidal motion is that, in some cases, it involves  a maximum 
velocity amplitude which exceeds the frictionless response. 

7) A question to ponder is: Why doesn’t a steady boundary layer develop in the damped 
inertial oscillations of Part I ?   

 

If you wish, you can make a copy of the Matlab code  and modify it to tackle more involved 
the problems like that of  an oscillating boundary layer with rotation which combines tidal 
and Ekman dynamics. 
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G2: THE HEATING-STIRRING COMPETITION (Chapter  6) 

 

 

Introduction   

This programme is designed to let the student explore the mechanisms responsible for the 
seasonal cycle of stratification in the shelf seas.  The ocean is considered as a two layer 
system with local vertical mixing as the dominant exchange process driven by stirring due to 
tidal flow and windstress which act to produce separate bottom and surface mixed layers in 
the manner described in Chapter 6.  The model assumes that horizontal heat transfer due to 
the mean flow is negligible and that there is no heat exchange with the seabed.   The available 
stirring power of the tide and the wind are proportional to the cube of the tidal current and 
wind speed respectively; a small fraction of this power is used in working against the 
buoyancy forces and bringing about vertical mixing.  The surface heating and cooling is 
described by an air-sea interaction formulation which uses long term average cycles of 
surface winds, solar insolation and dew point temperature to determine surface fluxes. 

The exercise allows you to vary the stirring variables (wind and tide) to simulate the annual 
cycle for a full range of conditions on the shelf.  You should do this in a systematic way, 
based on the suggested sequence of runs, to educate your own intuitions about the way the 
system works.  This should enable you to appreciate the basics of the interaction between the 
heating/cooling and stirring processes and also understand more subtle features like the role 
of tidal stirring in controlling heat storage in the shelf seas.  When you understand the 
operation of the program, you should proceed to a sequence of model runs which will enable 
you to construct a cross-frontal section in Part III. 

 

PT= kbρUT
3 

PW= ksρaW
3 
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As you work through the exercises below, try to answer the questions identified in the text 
(*Q*).  

    PART I (the seasonal cycle: HS3) 

1) Read through the account of the model in Section 6.2.1 of the book and make sure you 
understand the essence of the TML model  

2) Open MATLAB and select “OCEANDYN2” as your current folder. 

3) In the command window, type:  OCEANDYN then press enter 

4) From the main menu select “HEATING vs STIRRING ” 

5) From sub-menu select “Seasonal Cycle HS3” 

6) For the first run (A), accept default values for selectable parameters and note scales on 
plot; press enter;   default values are: h=90m; dz=1m; ki=χ=1500 m-2s3; WF=1; fin=730days;   

(note that SH=log10 χ) 

 

 7) RUN A  

Observe the development starting from an initially mixed condition at January 1st .  Watch 
the evolution of the temperature profile (top left panel) over the seasonal cycle.  The 
corresponding  surface and bottom temperature plots (bottom left panel) illustrate the 
development and decay of stratification which is also depicted as Φ (blue, bottom right) with 
a peak value of ~ 150 Jm-3 . Note also in the bottom right panel the cycle of the total heat 
stored in the water column HT (green plot in units of 108 Jm-2).  The rate of heat transfer 
across air-sea interface (top right panel) shows a marked response to the onset and breakdown 
of stratification.  At the end of the run, press enter to display the amplitude (in units of 108 
Jm-3 ) and phase (in days from Jan 1st) of the heat storage cycle. Then answer yes to "another 
run?"   

*Q1: Determine the approximate times and values of the maximum bottom and surface 
temperatures; explain why they differ so greatly.*  

8) RUN B This time, decline default values and  increase the level of tidal stirring by setting 
ki=50, but keep all other values as in run A. Note the absence of stratification and increased 
heat storage and heat exchange. 

* Q2: Explain differences in heat storage and surface heat exchange between runs A & B *
 (repeat runs to check details)  
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Part II ( exploring the parameter ranges) 

You should now feel free to change the input parameters to HS3 at will to answer your own 
"what would happen if ?” questions. Here are a few suggested avenues of exploration 
together with some limitations: 

  9) RUN C.  How long does the system take to adjust ?  Try varying the initial temperature 
e.g. 5° C (too low) and 11°C (too high)) and see how long the system takes to settle to a 
stable cycle.  You might want to increase the run time to 3 years (1095 days) or more. 

  *Q3: Explain why lower winter temperatures result in stronger summer stratification and 
vice versa *.  

10) RUN D What is the effect of wind stirring ? 

Try progressively reducing  the wind factor from WF=1 (climatic average winds) to 
WF=0.02  (but not zero).  Then try increased winds (WF=2).  Note the changes in the surface 
mixed layer and the affect of  low winds on adjustment times.   You might like to 
progressively remove tidal stirring as well by putting in a large values of  χ (say up to 
10,000) 

* Q4: Can you explain how greatly decreased wind stress may result in a reduction of the 
maximum stratification ?* 

11 )RUN E What happens as the water column gets shallower ? 

 Compare these four cases with χ=200 m-2s3 

     (i)  h=100m  (ii) h=60m  (iii) h=30m (iv) h=10m 

* Q5: Explain the differences in stratification and the change in phase of the heat storage?* 

 

 

    Part III (Constructing a frontal section: TMF1) 

12) You might now like to try assembling the results from a series of runs at different values 
of χ to produce a section across a front.  To set up the data base for this you will need to 
make a series of runs using the front  generation program TMF1 in the Heating-Stirring sub-
menu. 

Run TMF1 and respond to the prompts for parameter values: 

i) Depth h = ? (50-120m) 
ii) bin size dz = ? (1 or 2m); program runs faster with larger bin size. 
iii) Initial value of χ ? ( choose in range 25-75, 50 is a good starting value). χ value 

will be doubled for each successive run. 
iv)  NR = number of runs you require ?  To make a convincing frontal section, you 

will need at least 5 runs which should range from mixed (χ< 100) to fully 
stratified (χ>1500).  If you have time, choose ~10 runs and start with a low value 
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of χ. For example if you choose NR=8 with an initial χ=25, you will get runs at 
χ=25,50,100,200,400,800,1600,3200 m-2s3. 
 

v) dn =day number (in days from Jan.1st of second year) at which the profile is 
sampled ?  
This sampling  time is shown as a vertical line in each run plot.  Choose dn in the 
range  120-300;  maximum stratification is typically at dn~200. 

 

13) Once you have completed the full sequence of runs, press enter to assemble all the plots 
and compare them. Press enter again to assemble the frontal section which shows the 
temperature contoured  in the vertical plane with logχ as the x coordinate. Compare with the 
observed temperature section across the Tidal Mixing Front in the western Irish Sea shown 
below.  

 

* Q7: Try and explain these features of these frontal sections: 

 (i) The intensified horizontal gradients at surface and bottom in the front 

 (ii) The upward slope of the pycnocline as the front is approached from the stratified 
  side* 

15) Feel free to try out other thought experiments and let us know if you find any interesting 
results or bugs in this developing package. 

 

 

 

< 9°C 

~ 10.5°C 
>15°C 
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G3: DENSITY-DRIVEN FLOW (Chapter 9) 

This group of exercises is based on the theory discussed in Sections 9.1-9.3 of the book.  The 
aim is to help the student to further understand the circulation in estuaries and ROFIs1

As you work through the exercises below, try to answer the questions identified in the text 
(*Q*).  

 forced 
by horizontal density gradients which result from the inflow of freshwater from the land.   

Part I: Estuarine Circulation (without rotation) 

In this first simulation, we examine the flow that results from a depth-uniform density  
gradient along the axis of an estuary starting from rest ( ).   The pressure 
gradient component due to the density gradient is opposed by a surface slope which can be  
adjusted by the parameter GM so that the depth integrated flow is close to zero or set to 
match the rate of river run off.  As well as the developing velocity profile, you will see the 
evolution of stable stratification of the water column. 

Procedure 

1) Select  “Density-driven Flow” from the main menu; 
   then choose “Estuarine Circulation”  

2) Run with default options depth h=40; kgm-4; Nz = 0.02 m2s-1. 
The surface slope adjustment parameter is found from theory GM=0.441. 
At pause, note scales in the four panel display before continuing. 
You will then see the development of a steady state solution with inflow in the lower 
layer and outflow from the estuary in the upper half of the water column.  This shear 
flow moves lighter, fresher water over heavier more saline water creating significant 
stratification  shown in the bottom left panel.  
 
3) Press return for contour summary of velocity. *Q1 Estimate the time for a steady 

state to develop and compare with the time scale for the vertical mixing of 
momentum *.  

 
4) Press return to compare model profile with the Hansen-Rattray analytical theory 
(NB  Theory here is based on quadratic drag law for bottom friction corresponding to 
the model; derivation in the book (Section 9.1.1) assumes a no slip (u=0) condition at 
the bottom  and  so gives slightly different results). 
 
5) Now experiment with different values of the parameters: e.g. try decreasing the 

depth by a factor of 2. Note the greatly reduced circulation ( ∝ h3 ); then increase 
by a factor of 23 to compensate.  *Q2 How do the circulation and 

stratification now compare with the default case ?  What is the change in the time 
required to achieve a steady state ?*  

 

 

                                                           
1 ROFI = Region Of Freshwater Influence 
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Part II  Circulation with rotation in a ROFI (with rotation) 

The problem of the circulation in a ROFI is considerably more difficult than the estuary case 
because the Earth’s rotation has a strong influence on the flow and so we have to include the 
Coriolis forces in the equations of motion.   Nevertheless, an analytical solution for the steady 
state in a an idealised ROFI, corresponding to the Hansen-Rattray theory, was obtained by 
Norman Heaps (see book Section 9.2). The solution gives the form of the steady state flow 
induced by a constant horizontal gradient of density in the presence of  bottom  friction which 
in order to make the maths simpler, is specified in terms of a linear drag law for the bottom 
stress: .  As well as determining the form of the velocity profile, the Heaps 
solution also specifies a surface slope  adjustment parameter, equivalent to GM in the 
estuarine circulation, which controls the net flow normal to the coast. 

We shall first examine the Heaps solution and then look at the time dependent problem as the 
ROFI system adjusts to a depth-uniform density gradient starting from rest. 

Procedure 

1) Select  “Density-driven Flow” from the main menu; 
   then choose “Heaps ROFI”  and run with default values 

  h=40m; Nz=0.02m2s-1; lat=55°N; = kgm-4. 

2) Note the GM value is larger than for the estuary case reflecting  the influence of 
rotation. 
 

3) Press enter to see the steady velocity profiles.  Note an estuarine type exchange 
flow in the cross-shore direction and a unidirectional flow along the coast 
increasing from v=0 at the bed to a maximum at the surface 
 

4) Now, investigate the effects of changing the parameters. E.G. (a) try the effect of  
reducing the Nz to lower the influence of friction. *Q3 Compare the alongshore 
surface current with a geostrophically balanced flow as Nz→ 0 and (b) try going 
close to the equator (lat =1°N but not zero) where the flow should be 
predominantly estuarine in character*. 

 
Now we turn to a numerical  simulation of the time dependent problem in which the flow 
is developed from rest at t=0.  The forces in the equations of motion are the same as in the 
Heaps problem except that the bottom boundary condition is now the quadratic drag law 

 
 

5) Select  “Density-driven Flow” from the main menu; 
   then choose “ROFI Circulation”   
 

6) Run ROFI2 with default values to observe the adjustment to a steady state. 
*Q4 Identify the transient oscillatory motions which decay as the system settles 
down. What is their period ? and how are they losing energy* ? 
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7) Now try other parameter values.  Generally you will not know the appropriate 
value of GM but you can find a good first approximation by running the 
HeapsTheory programme with the parameter set you intend to use.  ( Some 
iterative adjustment of this initial value of GM may be necessary to obtain an 
exact zero cross-shore transport) 
    

8) Then run ROFI2 for a few representative cases. For example, you might look at: 
(a) the low latitude case where rotation has little influence;*Q5 how do the results 

compare to estuarine flow ?*  
(b) the near frictionless case (low Nz ) in which the flow should be nearly 

geostrophic; *Q6 compare to purely geostrophic flow ?*    
 

9) *Q7 Finally choose one example to compare the steady state profiles generated by 
the ROFI2 model with the steady state flow from the Heaps solution.   If your 
Matlab skills are up to it, you should be able to include both sets of profiles in the 
same plot*.  (In comparing the theory and the model remember that they use 
different boundary conditions at the bottom.   Heaps analytical theory uses a linear 
drag law to make the maths tractable whereas the numerical model has the, rather 
more realistic, quadratic drag law.) 
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G4: TURBULENCE CLOSURE MODEL (Chapter 7) 

Introduction 

This  guide aims to introduce you to the 1-d TC model, discussed in Section 7.1 of the book, 

The operation of the model is illustrated by extensive run-time graphics which show you the 
evolution of the density and velocity fields in response to wind and tide forcing.  Two rather 
different applications of the model are presented.  In the first, the guide takes you through the  
detailed model hindcasting of the dynamics during  a period when forcing data is available 
from observations.   In the second application, climatic average data for surface forcing  is 
used in a simulation of the seasonal cycle in shelf seas which provides a much fuller picture 
of the cycle and the  processes involved than the TML model which we looked at in Chapter 
6 and in  the Heating vs Stirring  exercise.   

This type of 1-d model is proving valuable in understanding the physical processes in shelf 
seas and similar models are forming the basis of Biophysical models like that used in the 
book.  

Procedure 

Before running the software,  study the account of the model (Section 7.1) and the concept of 
turbulence closure (Section 4.4.4) given in the book.    

1) From the main menu, select “TC MODEL” and then “Run with real wind data” 
2) For the first run, accept the defaults which correspond to observational data from a 

strongly stratified site in the Celtic Sea in 2003. Press return successively to see: 
i)  the initial density profile showing strong stratification. 
ii) the length scale  used in the turbulence closure scheme   
iii)  a plot of the wind speed and direction for the 12 day observation period 

3) Select a run time of  150 hours (maximum is 288 hours) 
You will now see a full screen display showing the following parameters to be 
displayed during the run: 
i) u and v velocity profiles in top two panels 
ii) surface velocity v versus u (second row, left)   
iii)  eddy viscosity Nz profile (second row, right) 
iv) density profile ρ(z) (3rd row left) 
v) dissipation ε(Wm-3) (3rd row right) 
vi) Wind speed and direction versus time (bottom panels) 

4) Press return to start the run.  Observe the behaviour of parameters, especially ε and Nz 
over the tidal cycle and in response to the stronger wind forcing which occurs on days 
215-216. 

5) At the end of the run, a contoured plot of dissipation will appear.  Set to full screen 
and then use the zoom facility to select a period of ~2 days to expand.   Note the 
regular M4 cycle of dissipation in the bottom layer with dissipation decreasing rapidly 
from large values at the bed with a lag in the time of maximum dissipation increasing 
with height above the bed.  This lag is not the result of the diffusion of turbulence 
from the boundary but is mainly due to an increasing delay in the production of  
turbulence with height above the bed.   (Remember that  production ≈dissipation for 
local equilibrium).  Notice the low level of dissipation(< 1e-6Wm-3) in the 
pycnocline. 
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6) The programme stores data for profiles of u and v velocity, density and dissipation 
stored as Ust, Vst, rhost, Epst respectively.    From these files, you can plot the time 
evolution of each parameter using the Matlab contour routine.  You can also derive  
the velocity shear (  and the stability frequency           

 using the diff operator and then contour these parameters on a 
time –depth plot.  Try this, commencing 2 days after the start of the run, to allow for 
spin up of the motion. Useg the Matlab routine pcolor followed by shading interp.   
You can go one stage further and obtain a contour plot of  the Richardson number  

, from which you can deduce where mixing could be  occurring  (Ri 
<0.25).   The high Ri values in the pycnocline are consistent with the low levels of 
dissipation noted above.     

7) This short run did not include surface heat exchange so you can see how much mixing 
was done by the wind and tide over the period .  Use the function fi  to compute the 
potential energy anomaly Φ from the density profiles before and after the run. 
 
[fi]=PHIrho(n,dz,Rho);     (Rho is the density profile at n= levels with depth intervals 
dz) .  Density profile at the start of the run is “rhostart”  and after is “rho2” 

8) You can run with data from other sources providing you put the files in the formats 
specified in the TC22aDem programme comments.  You will need: 
 
i) the initial density profile 
ii) wind speed and direction time series 
iii) tidal ellipse information: ellipticity, orientation, major axis,  

difference in phase between M2 and S2 at the start of run 

To make longer runs over all or part of the seasonal cycle, you can run a version of the 
TC model which is forced by average climate data derived from fits to observed seasonal 
cycle of the meteorological parameters for a mid latitude station in the western Irish Sea 
(lat=54°N).  The runs start from a vertically uniform profile corresponding to conditions in 
winter.   The cpu time required for runs extending over the seasonal cycle are rather long 
(depending on your computer) so it is generally advisable to start with relatively short runs 
covering the period of the onset of stratification. 

9) Select “Run with seasonal Met data” from the sub-menu  and accept default values.   
Choose a run time of 20 days or less and a start date before the vernal equinox (day 
80) when the water column is vertically uniform.      

10) Lower plot shows development of stratification as surface and bottom temperatures 
diverge.  Notice the drop in mid-water dissipation and Nz as stratification becomes 
established  At the end of the run press enter for a summary of the temperature 
profiles, in which you will see a rapid switch to a a run away stratification.  Next you 
can make a plot of dissipation to see how the top and bottom layers become separated 
by a region in which turbulence is effectively shut down.   

11)  Finally try a long run for one or two seasonal cycles (e.g.365 or 730 days duration; 
start day 70)  the time required depends on the speed of your computer but will be of 
the order of an hour or more.  
 

Note the limited impact of springs neaps stirring cycle 
Compare the temperature seasonal cycle summary plot with the equivalent result from the 
simpler representation of the heating-stirring competition in the TML model (G2).  
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G5: LEAST SQUARES TIDAL ANALYSIS (Chapter 2) 

Introduction 

This exercise is designed to introduce you to the basic ideas of the least squares fitting 
procedures which are used in tidal analysis and other branches of  geophysical data analysis. 
The particular aim here is to show you the essential steps in the analysis of tidal data to 
determine the harmonic constants which are used to characterise and predict the tides as 
explained in section 2.5.1 of the book.   

The problem is to determine the constants Hn and κn  in the harmonic expansion: 

 

 

from a set of observations of η(t).  Ideally the data would cover a time span of a year or more 
but frequently we have to work with shorter data sets, sometimes of only a few days duration 
and perhaps containing significant gaps.  In these circumstances, least squares analysis offers 
a significantly better solution than simple Fourier analysis. 

Theory 

We compare the observed tide η(t) with the “predictor”: 
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The desired set of an and bn are those which MINIMISE the value of S2.  At the required 
minimum, the derivatives of S2 with respect to each a and b will be zero, i.e. 
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 Implementation for M2 

We start with the simplest case where we are fitting only one constituent 

in the harmonic expansion: 

 

to a set of observations of η(t) where ω=0.50587 rad/hour.  In this case, the sum of squares is 
just: 

     
     
 If we differentiate this expression w.r.t. a0,a1 and b1, and set the result equal to zero,  

we get 3 equations which can be written in the matrix form (with 
1

m

=∑ ∑ ) 

  
  
  
   

 
                     M          x     A   =       N 

which can be solved for A by standard inversion procedures. 
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Part I : Fitting a single constituent 

1. Make sure you understand the basics outlined above. 
 

2. Use the short data set given below in Matlab or in a spreadsheet to construct the 3 x 3 
matrix M and the vector N 
 

3. Invert the matrix to find the M-1 either manually or by writing your own programme 
or using Matlab. 
 

4. Determine a0, a1, b1 and hence the amplitude and phase of the M2 constituent. 
 

5. Plot out the data and your fitted curve.  Determine the root mean square deviation 
from your fitted curve. 
 

6. Estimate the value of η at times t=3, 7, 8 hours 
 

Menai Bridge tidal heights 27/4/88 

Time (hours) Height(m) 
0000 2.17 
0100 1.71 
0200 1.56 
0300 - 
0400 2.36 
0500 3.14 
0600 3.90 
0700 - 
0800 - 
0900 4.35 
1000 3.81 
1100 3.07 
1200 2.30 
1300 1.65 
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 Part II : Setting up and Testing the Least Squares method  

As you will now appreciate, composing the matrix and vectors is tedious using the above 
methods especially when we want to determine a large number of constituents.  We can speed 
things up by constructing an intermediate matrix of the form : 

Q = 

    
    
    

 

 

→  N constituents 

  
 

 

    ↓ 

   m data points 

and a column vector of the data: 
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The matrix M is then found simply by forming  

    

 

where 'Q  is the transpose of Q  .  We also use Q  to get N  from: 

                                     
 
 
The solution is found  as before,   by using the inverse of  matrix M  in MA N=   

to obtain  
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This inversion is readily performed using Matlab for a large data set as you can demonstrate 
for yourself using  the  Book Menu Software. 
.   
 
From the MATLAB  Menu, select “Tidal Analysis” and then the “Least Squares Demo” 
option in the sub-menu. 
 
This programme will guide you through the following  steps   : 

i) You construct an artificial time series for three tidal constituents for which you 
specify amplitude( in metres)  and phase led (in radians).  You also need to choose 
a tidal datum level from which the tidal height are measured and the length of the 
time series. (You can choose a wide range of parameter inputs within guide limits 
shown in square brackets) 

ii) You can add some noise to make the time series more realistic and to check the 
influence of random noise on the results 

iii) The time series is analysed by least squares to estimate the constituent amplitude 
and phases along with the height datum 

iv) You are then invited to compare the analysis results with the inputs specified.   
v) Make repeated runs to determine how the accuracy of the method varies as you 

change the length of the time series and  increase the noise input.  
 

Part III:  Analysis of tidal elevations in Maputo Bay 

Now that you have checked the validity of the Least Squares analysis, we shall look at the use 
of the method to analyse large sets of elevation and current meter data using the LSprac  
programme.   The specimen set is a record of elevation in Maputo Bay, Mozambique of more 
than one month’s duration in a file  named Inhacamonth.txt.  Data was recorded at 10 min 
intervals; there are 4520 data points in the series which consists of two columns representing 
elevation in metres and time in year days. You can use any tidal data series providing you 
present the data in this format. 

Proceed as follows for elevation analysis: 

 Select “Practical Analysis of data” from the Tidal Analysis sub-menu in order to start 
the LSPrac programme. 

Respond to requests for input.  The data series Inhacamonth is loaded by the programme and 
called simply IM thereafter.  

1. Compare prediction and analysis which are plotted together.  Note rms deviation.  
Zoom in on the plots to see how good the fit is. 

2. Now  re-run and  shorten the series to 10 days data (m =1440)  
3. Consider the differences in the results and, in particular the reduction in s.d. 

of the fit.   How much of the variance between data and prediction of the full length 
record is due to non-tidal, low frequency changes in sea level ?   
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Part IV: Current meter data  

You can use the same approach to analyse tidal currents.  The file Rhinevel.txt contains data 
for velocities at heights of 6m and 16m above the seabed from the ROFI on the Dutch coast.  
The data, which was recorded at 30min intervals, is arranged in the following form 

Time(Hours)    depth(m)      U16  (m/s)       V16  (m/s)       U6  (m/s)       V6  (m/s)  

 

Proceed to analyse as follows: 

1. Load the file Rhinevel.txt 
2. Covert time column to time in days 
3. Create separate filesfor each velocity component  in LSPrac format 

i.e.  2 columns  (Velocity, time) 

4. Do the same for the depth data which includes a tidal signal 
5. Run LSPrac for each of velocity components and depth. Deduce  amplitude and  

phase of  constituents for currents and  elevation along with residuals. 
6. Plot the residual currents and the tidal ellipses for M2 at 6 and 16m above the bed. 
7. Identify the sense of rotation of the current vector near the surface (16mab) 

and near the bed (6mab). 

8. Compare the phase of the elevation and the current in order to determine the nature of 
the tidal regime here:  is itmainly a progressive or standing wave ? 
 

Further Applications 

Once you are familiar with the least squares method, you can go on to develop the LSPrac 
code to undertake a wide range of tidal analyses of currents and sea surface elevation.  More 
tidal constituents can be added and the phases related to a standard time origin.   
Alternatively, and with much less labour, you can utilise the excellent Least Squares 
harmonic analysis system known as T tide which is available on the internet: 

  http://www.eos.ubc.ca/~rich/t_tide/t_tide_v1.1.zip 

R. Pawlowicz, B. Beardsley, and S. Lentz, "Classical tidal harmonic analysis 
including error estimates in MATLAB using T_TIDE", Computers and 
Geosciences 28 (2002), 929-937. 

  

http://www.eos.ubc.ca/~rich/t_tide/t_tide_v1.1.zip�
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G6: FICKIAN DIFFUSION DEMONSTRATIONS (Chapter 4) 
 
This set of demonstrations is designed to illustrate the process of diffusion in the simple  
idealised case of the dispersion of a passive tracer in a long narrow channel (Book Section 
4.3.5).  A mass  of dye (a conservative, passive tracer2

 

) is released into the channel at a 
location x=0 and at time t=0.  The subsequent spreading is due to “ Fickian diffusion”, i.e. 
diffusion in which the diffusivity K is constant.  The concentration of dye  is assumed 
to be uniform across the channel section so that the concentration varies only in x and t.    
With no mean flow in the channel, the advection-diffusion equation reduces to:  

2

2

c cK
t x

∂ ∂
=

∂ ∂
 

The solution of this equation is the well-known Gaussian function : 

 ( )
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KtMc x t e

Ktπ

−
=   

which you may already have met as the “normal distribution” in statistics with  standard 
deviation σ=√(2Kt). 
 
The following  demonstrations show how, after release,  the dye spreads as a “Gaussian 
patch”, how such patches merge to form larger Gaussian patches and how this type of 
diffusion can be simulated by an equivalent  random walk procedure.  You will also see in the 
final demonstration how Fickian dispersion combines with advection in the mean flow. 
 
Procedure 

1) From the main menu select  “ FICKIAN DIFFUSION” , then choose “1-d 
dispersion in a channel” 

2) Accept the default value of  K for first run. The programme pauses to illustrate the 
dye distribution  after 1 hour.    With the default  K = 139 m2s-1,  the rms  deviation of 
the dye from the origin is 1.00 km so the x axis can also be interpreted as the number 
of standard deviations from x=0.  For the normal distribution, 90% of the area under 
the curve lies within ± 2σ of the origin which for our diffusion scenario means that 
90% of the dye is to be found in this range of x.  
Now press enter to see how the distribution spread in time at hourly intervals. 
Re-run with large (300 m2s-1) and small  (5m2s-1 )values of  K 

3) Return to the sub-menu and select “Merging of two Gaussian patches” and run with 
K=40 m2s-1.  As the two patches diffuse,  you will see that they merge to form a single 
large patch which eventually becomes indistinguishable from a single patch spreading 
from a single dye release.  Solutions for more complicated inputs of dye inputs can be 
found in this way by combining the results of a series of single “dumps”.   For 
example, a continuous spatial pattern of inputs along the channel at a specified time 
can be simulated by a number of discrete inputs along the x axis.  Similarly time-
dependent inputs can be represented by a number of discrete inputs at different times.  
It is also possible to extend this approach of combining discrete inputs to simulate 
Fickian dispersion in 2 or 3 dimensions.   
 

4) In Section 4.3.5 we demonstrated how 1-d Fickian spreading of  scalar properties can 
be implemented by a random walk  procedure.   In this approach, the dye is 
represented by a large number of dye particles which are moved a small distance dx at 

                                                           
2 a passive tracer is one which does not influence the motion but simply acts as a marker 
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intervals of dt with the direction of movement (positive or negative) being decided by 
the toss of a coin.  To see an experimental test of such random movement, select : 
“Dispersion by RandomWalk” from the sub-menu and run the programme accepting 
the suggested default values for the number of  particles and the length of the run.  
The time and space steps are non-dimensional variables set to  dt=1; dx=1; so that the   
equivalent Fickian diffusivity  K= (dx)2/(2dt) = ½. At the end of the run, press enter to 
compare the Random walk  result and its standard deviation  σ with the equivalent 
Gaussian results. 
 

5) See next how advection can be combined with Fickian diffusion.   
Select: “Diffusion + Advection” Which simulates 1-d advection and  diffusion of a 
series of dye patches injected at the origin every 20 hours. Choose values of K and the 
advective velocity U in the suggested ranges.    
The results will demonstrate that, in coordinates moving with the flow each dye patch 
spreads as in the stationary solution for U=0, which is what you might have 
anticipated for this simple case. 
 

Generally diffusion in the ocean is not Fickian, i.e. the effective values of K increases with 
the length scale of the motion as discussed in the book Section 4.3.6. Nevertheless Fickian 
diffusion serves as a very useful idealised model and the superposition of solutions to small 
discrete inputs allows the construction of models of more complicated scenarios with inputs 
varying with time and spatial location.     Moreover, in the shelf seas, diffusion is often 
dominated by Tidal Shear Dispersion a process which is essentially Fickian.  
 

6) To see demonstrations of how Shear Dispersion works, return to the main menu and 
select “Steady Shear Dispersion”.  In this simulation, a large number (150) of dyed 
water particles are tracked as they move in response to a steady horizontal sheared 
flow combined with  vertical diffusion which is represented by random walk, upward 
or downward, displacements of the particles.     The water particles are released at x=0 
into water of depth h=30m with a uniform distribution in the vertical.  The steady 
horizontal flow is in the x direction with a uniform velocity gradient from surface to 
bottom and zero depth-mean.  The random walk has a step length adjusted to match 
the selected vertical diffusivity.   
 

7) Select the suggested run time,  the vertical diffusivity Kz and the surface to bottom 
velocity difference U0 ; press enter to begin run.   You will see the development, from 
the initial vertical distribution  of a dispersing cloud of particles whose variance 
increases in time( lower plot).  Compare the shear diffusion K, determined from the  
average rate of increase of the variance of the particle cloud, with the theoretical value  

.   Account for any significant difference ? (Hint: Check the 
Vertical mixing time ?) 
 

8) Now try experimenting with higher and lower values of Kz while keeping U0 fixed. 
You should see a, perhaps surprising, inverse relation between the shear diffusion  K 
and Kz.   Try and explain this relation in terms of the development of the cloud. 
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Frequently the largest velocity shears in the shelf seas are those due to oscillatory motion of 
the tide so that we need to consider the dispersion which occurs in such periodic flow.  While 
the theory of Tidal Shear Dispersion (TSD) is complicated, the particle dispersion model can 
be readily adapted to simulate the process and estimate the resulting diffusivity. 
 

9) Select “Tidal Shear Dispersion” from the sub menu.  Run with suggested values. 
You will again see the development of a diffusing cloud in which, after some time has 
elapsed, it is difficult to identify the tidal shear in the motion. 
 

10) Make a series of runs in which you vary Kz to make the mixing time ( ) 
vary over the range T2/4 to 4T2 where T2 is the tidal period.  Plot the resulting K 
values versus Kz  to identify the value of Tm which gives the maximum K. Can you 
offer an explanation of this maximum  from your observation of the development of 
the  particle  cloud ?  

 
TSD is a major contributor to horizontal mixing in shelf seas and dominates in many areas.  
Estimating realistic values of  the shear dispersion K requires knowledge of the vertical eddy 
diffusivity.  When this is not available,  the maximum in K, which occurs for an optimum Tm, 
sets a useful upper bound to the contribution of this form of mixing.   
 
 
 
 
 


