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In this chapter we present the fundamental physical definitions and theoretically de-
rived relations that underlie practical laser theory and engineering, and indeed, much 
of linear optical spectroscopy. Our purpose, however, is not to offer a comprehensive 
treatment of this topic (see the references for recommended reading) but rather to de-
velop essential understanding in an economical format. To this end, such basic concepts 
as radiative lifetime, absorption, and polarization dephasing will be initially developed 
from first principles by using a classical model of the atom. Quantum mechanical as-
pects of the radiation problem will then be introduced as needed in order to polish the 
classical results into their useful or more appropriate modern forms. 
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1 Classical Charged-Particle Oscillator 

1.1 Damped, Undriven Oscillator 
As a first approach to understanding the interaction of light with atoms, ions, 

and molecules we adopt a classical picture of charge oscillation in a microscopic system. 
Specifically, we first wish to understand simple radiative decay by an excited, undriven, 
single atom uncomplicated by real-world effects such as collisions or nonradiative tran-
sitions and then generalize these results in order to understand electromagnetic ab-
sorption in multi-atom ensembles. 

Our model atom will consist of a point charge q  of mass m  bound in a one-
dimensional harmonic potential well (see Figure 1). This well is characterized by a 
spring constant , whereas the charge’s displacement from the equilibrium position lo-
cated at the bottom of the well is denoted by 

k
( )x t . The electric-dipole moment of this os-

cillator is thus ( ) ( )t qx tµ = . Newton’s equation of motion for the charge may then be 
written in the form 

 2
0 0µ γµ ω µ+ + =  (1) 

where  and where we have introduced the damping term 2
0 /k mω ≡ γµ  in order to quan-

tify the loss of energy by the oscillating charge due to the radiation that it emits. We 
hasten to emphasize that the form of this damping term has not been rigorously justi-
fied but it will be seen later to correspond to our expectations (and what experiments 
tell us) that the mechanical energy of the oscillator should decay exponentially with 
time. After solving Eq. (1) for ( )tµ , we will see how to relate the radiative damping fac-
tor γ  to the fundamental parameters of the oscillator, namely , , and q m 2

0ω . 

Although ( )tµ  is a real quantity, the linear form of Eq. (1) suggests a recasting of 
this equation in terms of complex time-varying quantities: 

 2
0 0µ γµ ω µ+ + =  (2) 

where the ~ here and hereafter will denote a quantity with both real and imaginary 
parts. This substitution facilitates the solution of the original Eq. (1) as well as its 
interpretation as long as we keep in mind that it is the real part of the solution that em-
bodies the physical content. This idea likewise applies to any quantities derived from 
the complex solution provided that they are related by a strictly linear transformation. 
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Figure 1. Potential energy for a classical charged-particle oscillator of mass  and
charge  as a function of displacement  from the equilibrium position at .  
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Simple examples of such transformations are multiplication by a (possibly complex) 
constant and time differentiation. For quantities that depend nonlinearly on physical 
variables, however, care must be taken to use the real part of the corresponding com-
plex quantities or to apply an appropriately modified mathematical definition. With this 
in mind the general solution to Eq. (2) is 

 0 0( / 2) ( )
0( ) γ ω φµ µ ′− − += t j tt e  (3) 

from which ( ) Re[ ( )]t tµ µ≡  is the solution to Eq. (1). In this result, 0 cos 0µ φ  is the initial 
value of the oscillator’s (real) dipole moment and 0φ  is it’s initial phase. The frequency 

0ω′  is a substitution for previously defined quantities given by 

 2
0 0 ( / 2)ω ω γ′ ≡ − 2  (4) 

We thus see that the electric-dipole moment oscillates with an amplitude that decays at 
the rate / 2γ  and at a frequency downshifted from 0ω , as depicted in Fig. 2. However, 
for all microscopic radiation and absorption problems discussed in this book (and in-
deed in nearly all such problems generally), 0γ ω<< * and thus to an excellent 
approximation 0 0ω ω′ ≅ ; hence hereafter we will ignore the effect of damping on the 
oscillator frequency and take 0 0ω ω′ ≡ . 

With the solution Eq. (3) in hand, the mechanical energy of the oscillator—aver-
aged over one oscillation cycle—can be written down: 

 

2 2

2 2

0

1 ( ) 1 ( )
2 2

1 1 1             ( / ) ( ) ( )* ( / ) ( ) ( )*
2 2 2

              γ

µ µ

µ µ µ µ

−

   
= +   

   

 ≡ +  
=

osc cycle

cycle

t

t tW k m
q q

k q t t m q t t

W e

 (5) 

where 
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1
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mW
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* A typical rare earth ion radiating in the visible will do so at a damping rate of about 1000 s-1; hence 
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Figure 2. Time dependence of the electric dipole moment for a classical charged-
particle oscillator as given by Eq. (3).



is the initial energy of the oscillator. The exponential decay of the oscillator’s energy 
thus occurs with a characteristic time constant 1/τ γ= . This last result also tells us that 
the power radiated by the oscillator is 

 0
γγ −= − =

osc cycle t
rad

d W
P

dt
W e  (7) 

On the other hand, classical electromagnetic theory tells us that for an electric di-
pole oscillating according to the form Eq.(3), the cycle-averaged radiated power is given 
by 

 
4

0 0
3

012
t

radP c
e γµ ω

πε
−=  (8) 

 

Equating the LHS’s of Eqs. (7) and (8), subject to the definition Eq. (6), yields for 
the radiative damping rate 

 
2 2

0
3

0

1
6

q
c m

ωγ
πε

 
= 

 
  (9) 

where for emphasis we have isolated within the parentheses the physical quantities that 
characterize the oscillator. 

Equation (9) is our first fundamental result and tells us these important facts 
about radiating microscopic systems: 

(1) The radiative damping rate of the oscillator increases with the square of the oscillator fre-
quency. This fact can also be understood in simple quantum mechanical terms by 
recalling that according to Fermi’s Golden Rule, the rate of transition from an 
initial state to a continuum of final states is proportional to the density of final 
states. Since in this context we imagine the atom and electromagnetic field to 
comprise a coupled, fully quantum system, the density of states factor will be 
that corresponding to the photon states of the field. By counting up the number 
of resonant modes falling within a small frequency range in a box-shaped cavity, 
the reader will discover that the density of states increases with square of the 
frequency. Spontaneous radiative lifetimes of rare-earth ions will in general de-
crease dramatically as the frequency increases. 
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(2) The radiative damping rate increases with the square of the electric charge of the oscilla-
tor. This statement will be found in the quantum mechanical context to be 
equivalent to the statement that the radiative damping rate increases with the 
square of the electric-dipole-moment matrix element appropriate to a given tran-
sition. 

(3) The radiative damping rate decreases with the mass of the oscillating system. Thus at a 
fixed frequency and charge for the oscillator, molecular vibrations and rotations 
will radiate at rates several thousand times slower than an atomic electron. Given 
that 2

0ω  itself for a molecular vibrational mode will likewise scale inversely as the 
mass, radiative damping for a vibrational mode will be ~10-6-10-7 the rate for an 
electronic oscillator. Because the damping rate for an allowed atomic visible tran-
sition is ~109 s-1 a vibrational mode will typically exhibit a damping rate of 
~250 s-1. 

The oscillator under study up to this point has been supposed to be isolated in 
vacuum. A modification of the above results is required when the oscillator is embed-
ded in a transparent dielectric medium (that is, transparent at the oscillator frequency). 
In this case, the medium will polarize in the presence of the oscillator’s constituent 
charges and in the process produce a dipole moment larger than the original dipole 
moment of the oscillator. The radiated power is thereby increased by the factor 

, where 3 3
0 / 'c cε ε ≡ n ε  is the dielectric constant of the host medium, n  is the 

corresponding index of refraction, and /c c n′ =  is the speed of light in the medium. 
Hence the damping rate analogous to Eq. (9) becomes 

 
2 2

0
3

1
6 '

q
c m

ωγ
πε

 
= 

 
  (10) 

1.2 Driven, Damped Oscillator 
To proceed further with what the classical oscillator has to say about interactions 

of atoms with electromagnetic fields, we now consider the response of the oscillator to a 
driving electric field. The electrostatic potential energy of an electric dipole in the pres-
ence of an applied electric field  is given by ( )tE

 ( ) ( ) ( ) ( )V x t qx t E tµ= − ⋅ = −µ E  (11) 

where  is the projection of the applied field along the axis of the di-
pole. The equation of motion for the dipole in this case is 

( ) Re ( )E t E tµ =  µ 
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2

2
0

( )( / ) ( / ) ( )V x qm q m
x m µ

∂µ γ µ ω µ
∂

+ + = − = E t  (12) 

If the electric field varies sinusoidally at angular frequency ω , the applied field 

0( ) j tE t E e ω
µ =  and in terms of complex quantities the equation of motion becomes 

 
2

2
0 0( / ) j tqm

m
E e ωµ γ µ ω µ+ + =  (13) 

This equation readily yields the solution (after damping of initial transients) 

 
2

0
2 2
0

( )
( )

j tE eqt
m j

ω

µ
ω ω γ

=
− + ω

 (14) 

Since the dipole is radiating electromagnetic energy—in this case at the frequency ω  in 
response to the driving field—this energy must ultimately be supplied by the driving 
field itself, which tells us that absorption is occurring. Inspection of Eq. (14) further re-
veals that the maximum amplitude of the dipole moment is obtained for a driving fre-
quency ω  equal to the natural oscillation frequency 0ω . Under this resonance condition 
the absorption of energy from the driving field is maximized. 

The absorption of energy by the oscillator can be further quantified by noting 
that the cycle-averaged power delivered to the oscillator in response to the applied field 
is given by 

 

*
2

2 2
0

2 2 2 2
0

1Re[ ( )]Re[ ( ) / ] ( ) ( )
2

( )
2 ( ) ( )

abs applied cycle cycle

mP F x qE t t q t t
q

qE
m

γµ µ

ω γ
ω ω γω

= = =

=
− +

µ

 (15) 

Because we will be almost exclusively concerned with problems involving a near 
resonance of the driving field with the oscillator, 0ω ω≈  and the above result simplifies 
in this approximation to 

 
2

0
2

0

( )
8 ( ) ( / 2)abs
qEP
m

γ
ω ω γ

≅
− + 2  (16) 
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Given that the cycle-averaged intensity of the incident radiation that drives the 
oscillator is 0

2
0(1/ 2)incI cEε= , the relative absorbed power is 

 
2

2
0 04 ( ) ( / 2

abs
rel

inc

P qP
I mc

γ
ε ω ω γ

≡ =
− + 2)

 (17) 

1.2.1 Absorption Cross Section 
This last relation leads to the definition of a new spectroscopic quantity called the 

absorption cross section; it is defined by supposing that the dipole oscillator amounts to 
a simple hole of area absσ  through which all of the power incident on the hole is ab-
sorbed by the oscillator. Hence in accord with Eqs. (16) and (17), 

 
2

2
0 0

( )
4 ( ) ( / 2abs abs inc abs
qP I
mc

γσ σ ω
ε ω ω γ

≡ ⇒ =
− + 2)

 (18) 

With introduction of the Lorentzian line shape function 

 0 2
0

/ 2( )
( ) ( / 2

L 2)
γ πω ω

ω ω γ
− =

− +
 (19) 

where 0(L )ω ω−  has been normalized so that 0( )L dω ω ω
∞

−∞
1− =∫ , Eq. (18) becomes 

 
2

0
0

( ) ( )
2abs
q L
mc
πσ ω ω

ε
= ω−  (20) 

The finite width of the resonant response of the dipole oscillator to the driving 
electric field is seen from the above relations to result from the finite magnitude of the 
damping factor γ . The full frequency width at half maximum of this response is given 
by ω γ∆ = . 

Another way of characterizing the interaction of the dipole with the driving field 
is obtained by eliminating the detail embodied in the Lorentzian frequency dependence 
through an integration of the absorption cross section over frequency: 

 
2

0

( )
2abs
qd
mc
πσ ω ω

ε
∞

−∞
=∫  (21) 

Note, however, that not only have we accomplished the elimination of the frequency 
dependence in quantifying electromagnetic absorption in this new way, but we have 
also eliminated the dependence on the damping term. Equation (21) thus represents a 
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fundamental way in which to quantify the strength of the interaction between the os-
cillator and the driving radiation field. It applies to any classical dipole oscillator re-
gardless of the nature of the damping processes that de-excite the oscillator and thus is 
universally applicable to the understanding of absorption phenomena. As we will show 
shortly, this statement holds true for even more general damping mechanisms (such as 
elastic collisions) than those that change the oscillator energy. 

1.2.2 Oscillator Strength 
In order to make these ideas more formal, we introduce the absorption oscillator 

strength, absf . This quantity relates the “strength” of the coupling between the dipole 
and the electromagnetic field relative to a standard oscillator consisting of a single elec-
tron of mass  and charge e : em

 
2 2

0 0

( )
2 2abs abs

e

q ed
mc m c
π πσ ω ω

ε ε
∞

−∞
= =∫ f  (22) 

where 

 
2

e
abs

m qf
m e

  =   
  

 (23) 

By virtue of the oscillator strength’s independence from the frequency and 
damping rate, the term might be used in practice to compare the absorption properties 
of, say, a given ionic impurity embedded in different solid hosts or perhaps different 
ionic species in identical hosts. In terms of this fundamental quantity, previously de-
fined quantities can be expressed: 

 
2 2

0
3

06 abs
e

e f
m c
ωγ

π ε
=  (24) 

and 
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2 2
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e L f
m c
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ε ω ω γ

π ω ω
ε

=
− +

= −

 (25) 
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1.3 Collisions: Inelastic and Elastic Relaxation 
So far we have considered the behavior of an isolated dipole that is unaffected by 

its surroundings. A more realistic picture includes the possibility that collisions with 
other particles in the gas phase or interactions with phonons in a solid host will disturb 
the motion of the dipole. Such disturbances can be divided into two types: i) so called 
inelastic processes, which will either supply or drain energy from the oscillator and ii) 
elastic processes, which will leave the energy of the oscillator unchanged but will inter-
rupt the phase of its motion. Such a division may at first seem artificial, since one might 
imagine that in any collision of a classical oscillator with another particle it is almost 
certain that energy will be exchanged. In reality, however, the discrete distribution of 
allowed internal energy states of bound quantum systems makes it possible to distin-
guish more sharply inelastic from elastic interactions. For example, in a collision where 
the joint translational energy of the colliding particles is less than the energy required to 
promote either particle to a higher excited quantum state, only elastic interactions are 
possible when both collision partners are in their respective quantum ground states. On 
the other hand, if one or both of the particles is already in an excited state, a collision 
could result in the transfer of internal energy to the translational degrees of freedom. 
Nevertheless, the same idea applies: if the (negative) change of internal energy is large 
compared with the translational energy of the colliding partners, purely elastic interac-
tions will dominate over inelastic ones.  

In any case, we introduce the symbol nrγ  in order to quantify the rate at which 
the energy “state” of the oscillator is changed though nonradiative inelastic processes; for 
simplicity, we will confine attention only to those processes that reduce rather than in-
crease the oscillator energy. Hence the total rate of inelastic processes that result in a 
diminished energy for the oscillator will be denoted by 

 11/i radT nrγ γ γ≡ = +  (26) 

where radγ γ≡  with γ  defined as in Eq. (10); the subscript “rad” here added in order to 
distinguish radiative from nonradiative relaxation of the oscillator. The symbol T  is 
widely used to quantify the characteristic time scale of energy loss by microscopic sys-
tems, thereby giving W t . Because the oscillator is unaware of 
whether the energy loss occurs by either radiative or nonradiative damping, one then 
expects that the absorption cross section will become by analogy to Eq. (18) 

1

1/
0 0( ) it t TW e W eγ− −= ≡
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2

2
0 0

( )
4 ( ) ( / 2

i
abs

i

q
mc

γσ ω
ε ω ω γ

=
− + 2)

 (27) 

In order to determine the effect of elastic processes on the absorption cross sec-
tion, we first recognize that a single such elastic interaction between atoms and mole-
cules is known to occur in a time period of 1310−≈ s and thus may be considered to good 
approximation to be instantaneous. The result of the interaction is to establish a new 
phase for the oscillation that is entirely unrelated to the oscillator phase before the in-
teraction. If the average time between these phase interruptions is eτ  (Figure 3 illus-
trates this effect in the absence of inelastic damping), it can be shown that the absorp-
tion line shape is still of Lorentzian form and is given by 

 
2

2
0 0

( )
4 ( ) ( / 2

tot
abs

tot

q
mc

γσ ω
ε ω ω γ

=
− + 2)

 (28) 

where totγ  is the total oscillator damping rate given by 

 2 /tot rad nr eγ γ γ τ= + +  (29) 

Values of eτ  range from many seconds or longer for ions in solid hosts at liquid 
helium temperatures, to 10-9 s in gases of standard pressure at room temperature, and 
to 10-12 s for ions in solid hosts at room temperature. In solid-state laser materials eτ  
times are much shorter than the radiative or nonradiative relaxation times of the quan-
tum states forming the energy-storing upper level of laser-active transitions; hence the 
line width in these cases is overwhelmingly dominated by elastic dephasing. 

The finite width of the resonant response of the dipole oscillator with respect to 
the frequency of the driving electric field is seen from the above relations to result from 
the finite magnitude of the total damping factor totγ . The full frequency width at half 
maximum of this response is given by totω γ∆ = . In the language of optical spectroscopy, 
this width is known as the homogeneous line width. Those processes that contribute to 
the value of totγ , namely, those that directly influence the time dependence of the 
oscillator’s motion, are said to homogeneously broaden the resonant response or 
equivalently the line width. As for the absorption oscillator strength in the presence of 
the additional damping processes discussed in this section, the formal similarity of 
Eq. (28) to Eq. (18) implies that our definition and interpretation of the absorption 
oscillator strength in Section 1.2.2 holds perfectly well in the more general case. Figure 4 
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plots the absorption cross section for a homogeneously broadened classical dipole os-
cillator. 

1.4 Oscillator Ensembles 

1.4.1 Homogeneous Broadening 
So far, the absorption and emission properties of only a single oscillator have 

been considered. Because ultimately we will be concerned with an ensemble of oscilla-
tors that will collectively yield the active gain in an upconversion laser, we embark now 
on a discussion of the elementary absorptive properties of collections of oscillators in 
three-dimensional space. We suppose these oscillators to be randomly arrayed with a 
volume number density denoted by , but for now make the simplifying assumption 
that the dipole moments are all coaligned parallel to the applied electric field. Consider 
now an infinitely thin slab of this ensemble and the subsequent absorption of electro-
magnetic radiation, which impinges on the slab at normal incidence. Keeping in mind 
the definition of the absorption cross section, the change in the power of the incident 
radiation on passing through the slab is given by 

N

 ( )absdP PN dzσ ω= −  (30) 

From this one concludes that the transmitted power, considered as a function of the 
distance traveled through the medium, is given by 

 ( )
0( ) zP z P e α ω−=  (31) 

where  is the initial power incident on the absorbing ensemble and 0P ( ) ( )absNα ω σ≡ ω  is 
the absorption coefficient. Equation (31) is sometimes referred to as Beer’s law; through 
the definition of the absorption cross section, it reveals the connection between the cross 
section—a microscopic quantity—and a measurable quantity, the transmitted power. If 
the transmitted power is measured as a function of the frequency of the incident radia-
tion, an absorption spectrum results. From this spectrum the frequency dependence of the 
cross section can be deduced, which through Eq. (22) permits the computation of the os-
cillator strength. With the latter quantity in hand Eq. (24) then permits the computation 
of the radiative damping factor. Bear in mind here that we have insisted that all of the 
oscillators in the medium are identical with identical center frequencies and homogene-
ous line widths. Thus every oscillator exposed to the applied field responds with equal 
magnitude depending upon the driving frequency. Such ensembles are therefore called 
homogeneously broadened, in keeping with our terminology for broadening phenom-
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ena for single oscillators. It is precisely the homogeneous line shape function that one 
would observe in a measurement of the absorption spectrum of a collection of oscilla-
tors with the characteristics just named.  

1.4.2 Inhomogeneous Broadening 
Our oscillators have been thus far idealized to possess identical center frequen-

cies. If the oscillators are in thermal motion, as they are in the gas phase, the Doppler ef-
fect will shift the resonant frequencies of the oscillators in accord with their relative 
motion directly towards and directly away from the propagation direction of the inci-
dent radiation. When the Doppler shift is larger than the homogeneous width, one 
naturally expects that the measured frequency dependence of the absorption coefficient 
will be broader than what would be found in a homogeneous spectrum—different sub-
populations of the thermal ensemble, each of which may be labeled by the apparent 
resonant frequency as measured in the lab frame, will interact with the incident radia-
tion independently of other subpopulations within the ensemble. This broadening effect 
on the absorption coefficient is termed inhomogeneous broadening in order to emphasize 
the existence of distinguishable subpopulations with different center frequencies. A 
mathematically equivalent effect occurs in the solid state: Although when present as 
embedded impurities, the oscillators are effectively frozen in space so that no Doppler 
shift of resonant frequencies occurs, random strains within the host material will 
slightly modify the spring constant of each dipole and thus yield a distribution of reso-
nant frequencies above and below the center frequency of an unperturbed oscillator. 
For many practical purposes, the resulting distribution of center frequencies is Gaussian 
in form, thus within a small range of resonant frequencies 0dω , 

 
2 2

0( ) /

0 2
( )

c i

i

Ned
ω ω δω

0dω ω
πδω

− −

=  (32) 

gives the number of ions per unit volume of resonant frequency 0ω , where iδω  
characterizes the width of the Gaussian distribution of resonant frequencies all centered 
around cω ω=  (see Figure 5). Equations (28) and (32) may be combined to predict the 
measured frequency dependence of the absorption coefficient in the presence of inho-
mogeneous broadening: 

 
2 2

0( ) / 2

0 0 02 22
0 0

( ) ( ) ( )
4 ( ) ( / 2)

c i
tot
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toti

Ne qd d
mc

ω ω δω γα ω ω σ ω ω
ε ω ω γπδω

− −∞ ∞

−∞ −∞

  
 = =    − +  

∫ ∫ ω  (33) 
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Figure 5. The Voigt line shape function. It is comprised of a superposition of
Lorentzian line shapes of varying center frequencies.  



The resulting line shape is known as the Voigt function; while in general not ex-
pressible in closed analytic form it exhibits the following interesting limits. First, in the 
case where the degree of inhomogeneous broadening is large compared with the ho-
mogeneous broadening, i.e., i totδω γ>> , 

 
2 2( ) /2

2
0

( )
2

c i

i

N q e
mc

ω ω δωπα ω
ε πδω

− −

=  (34) 

Thus the absorption spectrum assumes the frequency dependence of the inhomogene-
ous distribution function, implying that a single-frequency driving field would interact 
significantly with only a narrow subpopulation of absorbing oscillators centered very 
near the frequency of the incident field. In the opposite limit, that is where the inhomo-
geneous broadening is small in comparison to the homogeneous broadening 
( i totδω γ<< ), we recover the homogeneous Lorentzian form of the absorption spectrum, 

 
2

2
0

/ 2( )
2 ( ) ( / 2

tot

c tot

N q
mc

γ ππα ω
ε ω ω γ

=
− + 2)

 (35) 

and recognize that as before the incident field will drive each member of the oscillator 
ensemble identically. In intermediate cases, one finds that near the center frequency cω , 
the oscillators behave as though inhomogeneously broadened with the driving field in-
teracting with a subpopulation whose resonant frequencies are clustered within a fre-
quency width of ~ totγ  near the frequency of the incident field. At driving frequencies 

iω δω>> , however, the incident field overlaps the long Lorentzian tails of all of the 
oscillators present in the inhomogeneous distribution and the ensemble behaves as 
though it were homogeneously broadened. Figure 6 shows the line shape functions ob-
tained in these three regimes plotted on a logarithmic scale. 

2 Quantum Theory of Resonant Absorption and 
Stimulated Emission 

At this point we have extracted most of what is intuitively useful regarding the 
classical dipole oscillator and must now invoke quantum mechanics in order to refine 
our understanding of the optical spectroscopy of real microscopic systems. This will 
lead us to quantify the process of stimulated emission—an effect not rigorously deriv-
able with classical mechanics—and we will see that this phenomenon is formally identi-
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cal to absorption. We also find that some modifications are necessary in our definition 
of the oscillator strength in order to account for the full range of possible transitions in 
real multilevel atoms. 

2.1 The Quantum Two-Level System 

2.1.1 Basic Properties 
We begin by considering a simple two-level quantum system completely de-

coupled from either an incident driving field or damping processes (Figure 7). We shall 
also assume that both of the allowed states are nondegenerate and that we already 
know the eigenfunctions and eigenvalues of the system Hamiltonian, . These quanti-
ties will be denoted by 

0Ĥ
a , b , , and , respectively, where . Hence, aE bE bE > aE

 0

0

ˆ

ˆ
a

b

H a E a

H b E b

=

=
and     (36) 

A general state of this conservative system is thus written 

 0 ( ) ( ) ( )a bt c t a c t bψ = +  (37) 

where the normalization c * *( ) ( ) ( ) ( ) 1a a b bt c t c t c t+ =  expresses the necessary condition that 
the system may be found upon measurement to be in either the a  state or the b  state, 
or perhaps more fundamentally that the system itself is stable through all time. Con-
sider now the equation of motion (the Shrödinger equation) for this general state vector: 

 0
0 0

( ) ˆ ( ) ( )
t

j H t t
t

∂ ψ
ψ

∂
=  (38) 

Substitution of Eq. (37) into the above equation of motion yields 

 ( )a b a a b bj c a c b E c a E c b+ = +  (39) 

from which orthogonality of the eigenvectors a  and b  implies 

 
a

a a

b
b b

jEc c

jEc c

= −

= −
 (40) 

Equations (40) yield the straightforward solutions 
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0

0

( )

( )

a

b

j t
a a

j t
b b

c t c e

c t c e

ω

ω

−

−

=

=
 (41) 

where the quantities c  are the initial values of the expansion coefficients in the 0

,a b ,a b  
state basis and , , /a b a bEω ≡ , respectively. Thus for this isolated system, the general state 
vector is 

 0 0

0 ( ) aj t j t
a bt c e a c e bωψ − −= + bω  (42) 

The formalism of quantum mechanics tells us that the probability that the system 
will be found in the energy eigenstate a  is 

 0
2 2

0 0
ˆ ( )aP a H t cψ= a=  (43) 

and comparably in the b  eigenstate 

 0
2 2

0 0
ˆ ( )bP b H t cψ= b=  (44) 

The not unexpected conclusion to be drawn from Eqs. (43) and (44) is that the probabili-
ties for observing the system in either of the two eigenstates are independent of time. 
Likewise, the expectation value for the total energy of the system is time independent: 

 0 0
2 2 2 2

0 0 0
ˆ( ) ( ) ( ) ( )a a b b a a bE t H t c t E c t E c E cψ ψ= = + = 2

bE+  (45) 

2.1.2 Electric Dipole Moment Operator 
Another observable of interest, one that is of fundamental importance in the the-

ory of electromagnetic interactions with optically active quantum systems, is the electric 
dipole moment. Taking the hydrogen atom as a concrete example, the electric dipole 
moment operator is simply , where r  is the position operator for the electron with 
the origin of coordinates taken at the nucleus. For a general multielectron atom, the di-
pole moment becomes 

i
, with the sum being over all electrons in the atom. Note 

that for three-dimensional microscopic systems like atoms, the dipole moment must be 
represented in vector form. In all generality, we will therefore denote the electric dipole 
moment by the vector Hermitian operator 

ˆe− r

îer

ˆ

−∑

µ̂ . 

Returning to the two-level system, whose general state vector is given in Eq.(42), 
the expectation value of the dipole moment in general form is written 
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0 0 0 0 0 0

* * * *

2 2 * *

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

ba ba

a a aa b b bb a b ab b a b

j t j t
a aa b bb a b ab b a ba

c t c t c t c t c t c t c t c t

c c c c e c c eω ω−

= + + +

= ++ +
aµ µ µ µ µ

µ µ µ µ
 (46) 

where ˆij i j=µ µ  is the matrix element of the dipole moment operator as represented 
in the ,a b  basis and where ba b aω ω ω≡ −  will prove later to be the transition frequency 
between the two eigenstates. The Hermitian character of the operator µ̂  requires that 

aaµ  and bbµ  be real valued and that *
baab =µ µ , which guarantees that µ  is real. 

Additional general conclusions can be made regarding the values of the matrix 
elements of the dipole moment operator. Inspection of Eq. (46) for the expectation value 
in the limit where —that is, where the system is initially in the state 0 0bc → a  and re-
mains there for all time—yields 

 aa=µ µ  (47) 

Thus aaµ  must be the permanent dipole moment of the system when in the a  state. 
However, we know from the symmetry properties of real atoms and atomic ions that no 
nonzero permanent electric dipole moment should exist in pure energy eigenstates, 
from which we conclude that 0aa ≡µ . Similarly, 0bb ≡µ and thus in matrix form the di-
pole moment operator in the ,a b  basis may be written 

 ,, ,

,, ,

00 00
ˆ

00 00
ba yba x ba zab

x y
ab yab x ab zba

µµ µ
µµ
    

= + +    
     

µ
zµ





µ e e
µ

= e

,

 (48) 

where for concreteness the vector expansion in terms of the Cartesian unit vectors e  
has been shown explicitly. Thus Hermiticity of each vector component requires 

i

*
,ab i ba iµ µ= . With these results in hand, the time dependence of the dipole moment 

expectation value is seen to oscillate harmonically at the angular frequency baω . We see 
that when the system is in a superposition state constructed from the two energy eigen-
states a  and b , the dipole moment oscillates at the angular frequency baω . Compar-
ing this observation with Eq. (3) for the time evolution of the classical dipole oscillator—
ignoring for now the important assumption that we have explicitly excluded damping 
phenomena in this quantum model—suggests that we identify the quantum two-level 
system with a dipole oscillator of resonant frequency baω . Likewise by analogy with the 
classical oscillator, one further expects that if the system were exposed to an oscillating 
electric field of frequency baω , such a field would induce transitions between the states 
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a  and b

ˆ
intH

. In the following we develop the quantum formalism that will allow us to 
complete this analogy quantitatively. 

2.1.3 Radiative Damping of the Undriven Two-Level System 
In the absence of explicit coupling between a quantum system and external 

fields, the expectation value of the system energy remains constant in time and there-
fore inelastic damping of the system does not occur. Our discussion of the classical os-
cillator (and real-world experience) tells us to expect that excited atoms will lose energy 
and decay to their ground states—indeed, we know that a collection of gas phase atoms 
that are initially prepared in their first excited states will often emit electromagnetic en-
ergy (fluorescence) whose measured power decays exponentially with time. However, a 
rigorous quantum treatment of the fluorescence decay of excited atoms requires us to 
provide not only a quantum representation of the atom but also of the electromagnetic 
field to which the atom is coupled. Although in lieu of such a fully quantized theory of 
atom-field interactions a much simpler semiclassical theory will be developed in detail 
below, the Hamiltonian for the combined and fully quantized atom-field system would 
be nevertheless written as 

  (49) ˆ ˆ ˆ ˆ
tot atom field intH H H H= + +

where  quantifies in operator form the interaction energy of the atom and the field. 
In the event that the atom-field coupling is dominated by the electric-dipole interaction, 

 is given by ˆ
intH

 ˆ ˆintH ˆ= − ⋅µ E  (50) 

In this expression,  is the quantum-mechanical electric field operator; it is exclusively 
a function of coordinates—for our purposes unspecified—that are affiliated with the 
electromagnetic field just as 

Ê

µ̂  exclusively depends on the atom coordinates. Absent an 
applied field,  thus mediates the energy-conserving decay of an initially excited 
atom into radiation. More specifically, since the final state of the system consists of the 
ground state of the atom and an excited state of the field, and since a continuum of pos-
sible final field states is available, each of different frequency, Fermi’s Golden Rule may 
be applied to calculate the rate of radiative decay. In the notation of our two-level sys-
tem just described, and further assuming that the initial state of the system is the gen-
eral state vector 

ˆ
intH
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 ( ) ( ) ( )i a bt c t a c t bψ = +  (51) 

the transition rate is given by 

 
2 222 2ˆ ˆ( ) ( ) ( ) ( )

i a i int f ba b ba fW t i H f a c t i fψ ba
π πψ ρ ω ρ ω→ = = ⋅µ E  (52) 

where i  and f  denote the initial and final states of the field and (f ba )ρ ω  is the density 
of final field states at the transition energy baω . Note that for the electric-dipole opera-
tor we have implicitly used the form Eq.(48). Since the transition rate is defined as the 
time rate of change of the probability that the system be observed in the excited state 
b , i.e., 2( ) /

i a bc tψ → = −W d , Eq. (52) assumes the form dt

 
2

2( )
( )b

rad b

d c t
c t

dt
γ= −  (53) 

where 

 
22 ˆ (rad ba f bai f )πγ ρ ω= ⋅µ E  (54) 

is the radiative transition rate between the two states b  and a . Insofar as we have as-
sumed that the initial state of the field is the vacuum state (no driving field), and since 
radγ  is independent of the initial state of the two-level system, radγ  fundamentally 

characterizes the coupling between the two-level system and the field—it is the direct 
quantum analog of the classical radiative damping rate. Transitions of this type are 
termed spontaneous emission, since the undriven atom has irreversibly transferred its in-
ternal energy to the energy of the field. Einstein introduced a special symbol, the  
coefficient, to denote the spontaneous emission transition rate; in our example, it is de-
fined by 

A

b a radA γ→ ≡ . Although we could in principle use Eq. (52) to calculate the Einstein 
 coefficient, we will use a more accessible approach in Section 2.2.4 with the benefit 

that it will not require quantization of the electromagnetic field.  
A

An important final point to make regarding the spontaneous decay of the two-
level system is that Eq. (52) represents a much more general principle than we have let 
on: spontaneous radiative transitions aside, any type of coupling between the system 
and a continuum of final states would have led to exponential decay of the excited state. 
For example, in the event that a first-order interaction with a second (i.e. nonradiative) 
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continuum were included in the initial Hamiltonian, decay would occur at a total rate 
equal to the sum of the individual rates: 

 rad nrγ γ γ= +  (55) 

In all cases, the differential equation Eq. (53) is readily solved to yield 

 0 22( ) t
b bc t c e γ−=  (56) 

from which the time dependence of the expectation value of the internal energy of the 
two-level system is 

 0 22 2( ) ( ) ( ) ( ) t
a a b b a b b aE t c t E c t E E c E E e γ−= + = + −  (57) 

in direct accord with our classical results. 

2.2 Semiclassical RadiationTheory 
The purpose of developing a semiclassical theory of radiative interactions with 

quantum systems is to simplify the derivation of useful results from physical first prin-
ciples. We also wish to develop a formalism for which inclusion of elastic damping 
processes can be plausibly motivated and included in a natural way. A direct outcome 
of this procedure will be a quantum theory of the oscillator strength, the absorption 
cross section, and stimulated emission, the latter subject being of fundamental impor-
tance in understanding the workings of lasers. Yet a third objective is to understand the 
statistical behavior of ensembles of quantum systems. This is a tall order, so we beg the 
reader's indulgence in what follows as it departs from the approaches employed in the 
standard introductory texts on laser physics and engineering. With a minimum of facts 
to accept on faith, the power of the density-matrix formalism to accomplish in elegant 
form all three of the tasks just named we hope will encourage the reader to accept the 
additional level of abstraction. 

2.2.1 The Density Matrix 
We know from quantum mechanics that the expectation value of an observable 

 for the quantum state Â ( )tψ  is given by the rule 

 ˆ( ) ( )A t Aψ ψ= t  (58) 
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In terms of a complete set of basis states nϕ  that span the space of all possible solu-
tions to the Shrödinger equation, A  may be written in the form 

 *

,

ˆ( ) ( ) ( ) ( )m m n n m n mn
m n m n

A c t A c t c t cϕ ϕ   
= =   
   
∑ ∑ ∑ * t A  (59) 

where the  are the expansion coefficients of the state vector ( )nc t ( )tψ  in the nϕ  basis. 
If we now take an interest in the average value of the observable  over a collection of 

 identical systems, each labeled with the index i , the latter result naturally suggests 
Â

N

 *

,

1 ( ) ( )i i
m n m

i m n

A c t c
N

= ∑∑ nt A  (60) 

where the superscript i  on the expansion coefficients corresponds to the state vector 
( )i tψ  for the i  system. Insofar as the expectation value of the observable  will be in 

general time dependent, especially if classical fields are present or if the particles in the 
ensemble are mutually interacting, the time rate of change of the mean expectation 
value is given by 

th Â

 * *

,

1 [ ( ) ( ) ( ) ( )]i i i i
m n m n m

i m n

d A
c t c t c t c t A

dt N
= +∑∑ n  (61) 

where we have taken advantage of the fact that the matrix elements  are the same 
for every system in the ensemble. On the other hand, if we take the basis states 

mnA

nϕ  to 
be the eigenvectors of the Hamiltonian, the Shrödinger equation in terms of the nϕ  ba-
sis is 

 ˆ( ) ( )i i
k k k

k k
i c t c t H kϕ ϕ=∑ ∑  (62) 

from which orthogonality of the nϕ  yields 

 ( ) ( )i i
n k

k

ic t c t H= − ∑ nk  (63) 

Substitution of Eq. (63) into Eq. (61) gives 

 * *

,

1 [ ( ) ( ) ( ) ( ) ]i i i i
k n km m k nk m

i m n k

d A j c t c t H c t c t H A
dt N

= −∑∑∑ n  (64) 

21 



We now define the density matrix for the i  single system as th

  (65) *( ) ( ) ( )i i
nm m nt c t c tρ = i

which on substitution into Eq. (62) yields 

 
,

1 [ ( ) ( )]i i
nk km nk km mn

i m n k

d A j t H H t A
dt N

ρ ρ= −∑∑∑  (66) 

Performing the sum on  yields k

 
, ,

1 1ˆ ˆ ˆˆ ˆ ˆ[ ( ) ( )] , ( )i i i
nm mn mnnmi m n i m n

d A j jt H H t A H t A
dt N N

 = − = −  ∑∑ ∑∑ρ ρ ρ  (67) 

where in the last equality  denotes the n  matrix element of the commuta-
tor bracket formed from  and . Note that we write the time-dependent density 
matrix  in bold in order to emphasize the difference between this quantity and 
ordinary operators. Finally, the sum over the  systems can be performed yielding 

ˆ ˆ, ( )i

nm
H t ρ
Ĥ ˆ ( )i tρ

 m,

ˆ ( )i tρ
N

 ,

,

1ˆ ˆ, ( )

ˆ ˆˆ ˆˆ ˆ         , ( ) , ( ) , ( )

i
mn

m n i nm

mnnmm n n nn

d A j H t A
dt N

j j jH t A H t A Tr H t A

 
= −  

 

       = − = − = −  ˆ ˆ 
        

∑ ∑

∑ ∑

ρ

ρ ρ


ρ
 (68) 

where we define the -system density matrix N

 
1

1ˆ( ) ( )
N

i

i
t

N =

= ∑ρ ˆ tρ  (69) 

We can write our original mean expectation value A  [Eq.(60)] in terms of ρ  
as well: 

ˆ ( )t

 
,

ˆˆ ˆ( ) [ ( ) ] [ ( ) ]nm mn nn
m n n

A t A t A Trρ= = =∑ ∑ ρ ρ ˆt A  (70) 

Thus  represents a conventional statistical average over the ensemble; knowledge of 
this quantity allows us to calculate the mean expectation values [through Eq.(70)] as 
well as their time rates of change [through Eq. (68)]. 

ˆ ( )tρ
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Now for the important part: All this algebra is useless unless we have an equa-
tion of motion for  itself! To find this equation, differentiate Eq. (70) with respect to 
time: 

ˆ ( )tρ

 ˆˆ[ ( ) ]
d A

Tr t A
dt

= ρ  (71) 

and equate this result with the RHS of Eq.(68): 

 ˆ ˆˆ[ ( ) ] , ( )jTr t A Tr H t Âˆ  = −   
ρ ρ  (72) 

Because this equation must hold for any time-independent operator , we have Â

 ˆˆ ( ) , ( )jt H ˆ t = −  ρ ρ

t

 (73) 

With the additional feature of representing a statistical average over the -system 
ensemble, this last result is really nothing more than a different expression of the same 
information embodied in the Shrödinger equation of motion. Its real power becomes 
apparent when we discuss a quantum mechanical system coupled to a continuum of 
perturbing states, as the following now illustrates.  

N

2.2.2 Damping in the Semiclassical Equations of Motion 
We consider a Hamiltonian in this general form: 

  (74) 0
ˆ ˆ ˆ ˆ( ) ( )tot int RH H H t H= + +

where  is meant to denote the unperturbed time-independent Hamiltonian whose ei-
genstates and eigenvalues we suppose to know before hand,  is a time-dependent 
interaction Hamiltonian whose explicit form we know how to construct (as, for in-
stance, in the case of an applied sinusoidally varying electric field), while the time-de-
pendent Hamiltonian  is meant to encapsulate interactions between the system 
and a reservoir of states comprised of a large number of other degrees of freedom. Oth-
erwise, the explicit form of  is unknown. For example, we can suppose that  
characterizes elastic collisions between the system and other particles. We also assume 
that an  can be conceived that would mimic the effects of spontaneous radiative 
emission or collision induced de-excitation. This is the essence of the semiclassical ap-
proach: A full quantum treatment of the states giving rise to damping of the system is 

0Ĥ

Ĥ

ˆ ( )intH t

ˆ ( )RH t

ˆ ( )RH t ˆ ( )RH t

( )R t
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foregone in favor of some ad hoc  that still depends on system operators but de-
pends only parametrically on the reservoir coordinates. Most importantly, however, the 
density-matrix approach does not even require us to provide an explicit form of . 
Instead, we will make a heuristic argument as to how the existence of  modifies 
the equation of motion for the density matrix. This is the fundamental advantage that 
the density-matrix approach holds over use of the Shrödinger equation in understand-
ing multiparticle systems subject to damping. For the moment, we’ll set  to zero 
in order to develop an equation of motion in the case of pure damping of the excited 
state. For concreteness, we will also restrict attention to just a single two-level quantum 
system. In this case, the time derivative of the density matrix becomes 

ˆ ( )RH t

ˆ ( )RH t
ˆ ( )RH t

ˆ (intH )t

= −

( )iiρ = −

a

( )bbρ

ˆj
−

 0
ˆ ˆ,ˆ R

j jH H − −ρρ  (75) ˆ ˆ, ρ

Assuming now that we choose as basis states the eigenvectors of , the diagonal ele-
ments of the first commutator bracket are easily shown to vanish and hence the diago-
nal elements of ρ  are 

0Ĥ

ˆ ( )t

 ˆ , ( )ˆR ii

jt H t  ρ  (76) 

Returning as an example to the two-level system with energy eigenstates  and 
b , we already know from Eq. (53) for coupling to a damping continuum consisting of 

a radiation field that 

 *
b b bbt c cγ≡ − = −  (77) γρ

and thus 

 , ( )R bb
H t bbγρ  ρ  (78) ≡ −

We also see that necessarily 

 ˆ , ( ) ( 1)R aaaa

j H t bbγ ρ − = − − ρ γρ=  (79) 

As for the off-diagonal elements, the essential assumption of the semiclassical 
theory is that these are damped in analogous fashion to the diagonal elements, hence 
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 ˆ ˆ, ( ) ,   R nm nmnm

j H t nγ ρ − = − ρ m≠  (80) 

This assumption, however, is not as arbitrary as it may at first seem: because 2
bc  is 

exponentially damped at the rateγ ,  will be exponentially damped at the rate bc / 2γ . 
The bilinear product  must exponentially relax to zero at the same rate 
as  since 

*( ) ( )ba at cρ = (bt c )t

bc ac  is bounded from above. It can be shown quite generally that for purely 
inelastic damping processes the off-diagonal elements of the density matrix for a two-
level system with a stable lower level are 

 / 2ab baγ γ γ= =  (81) 

So far, our discussion has established the form of the equation of motion for the 
density matrix in the case of inter-level relaxation as mediated by a radiative continuum 
coupled to the system. It is evident from our discussion that exactly analogous results 
obtain for collision-mediated or other nonradiative inelastic relaxation processes. With 
regard to elastic processes, however, the density matrix formalism provides a natural 
way to include these effects as well.  

Consider the previous result Eq. (46) for the expectation value of the dipole mo-
ment for the two-level system: 

 * *( ) ( ) ( ) ( )a b ab b a ba ba ab ab bac t c t c c t tρ ρ= + = +µ µ µ µ µ  (82) 

This expression depends on only the off-diagonal elements of the density matrix. On the 
other hand, we know from the discussion immediately above that the effect of inelastic 
collisions that de-excite the state b  is a commensurate exponential decay of the off-di-
agonal elements and with them the dipole moment, as seen through Eq. (82). To include 
the effect of elastic collisions, we simply propose that an additional damping term be 
added to the equations of motion for the off-diagonal elements that is exactly analogous 
to the effect of inter-level relaxation. In short, 

 / 2ab ba elasticγ γ γ γ= = +  (83) 

where γ  refers to the inelastic portion of the relaxation and elasticγ  to the elastic portion. 
The factor of 1/  does not appear in the latter term because 2 γ  quantifies a rate of 
population change rather than a collision rate. This point can be made more concrete by 
considering a large number of two-level systems whose dipole moments are initially all 
in phase. In terms of the density matrix, this circumstance corresponds to each one-sys-
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tem density matrix being in phase with all the others. The net result is a macroscopic 
dipole moment equal in magnitude to the sum of the amplitudes of all the dipoles. 
Since the effect of a single collision is to randomly dephase the quantum state of one of 
the systems (and hence the expectation value of its dipole moment) with respect to the 
remaining systems, the average effect of elastic collisions on the total dipole moment of 
the ensemble will be an exponential decay of dipole moment (or polarization) at a rate 
exactly equal to the collision rate. Hence 

 ( ) ( )/ 20 0 elastic t
ba ab ab bamacro

N e γ γρ ρ += +µ µ µ −  (84) 

where  is the number of systems and N 0
ijρ  is the initial value of the one-system off-

diagonal density matrix element.  

Combining all the pieces, the general equation of motion for the density matrix 
for an ensemble of freely decaying two-level systems is 

 
0 ( ) ( 1) ( / 2 )

       
( ) 0 ( / 2 )

aa ab

ba bb

b a ab aa elastic ab

b a ba elastic ba bb

E Ej
E E

ρ ρ
ρ ρ

ρ γ ρ γ γ ρ
ρ γ γ ρ

 
= 

 
− − − +  

− −  − +   γρ




t

 (85) 

If we now include the possibility that these systems are exposed to a driving 
electric field, , that is ( )tE

 
ˆ0ˆ ˆ ( ) ( )

ˆ 0
ab

int
ba

H t
 

= − ⋅ = ⋅ 
 

µ
µ E

µ
E  (86) 

then added to the matrix equation above is 

 
( )ˆ ˆ, (

( )
ba ab ab ba bb aa ab

int
bb aa ba ba ab ab ba

j jH t
ρ ρ ρ ρ
ρ ρ ρ ρ

− − − =   − − + 

µ µ µ
ρ E

µ µ µ−
)


⋅  (87) 

In all generality then, the time rate of change of the density matrix in the presence of an 
external field is given by the coupled system of equations 
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( )

( )

*

( ) ( 1)

( )

( ) ( ) ( ) ( / 2 )

aa ba ab ab ba aa

bb ba ab ab ba bb

ab b a ab bb aa ab elastic ab

ba ab

j t

j t

j jE E t

ρ ρ ρ γ ρ

ρ ρ ρ γρ

ρ ρ ρ ρ γ γ

ρ ρ

= − ⋅ − −

= − − ⋅ −

= − + − ⋅ − +

=

µ µ E

µ µ E

µ E ρ

 (88) 

Equations (88) are what all this work has been driving toward: a semiclassical de-
scription of the response of a quantum two-level system to an applied electric field in 
the presence of inelastic and elastic damping processes. Embedded within the solutions 
to these equations is a wealth of information regarding electromagnetic interactions 
with matter, among which of particular interest are quantum theories of absorption and 
stimulated emission. The equations also lead to a theory of the homogeneous line 
shape. We now derive these results.  

2.2.3 Solutions of the Equations of Motion in the Rate-Equation Limit: 
Absorption and Stimulated Emission  
Our discussion of the classical dipole oscillator suggests that after switching on a 

sinusoidally varying applied electric field a steady state will evolve in which the me-
chanical energy of the oscillator remains constant in time while the dipole moment will 
continue to vary sinusoidally in time in response to the applied field. In the quantum 
mechanical context, we expect analogous results. In terms of the elements of the density 
matrix, the diagonal elements therefore will reach constant values after initial transients 
have damped away and thus 0aa bbρ ρ= = . On the other hand, even in the presence of 
damping, the off-diagonal elements must continue to vary in time at a frequency equal 
to that of the driving field so as to yield a nonzero time-varying value for the field-in-
duced dipole moment [Eq. (3)]. As made explicit below, these observations suggest that 
a case intermediate between the full time-dependent solutions to Eqs. (88) and the 
steady-state case may be considered. 

We first construct the interaction Hamiltonian appropriate to a monochromatic 
applied electric field: 
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where  is a real, time-independent vector. We next introduce a standard approxima-
tion whose effect is to eliminate rapidly varying, nonresonant components to the solu-
tions. Termed the rotating-wave approximation, the approximation consists of simply sub-
stituting for the exact interaction Hamiltonian Eq. (89) the modified Hamiltonian 
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Note that the essence of the approximation is to discard the “negative-frequency” time-
varying portion of the applied electric field, e j tω− , in ˆ

inta H b  while being sure to set 
*ˆ ˆ

int intb H a a H b′ = ′  so that Hermiticity of the interaction Hamiltonian is preserved. 
The equations of motion Eqs. (88) become under the rotating-wave approximation 
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where / 2 elasticγ γΓ = +  is the total dephasing rate. We now suppose that bb aaρ ρ−

Γ

 varies 
sufficiently slowly in time compared with the time variation of the driving field that it 
can be taken as effectively constant in Eqs. (91). We also suppose that the driving field 
has been present for a time long compared with the dephasing time 1/ . Under these 
approximations, the so-called rate-equation limit of the equations of motion, Eq. (91)c is 
easily integrated yielding 
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where  is the resonant frequency of the system. Substitution of the 
latter result into Eq. (91)b gives: 
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A similar argument yields 
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2.2.3.1 Absorption 
Consider now Eq. (94) for the case of an applied field polarized in the x  direction 

and in the limit where bbρ  is initially very small: 
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where the latter equality has been written in terms of the normalized Lorentzian line 
shape function [Eq. (19), suitably modified in keeping with our definition of ] and the 
incident optical intensity 
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0(1/ 2)inc 0I cEε= . The angle θ  is just the angle between the ex-
pectation value of the dipole moment— ˆab aba b=µ —and the direction of polariza-
tion of the incident field, . Considering next a collection of randomly oriented sys-
tems (as would arise in the gas phase or in an amorphous host material) with a number 
density of , the total rate of change of the population in the 
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noting that the average of cos2 ( )θ  over all directions in space is 1/ . This result shows 
that just as in the classical case, the existence of an electric dipole moment in the two-
level system must give rise to absorption of energy from the applied field. This energy 
absorption can be quantified just as before by considering a slab of the material of 

3
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thickness  and noting that the change in power of the incident field on passing at nor-
mal incidence through the slab is 

dz
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which implies that the absorption cross section in the quantum two-level system is 
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and thus that the frequency-integrated cross section is 
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Introducing the quantum absorption oscillator strength in direct analogy with Eq.(22), 
i.e. 
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implies that 
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A curious feature of this last result is that it appears that the absorption oscillator 
strength increases linearly with the frequency. This stands in contrast with the result 
obtained for the classical oscillator, Eq. (23), which showed no frequency dependence at 
all, a fact that made the oscillator strength such a useful measure with which to com-
pare the strength of different transitions. It seems unreasonable that a quantum theory 
of the oscillator strength would exhibit such a qualitatively different feature than does 
the classical theory. In fact, the resolution of this discrepancy is simply that embedded 
within the squared dipole-moment matrix element is an 1

0ω
−  frequency dependence. 

While it is not possible to prove this without specifying the precise details of the quan-
tum system under discussion, it is qualitatively reasonable that this be so given that 
with an increasing energy difference between two energy eigenstates, the less spatial 
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overlap will exist between the corresponding wave functions. Hence the smaller will be 
the dipole-moment matrix element. The reader may wish to verify the 1

0ω
−  frequency 

dependence of the squared dipole-moment matrix element for a specific quantum sys-
tem; for it’s simplicity, the one-dimensional harmonic oscillator is particularly recom-
mended.  

As an interesting aside, another important feature of the quantum oscillator 
strength is that it satisfies a sum rule. For example, with regard to an atom or ion, the 
oscillator strengths for transitions from the ground state to all excited states sums to a 
value usually close to unity. If one includes the possibility of optically induced down-
ward transitions, a circumstance to be discussed in detail in the next section, then the 
oscillator strengths for transitions from any initial state to all others will satisfy the same 
sum rule provided that the oscillator strengths for down-going transitions are taken as 
negative. 

Returning to the main argument, we are now in a position to define the Einstein B 
coefficient for absorption on the a  transition: b→
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In terms of the B  coefficient, the time rate of change of the b -state population due to 
absorption is just 
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This definition is motivated by a desire to express the transition rate in terms of an en-
ergy density of the incident radiation, namely /incI c , rather than its intensity. The ra-
tional for such a choice will emerge in Section 2.2.4 below. 

2.2.3.2 Stimulated Emission 
Much of the previous argument can be applied in considering Eq. (94) in the 

opposite limit of 1aaρ << . The result is 
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We thus see that in a fashion reciprocal to that of absorption, the applied field drives 
population out of the excited state into the ground state. But what is crucial regarding 
this observation is that the driving field is amplified in the process. To see this, first recall 
the classical wave equation for the electric field vector in the presence of a source po-
larization: 
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In turn, the macroscopic polarization P r  is given in terms of the density matrix as ( , )t
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where we suppose that a volume of two-level systems of number density  fills a 
space labeled by the position vector r . Hence 
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Since we already know that for 0bbρ →  the electric field amplitude  will decrease 
as the wave propagates through the medium, the change in sign of 

0 ( )E r
( ,2 2) /t t∂ ∂P r  that is 

evident in the above expression when 0aaρ →

bb

 must yield an increase in the amplitude. 
In fact, we see that in all generality that if 0aaρ ρ− > , that is, if there is a population 
inversion between the b  and a  states, the medium of two-level systems will amplify 
the applied electromagnetic field. This is the essential physical phenomenon underlying 
semiclassical laser theory, one that is not predicted by the purely classical theory pre-
sented earlier. In exact analogy with the case of absorption, the cross section, oscillator 
strength, and Einstein B  coefficient for stimulated emission in the two-level system are 
readily defined and yield simply 

 ,    ,   se abs se abs ba abf f B Bσ σ= = − =  (108) 

where the minus sign for the stimulated-emission oscillator strength is introduced by 
convention in order to preserve the oscillator strength sum rules discussed in the previ-
ous section. The reciprocity of absorption and amplification in the medium immediately 
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leads to a definition of the gain coefficient. In terms of the cross sections, for example, it is 
given in the case of general bbρ  and aaρ  by 

 [ ]( ) ( ) ( ) ( ) ( )se bb abs aa se b absg N Nω σ ω ρ σ ω ρ σ ω σ ω= − = − aN  (109) 

By analogy with the absorption coefficient, the intensity of an applied plane-wave field 
varies with distance through the medium according to 

 ( )
0( ) g zI z I e ω−=  (110) 

This relation, however, only holds provided that the intensity never becomes so large as 
to significantly change the local value of . For this reason, bN ( )g ω  in this limit is more 
precisely termed the small-signal gain coefficient. 

2.2.3.3 Level Degeneracy 
So far, we have neglected the possibility that the states a  and b  are degener-

ate. Level degeneracy can be included in a natural way by simply summing the contri-
butions to absorption or stimulated emission over all possible transitions between the 
degenerate states of the lower and upper manifolds. For example, in the case of absorp-
tion, we can simply insist on continuing to express the absorption coefficient in terms of 
a cross section defined to embody the effect of multiple transitions to the excited mani-
fold. In other words, 
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where  is the population in the i  sublevel of the lower manifold of degenerate 
states and where 
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is the absorption cross section for a transition from the  sublevel of the lower mani-
fold to the  sublevel of the upper manifold. Note that the line shape function 

thi
thj

0(L ω ω−  is taken to be the same for each of the separate sublevel transitions, an 
assumption that is not rigorously justified, but one that in fact has little practical affect 
on the results. One reason this can be so is if collisions or other external homogeneous 
disturbances determine the line width of each sublevel transition rather than a radiative 
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relaxation rate. Another consequence of such disturbances is that the total population in 
each manifold is equally divided between each of the sublevels, thus giv-
ing . The absorption coefficient then becomes , /a i a aN N g=

( )α
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where  is just the dipole moment matrix element averaged over all possible ini-
tial and final sublevels. A similar expression results for the small-signal gain coefficient, 
thus yielding in the case of degenerate lower and upper manifolds absorption and 
stimulated-emission cross sections of 
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and thus the important relation 

 b se a absg gσ σ=  (116) 

The oscillator strengths and Einstein B  coefficients for absorption and stimu-
lated emission are similarly generalized to 
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from which one obtains 

 b se a absg f g f= −  (119) 

and 

 b ba a abg B g B=  (120) 

Table 1 gives a list of values for interesting radiative quantities pertinent to im-
portant laser transitions. 

2.2.4 Relationship between the Einstein A  and  Coefficients B
The semiclassical theory of optical transitions that we have used to derive the re-

sults of the preceding sections is not applicable to the first-principles calculation of the 
Einstein  coefficient. As asserted earlier, such a calculation requires quantization of 
the electromagnetic field. Nevertheless, we expect a relationship between the  and 

A
A B  

coefficients insofar as they both quantify in different ways the coupling between an op-
tically active microscopic system and the electromagnetic field. This relationship can be 
rigorously derived through a thermodynamic argument due originally to Einstein. 

We consider again a two-level system with lower and upper manifold degenera-
cies of  and , respectively. A gas of these systems is supposed to fill a large box 
whose interior walls are painted black and whose exterior walls are in contact with a 
thermal reservoir of temperature T . On the other hand, we idealize the inner walls of 
the box to be incapable of exchanging energy with the two-level systems as a result of 
collisions with the walls. We also consider only a very small number density of systems 
in the box so that mutual collisions are unimportant. Instead, Planck radiation of tem-
perature T  within the box will provide the only means by which transitions may be in-
duced between the upper and lower manifolds.  

ag bg

Now in thermodynamic equilibrium, the temperature of the systems is T  as well, 
so that according to elementary statistical mechanics the ratio of the populations in the 
two manifolds must be 

 0 / kTb b

a a

N g e
N g

ω−=  (121) 

However, we know that radiative relaxation out of the excited manifold will deplete the 
upper state, as will stimulated emission induced by the radiation in the box, while ab-
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Transition Wavelength Radiative
lifetime

Peak stimulated
emission
cross section

Oscillator
strength

HeNe laser transition 

3s2 → 2 p4

633 nm 0.7 µs ~10-13 cm2 0.0047

Nd:YAG laser transition
4F3/2→

4I3/2

1.064 µm 1.22 ms 4.6 × 10-19 cm2 ~8 × 10-6

Ruby laser transition  
2E→ 4A2

694 nm 4.3 ms 2 × 10-20 cm2 ~10-6

Rhodamine 6G
dye laser transition

S1 → S0

620 nm 3.3 ns 2 × 10-16 cm2 ~1.1

Table 1. Some spectroscopic parameters for common laser systems. [From Siegman (1986)].



sorption of this radiation will repopulate the upper manifold. The essence of the argu-
ment then is to equate the rates of radiative down going and up going transitions (the 
systems are in equilibrium after all!) and further insist that the steady-state populations 
thereby achieved be related by the ratio Eq. (121).  

The first step is to translate the results obtained in Section 2.2.3, which concern 
transitions induced by a plane monochromatic wave according to 

 [ ] 0(b a ab b ba
IN N B N B L
c

)ω ω = − − 
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 (122) 

into a corresponding equation appropriate to the broad band incoherent radiation in the 
box. This is easily accomplished by first recalling that /I c  is just the energy density of 
the applied field, suggesting that 

 [ ] 0( ) ( ) ( )b a ab b baN N B N B Lωω ρ ω ω ω ω∆ = − − ∆  (123) 

is the contribution to the time rate of change of the upper-state population due to the 
presence of Planck radiation within the narrow range of frequencies ω∆ . This radiation 
is of spectral energy density ( )ωρ ω  (units of energy per unit volume per unit frequency 
interval) at the frequency ω . It is important to recognize in forming this last expression 
that the energy density of the radiation in the box is a simple arithmetic sum over fre-
quency of the spectral energy density. In other words, the thermal character of the ra-
diation insures that no correlations exist in the electric field at one frequency relative to 
that at another frequency. Taking Eq. (123) in the limit of 0ω∆ →  and integrating over 
frequency yields for the radiation-induced total rate of transitions to the upper manifold 

 [ ] [ ]0 0( ) ( ) ( )b a ab b ba a ab b baN N B N B L d N B N Bω ωρ ω ω ω ω ρ ω
∞

−∞
= − − = −∫  (124) 

In obtaining this result, the slow variation of ( )ωρ ω  with frequency relative to 
the width of the normalized line shape function has been used to write the second 
equality. Including now the contribution due to spontaneous transitions, the total rate 
of change of the upper manifold population is 

 [ ] 0( )b a ab b ba baN N B N B A Nωρ ω= − − b  (125) 
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Having now included all the processes capable of changing the upper manifold 
population density, thermodynamic equilibrium requires that 0bN =  and thus Eq. (125) 
is easily solved for the ratio of the upper and lower manifold population densities: 
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With the help of Eq. (121), this leads to 
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Now making use of the relation ( / )ab b a baB g g B= , Eq. (127) can be solved for the ratio of 
the  and A B  coefficients to give 
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All we need at this point is an expression for the spectral energy density of 
Planck radiation, 0( )ωρ ω . This is given by 
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Although we will not derive this result here, the general form of the spectral energy 
density can be understood by recognizing that it is a product of three terms: The first is 
just the energy of a photon at frequency 0ω  ( 0ω ), the second term is the number of 
photons actually present in a radiation mode of frequency 0ω , namely, the Bose-Ein-
stein occupation factor ( )0

1/ 1kTe ω −
− , and the third term is the density of such modes of 

frequency 0ω  (number per unit frequency), which we know from simple counting argu-
ments to scale as 2

02ω  (the factor of 2 is due to the existence of two independent 
polarizations). The remaining constant factor of 2 3cπ − −  merely converts the general scal-
ing of the mode degeneracy to units of modes per unit volume (of the box) per unit fre-
quency interval. Combining Eqs. (128) and (129) finally yields 
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Equation (118)b allows us to write the  coefficient in terms of more fundamen-
tal quantities of the two-level system: 

A
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π ε
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Indeed, a host of relationships between Einstein coefficients, cross sections, lifetimes, 
dipole moments, and oscillator strengths may be written down with the results devel-
oped above. A summary of these is given in Table 2. 

2.3 Absorption and Emission in the Solid State: Generalizations of 
the Einstein Relations 

2.3.1 Method of Reciprocity 
Both homogeneous and inhomogeneous broadening effects in the solid state are 

much more pronounced than in the gas phase, particularly at room temperature. As a 
result, otherwise well-separated spectral lines merge into a single feature or band with a 
complex spectral profile. In these circumstances, it is convenient to treat such complex 
features as single units by introducing absorption and stimulated emission cross sec-
tions applicable to the feature as a whole. This approach is especially helpful, for exam-
ple, when very fast thermal equilibration within a manifold of closely spaced energy 
levels makes this manifold effectively degenerate. That is, rather than keep track of the 
individual populations found in each member sublevel, it is possible to assign to the 
manifold as a whole a single population that is equal to the sum of the individual sub-
level populations. If, moreover, the homogeneous line width is larger than the inhomo-
geneous width (a common occurrence for rare-earth impurities in crystals at room tem-
perature and often effectively the case for glass host materials as well), the manifold 
will behave as if it were homogeneously broadened. 

We can make these qualitative ideas more formal as follows. Consider Figure 8, 
which shows the energy-level diagram for an impurity ion in a solid host at some non-
zero temperature T . The level structure consists of a pair of well-separated manifolds; 
each separately consists of closely spaced levels that are thermally well coupled to one 
another. The number of distinct sublevels (any one of which may itself be degenerate) is 
designated by  for the lower manifold and  for the upper manifold. One then de-
fines a total absorption cross section for this system in a manner analogous to our dis-
cussion in Section 2.2.3.3 for degenerate states: 

aD bD
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Table 2. Relationships Between Fundamental Radiation Quantities  Algebraic relations in terms of symbols defined
in the text are given for radiative transitions between degenerate states a  and b  with energies such that   Eb − Ea ≡ h 0
and level degeneracies ga  and gb , respectively. Angle brackets enclosing the squared dipole-moment matrix element indi-
cate an average over all sublevel-to-sublevel transitions within each degenerate manifold. Except for the Einstein A  coef-
ficient and the dipole moment, all quantities refer to absorption, i.e. the a → b  transition. Relations for quantities referring
to stimulated emission may be obtained with the help of the expressions gb f se = ga f abs, gb Bba = ga Bab , and gb se = ga abs . For
analogous expressions in a medium of refractive index n , substitute c / n  for c  and = n2
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where  is the total population density of the lower manifold,  is the population 
density of the i  sublevel of the lower manifold, and 

aN ,a iN
th ( )ij

absσ ω  is the absorption cross sec-
tion for transitions from the -fold degenerate  sublevel in the lower manifold to the 

-fold degenerate  sublevel in the upper manifold.  
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By hypothesis, however, the sublevels in either the lower or the upper manifold 
are thermally well coupled to one another and thus , where 

1

D

i=
 is the partition function for the lower manifold (with the zero of energy 

defined at the i  sublevel). The above expression may be then rewritten as 
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We hence arrive at an expression for the total cross section of a broadband ab-
sorption feature affiliated with the inter-manifold transition . As in the case of a 
single inter-level transition, this cross section makes no reference to the individual 
population densities of the separate sublevels, nor, for that matter, to the manifold 
population density as a whole. While we will continue to assume that each individual 
sublevel-to-sublevel transition  is homogeneously broadened, an exactly analo-
gous expression may be derived in the case of inhomogeneous broadening. In the for-
mer case, however, we see that a narrowband source illuminating the impurity system 
at a fixed frequency effectively interacts with all impurities simultaneously, that is, it is 
as if the multilevel impurity were homogeneously broadened over the entire absorption 
band and not just within individual sublevel transitions. The only new complication is 
that this newly defined total cross section exhibits a more complex temperature de-
pendence in accord normalized Boltzmann factor e Z . 
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An exactly analogous generalization of the stimulated emission cross section is 
readily derived: 
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where in this case the partition function bZ  for the upper manifold is defined with the 
zero of energy set at the  sublevel.  1j =
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It is now possible to derive a useful relationship between these two generalized 
cross sections based on the fundamental reciprocity relation i ij j ji

a abs b seg gσ σ≡  [Eq. (116)] 
found earlier: 
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where  is the energy spacing between the lowest lying (0E 1i = ) sublevel of the lower 
manifold and the lowest lying ( 1j = ) sublevel of the upper manifold, as shown in Fig-
ure 8. Note for this result that in the limit T  one recovers the previous result 
Eq. (116). 

0→

This remarkable result, originally derived by McCumber (1964), gives us a way 
of calculating the stimulated-emission cross section for a complex band by performing a 
simple absorption measurement and applying Eq. (135). All that we are required to 
know are the sublevel energies and the temperature.  

2.3.2 Füchtbauer-Ladenburg Relation 
Another result useful for determining the stimulated-emission cross section in 

broadband systems can be derived by first forming an expression for the normalized 
line shape function for the emission band: 
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 (136) 

In this expression, we assume that a total population density  resides in the upper 
manifold, in which case the radiative lifetime of the manifold as a whole (assuming a 
branching ratio of 1 for transitions to the lower manifold) is given by 
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The quantity 0( jiL )ω ω−
i

 is the normalized Lorentzian line shape function for emission 
on the  sublevel transition with center frequency j→ 0

jiω . This function is identical to 
the normalized absorption line shape owing to the reciprocity relation 

( ) ( )i ji
segj ij

b abs ag σ ω σ ω≡ ; it may be more intuitively understood in terms of the relation 
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where ( )jiS ω  is the emission spectrum of the  sublevel transition in units of watts 
per unit radial frequency. Thus G

j→ i
( )ω  is the same normalized quantity defined for the 

emission band as a whole. 

Equation (136) can be transformed to give an expression for the total emission 
cross section: 
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If one now replaces the term 0
jiω  in the above sum by a suitably defined average emis-

sion frequency 0
avω  for the band, the approximate result is 
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This approximation is typically good to a few percent for visible transitions of rare-
earth ions in insulators.  

Equation (140) thus represents a second means by which the stimulated-emission 
cross section can be found indirectly in terms of more easily measured quantities. In this 
case, these quantities are the normalized emission line shape function G( )ω  and the 
radiative lifetime of the upper manifold. In some circumstances, the latter quantity may 
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prove more difficult to measure than in others. For example, if the branching ratio to the 
lower manifold is significantly different than unity or if the rate of nonradiative transi-
tions between the two manifolds is large, then additional auxiliary measurements will 
be needed in order to apply Eq. (140). Of course, an absorption measurement may be 
used to indirectly determine radτ . 
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