
EE 273 Lecture 14, Synchronizer Design 11/11/98

Copyright 1998 by W. J. Dally, all rights reserved. 1

Copyright (C) by William J. Dally, All Rights Reserved
EE273, L14, Nov 11, 1998 1

EE273 Lecture 14
Synchronizer Design

November 11, 1998

William J. Dally
Computer Systems Laboratory

Stanford University
billd@csl.stanford.edu

Copyright (C) by William J. Dally, All Rights Reserved
EE273, L14, Nov 11, 1998 2

Today’s Assignment

• Term Project
– design a signaling system

– entire project due on 11/30
– checkpoint 1 (signaling components) due next week (11/18)

– checkpoint 2 (timing components) due on 11/25

• Reading
– Section 10.4

– Complete before class on Monday 11/16



EE 273 Lecture 14, Synchronizer Design 11/11/98

Copyright 1998 by W. J. Dally, all rights reserved. 2

Copyright (C) by William J. Dally, All Rights Reserved
EE273, L14, Nov 11, 1998 3

A Quick Overview

• Synchronization Hierarchy

• Mesochronous
Synchronizers
– delay-line synchronizer
– two-register synchronizer

– FIFO synchronizer

• Plesiochronous
Synchronizers
– phase slip and flow control

• Periodic Synchronizers
– clock prediction - looking

into the future

Copyright (C) by William J. Dally, All Rights Reserved
EE273, L14, Nov 11, 1998 4

Synchronization Hierarchy

• The difficulty of
synchronization depends on
the relationship between
events on the signal and
events on the clock

• Synchronous
– signal events always

happen outside of the
clock’s keep-out region

• same clock

• Mesochronous
– signal events happen with a

fixed but unknown phase
relative to the clock

• same frequency clock

• Plesiochronous
– phase of signal events

changes slowly with time
• slightly different frequency

clock

• Periodic
– signal events are periodic

• includes meso- and
pleisochronous

• signal is synchronized to
some periodic clock

• Asynchronous
– signal events may occur at

any time



EE 273 Lecture 14, Synchronizer Design 11/11/98

Copyright 1998 by W. J. Dally, all rights reserved. 3

Copyright (C) by William J. Dally, All Rights Reserved
EE273, L14, Nov 11, 1998 5

Synchronization Hierarchy Summary

Type Frequency Phase

Synchronous Same Same

Mesochronous Same Constant

Plesiochronous Small Difference Slowly Varying

Periodic Different Periodic Variation

Asynchronous N/A Arbitrary

Copyright (C) by William J. Dally, All Rights Reserved
EE273, L14, Nov 11, 1998 6

The Brute-Force Synchronizer

• How do we compare
synchronizers?
– synchronizer delay (in

addition to the required tcy/2)

– failure rate

• For the brute-force
synchronizer
– td=tw+2(ts+tdCQ)

– ff=tafefcyexp(-tw/τs)

• Can we do better?

D Q
A

Clk

D Q

FF1 FF2 ASAW



EE 273 Lecture 14, Synchronizer Design 11/11/98

Copyright 1998 by W. J. Dally, all rights reserved. 4

Copyright (C) by William J. Dally, All Rights Reserved
EE273, L14, Nov 11, 1998 7

Periodic Synchronizers
The Big Picture

• If an input signal is synchronized to some periodic
clock, we can predict when its events are allowed to
happen arbitrarily far into the future

• Thus, we can determine well in advance if the signal
is safe to sample on a given clock cycle
– if it is, we just sample it

– if it isn’t, we delay the signal (or the clock) to make it safe

• This allows us to move the waiting time, tW, out of the
critical path.
– we can make it very long without adding latency

Copyright (C) by William J. Dally, All Rights Reserved
EE273, L14, Nov 11, 1998 8

Periodic Synchronizers
The Illustration

Clk1

Clk2



EE 273 Lecture 14, Synchronizer Design 11/11/98

Copyright 1998 by W. J. Dally, all rights reserved. 5

Copyright (C) by William J. Dally, All Rights Reserved
EE273, L14, Nov 11, 1998 9

Mesochronous Synchronization

• The phase difference between the signal and the
clock is constant
– typical of systems where we distribute a master clock with no

deskew

• Thus, we only need to synchronize once for all time!
• During reset check the phase

– if its OK, sample the signal directly for ever

– if its not, sample the signal after delay for ever
– this phase check is the only asynchronous event we ever

sample - and we can afford to wait a long time

Copyright (C) by William J. Dally, All Rights Reserved
EE273, L14, Nov 11, 1998 10

Delay-Line Synchronizer

• For mesochronous and
plesiochronous signals

• Delay signal as needed to
keep transitions out of the
keep-out region of the
synchronizer clock

• How do we set the delay
line?

• What is the delay of this
synchronizer?

• Do we need the flip-flop?

D Q
x xd xs

Clk



EE 273 Lecture 14, Synchronizer Design 11/11/98

Copyright 1998 by W. J. Dally, all rights reserved. 6

Copyright (C) by William J. Dally, All Rights Reserved
EE273, L14, Nov 11, 1998 11

D Q

E

D Q

E

th

tcy-ts

x

Clk

sample

ClkL

ClkE

D Q

E

doneWaiting

Clk

unsafe

Detecting an Unsafe Signal

• To see if a signal is unsafe, see
if it changes in the forbidden
region

– sample just before and after the
forbidden region and see if
result is different

• These samples may hang the
flip-flop in a metastable state

– need to wait for this state to
decay

– if mesochronous we can wait a
very long time since we only
have to do this once

Copyright (C) by William J. Dally, All Rights Reserved
EE273, L14, Nov 11, 1998 12

Two-Register Synchronizer

• The delay-line synchronizer
has two problems
1. Its expensive, we need a

delay line for each input

2. We can’t use it with clocked
receivers

• Both problems are solved by
the two-register synchronizer

• We delay the clock rather
than the data
– sample the data with normal

and delayed clock
– pick the ‘safe’ output

• Can we just mux the clock?

D Q

D Q

Clk

x 0

1

xs

unsafe

tko



EE 273 Lecture 14, Synchronizer Design 11/11/98

Copyright 1998 by W. J. Dally, all rights reserved. 7

Copyright (C) by William J. Dally, All Rights Reserved
EE273, L14, Nov 11, 1998 13

FIFO Synchronizer

• A first-in-first-out (FIFO)
buffer can be used to move
the synchronization out of
the data path

• Clock the data into the FIFO
in one clock domain (xclk)

• Mux the data out of the FIFO
in a second clock domain
(clk)

• Where did the
synchronization move to?

• How do we initialize the
pointers?

D Q

E

D Q

E

D Q

E

ring
counter

ring
counter

x

xclk

xp0

xp1

xp2

xp 3 rp 3

rclk

x0

x1

x2

xs

Copyright (C) by William J. Dally, All Rights Reserved
EE273, L14, Nov 11, 1998 14

Plesiochronous Timing

• With plesiochronous timing,
one clock is running slightly
faster than the other
– e.g., system with

independent crystal
oscillators with same
nominal frequency
(±200ppm)

• The same basic
synchronizer types apply
– delay line
– two-register
– FIFO

• But...

• we need to resynchronize
periodically
– e.g., once every 1,000

clocks

• we need flow control
– have to match data rate of

tx and rx even if clock rate is
different

– eventually the phase wraps
and we either get 2 or 0
data elements during a
particular clock

• unless we make sure we
are not sending data when
the phase wraps



EE 273 Lecture 14, Synchronizer Design 11/11/98

Copyright 1998 by W. J. Dally, all rights reserved. 8

Copyright (C) by William J. Dally, All Rights Reserved
EE273, L14, Nov 11, 1998 15

A Plesiochronous FIFO Synchronizer

• Insert data with transmit
clock (xclk)

• Remove data with receive
clock (rclk)

• Periodically update the
receive pointer (rp) by
synchronizing the transmit
pointer (xp) to the receive
clock
– how do we know when to do

this?
– what do we do if rp

increments by 2 or 0 when
we update it?

D Q

E

D Q

E

D Q

E

rin
g

co
un

te
r

rin
g

co
un

te
r

x

xclk

xp0

xp1

xp2

xp

3

rp 3

rclk

x0

x1

x2

xs

sy
nc

Copyright (C) by William J. Dally, All Rights Reserved
EE273, L14, Nov 11, 1998 16

Phase-Slip Detection
Pointers on a Clock

• Think of xp and rp as hands
on a clock

• When xp reaches 12:00,
4:00, and 8:00 data is
clocked into x0, x1, and x2
respectively

• When rp is between 12:00
and 4:00 x0 is selected, from
4:00 to 8:00 x1 is selected,
and from 8:00 to 12:00 x2 is
selected

• What relative angles
between rp and xp are legal?

x0

x1

x2

x0

x1x2

xp
rp



EE 273 Lecture 14, Synchronizer Design 11/11/98

Copyright 1998 by W. J. Dally, all rights reserved. 9

Copyright (C) by William J. Dally, All Rights Reserved
EE273, L14, Nov 11, 1998 17

Phase Slip Detection
The Keepout Region

• When xp is straight up (sampling
into x0), rp must be in the green
region
– otherwise data will change while

its selected

φm1 includes phase drift between
updates and tdCQ less tcmux

φm2 includes phase drift less tcCQ

• To detect phase, sample xp with
appropriate phase of rclk
– advanced by φm1 to detect fast

receiver

– retarded by φm2 to detect fast
transmitter

– or just update to fastest legal time

x0

x1

x2
xp

rp

φm1

φm2

Copyright (C) by William J. Dally, All Rights Reserved
EE273, L14, Nov 11, 1998 18

Phase Slip Detection
A Simple Approach

• If we make both margins
60°, we can just sample xp
with rclk’.

• At any point we want
sampled xp to be one step
ahead of rp
– so we can update rp to be

sampled xp on positive
edge of rclk

• after waiting a multiple of 3
rclks for synchronization

– this approach may dither
when right on the boundary

x0
xp

rp

x2

x1



EE 273 Lecture 14, Synchronizer Design 11/11/98

Copyright 1998 by W. J. Dally, all rights reserved. 10

Copyright (C) by William J. Dally, All Rights Reserved
EE273, L14, Nov 11, 1998 19

Data-Rate Mismatch

• Whichever approach we use,
an update of RP may

– skip a count
0,1,2,1,2,0,1,2,0,1,2

– double a count
0,1,2,0,0,1,2,0,1,2,0

• If we aren’t careful we can
drop or duplicate a symbol

• One approach is to only
update rp when the data
contains a null symbol

– OK to drop or duplicate

• Alternatively we can design
the receiver to accept 0,1, or
2 symbols per clock

x0
xp

rp

x2

x1

Copyright (C) by William J. Dally, All Rights Reserved
EE273, L14, Nov 11, 1998 20

Open-Loop and Closed-Loop Flow Control

• We need to keep a fast
transmitter from overrunning a
receiver

• (or a slow transmitter from
underrunning the receiver)

• Open-loop approach
– insert lots of nulls into the

data stream at the transmitter
– enough so that rate of non-

nulls is less than the rate of
the slowest possible receiver

– when the receiver underruns
it inserts another null

• Closed-loop approach
– receiver applies back

pressure when it is about to
be overrun

– still has to insert nulls when
it is underrun



EE 273 Lecture 14, Synchronizer Design 11/11/98

Copyright 1998 by W. J. Dally, all rights reserved. 11

Copyright (C) by William J. Dally, All Rights Reserved
EE273, L14, Nov 11, 1998 21

Periodic Timing

• Transmit and receive clocks
are periodic but at unrelated
frequencies
– e.g., modules in a system

operate off of separate
oscillators with independent
frequencies

– case where one is rationally
derived from the other is an
interesting special case

• In this situation, a single
synchronization won’t last
forever (like mesochronous)
or even for a long time (like
plesiochronous)

• However, we can still look
into the future and predict
clock conflicts far enough
ahead to reduce
synchronizer delay

Copyright (C) by William J. Dally, All Rights Reserved
EE273, L14, Nov 11, 1998 22

Clock-Predictor Circuit

• Suppose we want to know
the value of xclk, one rclk
cycle (trcy) in the future

• This is just a phase shift of
txcy-trcy

• It is easy to generate this
phase shift using a simple
timing loop

• Note that we could just as
easily predict xclk several
rclk cycles in the future

• So how do we build a
synchronizer using this?

φCxclk

pxclk

trcy



EE 273 Lecture 14, Synchronizer Design 11/11/98

Copyright 1998 by W. J. Dally, all rights reserved. 12

Copyright (C) by William J. Dally, All Rights Reserved
EE273, L14, Nov 11, 1998 23

Asynchronous Timing

• Sometimes we need to
sample a signal that is truly
asynchronous

• We can still move the
synchronization out of the
datapath by using an
asynchronous FIFO
synchronizer

• However this still incurs a
high latency on the full and
empty signals as we have to
wait for a brute force
synchronizer to make its
decision

• We can still avoid delay in
this case if we don’t really
need to synchronize
– often synchronization is just

an expensive convenience

Copyright (C) by William J. Dally, All Rights Reserved
EE273, L14, Nov 11, 1998 24

Next Time

• Asynchronous Design


