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Today’s Assignment

• Term Project
– design a signaling system

– entire project due on 11/30
– checkpoint 1 (signaling components) due next week (11/18)

– checkpoint 2 (timing components) due on 11/25

• Reading
– Section 10.4

– Complete before class on Monday 11/16
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A Quick Overview

• Synchronization Hierarchy

• Mesochronous
Synchronizers
– delay-line synchronizer
– two-register synchronizer

– FIFO synchronizer

• Plesiochronous
Synchronizers
– phase slip and flow control

• Periodic Synchronizers
– clock prediction - looking

into the future
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Synchronization Hierarchy

• The difficulty of
synchronization depends on
the relationship between
events on the signal and
events on the clock

• Synchronous
– signal events always

happen outside of the
clock’s keep-out region

• same clock

• Mesochronous
– signal events happen with a

fixed but unknown phase
relative to the clock

• same frequency clock

• Plesiochronous
– phase of signal events

changes slowly with time
• slightly different frequency

clock

• Periodic
– signal events are periodic

• includes meso- and
pleisochronous

• signal is synchronized to
some periodic clock

• Asynchronous
– signal events may occur at

any time
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Synchronization Hierarchy Summary

Type Frequency Phase

Synchronous Same Same

Mesochronous Same Constant

Plesiochronous Small Difference Slowly Varying

Periodic Different Periodic Variation

Asynchronous N/A Arbitrary
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The Brute-Force Synchronizer

• How do we compare
synchronizers?
– synchronizer delay (in

addition to the required tcy/2)

– failure rate

• For the brute-force
synchronizer
– td=tw+2(ts+tdCQ)

– ff=tafefcyexp(-tw/τs)

• Can we do better?
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Periodic Synchronizers
The Big Picture

• If an input signal is synchronized to some periodic
clock, we can predict when its events are allowed to
happen arbitrarily far into the future

• Thus, we can determine well in advance if the signal
is safe to sample on a given clock cycle
– if it is, we just sample it

– if it isn’t, we delay the signal (or the clock) to make it safe

• This allows us to move the waiting time, tW, out of the
critical path.
– we can make it very long without adding latency
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Periodic Synchronizers
The Illustration

Clk1

Clk2
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Mesochronous Synchronization

• The phase difference between the signal and the
clock is constant
– typical of systems where we distribute a master clock with no

deskew

• Thus, we only need to synchronize once for all time!
• During reset check the phase

– if its OK, sample the signal directly for ever

– if its not, sample the signal after delay for ever
– this phase check is the only asynchronous event we ever

sample - and we can afford to wait a long time
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Delay-Line Synchronizer

• For mesochronous and
plesiochronous signals

• Delay signal as needed to
keep transitions out of the
keep-out region of the
synchronizer clock

• How do we set the delay
line?

• What is the delay of this
synchronizer?

• Do we need the flip-flop?

D Q
x xd xs

Clk
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Detecting an Unsafe Signal

• To see if a signal is unsafe, see
if it changes in the forbidden
region

– sample just before and after the
forbidden region and see if
result is different

• These samples may hang the
flip-flop in a metastable state

– need to wait for this state to
decay

– if mesochronous we can wait a
very long time since we only
have to do this once
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Two-Register Synchronizer

• The delay-line synchronizer
has two problems
1. Its expensive, we need a

delay line for each input

2. We can’t use it with clocked
receivers

• Both problems are solved by
the two-register synchronizer

• We delay the clock rather
than the data
– sample the data with normal

and delayed clock
– pick the ‘safe’ output

• Can we just mux the clock?
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FIFO Synchronizer

• A first-in-first-out (FIFO)
buffer can be used to move
the synchronization out of
the data path

• Clock the data into the FIFO
in one clock domain (xclk)

• Mux the data out of the FIFO
in a second clock domain
(clk)

• Where did the
synchronization move to?

• How do we initialize the
pointers?
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Plesiochronous Timing

• With plesiochronous timing,
one clock is running slightly
faster than the other
– e.g., system with

independent crystal
oscillators with same
nominal frequency
(±200ppm)

• The same basic
synchronizer types apply
– delay line
– two-register
– FIFO

• But...

• we need to resynchronize
periodically
– e.g., once every 1,000

clocks

• we need flow control
– have to match data rate of

tx and rx even if clock rate is
different

– eventually the phase wraps
and we either get 2 or 0
data elements during a
particular clock

• unless we make sure we
are not sending data when
the phase wraps
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A Plesiochronous FIFO Synchronizer

• Insert data with transmit
clock (xclk)

• Remove data with receive
clock (rclk)

• Periodically update the
receive pointer (rp) by
synchronizing the transmit
pointer (xp) to the receive
clock
– how do we know when to do

this?
– what do we do if rp

increments by 2 or 0 when
we update it?

D Q

E

D Q

E

D Q

E

rin
g

co
un

te
r

rin
g

co
un

te
r

x

xclk

xp0

xp1

xp2

xp

3

rp 3

rclk

x0

x1

x2

xs

sy
nc

Copyright (C) by William J. Dally, All Rights Reserved
EE273, L14, Nov 11, 1998 16

Phase-Slip Detection
Pointers on a Clock

• Think of xp and rp as hands
on a clock

• When xp reaches 12:00,
4:00, and 8:00 data is
clocked into x0, x1, and x2
respectively

• When rp is between 12:00
and 4:00 x0 is selected, from
4:00 to 8:00 x1 is selected,
and from 8:00 to 12:00 x2 is
selected

• What relative angles
between rp and xp are legal?

x0

x1

x2

x0

x1x2

xp
rp
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Phase Slip Detection
The Keepout Region

• When xp is straight up (sampling
into x0), rp must be in the green
region
– otherwise data will change while

its selected

φm1 includes phase drift between
updates and tdCQ less tcmux

φm2 includes phase drift less tcCQ

• To detect phase, sample xp with
appropriate phase of rclk
– advanced by φm1 to detect fast

receiver

– retarded by φm2 to detect fast
transmitter

– or just update to fastest legal time

x0

x1

x2
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rp
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Phase Slip Detection
A Simple Approach

• If we make both margins
60°, we can just sample xp
with rclk’.

• At any point we want
sampled xp to be one step
ahead of rp
– so we can update rp to be

sampled xp on positive
edge of rclk

• after waiting a multiple of 3
rclks for synchronization

– this approach may dither
when right on the boundary

x0
xp

rp

x2

x1
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Data-Rate Mismatch

• Whichever approach we use,
an update of RP may

– skip a count
0,1,2,1,2,0,1,2,0,1,2

– double a count
0,1,2,0,0,1,2,0,1,2,0

• If we aren’t careful we can
drop or duplicate a symbol

• One approach is to only
update rp when the data
contains a null symbol

– OK to drop or duplicate

• Alternatively we can design
the receiver to accept 0,1, or
2 symbols per clock

x0
xp

rp

x2

x1
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Open-Loop and Closed-Loop Flow Control

• We need to keep a fast
transmitter from overrunning a
receiver

• (or a slow transmitter from
underrunning the receiver)

• Open-loop approach
– insert lots of nulls into the

data stream at the transmitter
– enough so that rate of non-

nulls is less than the rate of
the slowest possible receiver

– when the receiver underruns
it inserts another null

• Closed-loop approach
– receiver applies back

pressure when it is about to
be overrun

– still has to insert nulls when
it is underrun



EE 273 Lecture 14, Synchronizer Design 11/11/98

Copyright 1998 by W. J. Dally, all rights reserved. 11

Copyright (C) by William J. Dally, All Rights Reserved
EE273, L14, Nov 11, 1998 21

Periodic Timing

• Transmit and receive clocks
are periodic but at unrelated
frequencies
– e.g., modules in a system

operate off of separate
oscillators with independent
frequencies

– case where one is rationally
derived from the other is an
interesting special case

• In this situation, a single
synchronization won’t last
forever (like mesochronous)
or even for a long time (like
plesiochronous)

• However, we can still look
into the future and predict
clock conflicts far enough
ahead to reduce
synchronizer delay
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Clock-Predictor Circuit

• Suppose we want to know
the value of xclk, one rclk
cycle (trcy) in the future

• This is just a phase shift of
txcy-trcy

• It is easy to generate this
phase shift using a simple
timing loop

• Note that we could just as
easily predict xclk several
rclk cycles in the future

• So how do we build a
synchronizer using this?

φCxclk

pxclk

trcy
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Asynchronous Timing

• Sometimes we need to
sample a signal that is truly
asynchronous

• We can still move the
synchronization out of the
datapath by using an
asynchronous FIFO
synchronizer

• However this still incurs a
high latency on the full and
empty signals as we have to
wait for a brute force
synchronizer to make its
decision

• We can still avoid delay in
this case if we don’t really
need to synchronize
– often synchronization is just

an expensive convenience
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Next Time

• Asynchronous Design


