
EE 273 Lecture 15, Asynchronous Design 11/16/98

Copyright 1998 by W. J. Dally, all rights reserved. 1

Copyright (C) by William J. Dally, All Rights Reserved
EE273, L15, Nov 16, 1998 1

EE273 Lecture 15
Asynchronous Design

November 16, 1998

William J. Dally
Computer Systems Laboratory

Stanford University
billd@csl.stanford.edu

Copyright (C) by William J. Dally, All Rights Reserved
EE273, L15, Nov 16, 1998 2

Today’s Assignment

• Term Project
– see project update handout on web

– checkpoint 1 (signaling components) due Wednesday
(11/18)

– checkpoint 2 (timing components) due on 11/25

• Reading
– no new reading, complete Section 10.4 if you haven’t

already done so

• FYI
– meso- means middle

• timing midway between sync and async?

– plesio- means near
• nearly mesochronous?



EE 273 Lecture 15, Asynchronous Design 11/16/98

Copyright 1998 by W. J. Dally, all rights reserved. 2

Copyright (C) by William J. Dally, All Rights Reserved
EE273, L15, Nov 16, 1998 3

A Quick Overview

• Periodic Synchronizers
– clock prediction - looking

into the future

• Asynchronous design
– most synchronization is

unnecessary
– can be avoided by using

asynchronous design

• A stoppable clock
– stop clock between events
– start clock when an input

event occurs

• Combinational asynchronous
modules
– inputs and outputs encode

events not just values

– modules obey the weak
conditions

• number of events on each
output is equal to or one
less than the number of
events on each input

• Composition
– weak conditions are closed

under acyclic composition

Copyright (C) by William J. Dally, All Rights Reserved
EE273, L15, Nov 16, 1998 4

Periodic Timing

• Transmit and receive clocks
are periodic but at unrelated
frequencies
– e.g., modules in a system

operate off of separate
oscillators with independent
frequencies

– case where one is rationally
derived from the other is an
interesting special case

• In this situation, a single
synchronization won’t last
forever (like mesochronous)
or even for a long time (like
plesiochronous)

• However, we can still look
into the future and predict
clock conflicts far enough
ahead to reduce
synchronizer delay



EE 273 Lecture 15, Asynchronous Design 11/16/98

Copyright 1998 by W. J. Dally, all rights reserved. 3

Copyright (C) by William J. Dally, All Rights Reserved
EE273, L15, Nov 16, 1998 5

Clock-Predictor Circuit

• Suppose we want to know
the value of xclk, one rclk
cycle (trcy) in the future

• This is just a phase shift of
txcy-trcy

• It is easy to generate this
phase shift using a simple
timing loop

• Note that we could just as
easily predict xclk several
rclk cycles in the future

• So how do we build a
synchronizer using this?

φCxclk

pxclk

trcy

Copyright (C) by William J. Dally, All Rights Reserved
EE273, L15, Nov 16, 1998 6

Asynchronous Timing

• Sometimes we need to
sample a signal that is truly
asynchronous

• We can still move the
synchronization out of the
datapath by using an
asynchronous FIFO
synchronizer

• However this still incurs a
high latency on the full and
empty signals as we have to
wait for a brute force
synchronizer to make its
decision

• We can still avoid delay in
this case if we don’t really
need to synchronize
– often synchronization is just

an expensive convenience



EE 273 Lecture 15, Asynchronous Design 11/16/98

Copyright 1998 by W. J. Dally, all rights reserved. 4

Copyright (C) by William J. Dally, All Rights Reserved
EE273, L15, Nov 16, 1998 7

Asynchronous Design

• Most often we synchronize
just to align an event to a
clock
– it doesn’t really matter if we

handle the event on clock i
or i+1

• We can avoid this
unnecessary synchronization
by processing events
asynchronously

• The arrival of an event
triggers its handling

Copyright (C) by William J. Dally, All Rights Reserved
EE273, L15, Nov 16, 1998 8

Example, A Stoppable Clock

• Suppose our input is an
asynchronous 8-bit signal

• We need to wait for 128 events
on the input and then output
the average value

• We could synchronize to a
local clock on each sample
– this is an example of

unnecessary synchronization

• We could stop our clock and
restart it on each sample
– no probability of

synchronization failure
– lower power

Proc

8
in

rin

sy
nc out

rout

clk

8

Proc

asm

8
in

rin

out

rout

8

clk



EE 273 Lecture 15, Asynchronous Design 11/16/98

Copyright 1998 by W. J. Dally, all rights reserved. 5

Copyright (C) by William J. Dally, All Rights Reserved
EE273, L15, Nov 16, 1998 9

Stoppable Clock Circuit

Comb
Logic

8
in

rin

8
out

ASM

done
go

clk

Copyright (C) by William J. Dally, All Rights Reserved
EE273, L15, Nov 16, 1998 10

Stoppable Clocks
Some Questions

• What do the waveforms on rin, go, clk, and done look
like?

• Where is rout generated?
• What are the constraints on input timing?  On output

timing?
• How do we design the ASM block?



EE 273 Lecture 15, Asynchronous Design 11/16/98

Copyright 1998 by W. J. Dally, all rights reserved. 6

Copyright (C) by William J. Dally, All Rights Reserved
EE273, L15, Nov 16, 1998 11

An Asynchronous Module

• To ensure correct design of
asynchronous circuits (and
to simplify verification) we
need to impose some
discipline on our designs

• We start by specifying the
properties of a combinational
asynchronous module
– some number of inputs

• bundled or dual-rail

– some number of outputs
• bundled or dual rail

– a constraint on input and
output events

ACL

a

ra

b

rb

c

rc

Copyright (C) by William J. Dally, All Rights Reserved
EE273, L15, Nov 16, 1998 12

The Weak Conditions

• Inputs and outputs transition
in the following order
1. some input(s) become valid

2. some output(s) become
valid

3. all inputs become valid
4. all outputs become valid

5. some input(s) become
invalid

6. some output(s) become
invalid

7. all input(s) become invalid

8. all output(s) become invalid

• So, for example it is not
allowed for
– any output to become valid

before any input becomes
valid

– all outputs to become valid
while any input is invalid

– any output to become
invalid while all inputs are
valid

– all outputs to become invalid
while any input is valid



EE 273 Lecture 15, Asynchronous Design 11/16/98

Copyright 1998 by W. J. Dally, all rights reserved. 7

Copyright (C) by William J. Dally, All Rights Reserved
EE273, L15, Nov 16, 1998 13

The Weak Conditions
State Diagram

siv aiv

sov aov sii aii

soi aoi
two-phase

four-phase

assert

reset

Copyright (C) by William J. Dally, All Rights Reserved
EE273, L15, Nov 16, 1998 14

The Weak Conditions
Some Questions

• What does it mean for a signal to be valid or invalid?
• Which conditions apply to the circuit and which apply

to the environment?
• Is it sufficient for one output to always lag all inputs?
• What do the weak conditions say about the number

of events on each input and output?



EE 273 Lecture 15, Asynchronous Design 11/16/98

Copyright 1998 by W. J. Dally, all rights reserved. 8

Copyright (C) by William J. Dally, All Rights Reserved
EE273, L15, Nov 16, 1998 15

The Weak Conditions
Example: Self-Timed AND Gate

• Suppose we want to build an
asynchronous AND gate
using this discipline.
– inputs dual-rail

• Can we just use an AND
gate and an OR gate?
– why not?

• Is the lower circuit OK?
– why?

– isn’t it logically equivalent to
the upper circuit?

– what’s different?

a1
a0
b1
b0

c1

c0

a1
a0

b1
b0

c1

c0

Copyright (C) by William J. Dally, All Rights Reserved
EE273, L15, Nov 16, 1998 16

A Bundled Self-Timed AND Gate

• If the inputs are bundled
instead of dual rail, how do
we generate a bundled
output?

• A Muller C-element
– output follows input when

both inputs are equal

• This is an example of a
matched-delay circuit
– delay of C element plus

delay line must be ≥ delay
of AND gate

• Output cr is an example of a
completion signal

a
b

C
ar

br

c

cr



EE 273 Lecture 15, Asynchronous Design 11/16/98

Copyright 1998 by W. J. Dally, all rights reserved. 9

Copyright (C) by William J. Dally, All Rights Reserved
EE273, L15, Nov 16, 1998 17

A Matched-Delay Full Adder

• Suppose we want to build a
full adder with bundled
inputs using the matched-
delay design style

• Can we generate a fast carry
and still obey the weak
conditions?

Cin A B S Cout

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Copyright (C) by William J. Dally, All Rights Reserved
EE273, L15, Nov 16, 1998 18

C

C

a

b

s

cout

cin

ar

br
crin

crout

sr

Matched-Delay Full Adder
First Attempt

• Does this work?

• Does it give good
performance?



EE 273 Lecture 15, Asynchronous Design 11/16/98

Copyright 1998 by W. J. Dally, all rights reserved. 10

Copyright (C) by William J. Dally, All Rights Reserved
EE273, L15, Nov 16, 1998 19

Matched-Delay Full Adder
with Fast Carry

C

C

a

b

s

cout
cin

ar

br

crin

crout

sr

p

g

0

1

• Does this work?

• Does it obey the weak
conditions?

• Is there a completion
signal?

• Under what conditions
is the carry fast ?

Copyright (C) by William J. Dally, All Rights Reserved
EE273, L15, Nov 16, 1998 20

Composition of Asynchronous Modules

• The weak conditions are closed under acyclic
composition
– An acyclic composition of modules that obey the weak

conditions also obeys the weak conditions

• Only true if the circuit is fully connected
– Two independent parallel circuits do not obey the weak

conditions

• Why is this true?



EE 273 Lecture 15, Asynchronous Design 11/16/98

Copyright 1998 by W. J. Dally, all rights reserved. 11

Copyright (C) by William J. Dally, All Rights Reserved
EE273, L15, Nov 16, 1998 21

Example, An Asynchronous Adder

a

b cin

cout
s

a

b cin

cout
s

a

b cin

cout
s

a0

b0

a1

b1

a31

b31

c0

c1

c2

c31

c32

s31

s1

s0

• Each line here represents
two wires: value and request

• What is the average delay of
this adder with the first full
adder design?  the second?

• Is there a completion signal?
If not how could we generate
one?

• Can we factor out some of
the matched-delay
completion logic?

Copyright (C) by William J. Dally, All Rights Reserved
EE273, L15, Nov 16, 1998 22

Next Time

• Asynchronous State Machines
• Asynchronous Pipelines
• Iterative Asynchronous Circuits


