EE 273 Lecture 14, Synchronizer Design 11/11/98

EE273 Lecture 14

Synchronizer Design
November 11, 1998

William J. Dally
Computer Systems Laboratory
Stanford University
billd@csl.stanford.edu

EE273, L14, Nov 11,1998 Copyright (C) by William J. Dally, All Rights Reserved 1

Today’s Assignment

* Term Project
— design a signaling system
— entire project due on 11/30
— checkpoint 1 (signaling components) due next week (11/18)
— checkpoint 2 (timing components) due on 11/25
* Reading
— Section 10.4
— Complete before class on Monday 11/16

EE273, L14, Nov 11,1998 Copyright (C) by William J. Dally, All Rights Reserved 2

Copyright 1998 by W. J. Dally, all rights reserved. 1

EE 273 Lecture 14, Synchronizer Design

A Quick Overview

* Synchronization Hierarchy » Periodic Synchronizers
* Mesochronous — clock prediction - looking
Synchronizers into the future

— delay-line synchronizer
— two-register synchronizer
— FIFO synchronizer

* Plesiochronous
Synchronizers
— phase slip and flow control

EE273, L14, Nov 11,1998 Copyright (C) by William J. Dally, All Rights Reserved

Synchronization Hierarchy

« The difficulty of » Plesiochronous
SyﬂChI’OI’liZ&tiOﬂ depends on — phase of signal events
the relationship between changes slowly with time
events on the signal and » slightly different frequency
events on the clock clock
« Synchronous * Periodic
— signal events always — signal events are periodic
happen outside of the * includes meso- and
clock’s keep-out region pleisochronous
. same clock * signal is synchronized to

some periodic clock
* Asynchronous

— signal events may occur at
any time

+ Mesochronous

— signal events happen with a
fixed but unknown phase
relative to the clock

» same frequency clock

EE273, L14, Nov 11,1998 Copyright (C) by William J. Dally, All Rights Reserved

Copyright 1998 by W. J. Dally, all rights reserved.

11/11/98

EE 273 Lecture 14, Synchronizer Design 11/11/98

Synchronization Hierarchy Summary

Type Frequency Phase
Synchronous Same Same
Mesochronous Same Constant
Plesiochronous Small Difference Slowly Varying
Periodic Different Periodic Variation
Asynchronous N/A Arbitrary

EE273, L14, Nov 11, 1998 Copyright (C) by William J. Dally, All Rights Reserved 5

The Brute-Force Synchronizer

* How do we compare
synchronizers?

FF1 aw FF2 as

— synchronizer delay (in A ~ —
addition to the required t/2)
— failure rate
* For the brute-force Clk | |

synchronizer

= =ty 2t tyco)
— f=tff exp(-t,/ty)

f~ta'e'cy

+ Can we do better?

EE273, L14, Nov 11, 1998 Copyright (C) by William J. Dally, All Rights Reserved 6

Copyright 1998 by W. J. Dally, all rights reserved. 3

EE 273 Lecture 14, Synchronizer Design 11/11/98

Periodic Synchronizers
The Big Picture

» If an input signal is synchronized to some periodic
clock, we can predict when its events are allowed to
happen arbitrarily far into the future

» Thus, we can determine well in advance if the signal
is safe to sample on a given clock cycle

— ifitis, we just sample it
— ifitisn’t, we delay the signal (or the clock) to make it safe

* This allows us to move the waiting time, t,y, out of the
critical path.

— we can make it very long without adding latency

EE273, L14, Nov 11,1998 Copyright (C) by William J. Dally, All Rights Reserved

Periodic Synchronizers
The lllustration

aa_ [L L[L[
| 1 | | I
| | | | |

ek L

EE273, L14, Nov 11,1998 Copyright (C) by William J. Dally, All Rights Reserved

Copyright 1998 by W. J. Dally, all rights reserved. 4

EE 273 Lecture 14, Synchronizer Design 11/11/98

Mesochronous Synchronization

» The phase difference between the signal and the
clock is constant
— typical of systems where we distribute a master clock with no
deskew
» Thus, we only need to synchronize once for all time!

» During reset check the phase
— ifits OK, sample the signal directly for ever
— if its not, sample the signal after delay for ever

— this phase check is the only asynchronous event we ever
sample - and we can afford to wait a long time

EE273, L14, Nov 11, 1998

Copyright (C) by William J. Dally, All Rights Reserved

Delay-Line Synchronizer

» For mesochronous and
plesiochronous signals X xd XS
» Delay signal as needed to ?
keep transitions out of the
keep-out region of the
synchronizer clock Clk
* How do we set the delay
line?
* What is the delay of this
synchronizer?
« Do we need the flip-flop?

EE273, L14, Nov 11, 1998 10

Copyright (C) by William J. Dally, All Rights Reserved

Copyright 1998 by W. J. Dally, all rights reserved. 5

EE 273 Lecture 14, Synchronizer Design

Detecting an Unsafe Signal

» To see if a signal is unsafe, see
if it changes in the forbidden
region

— sample just before and after the

forbidden region and see if
result is different

Clk A=
“— [CIkE

sample

These samples may hang the

flip-flop in a metastable state
— need to wait for this state to

decay

— if mesochronous we can wait a
very long time since we only
have to do this once

doneWaiting

unsafe

EE273, L14, Nov 11, 1998

Copyright (C) by William J. Dally, All Rights Reserved

11

Two-Register Synchronizer

* The delay-line synchronizer
has two problems

1. Its expensive, we need a
delay line for each input

2. We can't use it with clocked
receivers
« Both problems are solved by
the two-register synchronizer
« We delay the clock rather
than the data

— sample the data with normal
and delayed clock

— pick the ‘safe’ output
e Can we just mux the clock?

EE273, L14, Nov 11, 1998

Copyright (C) by William J. Dally, All Rights Reserved

12

Copyright 1998 by W. J. Dally, all rights reserved.

11/11/98

EE 273 Lecture 14, Synchronizer Design 11/11/98

FIFO Synchronizer

» A first-in-first-out (FIFO) X X0

buffer can be used to move .

the synchronization out of Ve

the data path — a1 xs
» Clock the data into the FIFO 1| | >

in one clock domain (xclk) = 4

x2

* Mux the data out of the FIFO) °

in a second clock domain /p——z?_

(clk) xp 43 ™ 43
* Where dlq thg wclk ring rclk__L ring

synchronization move to? counter counter
* How do we initialize the

pointers?
EE273, L14, Nov 11, 1998 Copyright (C) by William J. Dally, All Rights Reserved 13

Plesiochronous Timing

* With plesiochronous timing, * we need to resynchronize

one clock is running slightly periodically

faster than the other — e.g., once every 1,000

— e.g., system with clocks

independent crystal + we need flow control

oscillators with same
nominal frequency
(x200ppm)

— have to match data rate of
tx and rx even if clock rate is

) different
* The sam(_e basic — eventually the phase wraps
synchronizer types apply and we either get 2 or 0
— delay line data elements during a
— two-register particular clock
— FIFO e unless we make sure we
are not sending data when
e But... the phase wraps

EE273, L14, Nov 11,1998 Copyright (C) by William J. Dally, All Rights Reserved 14

Copyright 1998 by W. J. Dally, all rights reserved. 7

EE 273 Lecture 14, Synchronizer Design

A Plesiochronous FIFO Synchronizer

* [Insert data with transmit

clock (xclk) T !

« Remove data with receive

receive pointer (rp) by o2
synchronizing the transmit o

clock (rclk)
« Periodically update the a

pointer (xp) to the receive ®
clock o % xp gl le % |
— how do we know when to do =g|° o -3
this? xclk
— what dowe doif rp rclk

increments by 2 or 0 when
we update it?

XS

EE273, L14, Nov 11,1998 Copyright (C) by William J. Dally, All Rights Reserved

15

Phase-Slip Detection
Pointers on a Clock

» Think of xp and rp as hands
on a clock x0

* When xp reaches 12:00,
4:00, and 8:00 data is
clocked into x0, x1, and x2
respectively

* When rp is between 12:00

and 4:00 x0 is selected, from

4:00 to 8:00 x1 is selected, X2 x1
and from 8:00 to 12:00 x2 is

selected

* What relative angles
between rp and xp are legal?

EE273, L14, Nov 11,1998 Copyright (C) by William J. Dally, All Rights Reserved

16

Copyright 1998 by W. J. Dally, all rights reserved.

11/11/98

EE 273 Lecture 14, Synchronizer Design

Phase Slip Detection
The Keepout Region

* When xp is straight up (sampling
into x0), rp must be in the green
region

— otherwise data will change while
its selected

@, includes phase drift between
updates and tycq less t;,,

@ includes phase drift less t .o
« To detect phase, sample xp with
appropriate phase of rclk

— advanced by @, to detect fast
receiver

— retarded by ¢, to detect fast
transmitter

— orjust update to fastest legal time

\fo

EE273, L14, Nov 11, 1998 Copyright (C) by William J. Dally, All Rights Reserved

17

Phase Slip Detection
A Simple Approach

« If we make both margins
60°, we can just sample xp
with rclk’.

* At any point we want
sampled xp to be one step
ahead of rp

— SO0 we can update rp to be
sampled xp on positive
edge of rclk

« after waiting a multiple of 3
rclks for synchronization

— this approach may dither
when right on the boundary

EE273, L14, Nov 11, 1998 Copyright (C) by William J. Dally, All Rights Reserved

18

Copyright 1998 by W. J. Dally, all rights reserved.

11/11/98

EE 273 Lecture 14, Synchronizer Design

Data-Rate Mismatch

* Whichever approach we use,
an update of RP may
— skip a count
0,1,2,1,2,0,1,2,0,1,2
— double a count
0,1,2,0,0,1,2,0,1,2,0
» If we aren’t careful we can
drop or duplicate a symbol
* One approach is to only
update rp when the data
contains a null symbol
— OK to drop or duplicate

« Alternatively we can design
the receiver to accept 0,1, or
2 symbols per clock

EE273, L14, Nov 11, 1998

Copyright (C) by William J. Dally, All Rights Reserved 19

Open-Loop and Closed-Loop Flow Control

* We need to keep a fast
transmitter from overrunning a
receiver

e (or a slow transmitter from
underrunning the receiver)

* Open-loop approach

— insert lots of nulls into the
data stream at the transmitter

— enough so that rate of non-
nulls is less than the rate of
the slowest possible receiver

— when the receiver underruns
it inserts another null

Closed-loop approach
— receiver applies back
pressure when it is about to
be overrun
— still has to insert nulls when
it is underrun

EE273, L14, Nov 11, 1998

Copyright (C) by William J. Dally, All Rights Reserved 20

Copyright 1998 by W. J. Dally, all rights reserved.

11/11/98

il

EE 273 Lecture 14, Synchronizer Design

Periodic Timing

Transmit and receive clocks
are periodic but at unrelated
frequencies

— e.g., modules in a system
operate off of separate

oscillators with independent

frequencies

— case where one is rationally
derived from the other is an

interesting special case

In this situation, a single
synchronization won't last
forever (like mesochronous)
or even for a long time (like
plesiochronous)

However, we can still look
into the future and predict
clock conflicts far enough
ahead to reduce
synchronizer delay

EE273, L14, Nov 11, 1998

Copyright (C) by William J. Dally, All Rights Reserved 21

Clock-Predictor Circuit

Suppose we want to know
the value of xclk, one rclk
cycle (t.,) in the future

This is just a phase shift of
t><cy'trcy

It is easy to generate this
phase shift using a simple
timing loop

Note that we could just as
easily predict xclk several
rclk cycles in the future

So how do we build a
synchronizer using this?

xclk

pxclk

EE273, L14, Nov 11, 1998

Copyright (C) by William J. Dally, All Rights Reserved 22

Copyright 1998 by W. J. Dally, all rights reserved.

11/11/98

EE 273 Lecture 14, Synchronizer Design

Asynchronous Timing

* Sometimes we need to * We can still avoid delay in
sample a signal that is truly this case if we don't really
asynchronous need to synchronize

* We can still move the — often synchronization is just
synchronization out of the an expensive convenience

datapath by using an
asynchronous FIFO
synchronizer

» However this still incurs a
high latency on the full and
empty signals as we have to
wait for a brute force
synchronizer to make its
decision

EE273, L14, Nov 11,1998 Copyright (C) by William J. Dally, All Rights Reserved 23

Next Time

» Asynchronous Design

EE273, L14, Nov 11,1998 Copyright (C) by William J. Dally, All Rights Reserved 24

Copyright 1998 by W. J. Dally, all rights reserved.

11/11/98

1

