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Today’s Assignment

* Term Project
— design a signaling system
— entire project due on 11/30
— checkpoint 1 (signaling components) due next week (11/18)
— checkpoint 2 (timing components) due on 11/25
* Reading
— Section 10.4
— Complete before class on Monday 11/16
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A Quick Overview

* Synchronization Hierarchy » Periodic Synchronizers
* Mesochronous — clock prediction - looking
Synchronizers into the future

— delay-line synchronizer
— two-register synchronizer
— FIFO synchronizer

* Plesiochronous
Synchronizers
— phase slip and flow control
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Synchronization Hierarchy

« The difficulty of » Plesiochronous
SyﬂChI’OI’liZ&tiOﬂ depends on — phase of signal events
the relationship between changes slowly with time
events on the signal and » slightly different frequency
events on the clock clock
« Synchronous * Periodic
— signal events always — signal events are periodic
happen outside of the * includes meso- and
clock’s keep-out region pleisochronous
. same clock * signal is synchronized to

some periodic clock
* Asynchronous

— signal events may occur at
any time

+ Mesochronous

— signal events happen with a
fixed but unknown phase
relative to the clock

» same frequency clock
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Synchronization Hierarchy Summary

Type Frequency Phase
Synchronous Same Same
Mesochronous Same Constant
Plesiochronous  Small Difference Slowly Varying
Periodic Different Periodic Variation
Asynchronous N/A Arbitrary
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The Brute-Force Synchronizer

* How do we compare
synchronizers?

FF1 aw FF2 as

— synchronizer delay (in A ~ —
addition to the required t/2)
— failure rate
* For the brute-force Clk | |

synchronizer

= =ty 2t tyco)
— f=tff exp(-t,/ty)

f~ta'e'cy

+ Can we do better?

EE273, L14, Nov 11, 1998 Copyright (C) by William J. Dally, All Rights Reserved 6

Copyright 1998 by W. J. Dally, all rights reserved. 3



EE 273 Lecture 14, Synchronizer Design 11/11/98

Periodic Synchronizers
The Big Picture

» If an input signal is synchronized to some periodic
clock, we can predict when its events are allowed to
happen arbitrarily far into the future

» Thus, we can determine well in advance if the signal
is safe to sample on a given clock cycle

— ifitis, we just sample it
— ifitisn’t, we delay the signal (or the clock) to make it safe

* This allows us to move the waiting time, t,y, out of the
critical path.

— we can make it very long without adding latency
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Periodic Synchronizers
The lllustration
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Mesochronous Synchronization

» The phase difference between the signal and the
clock is constant
— typical of systems where we distribute a master clock with no
deskew
» Thus, we only need to synchronize once for all time!

» During reset check the phase
— ifits OK, sample the signal directly for ever
— if its not, sample the signal after delay for ever

— this phase check is the only asynchronous event we ever
sample - and we can afford to wait a long time
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Delay-Line Synchronizer

» For mesochronous and
plesiochronous signals X xd XS
» Delay signal as needed to ?
keep transitions out of the
keep-out region of the
synchronizer clock Clk
* How do we set the delay
line?
* What is the delay of this
synchronizer?
« Do we need the flip-flop?
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Detecting an Unsafe Signal

» To see if a signal is unsafe, see
if it changes in the forbidden
region

— sample just before and after the

forbidden region and see if
result is different

Clk A=
“— [ CIkE

sample

These samples may hang the

flip-flop in a metastable state
— need to wait for this state to

decay

— if mesochronous we can wait a
very long time since we only
have to do this once

doneWaiting

unsafe
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Two-Register Synchronizer

* The delay-line synchronizer
has two problems

1. Its expensive, we need a
delay line for each input

2. We can't use it with clocked
receivers
« Both problems are solved by
the two-register synchronizer
« We delay the clock rather
than the data

— sample the data with normal
and delayed clock

— pick the ‘safe’ output
e Can we just mux the clock?
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FIFO Synchronizer

» A first-in-first-out (FIFO) X X0

buffer can be used to move .

the synchronization out of Ve

the data path — a1 xs
» Clock the data into the FIFO 1| | >

in one clock domain (xclk) = 4

x2

* Mux the data out of the FIFO ) °

in a second clock domain /p——z?_

(clk) xp 43 ™ 43
* Where dlq thg wclk ring rclk__L ring

synchronization move to? counter counter
* How do we initialize the

pointers?
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Plesiochronous Timing

* With plesiochronous timing, * we need to resynchronize

one clock is running slightly periodically

faster than the other — e.g., once every 1,000

— e.g., system with clocks

independent crystal + we need flow control

oscillators with same
nominal frequency
(x200ppm)

— have to match data rate of
tx and rx even if clock rate is

) different
* The sam(_e basic — eventually the phase wraps
synchronizer types apply and we either get 2 or 0
— delay line data elements during a
— two-register particular clock
— FIFO e unless we make sure we
are not sending data when
e But... the phase wraps
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A Plesiochronous FIFO Synchronizer

* [Insert data with transmit

clock (xclk) T !

« Remove data with receive

receive pointer (rp) by o2
synchronizing the transmit o

clock (rclk)
« Periodically update the a

pointer (xp) to the receive ®
clock o % xp gl le % |
— how do we know when to do =g|° o -3
this? xclk
— what dowe doif rp rclk

increments by 2 or 0 when
we update it?

XS
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Phase-Slip Detection
Pointers on a Clock

» Think of xp and rp as hands
on a clock x0

*  When xp reaches 12:00,
4:00, and 8:00 data is
clocked into x0, x1, and x2
respectively

* When rp is between 12:00

and 4:00 x0 is selected, from

4:00 to 8:00 x1 is selected, X2 x1
and from 8:00 to 12:00 x2 is

selected

* What relative angles
between rp and xp are legal?
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Phase Slip Detection
The Keepout Region

*  When xp is straight up (sampling
into x0), rp must be in the green
region

— otherwise data will change while
its selected

@, includes phase drift between
updates and tycq less t;,,

@ includes phase drift less t .o
« To detect phase, sample xp with
appropriate phase of rclk

— advanced by @, to detect fast
receiver

— retarded by ¢, to detect fast
transmitter

— orjust update to fastest legal time

\fo
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Phase Slip Detection
A Simple Approach

« If we make both margins
60°, we can just sample xp
with rclk’.

* At any point we want
sampled xp to be one step
ahead of rp

— SO0 we can update rp to be
sampled xp on positive
edge of rclk

« after waiting a multiple of 3
rclks for synchronization

— this approach may dither
when right on the boundary
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Data-Rate Mismatch

* Whichever approach we use,
an update of RP may
— skip a count
0,1,2,1,2,0,1,2,0,1,2
— double a count
0,1,2,0,0,1,2,0,1,2,0
» If we aren’t careful we can
drop or duplicate a symbol
* One approach is to only
update rp when the data
contains a null symbol
— OK to drop or duplicate

« Alternatively we can design
the receiver to accept 0,1, or
2 symbols per clock
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Open-Loop and Closed-Loop Flow Control

* We need to keep a fast
transmitter from overrunning a
receiver

e (or a slow transmitter from
underrunning the receiver)

* Open-loop approach

— insert lots of nulls into the
data stream at the transmitter

— enough so that rate of non-
nulls is less than the rate of
the slowest possible receiver

— when the receiver underruns
it inserts another null

Closed-loop approach
— receiver applies back
pressure when it is about to
be overrun
— still has to insert nulls when
it is underrun
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Periodic Timing

Transmit and receive clocks
are periodic but at unrelated
frequencies

— e.g., modules in a system
operate off of separate

oscillators with independent

frequencies

— case where one is rationally
derived from the other is an

interesting special case

In this situation, a single
synchronization won't last
forever (like mesochronous)
or even for a long time (like
plesiochronous)

However, we can still look
into the future and predict
clock conflicts far enough
ahead to reduce
synchronizer delay
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Clock-Predictor Circuit

Suppose we want to know
the value of xclk, one rclk
cycle (t.,) in the future

This is just a phase shift of
t><cy'trcy

It is easy to generate this
phase shift using a simple
timing loop

Note that we could just as
easily predict xclk several
rclk cycles in the future

So how do we build a
synchronizer using this?

xclk

pxclk
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Asynchronous Timing

* Sometimes we need to *  We can still avoid delay in
sample a signal that is truly this case if we don't really
asynchronous need to synchronize

* We can still move the — often synchronization is just
synchronization out of the an expensive convenience

datapath by using an
asynchronous FIFO
synchronizer

» However this still incurs a
high latency on the full and
empty signals as we have to
wait for a brute force
synchronizer to make its
decision
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Next Time

» Asynchronous Design
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