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Today’s Assignment

• Reading
– Sections 3.6 and 3.7

– Complete before class on Monday

• Problem Set 2
– do exercises 3-2, 3-6, 3-7, and 3-16

– run SPICE to verify your answer for all four problems

– due at start of class on Wednesday 10/7
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A Quick Overview

• Real transmission lines have
loss

– resistance of conductors
– conductance of insulators

• RC lines are an extreme case
– propagation governed by heat

equation
– delay and rise time are

quadratic with length

• This loss distorts the waveform
– rapid rise to AC signal level
– long tail to DC signal level

• This distortion reduces the eye
opening and hence the noise
immunity

• Loss is frequency dependent
– skin effect R ~ f1/2

– dielectric absorption G ~ f

• Multidrop buses have stubs and
lumped loads

– clean signal propagation is
possible only when rise time is
long compared to length of

• stubs

• space between loads

– distributed capacitance reduces
impedance significantly
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RC Transmission Lines

• Most real lines dissipate
power
– resistance of conductors

– conductance of insulator

• RC lines are an extreme
case
– R >> jωL
– typical of on-chip wires

• R = 150kΩ/m
• L = 600nH/m

•  ω1= 2.5 x 1011 (40GHz)

– propagation is governed by
the heat equation
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Propagation in RC Transmission Lines

• Signal is dispersed as it
propagates down a line
– R increases with length, d

– C increases with d
– delay and rise time increase

with RC and thus with d2

– for a typical wire
• R = 150KΩ/m, C=200pF/m
•  τ = RC = 30µs/m2 = 30ps/mm2
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Lossy Transmission Lines

• LC lines with resistance and
conductance
– propagation mostly by wave

– some by diffusion

• R and G dissipation
– reduces the amplitude of the

signal
– disperses the signal

• fast rise to AC attenuation

• slow tail to DC attenuation

• Resistance and conductance
depend on frequency
– we will ignore this for now
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Step Response of 1m 8mil Stripguide

0.2m 1m
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Source End
Line Model

Simple Model of Resistive Attenuation
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Simple Model of Resistive Attenuation (2)

Source End
Line Model

Z0

2Vi

–

+

Rdx
Receiver End
Line Model
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Zero-th Order Waveform

exp(-αx) Z0/(Z0+Rx)

Fast initial rise
Dispersive Tail DC Attenuation
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Q: So why worry about attenuation?
A: It closes the eye opeing!

• Critical parameter is what fraction of
swing, A is achieved in one bit time

• Eye opening is reduced to B = 2A-1

• No eye opening at 50% attenuation

• Significant degradation of margins at
lower levels of attenuation

1 A
2A-1
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Skin Effect Resistance

• Beauty is only skin deep - so
is current
– current density drops off

exponentially with depth

• Skin depth decreases with
frequency, f-1/2

• Model as if all current flowed
in δ-thick outer layer of
conductor
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Skin-Effect Resistance

• Effect does not occur until frequency, fs, at which skin
depth equals conductor radius

• Above fs, R and A increase as the square-root of
frequency
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Resistance and Attenuation of
5mil 0.5oz 50Ω Stripguide
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Dielectric Absorption

• High frequency signals jiggle
molecules in the insulator
– insulator absorbs signal

energy

• This effect is approximately
linear with frequency and is
modeled as a conductance

• Dielectric loss is often
specified in terms of a loss
tangent, tan(δ)
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FR4 0.035
Polyimide 0.025
GETEK 0.010
Teflon 0.001
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Skin effect resistance and
dielectric absorption

Dielectric loss

Skin Effect

Sum

Measured

1MHz 10MHz 100MHz 1GHz

1.0

0.2

0.4

0.6

0.8

1m 8mil 50Ω stripguide with GETEK dielectric
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The Bd2 Constant

• Suppose you can tolerate a
certain attenuation, A
– eye opening is 2A-1

• At a certain bandwidth, B1,
attenuation A is achieved
with a distance of 1m

• As bandwidth is increased,
resistance, and hence
attenuation, increases as
B1/2

• So distance must be
decreased by a proportional
amount
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Doubling distance cuts
bandwidth by a factor of 4
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Multi-drop Buses

Stubs

Impedance
Discontinuity

Added load reduces
effective Z and v
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Multi-Drop Buses

• Consider a typical bus
– 50Ω PC board traces

• C = 100pF/m, L=300nH/m

– Stubs are 10cm long (0.7ns)
• 20pF load at end

– Spacing between modules
is 3cm

• Constraints:
– rise time must be long

compared to stub length
(>3ns) and spacing (>1ns)

– 30pF each 3cm brings C to
1100pF/m

• Z = 16.5Ω, v=5.5 x 107 m/s
• driver sees 8.25Ω

• Bus speed is limited by
geometry of the bus
– stub length

– stub spacing

• Leaving a module
‘unplugged’ causes a
discontinuity

• Point-to-point signaling
– is electrically much cleaner

– allows concurrent transfers

• ‘Just say no’ to buses
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Next Time

• Balanced lines
– return current induces voltage across signal return

inductance

– if return and signal have identical L and C line is balanced
• even and odd modes of propagation

• Modeling Wires
– given a real wire, make a SPICE model

• Measurement Techniques
– time-domain reflectometry

– time-domain transmission measurements

– network analysis


