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Semi Markov Processes: An introduction

A semi-Markov process satisfies the Markov property only at the time of
entry into a state. All the transitions into a new state should satisfy the
Markov property.

Let {Z (t)|t ≥ 0} be a SMP.

Let t0 = 0, t1, t2, . . . , tn, . . . be the time instances at which Z (t)
undergoes a state transition.

The sequence of states {Xn = Z (tn)|n ≥ 0} is a DTMC characterized by
its one-step transition probability matrix (TPM) PPP = [pij ].

Let Hi (t) be the sojourn time distribution in state i . Hi (t) may be
generally distributed.
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Steady state analysis

Think of transitions as occurring in two stages:

First stage: the SMP stays in state i for an amount of time with
distribution function Hi (t), that is the sojourn time distribution in
state i .

Second stage: the SMP moves from state i to state j with
probability pij .

The SMP is thus described by the transition probability matrix
PPP = [pij ] and the vector of sojourn time distributions Hi (t).
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Steady state analysis

The steady state probability vector ννν of the embedded DTMC is obtained
by solving the linear system of equations:

ννν = νννPPP subject to
∑

i
νi = 1

where νi is the steady-state probability of the embedded DTMC in state i .
The mean sojourn time in state i is:

hi =
∫ ∞
0

(1− Hi (t))dt

Then the steady state probability πi for the SMP state i is given by:

πi = νihi∑
j νjhj
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A 2-state SMP - 1

Consider a 2-state SMP modeling the
failure-repair of a single component.

F (t) and G(t) denote the distribu-
tions of time to failure and time to
repair.

U F

F (t)

G(t)
We construct the TPM of the embedded DTMC.

PPP =
[U D

U 0 1
D 1 0

]
The DTMC is periodic and hence limiting state probabilities do not exist
as the DTMC alternates between two states.
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A 2-state SMP - 2

However, the stationary probability vector can still be computed from

ννν = νννPPP , νU + νD = 1 to obtain νU = 1
2 = νD

Furthermore, hU =
∫ ∞
0

(1− F (t))dt = MTTF

and, hD =
∫ ∞
0

(1− G(t))dt = MTTR

Finally, πU =
1
2MTTF

1
2MTTF + 1

2MTTR

= MTTF
MTTF + MTTR =

[
1 + MTTR

MTTF

]−1
which also gives the steady state availability of the component.
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A 2-state SMP - 3

Quite often in practice, state D will not be considered a down state
unless the sojourn time in the state exceeds a threshold, say, τ .

The probability of an individual sojourn in state D not exceeding the
threshold is given by G(τ).

By assigning G(τ) as a reward rate to the state D and a reward rate 1 to
state U, we get the steady state availability

A(τ) = πU + G(τ)πD
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Component subject to different types of failures

Next we consider a single compo-
nent subject to different types of
failures and corresponding repairs.

n U 1

2

F1(t)

F2(t)

Fn(t)

Gn(t)

G2(t)

G1(t)

We assume that TTF and TTR for failure type i (i = 1, 2, . . . , n) are
respectively distributed as Fi (t) and Gi (t).

Y. Cao, H. Sun, K. Trivedi, and J. Han, "System availability with non-exponentially
distributed outages," IEEE Transactions on Reliability, vol. 51, no. 2, pp. 193-198,
Jun 2002.
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Component subject to different types of failures - 1

Model assumptions:

Only one type of failure can occur at a time and during the recovery
/ repair from a failure, another failure cannot occur.

Failures occur independently.

Each time the repair completion brings the system to as good as
new state.

Age clock of each type of failure is thus reset upon the completion
of a repair.

With these assumptions, the underlying stochastic process is an SMP
with n + 1 states {U, 1, . . . , n}.
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Component subject to different types of failures - 2

To derive the entries of the TPM of the embedded DTMC, we observe
that

pi,U = 1

pU,i =
∫ ∞
0

n∏
j=1,j 6=i

(1− Fj(x)) dFi (x) with
n∑

i=1
pU,i = 1

Furthermore, HU(t) = 1−
n∏

j=1
(1− Fj(t))

Hi (t) = Gi (t)

Hence, hU =
∫ ∞
0

n∏
j=1

(1− Fj(t))dt = MTTF

and hi =
∫ ∞
0

(1− Gi (t))dt = MTTRi i = 1, 2, . . . , n
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Component subject to different types of failures - 3

The TPM of the embedded DTMC can be seen to be

PPP =


U 1 · · · n

U 0 pU,1 · · · pU,n
1 p1,U 0 · · · 0
...

...
...

. . .
...

n pn,U 0 · · · 0


It is then easy to see that the solution to

ννν = νννPPP subject to νU +
n∑

j=1
νj = 1

is given by νU = 1
2 and νi = pU,i

2

K. Trivedi & A. Bobbio Chapter 14 - Semi-Markov and Markov Regenerative Models Jan 2017 13 / 87



An introduction Steady state solution SMP with Absorbing States Transient solution Markov Regenerative Process

Component subject to different types of failures - 4

The steady state availability is:

A = πU = hU

hU +
∑n

j=1 pU,jhj

=
[
1 +

n∑
j=1

pU,j
hj
hU

]−1

=
[
1 +

n∑
j=1

pU,j
MTTRj
MTTF

]−1
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Component subject planned and unplanned outages - 1

We specialize previous exam-
ple to the case of planned and
unplanned outages, denoted by
PM and D respectively.

DUPM

F (t)

G(t)

EXP (µ)

EXP (λ)

The planned outage may be for system upgrades, configuration changes,
maintenance and so on. In many practical situations, the planned
downtime is often larger than unplanned downtime.

Assume that TTF and TTR for planned outages have respective
distributions F (t) and G(t).

The TTF and TTR for unplanned outages are assumed to follow
exponential distribution with respective rates λ and µ.
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Component subject planned and unplanned outages - 2

We specialize previous result, to get: DUPM

F (t)

G(t)

EXP (µ)

EXP (λ)

A =
[
1 + pU,D

hD
hU

+ pU,PM
hPM
hU

]−1
where,

pU,PM =
∫ ∞
0

e−λtdF (t) = λ

∫ ∞
0

e−λtF (t) dt

pU,D =
∫ ∞
0

(1− F (t))λe−λtdt

hU =
∫ ∞
0

(1− F (t))e−λtdt , hPM =
∫ ∞
0

(1− G(t))dt

hD =
∫ ∞
0

e−µtdt
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Component subject planned and unplanned outages - 3

by denoting,

α(λ) =
∫ ∞
0

e−λx dF (x) and θ(λ) = α(λ)
1− α(λ)

the result of the previous example, when specialized to this case, yields:

hD = 1
µ

; hPM =
∫ ∞
0

(1− G(t))dt = 1
µ2

; hU = (1− α(λ)) 1
λ

pU,D =λ hU

We finally obtain: A =
[
1 + λ

µ
+ θ(λ) λ

µ2

]−1
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Component subject planned and unplanned outages - 4

The ratio of the downtime due to update to the downtime due to failure
is given by µ

µ2
θ(λ).

In case the time to trigger update is deterministic equal to τ ,
F (t) = u(t − t0) and the above ratio becomes

µ

µ2

e−λt0

1− e−λt0
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Time-based preventive maintenance - 1

Now specialize the general model to the case of time-based preventive
maintenance.

We assume that the TTF and
TTR for unplanned outages
have respective general distri-
butions F (t) and G(t).

DUPM

u(t− hPM)

u(t− t0) G(t)

F (t)

The planned outage now will be for preventive maintenance which is
carried out after a deterministic duration t0 and hence the corresponding
distribution is the unit step function u(t − t0).

D. Chen and K. Trivedi, and J. Han, "Analysis of periodic preventive maintenance
with general system failure distribution," in Proc. Pacific Rim International
Symposium on Dependable Computing (PRDC), 2001, pp. 103-107.
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Time-based preventive maintenance - 2

For the time to carry out preventive maintenance, we need only its mean
which we assume to be given by hPM . Without loss of generality, we
assume this distribution to be u(t − hPM).
It follows that

pU,D = P{failure occurs before the PM trigger} = F (t0)
pU,PM = 1− F (t0)
pPM,U = 1 = pD,U

hU(t0) =
∫ t0

0
(1− F (t))dt , and hD = h =

∫ ∞
0

(1− G(t))dt

Hence the steady state availability is given by,

A = πU = hU(t0)
hU(t0) + pU,PMhPM + pU,Dh

= hU(t0)
hU(t0) + (1− F (t0))hPM + F (t0)h
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Time-based preventive maintenance - 3

Given the nature of the distribution function F (t), we can derive the
expression for hU(t0) and then compute the steady state availability.

Note that F (t) should be an Increasing Failure Rate (IFR) distribution in
order for PM to yield positive results.

We assume:
HYPO(λ1, λ2)

WEIB(λ, α), α > 1

log-normal
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Time-based preventive maintenance - 4

Case 1) - The time to failure F(t) is two-stage hypo-exponentially
distributed

F (t) = 1− λ2
λ2 − λ1

e−λ1t + λ1
λ2 − λ1

e−λ2t

Then, hU =
∫ t0

0
(1− F (t))dt

= λ1
λ2(λ2 − λ1)e−λ2t0 − λ2

λ1(λ2 − λ1)e−λ1t0 + λ1 + λ2
λ1λ2

From the above relations, we can get the final expression for the steady
state availability.
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Time-based preventive maintenance - 5

Case 2) - The time to failure F (t) is Weibull distributed

F (t) =1− exp−αtβ

(1)

and, hU =
∫ t0

0
(1− F (t))dt =

∫ t0

0
e−αtβ

dt

= 1
βα1/β

∫ αtβ
0

0
e−uu

1
β−1du (2)

=α−1/β

β
Γ
(
1
β

)
G
(
αtβ0 ,

1
β

)
where G(x , a) = 1

Γ(a)
∫ x
0 e−uua−1du is the incomplete Gamma function.

From the above relations, we can get the final expression for the steady
state availability.
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Time-based preventive maintenance - 6

Case 3) - The time to failure F (t) is Log-normal distributed
The corresponding density and distribution functions are given by:

f (t) = 1
σt
√
2π

e
−(ln(t)−µ)2

2σ2

F (t) = 1
2

[
1 + erf

(
ln(t)− µ
σ
√
2

)]
Further analysis is similar to the earlier case of Weibull distributed TTF:

hU =
∫ t0

0
(1− F (t))dt

hU =1
2

∫ t0

0
erfc

(
ln(t)− µ
σ
√
2

)
dt

Where erf is the error function and erfc is the complementary error
function.
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Optimal preventive maintenance interval - 1

We wish to determine the optimal value of the preventive maintenance
trigger interval t0.

We can compute the optimal PM trigger interval t0 by taking the
derivative of expression for A with respect to t0 and equate it to 0.

∂A
∂t0

=

h′U(t0)[hU(t0)+hPM(1−F (t0))+hF (t0)]−hU(t0)[h′U(t0)−hPMF ′(t0)+hF ′(t0)]
[hU(t0) + hPM(1− F (t0)) + hF (t0)]2

= 0

Equating the numerator of the previous equation to 0 and expanding,

hU(t0)h′U(t0) + hPMh′U(t0)− hPMh′U(t0)F (t0) + hh′U(t0)F (t0)
= hU(t0)h′U(t0)− hPMhU(t0)F ′(t0) + hhU(t0)F ′(t0)

and then,

hPMh′U(t0) + (h − hPM)F (t0)h′U(t0) = (h − hPM)F ′(t0)hU(t0)
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Optimal preventive maintenance interval - 2

Case 2) - The time to failure F (t) is Weibull distributed

F ′(t0) = f (t0) = αβ(t0)β−1e−αtβ
0

and h′U(t0) = ∂

∂t0

∫ t0

0
e−αtβ

dt = e−αtβ
0

Substituting the expressions for F ′(t0) and h′0(t0),

hPMe−αtβ
0 + (h − hPM)(1− e−αtβ

0 )(e−αtβ
0 )

= (h − hPM)αβ(t0)β−1e−αtβ
0 hU(t0)

Thus the general non-linear equation for the optimal t0 becomes

(h + (hPM − h)e−α(t0)β

) + βα(hPM − h)(t0)β−1hU(t0) = 0
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Two Repairable Components with imperfect coverage - 1

The two-component system with imperfect coverage was modeled using a
GSPN in Chapter 12 whose ERG can easily be viewed as an SMP, as
presented in the Figure.

2,0,0 1,1,0 1,0,1 0,1,1 0,0,2
EXP (2λ)

1− c

c EXP (λ)

EXP (µ)

1

EXP (µ)

This SMP consists of two kinds of states, those in which the sojourn time
is exponentially distributed (the tangible states), and those in which the
sojourn time is zero (the vanishing states).

We show the solution of the ERG with preservation, whereby the
vanishing states are preserved, and the resulting ERG can be solved as an
SMP.

K. Trivedi & A. Bobbio Chapter 14 - Semi-Markov and Markov Regenerative Models Jan 2017 27 / 87



An introduction Steady state solution SMP with Absorbing States Transient solution Markov Regenerative Process

Two Repairable Components with imperfect coverage - 2

The corresponding TPM of the embedded DTMC is given as follows:

PPP =



200 110 101 011 002
200 0 1 0 0 0
110 0 0 c 0 1− c
101 µ

λ+µ 0 0 λ
λ+µ 0

011 0 0 0 0 1
002 0 0 1 0 0


Solving the steady state Equations for the embedded DTMC, we get,

ν200 = ν110 = µ

(4− c)µ+ 3λ , ν101 = λ+ µ

(4− c)µ+ 3λ
ν011 = λ

(4− c)µ+ 3λ , ν002 = (1− c)µ+ λ

(4− c)µ+ 3λ

Noting the mean sojourn times in the SMP states: h2,0,0 = 1/(2λ),
h1,0,1 = 1/(λ+ µ), h0,0,2 = 1/(µ), h1,1,0 = h0,1,1 = 0, we can derive the
steady state probabilities of the SMP.
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Availability of an Uninterruptible power supply (UPS)

Upon failure of the main power supply the battery supplies power to the
device.

However, batteries drain out after the stored charge is exhausted - this
will last for a fixed amount of time, say L.

Thus if the power supply is re-
stored before the battery is fully
discharged, the system will experi-
ence UPS.

U

B D

EXP (λ) EXP (µ)

EXP (µ)

u(t− L)

L. Yin, R. Fricks, and K. Trivedi, "Application of semi-markov process and ctmc to
evaluation of UPS system availability," in Proceedings Reliability and Maintainability
Symposium, 2002, pp. 584-591
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Availability of an Uninterruptible power supply (UPS)

pB,U =
∫ L

0
µe−µtdt = 1− e−µL

pB,D = e−µL

pU,B = 1
pD,U = 1

PPP =


U B D

U 0 1 0
B 1− e−µL 0 e−µL

D 1 0 0

 solving ννν = νννPPP

then νU = νB(1− e−µL) + νD , νB = νU , νD = νBe−µL

and νU = 1
2 + e−µL , νB = 1

2 + e−µL , νD = e−µL

2 + e−µL
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Availability of an Uninterruptible power supply (UPS)

State sojourn times and SMP steady-state probabilities:

HB(t) =
{

1− e−µt , t < L
1 , t ≥ L

hU = 1
λ

, hB =
∫ L

0
e−µtdt = 1− e−µL

µ
, hD = 1

µ

πU = µ

λ+ µ
, πB = λ(1− e−µL)

λ+ µ
, πD = λe−µL

λ+ µ

Finally, the steady state availability of the UPS:

A = πU + πB = µ

λ+ µ
+ λ

λ+ µ
(1− e−µL)
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Security attributes of a computer system - 1

In order to analyze the security attributes of an intrusion tolerant system,
we need to consider the actions undertaken by an attacker as well as the
system’s response to an attack.

We will assume that the system satisfies the assumption of an SMP.

The embedded DTMC of this SMP is shown in the Figure. The dashed
lines represents transitions for recovering the full services after an attach
and returning to the good state by manual intervention.

A complete description of this SMP model requires the knowledge of
various parameters, viz. mean sojourn time in each state and the
transition probabilities indicated in the Figure.
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Security attributes of a computer system - 2

A generic model that en-
ables multiple intrusion tol-
erance strategies to exist
and supports tolerance of
intrusions with different im-
pacts (e.g. compromise of
confidentiality, compromise
of data integrity, and DoS
attacks), is sketched in the
Figure.

G

V

A

TR

F

UCMC

GDFS

1-pa

pa
pupm

1-pm-pu
pgps

1-ps-pg

B. B. Madan, K. Vaidyanathan, and K. S. Trivedi, "A method for modeling and
quantifying the security attributes of intrusion tolerant systems," Performance
Evaluation, vol. 56, 2004, pp. 167-186
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Security attributes of a computer system - 3

The states have the following meaning:

Table: State description

G good state
V vulnerable state
A active attack state
MC masked compromised state
UC undetected compromised state
TR triage state
FS fail-secure state
GD graceful degradation state
F failed state

Recovering the full services after an attack and returning to the good
state by manual intervention is represented by transitions denoted with
dashed lines.
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Security attributes of a computer system - 4

PPP =



G V A MC UC TR FS GD F
G 0 1 0 0 0 0 0 0 0
V 1− pa 0 pa 0 0 0 0 0 0
A 0 0 0 pm pu 1− pm − pu 0 0 0
MC 1 0 0 0 0 0 0 0 0
UC 1 0 0 0 0 0 0 0 0
TR 0 0 0 0 0 0 ps pg 1− ps − pg
FS 1 0 0 0 0 0 0 0 0
GD 1 0 0 0 0 0 0 0 0
F 1 0 0 0 0 0 0 0 0


Solving for the steady-state probabilities of the DTMC, we get:

νG = νV (1− pa) + νMC + νUC + νFS + νGD + νF , νV = νG , νA = νV pa = νGpa,

νMC = νApm, νUC = νApu, νTR = νA(1− pm − pu) = νGpa(1− pm − pu)
νFS = νTRps , νGD = νTRpg , νF = νTR(1− ps − pg )
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Security attributes of a computer system - 5

From the above equations, along with the normalization condition
(
∑

i νi = 1, i ∈ {G,V,A, MC, UC, TR, FS, GD, F}) we get

νG = 1
2 + pa(3− pm − pu)

Once the mean sojourn times in all states are given, we can derive
expressions for the SMP steady state probabilities.

From these, we can get steady state system availability after recognizing
that states F , FS and UC are system down states.

A = 1− (πFS + πF + πUC )

For computing other security attributes such as the confidentiality and
integrity, we need to consider specific attack scenarios. For several types
of attacks, states UC and F will mean a loss of confidentiality while
states FS will not. Hence steady state confidentiality is given by:

C = 1− (πF + πUC )
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Two level rejuvenation model -1

Analysis of software aging and re-
juvenation, with rejuvenation ac-
tions offered at two levels.

U(0) M(1) L(2)

D(3)P(4)R(5)

B(6)

F1(t)

FB(t)

F2(t)

FI(t)

F3(t)

Fd(t)

FP (t)FR(t)

FD(t)
U is the highly efficient and highly robust software execution phase.
M is the medium-efficient software execution phase.
L is alert phase. A rejuvenation action is needed or a crash may happen.
D state where it is determined which level of rejuvenation is appropriate.
P is the partial rejuvenation state (level 1 rejuvenation).
R is the full rejuvenation state (level 1 rejuvenation).
B state where the system is recovering from a crash failure.

W. Xie, Y. Hong, and K. Trivedi, "Analysis of a two-level software rejuvenation
policy," Reliability Engineering & System Safety, vol. 87, no. 1, pp. 13-22, 2005.
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Two level rejuvenation model - 2

All the distributions Fi (t) are assumed to be non-exponential.
The time to trigger rejuvenation is typically a fixed duration, i.e. its cdf
has the form of FI(t) = u(t − τ). The non-zero entries of matrix PPP are:

p0,1 = p1,2 = p4,1 = p5,0 = p6,0 = 1
p2,3 = 1− F3(τ) , p2,6 = F3(τ) ,
p3,4 =

∫∞
0 (1− FD(t))dFd (t) , p3,5 = 1− p3,4 ,

Solving the equations

ννν = νννPPP subject to ννν eeeT = 1

we obtain the steady state probabilities of the EMC for the SMP as

ννν = 1
D(τ, p) (1−p(1−F (τ)), 1, 1, (1−F (τ)), p(1−F (τ)), (1−F (τ))−p(1−F (τ)),F3(τ))

in which D(τ, p) = 5− p + pF3(τ)− F3(τ) and p = p3,4.

K. Trivedi & A. Bobbio Chapter 14 - Semi-Markov and Markov Regenerative Models Jan 2017 38 / 87



An introduction Steady state solution SMP with Absorbing States Transient solution Markov Regenerative Process

Two level rejuvenation model - 3

The expected sojourn times can be computed as:

h0 =
∫ ∞
0

(1− F1(t))dt ,

h1 =
∫ ∞
0

(1− F2(t))dt ,

h2 =
∫ ∞
0

(1− FI(t))(1− F3(t))dt =
∫ τ

0
(1− F3(t))dt ,

h3 =
∫ ∞
0

(1− Fd (t))(1− FD(t))dt ,

h4 =
∫ ∞
0

(1− FP(t))dt ,

h5 =
∫ ∞
0

(1− FR(t))dt ,

h6 =
∫ ∞
0

(1− FB(t))dt ,
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Two level rejuvenation model - 4

The steady-state probability of each SMP state is

πi = νi hi∑6
j=0 νjhj

Finally, the steady state availability of the system is:

A = π0 + π1 + π2 = S(τ, p)
S(τ, p) + V (τ, p)

where

S(τ, p) = (1− p + pF3(τ))h0 + h1 +
∫ τ

0
(1− F3(t))dt

V (τ, p) = (p − pF3(τ))h4 + (1− p − F3(τ) + pF3(τ))h5 + F3(τ)h6.
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Protocol in vehicular ad-hoc networks - 1

This example regards the SMP model of the protocol used for safety
messages DSRC (Dedicated Short Range Communication) in vehicular
ad-hoc networks.

This SMP characterizes the packet transmission by a tagged vehicle. The
vehicle is in idle state if its queue is empty.

Once a packet is ready to be transmitted the vehicle first senses for
channel activity for a duration known as DIFS (Distributed InterFrame
Space).

If the channel is detected to be idle during this period (associated
probability 1− q), the vehicle transits to XMT state implying that the
packet is being transmitted.

X. Yin, X. Ma, and K. Trivedi, "An interacting stochastic models approach for the
performance evaluation of dsrc vehicular safety communication," IEEE Transactions on
Computers, vol. vol. 62, no. 5, pp. 873-885, May 2013.

K. Trivedi & A. Bobbio Chapter 14 - Semi-Markov and Markov Regenerative Models Jan 2017 41 / 87



An introduction Steady state solution SMP with Absorbing States Transient solution Markov Regenerative Process

Protocol in vehicular ad-hoc networks - 2

The SMP model capturing channel contention and backoff behavior is
shown in Figure

0 1 W-3 W-2 W-1

D0 DW−4 DW−3 DW−2

XMTXMTXMT

idleidleidle

q/W

q/W q/W
q/W

q/W

ρ/W ρ/W

ρ/W

ρ/W ρ/W
1−ρ 1−q

1−p1−p1−p1−p1−p

pppp 11
1

1
1

1
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Protocol in vehicular ad-hoc networks - 3

In the case the channel is sensed to be busy during the DIFS period, the
vehicle will backoff with the backoff counter set randomly in the range [0,
W − 1] where W is the backoff window size.

The backoff counter is decremented by 1 each time the channel is
detected idle during a time slot of duration σ (this happens with
probability 1− p) corresponding SMP transition is from state W − i to
W − i − 1.

If another vehicle is transmitting and hence the channel is sensed busy
during the backoff time slot σ (i.e., another vehicle is transmitting a
packet), the backoff counter of the tagged vehicle is suspended and
deferred for the duration of packet transmission, that is a period of
length T .
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Protocol in vehicular ad-hoc networks - 4

The corresponding transition in the SMP occurs from state W − i to
DW−i−1 with probability p.

Once the backoff counter reaches the value 0, the packet will be
transmitted while SMP transits from state 0 to state XMT.

Upon transmission, if the queue of the tagged vehicle is empty (with
probability 1− ρ) the SMP transits to the idle state.

Else if there are packets in the queue (with probability ρ), the vehicle will
sense the channel for a DIFS period and randomly chooses a backoff
counter.
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Protocol in vehicular ad-hoc networks - 5

From the state diagram and corresponding TPM, we can obtain the
stationary probability vector of the embedded DTMC:

νj = (W − j) νW−1, j = 0, 1, . . . ,W − 1
νDj = (W − j − 1) p νW−1, j = 0, 1, . . . ,W − 2

νXMT = W
ρ+ q (1− ρ)νW−1

νidle = (1− ρ)W
ρ+ q (1− ρ)νW−1

Finally using the normalization condition, we get :

νW−1 = 2[ρ+ q (1− ρ)]
[W + 1 + p(W − 1)][ρ+ q (1− ρ)]W + 2(2− ρ)W
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Protocol in vehicular ad-hoc networks - 6

The mean sojourn times in
the states of the SMP are
given by: 0 1 W-3 W-2 W-1

D0 DW−4 DW−3 DW−2

XMTXMTXMT

idleidleidle

q/W

q/W q/W
q/W

q/W

ρ/W ρ/W

ρ/W

ρ/W ρ/W
1−ρ 1−q

1−p1−p1−p1−p1−p

pppp 11
1

1
1

1

hj =


σ j = 0, 1, . . . ,W − 1
T j = D0,D1, . . . ,DW−2
T j = XMT
1
λ + DIFS j = idle

From the above the steady state probabilities of SMP states can be
computed

K. Trivedi & A. Bobbio Chapter 14 - Semi-Markov and Markov Regenerative Models Jan 2017 46 / 87



An introduction Steady state solution SMP with Absorbing States Transient solution Markov Regenerative Process

SMP with Absorbing States

1 Semi Markov Processes: An introduction

2 Steady state solution

3 SMP with Absorbing States

4 Transient solution

5 Markov Regenerative Process
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SMP with Absorbing States

SMP with one or more absorbing
states. The TPM of the embedded
DTMC now can be partitioned as: PPP =

 PPPu | cccT

− | −
000 | 1


PPPu is the (n − 1× n − 1) partition of matrix PPP over the transient states
and is a sub-stochastic matrix (row sum less than 1);

cccT is a column vector grouping the transition probabilities from any
transient state to the absorbing state.

Note that the absorbing state needs a self loop with probability 1 in order
to make the TPM a stochastic matrix so that all row sums are equal to 1.
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Mean Time to Absorption

The expected number of visits to state j until absorption is:

Vj = αj +
n−1∑
i=1

Vipij j = 1, 2, . . . , n

where αj is the initial probability of state j and n is the absorbing state.

In vector-matrix form: VVV = ααα + VVV PPPu

where ααα = [αj ] is the initial probability vector and VVV = [Vj ] the vector of
the expected number of visits in each state.

The mean time to absorption is written as

MTTA =
n−1∑
j=1

Vj hj

where hj is the mean sojourn time in state j and Vj hj the total expected
time spent in state j before absorption.

K. Trivedi & A. Bobbio Chapter 14 - Semi-Markov and Markov Regenerative Models Jan 2017 49 / 87



An introduction Steady state solution SMP with Absorbing States Transient solution Markov Regenerative Process

MTTA: periodic preventive maintenance - 1

We compute mean time to absorption by disallowing repair from the
failure state F.

DUPM

u(t− hPM)

u(t− t0) F (t)

1

The TPM for this case is

PPP =

U PM D[ ]U 0 1− F (t0) | F (t0)
PM 1 0 | 0−− −−−−− − −−−D 0 0 | 1

We assume, as initial probability, αU = 1.
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MTTA: periodic preventive maintenance - 2

Then: VU = 1 + VPM , VPM = [1− F (t0)] VU

Hence: VU = 1
F (t0) , VPM = 1− F (t0)

F (t0)

Finally, MTTA = hU
F (t0) + 1− F (t0)

F (t0) hPM

= hU + hPM
F (t0) − hPM

During time to absorption, the system is down for PM multiple times. So
if we attach reward rate 1 to U and 0 to PM, we can compute the
expected accumulated reward till absorption as mean capacity till failure
(MCTF):

MCTF = hU
F (t0) =

∫ t0
0 (1− F (t))dt

F (t0)
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MTTA: UPS Example - 1

By dropping the repair transition, we have modified the UPS system
Example, to have a SMP model with absorbing state.

U

B D

EXP (λ) EXP (µ)

u(t− L)

The TPM for this case is

PPP =

U B D U 0 1 | 0
B 1− e−µL 0 | e−µL

−−−− −− − −−−
D 0 0 | 1

Then assuming as initial probability αU = 1, we have

VU = 1 + VB(1− e−µL)
VB = VU

Hence VU = 1 + VU(1− e−µL) or VU = eµL.
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MTTA: UPS Example - 2

MTTA, which in this case is also MTTF, is given by :

MTTF = VU
λ

+ VB

(
1− e−µL

µ

)
= e+µL

λ
+ e+µL

µ
− 1
µ

= e+µL
(
1
λ

+ 1
µ

)
− 1
µ

Note that if L = 0, MTTF reduces to 1/λ since as soon as the power
supply is down, the system goes down without a battery backup.
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RF channel in a cellular wireless network - 1

Consider a model of an RF (radio frequency) channel in a cellular wireless
network. The quality of a channel is determined by its signal to noise
ratio (SNR).

An instantaneous drop in SNR below a threshold does not necessarily
lead to the occurrence of an outage event.

A channel outage event is determined by the duration of time that the
SIR stays below a threshold.

To reflect the impact of this time duration, an RF channel outage event
is said to occur when the SNR stays below a threshold for a duration
longer than the “minimum duration", δ.

This leads to a SMP model.

Y. Ma, J. Han, and K. Trivedi, "Transient analysis of minimum duration outage for rf
channel in cellular systems," in IEEE Vehicular Technology Conference, vol. 2, Jul
1999, pp. 1698-1702
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RF channel in a cellular wireless network - 2

The TPM of the embedded DTMC
is given by

U

L D

F (t) G(t)

u(t− δ)

PPP =

U L D U 0 1 | 0
L G(δ) 0 | 1− G(δ)−−−− −− − −−−−−−
D 0 0 | 1

The mean sojourn times are given by:

hU =
∫ ∞
0

(1− F (t))dt , hL =
∫ δ

0
(1− G(t))dt
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RF channel in a cellular wireless network - 3

Assuming, as initial probability, αU = 1, we obtain the average number of
visits:

VU = 1 + VLG(δ) , VL = VU

Hence VU = 1 + VUG(δ) and VU = 1
1−G(δ) .

Thence MTTA which is also MTTF in this case is given by

MTTF = hU
1− G(δ) + hL

1− G(δ)

=
∫∞
0 (1− F (t))dt

1− G(δ) +
∫ δ
0 (1− G(t))dt
1− G(δ)
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RF channel in a cellular wireless network - 4

We can also now study the steady
state availability of the channel by
allowing recovery from state D as
in the Figure.

U

L D

F (t) G(t)
G(t)

u(t− δ)

We assume that once channel has failed, recovery activity, if any, that
was started prior to failure needs to be restarted. Now substitute MTTF
from above and MTTR =

∫∞
0 (1− G(t))dt to get:

A = MTTF
MTTF + MTTR =

(
1 + MTTR

MTTF

)−1
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Probability of Absorptions

SMP with multiple absorbing states. Assume that 1 ≤ m < n absorbing
states in an n-state SMP. Then the TPM can be partitioned so that
QQQ is an (n − m) by (n − m) sub-
stochastic matrix, CCC is a rectangu-
lar (n −m) by m matrix. PPP =

 PPPu | CCC
−− | −−
000 | III


Matrix BBB = [bij ] is defined so that bij is the probability of being absorbed
in state j given that the DTMC started in state i . It can be shown that:

BBB = (III −PPPu)−1CCC

Note that (III −PPPu)−1 is known as the fundamental matrix of the
embedded DTMC.
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Security attributes of a computer system - 1

We return to the security quantification Example.

We identify those states that are security compromised states and make
them absorbing states.

Subsequently the MTTA in this case can be christened as mean time to
security failure (MTTSF).

For example, for SUN web server bulletin board vulnerability (Bugtrack
ID 1600), states UC, FS, GD and F will form the set of absorbing states.

B. B. Madan, K. Vaidyanathan, and K. S. Trivedi, "A method for modeling and
quantifying the security attributes of intrusion tolerant systems," Perform. Eval, vol.
56, 2004, pp. 167-186
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Security attributes of a computer system - 2

Assuming that αG = 1, we find:

VG = 1
pa(1−pm) = VV ,VA = 1

1−pm
,VMC = pm

1−pm
,VTR = 1−pm−pu

1−pm

and MTTSF = hGp−1a + hV p−1a + hA + hMC pm + hTR(1− pm − pu)
1− pm

Furthermore, we can find the absorption probabilities as:

bG,F = (1− ps − pg )(1− pm − pu)
1− pm

bG,FS = ps(1− pm − pu)
1− pm

bG,GD = pg (1− pm − pu)
1− pm

and bG,UC = pu
1− pm
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Transient solution

1 Semi Markov Processes: An introduction

2 Steady state solution

3 SMP with Absorbing States

4 Transient solution

5 Markov Regenerative Process
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Transient analysis

We denote by VVV (t) = [Vij(t)] the matrix of the transient solution for the
conditional transition probability, where each entry Vij(t) is defined as:

Vij(t) = P{Z (t) = j |Z (0) = i}

We define the kernel matrix of the SMP as

KKK (t) = [kij(t)].

For this purpose, define the sequence of time points at which
{Z (t) | t ≥ 0} makes state transitions as

T0 = 0, T1, T2, . . . , Tn, Tn+1, . . . , and Xn = Z (Tn).

Then, kij(t) = P{Xn+1 = j ,Tn+1 − Tn ≤ t |Xn = i}

kij(t) is the conditional probability that, given the process has entered
state i at time Tn, the next transition occurs at time t toward state j .
We assume that kij(t) satisfy the homogeneity property so that they
don’t depend on n.
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Transient analysis

Based on our earlier characterization, it can be seen that

kij(t) = pij Hi (t), or, alternatively

pij = limt→∞ kij(t) and PPP = limt→∞ KKK (t) ,

and Hi (t) =
∑

j
kij(t)

where Hi (t) is the distribution of the sojourn time in state i .

The transient solution for the conditional probabilities Vij(t) can be
shown to satisfy the equations:

Vij(t) = [1− Hi (t)]δij +
∑

k

∫ t

0
Vkj(t − τ) dkik(τ)

where δij is the Kronecker delta equal to 1 if i = j and is 0 otherwise.
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Transient analysis

The coupled set of Volterra equations of the second kind is a Markov
renewal equation and can be solved in L-S domain.

VVV∼(s) = EEE∼(s) + KKK∼(s)VVV∼(s)
= [III −KKK∼(s)]−1EEE∼(s)

where: EEE∼(s) =
∫∞
0 e−stdEEE (t) is a diagonal matrix with entries

Eii (t) = 1− Hi (t),

KKK∼(s) =
∫∞
0 e−stdKKK (t).

After solving the equation and taking the inverse L-S transform of
VVV∼(s), the unconditional state probabilities πππ(t) = [πi (t)] becomes

πππ(t) = πππ(0)VVV (t)

where πππ(0) the initial state probability vector.
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Two level rejuvenation model: Kernel matrix

The transient analysis of the two
level rejuvenation model can be
carried out by determining the ker-
nel matrix KKK (t) as follows:

U(0) M(1) L(2)

D(3)P(4)R(5)

B(6)

F1(t)

FB(t)

F2(t)

FI(t)

F3(t)

Fd(t)

FP (t)FR(t)

FD(t)

KKK (t) =



0 k0,1(t) 0 0 0 0 0
0 0 k1,2(t) 0 0 0 0
0 0 0 k2,3(t) 0 0 k2,6(t)
0 0 0 0 k3,4(t) k3,5(t) 0
0 k4,0(t) 0 0 0 0 0

k5,0(t) 0 0 0 0 0 0
k6,0(t) 0 0 0 0 0 0
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Two level rejuvenation model: Kernel matrix

where the non-zero elements of KKK (t) could be derived as follows

k0,1(t) = F1(t), k1,2(t) = F2(t),

k2,3(t) =
∫ t
0 (1− F3(t))dFI(t), k2,6(t) =

∫ t
0 (1− FI(t))dF3(t),

k3,4(t) =
∫ t
0 (1− FD(t))dFd (t), k3,5(t) =

∫ t
0 (1− Fd (t))dFD(t),

k4,1(t) = FP(t), k5,0(t) = FR(t), k6,0(t) = FB(t),

We can take the limit as t →∞ and compare with the previous example.
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Transient analysis of the UPS model

To carry out the transient analysis,
first we develop the kernel matrix

KKK(t) =
[ 0 kUB(t) 0

kBU(t) 0 kBD(t)
kDU(t) 0 0)

]
U

B D

EXP (λ) EXP (µ)

EXP (µ)

u(t− L)

kUB(t) = P{power supply fails before or at time t}
kBU(t) = P{repair of power supply completed before or at time t and t < L}
kBD(t) = P{repair of power supply not completed at time t and t ≥ L}
kDU(t) = P{power supply is repaired before or at time t}

K. Trivedi & A. Bobbio Chapter 14 - Semi-Markov and Markov Regenerative Models Jan 2017 67 / 87



An introduction Steady state solution SMP with Absorbing States Transient solution Markov Regenerative Process

Transient analysis of the UPS model

From the above definitions, we can determine the entries in the kernel
matrix both in the time domain and in the LST domain:

kUB(t) = 1− e−λt , k∼UB(s) = λ

s + λ

kBU(t) =
{

1− e−µt , t < L
1− e−µL , t ≥ L , k∼BU(s) = (1− e−(s+µ)L)

(
µ

s + µ

)
kBD(t) =

{
0 , t < L
e−µL , t ≥ L , k∼BD(s) = e−(s+µ)L

kDU(t) = 1− e−µt , k∼DU(s) = µ

s + µ
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Transient analysis of the UPS model

Further,

Eii (t) = 1− Hi (t) = 1−
∑

j
kij(t) ; i , j = U,B,D

Hence, the individual entries for the diagonal matrix EEE (t) are, in the time
domain and in LST domain:

EUU(t) = e−λt , E∼UU(s) = s
s + λ

EBB(t) =
{

e−µt , t < L
0 , t ≥ L , E∼BB(s) = 1− e−(s+µ)L

s + µ

EDD(t) = e−µt , E∼DD(s) = s
s + µ

Assuming as initial probability πU(0) = 1, the availability can be
expressed as A(t) = 1− πD(t) = 1− VUD(t).
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Transient analysis of the UPS model

Inverting VVV∼(s) to get VVV (t) is a difficult problem that usually precludes
closed-form solutions. In this case a closed-form solution has been
derived:

A(t) = 1− πD(t)

= 1− λ

λ+ µ

[
e−µL − e−(λ+µ)t+λL

]
u(t − L) (3)

The steady state availability A can be determined either by taking the
limit of Equation (3) as t →∞ or by simply considering that

VVV (∞) = lim
t→∞

VVV (t) = lim
s→0

VVV∼(s)

and determining A directly from VVV∼(s) without the inverse Laplace
transform:

A = 1− λ

λ+ µ
e−µL
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Transient analysis of the UPS model

Assuming as numerical values L = 48 h, λ = 1/480 h−1 and
µ = 1/24 h−1, the availability A(t) is plotted as a function of time in the
Figure.
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Markov Regenerative Process

1 Semi Markov Processes: An introduction

2 Steady state solution

3 SMP with Absorbing States

4 Transient solution

5 Markov Regenerative Process
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Markov Regenerative Processes (MRGP): An introduction

Consider a system with two com-
ponents each with the time to fail-
ure distribution EXP(λ) that share
a single repair-person whose repair
time follows a general distribution
G(t).

0 1 2

EXP(2λ) EXP(λ)

G(t) G(t)

In a realistic model, the repair continues until completion even if a
second failure occurs.

In this case, the instant of entrance in State 2 is not a regeneration point
for the process, since a general distribution is active.

In fact, the systems enters State 2 only if a failure occurs in state 1
before repair is completed, and thus repair continues and must be
completed with the same distribution after the entrance in state 2.

In this model, the instants of entrance in states 0 and 1 are regeneration
points for the process, but not the instants of entrance in state 2.
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MRGP: An introduction

A Markov regenerative process is a generalization of many stochastic
processes.

In a CTMC (either Homogeneous or non Homogeneous) any time
epoch t satisfies the Markov property;

In a NHCTMC transition rates are time dependent but share the
same global clock;

in a SMP the Markov property is satisfied at all the time instances
at which the process undergoes a state transition;

in a MRGP the Markov property holds only when the process enters
a subset of specific states called Regeneration states.
In a MRGP the Markov property is satisfied in a sequence of
embedded time points (called Regeneration Time Point - RTP).
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MRGP: An introduction

More formally, for a MRGP {Z (t), t ≥ 0} there are time instances
T0, T1, ...,Tn, ... such that the states of the process at those time points
(Y0, Y1, ...,Yn, ..., respectively) satisfy the Markov property,
(∀ i0, i1, ..., in ∈ Ω)

P{Yn = in | Yn−1 = in−1, ...,Y1 = i1,Y0 = i0} = P{Yn = in | Yn−1 = in−1}.

Therefore it does not matter what states the process {Z (t), t ≥ 0} has
visited until reaching Yn at time Tn.

The state Z (Tn) is the only needed information for the future
development of Z (Tn + t), t ≥ 0.
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MRGP: An introduction

The embedded time points {Tn, n ≥ 0} are the regeneration time
points (RTP): the process behaves in the same way each time it passes
in a regeneration time point.

P{Z (Tn + t), t ≥ 0 | Z (Tn) = in}=P{Z (t), t ≥ 0 | Z (0) = in}

The evolution of the process between two consecutive RTPs is called the
subordinated process.
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Transient and steady-state analysis of a MRGP

The two matrices that must be defined for the transient analysis of a
MRGP are commonly referred to as the global kernel and local kernel.

The global kernel is a matrix KKK (t) = [Kij(t)] that describes the
occurrence of the next RTP:

Kij(t) = P {Y1 = j , T1 ≤ t |Y0 = i}

where Y1 is the right continuous state hit by Z (t) at the next RTP.

The local kernel describes the behaviour of the system inside a
subordinated process.

The local kernel is a matrix EEE (t) = [Eij(t)] that gives the state transition
probabilities in a regeneration interval, before the next RTP occurs:

Eij(t) = P {Z (t) = j , T1 > t | Y0 = i}
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The transition probability matrix of a MRGP

Let VVV (t) = [Vij(t)] define the transition probability matrix over (0, t]:

Vij(t) = P{Z (t) = j | Z (0) = Y0 = i} i , j ∈ Ω

Based on the global and the local kernels the transient analysis can be
carried out in the time domain by solving the following generalized
Markov renewal equation:

Vij(t) = Eij(t) +
∑

Ω

∫ t

0
d Kik(y) Vkj(t − y)

In matrix form:

VVV (t) = EEE (t) + KKK ∗VVV (t)

where ∗ is the convolution integral symbol.
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The transition probability matrix of a MRGP

In the LST domain:

VVV∼(s) = [III − KKK∼(s)]−1 EEE∼(s) (4)

where the superscript ∼ indicates the Laplace-Stieltjes transform (LST)
and s the complex transform variable of t

(remainder: F∼(s) =
∫∞
0 e−stdF (t)).

In order to use the above equations, we need to specify KKK (t) = [Kij(t)]
and EEE (t) = [Eij(t)] matrices and their LST.

A time domain solution for VVV (t) can be obtained by numerically
integrating the convolution equation.

Alternatively, starting from the LST equation, a combination of symbolic
and numeric computation is needed to obtain measures in the time
domain.
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Steady-state analysis of a MRGP

For the purpose of the steady-state analysis of a MRGP, the following
two matrices ααα = [αij ] and φφφ = [φij ] should be evaluated.

The two matrices are defined as:

αij =
∫ ∞

t=0
Eij(t) dt = lim

s→0

1
s E∼ij (s)

φij = lim
t→∞

Kij(t) = lim
s→0

K∼ij (s)

αij is the expected time that the subordinated process starting from state
i spends in state j .

Matrix φφφ = [φij ] is the one-step transition probability matrix of the
DTMC embedded at the RTPs and hence φij gives the probability that
the subordinated process is followed by a regeneration interval starting
from state j .

We assume, here, that all the subordinated processes have a finite mean
sojourn time, so that the above defined measures exist and are finite.
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Steady-state analysis of a MRGP

Once matrices ααα = [αij ] and φφφ = [φij ] have been generated from the
model definition, the steady-state analysis of a MRGP requires the
following three steps:

Step 1: Compute:

αi =
∑
j∈Ω

αij

αi is the expected duration of the subordinated process starting from
state i , before the next RTP.

Step 2: Evaluate the state probability vector ννν = [νi ], whose
elements are the unique solution of:

ννν = νννφφφ ;
∑

Ω
νi = 1

ννν is the stationary state probability vector of the DTMC embedded
at the RTPs.
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Steady-state analysis of a MRGP

Step 3: The steady-state probabilities of the MRGP are given by:

πj = lim
t→∞

P {Z (t) = j} =

∑
k∈Ω

νk αkj∑
k∈Ω

νk αk
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Example: The M/D/1/2/2 Queue

The M/D/1/2/2 queueing model represents two customers in the system
each of which submits a job at exponentially distributed interval of rate
λ, and one server with deterministic service times of duration d .

The size of the queues for arriving jobs is two.

0 1 2

EXP(2λ) EXP(λ)

u(t−d) u(t−d)
The model of the figure fits also the 2-component parallel system with
shared repair when the repair transitions are assumed deterministic with
service time d .
Hoon Choi and V.G. Kulkarni and K. Trivedi, "Transient analysis of deterministic and
stochastic Petri nets," Proc. 14-th Int. Conf. Application and Theory of Petri Nets,
LNCS-691, 1993, pp. 166-185
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Example: The M/D/1/2/2 Queue

In State 0 both costumers are
thinking and the arrival rate of a
job to the queue is 2λ.

0 1 2

EXP(2λ) EXP(λ)

u(t−d) u(t−d)

In State 1 two activities are in competition: the arrival of a second job at
rate λ and the service of the job in the queue with a deterministic time
d .

In State 2 two jobs are in the queue and the only action is the completion
of one of them with a deterministic time d .

States 0 and 1 are regeneration states.
We want to compute the state probability vector πππ(t) = [πj(t)],
(j = 0, 1, 2) at time t assuming the system starts from state 0 with
probability 1, so that πj(t) = V0j(t).
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Example: The M/D/1/2/2 Queue

We derive the global kernel KKK (t) = [Kij(t)] (i , j = 0, 1, 2) of this model
row by row.

K00(t) = 0 ; K01(t) = 1− e−2λt ; K02(t) = 0

K10(t) =
{

0 t < d
e−λd t ≥ d ; K11(t) =

{
0 t < d
1−e−λd t ≥ d ; K12(t) = 0

K20(t) = 0 ; K21(t) =
{

0 t < d
1 t ≥ d ; K22(t) = 0
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Example: The M/D/1/2/2 Queue

Then we derive the local kernel EEE (t) = [Eij(t)] (i , j = 0, 1, 2) row by row,
as:

E00(t) = e−2λt ; E01(t) = 0 ; E02(t) = 0

E10(t) = 0 ; E11(t) =
{

e−λt t < d
0 t ≥ d ; E12(t) =

{
1−e−λt t < d
0 t ≥ d

E20(t) = 0 ; E21(t) = 0 ; E22(t) =
{

1 t < d
0 t ≥ d

Solution is obtained by deriving the LST’s of KKK (t) and EEE (t), replacing
the obtained expressions in the equation for VVV∼(s) and then by
numerically inverting the LST.
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Example: The M/D/1/2/2 Queue

For the numerical solution of the above model and further readings see:
H. Choi, V. Kulkarni, and K. Trivedi, “Transient analysis of deterministic and
stochastic petri nets,” in Application and Theory of Petri Nets 1993, ser. Lecture
Notes in Computer Science, M. Ajmone Marsan, Ed., vol. 691. Springer, 1993, pp.
166–185.
A. Bobbio and M. Telek, “Computational restrictions for SPN with generally
distributed transition times,” in First European Dependable Computing Conference
(EDCC-1), Lecture Notes in Computer Sciencee - LNCS 852, D. H. K. Echtle and
D. Powell, Eds. Springer Verlag, 1994, pp. 131–148.

H. Choi, V. Kulkarni, and K. Trivedi, “Markov regenerative stochastic Petri nets,”
Performance Evaluation, vol. 20, pp. 337–357, 1994.

R. German, D. Logothetis, and K. Trivedi, “Transient analysis of Markov Regenerative
Stochastic Petri Nets: a comparison of approaches,” in 6-th International Conference
on Petri Nets and Performance Models - PNPM95. IEEE Computer Society, 1995,
pp. 103–112.

A. Bobbio, A. Puliafito, and M. Telek, “A modeling framework to implement
preemption policies in non-Markovian SPN,” IEEE Transactions Software Engineering,
vol. 26, pp. 36–54, 2000.
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