
 
 

Appendix 5W.1 
Left and Right Inverses in Nonsquare Input-Output Systems1 

 
A5W.1.1 Introduction 
  

A number of “generalized” inverses have been defined for rectangular matrices. 
Among the most common are left and right inverses. We concentrate on these in this 
Appendix. 

Given , where m > n, a left inverse for A can be found as long as the rank of 

A is n [denoted 
( )m n×
A

( ) nρ =A ]. (This is the largest possible rank for
( )m n×
A  when m > n.) This 

inverse is developed as follows: if A is premultiplied by ′A , the resulting matrix ′A A  is 
square (of order n), and it can be shown that ( ) nρ ′ =A A  and hence  is nonsingular. 
Then 

′A A

1( )−′ ′ =A A A A I  

and  is said to be a left inverse of A, from the defining property of an 
inverse—it generates an identity matrix when multiplying A (in this case, on the left); 

1( )−′A A A′

 1 ( )L
− −1′ ′=A A A A  (A5W.1.1) 

 In a similar fashion, if m < n, then a right inverse can be found for A, now provided that 
( ) mρ =A . (This is the maximum possible rank for 

(m n)×
A  when m < n.) In this case ′AA  is 

square and of order m [and also ( ) mρ ′ =AA ] so  
1( )−′ ′ =AA AA I  

and the right-inverse of A is   

 1 ( )R
1− −′ ′=A A AA  (A5W.1.2) 

We investigate how these inverses for nonsquare matrices might appear to have appeal 
for rectangular input-output systems. 

 
A5W.1.2 More Commodities than Industries (m > n) 
 
Numerical Illustration 
 

 We reproduce the illustrative data from section 5.6 for m = 3 and n = 2. We will 
use these figures in what follows. 

 

                                                 
   1 This appendix contains a good deal of algebraic detail; it will be of interest primarily to readers 

who are curious about the concepts of “left” and “right” inverses and why they do not offer much help for 
rectangular input-output models. 
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Table A5W.1-1  A Three-Commodity, Two-Industry Example 
 

1 2 3 1 2
1 18 12 70
2 20 16 40
3 2 6 7

e q
1 90 10 8 108
2 10 66 7 83

x
68 49

100 76 15 108 83

Total 
Output

Commodities

U

Commodities Industries Final 
Demand

Industries

 V

Value Added 117
v'

Total Inputs
q' x'

100
76
15

 
 

In section 5.6 we found that 

.1667 .1446 .8333 .1205
.9 .1316 .5333

.1852 .1928 ,  .0926 .7952  and 
.1 .8684 .4667

.0185 .0723 .0741 .0843

⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥= = = ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

B C D  

Commodity Technology 
 

 Approach I. We saw in section 5.5 that commodity technology generates the need 
for  in both commodity-by-commodity and industry-by-industry direct requirements 
matrices— , respectively. This need for 

1−C
1

( ) ( )
 and C C

c c i i

−

× ×
=A BC A C 1−= B 1−C  goes back to the 

operation of transforming (5.18) [ =Cx q ] into (5.19) [ ] and then substituting 
into the right-hand side of (5.13) [

1−=x C q
= + eq Bx ] to replace x with a function of q. We 

explore this transformation in the rectangular case when m > n. 
 This would seem to be exactly the sort of situation for which a left inverse for C 

would be suited. This inverse can be defined, as in (A5W.1.1), provided ( ) nρ =C . Here 
( ) 2 nρ = =C , and  

1 1
L L
− −= ⇒ = ⇒ =Cx q C Cx C q x C q1

L
−

1− ′C

 

Thus  serves as a matrix for transformation of q into x, as required in 
(5.19). For this illustration, 

1 ( )L
− ′=C C C

1 1.2145 .1922 .0771
.1506 1.2690 .1077L

− −⎡ ⎤
= ⎢ ⎥−⎣ ⎦

C  

and the reader can easily check that  
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1

100
108 1.2145 .1922 .0771

76
83 .1506 1.2690 .1077

15
L
−

⎡ ⎤
−⎡ ⎤ ⎡ ⎤ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦

x C q  

as required. 
 Does this “solve” the problem of finding an appropriate 1−C  for the m > n case? 

Unfortunately, no. This is because there are infinitely many other matrices that could be 

found to premultiply  to transform it into 
100
76
15

⎡ ⎤
⎢= ⎢
⎢ ⎥⎣ ⎦

q ⎥
⎥

108
83

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

x

2 3

. Here’s why. We know 

from the dimensions of x and q that we must have a ×  matrix 11 12 13

21 22 23

m m m
m m m
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

M

1

 

for which . (When C is square and nonsingular, =Mq x −=M C .)  
For this example, this means finding the six elements  that satisfy ijm

11 12 13

21 22 23

100
108

76
83

15

m m m
m m m

⎡ ⎤
⎡ ⎤ ⎡ ⎤⎢ ⎥ =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦

 

Written out explicitly,  

  (A5W.1.3) 11 12 13 21 22 23

11 12 13 21 22 23

100 76 15    0   0  0 108
   0   0  0 100 76 15  83

m m m m m m
m m m m m m

+ + + + + =
+ + + + + =

With 

11

12

13

21

22

23

100 76 15 0 0 0
 and 

0 0 0 100 76 15

m
m
m
m
m
m

⎡ ⎤
⎢ ⎥
⎢ ⎥

′ ⎢ ⎥⎡ ⎤⎡ ⎤
= = = ⎢ ⎥⎢ ⎥⎢ ⎥ ′⎣ ⎦ ⎢ ⎥⎣ ⎦

⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

q 0
Q m0 q , (A5W.1.3) 

is: 

 =Qm x  (A5W.1.4) 

This is a set of two linear equations with six unknowns. Such systems are 
“underdetermined” (there are too many unknowns relative to the number of equations). If 
the equations are consistent (not contradictory, so that a solution can be found), they have 
an infinite number of possible solutions. It is easy to see that these equations are 
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consistent.2 For example, letting 11 108 /100 andm = 22 83 / 76m =  (and all other = 0) 
gives one possible solution. This means that  

ijm

1.08 0 0
(1)

0 1.0921 0
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

M  

accomplishes the task of transforming q into x and therefore it also performs the role of 
. This is seen to be vastly different from 1−C 1

L
−C , but its elements are an equally valid 

“solution” to (A5W.1.3) or (A5W.1.4).3  
 In fact, another solution for an underdetermined linear system like that in 

(A5W.1.3) can also be found using the right inverse of 
(2 6)×
Q  as defined in (A5W.1.2), 

provided it exists [that is, provided that ( ) 2ρ =Q ]. The logic is this: Given a right 
inverse, so that , then from 1

R
− =QQ I (A5W.1.4) 

1 1
R R
− −= ⇒ = ⇒ =Qm x Qm QQ x m Q x  

Using this approach, we find  

.6750 .5130 .1012
(2)

.5187 .3942 .0778
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

M  

and this is seen to be entirely different from either 1
L
−C  or M(1).4  

Each of these proxies for 1−C
A B

 can be combined with B to generate an associated 
direct requirements matrix— . In general, the commodity-by-

commodity matrices, , produced in this way will all be different, as will the industry-

by-industry matrices, . Here are three examples of the 

1

( ) ( )
 or C C

c c i i

−

× ×
= =C A C 1− B

( )
C

c c×
A

( )
C

i i×
A

( )
C

c c×
A  that result from using 1

L
−C , 

M(1) or M(2), respectively: 

                                                 
2 The “formal” test of consistency for a set of linear equations like those in (A5W.1.4) is to 

examine ( )ρ Q and (ρ Q x) , where the latter matrix is Q augmented with x as an additional column. If 
the ranks are equal, the system in consistent. 

3 M(1) is an example of a “basic” solution to the system in (A5W.1.3). Such solutions are found in 
this case by setting four variables equal to zero and solving the remaining set of two equations in two 
unknowns (provided that the coefficients matrix of the reduced system is nonsingular). In this case there are 
up to = 15 possible basic solutions but six of those have singular coefficients matrices. Solutions can 
also be found when the four selected variables are set equal to any four constants, not just zero.  

6

4C

4 Recall that for a square and nonsingular C, all column sums of both C and  were 1. This is 
not true for 

1−C
1

L

−C , M(1) or M(2). However, we could add three linear equations to (A5W.1.3), requiring that 
each column sum in M be 1. This will generate a consistent system in which the ranks of the coefficient 
and augmented matrix are four (one equation is redundant). Removing the last equation (for example) gives 
a consistent system whose coefficients matrix has maximum rank and so again a right inverse could be 
used. This will lead to another entirely different M. 
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1

.1806 .1514 .0284

.1959 .2090 .0350

.0116 .0882 .0092
L
−

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

BC   
.1800 .1579 0

(1) .2000 .2105 0
.0200 .0789 0

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

BM

.1425 .0281

.1710 .0337

.0380 .0075

 

.1875
(2) .2250

.0500

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

BM  

Clearly, these are very different “representations” of the economy whose input-output 
accounts are given in Table A5W.2-1. [Also, the column of zeros in makes little 
sense.] 

(1)BM

Finally, each  and  has a pair of associated total 

requirements matrices— ( )

1

( )
C

c c

−

×
=A BC 1

( )
C

i i

−

×
=A C

1

B

1− −−I BC  or 1( 1 1)− − −BC−C I  in the first case (Table 5.4) and 
or in the second case (Table 5.5). And any one of these 

matrices will of course be affected by the choice of the stand-in for 

1( )− −−I C B 1 1 1( )− −C B−C I
1−C

1
. Here are the 

three   examples that result from using 1−− =
( )

( )C
c c×

I A 1 1( )− −−I BC L
−C , M(1) and  M(2), 

respectively: 

1 1

1.2810 .2503 .0456
( ) .3192 1.3316 .0563

.0434 .1214 1.0148
L
− −

⎡ ⎤
⎢ ⎥− = ⎢ ⎥
⎢ ⎥⎣ ⎦

I BC    1

1.2821 .2564 0
[ (1)] .3248 1.3316 0

.0513 .1103 1

−

⎡ ⎤
⎢ ⎥− = ⎢ ⎥
⎢ ⎥⎣ ⎦

I BM  

1

1.2957 .2247 .0443
[ (2)] .3549 1.2697 .0532

.0789 .0599 1.0118

−

⎡ ⎤
⎢ ⎥− = ⎢ ⎥
⎢ ⎥⎣ ⎦

I BM  

As would be expected, the variations in direct requirements matrices are transmitted to 
total requirements matrices, and there is no way of choosing a “best” solution from 
among these or other alternatives. 

 Approach II. As an alternative indication of the kind of indeterminacy that haunts 
rectangular input-output systems with commodity technology, we look briefly at a 
different approach that generates even more possible substitutes for 1−C . We go back 
to  [(5.18)] and ask whether there are other matrices, call them T, that could serve 
(in addition to ) as a left inverse to C. If so, then (5.18) could be transformed in the 
same way as with , namely: 

=Cx q
1

L
−C

1
L
−C

= ⇒ = ⇒ =Cx q TCx Tq x Tq  

(When C is square and nonsingular, 1−=T C .) This means that we are looking for a 2 3×  

matrix  that is defined by the relationship11 12 13

21 22 23

t t t
t t t
⎡

= ⎢
⎣ ⎦

T
⎤
⎥ =TC I . (This is exactly the 
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role played by ; the point here is to show that there are other matrices that accomplish 
exactly the same thing). Explicitly, 

1
L
−C

11

11

11

11

0
0t +

11 12 13

21 22 23

.8333 .1205
1 0

.0926 .7952
0 1

.0741 .0843

t t t
t t t

⎡ ⎤
⎡ ⎤ ⎡ ⎤⎢ ⎥= =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦

TC I=

=
=
=
=

 

or, written out completely, 

            (A5W.1.5) 

12 13 21 22 23

12 13 21 22 23

12 13 21 22 23

.8333 .0926 .0741       0        0       0 1

.1205 .7952 .0843       0        0       0 0
             0       0 .8333 .0926 .0741 0
         

t t t t t t
t t t t t t
t t t t t t

+ + + + +
+ + + + +
+ + + + +

12 13 21 22 23    0       0 .1205 .7952 .0843 1t t t t t+ + + +

Again, we face an underdetermined system [fewer equations (four) than unknowns (six)], 
the equations can be shown to be consistent, and there are multiple solutions.  

 The conclusion is that in the case of m > n under commodity technology, there are 
as many potential direct requirements matrices as there are solutions to an 
underdetermined linear equation system. And there is more than one relevant set of 
equations. That is, there are (infinitely) many possible candidates, and there is no way of 
choosing a “best” solution—even if ridiculous options, such as those with negative 
elements or zero columns, are discarded—so commodity technology models are 
impossible when m > n. 
 
Industry Technology 
 

 We saw in section 5.6.2 that the m > n case presented no problems in deriving 
unambiguous direct requirements matrices, 

( )
I

c c×
A  and 

( )
I

i i×
A . The only instance where 1−D  is 

used is in the total requirements matrix that is of least interest, namely the commodity-
by-industry matrix  (Table 5.5). 1(− −D I DB 1)−

 The trouble arises in trying to move from =Dq x
.5333
.4667

 [in (5.16)] to  [in 

(5.17)]. From Table 5.9, we know

1−=q D x
.9 .1316
.1 .8684
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

D , and the problem is to find a 

transformation from to 
108
83

⎡ ⎤
= ⎢⎣

x  ⎥⎦

100
76
15

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

q . Since D is a 2 3×  matrix, we cannot use a 

left inverse. We need to find a 3 2×  matrix, R, for which =q Rx . (If D were square and 
nonsingular, R would be .) The requirement is 1−D

11 12

21 22

31 32

100
108

76
83

15

r r
r r
r r

⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥=⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦

⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦
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So we are faced with three linear equations containing six unknowns: 

11 12 21 22 31 32

11 12 21 22 31 32

11 12 21 22 31 32

108 83      0   0      0   0 100
   0   0  108  83     0   0  76
   0   0      0   0  108 83  15 

r r r r r r
r r r r r r
r r r r r r

+ + + + + =
+ + + + + =
+ + + + + =

 

The issues here are exactly the same as we have already explored—multiple 
solutions to an underdetermined system of linear equations with no valid criteria for 
preferring any one of the possible solutions.5  Hence with an m > n rectangular system, a 
satisfactory commodity-by-industry total requirements matrix, 1( 1)− −−D I DB , cannot be 
found. As already noted, this is the least interesting or useful of the total requirements 
matrices under industry technology, so it is not a matter of great concern. 
 
A5W.1.3 Fewer Commodities than Industries (m < n) 
 
Numerical Illustration 
 

 In some cases, real world input-output accounts might be presented with more 
industries than commodities [e.g., a “scrap” or a “second-hand/used goods” row (an 
industry) in a make matrix, where the total amount of scrap or second-hand goods in the 
economy is counted, without an accompanying commodity]. In general, however, the 
accounts will be aggregated in such a way that  before using the data in an input-
output model. However, some writers have considered the implications of a model with m 
< n, and we do that briefly here, primarily for completeness. Table A5W.1-2 contains 
data that we will use in what follows. 

m n≥

 
Table A5W.1-2  A Two-Commodity, Three-Industry Example 

 

1 2 1 2 3
1 18 12 2 70 102
2 20 16 6 40 82

e q
1 90 10 100
2 8 60 68
3 4 12 16

x
62 40 8

102 82 100 68 16

Industries

 V

Value Added 110v'

Total Inputs q' x'

Total 
Output

Commodities

U

Commodities Industries Final 
Demand

 
 

                                                 
5 Again, one could also include the requirement that columns in R sum to 1. That adds two more 

linear equations, but the system is still underdetermined with an infinite number of solutions. 
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 As was true in the m > n case, there is no problem with respect to dimensions of 
the usual matrices in the commodity-industry model. Here these will be: 

1 1

(2 3) (3 3) (3 3) (3 2)(2 3) (2 3) (2 3) (3 2) (2 2)
ˆˆ ˆ,  ,  1− − −

× × × ×× × × × ×
′= = =B U x C V x D V q  

For this example, it is easily found that 

.18 .1765 .125

.20 .2353 .375
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

B    
.9 .1176 .25
.1 .8824 .75
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

C     
.8824 .1220
.0784 .7317
.0392 .1463

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

D  

Commodity Technology 
 

 Approach I. Again, the problem emerges in trying to convert into 

. A left inverse for 

(3 1)(2 3) (2 1)×× ×
=C x q

1

(3 1) (3 2) (2 1)

−

× × ×
=x C q

( )m n×
C  is impossible since m < n. Letting , 

we want to find the elements in M so that 

11

21

31

m=M
12

22

32

m m
m

m m

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

11 12

21 22

31 32

100
102

68
82

16

m m
m m
m m

⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥= = = ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

x Mq  

which means 

11 12 21 22 31 32

11 12 21 22 31 32

11 12 21 22 31 32

102 82    0   0     0  0 100
    0  0 102 82     0  0  68
    0  0    0   0 102 82  16

m m m m m m
m m m m m m
m m m m m m

+ + + + + =
+ + + + + =
+ + + + + =

 

The issues here are exactly the same as what we faced in looking for in the m 
> n case immediately above. We have an underdetermined system of three linear 
equations and six unknowns, meaning that basic solutions and infinitely many others can 
be found. For example, by inspection you can see that m11 = 100/102, m22 = 68/82 and 
m31 = 16/102 is one solution that satisfies the equations, generating 

 and 

1−D

( )

.1961 .1463

.2549 .1951C
c c×

⎡ ⎤
= = ⎢ ⎥

⎣ ⎦
A BM 1 1.3200 .2400

( )
.4180 1.3184

− ⎡ ⎤
− = ⎢ ⎥

⎣ ⎦
I BM . Again, requirements 

that either or both column sums in M be 1 can also be added but the system remains 
underdetermined. 

 Consequently, as in the m > n case, there are no unique direct requirements 
matrices with the commodity technology assumption (either commodity-by-commodity 
or industry-by-industry), and thus there are also no unique total requirements matrices. 
And there is no way to choose from among the alternatives. 
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   Approach II. As with  in the m > n case, we could also look for a matrix T 
such that . As can easily be established, and in contrast to the m > n case, 

this generates nine linear equations and six unknowns (the elements in T). However, the 
system is inconsistent (the rank of the coefficients matrix is six and the rank of the 
augmented matrix is seven) and there are no solutions. 

1−C

(3 2) (3 3)(2 3)× ××
=T C I

 Approach III. As a matter primarily of historical curiosity, we note that some 
writers (e.g., Cressy, 1976) have tried to salvage the commodity technology model in the 
m < n case, using a right inverse to C. The argument goes like this. Start with the 
fundamental commodity technology assumption,

( ) ( )( )
Cc i c ic c× ××

=B A C . For our illustration with m 

= 2 and n = 3, if ( ) 2ρ =C , we can find 1
R
−C  and multiply through on the right, so that 

1 1

( ) ( ) ( )
C R C R

c c c c c c

− −
C

× × ×
= ⇒ = =B A C BC A CC A  

Using C from Table A5W.2-2, we find ( ) 2ρ =C , so  

1 1

1.1195 .2419
( ) .1687 .7007

.0492 .5412
R
− −

−⎡ ⎤
⎢ ⎥′ ′= = −⎢ ⎥
⎢ ⎥⎣ ⎦

C C CC  

and  

1

( )

.1779 .1478

.2027 .3194C R
c c

−

×

⎡ ⎤
= = ⎢ ⎥

⎣ ⎦
A BC  and 1 1.2852 .2790

( )
.3827 1.5525R

− ⎡ ⎤
− = ⎢ ⎥

⎣ ⎦
I BC  

 At first glance, this seems to be a potentially useful approach, but in fact it is a 

failure. If we put  back into the defining equation—

—we find that it doesn’t satisfy the equation at all. 

1

(2 2)

.1779 .1478

.2027 .3194C R
−

×

⎡
= = ⎢

⎣ ⎦
A BC ⎤

⎥

⎤
⎥
⎦

(2 3) (2 3)(2 2)
C× ××

=B A C

.18 .1765 .125 .1749 .1513 .1553

.20 .2353 .375 .2143 .3057 .2902C
⎡ ⎤ ⎡

= ≠ =⎢ ⎥ ⎢
⎣ ⎦ ⎣

B A C  

 To simplify notation let the unknown matrix  be denoted by . 

Then the elements  must satisfy 

CA 11 12

21 22

q q
q q
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

Q

ijq
(2 3) (2 3)(2 2)× ××

=B Q C . This is the same as  

(3 2) (2 3) (3 2)(2 2) (2 2)
( )

× × ×× ×
′ ′ ′ ′= =B Q C C Q  

Using  for the first column of 1( )′Q ′Q  (the first row of Q) and 1( )′B  for the first column 
of  (the first row of B) and similarly for ′B 2( )′Q  and 2( )′B , we have [ ]1 2′ ′ ′ =C Q Q   

[ ]1 2′ ′B B or  
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1 1(3 2) (2 1) (3 1)
( ) ( )

× × ×

′ ′ ′=C Q B and 2 2(3 2) (2 1) (3 1)
( ) ( )

× × ×

′ ′ ′=C Q B  

Each of these is three linear equations in two unknowns;  and  in the first equation, 
 and  in the second.  

11q 12q

21q 22q
 It is sufficient to look closely at the first set only (exactly similar reasoning 
applies to the second set):  

11 12

11 12

11 12

      .9       .1  .18
.1176  .8824 .1765
    .25     .75  .125

q q
q q
q q

+ =
+ =
+ =

 

These equations are inconsistent, since ( ) 2ρ ′ =C  and ( )1( ) 3ρ ′ ′ =C B . At the same 
time, ( ) 2ρ ′ =C  and a left inverse can be found for ′C ,  

1 1 1.1195 .1687 .0492
( ) ( )

.2419 .7007 .5412L
− − −⎡ ⎤′ ′= = ⎢ ⎥−⎣ ⎦

C CC C  

and so  
1 1

1 1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( )L L
− −′ ′ ′ ′ ′ ′ ′ ′= ⇒ =C C Q C B Q C B1

L
−  

This yields 1
1 1

.1779
( ) ( ) ( )

.1478L
− ⎡ ⎤′ ′ ′= = ⎢ ⎥

⎣ ⎦
Q C B . Similarly,  1

2 2

.2027
( ) ( ) ( )

.3194L
− ⎡ ⎤′ ′ ′= = ⎢ ⎥

⎣ ⎦
Q C B

 What kinds of “solutions” to inconsistent equations are these? It turns out that for 
an inconsistent linear equation system with more equations than unknowns, a left inverse 
is known to provide a “solution” that does not satisfy the equations exactly (it can’t; they 
are inconsistent) but it is “least wrong” in a specific sense.6 Nonetheless, from the point 
of view of dealing with the problem of finding an acceptable 

( )
C

c c×
A  for the m < n case, it is 

of no use. 

 We see that [ ]1 2

.1779 .1478

.2027 .3194
⎡ ⎤′′ ′= = ⎢ ⎥
⎣ ⎦

Q Q Q  is precisely 
( )

C
c c×
A that was obtained 

by using  on 1
R
−C

( )
C

c c×
=B A C . Here’s why. Starting with ′ ′ ′=C Q B  and given ,1( )L

−′C 7 

1 1 1 1 1( ) ( ) ( ) [( ) ] [( ) ]L L L L L
− − − − −′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= ⇒ = ⇒ = ⇒ = = =C Q B C C Q C B Q C B Q C B B C BC 1

R
−

                                                

 

 
6 Specifically, the sum of the squares of the (straight line) distances from the solution to each of 

the equations is minimum. For more detail, see, for example, Miller (2000, Chapter 2). 
7 The last step is a result of the matrix algebra fact that for an m n×  matrix A, where A is of full 

rank, it can be shown, using (A5W.1.1) and (A5W.1.2), that 1( ) 1( )L R

− −′ ′A=A  when m > n and 
1 1( ) ( )R L
− −′ ′=A A  when m < n. 
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RSo using  to find is equivalent to accepting an invalid “solution” to a set 

of inconsistent equations, and in dealing with the problem of finding an acceptable 

1
R
−C 1

( )
C

c c

−

×
=A BC

( )
C

c c×
A  

for the m < n case, neither  nor 1
L
−C 1

R
−C  is of any use. 

 
Industry Technology 
 

 As with the m > n case, there are no problems here. We can easily find that  

(2 3) (3 2)(2 2)

.1776 .1694

.2096 .2514I × ××

⎡ ⎤
= = ⎢ ⎥

⎣ ⎦
A B D  and 

(3 2) (2 3)(3 3)

.1832 .1844 .1560

.1605 .1860 .2842

.0363 .0414 .0598
I × ××

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

A D B  

When it comes to total requirements matrices, everything is fine with or 
 (Table 5.4) or with

1( )−−I BD
1( −−D I BD) ) 1( −−I DB  (Table 5.5).  

As is to be expected, the only problem is with 1( 1)− −−D I DB , because of . As 
usual, the issue arises with the transformation from 

1−D
=Dq x  [in (5.16)] to  [in 

(5.17)]. Here, however, we could find a left inverse for D [since m > n and 

1x
) 2

−=q D
(ρ =D ], 

but it is by no means the only acceptable matrix for transforming x into q. Following the 

usual procedure, we want a matrix 11 12

21 22

r r
r r

13

23

r
r

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

R  for which 

11 12 13

21 22 23

100
102

68
82

16

r r r
r r r

⎡ ⎤
⎡ ⎤⎡ ⎤ ⎢ ⎥= = = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦

q Rx  

This equation system is underdetermined (two linear equations and six unknowns), and 
there is no unique transformation from x to q that would correspond to the m = n case for 
which R = (as long as D is nonsingular). And so, again, we have no satisfactory total 
requirements matrix for this least interesting commodity-by-industry case. 

1−D

 
References for Appendix 5W.1 

 
Cressy, Robert C. 1976. “Commodity and Industry Technology:  Symbols and Assumptions,” 

Manchester School of Economics and Social Studies, 44, 112-131. 
Miller, Ronald E. 2000. Optimization: Foundations and Applications. New York: John Wiley and 

Sons.  
  
 


	A5W.1.1 Introduction
	Commodity Technology
	Industry Technology
	A5W.1.3 Fewer Commodities than Industries (m < n)
	Numerical Illustration
	Commodity Technology
	Industry Technology

