ERRATA

Glenn S. Smith, An Introduction to Classical Electromagnetic Radiation, Cambridge University Press, 1997.

Page	Line, Eq.,	Correction
	Fig., or Table	
ix	Section 6.2.1	"velolcity" should be "velocity"
35	Lines 18 & 19	Figure 18b should be Figure 1.18b
	in Sec. 1.3.1	
80	Eq. (1.150)	Replace one of the $1/\Delta y^2$ by $1/\Delta z^2$
121	Fig. P1.9	$\vec{p}_{sy}\hat{y}$ should be $p_{sy}\hat{y}$ in two places
146	4 th Eq. on Pg.	S_{0t} / S_{0i} should be S_0^t / S_0^i
169	Ref. [18]	Telegraphy should be Telegraphy and Telephony
201	Fig. 3.12b	Label on vertical axis, Im should be -Im
213	Eq. (3.93) &	The = sign after $dk_x dk_y$ should be replaced by \rightarrow
	Footnote 8	
219	Line 12	Change "variables" to "coordinates"
224	Fig. 3.24	Label on vertical axis, \vec{E}_r should be \vec{E}^r in two places
235	Eq. (3.133)	Upper limit on integration, $\pi/2$ should be 2π
241	Eq. (3.143)	On the right, change $p > 0$ to $\operatorname{Re}(p^2) > 0$
		This error occurs in the table of integrals, Ref. [22].
256	Eq. for $\vec{E}_y(\vec{r})$	$(r-z)\pi$ should be $(r-z)/\pi$
269	Eq. (4.12)	Under first square root, r'^2 should be r'^2
288	Eq. (4.52)	$D_A(\hat{k}_i, \hat{k}_i)$ should be , $D_A(\hat{k}'_i, \hat{k}_i)$ and the following statement
		should be added: in which $\hat{k}'_i = \vec{k}_{in} - \vec{k}_{it}$ with \vec{k}_{it} and \vec{k}_{in} the
		normal and tangential components of \hat{k}_i .
293,	Eq. (4.66),	Because $\vec{r} = r\hat{k}_i$, the term in the exponents should be
&	Eq. (4.67), &	replaced: $i\vec{k} \cdot \vec{r} - ik r$
314	Prob. 4.5b	$replaced. \ j\kappa_i \cdot r = j\kappa_0 r .$
307	Table 4.4	In first line, \hat{R} [should be $\hat{R} \times [$
334	Fig. 5.5b	Remove the black bar in front of the 0.4
349	Eq. (5.138)	Interchange the = and \approx signs

(November 19, 2013)

402	Eq. (6.115)	Remove – sign from right-hand side
425	4 th Eq. on pg.	$\sin^2[\cos\theta_c + \Delta\theta(t)]$ should be $\sin^2[\theta_c + \Delta\theta(t)]$
434	35 th Line	$(\beta > 1)$ should be $(\beta_n > 1)$
459	Eq. (7.30) Eq. (7.32)	In the integral on the left-hand side, $d\Omega$ should be $r^2 d\Omega$
460	Fig. 7.3	\hat{t} should be \vec{t}
465	21 st Line	Figure 7.3c should be Figure 7.4c
508	Eq. (7.140)	As written, the equation applies for real vectors \vec{p} and \vec{m} . The most general form is $\vec{S}_{c}^{sr}(\vec{r}) = \frac{k_{o}^{4}c}{32\pi^{2}\varepsilon_{o}r^{2}} \left\{ \left \hat{r} \times \vec{p} \right ^{2} + \frac{1}{c^{2}} \left \hat{r} \times \vec{m} \right ^{2} + \frac{2}{c} \operatorname{Re} \left[\hat{r} \cdot (\vec{p} \times \vec{m}^{*}) \right] \right\} \hat{r}$
525	Fig. 7.48b	I_t should be I^t
528	3 rd Line from bottom	\vec{E}_i should be \vec{E}_o^i
529	Eq. (7.205)	Third line, $\cos\gamma\sin\theta\cos\gamma$ should be $\cos\gamma\sin\theta\cos\theta$
530	10 th Lline from bottom	insert "per unit wavelength" after the word "shown"
535	Eq. (7.213)	Change = N to $\approx N$, in the last line of the Eq., and change the two sentences after the Eq. to read: In the last line, we have recognized that, due to the random nature of φ_n and φ_m , the double sum is as likely to be a positive number as a negative number. Thus, when we consider a large number of independent trials, the "average" or "expected value" for the double sum tends to 0
536	Footnote 40	In the last Eq., N_v should be N_V
539	Ref. [49]	<i>Complétes</i> should be <i>Complètes</i>
539	Ref. [51]	"Hulbert" should be "Hulburt"
598	4 th Line from bottom	h/a = 65.8 should be $h/a = 32.8$
606	Prob. 8.17	"to modeled" should be "to be modeled"
624	Table B.3	In the 6 th entry, $(\nabla \Psi) \times (\nabla \Psi)$ should be $(\nabla \Psi) \times (\nabla \Phi)$