Page	Location	It says	Replace by
9	Exercise 1.1	a world-line must be a cross	a world-line cannot be anywhere
		section, that is, it cannot be	
		anywhere	
11	Line 17	in the equivalence	in the equivalence class
12	Line 5	(a sticker, say)	(in a sticker, say)
84	Line 1 from	is compact if it is Hausdorff and if	if every covering
	bottom	every covering	
85	Line 1	A compact set is necessarily closed.	A compact subset of a Hausdorff
			space is necessarily closed
93	Eq. 4.14 (after	(∂ (f ∘ γ)\	$(\partial (f \circ \phi^{-1}))$
	the second	$\frac{\partial x^i}{\partial x^i}$	$\left(\frac{\partial x^{i}}{\partial x^{i}}\right)_{\phi(m)}$
	"equal" sign	+01	. Ψ(ρ)
104	Eq. 4.60	$\mathbf{L} = L^{iJ} \mathbf{e}_i \otimes \mathbf{E}_J.$	$\mathbf{L} = L_J^t \ \mathbf{e}_i \ \otimes \mathbf{E}^J.$
104	After Eq. 4.60	the matrix [L ^{ij}]	the matrix [Lt]
258	Eq. 9.64	Γ^i_{kj}	Γ^i_{jk} D Ψ
282	Eq. A.25	DΨ	DΨ
		ðt	<u>Dt</u>
282	Eq. A26	$\kappa_{\mathbf{a}} = \kappa_{1} \circ \lambda$	$\chi_{0} = \chi_{1} \circ \lambda$
284	Line 3 after Eq.	would become a material time	could be suggestively, if somewhat
	A34	derivative	inaccurately, denoted by
285	Eq. A41 (twice)	<u>∂g</u> dt ∂g dt	$\frac{\partial g}{\partial t}$ $\frac{\partial g}{\partial g}$
207		<u>dt</u>	$\overline{\partial t}$
285	Eq. A42	<u>ðg</u>	<u> </u>
		dt	∂ t