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1
Solutions to Exercises Chapter 1

Exercise 1.1

Okay, suppose the equation of motion for a falling body were actually

d3x
dt3 = −D. (1.1)

You would solve this in the normal way. Integrate once with respect to time to
get

d2x
dt2 = −Dt + a0,

where a0 is a constant of integration, the initial acceleration in this case. Then
integrate again to get

dx
dt

= −
1
2

Dt2 + a0t + v0,

where v0 is the initial velocity. A final integration gives

x = −
1
6

Dt3 +
1
2

a0t2 + v0t + x0.

(a) “Released from rest” means no initial acceleration or velocity in this
case. Then the unfortunate mass starts at height x0 above the ground and hits
the ground (x = 0) at a time given by

0 = −
1
6

Dt3 + x0,

or at time t = (6x0/D)1/3. By contrast, in actual gravity, the same reasoning
gives a time of fall t = (2x0/g)1/2, where g is the gravitational acceleration.
Thus the time of fall would have a different power-law scaling with distance
(cube root) in the weird, artificial world we propose than in the observed world.
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2 Solutions to Exercises Chapter 1

(b) The solution x(t) for our artificial equation of motion is a cubic poly-
nomial, you know that this can have the shape described. Here’s an example
where we posit a crazy world where the equation of motion is (1.1) and in
which D = 1 m/s3. A mass is launched from a height x0 = 56 m (about the
height of the Leaning Tower of Pisa) with initial velocity v0 = −10 m/s and
initial acceleration (although how would you even do this?) a0 = 5 m/s2. The
height of this mass as a function of time is shown in the figure. Under these
circumstances, the mass would fall for a little while, then rise before falling
again. If the world were really described by an equation of motion like (1.1),
you think someone would have noticed!

0 5 10 15
0

10

20

30

40

50

60

 

 

H
ei

gh
t (

m
)

Time (s)

Figure 1.1 Height of a mass launched from a great height, versus time, in an
unphysical world.

Exercise 1.2

“Obvious” is of course a subjective term, but the tension nevertheless does
vary during the pendulum’s swing. The tension is trying to hold the mass on its
circular path, against the forces of gravity and centrifugal force. Let’s consider
a special case, where the pendulum swings through a semicircular arc, where
its angle φ measured from the vertical goes from −90◦ to +90◦, where φ = 0◦

represents the mass at its lowest point of swing. φ is defined in Figure (2.1) of
the book.

When the pendulum is lowest, φ = 0, it is also moving the fastest. The
tension has to pull against not only the full weight of the mass, but also against
the centrifugal force mlφ̇2, where l is the pendulum’s length. Vice versa, when
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the pendulum swings to φ = 90◦ and comes to rest before starting its descent,
there is no centrifugal force for an object at rest; and moreover the tension does
not pull against gravity, which is perpendicular to the string at this point. Thus
the tension is maximal when φ = 0◦ and minimal (for this particular example)
when φ = ±90◦. The general formula for the tension is given as a formula in
Eqn. (2.6) of Chapter 2.

Exercise 1.3

The force as written is the force on mass 1 due to mass 2, F1,2 (this is worth
verifying!). In terms of the coordinates given, we have explicitly

F(r1, r2) = Gm1m2
r
r3 = F1,2 = −F2,1.

Then, given the prescription

R =
m1r1 + m2r2

m1 + m2
r = r2 − r1,

the equation of motion of the center of mass coordinate is

R̈ =
m1r̈1 + m2r̈2

m1 + m2

=
F1,2 + F2,1

m1 + m2
= 0.

Thus the center of mass coordinate does not care about the forces at all. Vice
versa, the equation of motion for the relative coordinate is

r̈ = r̈2 − r̈1

=
F2,1

m2
−

F1,2

m1

=

(
1

m1
+

1
m2

)
F2,1 =

m1 + m2

m1m2
F2,1.

So, defining the relative force F = F2,1 for notational convenience, the equation
of motion is

µr̈ = F,

where µ = m1m2/(m1 + m2) is the reduced mass.

Exercise 1.4

The minus sign on dx in Eqn. (1.5) is there because you are integrating from
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high up to down low, that is, the steps you take in height are negative. The
integral is then

tp =

∫ 0

h

−dx√
2g(h − x) + v2

0

=
1√
2g

∫ h

0
dx(h + v2

0/(2g) − x)−1/2

=
1√
2g

(−2)(h + v2
0/(2g) − x)1/2

∣∣∣∣h
0

= −
2√
2g


√

v2
0

2g
−

√
h +

v2
0

2g


= −
|v0|

g
+

√
2h
g

+
v2

0

g2 . (1.2)

If instead you compute the full solution, it looks like this:

x(t) = −
1
2

gt2 + v0t + h.

So when does the balloon hit the ground? When x(t) = 0, where t solves the
quadratic equation

t2 −
2v0

g
t −

2h
g

= 0.

Let’s assume the balloon was thrown with downward initial velocity, v0 =

−|v0|, so that we don’t have to mess around with finding the time to reach its
apex, then the time to fall from the apex to the ground. In this case the quadratic
equation gives the solutions

t = −
|v0|

g
±

√
v2

0

g2 +
2h
g
.

You can’t use the one with the minus sign, which would give t < 0, and the
balloon would hit the ground before you threw it. The positive sign gives the
same answer as (1.2).

Exercise 1.5

Conservation of energy for the spring says

E =
1
2

mẋ2 +
1
2

kx2.
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You can solve this for the velocity,

dx
dt

= ẋ =

√
2E
m
−

k
m

x2.

You integrate this easily, since it is a first order, separable equation:

t =

∫ t

0
dt′ =

∫ x

0
dx′

dx′√
2E/m − (k/m)x′2

=

√
m
k

∫ x

0

dx′√
2E/k − x′2

=

√
m
k

sin−1
(

x
√

2E/k

)
.

This has solved the problem inside-out. You don’t want t as a function of x, but
rather x as a function of t. This gives you

x(t) =

√
2E
k

sin

√ k
m

t

 .
You will recognize this as sinusoidal motion with angular frequency ω =
√

k/m.
Notice that we have here neglected a constant of integration, thereby assert-

ing that this is the particular solution to the motion where x = 0 when t = 0. A
nonzero constant of integration can make this more general.
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Exercise 2.1

I can’t pretend to know what language you’re using to solve these differential
equations of motion, but it seems likely that many students have access to
Good Old Mathematica. So, I’ll describe the numerical solutions using this.
For starters, let’s see how to get Mathematica to solve a simpler differential
equation, for the mass on a spring:

ẍ = −(k/m)x.

This requires the Mathematica function NDSolve, which means, “solve differ-
ential equations numerically.”

You would first define the values of the constants, let’s say
k=1;

m=1;

Then the differential equation is defined in Mathematica syntax as
x’’[t]==-(k/m)*x[t]

Note the square brackets enclosing the argument of the function. Note the use
of a double equal sign. The differential equation must also have initial condi-
tions, on both the initial position and the initial velocity. Let’s say we release
the mass from rest ẋ(0) = 0, from a position x(0) = 0.5 m. These conditions
would be written
x[0]==0.5,x’[0]==0

These are also written with double equal signs. the whole set of things speci-
fying the equation and initial conditions is then enclosed in curly brackets:
{x’’[t]==-(k/m)*x[t],x[0]==0.5,x’[0]==0}

For the numerical solution you need also to specify the range of the depen-
dent variable, time in this case. This is given as three items collected in curly

6
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brackets: the variable name, its initial value, and its final value. If we were
calculating the motion between zero and ten seconds, say, then we would have
{t,0,10}

The command NDSolve requires three arguments, separated by commas: the
differential equations and initial conditions; the dependent variable or variables
to be solved for; and the range of the independent variable. These arguments
are set inside of square brackets. The whole thing is set equal to some vari-
able, here called “springsolution,” that represents the solution. The relevant
command is
springsolution=NDSolve[{x’’[t]==-(k/m)*x[t],x[0]==0.5,x’[0]==0},x,{t,0,10}];

When you type this in, nothing happens, but the solution is stored, as a quantity
ready to by interpolated and plotted, in springsolution. To plot this solu-
tion, you can use the Plot command. This requires as an argument the variable
you’re plotting, x[t], along with the range of t to be plotted. In addition, to
make sure that you’re plotting the solution that you just calculated above, you
refer to the x variable using the syntax
x[t]/.springsolution

the gist of which is, “plot x[t] using the solution from springsolution.”
Therefore the useful plot command here is
Plot[x[t]/.springsolution,{t,0,10}],AxesLabel->{"t (s)" ,"x

(m)"}]

This includes Mathematica’s way of labeling the axes; no plot is any use with-
out axes! The text in the axis labels has to be in quotes, because that’s just how
Mathematica rolls. The output of this plot is shown below. There are lots of
further ways to manipulate the figure, of course, which you can see in docu-
mentation for Mathematica.

2 4 6 8 10
t (s)

-0.4

-0.2

0.2

0.4

x (m)

Figure 2.1 Motion of a particular mass on a particular spring, sponsored by Math-
ematica.

(a) Now to the business at hand. Let’s consider as an example a pendulum
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of length l = 1 m, swinging in standard gravity with g = 9.8 m/s2. Then let’s
drop this pendulum from rest at an initial angle θ0 = 0.5 radians, so the initial
y is y0 = l sin θ0. The commands that generate the interpolating function are
g=9.8;

l=1;

ph0=0.5;

y0=l*Sin[ph0];

cartesian=NDSolve[{Sqrt[lˆ2-y[t]ˆ2]*y’’[t]

+(y[t]/Sqrt[lˆ2-y[t]ˆ2])*(y’[t]ˆ2+y[t]*y’’[t]+y[t]ˆ2*y’[t]ˆ2/(lˆ2-y[t]ˆ2))==-g*y[t],

y[0]==y0,y’[0]==0},y,{t,0,10}];

Notice here that “Sqrt” is Mathematica’s way of declaring a square root; and
that squaring a quantity is described by “ˆ2.” Functions such as Sqrt and Sin
have their arguments in square brackets. The last three lines in the above list
are all part of the same command, but are split here so that they fit on the page.

The result is plotted using the command
Plot[y[t]/.cartesian,{t,0,10},AxesLabel->{‘‘t (sec)’’ ,‘‘y (m)’’}]

which results in the figure below.

2 4 6 8 10
t (s)

-0.4

-0.2

0.2

0.4

y (m)

Figure 2.2 Motion of the pendulum as described in the text.

You would get the same result if you solved the problem in polar coordinates
of course, using
g=9.8;

l=1;

phi0=0.5;

polar=NDSolve[{phi’’[t]==-(g/l)*Sin[phi[t]],phi[0]==phi0,phi’[0]==0},phi,{t,0,10}];

Plot[l*Sin[phi[t]]/.polar,{t,0,10},AxesLabel->{‘‘t (sec)’’,‘‘phi

(m)’’}]

Interestingly, if you start with initial conditions θ0 > π/2, the the Cartesian
version doesn’t work.
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(b) We have

y = l sin φ

ẏ = lφ̇ cos φ

ÿ = lφ̈ cos φ − lφ̇2 sin φ

l2 − y2 = l2 cos2 φ.

The first term on the left of Equation (2.3) in the book,using the positive square
root of cos2 φ, is then

(l2 − y2)1/2ÿ = l cos φ
[
lφ̈ cos φ − lφ̇2 sin φ

]
= l2φ̈ cos2 φ − l2φ̇2 sin φ cos φ.

The piece in the big square brackets is

ẏ2 + yÿ +
y2ẏ2

l2 − y2 = l2φ̇2 cos2 φ + l sin φ
(
lφ̈ cos φ − lφ̇2 sin φ

)
+

l2 sin2 φl2φ̇2 cos2 φ

l2 cos2 φ

= l2φ̈ sin φ cos φ + l2φ̇2 cos2 φ,

thanks to some fast-thinking cancellations. The second term on the left of (2.3)
in the book is then

y
(l2 − y2)1/2

[
ẏ2 + yÿ +

y2ẏ2

l2 − y2

]
=

l sin φ
l cos φ

[
l2φ̈ sin φ cos φ + l2φ̇2 cos2 φ

]
= l2φ̈ sin2 φ + l2φ̇2 sin φ cos φ.

Adding everything together and setting this sum equal to −gy gives

l2φ̈ = −gl sin φ,

which is the desired (and much simpler) equation.

Exercise 2.2

Overall, φ̇ would have some mean value given by 2π divided by the period
of rotation. The pendulum doesn’t go at constant angular velocity of course,
going faster (larger φ̇ at the bottom of its swing, and slower (smaller φ̇) at the
top of its swing. The instantaneous value of φ̇ can never be negative in this
rotational motion, however.

Exercise 2.3

This can be done the same way as in Exercise 2.1, but plotting a different
outcome. Here is an example for a pendulum of length l = 1 m, mass m = 0.1
kg, released from rest at φ0 = π/2.



10 Solutions to Exercises Chapter 2

g=9.8;

l=1;

phi0=Pi/2;

polar=NDSolve[{phi’’[t]==-(g/l)*Sin[phi[t]],phi[0]==phi0,phi’[0]==0},phi,{t,0,3}];

Plot[phi[t]]/.polar,{t,0,3},AxesLabel->{’’t (sec)’’,‘‘phi (rad)’’}]

Plot[(m*l*phi’[t]ˆ2+m*g*Cos[phi[t]])/.polar,{t,0,3},AxesLabel->{’’t

(sec)’’,‘‘tau (kg-m/sˆ2)’’}]

These plots are shown in the figure below, for a time just longer than one
period. In this case, the tension is a maximum when φ = 0 and the pendulum
is swinging fastest, and the tension vanishes when φ = π/2, as anticipated
in Exercise 1.2. If you mess around with the initial condition φ0, you should
find that 1) for φ0 < π/2, the tension is always positive, since the rod must
always pull against gravity and possible centrifugal force; and 2) for φ0 > π/2,
as shown in the examples in the book, the tension must sometimes become
negative, to keep the mass from falling in toward the pivot point.

0.5 1.0 1.5 2.0 2.5 3.0
t (s)

-1.5

-1.0

-0.5

0.5

1.0

1.5

phi (rad)

0.5 1.0 1.5 2.0 2.5 3.0
t (s)

0.5

1.0

1.5

2.0

2.5

3.0

tau (kg-m/s^2)

Figure 2.3 (a) The swing of the pendulum as described in the text. (b) the tension
in the string over this same tim e.

Exercise 2.4

We start with the equations of motion

dφ
dt

=
pφ

ml2
dpφ
dt

= −mgl sin φ,

with the momentum related to the generalized velocity φ̇ by

pφ = ml2
dφ
dt
.

For a set of two coupled first order differential equations, there is a standard
trick for eliminating one of the quantities to get a second order equation in the
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other. Suppose we are looking for an equation for φ, we could take another
derivative of φ to get

d2φ

dt2 =
1

ml2
dpφ
dt

=
1

ml2
(−mgl sin φ) = −

g
l

sin φ,

which is the desired equation of motion.
Interestingly, this does not go the other way. Suppose you try to write an

equation for the momentum, by writing

d2 pφ
dt2 = −mgl cos φφ̇

= −mgl cos φ
( pφ
ml2

)
= −

g
l

cos φpφ.

So to find the time-dependent momentum you are still obliged to know the
coordinate φ. This is a theme we develop throughout the book: Momentum
depends in a simple and predictable way on velocity (they are simply propor-
tional in this example), and can be eliminated straightforwardly. On the other
hand, forces depend on coordinates in a different way for each force, and this
dependence has to be carried along.

The numerical solution, based on what we had above, can be described by
the Mathematica statement
hamiltonian=NDSolve[{p’[t]==-m*g*l*Sin[phi[t]],phi’[t]==p[t]/(m*l*l),

p[0]==p0,phi[0]==phi0},{phi,p},{t,tmin,tmax}]

for some suitable values of g, l, m, phi0, p0, tmin, tmax.
Here we will give one example where g = 9.8 m/s2, l = 1 m, the pendulum

is released from rest at an initial angle φ = 1 radian, and the time interval
goes from −4 s to +4s. We will try two masses, m = 0.5 kg, and m = 2 kg.
By running the code you can verify that the period of motion is the same for
both masses. To plot the phase space trajectory, you need another Mathematica
function,
ParametricPlot[{phi[t],p[t]}/.hamiltonian,{t,tmin,tmax},AxesLabel->{’’phi

(rad)’’,’’p (kg-mˆ2/sˆ2)’’}]

The resulting phase space plots are shown in the figure on the next page.
Here I have taken the liberty of putting them both on the same plot. Both pen-
dulums swing through the same angular range, but the more massive one (or-
ange) experiences greater momenta, although it travels at the same velocity as
the lighter one.
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-2 -1 1 2
phi (rad)

-6

-4

-2

2

4

6

p_phi (kg-m^2/s^2)

Figure 2.4 Phase space plots of two pendulums, identical except that one has mass
0.5 kg (blue), while the other has mass 2 kg (orange), hence greater momenta.

Exercise 2.5

This is kind of a neat mathematical trick that’s sometimes useful in evaluat-
ing physically relevant integrals.In this case the integral is

A = 2
∫ φ0

−φ0

dφ

√
2ml2

(
E −

1
2

mglφ2

)
.

First you notice that the limits of integration are determined by the values of
φ where the thing inside the square root vanishes, otherwise the square root
(which represents a momentum) would be complex number. The limits of the
classically allowed region are given by

φ2
0 =

2E
mgl

.

Now, we factor as much as we can out of the integral to get

A = 2
√

2ml2E
∫ φ0

−φ0

dφ

√
1 −

φ2

(2E/mgl)

Next, define a new coordinate x = φ/φ0, then the integral becomes

A = 2
√

2ml2E

√
2E
mgl

∫ 1

−1
dx
√

1 − x2
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= 4

√
l
g

E
∫ 1

−1
dx
√

1 − x2.

In this way, all the dependences on the physical, dimensionful quantities are
given explicitly. The integral itself is just a dimensionless quantity to be eval-
uated once and you’re done with it. In this case, even that’s easy. The integral
represents the area of a semicircle of radius 1, and therefore has the value π/2.
From this the Action integral is A = 2π

√
l/gE.

Exercise 2.6

Well, it says “convince yourself,” so I don’t know what I can do for you.
Still, consider this. Position and momenta are constantly changing, so the con-
figuration of the pendulum, represented as a point on the phase space curve,
must be moving around. It’s just a question of which way it goes.

Suppose the pendulum is moving according to the closed ovaly curve and
at some time it has positive angle φ > 0 and positive momentum pφ > 0, that
is, the phase space point lies in the first quadrant of the diagram. Well, then
the pendulum will continue moving to larger φ until it gets to the rightmost
part of the oval. To do this, it must have gone clockwise. You can make similar
arguments regardless of the signs of φ and pφ.

For the wiggly curve shown, the momentum is always positive and the mo-
tion is always toward larger φ, to the right on the curve. There could, however,
be a similar curve that lies entirely at negative pφ, representing the pendulum
whirling in the other direction. In this case the motion along the phase space
trajectory would go to the left.

Exercise 2.7

The units of action are areas in phase space, that is, units of p times the units
of q. But in terms of units, if p = ∂L/∂q̇ and L has units of energy, then the
action has units (energy / (units of q / time) × units of q = energy × time.
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Exercise 3.1

The constraint here is that the length of the string does not change. If you
pull the free end down a distance l, what happens to the rest? That length l
of string comes out of the two segments that support pulley 2. Each of these
segments will shorten by l/2, with P2 turning to make this possible.

F

m

Figure 3.1 More pulleys, giving more mechanical advantage.

Therefore, if you were to apply a downward force F on the free end, the vir-
tual work done in pulling a virtual displacement δl down is positive, since the
force and displacement are in the same direction. At the same time, lifting the
mass m a virtual distance δl/2 makes a negative virtual work against gravity.

14
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The net virtual work must be zero,

δlF + (−δl/2)mg = 0

so that F = mg/2.
The figure shows an option, not necessarily the best one, for a set of four

pulleys. Two are anchored to the ceiling, two to the mass to be hoisted. By
the same argument, a virtual displacement δl of the free end is distributed four
ways among the rope segments between the pulleys. The force you need to
exert is therefore F = mg/4.

Extra Credit. Try to work out the Spanish Barton, shown in the figure below.
Here pulley P1 is attached to the ceiling, and the string that runs over it supports
pulleys P2 and P3. The string you pull on runs over pulley P2, then under pulley
P3, then is attached to the ceiling. The mass is supported from pulley P3 as
shown. For massless, frictionless, ideal pulleys, show that you can support the
mass m by exerting a force mg/4, as above, but this time you need only three
pulleys.

F

m

P1

P2

P3

Figure 3.2 The Spanish Barton.

Exercise 3.2

Let’s take as a coordinate system the one shown in Figure 3.2 of the text:
x̂ and ŷ for horizontal and vertical with respect to the ground; and ŝ and n̂ for
along and normal to the plane. The little mass m that slides on the inclined
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plane is what makes this complicated, because its motion depends on the mo-
tion of the inclined plane, hence on both the coordinates x and s.

In more detail: if the plane accelerates, it accelerates only in the x direction.
But the little mass m is then moving along in a non-inertial coordinate frame.
The safest bet is to write the acceleration of the mass in the inertial coordinates
(x, y):

ax = ẍ + cosαs̈

ay = − sinαs̈,

while the inclined plane, able to move only in the x direction, has acceleration
ẍ.

To employ d’Almbert’s principle, we take as the applied forces the weights
of the two objects. The virtual work of the inclined plane, which can have only
virtual displacements in x, is

(Fa
plane − mplaneaplane) · δxx̂ = (−Mgŷ − Mẍ) · δxx̂

= −Mẍδx.

The virtual work of the mass on the plane, which can be impacted by virtual
displacements in either x or s, is

(Fa
mass − mmassamass) · (δxx̂ + δsŝ) =

(
− mgŷ − m(ẍ + cosαs̈)x̂ + m sinαs̈ŷ

)
· (δxx̂ + δsŝ)

=

(
− m(ẍ + cosαs̈)

)
δx

+

(
mg sinα − m(ẍ + cosαs̈) cosα − m sin2 αs̈

)
δs,

where we have used the geometrical facts ŷ · x̂ = 0, ŷ · ŝ = − sinα, and x̂ · ŝ =

cosα.
According to d’Alembert, the sum of the two virtual work terms must add

to zero:(
− Mẍ − m(ẍ + cosαs̈)

)
δx +

(
mg sinα − m(ẍ + cosα) cosα − m sin2 αs̈

)
δs = 0

Now, the virtual displacements δx and δs are independent degrees of freedom,
so we can set the coefficients of these two separately to zero. This gives

(M + m)ẍ + m cosαs̈ = 0

cosαẍ + s̈ = g sinα.

This is a system of equations that can be solved for the accelerations:

s̈ =
g sinα

1 − m
M+m cos2 α
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ẍ = −
mg sinα cosα

(M + m) − m cos2 α
.

Does this make sense? For a very massive inclined plane, M � m, we have
s̈ = g sinα like normal, while ẍ = 0, the plane isn’t going anywhere. Also, if
α = 0, the plane is horizontal and both objects remain stationary. If α = π/2,
then the plane does not move, but the mass falls with acceleration g.

You should come back later, after the next chapter, and try this again using
Lagrange’s equation. It will be a lot simpler, and you should get the same
answer!

Exercise 3.3

Define downward to be the positive x direction, and positive δx to be a down-
ward virtual displacement of mass m. A positive δx would turn the wheel
a virtual angle δθ, which would shift mass m′ by the virtual displacement
δx′ = −R′δθ = −(R′/R)δx. That is, m′ goes up when m goes down.

The principle of d’Alembert applied to this circumstance yields

(mg − ma)δx + (m′g − m′a′)δx′ = 0,

or

(mg − ma)δx + (m′g − m′a′)
(
−

R′

R

)
δx = 0.

Further, the accelerations are related by the fact that the angular acceleration
of the wheels is

α =
a
R

= −
a′

R′
.

Then from d’Alembert we extract

mg − ma − m′g
R′

R
+ m′a

R′2

R2 = 0.

Solving for a, we get

a = gR
mR − m′R′

mR2 + m′R′2
.

The other acceleration is

a′ = −
R′

R
a = −gR′

mR − m′R′

mR2 + m′R′2
.

Exercise 3.4 (I am indebted to Claudio Mazzoleni for finding a major mstake
in the original solution.)

(a) For this rigid configuration, both masses are descried by the same swing
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angle φ. Virtual displacements are all of the form δφφ̂, but this must be adapted
to the problem. d’Alembert’s principle is

2∑
i=1

(Fa
i − miai) · δxi = 0.

We know that the virtual displacements are related, since the masses swing
through the same virtual angle δφ. This angle corresponds to a different virtual
displacement in length for the two masses, however, since they are different
distances from the pivot:

δxi = liδφφ̂.

Evaluating gravitational forces, and accelerations in polar coordinates, as in
the chapter, d’Alembert’s principle becomes[

(−m1g sin φ − m1l1φ̈)l1 + (−m2g sin φ − m2l2φ̈)l2
]
δφ = 0.

This is true for any virtual displacement δφ, so the term in square brackets must
be zero. Solving for acceleration,

φ̈ = −
m1l1 + m2l2
m1l21 + m2l22

g sin φ

= −
g
L

sin φ,

where the effective length is given by

L =
m1l21 + m2l22
m1l1 + m2l2

.

This expression has vaguely familiar elements to it. If you recall that the mo-
mentum of inertia about the pivot is

I = m1l21 + m2l22

and that the center of mass is a distance

lCM =
m1l1 + m2l2

m1 + m2

from the pivot, then this pendulum of mass m = m1 + m2 has the effective
length

L =
I

mlCM
.

This is a result that is generically true for a physical pendulum, one whose
mass is not concentrated in a point, but that is characterized by values of m,
lCM , and I.
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Now, suppose l1 < l2, as shown. Then we have

L
l1

=
m1 + m2(l2/l1)2

m1 + m2(l2/l1)
> 1,

L
l2

=
m1(l1/l2)2 + m2

m1(l1/l2) + m2
< 1,

so L is intermediate between l1 and l2. Thus the angular frequency of the com-
pound pendulum,

√
g/L, is also intermediate between the frequencies of the

two uncoupled pendulums.
(b) Now suppose the masses are described by separate angles φ1 and φ2, but

constrained by φ1 = φ2, so that any virtual displacements satisfy δφ1 = δφ2.
We can introduce a Lagrange multiplier τ, so called because it needs to be a
torque in this case (units: Newton-meters, or Joules). We add the condition

τ(δφ1 − δφ2) = 0

to the usual d’Almbert principle, to get[
(−m1g sin φ1 − m1l1φ̈1)l1 + τ

]
δφ1 +

[
(−m2g sin φ2 − m2l2φ̈2)l2 − τ

]
δφ2 = 0.

Now the two virtual displacements can be regarded as varying individually,
leading to the separate equations

−m1gl1 sin φ1 − m1l21φ̈1 + τ = 0

−m2gl2 sin φ2 − m2l22φ̈2 − τ = 0.

If you add these two equations together and recognize that φ1 = φ2 = φ,
then you return to the equation of motion φ̈ = −(g/L) sin φ described above.
However, if you subtract the second equation from the first, you get

−(m1l1 − m2l2)g sin φ − (m1l21 − m2l22)φ̈ + 2τ = 0.

For small amplitude of swing, sin φ ≈ φ and φ̈ ≈ −(g/L)φ, in which case

2τ = (m1l1 − m2l2)gφ + (m1l21 − m2l22)
(
−

g
L

)
φ

Substituting for L and doing some algebra, we arrive at the expression for the
torque of constraint,

τ =
m1m2l1l2(l2 − l1)

m1l21 + m2l22
gφ.

Notice that when the lengths are the same, l1 = l2, the torque of constraint
is zero. Effectively, this becomes two pendulums of the same length, which
would swing in unison anyway, without being constrained to do so,.
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Exercise 4.1

Given the coordinete definitions

x = r sin θ cos φ

y = r sin θ sin φ

z = r cos θ,

calculating time derivatives and kinetic energies runs on autopilot. Start with

ẋ2 + ẏ2 =

(
ṙ sin θ cos φ + rθ̇ cos θ cos φ − rφ̇ sin θ sin φ

)2

+

(
ṙ sin θ sin φ + rθ̇ cos θ sin φ + rφ̇ sin θ cos φ

)2

= ṙ2 sin2 θ + r2θ̇2 cos2 θ + r2φ̇2 sin2 θ + 2rṙθ̇ sin θ cos θ,

which simplifies due to trigonometry and a lot of cancellation of cross terms.
Next calculate the z part:

ż2 =

(
ṙ cos θ − rθ̇ sin θ

)2

= ṙ2 cos2 θ + r2θ̇2 sin2 θ − 2rṙθ̇ sin θ cos θ

Adding these together gets us to the simple expression

T =
1
2

m(ẋ2 + ẏ2 + ż2) =
1
2

m(ṙ2 + r2θ̇2 + r2φ̇2 sin2 θ).

This you can stick into Lagrange’s equations and you’re ready to go.
As for the acceleration, I’m not sure you really want to have this much fun,

but here we go anyway. The trick is of course that the unit vectors r̂, θ̂, and
φ̂ all depend explicitly on time. As we did in Chapter 2, the best way to deal
with this is to express these in terms of the time-independent Cartesian unit

20
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vectors x̂, ŷ, and ẑ. This can be done by means of a confusing vector diagram
(confusing to me, anyway!) or more analytically. Starting from r̂ = r/r, we get

r̂ = sin θ cos φx̂ + sin θ sin φŷ + cos θẑ.

Meanwhile, the unit vector in φ is still tracking rotation around the z axis and
is the same as it was in polar coordinates

φ̂ = − sin φx̂ + cos φŷ.

Finally, θ̂ is orthogonal to the other two, and is in fact given by

θ̂ = φ̂ × r̂ = cos θ cos φx̂ + cos θ sin φŷ − sin θẑ.

(Quick check: if θ = π/2, φ = 0, then r̂ = x̂, φ̂ = ŷ, and we should get θ̂ = −ẑ,
which we do, so the sign is right.)

Now we can take derivatives like there’s no tomorrow:

˙̂r = (θ̇ cos θ cos φ − φ̇ sin θ sin φ)x̂ + (θ̇ cos θ sin φ + φ̇ sin θ cos φ)ŷ − θ̇ sin θẑ

= θ̇θ̂ + φ̇ sin θφ̂
˙̂θ = (−θ̇ sin θ cos φ − φ̇ cos θ sin φ)x̂ + (−θ̇ sin θ sin φ + φ̇ cos θ cos φ)ŷ − θ̇ cos θẑ

= −θ̇r̂ + φ̇ cos θφ̂

In these two expressions, you can just read off the unit vectors, which are
written above. For the φ̂ derivative,

˙̂φ = −φ̇ cos φx̂ − φ̇ sin φŷ,

it’s straightforward to find the projection of this vector on the axes,

˙̂φ · r̂ = −φ̇ sin θ
˙̂φ · θ̂ = −φ̇ cos θ
˙̂φ · φ̂ = 0,

so that

˙̂φ = −φ̇ sin θr̂ − φ̇ cos θθ̂.

That’s all preliminary. Now we are ready to calculate, first, the velocity in
spherical coordinates:

ṙ = ṙr̂ + r ˙̂r

= ṙr̂ + rθ̇θ̂ + rφ̇ sin θφ̂.

And then, at last, the acceleration:

r̈ = (r̈r̂ + ṙ ˙̂r) + (ṙθ̇θ̂ + rθ̈θ̂ + rθ̇ ˙̂θ) + (ṙφ̇ sin θφ̂ + rφ̈ sin θφ̂ + rφ̇θ̇ cos φφ̂ + rφ̇ sin θ ˙̂φ).
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From here, you substitute the expressions for the time derivatives of the unit
vectors, and after a whole lot of fun algebra you get

r̈ = (r̈ − rθ̇2 − rφ̇2 sin2 θ)r̂ + (rθ̈ + 2ṙθ̇ − rφ̇2 sin θ cos θ)θ̂

+(rφ̈ sin θ + 2ṙφ̇ sin θ + 2rθ̇φ̇ cos φ)φ̂.

Exercise 4.2

(a) If σ takes a fixed value, then τ = x/σ is uniquely determined by x. We
substitute into the equation for y and get

y =
1
2

[( x
σ

)2
− σ2

]
, fixed σ.

This describes a parabola in the x-y plane, which is concave upward and has a
minimum at (x, y) = (0,−σ2/2). Likewise, the relation for fixed τ is

y =
1
2

[
τ2 −

( x
τ

)2
]
, fixed τ,

describing a parabola that is concave downward and has maximum at (x, y) =

(0, τ2/2). Several of these parabolas are shown in the figure below.
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Figure 4.1 Selected surfaces of constant τ or σ.
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(b)

ẋ2 + ẏ2 =
(
σ̇τ + στ̇

)2
+

(
ττ̇ − σσ̇

)2

=
(
σ2 + τ2

)(
σ̇2 + τ̇2

)
,

so the free-particle Lagrangian is

L =
1
2

m
(
σ2 + τ2

)(
σ̇2 + τ̇2

)
.

Then

d
dt

(
∂L
∂σ̇

)
=

d
dt

(
m(σ2 + τ2)σ̇)

)
= m

(
σ2 + τ2

)
σ̈ + 2mσσ̇2 + 2mττ̇σ̇

∂L
∂σ

= mσσ̇2 + mστ̇2,

so Lagranges’s equation for σ is(
σ2 + τ2

)
σ̈ + σ

(
σ̇2 − τ̇2

)
+ 2τσ̇τ̇ = 0.

Similarly,

d
dt

(
∂L
∂τ̇

)
= m

(
σ2 + τ2

)
τ̈ + 2mσσ̇τ̇ + 2mττ̇2

∂L
∂τ

= mτσ̇2 + mττ̇2,

so that Lagrange’s equation for τ is(
σ2 + τ2

)
τ̈ + τ

(
τ̇2 − σ̇2

)
+ 2σσ̇τ̇ = 0.

(c) The first thing is, let’s get the initial conditions written in terms of σ and
τ. From y(0) = 0 we get σ0 = τ0, and then from x(0) = x0 we must have

σ0 = τ0 =
√

x0.

Given this, ẋ(0) = σ̇0τ0 +σ0τ̇0 = 0 implies σ̇0 = −τ̇0. Finally, ẏ(0) =
√

x0τ̇0 −
√

x0σ̇0 = v0 implies that

τ̇0 =
v0

2
√

x0
, σ̇0 = −

v0

2
√

x0
.

Using the Mathematica commands as described in the solutions for chapter
2, I show below an example of the motion in (σ, τ) coordinates. In this case I
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have x0 = 1 m, ẏ0 = 1 m/s. Notice that in this case where x = x0 is fixed and
y = v0t, we can write

y =
1
2

τ2 −
x2

0

τ2

 = v0t.

This actually affords the analytic solution

τ =

√
v0t +

√
v2

0t2 + x2
0

for the curve shown.

2 4 6 8
time (s)

1

2

3

4

coordiante (m^(1/2)

Figure 4.2 Motion of a particular free particle, as seen by τ (upper curve) and σ
(lower curve).

Exercise 4.3

I’m thinking of a parabolic wire that opens upward, so the motion will be
constrained to some region of space, and the bead will slide back and forth
like a weird pendulum. In parabolic coordinates the parabola of constraint will
correspond to some constant value of σ, which we hold constant for this exer-
cise. Given that σ̇ = 0 and that the gravitational potential energy V = mgy, a
suitable Lagrangian in τ is

L =
1
2

(
σ2 + τ2

)
τ̇2 −

mg
2

[
τ2 − σ2

]
.

Then

d
dt

(
∂L
∂τ̇

)
= m

(
σ2 + τ2

)
τ̈ + 2mττ̇2

∂L
∂τ

= mττ̇2 − mgτ

Thus the equation of motion is(
σ2 + τ2

)
τ̈ + ττ̇2 = −gτ,
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where σ serves as a parameter that describes the shape of the parabolic wire.

Exercise 4.4

The coordinates of the bead are time-dependent:

x = R sin θ cos(ωt)

y = R sin θ sin(ωt)

z = R cos θ.

So,

ẋ2 + ẏ2 =
(
Rθ̇ cos θ cos(ωt) − Rω sin θ sin(ωt)

)2
+

(
Rθ̇ cos θ sin(ωt) + Rω sin θ cosωt

)2

= R2θ̇2 cos2 θ + R2ω2 sin2 θ,

and

ż2 =
(
− Rθ̇ sin θ

)2
= R2θ̇2 sin2 θ.

Meanwhile, the potential energy is

V = mgz = mgR cos θ,

so the Lagrangian is

L −
1
2

(
R2θ̇2 + R2ω2 sin2 θ

)
− mg cos θ.

with equation of motion

mR2θ̈ = mR2ω2 sin θ cos θ + mgR sin θ.

Exercis 4.5

What is meant is spherical coordinates, in terms of which the kinetic energy
is worked out above. The Lagrangian is

L =
1
2

m(ṙ2 + r2θ̇2 + r2φ̇2 sin2 θ) − V(r),

for whatever spherically symmetric potential you want to put in there. The
equations of motion come from applying the formulas, and are, in this case

r2φ̈ sin2 θ + 2rṙφ̇ sin2 θ + 2r2φ̇θ̇ sin θ cos θ = 0

r2θ̈ + 2rṙθ̇ = r2φ̇2 sin θ cos θ

mr̈ = mr2θ̇2 + mrφ̇2 sin2 θ −
∂V
∂r
.

It’s not completely clear that this is a win. The three coordinates are still pretty
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interrelated in these equations, although it is nice that the potential energy only
appears in one of them, I guess. Later in the book we will see that the parts of
kinetic energy that involve the angular coordinates θ and φ deal with the angu-
lar momentum, which is pretty standard. The only thing that makes different
problems different is the functional form of V(r).

Exercise 4.6

This is one of these great problems where you could start off thinking, “Well,
if this thing moves this way, then this other thing will move that way...” and
go down a rabbit hole of confusion. Luckily, Langrange’s way is much easier.
You don’t need to know what all the velocities of the masses are; you just need
to know what form they take in an inertial frame.

First, note that there are two degrees of freedom here, the horizontal motion
of block 1 and the vertical motion of block 3. Block 2 is then constrained by
how block 3 drags it, plus how the pulley moves along with block 1. Moreover,
the horizontal velocity of 3 is the same as that of 1.

So, given the coordinate x1 of block 1, its velocity in the inertial frame of
the ground is simply

v1 = ẋ1 x̂.

The height of block 3 is an inertial coordinate, since it is not attached to any-
thing that can accelerate in y. Let y3 be the height of block 3, measured so that
y3 = 0 when the block is at the height of the pulley. Then the velocity of this
block is

v3 = ẋ1 x̂ + ẏ3ŷ.

Finally, there’s block 2, which is pulled by the falling block 3. Let η2 be the
position of block 2 with respect to the end of block 1, so that its velocity in the
inertial frame is ẋ2 = ẋ1 + η̇2. The constraint is that the length of the string,
l, is constant, so that η2 = l − y3. (As 3 falls and y3 becomes more negative,
η2 becomes more positive, pulling to the right.) The velocity of block 2 is then
entirely given by the other velocities:

v2 = (ẋ1 − ẏ3)x̂.

That’s all the thiking we have to do. Now Lagrange takes over. The La-
grangian is

L =
1
2

m1 ẋ2
1 +

1
2

m2

(
ẋ1 − ẏ3

)2
+

1
2

m3

(
ẋ2

1 + ẏ2
3

)
− m3gy3

=
1
2

(
m1 + m2 + m3

)
ẋ2

1 +
1
2

(
m2 + m3

)
ẏ2

3 − m2 ẋ1ẏ3 − m3gy3.
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To save writing, we’ll use the notation M = m1 + m2 + m3 for the total mass of
all three blocks. Lagrange’s equation for x1 is

Mẍ1 − m2ÿ3 = 0,

which is a relation between the two accelerations. Lagrange’s equation for y3,
which has the gravitational force in it, is(

m2 + m3

)
ÿ3 − m2 ẍ1 = −m3g.

Eliminating ÿ3 from this equation and solving for ẍ1 gives the result:

ẍ1 = −
m2m3

(m2 + m3)M − m2
2

g.

So in the end, it goes that way, i.e., the big block accelerates to the left in the
figure.

Exercise 4.7

(a) The equation for the trajectory is

x(t) = x0 + v0t +
1
2

at2.

The initial condition for this trajectory is standard: x(t = 0) = 0 implies x0 = 0.
But the Hamilton’s principle point of view requires also a terminal condition.
If x(t1) = x1, then

x1 = v0t1 +
1
2

at2
1,

or

v0 =
x1

t1
−

1
2

at1.

(b) Having specified the initial and terminal conditions, we must determine
the value of the acceleration a that can meet these conditions under the actual
action of gravity. The Lagrangian for this problem is

L =
1
2

m(v0 + at)2 − mg
(
v0t +

1
2

at2
)
,

which for fixed x1, t1 is still a function of a (and time). After a great deal of
elementary but tedious algebra, one finds the action

S =

∫ t1

0
dtL(t) =

mt3
1

24
a2 +

mgt3
1

12
a +

mx2
1

2t1
−

mgx1t1
2

.

The physically correct path is the one for which a minimizes S , which is easily
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seen to be a = −g. Thus the trajectory x(t) = v0t − (1/2)dt2 is the correct one,
that exhibits acceleration −g.

Suppose you went to the extra term and proposed a trajectory

x(t) = v0t +
1
2

at2 +
1
6

jt3.

Then by the same reasoning you would have

v0 =
x1

t1
−

1
2

at1 −
1
6

jt2
1.

L =
1
2

m
(
v0 + at +

1
2

jt2
)2

− mg
(
v0t +

1
2

at2 +
1
6

jt3
)
,

Then S is an even more complicated function of a and now j, too (I recommend
using Mathematica to get the algebra right). It is still a quadratic function of a
and j, though, whose extremum you find easily by setting

∂S
∂a

=
∂S
∂ j

= 0,

which yields a = −g and j = 0. You can’t fool Hamilton’s principle: it knows
there is no t3 term in the trajectory of an object falling under gravity.
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Exercise 5.1

Given

S = αr1 + βr2

r = r1 − r2

we have

ṙ1 =
Ṡ + βṙ
α + β

ṙ2 =
Ṡ − αṙ
α + β

so that the Lagrangian is

L =
1
2

[
m1 + m2

(α + β)2

]
Ṡ2 +

1
2

[
m1β

2 + m2α
2

(α + β)2

]
ṙ +

1
2

[
2m1β

(α + β)2 −
2m2α

(α + β)2

]
Ṡ · ṙ − V(r).

The conjugate momentum to S is

∂L
∂Ṡ

=
m1 + m2

(α + β)2 Ṡ +

[
m1β

(α + β)2 −
m2α

(α + β)2

]
ṙ.

The “simplest form” of this would contain no admixture of ṙ, and one way to
achieve this is to have α = m1, β = m2. And then we get S = m1r1 + m2r2 as
usual. Well, usually you would also divide by M to give S the units of length.

Exercise 5.2

The Lagrangian was worked out in Exercise 4.2:

L =
m
2

(
σ2 + τ2

) (
σ̇2 + τ̇2

)
,

29



30 Solutions to Exercises Chapter 5

leading to the momenta

pσ =
∂L
∂σ̇

= m
(
σ2 + τ2

)
σ̇

pτ =
∂L
∂τ̇

= m
(
σ2 + τ2

)
τ̇.

Becasue L has nonzero partial derivatives with respect to σ and τ, in general
these momenta depend on the fictitious forces ∂L/∂σ, ∂L/∂τ and are therefore
not conserved.

Now, let

σ = ρ cosα

τ = ρ sinα.

Then by an easy calculation

L =
m
2
ρ2

(
ρ̇2 + ρ2α̇2

)
=

m
2
ρ2ρ̇2 +

m
2
ρ4α̇2.

This Lagrangian is independent of α, so the momentum

pα =
∂L
∂α̇

= mρ4α̇ ≡ C

is a constant of the motion.
Then the “ma” portion of Lagrange’s equation for ρ is

d
dt

(
∂L
∂ρ̇

)
= mρ2ρ̈ + 2mρρ̇2,

while the generalized force is

∂L
∂ρ

= mρρ̇2 + 2mρ3α̇2

= mρρ̇2 +
2C2

mρ5 .

Thus the equation of motion for the free particle in this weird coordinate ρ is

mρ2ρ̈ + mρ̇ρ2 =
2C2

mρ5 .

Exercise 5.3

(a) The momentum of each object is still its mass times its velocity. The
momentum of the cart is Mẋ. The mass on the pendulum, as seen in the inertial
frame of the ground, has velocity d(x + l sin φ)/dt, and so its momentum is
mẋ+ lφ̇ cos φ. So the total horizontal momentum of the pendulum on the cart is
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(M+m)ẋ+mlφ̇ cos φ, even though in the text we got it from the slick Lagrangian
method.

(b) Using the ingredients given in the main text, we have from conservation
of px, and setting this conserved value equal to zero,

(M + m)ẋ + mlφ̇ cos φ = 0,

or

ẋ = −
ml

M + m
φ̇ cos φ.

Substituting this into the expression for pφ we have

pφ = ml2φ̇ + mlẋ cos φ

= ml2φ̇ −
m2l2

M + m
φ̇ cos2 φ.

Thus the “ma” part of Lagrange’s equation is

dpφ
dt

= ml2φ̈ −
m2l2

M + m
φ̈ cos2 φ +

m2l2

M + m
φ̇2 sin φ.

Making the same substitution for ẋ, the generalized force is

∂L
∂φ

= −mlẋφ̇ sin φ − mgl sin φ

=
m2l2

M + m
φ̇2 sin φ cos φ − mgl sin φ.

Setting these equal and re-arranging gives the result.

Exercise 5.4

Using the methods outlined in the solutions to Chapter 2, we set up and
integrate the equations of motion. For concreteness, I will assume here the
same pendulum that was discussed in Chapter 5. It has length l = 1 m, mass
m = 1 kg, and is sitting on a cart of mass M = 2 kg.

As a start, we imagine releasing the mass from rest from an initial angle
φ0 = 2 rad, just as in the example of Chapter 2. In this case the cart is also
initially at rest. The resulting motion of φ versus time is shown in Figure 5.1.
Here the red curve describes the pendulum on the cart, while the blue curve is
the same pendulum, released in the same way, but anchored to the ground. So,
as described before, the period of the pendulum is reduced when it sits on the
cart.

What about if it goes all the way around instead of back-and forth? Here is
an example, like the one in Chapter 2, where the initial angle is φ0 = 2 rad, and
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1 2 3 4 5 6
t (sec)

-2

-1

1

2

θ (rad)

Figure 5.1 The pendulum swinging on a cart (red) and on solid ground (blue).

the initial generalized velocity is φ̇0 = 3.5 rad/s. The initial velocity of the cart
is irrelevant for what we’re asking about here (check this!). Nevertheless, here
I set it equal to = mlφ̇0 cos φ0/(M + m), so that the conserved momentum px is
zero.

1 2 3 4 5 6
t (sec)

5

10

15

20

θ (rad)

Figure 5.2 The pendulum going round and round on a cart (red) and on solid
ground (blue).

This result is shown in Figure 5.2. The result is the opposite of the back-and-
forth case: when the pendulum goes round and round on the cart (red, lower
curve), it actually lags behind the motion it would have had on solid ground
(blue, upper curve). As you can see, the difference occurs mostly at times like
≈ 1 s, where φ ≈ π places the pendulum at the top of its trajectory.

Exercise 5.5

We can use the same coordinate system we did in Chapter 2, with x̂ pointing
downward. The difference is that the point of support is accelerating. This adds
a height −at2/2 to the pendulum, where upward acceleration has a > 0 and the
rise corresponds to more negative values of x in our coordinate system. Thus
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the coordinates in an inertial frame are

x = l cos φ −
1
2

at2, y = l sin φ,

and the velocities are

ẋ = −lφ̇ sin φ − at, ẏ = lφ̇ cos φ.

The rest is amazingly straightforward; this is what Lagrange is for, after all.
Given the potential energy V = −mgx, the Lagrangian is

L =
1
2

ml2φ̇2 + maltφ̇ sin φ +
1
2

ma2t2 + mgl cos φ −
1
2

mgat2.

The momentum conjugate to φ is

pφ =
∂L
∂φ̇

= ml2φ̇ + malt sin φ,

with time derivative

dpφ
dt

= ml2φ̈ + mal sin φ + maltφ̇ cos φ.

This must be set equal to the generalized force,

∂L
∂φ

= −mgl sin φ + maltφ̇ cos φ.

Note that the last term in each of these expressions cancels (no malt today!)
and after some algebra we arrive at the equation of motion

φ̈ = −
g + a

l
sin φ.

Why, this is awesome. It is the equation of motion as if the acceleration due
to gravity were g + a rather than just a. From the pendulum’s point of view, the
acceleration could come from either real gravity near the surface of the Earth,
or from the uniformly accelerating elevator, or both.

Exercise 5.6

The angle at which the platform is rotated at time t is given generically by
Φ(t). In the example of the chapter, the rotation rate was constant and Φ was
equal to Ωt. But now we allow Φ(t) to be an arbitrary function of time. Working
out the Lagrangian, it is similar to what we had before,

L =
1
2

m
(
η̇2 + ξ̇2

)
+ mΦ̇

(
ηξ̇ − ξη̇

)
+

1
2

mΦ̇2
(
η2 + ξ2

)
,

basically replacing Ω by Φ̇.
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Let’s start this time with the generalized forces, which look pretty much the
same as before:

Qη =
∂L
∂η

= mΦ̇ξ̇ + mΦ̇2η

Qξ =
∂L
∂ξ

= −mΦ̇η̇ + mΦ̇2ξ.

Th real difference comes from the additional time dependence of the momenta.
These momenta are

pη =
∂L
∂η̇

= mη̇ − mΦ̇ξ

pξ =
∂L
∂ξ̇

= mξ̇ + mΦ̇η.

The time derivatives of these are

dpη
dt

= mη̈ − mΦ̇ξ̇ − mΦ̈ξ

pξ
dt

= mξ̈ + mΦ̇η + mΦ̈η.

Lagrange’s equations of motion, written to emphasize the fictitious forces,
are

mη̈ = 2mΦ̇ξ̇ + mΦ̇2η + mΦ̈ξ

mξ̈ = −2mΦ̇η̇ + mΦ̇2ξ − mΦ̈η.

On the right-hand side of these equations, you can recognize the expressions
for the Coriolis and centrifugal forces, although they might vary in time now
that Φ̇ need not be constant. The new force, proportional to the second deriva-
tive of Φ, can be written as

FEuler = mΦ̈r × ẑ,

and is called the Euler force (Calkin, p. 57). The delightfully-named website
“revolvy.com” describes it thus: “The Euler force will be felt by a person riding
a merry-go-round. As the ride starts, the Euler force will be the apparent force
pushing the person to the back of the horse, and as the ride comes to a stop, it
will be the apparent force pushing the person towards the front of the horse. A
person on a horse close to the perimeter of the merry-go-round will perceive a
greater apparent force than a person on a horse closer to the axis of rotation.”

Exercise 5.7

This is a poorly worded question. If z is the axis of rotation, then z is the
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same in both the rotating and inertial frames, and a term mż2/2 is added to the
Lagrangian. Big deal.

A better question is to do what is proposed, and to limit motion to the surface
of the planet, at radius R. Then in the rotating coordinate system

(η, ξ, z) = (R sin θ cos φ,R sin θ sin φ,R cos θ)

we are interested in the Coriolis and centrifugal forces in terms on θ and φ, the
co-latitude and longitude of the planet.1 In these coordinates the Lagrangian is

L =
1
2

m
(
η̇2 + ξ̇2 + ż2

)
+ mΩ

(
ηξ̇ − ξη̇

)
+

1
2

mΩ2
(
η2 + ξ2

)
=

1
2

m
(
R2θ̇2 + R2φ̇2 sin2 θ

)
+ mR2Ωφ̇ sin2 θ +

1
2

mR2Ω2 sin2 θ.

The momenta are

pθ =
∂L
∂θ̇

= mR2θ̇

pφ =
∂L
∂φ̇

= mR2
(
φ̇ + Ω

)
sin θ.

Note that the Lagrangian does not depend on φ, whereby pφ is a conserved
quantity, the component of angular momentum along z as seen in the inertial
frame. This is very similar to the case seen in the rotating platform; note that
mR2 sin2 θ is the moment of inertia of the mass about the axis at colatitude θ.

Meanwhile, the equation of motion for θ is

mR2θ̈ = mR2
(
φ̇ + Ω

)2
sin θ cos θ.

In terms of the constant angular momentum pφ, this is a self-contained equa-
toin for θ:

mR2θ̈ =
p2
φ

mR2 sin θ
cos θ.

Exercise 5.8

We have already worked out the kinetic energy. Including the potential due
to the spring leads to the Lagrangian

L =
1
2

m
(
ṙ2 + r2φ̇2

)
+ mr2Ωφ̇ +

1
2

mr2Ω2 −
1
2

kr2.

Of course there is still a conserved quantity: because L is independent of φ, the
conjugate angular momentum pφ = mr2

(
φ̇ + Ω

)
≡ L is still conserved.

1 θ is measured from the north pole down toward the south, but latitude is measured from the
equator either up north or down south.
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The radial equation of motion is

dpr

dt
= mr̈ =

∂L
∂r

= mr
(
φ̇ + Ω

)2
− kr

=
L2

mr3 − kr.

This is just the equation of motion for a mass subject to both the spring force
and the centrifugal force. A circular orbit results when the two forces balance,
i.e., when

r =

(
L2

mk

)1/4

.

Exercise 5.9

There’s no harm here in including an electric potential, and making the treat-
ment more complete. If there were only an electric potential φ, then it generates
a conservative force −q∇φ on a particle of charge q, and the usual Lagrangian
business applies. More generally, in the presence of a vector potential that can
vary in time and space, we recall the electromagnetic fields generated:

E = −∇φ −
1
c
∂A
∂t
, B = ∇ × A.

The claim is that a suitable Lagrangian for a charged particle of charge q
and mass m is given in terms of these potentials as

L =
1
2

mṙ2 − qφ +
q
c

ṙ · A,

where the last term is the one suggested in the chapter. The generalized mo-
mentum conjugate to the particle’s coordinate is

p =
∂L
∂ṙ

= mṙ +
q
c

A,

where the notation suggests that you take the derivative separately with respect
to x, y, z and collect these into the vector p.

Now the momentum depends on the vector potential, which can vary with
the coordinate of the particle, which is of course in general moving from place
to place. The time derivative of this momentum is then

dp
dt

= mr̈ +
q
c

(
ẋ
∂A
∂x

+ ẏ
∂A
∂y

+ ż
∂A
∂z

)
+

q
c
∂A
∂t

= mr̈ +
q
c

(ṙ · ∇) A +
q
c
∂A
∂t
.
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The generalized force is given by the gradient of the Lagrangian,

∇L = −q∇φ +
q
c
∇ (ṙ · A) .

Putting these together, we get Lagrange’s equation

mr̈ = q
(
−∇φ −

1
c
∂A
∂t

)
+

q
c

[∇ (ṙ · A) − (ṙ · ∇) A] .

Getting there! Now we have to recall an old vector identity that you probably
saw once or twice and then forgot about:

ṙ × (∇ × A) = ∇ (ṙ · A) − (ṙ · ∇) A

(irritating, but doable by writing specific components out). Substituting this,
we get the equation of motion

mr̈ = q
(
−∇φ −

1
c
∂A
∂t

)
+

q
c

ṙ × (∇ × A) ,

and using the electromagnetic facts above this is

mr̈ = qE +
q
c

ṙ × B.

The right hand side has the electrostatic force, plus the usual Lorentz force.

Exercise 5.10

Whoops, this was pretty much done at the end of Sec. 5.6. Were you paying
attention?



6
Solutions to Exercises Chapter 6

Exercise 6.1

Note that the Lagrangian is already a function of positions qa and velocities
va. So this whole issue of derivatives at fixed momenta versus derivatives at
fixed velocities, which we labored over so intensely in the chapter, has no
place here. All we’re really doing in this exercise is to reduce the f second-
order equations of motion to 2 f first-order equations of motion.

Half of these equations of motion are easy, they are just

dqa

dt
= va,

perfectly acceptable as va is one of the quantities we carry around. The equa-
tions for the va come from Lagrange’s equations. The force part, ∂L/∂qa, is
unchanged. But the dynamical part is more complicated. L is a function of all
the coordinates and all the velocities, all of which vary in time, and maybe an
explicit function of time as well. We get

d
dt

(
∂L
∂va

)
=

∑
b

[
∂2L

∂qb∂va

dqb

dt
+

∂2L
∂vb∂va

dvb

dt

]
+

∂2L
∂t∂va

.

Thus the other half of the equations of motion would read∑
b

[
∂2L

∂qb∂va
vb +

∂2L
∂vb∂va

dvb

dt

]
+

∂2L
∂t∂va

=
∂L
∂qa

.

These equations confound together all the velocities and their derivatives. They
are somewhat more complicated and unwieldy that Hamilton’s equations, which
cleanly separate out the derivatives of their objects of study, namely, the mo-
menta.

Well, but maybe we can make a little headway using matrices and such, as

38
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we did in the chapter. Let’s try this in the simplest case where the Lagrangian
is written

L =
1
2

q̇T Aq̇ − V =
1
2

∑
a

vaAabva − V

for some inertia matrix A and regarding velocities va = q̇a as variables. Com-
ponents of the generalized forces are as always

∂L
∂qc

= −
∂V
∂qc

+
1
2

∑
a

va
∂Aab

∂qc
vb

The kinetic part of Lagrange’s equations are

d
dt

(
∂L
∂vc

)
=

d
dt

∑
b

Acbvb


=

∑
b

Acb
dvb

dt
+

∑
ab

∂Acb

∂qa

dqa

dt
vb

=
∑

b

Acb
dvb

dt
+

∑
ab

va
∂Acb

∂qa
vb,

where, instead of treating the matrix product Av as its own thing, we go ahead
and take the time derivative of this product, preserving the velocities v.

After some rearrangement, Lagrange’s equations are then∑
b

Acbv̇b = −
∂V
∂qc

+
1
2

∑
a

va
∂Aab

∂qc
vb −

∑
ab

va
∂Acb

∂qa
vb

Now, this is maybe not as clean as Hamilton’s equations, but it does have a
kind of “ma = F” vibe to it, if you look. On the left side we have the product
of the inertia matrix (playing the role of “m”) times the accelerations, although
this is a matrix product in general. On the right hand side we have, in order:
the applied forces; the usual fictitious forces; and a new kind of force that is
downright delusional.

Let’s see what it looks like in a simple case, motion in a plane in polar
coordinates, just like in the Chapter. In this case the inertia matrix is

A =

(
m 0
0 mr2

)
.

Then the fictitious forces have components

Ff,r =
1
2

(
vr vφ

) ∂
∂r

(
m 0
0 mr2

) (
vr

vφ

)
= mrv2

φ

Ff,φ =
1
2

(
vr vφ

) ∂

∂φ

(
m 0
0 mr2

) (
vr

vφ

)
= 0.
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The delusional forces are a little more awkward, but in this case A is diagonal,
b = c, and we can calculate components

Fd,r = −
∑

a

va
∂Arr

∂qa
vr = vr(0)vr − vφ(0)vr = 0

Fd,φ =
∑

a

va
∂Aφφ

∂qa
vφ = −vr(2mr)vφ − vr(0)vφ = −2mrvrvφ.

The equations of motion for the velocities are

mv̇r = −
∂V
∂r

+ mrv2
φ

mr2v̇φ = −
∂V
∂φ
− 2mrvrvφ,

which must of course be complemented by

ṙ = vr

φ̇ = vφ

to make a solvable system of equations.
Now, I’m not an expert in this form of the equations of motion (I don’t think

anybody is, honestly), but let’s see what we’ve got. First, using these equations
and by direct substitution of pr = mvr, pφ = mr2vφ, you can recover the usual
Hamilton’s equations.1 The equations in terms of velocities are less convenient,
however, in that the velocities are coupled between one equation and the other.

More to the point, the whole idea of constants of the motion gets hidden.
Suppose that ∂V/∂φ = 0, then angular momentum should be conserved. do the
equations tell us this? Sort of. In this case the equation for vφ is

mr2v̇φ + 2mrvrvφ = 0.

Using vr = ṙ, you could then recognize this as reading

d(mr2vφ)
dt

= 0.

There’s your constant of the motion, but you kind of had to go digging for it,
whereas Hamilton’s equations hand it to you on a silver platter.

Exercise 6.2

The coordinates in the inertial frame read

x = r cos Ωt y = r sin Ωt.

1 Exercises within exercises!
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We’ve seen approximately a million times how to construct the Lagrangian for
something like this:

L =
1
2

m
(
ṙ2 + r2Ω2

)
.

r is the only degree of freedom. Its conjugate momentum is pr = ∂L/∂ṙ = mṙ.
Lagrange’s equations are

dpr

dt
= mr̈ =

∂L
∂r

= mrΩ2

or r̈ = Ω2r. The general solution to this is r(t) = AeΩt + Be−Ωt; a particular
solution with ṙ(0) = 0, is r(t) = r0 cosh Ωt.

On the other hand, the Hamiltonian is

H = pr ṙ − L

=
p2

r

2m
−

1
2

mΩ2r2.

Hamilton’s equations are

dpr

dt
= −

∂H
∂r

= mΩ2r

dr
dt

=
∂H
∂pr

=
pr

m
.

These equations are fine and give the right answer. Ironically, the easiest way
to see this it to kind of undo the transformation, and to replace this pair of
first-order equations with a single, second-order equation. Thus

d2r
dt2 =

1
m

dpr

dt
=

1
m

mΩ2r,

and this is Lagrange’s equation again. If the solution is r = r0 cosh Ωt, then the
momentum will be mr0Ω sinh Ωt.

This is a little bit silly, but the point is you can certainly formulate equations
of motion for this problem using Hamilton’s procedure. How you solve the
equations is up to you.

Exercise 6.3

You don’t really need Lagrangian (let alone Hamiltonian) mechanics for
this, but what the heck. The potential energy of the mass M is V = Mg(r − r0)
for some reference length r0: if the radius of the whirling string increases, it
raises M and increases the kinetic energy. Thus the Lagrangian is

L =
1
2

mṙ2 +
1
2

mr2φ̇2 − Mg(r − r0).
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In the usual way, the equation of motion for φ is d(mr2φ̇)/dt = 0 and identifies
the angular momentum pφ = mr2φ̇ = L as a fixed quantity. Then Lagrange’s
equation for r is

mr̈ =
∂L
∂r

= mrφ̇2 − Mgr =
L2

mr3 − Mg.

A stable orbit would have r̈ = 0, and hence for angular momentumL the radius
of this orbit would be

r =

(
L2

mMg

)1/3

.

Okay, you could use Hamiltonians too. The Hamiltonian is

H =
p2

r

2m
+
L2

2mr2 + Mg(r − r0).

The equation of motion for the momentum is

dpr

dt
= −

∂H
∂r

=
L2

mr3 − Mg.

Zeroing the change in momentum, dpr/dt = 0, results in the same condition
as above.

Exercise 6.4

(i) Give me two matrices A and B. For either one, say A, the transpose AT is
defined in terms of matrix elements by

AT
i j = A ji.

By the rules of matrix multiplication, matrix elements of the product AB are

(AB)i j =
∑

k

AikBk j.

Then the matrix elements of the transpose of AB are

(AB)T
i j = (AB) ji =

∑
k

A jkBki =
∑

k

BkiA jk =
∑

k

BT
ikAT

k j = (BT AT )i j.

So, (AB)T = BT AT .

Exercise 6.5

Let’s suppose for the moment that you didn’t have the genius required to
know that you should use the Legendre transformation to go from Lagrangians
to Hamiltonians. What would you do instead? As always, you identify the
momentum and try to write its equation of motion in terms of Tp.
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The chapter begins this for us. The kinetic energy in terms of velocities is
written in matrix form as

Tq̇ =
1
2

q̇T Aq̇ + q̇T b + c.

This gives momentum

p = Aq̇ + b,

which is inverted to give velocity as a function of momentum:

q̇ = A−1(p − b).

Our general strategy is as it was in the chapter. We will first find the equa-
tion of motion for a component of the generalized momentum from Lagrange’s
equation, then translate this expression into something that depends on mo-
mentum:

dpa

dt
=
∂(Tq̇ − V)

∂qa
=

1
2

q̇T ∂A
∂qa

q̇ + q̇T ∂b
∂qa

+
∂c
∂qa
−
∂V
∂qa

=
1
2

(p − b)T (A−1)T ∂A
∂qa

A−1(p − b) + (p − b)T (A−1)T ∂b
∂qa

+
∂c
∂qa
−
∂V
∂qa

= −
1
2

(p − b)T ∂A−1

∂qa
(p − b) + (p − b)T A−1 ∂b

∂qa
+
∂c
∂qa
−
∂V
∂qa

. (6.1)

where we have used the result ∂A−1/∂qa = −A−1(∂A∂qa)A−1 again.
Next, we directly construct the kinetic energy as a function of momenta:

Tp = T2,p + T1,p + T0,p,

where

T2,p =
1
2

(
(p − b)T (A−1)T

)
A

(
A−1(p − b)

)
=

1
2

(p − b)T A−1(p − b)

T1,p = (p − b)T A−1b

T0,p = c.

Based on our experience with non-moving coordinate systems, we know that
the main thing that has to happen here is a change in sign of the T2,p compo-
nent, so as to get an appropriate minus sign in the generalized force, as in the
first term of dpa/dt above. An easy way to do this (HERE IS THE TRICK) is
to write T1,p as

T1(p) = (p − b)T A−1b

= −(p − b)T A−1(p − b) + (p − b)A−1 p.
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Then the Quantity Formerly Known As The Lagrangian can be written

Lp = −H + (p − b)T A−1 p,

where we have carefully, and with forethought, introduced a symbol

H =
1
2

(p − b)T A−1(p − b) − c + V.

What is it good for? Look at the following derivative

−
∂H
∂qa

= −
1
2

(p − b)T ∂A−1

∂qa
(p − b) +

1
2
∂bT

∂qa
A−1(p − b) +

1
2

(p − b)T A−1 ∂b
∂qa

+
∂c
∂qa
−
∂V
∂qa

.

The second and third terms in this are transposes of each other, but they are
also numbers. And by golly, a number (a 1 × 1 matrix) is its own transpose.
The result:

−
∂H
∂qa

= −
1
2

(p − b)T ∂A−1

∂qa
(p − b) + (p − b)T A−1 ∂b

∂qa
+
∂c
∂qa
−
∂V
∂qa

,

which is exactly the generalized force applied and set equal to dpa/dt, see
above. In summary, the portion H of the transformed Lagrangian gives us the
equation of motion

dpa

dt
= −

∂H
∂qa

.

There is another necessary equation of motion, the one for qa. We’re kind of
conditioned to think of this as coming from the derivative of H with respect to
momentum. Is it?

∂H
∂pa

=
∂

∂pa

[
1
2

(p − b)T A−1(p − b)
]

=
1
2

A−1(p − b) +
1
2

(p − b)T A−1

= A−1(p − b) = q̇a =
dqa

dt
.

These are, of course, Hamilton’s equations.
It looks like we found the piece we need, the Hamiltonian H, residing in a

part of the properly transformed Lagrangian. What of the leftover piece? We
have

L = −H + (p − b)T A−1 p = −H + q̇T p,

the same relation that defines the Legendre transformation.



Solutions to Exercises Chapter 6 45

Exercise 6.6
As related in the chapter, the Lagrangian for this situation is

L =
1
2

m(η̇2 + ξ̇2) + mΩ(ηξ̇ − ξη̇) +
1
2

mΩ2(η2 + ξ2),

with momenta

pη =
∂L
∂η̇

= mη̇ − mΩξ

pξ =
∂L
∂ξ̇

= mξ̇ + mΩη.

Therefore, the velocities in terms of momenta are

η̇ =
pη
m

+ Ωξ

ξ̇ =
pξ
m
−Ωη.

So after some irritating algebra you find the Hamiltonian

H =
p2
η

2m
+

p2
ξ

2m
+ Ω(ξpη − ηpξ).

The equations of motion for the momenta then stand alone, apart from those
for the coordinates:

dpη
dt

= −
∂H
∂η

= Ωpξ

dpξ
dt

= −
∂H
∂ξ

= −Ωpη.

This leads to things like p̈η = −Ω2 pη, p̈ξ = −Ω2 pξ, whose solutions are clearly
just sines and cosines. The momenta evolve simply in time.

Let’s give the mass initial conditions like η(0) = η0, η̇(0) = 0, ξ(0) = 0,
ξ̇(0) = 0. Then the initial conditions for the momenta are pη(0) = 0, pξ(0) =

mΩη0, and

pη = mΩη0 sin Ωt

pξ = mΩη0 cos Ωt.

Then the coordinates evolve in time as

η̇ =
pη
m

+ Ωξ = Ωη0 sin Ωt + Ωξ

ξ̇ =
pξ
m
−Ωη = Ωη0 cos Ωt −Ωη.
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These, too, can be separated by taking another derivative:

η̈ = −Ω2η + 2Ω2η0 cos Ωt

ξ̈ = −Ω2ξ − 2Ω2η0 sin Ωt,

at which point you may be wondering why we bothered with all this Hamilto-
nian stuff.

Anyway, equations like these are solved by standard methods, like you would
find in the classic text by Boas.2 Consider η and ξ as the real and imaginary
parts of a complex variable z = η+ iξ, in terms of which both the equations are
collected together into

z̈ + Ω2z = 2A exp(−iΩt),

where A = Ω2η0 is real-valued. If the right-hand side of this equation were
zero, the equation would be what is called homogeneous, and you would know
the sine and cosine (or complex exponential) solutions. But the term on the
right, the driving, or source, term, complicates things. The theory of differential
equations tells us that the general solution to the equation for z is

z(t) = a exp(iΩt) + b exp(−iΩt) + zp(t),

where zp is any solution to the equation that is independent of (i.e., cannot
be written as a linear combination of) the homogeneous solutions exp(±iΩt).
The constants a and b serve to set the initial conditions. You can freely add or
subtract the homogeneous solutions as much as you want, and still satisfy the
differential equation.

The function zp is called a particular solution to the equation. We only need
one; where do we get it? For details, I refer the reader to the book by Boas, or
equivalent. The gist of it is, you rewrite the differential equation

z̈p + Ω2zp = 2A exp(−iΩt),

as (
d
dt

+ iΩ
) (

d
dt
− iΩ

)
zp = 2A exp(−iΩt).

Then we introduce an auxiliary function u so that(
d
dt

+ iΩ
)

u = 2A exp(−iΩt)(
d
dt
− iΩ

)
zp = u.

2 M. L. Boas, Mathematical Methods in the Physical Sciences, 3rd ed. Wiley 2006, see Chapter
8.
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This is a pair of first-order equations, which can be solved sequentially, first
for u(t), then for zp(t), by using the technique of integrating factors.

I won’t go into the details here, but suffice it to say that a perfectly good
particular solution is given by

zp(t) =
iA
Ω

t exp(−iΩt) = iη0Ωt exp(−iΩt),

as you can verify by direct substitution. The form of the solutions is then

η(t) = <(z(t))

ξ(t) = =(z(t)),

where

z(t) = z(t) = a exp(iΩt) + b exp(−iΩt) + iη0Ωt exp(−iΩt).

This is enough to get the idea. As time goes by, the coordinates in the rotating
frame, in addition to going round and round, also expand linearly in time away
from the center of rotation.

Exercise 6.7

The Lagrangian is worked out in previous chapters:

L =
1
2

m
(
σ2 + τ2

) (
σ̇2 + τ̇2

)
.

The momenta are

pσ = m
(
σ2 + τ2

)
σ̇

pτ = m
(
σ2 + τ2

)
τ̇.

The Lagrangian translated into momenta is

Lp =
1
2

m
(
σ2 + τ2

) ( p2
σ

m(σ2 + τ2)

)2

+

(
p2
τ

m(σ2 + τ2)

)2
=

1
2m(σ2 + τ2)

(
p2
σ + p2

τ

)
.

Meanwhile,

q̇T p =
pσ

m(σ2 + τ2)
pσ +

pτ
m(σ2 + τ2)

pτ.

The difference is the Hamiltonian,

H =
1

2m
p2
σ + p2

τ

σ2 + τ2 .
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Exercise 6.8

Let’s focus on the x axis, since that’s where the action is. There are three
energies to consider: the kinetic energy

T =
1
2

mẋ2,

the energy of the stretched spring,

Vs =
1
2

kx2,

and the energy of the charge in the electric field,

Ve = −x · F = eE0x cos Ωt.

Together these make the Lagrangian,

L =
1
2

mẋ2 −
1
2

kx2 − eE0x cos Ωt.

There’s nothing especially tricky in going from velocity to momentum p =

mẋ here. The Hamiltonian is

H = ẋp −
1
2

m
( p
m

)2
+ Vs + Ve

=
p2

2m
+

1
2

kx2 + eE0x cos Ωt,

which you better believe is the total energy. It is not, however, a conserved
quantity, for

dH
dt

=
∂H
∂t

= −eE0Ωx sin Ωt,

which varies with time. The field adds energy to the electron when the electron
is already moving in the direction of acceleration, and loses it when the reverse
is true.

Exercise 6.9

I’ll do you one better. We’ve already seen that the general Lagrangian of a
charged particle in a magnetic field is

L =
1
2

m
(
ẋ2 + ẏ2 + ż2

)
+

q
c

ṙ · A.

Thus, for example, the x component of the generalized momentum is

px =
∂L
∂ẋ

= mẋ +
q
c

Ax,
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and similarly for y and z. The rest is starting to look pretty familiar. We have

ṙ · p =
p2

m
−

q
mc

p · A

1
2

mṙ2 =
1

2m

(
p −

q
c

A
)2

=
p2

2m
−

q
mc

p · A +
q2

2mc2 A2

q
c

ṙ · A =
q

mc
p · A −

q2

mc2 A2.

From this we construct the Hamiltonian in the usual way

H =
p2

2m
−

q
mc

p · A +
q2

2mc2 A2

=
1

2m

(
p −

q
c

A
)2
.

You recognize this as just (1/2)mṙ2, but the rules say, we have to write it in
terms of momentum.

In the case at hand, with B = Bẑ, and the usual choice of A = (B/2)(−yx̂ +

xŷ), we get

q
c

A =
qB
2c

(−yx̂ + xŷ) =
mωc

2
(−yx̂ + xŷ),

in terms of the cyclotron frequency ωc. Note: On p. 104 of the text, the cy-
clotron frequency is wrong. The correct definition isωc = qB/mc. This specific
Hamiltonian is then

H =
1

2m

(
px +

mωc

2
y
)2

+
1

2m

(
py −

mωc

2
x
)2
.

To find the circles, it is of course useful to go into polar coordinates. The
Lagrangian is given in Chapter 5,

L =
1
2

mṙ2 +
1
2

mr2φ̇2 +
qB
2c

r2φ̇

=
1
2

mṙ2 +
1
2

mr2φ̇2 +
1
2

mωcr2φ̇,

given in terms of the cyclotron frequency ωc = qB/mc. The conjugate mo-
menta are

pr =
∂L
∂ṙ

= mṙ

pφ =
∂L
∂φ̇

= mr2φ̇ +
1
2

mωcr2.
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Then after the usual business,

ṙpr + φ̇pφ =
p2

r

m
+

p2
φ

mr2 −
1
2
ωc pφ

1
2

mṙ2 +
1
2

mr2φ̇2 =
p2

r

2m
+

p2
φ

2mr2 −
1
2
ωc pφ +

1
8

mω2
cr2

1
2

mωcr2φ̇ =
1
2
ωc pφ −

1
4

mω2
cr2,

from which fragments the Hamiltonian is constructed,

H =
p2

r

2m
+

p2
φ

2mr2 −
1
2
ωc pφ +

1
8

mω2
cr2.

We move on to Hamilton’s equations. An easy one is

ṗφ = −
∂H
∂φ

= 0,

meaning that the momentum pφ is conserved; no surprises there. What is its
constant value? Well, for a circular orbit we require both r and ṙ to be constant:

ṙ =
∂H
∂pr

=
pr

m
= 0,

ṗr = −
∂H
∂r

=
p2
φ

mr3 −
1
4

mω2
cr = 0.

This last equation identifies the constant angular momentum as

pφ = ±
1
2

mωcr2.

There are two choices here, and we are looking for the negative one. This is
because the equation of motion for φ gives

φ̇ =
∂H
∂pφ

=
pφ

mr2 −
1
2
ωc

=
1

mr2

(
−

1
2

mωcr2
)
−

1
2
ωc

= −ωc.

So φ runs around the circle with angular frequency −ωc. We could have alter-
natively taken pφ = +mωcr2/2, which would give φ̇ = 0. So, yes, a charged
particle could be motionless in a magnetic field, but this is less interesting.
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Exercise 7.1

(a) First let’s recall what the equations of motion are. If

H =
p2

x

2m
+

1
2

mω2x2,

then

ẋ =
∂H
∂px

=
px

m

ṗ = −
∂H
∂x

= −mω2x.

By directly substituting everything in sight, these equations can be recast as
equations for the new variables:

ẋ′ = ωp′x
ṗ′x = −ωx′.

This looks nice, and brings a kind of symmetry to the proceedings. But look:
If we had made this substitution directly into the Hamiltonian, we’d get a new
function

H′ =
1
2

p′2x +
1
2

x′2.

Do Hamilton’s equations, applied to this function, get the right equations of
motion for x′, p′x? Not likely! There is noω even. The equations, if we interpret
H′ as a Hamiltonian, are

ẋ′ =
∂H′

∂p′x
= p′x

ṗ′x = −
∂H′

∂x′
= −x′.

51
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(b) We still obviously have ˙̄p = −∂H̄/∂q̄ = 0, so that’s not the problem. If all
the Hamiltonian business works out, we’d expect ˙̄q = ∂H̄/∂p̄ = ω. Is it? Let’s
find out:

˙̄q =
1

1 + (p/q)2

[
1
q

ṗ −
p
q2 q̇

]
=

1
1 + (p/q)2

[
1
q

(−ωq) −
p
qqωp

]
= −ω.

So, no, in this formulation this equation has the opposite sign.

Exercise 7.2

(a) Are you kidding me? If

L =
1
2

mẋ2 −
1
2

mω2x2,

then

H =
p2

2m
+

1
2

mω2x2,

and Hamilton’s equations of motion are

ẋ =
p
m

ṗ = −mω2x,

with solutions

x(t) = x0 cosωt

p(t) = −mωx0 sinωt.

(b) Suddenly it’s not so funny. The Lagrangian

L̄ =
1
2

mẋ2 −
1
2

mω2x2 + mωxẋ

gives us a different conjugate momentum

p̄ =
∂L̄
∂ẋ

= mẋ + mωx

and a new Hamiltonian

H̄ = ẋ p̄ − L̄p =
p̄2

2m
− ωxp̄ + mω2x2.
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This looks like (and is) a confusing mess, but it should still get the job done.
Hamilton’s equations are now

ẋ =
∂H̄
∂p̄

=
p̄
m
− ωx

˙̄p = −
∂H̄
∂x

= ω p̄ − 2ω2x.

Well, and why not? There are different equations for different mathematical
quantities.

We can solve these equations in the usual, anticlimactic way, by taking an-
other time derivative. Using Hamilton’s equations, we get

ẍ =
˙̄p
m
− ωẋ

= −ω2x,

This is the usual equation of motion for x, with solution (for example)

X(t) = x0 cosωt.

The corresponding momentum is

p̄ = mẋ + mωx = mωx0 (cosωt − sinωt) .

(c) A phase space orbit for this Hamiltonian is shown in Figure 7.1. In this
example, m = 1, ω = 2π/1sec, and x0 = 0.1m. This orbit is still elliptical, but
is tilted at some weird angle.

Exercise 7.3

You have to choose the signs knowing where you’re going with this. First,
recall the basic dependence of the type-1 generating function Λ1(q, q̄):

dΛ1 = pdq − p̄dq̄ + (H̄ − H).

To get Λ3(p, q̄), we need to subtract away the part that goes as pdq. So define

Λ3 = Λ1 − pq.

Then

dΛ3 = pdq − p̄dq̄ + (H̄ − H) − pdq − qdp

= −p̄dq̄ − qdp + (H̄ − H)dt

=
∂Λ3

∂q̄
dq̄ +

∂Λ3

∂p
dp +

∂Λ3

∂t
dt.
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p (J-s)

Figure 7.1 Typical phase space trajectory for the weird Hamiltonian H̄ discussed
in the text.

This function of (q̄, p) therefore generates the other quantities via

q = −
∂Λ3

∂p

p̄ = −
∂Λ3

∂q̄

H̄ − H =
∂Λ3

∂t
.

What’s left? Λ1 depends on coordinates q and q̄. Λ2 and Λ3 swapped out
one or the other of these for the conjugate momentum. Looks like Λ4 will be
a function of both momenta. We can start with Λ1, then take the coordinates
away via

Λ4 = Λ1 − pq + p̄q̄,

so

dΛ4 = pdq − p̄dq̄ + (H̄ − H)dt − pdq − qdp + p̄dq̄ + q̄d p̄

= −qdp + q̄d p̄ + (H̄ − H)dt

=
∂Λ4

∂p
dp +

∂Λ4

∂p̄
d p̄ +

∂Λ4

∂t
dt,
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giving the transformations

q = −
∂Λ4

∂p

q̄ =
∂Λ4

∂p̄

H̄ − H =
∂Λ4

∂t
.

Exercise 7.4

As established above, the Hamiltonian for this charged particle is

H =
1

2m

(
p −

q
c

A
)2
.

Now, the Hamilton-Jacobi equation requires replacing the components of mo-
menta with the relevant gradients with respect to coordinates. In polar coordi-
nates, this means

p→
∂W
∂r

r̂ +
1
r
∂W
∂φ

φ̂.

So if the vector potential is written A = (1/2)Brφ, the Hamilton-Jacobi equa-
tion is

1
2m

(∂W
∂r

)2

+

(
1
r
∂W
∂φ
−

qB
2c

r
)2 = E.

Try separating this using W = Wr(r) + Wφ(φ). You get

1
2m

(dWr

dr

)2

+

(
1
r

dWφ

dφ
−

qB
2c

r
)2 = E.

This can be re-arranged to isolate the φ part:

dWφ

dφ
=

qB
2c

r2 + r

√
2mE −

(
dWr

dr

)2

The left side depends on on φ, the right side only on r. So they must be equal
to the same constant, αφ. Using this constant we can solve for dWr/dr:

dWr

dr
=

√
2mE −

(αφ
r
−

qB
2c

r
)2

The generating function is therefore

W =

∫
dr

√
2mE −

(αφ
r
−

qB
2c

r
)2

+ αφφ.
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Using this generating function, the conjugate momenta are

pφ =
∂W
∂φ

= αφ,

pr =
∂W
∂r

=

√
2mE −

(αφ
r
−

qB
2c

r
)2

.

Thus αφ is just the conserved angular momentum as you might have guessed.
This momentum is defined just as if the particle were moving in an effective
radial potential

V(r) =
1

2m

(αφ
r
−

qB
2c

r
)2

.

Exercise 7.5

The free particle Hamiltonian is

H =
p2

2m
.

The corresponding Hamilton-Jacobi equation for S is

1
2m

(
∂S
∂x

)2

+
∂S
∂t

= 0.

This turns out to be separable as a product, S (x, t) = X(x)T (t). Try it. You get

1
2m

(
∂X
∂x

)2

T 2 +
∂T
∂t

X = 0.

Dividing by XT 2, you get two terms which are independent,

1
2mX

(
∂X
∂x

)2

+
1

T 2

∂T
∂t

= 0.

Set the first term of this equal to a constant α and the second to −α. Then

X−1/2 dX
dx

=
√

2mα,

2X1/2 =
√

2mα(x − x0),

X =
mα
2

(x − x0)2

and

T−2 dT
dt

= −α

−T−1 = −α(t − t0)
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T =
1

α(t − t0)
.

Then the generating function is

S = XT =
m(x − x0)2

2(t − t0)
.

Exercise 7.6

This is tricky. I will try to motivate how the search for a generating function
S goes, but frankly (spoiler alert) I know how it comes out, too. We are set on
solving the partial differential Hamilton-Jacobi (H-J) equation

1
2m

(
∂S
∂x

)2

− mAxt +
∂S
∂t

= 0.

We would love to do this by separation of variables, which was a basic ingre-
dient in all of our differential equations classes. A provisional S might be

S prov(x, t) = f (x) + g(t),

or maybe a product f (x)g(t). But you can quickly substitute these in and see
that they are no help, largely because of that irritating xt term, and those darn
kids. But there is a gimmick to get this term out of the way. Suppose you add
in another thing, h(x, t), chosen so that its time derivative cancels the −mAxt.
That is you would want

∂h
∂t

= mAxt, or

h =
1
2

mAxt2.

Then your provisional S becomes

S prov(x, t) = f (x) + g(t) +
1
2

mAxt2.

Substituting this into the H-J equation you get

1
2m

(
d f
dx

+
1
2

mAt2
)
− mAxt +

(
dg
dt

+ mAxt
)

= 0,

1
2m

(
d f
dx

+
1
2

mAt2
)

+
dg
dt

= 0.

Now look at this. The only x dependence here is in d f /dx, and we put that in
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there ourselves. There’s no point in making extra complications for ourselves,
so let’s let f = 0. Then your provisional S function is

S prov = g(t) +
1
2

mAxt2.

But wait! There is one thing more. By the rules of Hamilton-Jacobi theory,
the momentum is given by

p =
∂S prov

∂x
=

1
2

mAt2.

This would require the momentum to be zero at time t = 0. We can make this
more general by adding in a term p0x, where p0 is the initial momentum. Thus
our final, working generating function is

S (x, t) = g(t) +
1
2

mAxt2 + p0x.

Is there anything else, Lieutenant Columbo? I hope not.
Let’s take this generating function out for a spin. Substituting into the H-J

equation we get

1
2m

(
1
2

mAt2 + p0

)2

+
dg
dt

= 0.

This is an ordinary differential equation, with solution

g(t) = −
p2

0

2m
t −

p0A
6

t3 −
mA2

40
t5.

So there it is, but g(t) is not that critical to solving the problem. The main
thing is, the momentum is now given for free as a function of time,

p =
∂S
∂x

=
1
2

mAt2 + p0.

Finally, we can refer to Hamilton’s equation for x,

ẋ =
∂H
∂p

=
p
m

=
1
2

At2 +
p0

m
.

This problem is now reduced to quadratures - our favorite thing. The solution
for x is

x(t) =
1
6

At3 +
p0

m
t + x0.
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At this point I can’t help but laugh, because what is that thing? You know,
Hamilton’s equation for the momentum is

ṗ = −
∂H
∂x

= mAt,

whose solution is just mAt2/2 + p0, as we got the long way above.
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Exercise 8.1

The action is the integral of momentum over a full period of the motion.
This is twice the integral from the left turning point −xt to the right turning
point xt, or four times the integral from zero to xt:

J = 4
∫ xt

0
dx

√
2m(E − V0 tan2(x/a)),

where the turning point is given by xt = a tan−1 √E/V0. Asserting that this
integral can be done is different from saying that it’s easy. This trick I learned
from the solutions manual to Calkin’s great book. First write√

E − V0 tan2(x/a) =
E − V0 tan2(x/a)√
E − V0 tan2(x/a)

=
E cos2(x/a) − V0(1 − cos2(x/a))

cos2(x/2)
√

E − V0 tan2(x/a)

=
(E + V0) cos(x/a)

cos(x/a)
√

E − V0 tan2(x/a)
−

V0

cos2(x/a)
√

E − V0 tan2(x/a)
.

In the first term here, write

cos(x/a)
√

E − V0 tan2(x/a) =

√
E(1 − sin2(x/a)) − V0 sin2(x/a)

=

√
E − (E + V0) sin2(x/a).

The action integral takes the much more manageable form

J = 4
√

2m

 √E + V0

∫ xt

0
dx

cos(x/a)√
E/(E + V0) − sin2(x/a)

−
√

V0

∫ xt

0
dx

1/ cos2(x/a)√
E/V0 − tan2(x/a)

.
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Using sin θ =
√

E/(E + V0) sin(x/a), the first integral becomes∫ θt

0

a
√

E/(E + V0) cos θdθ√
E/(E + V0)(1 − sin2 θ)

= a
∫ π/2

0
dθ =

πa
2
,

and using tan(x/a) =
√

E/V0 sin θ the second integral becomes∫ θt

0

a
√

E/V0 cos θdθ√
(E/V0)(1 − sin2 θ)

= a
∫ π/2

0
dθ =

πa
2
.

Thus the action is

J = 4
√

2m
(
πa
2

) [ √
E + V0 −

√
V0

]
.

The energy is given in terms of the action as

E =

(
J

2π
√

2ma
+

√
V0

)2

− V0,

which is refreshingly not linear in the energy, as it would be for the harmonic
oscillator.

The frequency of this motion is

ν =
dE
dJ

=
J

4π2ma2 +

√
V0

π
√

2ma
.

Now, look at this. At low enough energy, everything is supposed to be a har-
monic oscillator. Well, if E � V0, we have

√
E + V0 −

√
V0 ≈ (E/2)

√
V0 and

the relation between energy and action is

E ≈

√
V0

2m
1
πa

J,

with angular frequency

ω = 2π
dE
dJ
≈ 2

√
V0

2m
1
a
.

For small excursion a away from zero, the potential is cast as a harmonic os-
cillator with effective angular frequency ωe f f , where

V ≈ V0

( x
a

)2
=

1
2

mω2
e f f x2,

which also gives ωe f f = 2
√

V0/2m/a.

Exercise 8.2

Don’t get carried away here. We still want dω/dt to be small, so we can
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make Taylor series expansions where necessary. Also, any given period is still
pretty much oscillating at frequency ω0, so we will feel free to use this when
averaging over a period. Thus if ω = ω0 + ω′t, where ω′ = dω/dt, we have

sin(ω0t + ω′t2) ≈ sinω0t + ω′t2 cosω0t

cos(ω0t + ω′t2) ≈ cosω0t − ω′t2 sinω0t

Here ω′t2 is regarded as small, for the period of frequency ω0 that starts at time
t = 0.

As described in the chapter, the angle is given by

φ =

√
2E
mgl

sin(ω0t + ω′t2)

≈

√
2E
mgl

[
sinω0t + ω′t2 cosω0t

]
,

where we ignore the phase δ that is irrelevant here. The velocity of this angle
is, expanded to order ω′,

φ̇ =

√
2E
mgl

(ω0 + 2ω′t) cos(ωt + ω′t)

≈

√
2E
mgl

(ω0 + 2ω′t)
[
cosω0t − ω′t2 sinω0t

]
≈

√
2E
mgl

[
ω0 cosω0t + 2ω′t cosω0t − ω0ω

′t2 sinω0t
]

In constructing the rate of change of energy with length,

dE
dl

=
1
2

mgφ2 − mlφ̇2,

we will expand out to terms linear in ω′. So we get

1
2

mgφ2 ≈
1
2

mg
2E
mgl

(
sinω0t + ω′t2 cosω0t

)2

≈
E
l

(
sin2 ω0t + 2ω′t2 sinω0t cosω0t

)
.

−mlφ̇2 ≈ −ml
2E
mgl

(
ω0 cosω0t + 2ω′t cosω0t − ω0ω

′t2 sinω0t
)2

≈ −
2E
l

(
cos2 ω0t + 4

ω′

ω0
t cos2 ω0t − 2ω′t2 sinωot cosω0t

)
.
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This has used ω2
0 = g/l.

Now we average everything over one period T = 2π/ω0. The averages of
sin2 and cos2 are equal to 1/2, as always. We also use the averages

1
T

∫ T

0
dt t2 sinω0t cosω0t = −

π

2ω0

1
T

∫ T

0
dt t cos2 ω0t =

π

2ω0
.

(8.1)

The result is

dE
dl

= −
1
2

E
l
−

7πE
l

ω′

ω2
0

= −
1
2

E
l

1 + 14π
1
ω2

0

dω
dt

 .
The second term in brackets is the correction for finite (and constant) rate of
change dω/dt of the frequency. If this is supposed to be less than some toler-
ance δ (like 1 percent), then the fractional change of the frequency during a
single period T should be

T
1
ω0

dω
dt

=
2π
ω0

1
ω0

dω
dt
≤ 7δ.

Exercise 8.3

Here follows the Mathematica code that produced the figure. See the so-
lutions to Chapter 2 for more information on how to set up these differential
equations.

The setup:
g=9.8;

l=1;

phi0=0.01;

phip0=0;

omega=Sqrt[g/l];

T=2*Pi/omega:

Numper=30;

Define a length that varies linearly in time, reducing to ε of its original length
in a time N per×T . (Note the underscore after the t, this is part of Mathematica
syntax.)
epsilon=0.6;
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lp=(epsilon-1)/(Numper*T);

length[t ]:=l*(1-t*(1-epsilon)/(Numper*T));

Next set up the differential equation
polar=NDSolve[{phi’’[t]+2*lp*phi’[t]/length[t]==-(g/length[t]*phi[t],phi[0]==phi0,

phi’[0]==phip0},phi,{t,0,Numper*T}];

Then plot it. The command
Plot[phi[t]/.ploar,{t,0,Numper*T}]

gives the figure in the main text. Of more interest is to plot the total energy,
Plot[(1/2)*length[t]ˆ2*phi[t]ˆ2+(1/2)*g*length[t]*phi[t]ˆ2/.polar,{t,0,Numper*T},

AxesLabel->{’’t (s)’’,’’E (J)’’}]

This gives the figure below. There is an overall rise in the total energy, plus
a lot of small wiggles, which are the things we average over.

10 20 30 40 50 60
t (s)

0.00050

0.00052

0.00054

0.00056

0.00058

0.00060

0.00062

0.00064

E (J)

Figure 8.1 Up up and away! The energy of the pendulum as it is gradually short-
ened.

Exercise 8.4

(Note the following is stolen almost entirely from Goldstein, who then goes
on to make a full discussion of perturbation theory.)

Starting from the Hamiltonian

H̄ =
ω

2π
J +

ω̇

ω

J
4π

sin 4πβ,

Hamilton’s equations in the action-angle coordinates are

J̇ = −
∂H̄
∂β

= −
ω̇

ω
J cos 4πβ

β̇ =
∂H̄
∂J

=
ω

2π
+

ω̇

4πω
sin 4πβ.
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We will consider the small quantity ε ≡ ω̇/ω to be both small and approx-
imately constant in time over a period. We write the frequency therefore as
ω = ω0 + εt. When ε = 0, the zero-order solution is β0 = ω0/2π. Substituting
this on the right-hand side of the equation for β, we have a next order equation

β̇1 =
ω0

2π
+
ω0

2π
εt +

ε

4π
sin 2ω0t.

This you can just integrate:

β1(t) =
ω0

2π
t +

ω0ε

4π
t2 +

ε

4π
1

2ω0
(1 − cos 2ω0t),

where the 1 in front of the cosine term is a constant of integration that ensures
β1(0) = 0.

The equation of motion for the action is then

J̇ = −εJ cos 4πβ1

= −εJ cos
[
2ω0t + ω0εt2 +

ε

2ω0
(1 − cos 2ω0t)

]
.

Treating the ε parts as some small quantity δ, we expand the cosine as

cos(2ω0t + δ) = cos 2ω0t cos δ − sin 2ω0t sin δ ≈ cos 2ω0t − δ sin 2ω0t

to get

J̇
J

= −ε cos 2ω0t + ω0ε
2t2 sin 2ω0t +

ε2

2ω0
sin 2ω0t(1 − cos 2ω0t).

Now it’s safe to average this over a period T = 2π/ω0. The sines and cosines
average to zero, but the remaining average is

1
T

∫ T

0
dt t2 sin 2ω0t = −

T 2

4π
. (8.2)

Then, if we take J̇/J approximately constant during this period, we can get the
fractional change in action over a period of the motion:

∆J
J
≈ T

(
ω0ε

2
(
−

T 2

4π

))
= −

(ετ)2

2
.

Therefore the action does change, but only to second order in the rate of change
of the pendulum’s frequency.

Exercise 8.5

In case you do not have access to the paper of Tufillaro et al, here is what
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they do. If the length r changes, then the kinetic energy of m changes in the
usual way, but also mass M goes up or down with velocity ṙ. Thus the kinetic
energy is

T =
1
2

Mṙ2 +
1
2

m
(
ṙ2 + r2φ̇2

)
.

Likewise the potential energy is

V = gr(M − m cos φ),

since as one mass goes up, the other goes down. So the Lagrangian is

L =
1
2

Mṙ2 +
1
2

m
(
ṙ2 + r2φ̇2

)
+ gr(m cos φ − M).

This gives the conjugate momenta

pφ =
∂L
∂φ̇

= mr2φ̇

pr =
∂L
∂ṙ

= (M + m)ṙ.

Lagrange’s equations read

d
dt

(mr2φ̇) = −mgr sin φ

(M + m)r̈ = mrφ̇2 + g(m cos θ − M).

The first of these is written to emphasize the usual role of angular momentum
of mass m, governed by the torque applied by gravity.

The transition to the Hamiltonian is straightforward here, since the coordi-
nate system is not explicitly moving. We have

H = T + V =
p2

r

M + m
+

p2
φ

2mr2 + gr(M − m cos φ).

The real fun comes when Tufillaro describes another coordinate system to
make progress:

r =
1
2

(
ξ2 + η2

)
φ = 2 tan−1

[
(ξ2 − η2)/2ξη

]
,

but we do not take this up here.
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Exercise 9.1

The trajectory equation is

dz
dx

=

√
Ez − mgz

Ex
,

or

(Ez − mgz)−1/2dz = E−1/2
x dx.

Integrating both sides,

−
2

mg
(Ez − mgz)1/2 =

x
√

Ex
+ C.

For a trajectory that starts at x = 0, z = 0, the constant of integration must be
C = −2

√
Ez/mg. The solution is then√

Ez − mgz = −
mg

2
√

Ex
x +

√
Ez.

Solving for z, we get

z = −
mg
4Ex

x2 +

√
Ez

Ex
x :

a parabola!

Exercise 9.2

The orbit equation is

dφ
dr

=
1
r2

√
C√

−A + 2B/r −C/r2
,

67
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where as a shorthand I have written

A = −2mE

B = GMm2

C = L2
z .

The variables separate in the first-order differential equation sense, whereby a
solution is

φ − φ0 =

∫
dr

1
r2

√
C√

−A + 2B/r −C/r2

This is clearly too many 1/r’s, so we substitute u = 1/r to get

φ − φ0 = −

∫
du

√
C

√
−A + 2Bu −Cu2

.

Next you can complete the square in the denominator,

−A + 2Bu −Cu2 = −C
[(

u −
B
C

)2

−

( B
C

)2

+
A
C

]
.

The integral becomes

φ − φ0 = −

∫
du

1√
[B2/C2 − A/C] − (u − B/C)2

.

This integral you can do by introducing a new angle α via

u −
B
C

=

√
B2

C2 −
A
C

cosα.

This angle is, amazingly, directly related to the rotation angle φ. After substi-
tuting,

φ − φ0 =

∫
sinαdα
√

1 − cos2 α
= α.

Substituing this in, we have

1
r
−

B
C

=

√
B2

C2 −
A
C

cos(φ − φ0).

And so the radius is

r =
C

B +
√

B2 − AC cos(φ − φ0)

=
L2

z

GMm2 +

√
G2M2m4 + 2mL2

z E cos(φ − φ0)
.
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Note this has a + sign rather than the − sign given in the text. This is an ambi-
guity in the initial angle, φ0 versus φ0 − π. For concreteness, let’s have r take
its maximum value when φ = 0, which would give us

r =
L2

z

GMm2 −

√
G2M2m4 + 2mL2

z E cos φ
.

Let’s see if we can identify this as the equation of an ellipse. What do we
know about ellipses? Well, given two points in a plane, r1 and r2, you look
for all the points r for which the sum of the distance from r to these two fixed
points is a constant:

|r − r1| + |r − r2| = d.

For our particular ellipse, let’s take the two points to be (0, 0) and (0, f ) (these
are the foci of the ellipse). A point (x, y) is on the ellipse if

x2 + y2 + (x − f )2 + y2 = d2,

or

(x2 + y2) − f x =
1
2

(d2 − f 2)

r − f r cos φ =
1
2

(d2 − f 2),

Thus

r =
(d2 − f 2)/2
1 − f cos φ

;

apart from redefining the constants, this is clearly the form of r versus φ for
the comet’s orbit.

Exercise 9.3

In matrices, the relation between the old coordinates and the new is(
η1

η2

)
=

(
α β

γ δ

) (
x1

x2

)
.

A 2 × 2 matrix is easily inverted, so by matrices we also have(
x1

x2

)
=

1
∆

(
δ −β

−γ α

) (
η1

η2

)
=

(
(δη1 − βη2)/∆

(−γη1 + αη2)/∆

)
,

where ∆ = αδ − βγ.
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The kinetic energy in the new coordinates is then

T =
1
2

mẋ2
1 +

1
2

mẋ2
2

=
m

2∆2

[
(δ2 + γ2)η̇2

1 + (β2 + α2)η̇2
2 − 2(αγ + βδ)η̇1η̇2

]
.

To have “clean” coordinates that avoid cross terms, we should set (αγ+βδ) = 0,
or

αγ = −βδ.

The potential energy in these coordinates is

V =
1
2

kx2
1 +

1
2

kx2
2 +

1
2

k′(x1 − x2)2

=
k

2∆2

[
(δ2 + γ2)η2

1 + (β2 + α2)η2
2 − 2(αγ + βδ)η1η2

]
+

k′

2∆2

[
(δ + γ)2η2

1 + (−β − α)2η2
2 + 2(δ + γ)(−β − α)η1η2

]
.

To get rid of the cross terms here, we require (αγ + βδ) = 0 (which we already
knew), and also

(δ + γ)(−β − α) = 0.

So one of these factors has to be zero. Pick one: let’s say δ = −γ. Then, because
αγ = −βδ, we must have α = β. This defines all the Greek letters apart from
some overall scaling. If we take α = γ = 1 arbitrarily, then the new coordinates
become

η1 = x1 + x2

η2 = x1 − x2.

Here are the center of mass and relative coordinates apart from whatever other
scaling you might find convenient.

Exercise 9.4

The coordinates of the atoms in the molecule can be, from left to right, x1,
x2, x3. They are referred to some fixed origin, but this will almost not matter,
since the potential energy depends on the relative coordinates. The Lagrangian
is

L =
1
2

mẋ2
1 +

1
2

Mẋ2
2 +

1
2

mẋ2
3 −

1
2

k(x1 − x2)2 −
1
2

k(x2 − x3)2.

The conjugate momenta are just simple masses times velocities, so Lagrange’s



Solutions to Exercises Chapter 9 71

equations are

mẍ1 = −kx1 + kx2

Mẍ2 = kx1 − 2kx2 + kx3

mẍ3 = kx2 − kx3.

To find normal modes, we assert that each coordinate is capable of moving
at the same (yet unknown) frequency, x j(t) = x j(0) exp(iωt). Substituting this
into the equations of motion and re-arranging, we get

−k + mω2 k 0
k −2k + Mω2 k
0 k −k + mω2




x1(0)
x2(0)
x3(0)

 =


0
0
0

 .
By the rules of linear algebra, this is only possible if the determinant of the

3 × 3 matrix is equal to zero. That is to say,

(−k + mω2)
[
(−2k + Mω2)(−k + mω2) − k2

]
− k

[
k(−k + mω2) − 0

]
= 0,

which simplifies to

ω2(mω2 − k)(Mmω2 − k(M + 2m)) = 0.

The three roots are determined by the three ways this product can be zero. An
obvious one is

ω2
antisym =

√
k
m
,

which is the frequency of a simple mass m on a spring k. This corresponds
to the case where the two end masses oscillate back and forth relative to the
central mass, which stays put. It is the antisymmetric stretch mode.

A second mode is

ω2
sym =

√
k(M + 2m)

Mm
=

√
k
m

(
1 +

2m
M

)
,

the ansitymmetric mode. In this case, both the end masses move left and right
in synchronized motion, while the central mass moves opposite these to pre-
serve the center of mass. The final mode is

ωcm = 0.

This is the motion of the center of mass itself, which has no restoring force.
The molecule will just drift off forever and not come back, so the “period” of
its oscillation is 1/(2π0) = ∞.
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Exercise 9.5
Based on the Lagrangian in the chapter, Lagrange’s equations of motion are

2φ̈1 + cos(φ1 − φ2)φ̈2 + sin(φ1 − φ2)φ̇2
2 = −2

g
l

sin φ1

φ̈2 + cos(φ1 − φ2)φ̈1 − sin(φ1 − φ2)φ̇2
1 = −

g
l

sin φ2.

For small amplitude swings, we ignore the terms proportional to φ̇2
i and set the

cosines equal to 1. This gives us

2φ̈1 + φ̈2 + 2ω2
0φ1 = 0

φ̈1 + φ̈2 + ω2
0φ2 = 0,

in terms of the frequency of a single pendulum ω0 =
√

g/l.
Again, we assert that the angles can swing at the same frequency ω, if only

we knew what that frequency is. We write φ j(t) = φ j(0) exp(iωt) and insert
these into the equations of motion to get(

−2ω2 + 2ω2
0 −ω2

−ω2 −ω2 + ω2
0

) (
φ1(0)
φ2(0)

)
=

(
0
0

)
.

The frequencies are determined by setting the determinant of this matrix equal
to zero, which gives

ω4 − 4ω2
0ω

2 + 2ω4
0 = 0.

This has the roots

ω2 = (2 ±
√

2)ω0.

The modes themselves are determined by the relative amplitudes φ1(0) and
φ2(0). These are related by either of the linear equations suggested by the ma-
trix equation above, for example

(−2ω2 + 2ω2
0)φ1(0) − ω2φ2(0) = 0.

The natural relative amplitudes in a given mode have the ratio

φ2(0)
φ1(0)

=
−2ω2 + 2ω2

0

ω2

=
∓
√

2

2 ±
√

2
.

Thus in the lower frequency mode ω2 = (2 −
√

2)ω2
0, the angles swing in

phase, although with different amplitudes. For the higher frequency modeω2 =

(2 +
√

2)ω2
0, the swings are out of phase.


