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Solutions of Some Exercises

A11.1 Chapter 1

Exercise 1.4

In a dust universe with curvature and with a cosmological constant the Friedmann equation
can be written in the form

ȧ2 = a2
[
−K + C

a
+ 1

3
�a2

]
≡ G(a). (A11.1)

Here

C = 8πG

3
ρma

3 = �mH 2
0 a

3
0 =

⎧⎨⎩
�m

H0|�k |3/2 =
2q0

H0|1−2q0|3/2 if �k 
= 0

�mH
2
0

if �k = 0
and a0 = 1.

(A11.2)

If the curvature is negative and � > 0, G is strictly positive and we find an expanding
solution for all times. At late times, curvature becomes negligible and the universe expands
like a ∝ 1/|t | ∝ exp(

√
�/3τ). If� < 0 the square bracket is decreasing andG has a zero,

G(ac) = 0. At this point expansion turns into contraction and the universe recollapes.
The case K = 0 can be solved explicitly, leading to

a3(τ ) =

⎧⎪⎪⎨⎪⎪⎩
3C

2�

(
cosh(

√
3�t)− 1

)
� > 0,amin =

(
3C/2�

)1/3

−3C

2�

(
1− cos

(√−3�t
))

� < 0.

(A11.3)

The qualitative behavior is like for K < 0.
The case K > 0 is most interesting. The function G can be written as G(a) = aP (a),

where P is a third-order polynomial that has one or three real roots. In the dashed region of
Fig. A11.1, P has one real root, but for a negative value of a. Hence the universe expands
forever. In the upper left region, with a high cosmological constant, the scale factor has a
minimum. Such a universe has no big bang but comes out of a previous contracting phase.
It is called a bouncing solution. For a value of �m > 0.01 one finds a maximum redshift
zmax < 4 for a bouncing universe. Hence they cannot explain cosmological data like
quasars and galaxies at a redshift of 6 or even the CMB. Solutions below the dashed region
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2 Solutions of Some Exercises

Fig. A11.1 The kinematics of a universe with matter density parameter �m and
cosmological constant parameter ��. The universes with parameters above the
dashed line are positively curved, those below negatively. The universes with
values (�m,��) in the dashed region emerge from a big bang and expand forever.
Those below emerge from a big bang and recollapse into a big crunch, and those
above emerge from a collapsing universe; they have no big bang in the past.

emerge from a big bang but recollapse eventually, when either the negative cosmological
constant or the positive curvature term render G(amax) = 0.

A11.2 Chapter 2

Exercise 2.1

We want to show that

LXg = a2
[
−2

(
ȧ

a
T + Ṫ

)
dt2 + 2(L̇i − T,i)dt dxi

+
(

2
ȧ

a
T γij + Li|j + Lj |i

)
dxi dxj

]
, (A11.4)

for X = T ∂t + Li∂i and g = a2(t)[−dt2 + γij dxi dxj ] = a2(t)Sμν dx
μ dxν .

We use LXa2 = 2ȧaT and LX(a2S) = LX(a2)S + a2LXS. Furthermore, we show in
the text that follows that for an arbitrary metric S, we have

(LXS)μν = Xμ;ν +Xν;μ, (A11.5)
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where here ; denotes the covariant derivative w.r.t. the metric S. For our metric S all
Christoffel symbols involving a “0” vanish, so that Xν;0 = Xν,0 and X0;ν = X0,ν . Fur-
thermore Xi;j = Xi|j , where | denotes the covariant derivative w.r.t. the three-dimensional
metric γ . With this we obtain

LXg = 2
ȧ

a
T a2S + a2

(
−2Ṫ dt2 − 2(T,i − L̇i) dt dxi + (Li|j + Lj |i ) dxi dxj

)
,

(A11.6)

which agrees with Eq. (A11.4). It remains to show Eq. (A11.5). For this we use the general
expression (A2.20). For a doubly covariant tensor field this gives

(LXS)αβ = XμSαβ,μ +Xμ,αSμβ +Xμ,βSμα
= Xν

(
SμνSαβ,μ + Sμν,αSμβ + Sμν,βSμα

)+Xα,β +Xβ,α .

For the last equals sign we simply inserted Xμ = XνSνμ. We now take the derivative of
the identity SνμSμβ = δνβ w.r.t. α. This yields Sμν,αSμβ = −SμνSμβ,α . Correspondingly
Sμν,βSμα = −SμνSμα,β . Inserting this above and using the definition

Xα;β = Xα,β − �μαβXμ with �βμν =
1

2
Sβα

(
Sμα,ν + Sνα,μ − Sμν,α

)
,

we obtain (A11.5).

Exercise 2.3

In synchronous gauge (A = B = 0) we have

� = −k−1(Hσ + σ̇ ) and (A11.7)

V = v − σ . (A11.8)

For a pure dust universe Eq. (2.119) reduces to

V̇ +HV = k�. (A11.9)

Inserting the expressions above this yields

v̇ +Hv = 0, (A11.10)

which only has a decaying solution, v ∝ 1/a, that is, the only possible nondecaying
solution is v = 0.

Exercise 2.4

We consider a perturbed FL universe containing two noninteracting fluids with energy
densities ρα and pressure Pα . The total energy density and pressure are ρ = ρ1 + ρ2
and P = P1+P2. We first note that for both components the intrinsic entropy perturbation
is given by

�α = π(α)L − c2
α

wα
δα = δPα

Pα
− c2

α

δρα

Pα
(A11.11)
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and the total sound speed is

c2
s =

Ṗ1 + Ṗ2

ρ̇
= c

2
1ρ̇1 + c2

2ρ̇2

ρ̇
= (1+ w1)c

2
1ρ1 + (1+ w2)c

2
2ρ2

(1+ w)ρ . (A11.12)

For the second equality sign we have used that both components are separately conserved.
Defining now R = ρ2/ρ, so that ρ1/ρ = 1− R, we can also write

(1+ w)c2
s = (1+ w1)c

2
1(1− R)+ c2

2(1+ w2)R. (A11.13)

Let us first assume �α = 0, so that δPα = c2
αδρα . The total entropy perturbation is then

given by � = �rel with

P�rel = c2
1δρ1 + c2

2δρ2 − c2
s (δρ1 + δρ2) =

(
c2

1 − c2
s

)
δρ1 +

(
c2

2 − c2
s

)
δρ2. (A11.14)

To express �rel in terms of gauge-invariant variables we now use

δρα = [D(α)g + (1+ wα)(3HL +HT )]ρα .

Inserting this in Eq. (A11.14) yields

w�rel =
(
c2

1 − c2
s

)
(1− R)D(1)g + (

c2
2 − c2

s

)
RD(2)g + (3HL +HT )

×
[(
c2

1 − c2
s

)
(1− R)(1+ w1)+

(
c2

2 − c2
s

)
R(1+ w2)

]
. (A11.15)

Using Eq. (A11.13) and

1+ w = ρ + P
ρ

= ρ1 + P1 + ρ2 + P2

ρ
= (1+ w1)(1− R)+ (1+ w2)R,

we find that the square bracket above vanishes and �rel is gauge invariant, as it should be.
In fact, with the relation (A11.13)

[ ] = c2
1(1− R)(1+ w1)+ c2

2R(1+ w2)− c2
s (1+ w) = 0.

Multiplying Eq. (A11.15) with 1+ w and using Eq. (A11.13) to replace c2
s finally leads to

w(1+ w)�rel = R(1− R)
(
c2

1 − c2
2

) [
(1+ w2)D

(1)
g − (1+ w1)D

(2)
g

]
. (A11.16)

From this equation we already conclude that �rel vanishes if both sound speeds are equal,
c2

1 = c2
2, or if one of the two components is largely subdominant, R � 0 or R � 1. If

neither of these conditions is fulfilled, perturbations are adiabatic if

(1+ w2)D
(1)
g = (1+ w1)D

(2)
g (adiabaticity). (A11.17)

To determine � when �α 
= 0 we simply note that in this case δPα = Pα�α+c2
αδρα so that

P� = P1�1 + P2�2 + P�rel.

Inserting our result for �rel we find

� = w1

w
(1− R)�1 + w2

w
R�2 + �rel. (A11.18)
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We now want to derive an evolution equation for �rel in the case where �α = 0 and wα =
c2
α = constant for both components. We use the conservation equation (2.115), which in

this case reduces to

Ḋ(α)g = −k(1+ wα)Vα . (A11.19)

Defining

f = R(1− R)
w(1+ w)

(
c2

1 − c2
2

)
,

the derivative of �rel can be written as

�̇rel = ḟ
f
�rel + kf (1+ w1)(1+ w2)[V2 − V1]. (A11.20)

This shows that even if perturbations of a two-component fluid are initially adiabatic,
they develop a relative entropy perturbation if V1 
= V2. This is already clear from the
adiabaticity condition (A11.17), which cannot be maintained if V1 
= V2 due to the time
evolution of D(α)g given in Eq. (A11.19). Especially on sub-Hubble scales, where V1 and
V2 evolve differently (we consider the nontrivial case c1 
= c2), adiabaticity between
different components cannot be maintained. When talking about adiabatic perturbations,
we therefore always refer to super-Hubble scales.

A11.3 Chapter 3

Exercise 3.1

We want to show that only exponential potentials allow for power law inflation, a ∝ tq
with some constant q, and we want to express q in terms of the parameters of the potential.
We assume a spatially flat FL universe, K = 0.

For a spatially flat FL universe, the Friedmann equation and energy–momentum conser-
vation (or the first and second Friedmann equations) imply

Ḣ = −1+ 3w

2
H2.

Now if a ∝ tq we have H = q/t and Ḣ = −q/t2. Inserting this above gives

q = 2

1+ 3w
hence w = 2− q

3q
= constant.

From this we also conclude that inflation, that is, w < −1/3, is obtained if and only if
q < 0. Hence for an expanding and inflating universe with an expansion law of the form
a ∝ (t/t0)q we have to choose t and t0 negative in order for a to increase with t . That is,
conformal time is negative during inflation.

Furthermore, integrating d τ = a dt ∝ tq dt yields τ ∝ tq+1; hence

a ∝ τp with p = q

q + 1
= 2

3+ 3w
.
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Since

w = P/ρ = a2P/(a2ρ) =
1
2 ϕ̇

2 − a2W

1
2 ϕ̇

2 + a2W
= constant,

and

a2ρ = 1

2
ϕ̇2 + a2W = 3M2

PH2 ∝ 1/t2

it follows that both 1
2 ϕ̇

2 and a2W are proportional to 1/t2. More precisely,

ϕ̇ =
√
a2(ρ + P) =

√
3(1+ w)MPH =

√
3(1+ w)qMP

t
(A11.21)

ϕ = MP
√

2q(1+ q) log(t/t∗), (A11.22)

where t∗ is an integration constant. But also W = (ρ − P)/2 is a power law in t . This is
possible only if W ∝ exp(−αϕ/MP ) ∝ t−α

√
2q(1+q). To determine α we use that a2W ∝

1/t2; hence

t2q−α
√

2q(1+q) ∝ t−2, (A11.23)

which implies

α2 = 2(1+ q)
q

or q(α) = 2

α2 − 2
. (A11.24)

Inserting this into the expressions for w and p we find

w(α) = α
2 − 3

3
, p(α) = 2

α2
. (A11.25)

The universe is inflating when w < −1/3; hence α2 < 2. De Sitter inflation is obtained in
the limit α→ 0.

A11.4 Chapter 4

Exercise 4.4

We start with Eq. (4.137), which yields

1

4π

∑
�

(2�+ 1)C(V )� P�(n · n′)

=
∑
�

(2�+ 1)2

(2π)3

∫
d3k M

(V )
� (k)P�(μ)P�(μ

′)(n · n′ − μμ′).
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For the last factor we made use of Eq. (4.138). Before we continue we now show
Eq. (4.194). The addition theorem of spherical harmonics yields∫

d�k̂ P�(μ)P�′(μ
′)

= (4π)2

(2�+ 1)(2�′ + 1)

∑
mm′

∫
d�k̂ Y�m(k̂) Y

∗
�m(n)Y

∗
�′m′(k̂)Y�′m′(n

′).

Using the orthogonality of spherical harmonics, this implies∫
d�k̂ P�(μ)P�′(μ

′) = δ��′ (4π)
2

(2�+ 1)2
∑
m

Y ∗�m(n)Y�m(n
′)

= 4π

2�+ 1
P�(n · n′).

For the last equals sign we have again applied the addition theorem. With the help of the
recursion relation

μP�(μ) = �+ 1

2�+ 1
P�+1(μ)+ �

2�+ 1
P�−1(μ),

we can now perform the angular integration,∫
d3k M

(V )
� (k)P�(μ)P�(μ

′)(n · n′ − μμ′)

= 4π
∫
dk k2M

(V )
� (k)

[
1

2�+ 1
(n · n′)P�(n · n′)

− (�+ 1)2

(2�+ 1)2(2�+ 3)
P�+1(n · n′)− �2

(2�+ 1)2(2�− 1)
P�−1(n · n′)

]
= 4π

(2�+ 1)2

∫
dk k2M

(V )
� (k)

[
(�+ 1)(�+ 2)

2�+ 3
P�+1(n · n′)+ �(�− 1)

2�− 1
P�−1(n · n′)

]
.

Identifying the coefficient of P� finally results in

C� = 2�(�+ 1)

π(2�+ 1)2

∫
dk k2

[
M
(V )
�+1(k)+M(V )�−1(k)

]
. (A11.26)

A11.5 Chapter 5

Exercise 5.3

We consider the following parameterization of a 2D tensor field:

Tab = αδab + γ εab +
(
∂a∂b − 1

2
δab�

)
ε + 1

2

(
εac∂

c∂b + εbc∂c∂a
)
β. (A11.27)

We want to show that every tensor field can be written in this form. Clearly, there are as
many parameters on the right-hand side as there are components of Tab, so this may work
as a general parameterization. Note that in flat space raising and lower indices is done with
δab, so it does not change anything.
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(1) We first determine the parameters α to β from Tab. A straightforward calculation yields

α = 1

2
trace T = 1

2
(T11 + T22) (A11.28)

γ = 1

2
εabTab = 1

2
(T12 − T21) (A11.29)

ε = 2�−2
(
∂a∂bTab

)
−�−1 (T11 + T22) (A11.30)

β = 2�−2
(
εac∂

c∂bT
ab

)
−�−1 (T12 − T21) . (A11.31)

These equations have unique solutions α, γ, ε, β [we assume that our functions decay
at infinity, e.g., that they are in L2(R2)]. Inversely we obtain

T11 = α + 1

2

(
∂2

1 − ∂2
2

)
ε + ∂1∂2β (A11.32)

T12 = γ + ∂1∂2ε + 1

2

(
∂2

2 − ∂2
1

)
β (A11.33)

T22 = α − 1

2

(
∂2

1 − ∂2
2

)
ε − ∂1∂2β (A11.34)

T21 = −γ + ∂1∂2ε + 1

2

(
∂2

2 − ∂2
1

)
β. (A11.35)

Inserting the expressions for α, γ, ε, β shows that our identities are consistent.
(2) As εab changes sign under parity and δab as well as ∂a∂b do not, we find that for Tab

to be a normal 2-tensor that does not change sign under parity, we must request that α
and ε are even under parity while γ and β change sign under parity. In other words, α
and ε are scalars while γ and β are pseudo-scalars.

(3) The polarization from Thomson scattering is a symmetric and traceless tensor; hence
α = γ = 0 and it is of the form

Pab =
(
∂a∂b − 1

2
δab�

)
ε + 1

2

(
εac∂

c∂b + εbc∂c∂a
)
β. (A11.36)

Using Eqs. (5.24) we have

E = ∂a∂bPab − εcdεab∂c∂aPbd = 2∂a∂bPab = �2ε. (A11.37)

For the second equality we used that in two dimensions εcdεab = δcaδdb − δdaδcb and
that Pab is traceless. Using also the fact that Pab is symmetric, we find, inserting (5.25)
for B,

B = −2εbc∂a∂bPac = �2β. (A11.38)

Therefore, the decomposition (A11.36) is entirely equivalent to the decomposition of the
polarization into E and B modes.
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A11.6 Chapter 6

Exercise 6.1

Because of statistical homogeneity, a 3-point function depends only on the differences
rij = xi − xj ,

〈X(x1)X(x3)X(x3)〉 = ξ3(r12,r32). (A11.39)

Here we use that r13 = r12 − r32 is not an independent variable. Fourier transforming this
expression we obtain∫

d3x1d
3x2d

3x3e
i(k1x1+k2x2+k3x3)〈X(x1)X(x3)X(x3)〉

=
∫
d3r12d

3x2d
3r32e

i(k1r12+k3r32+x2(k1+k2+k3))ξ3(r12,r32)

= (2π)3δ(k1 + k2 + k3)

∫
d3r12d

3r32e
i(k1r12+k3r32)ξ3(r12,r32)

= (2π)3δ(k1 + k2 + k3)B(k1,k3). (A11.40)

Since the first line of this equation as well as the Dirac delta are symmetric in k1, k2,
and k3, this is also true for B(k1,k3). Here we have suppressed the variable k2 = −(k1 +
k3). We now want to show that B depends only on the moduli ki = |ki |. For this we use
that the cosine of the angle between k1 and k3 is given by

μ ≡ k1 · k3

k1k3
= k

2
2 − k2

1 − k2
3

2k1k3
. (A11.41)

Therefore if we can show that B depends only on k1, k3, and μ we are done. For this,
without loss of generality, we choose the z-direction as the direction of k1 and denote by
μij = cos θij , where θij is the polar angle of rij . We also use that

k3 = k3(μez +
√

1− μ2e⊥), (A11.42)

and, again without loss of generality, we identify the direction e⊥ that is normal to ez with
the x-direction, so that rij e⊥ = rij cosϕij . With these choices of coordinate directions we
have

k1r12 = μ12r12k1 and k3r32 =
(
μμ32 +

√
1− μ2

√
1− μ2

32

)
r32k3. (A11.43)

Note also that due to statistical isotropy apart from r12 and r32, ξ3 depends only on the
cosine of the angle between r12 and r32, which is given by

ν = μ12μ32 +
√
(1− μ2

12)(1− μ2
32) cos(ϕ12 − ϕ32). (A11.44)
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Using spherical coordinates we can transform ϕ12 → ϕ12−ϕ32 ≡ ϕ. With this the integral
(A11.40) becomes

B(k1,k3,μ) =
∫
r2

12dr12dμ12dϕr
2
32dr32dμ32dϕ32ξ3(r12,r32,ν(μ12,μ32,ϕ))

× exp

[
i

(
r12k1μ12 + r32k3

(
μμ32 +

√
1− μ2

√
1− μ2

32 cosϕ32

))]
.

(A11.45)

Finally, one can perform the integration over ϕ32, which yields

B(k1,k3,μ) = 2π
∫
r2

12dr12dμ12dϕr
2
32dr32dμ32ξ3(r12,r32,ν(μ12,μ32,ϕ))

× J0

(
r32k3

√
1− μ2

√
1− μ2

32

)
exp [i (r12k1μ12 + r32k3μμ32)] .

(A11.46)

Here J0 denotes the Bessel function of order 0 and μ can be written as a function of the
ki via Eq. (A11.41). In principle one could also convert the integral over ϕ or the one over
μ32 into an integral over ν but with awkward boundary conditions and with a not very
illuminating result. In Eq. (A11.46) it is no longer evident that B is symmetric under the
exchange of the ki . But we know that this must be true because of the original expression
given on the first line of Eq. (A11.40).

Exercise 6.2

The coefficient 〈a�1m1a�2m2a�3m3〉 is obtained from the 3-point function by integrating with
the corresponding spherical harmonics,

〈a�1m1a�2m2a�3m3〉 =
∫
ξ3(n1,n2,n2)Y

∗
�1m1

(n1)Y
∗
�2m2

(n2)Y
∗
�3m3

(n3)d�1d�2d�3.

(A11.47)

On the other hand, we have expression (6.38) for ξ3. Using the addition theorem of spherical
harmonics,

PL(μij ) = 4π

2L+ 1

∑
M

YLM(ni )Y ∗LM(nj ), (A11.48)

Eq. (6.38) leads to three integrals of the following form:∫
Y ∗�imi (ni )YLiMi (ni )Y

∗
L[i−1]M[i−1]

(ni ), (A11.49)

where [i − 1] = i − 1 for i = 2,3 and [i − 1] = 3 for i = 1. Using the triple integrals of
spherical harmonics given in Appendix 4, Section A4.2.3, we find
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〈a�1m1a�2m2a�3m3〉 = (4π)3/2
∑
Li,Mi

3∏
i=1

√
2�i + 1

(
�i Li L[i−1]
0 0 0

)

×
(
�i Li L[i−1]
mi Mi M[i−1]

)
b
(2)
L1L2L3

. (A11.50)

The factors (−1)Mi multiply together to 1 since M1 +M2 +M3 = 0, as is easy to check.
Now together with (A4.61) Eq. (6.40) implies√∏3

i=1(2�i + 1)

4π

(
�1 �2 �3
0 0 0

)
b�1�2�3

=
∑

m1m2m3

〈a�1m1a�2m2a�3m3〉
(
�1 �2 �3
m1 m2 m3

)
(A11.51)

= (4π)3/2
∑

m1m2m3;LiMi

(
�1 �2 �3
m1 m2 m3

) 3∏
i=1

√
2�i + 1

×
(
�i Li L[i−1]
0 0 0

) (
�i Li L[i−1]
mi Mi M[i−1]

)
b
(2)
L1L2L3

. (A11.52)

Deviding by the prefactor we find

b�1�2�3 =
∑
Li

Q
L1L2L3
�1�2�3

b
(2)
L1L2L3

, where (A11.53)

Q
L1L2L3
�1�2�3

= (4π)2
(
�1 �2 �3
0 0 0

)−1 ∑
mi ;Mi

(
�1 �2 �3
m1 m2 m3

) 3∏
i=1

(
�i Li L[i−1]
0 0 0

)

×
(
�i Li L[i−1]
mi Mi M[i−1]

)
. (A11.54)

Here the sums over all mi andMi are always understood as sums from −�1 to �i and −Li
to Li respectively.

Exercise 6.7

Let us first show that

V1(ν) =
∫
∂K(ν)

ds = 1

4

∫
S2
d�δ(u(n)− ν)

√
(∇u)2. (A11.55)

To show this let us consider a small neighborhood of a given point n0 on the curve
u(n) = ν. In this neighborhood we may parameterize this curve by some function n(t).
(We assume that ν is not a local maximum; otherwise the curve u(n) = ν shrinks to a
point.) The length of a part of our curve is then given by the integral of

√
ṅ2dt . Choosing

local coordinates on the sphere along the curve and orthogonal to it we find for the small
part of the curve that we parameterize as n(t)
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L =
∫ √

(ṅ)2dt =
∫
δ(u(n)− ν)

√
(ṅ)2d�. (A11.56)

By construction u(n(t)) = ν and therefore

du(n(t))
dt

= ∇u(n(t)) · ṅ = 0. (A11.57)

Since we are in two dimensions, this implies that

ṅi = αεij∇j u(n(t)), or equivalently εki ṅi = −α∇ku(n(t)). (A11.58)

The proportionality factor depends on our parameterization and we can choose it to be
unity. Equation (A11.58) then implies that (ṅ)2 = (∇u)2, which leads to (A11.55).

We now also want to show that

V2(ν) =
∫
∂K(ν)

κ(s)ds = 1

2π

∫
S2
d�δ(u(n)− ν)

∑2
ij=1(−1)j+i+1∇iu∇j u∇i∇j u

(∇u)2 .

(A11.59)

Using ds = δ(u(n) − ν)
√
(∇u)2d� we simply need to show that on the curve u(n) = ν

the geodesic curvature is given by

κ(n) =
∑2
ij=1(−1)j+i+1∇iu∇j u∇i∇j u

(∇u)3/2 . (A11.60)

To show this we now derive u(n(t)) = ν a second time, leading to

∇i∇j u(n(t))ṅi ṅj +∇j u(n(t))n̈j = 0, (A11.61)

∇i∇j u(n(t))ṅi ṅj = −ṅi n̈j εij . (A11.62)

For the second equality we made use of Eq. (A11.58) (with α = 1). Now the general
expression for the geodesic curvature of an arbitrary line can be found in a generic geometry
book; it is

κ(n(t)) = ṅi n̈j εij
(ṅ)3/2

. (A11.63)

Inserting ṅ and ṅi n̈j εij from Eqs. (A11.58) and (A11.62) we find Eq. (A11.60).

A11.7 Chapter 7

Exercise 7.1

We consider a mass M positioned at x = 0 with gravitational potential � = GM/r . To
first order in � the corresponding metric is given by

ds2 = −(1+ 2�) dt2 + (1− 2�) dx2.

We want to determine the deflection of a photon in this metric. Angles are invariant under
conformal transformations of the geometry. We may therefore calculate the deflection in
the conformally related metric ds̃2 = (1+ 2�) ds2. To first order in � we have

ds̃2 = −(1+ 4�) dt2 + dx2.
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Fig. A11.2 A photon passing the massM in direction n with impact parameter d.

We consider a photon along the unperturbed path x(s) = de + sn. The spatial unit vector
n is the direction of motion of the photon and e is a spatial unit vector normal to n. Hence
d is the impact parameter, that is, the closest distance of the photon from the mass M at
x = 0; see Fig. A11.2. The unperturbed photon velocity is given by (nμ) = (1,n). Since �
is spherically symmetric, angular momentum is conserved and also the perturbed motion
will be in the plane (e,n). We define the perturbed velocity by

(nμ + δnμ) = (1+ δn0,n+ δn).

As it lies in the plane (e,n), the spatial part of δnμ is of the form δn = ϕe+αn, where ϕ is
the deflection angle and α is related to the gravitational redshift. The Christoffel symbols
are of first order in �, so that the first-order equation of motion for the photon trajectory
gives

δṅμ + �̃μ00 + 2�̃μ0j n
j + �̃μij ninj = 0.

For the metric ds̃2 the only nonvanishing Christoffel symbols are

�̃0
0i = �̃0

i0 = �̃i00 = 2∂i�.

For the deflection angle we therefore obtain

ϕ̇ = (δṅ · e) = −2e · ∇� = 2MG
d

(d2 + s2)3/2
.

Integrating this from s = −∞ to s = ∞ yields

ϕ = 4MG

d
. (A11.64)
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A11.8 Chapter 8

Exercise 8.1

We want to show the following theorem:
Theorem: Let ξ(r) be a correlation function that depends on the orientation of r only

via its scalar product with one fixed given direction n (e.g., the line of sight). Denoting the
corresponding direction cosine by μ and expanding ξ in Legendre polynomials, we have

ξ(r) =
∑
n

ξn(r)Ln(μ), μ = r̂ · n. (A11.65)

In this situation the Fourier transform of ξ , the power spectrum, is of the form

P(k) =
∑
n

pn(k)Ln(ν), ν = k̂ · n where (A11.66)

pn(k) = 4πin
∫ ∞

0
drr2jn(kr)ξn(r), and (A11.67)

ξn(r) = (−i)
n

2π2

∫ ∞

0
dkk2jn(kr)pn(k). (A11.68)

Proof The Fourier transform of ξ is defined as

P(k) =
∫
d3reir·kξ(r). (A11.69)

We use that

eir·k =
∑
�

i�(2�+ 1)j�(kr)L�(k̂ · r̂),

where L� is the Legendre polynomial of degree �. Hence

L�(k̂ · r̂) = 4π

2�+ 1

�∑
m=−�

Y�m(k̂)Y ∗�m(r̂) =
4π

2�+ 1

�∑
m=−�

Y�m(r̂)Y ∗�m(k̂);

Y�m are the spherical harmonics. Inserting these identities in (A11.69) using the ansatz
(A11.65) for the correlation function, we obtain

P(k) =
∑
�m

∑
nm′

(4π)2i�

2�+ 1

∫
d3rξn(r)j�(kr)Y�m(k̂)Y ∗�m(r̂)Ynm′(r̂)Y

∗
nm′(n). (A11.70)

Using the orthogonality relation of spherical harmonics, the integration over directions
gives

P(k) = 4π
∑
n

in
∫ ∞

0
drr2ξn(r)jn(kr)Ln(ν). (A11.71)

Identification of the expansion coefficients yields (A11.67). Equation (A11.68) is obtained
in the same way using the inverse Fourier transform,

ξ(r) = 1

(2π)3

∫
d3ke−ik·rP(k).

�
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Clearly, if ξ(r) = 〈�(x)�(x+ r)〉 is independent of x (� is statistically homogeneous),
ξ does not depend on the sign of r and in the sum above only ξn with even n’s can contribute
so that P(k) is real.

A11.9 Chapter 9

Exercise 9.9.2

We parameterize the initial conditions by

Cij = 〈Xi(k)X∗j (k′)〉 = Aij (k/H0)
nij δ(k− k′).

Clearly, forCij to be positive semidefinite for all values of k, the matrixAij = Cij (k = H0)
has to be positive semidefinite. Let us now consider i 
= j with Aij 
= 0. If neither nii ≤
nij ≤ njj nor njj ≤ nij ≤ nii is true, nij is either the largest or the smallest of these three
spectral indices. Let us first assume it to be the smallest. To show that Cij is not positive
semidefinite, we have to find a vector V so that CmnV mV n < 0. If Aij > 0, we choose
V i = −V j = 1, and if Aij < 0, we choose V i = V j = 1, so that AijV iV j = −|Aij | (no
sum!). Since nij is smaller than nii and njj we can choose k to be sufficiently small so that
|Aij |(k/H0)

nij � |Aii |(k/H0)
nii and |Aij |(k/H0)

nij � |Ajj |(k/H0)
njj . Setting all other

components of V to 0 we obtain for such values of k∑
mn

V mV nCmn(k) = −|Aij |(k/H0)
nij + Aii(k/H0)

nii + Ajj (k/H0)
njj < 0.

If nij is larger than nii and njj we just have to choose k sufficiently large.

A11.10 Chapter 10

Exercise 10.3

We want to compute the integral

JBE(xc) =
∫ 1

0

dx

x

ex exp[−2xc/x]

ex − 1
(A11.72)

for small values of xc; more precisely, 0 < xc � 1. We want to show that

JBE(xc) = 1

2xc
− 1

2
log(xc)+ higher order, (A11.73)

where “higher order” denotes terms of order unity and terms that vanish for xc → 0. To
compute the integral (A11.72) we use the series expansion

tet

et − 1
=

∑
m=0

Bm
tm

m!
(A11.74)
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Here Bm are the Bernoulli numbers (see Abramowitz and Stegun, 1970), given by1

B0 = 1, B1 = 1/2, B2 = 1/6, B3 = 0, B4 = −1/30, (A11.75)

B2n+1 = 0, B2n = −(−1)n
2(2n)!

(2π)2n
ζ(2n), for n > 1. (A11.76)

Here ζ denotes the Riemann zeta-function. With this

JBE(xc) =
∑
m=0

Bm
Im(xc)

m!
where (A11.77)

Im(xc) =
∫ 1

0
dxxm−2 exp[−2xc/x] (A11.78)

With the variable transform y = 1/x we obtain

Im(xc) =
∫ ∞

1
dyy−m exp[−2xcy] = Em(2xc), (A11.79)

where Em denotes the well-known exponential integral function of order m. E0 is elemen-
tary and yields the first part of our result, I0 = e−2xc/(2xc) � 1/(2xc). The exponential
integral of order 1 has the asymptotic behavior E1(2xc) = Ei(2xc) � − log(2xc) −
γ + O(xc), where γ � 0.577 is the Euler–Mascheroni constant. Then, as E′m(2xc) =−Em−1(2xc) it follows that the exponential integral of orderm ≥ 1 behaves as Em(2xc) �
(2xc)m−1 log(2xc)+const. for small xc � 1. This proves Eq. (A11.73).

As a final remark let me mention that such integrals are often estimated using a saddle
point approximation. While the behavior JBC ∝ x−1

c is recovered by this method also
here, the prefactor is wrong. One can actually show that in this case the saddle point
approximation obtains corrections that scale like x−1

c at every order and is therefore useless.

1 One often finds B1 = −1/2. This depends on the definition of Bn as Bn = bn(0) or Bn = bn(1), where bn(x)
are the Bernoulli polynomials; see Abramowitz and Stegun (1970). Here we use the second identification,
which gives B1 = 1/2.




