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• Suppose that the frequency-selective fading channels between 
each pair of  Tx. and  Rx.  have  L independent delay paths and 
the same delay profile. 

• Then, the channel impulse response from Tx.  i to  Rx.  j can 
be modeled as     

where        is the delay of the l-th  path, and               is the 
amplitude of the l-th path between Tx.  i and Rx. j.              
The            `s are modeled as zero-mean complex Gaussian 
random variables with variances                        , and with 
energy normalization                   . 
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• Then, the frequency response of the channel is given by

• The channel frequency response at the n-th subcarrier is

where                       is the tone space, and  T is the OFDM 
block duration.
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SF-Coded MIMO-OFDM System Model

• Consider a system with         Tx. and        Rx. antennas, and  N subcarriers.

• Each SF codeword can be expressed as an              matrix

where            is the symbol transmitted over the n-th subcarrier by transmit 

antenna  i . The energy normalization is                            .
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• At the receiver,  after matched filtering,  removing the 

cyclic prefix  and applying FFT,  the received signal at the 

n-th subcarrier at receive antenna j is given by:

for  n = 0, 1, …, N-1,  in which
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• Denote                                                                 then 

where  
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• The correlation matrix of the channel frequency response 

from  Tx. i to  Rx.  j can be calculated as
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SF Code Design Criteria

• The pair-wise error probability of two distinct SF signals C 

and        can be upper bounded as 

where  K is the rank of             ,  and                                are 

the non-zero eigenvalues of           ,  in which
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• Based on the upper bound, two design criteria can be proposed 

as:

 Diversity criterion: The minimum rank of             over all pairs 

of distinct SF signals  C and       should be as large as possible;

 Product criterion: The minimum value of the product          

over all pairs distinct SF signals  C and        should be as large 

as possible.

• According to a rank inequality of Hadamard product, we have

So                                                    

Thus, the maximum achievable  diversity is at most
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• Here we will design full-diversity SF codes from ST codes via 

mappings. The resulting full-diversity SF code

– Having larger coding rates than the existing SF codes;

– Taking into account arbitrary power delay profiles;

– All ST codes (block and trellis) with full diversity in quasi-static 

flat fading environment can be used.

• For any  l  = 1, 2, … L,  define a repetition mapping

• For example,
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Theorem  1:  If a space-time (block or trellis) code designed 

for          transmit antennas achieves full diversity for quasi-

static flat fading channels,  then the SF code obtained from 

this ST code via the mapping                            will achieve a 

diversity order of at least

tM
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• In case of the full diversity SF codes, the coding advantage

or diversity product is defined as

where                              are non-zero eigenvalues of

• Recall that the diversity product of a full diversity ST code 

designed for flat fading channels is

where                               are non-zero eigenvalues of 
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Theorem 2:   The diversity product of the SF code is bounded 

by that of the corresponding ST code as follows:

in which                           ,         and         are the largest and 

smallest eigenvalues of the following matrix

ST SF, ST1
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Simulation Results

• The simulated system has 

• Bandwidth  1 MHz

• N = 128 subcarriers (tones)

• 128 us data symbol duration

• Full-diversity SF codes are obtained from orthogonal ST 

block codes.

2  Tx. and  1  Rx.t rM M 
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• 2  transmit and  1  receive antennas,  two delay paths at:        

(i) 0 and 5 us (5us/128us);  and  (ii)  0 and 20 us (20us/128us).



[17]

• Two Tx. and one Rx., 6-ray Typical Urban (TU) model,  with two 

different bandwidths: (a)  1 MHz  (5.0us / 128us);  (b)  4 MHz  

(5.0us / 32us).

 

 

Time delay:      0.0 0.2 0.5 1.6 2.3 5.0

Power profile:  0.189 0.379 0.239 0.095 0.061 0.037
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• More recently, we propose a systematic design method to  

construct SF codes with full rate and full diversity.

• Moreover, we further permute the rows of the proposed SF 

codes in order to achieve larger coding advantage. The 

permutations have been optimized for any specific power 

delay profile.

3.8.  A Design of Full-Rate Full-Diversity SF Codes
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• Specifically, for any integer                      ,  we are able to 

design SF codes with a diversity order of              .  

• We consider a coding strategy that each SF codeword  C  is a 

concatenation of some matrices as follows:

where each matrix                             of size                has the 

same structure which is specified as

where                                                                        and all        

are complex variables and will be specified later. 

• For example,   
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Theorem 3:   For any SF code described above, if                             

for any pair of distinct variables                                             and 

,   then the SF code achieves a diversity order 

of                 ,  and the diversity product is

in which          is the “intrinsic” diversity product defined as

and          is related to the power delay profile as follows:
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 How to maximize the “intrinsic” diversity 

product

 The problem of signal design is related to the 

problem of constructing signals for Rayleigh 

fading SISO systems.  The optimum solution 

has been obtained via the algebraically rotated 

signal constellations (Belfiore et al 1997, 

Viterbo et al 1998).
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• Furthermore, we permute the rows of the proposed Full-rate full-

diversity SF codes in order to achieve larger coding advantage. 

Maximization of the Coding Advantage by 
Permutations

,in ex  

Moreover,

(i)

(ii) If we sort the power profile 

in a non-increasing order 

as:                                 then 

Theorem 4:   For any permutation, 

the diversity product of the resulting 

SF code is

where         is the “intrinsic” 
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• We consider here a specific permutation strategy.  Define a one-

to-one mapping       over set {1,2,…,N} as follows:

where

We call the integer        as a separation factor.

• For example,  if 
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 We need to optimize the separation factor in order to 

maximize the “extrinsic” diversity product      .

 For example, we consider a 2-ray delay profile with a delay         . 

Suppose that the system has  N = 128 subcarriers, and the 

bandwidth is  1 MHz.

– If  

– If    

In both cases, the resulting “extrinsic” diversity product achieves 

the upper bound  1  which is stated in Theorem 4.


ex

 us

5 ,  then 64 and 1.op exus    

20 ,  then 16 and 1.op exus    
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 In case of the 6-ray TU channel model, we plot the curves of the 

“extrinsic” diversity product vs. separation factor for different 

.  (2 L)   

(a)  BW = 1 MHz                                (b) BW = 4 MHz
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• Performance of the proposed SF code with different 

permutations in  two-ray channel model.

Simulation Results

(a) two rays at 0 and 5us                      (b) two rays at 0 and 20us
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• Comparison of the proposed SF code and the code from 

orthogonal design in TU channel model.

(a) BW = 1 MHz                      (b) BW = 4 MHz



Space-Time-Frequency (STF) Codes

 Now consider codes that exploit all spatial, temporal, and 

frequency diversity obtainable

 Same Goal: Obtain full diversity and full rate codes

 Similar channel model and modulation/demodulation system as 

SF OFDM-MIMO codes, however, our codes now span k OFDM 

blocks to add a temporal domain

 Channel model from the Tx i, and Rx j for the kth OFDM block 

(frequency response):








1

0

2

,, )()(
L

l

fjk

ji

k

ji
lelfH




Space-Time-Frequency (STF) Codes

 Each STF codeword represented by an matrix:

 Received signal at jth antenna for kth block:
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Criteria for a Good STF Code

 The received signal Y is modeled the same 

 Note: avg. SNR for each Rx ant. = ρ

 The pairwise error probability that two matrices             
constructed from codewords       , where     is received:

 Where               are the nonzero eigenvalues of
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Design Upper Bounds

 Through some manipulation, Δ and R may be written:

 Where: R
t
is the temporal correlation matrix

 R
f
is the frequency correlation matrix

 The pairwise error probability that two codewords       , 

where     is received, is:
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 The criteria for the coding advantage of the STF code is
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Design Upper Bounds

 The new performance criteria for good STF may be written:

 Diversity (rank) criterion: Maximize the minimum           

rank of             over 

 Product criterion: Maximize the minimum of the            

product             over

 Similar to SF code design criteria

 The rank of Δ is at most M
t
, and rank of R

F
is at most L:

 Thus maximum achievable diversity for completely 

stationary channel, rank(Rt =1) is: 
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Design of Full-Diversity and Full-Rate STF Codes

 Try the simple repetition-based approach with best SF code

 The k block time-repeated code:

 Results: Full diversity of K L M
t
M

r
, 

 at price of 1/k symbol rate

SFkSTF CC  11



Delay-Profile Results – Repetition-based (STF)

Block codes

 2-ray model, τ
0

= 20μs, N(0,.5)

 M
t
= 2, M

r
= 1 antenna

 ST Alamouti codes and QPSK

 Spectral Efficiency: 1, 0.5, 

0.33, 0.25 bits/s/Hz

Trellis codes

 2-ray model, τ
0

= 20μs, N(0,.5)

 M
t
= 3, M

r
= 1 antenna

 16-state trellis, QPSK ST code

 Spectral Efficiency: 1, 0.5, 

0.33, 0.25 bits/s/Hz



Design of Full-Diversity and Full-Rate STF Codes

 Try Full-Rate STF approach:

 Where            is a zero-padding

 It may be shown for full-rank Rt, {rank(Rt) = K}, symbols         

 Where
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Design of Full-Diversity and Full-Rate STF Codes

 Also yields good codes with Vandermonde design:

 Where        is the signal constellation order K

 Code Tradeoff:  High-complexity ML Receiver (exponential    

K)
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Delay-Profile Performance Simulation/Results (STF)

 Using 6-ray COTS207 typical urban (TU) 

power delay profile

 Simulated fading channel with different 

temporal correlation

 BPSK over Ω4K

 Spectral Efficiency:1 bits/s/Hz

 First-order Markov Model

 ε (0 ≤ ε ≤ 1) is the amount of 
temporal correlation

 Model:
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