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CHAPTER 1

eProblem 1. An example is given by the reflection of axes referred to at the end of §1.3.

eProblem 2. Counterclockwise rotation. Fig. 9.11 shows this type of rotation for o = 45°. Let the
angle between z; and z} be any a. Then, using the definition (1.3.1):

aj]p = e'l.e1 = COs &
ag9 = 6’2.62 =1
azs = eg.eg = Cos &
a3 = e}.e3 = cos(n/2 — a) = sina
as = e5.e; = cos(1/2 + a) = —sina

The other a;; are zero because e and e, are perpendicular to the other unit vectors. Then

cosae 0 sina
A= 0 1 0
—sina 0 cosa

For the clockwise rotation, a13 = cos(n/2 + «) and a3; = cos(w/2 — «) and
cosae 0 —sina
A= 0 1 0
sinaa 0 cosa
eProblem 3.
(a) Multiply (1.3.2) scalarly with ey:

3 3
eé.ek = Zaijej.ek = Zaijéjk = Qs
j=1 j=1
Because of (1.2.7) the only nonzero term is the one shown above. This result is similar to (1.3.1)
with j replaced by k.
(b) Start with
ej = aj;e]
To verify that this expression is correct multiply scalarly with ej;:
e}c.ej = aijefce; = aijéik = Qfj

Then

—_ . . —_— . .. I e I Il I e .. .
V = 0Uj€; = U;Qij€; = UV;€;; Uy = Q4505

eProblem 4.
u = (0.30,0.50)
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For Fig. 1.2a, add A to the components of u:
vV = (U,1 + A, uo + )\) = (Ul,vg) = (055,075)

The rotation is counterclockwise and the corresponding matrix is

A ([ cos 40°  sin40°
-\ —sin40° cos40°

Apply A to u. This gives u’ = (u},uf):

ull = a11u1 + a12us = 0.55
u'2 = ao1u1 + agsue = 0.19
Add ) to the components of u’:
v = (v],vh) = (u] + A\ ug + A') = (0.80,0.44)
Inverse rotation matrix:

1 _ AT _ [OG11 @21
AT =A" =
a2 a2

Apply A~! to v'. The result are the components of v/ in the unprimed coordinate system. Let c;
and co indicate these components. Then

c1 = a11b1 + ag1by = 0.33 # vy
Cco = a12b1 + agebs = 0.85 7é Vo
For Fig. 1.2b, A is a factor for the vector components
v = (A, Avg) = (0.39,0.65)

Then, proceeding as before
u’ = (0.55,0.19)

v/ = (0.72,0.25)

(01,02) = (01,712)
eProblem 5.
(a)

V.(ax b) = (€ijra;be) ; = €ijrajibr + €ijka;bri = brerijaji — ajejinbr,; = b.(Vxa) —a.(VXb)

(b)
V.(fa) = (fa)ii = fia; + fai; = (Vf).a+ f(V.a)

(c)
(V x (fa)); = eijk(fa)k,; = €ijrfjar + eijpfan; = (V) x a+ f(V x a)
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(d)

(V xr); = €1k j = €jk0kj = €ikk =0

(a.Vr)j = ((a.V)r)j = a;T;; = a;0;; = a;

(f)
1 1 1 i r
(VI = (Vajm5)i = m(%wg),z = mxﬂm = m%‘sﬂ T (_)Z

x|
Note: (zjz;); = zjz;; + xjix; = 2xj2;; = 2205 = 2;.

eProblem 6. |v|?> = v;v; = ajivgakiv;c = (5ij91}§€ = 'U;-v; = |v/|?

eProblem 7. Let n’ be equal to (1, 0, 0), (0,1,0), (0, 0, 1). Then (1.4.8) gives

!
T — G1iG1Tij) =

(
(

O

Tjy — @iG2)Tij) =
(113 — aiiagjTij) =0
respectively. The three equations can be written as in (1.4.9).

eProblem 8. The z; are the components of a vector (r).

eProblem 9.

(V(V.aa) = VxVxu); = (u)5); — €k(VXU)p; = ujji — €ijk€kimUm,ij =
= j,ji — (0a0jm — Oim0j1) Umij = Wjji — Ujij + Uijj = (V2u);
In the expression to the left of the last equals sign the first two terms are equal to each other.
eProblem 10. Let ¢ be equal to 1. Writing in full we have:
€15k Qjk = €123023 + €132032 = Q23 — a3z =0
Therefore, ag3 = a30. Similar results are obtained when 7 = 2 and ¢ = 3.

eProblem 11.
(a) Let
|B| = €;jxbi1bjobgs

(column expansion) and let C' be the matrix obtained by interchanging the first and second columns
of B. Then
|C| = €ijkbizbj1bks = €jikbjobi1brz = —€ijkbi1bjabez = —|B]

The expression to the right of the second equals sign is obtained by interchanging i and j. A similar
argument shows that this result applies when any other pair of columns or rows is interchanged.

(b) Let the first two columns of B be equal to each other; i.e., b;; = bjo. Then

|B| = €ijkbi1bjobrs = €;jxbizbj1brs = €1jxbj1biobrz = —€jikbj1biobyz = —|B|
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Therefore, B = 0. The expression to the right of the third equals sign is obtained from that on the
left by a change in the order of the factors. A similar argument shows that this result applies to
any other pair of columns or rows.

(c) Let
dy = 6lmn‘B|

da = €;kbitbjmbin
d3 = €;jkb1ibm;bnk

Unless [, m and n are all different, do = d3 = 0 because of (b) and d; is also equal to zero. If
(I,m,n) = (1,2,3), dy = d3 from the definition of determinant and d; = |B|. If (I,m,n) is an even
permutation of (1,2,3), d; and dy have an even number of permutations and dy = d3 = |B| = d;.
If (I,m,n) is an odd permutation, then dy = d3 = —|B| = d;.

eProblem 12. Apply the result of Problem 1.11(c) with B = A, where A is a rotation matrix, use
|A| =1, and contract with apy,:
ElmnApn = €3jkA10jmAknApn = 6ijlcailajm(skp = €jjpQilAjm

Here p is a free index. Changing it to k gives

€EimnOkn = €4jk04105m

eProblem 13. Let w = u X v. Show that wl. = a,pwy,.
! ! 1!
Wy = €rstUgVp = ErstQspUpQtqVq = ErstOspltqUpVg = EstrAsplitqUpUq

= €pgnlrnUpVq = Qrp€npglpVq = QrpWnp

where the result of Problem 1.12 was used.

eProblem 14.

(a) Start with

t;jvj = Av;
Assume A is complex. Then,

tiju; = XN'v;
where the *
with v;

indicates complex conjugation. Contract the first equation with v; and the second
tijvjv; = Avjvy
tijujvi = A*vjv;

The fourth equation can be rewritten as follows

* * * X %
tij’l)j’l)i = tji’l)j’l)i = tij'Ui v = A V; Vg

The symmetry of ¢;; was used. Subtract the third equation from the last one

0=\ = Xvjy;
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Then, assuming vjv; # 0

Af =)
and A\ is real.
(b) Start with
tiju]' = )\’U,Z‘
tijvj = pv;

Contract the first equation with v; and the second with wu;
Lijuv; = Auiv;

tijvjui = HU;U;
The fourth equation can be rewritten as follows
tjiviu; = t3ViUf = [0 U;
Subtract the third equation from the last one:
0= (M - )\)viui
Therefore, if A # u
viu; =0

If A = u we cannot say anything about v;u;.

eProblem 16.
(a) Start with (1.4.10) and contract ¢ and j:

!
ti; = Qikatk = Oty =ty

(b) Start with (1.4.80)
Vktkm = AUpy
and write the tensor and vector using (1.3.9) and (1.4.12):

! ! ! ! ! 4! !
QikV;QnkOimty = OinViQumtn = GimUntn = AGmY;
Therefore
1 4! !
Ay (Vpt — Avy) =0

Contracting with ag,, gives
Untng, = AU

eProblem 17. Introduce (1.4.107) in (1.4.113) and use (1.4.65) and g, = 3:

1 1 1 1
w; = SeikWik = S€ijpejuwr = =g ejiipwr = =5 (Oindrr — didkn) wi =

1
—3 (0a — 3dir) wy = w;
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eProblem 18. We must show that w} = a;pw,. Start with

1
/ !
w; = §6ijijk = geijkajmaknWmn = §6jkiafjmaknWmn = §€mnpa'imen =

1

where the result of Problem 1.12 was used.

eProblem 19.
(a)

-2 w3 —w2
—w3 =X wp |=-A ()\2 +w? + wj + w%) =—A (AQ + |W|2) =0
w2 —w1 -
Then
Al = 0; AQ = Z‘W|, Ag = —Z|W‘

(b)

Wijwj = eijkwkwj =0
so that \; is an eigenvalue. Here we used the fact that wyw; is symmetric in k and j and (1.4.60).
eProblem 20. Use (1.4.113) with W;; = a;b; — b;a; and (1.4.56):

1 1 1
w; = Seijk (ajbe — bjar) = Seijhajbe — Seiwsbraj = eijpajby = (axb);

1 0 —«a
A=|0 1 0
a 0 1

The condition for the approximation is

eProblem 21.

1— 1
ST 01 = —— <cosa = a<g
cos 1.01
Then % _1
100 18 | 0.08
0s 8°
and |sing® | g
sin8° — a T
100x 22— %l _ .33 -
X singe ’ = 180

eProblem 22. Use the definition (1.6.31):
Terv = t;;je;e;. v= tijej(ei.v) = t;vi€;

On the other hand:
v.T = v.tijeiej = tij(v.ei)ej = tijviej = 72-V
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CHAPTER 2
eProblem 1. Use ]
eij = 5 (Ui +uj;i)

Then
2e23,23 = (u2,3 + u32) o3 = U2,323 + U223 = (u2,2)3 3 + (u3,3)y o = (€22) 35 + (€33) 9o

This proves (2.4.4).

For (2.4.5) write the individual terms separately:

€33,12 = U3,312

—€12,33 = 3 (u1,233 + u2,133)

€23,13 = 3 (ug,313 + u3,213)

1
€31,23 = B (u3,123 + ©1,323)

Adding the last three equations and using w; jx = u; kji = U; 1k = ..., gives the first equation.
eProblem 2. Using (2.3.15)
Ti1 = ui1 + 051

Then
drV) = (1 + u1,1,u2,1a“3,1)

and
ds? = drW dr®™ = (14 uy ) + u%,l + u§71 =1+2u;; + uil + u%,l + U§,1 ~ 14 2u;
Then, using (1 + a)™ =~ 1+ na for a << 1, we get

dsy = (142u1 1) =~ 14up,

eProblem 3.
1 1 1

1
w; = —E(qu)i = _§6ijkuk,j = —551;363211,&1,2 = §U1,2(5i3 = 50{&’3

and
—1(001)—1
w—2a ,0, —2ae3

eProblem 4. Write an equation similar to (1.4.90):

- « 0
a —-XA 0
0 0 -

=A=X+0%) =0
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Solving for A gives A\; = 0, A2 = «, A3 = —«. Therefore, in the rotated system the tensor has
the expression given in (2.7.24). To determine the eigenvectors solve equations similar to (1.4.92)
for these three eigenvalues. The corresponding unit eigenvectors are (0,0, +1), (1/v/2)(1,1,0), and

(1/4/2)(1,—1,0).

eProblem 5. Let mn be mass. Then

p—po 1 (m_ﬂ)_vo—v_%—(VoerV)__ dv
e (mM/V)\V V,)] vV  Vo+dV  V,+dV
d ..
V/V; = Ei ~ —Eii(l - 81',') N —Ei = —V.u

T 1+4dVIV, 1+ey
Here we used (2.4.22) and (1 + z) ! ~ 1 — z for small .

eProblem 6. Let b = (1/2)V x u. Then
Ixb =epe, x b =¢y(e, x b)

and
(Zxb)ij = Opi€jridprby = Ori€jriby = €jitby = —e€ijby

Now use b, = (1/2)€mnUn,m. Then

1 1 1 1
(IX <§VXU>) = S Eijlelmnnm = ~ 5 €lijeimntnm = 5 (Uij = uji) = wij = (2)ij
ij

Here (1.4.65) and (2.5.3) were used.
eProblem 7. If v is an eigenvector of T and A is the corresponding eigenvalue, then
Tx=Xx

and
x'Tx = Ax"x = \x|?

Because the left-hand side and |x|? are positive, A > 0.

eProblem 8.

(a) Start with an expression similar to (2.5.1) using the Eulerian description:

a .
du; = ui(r + dr) — Uz(r) = Bzz dxj = ui,jdxj = (uV)ideCj = d.’IIj(Vu)ji
J

Write this expression in vector form:
du =uV.dr = dr.Vu
(see (1.6.32)). Now use (2.5.4):

dR = dr —du = dr — dr.Vu = dr.(Z — Vu)
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(b)
D? = [dr.(T — Vu)].[dr.(Z — Vu)] = [dr.(Z — Vu)].[(Z — uV).dr] =

dr.[(Z — Vu).(Z —uV)].dr =dr.(Z — Vu—uV + Vu.uV).dr = dr.(Z — 2€).dr
Here (1.6.32) and (2.6.3) were used.
(c) Using (2.6.4) the factor in the last equation in (b) becomes
dr'.[(1 — 2e1)ee] + (1 — 2e2)ehes + (1 — e3)eses].dr’
where dr’ = dz;e}. This gives three terms of the form
dzlel.(1 — 2¢y)ese)).dalel, = (1 — 2¢;)dzldz) (e].€))(e.e)) = (1 — 2e;)(dz’))?; J=1,2,3

Therefore,
D? = (1 — 2¢1)(dz})? + (1 — 2€2) (dzh)? + (1 — 2¢3)(dzy)?

(d) The volume of the ellipsoid

2 2 2
(@) () () -
a b c
is (4/3)mwabe. Therefore, the volume of the ellipsoid in (c) is given by

V= ng?’[(l —261)(1 — 262)(1 — 2e3)] 2 = V,(1 + 1) (1 4+ €)(1 + 1)

~Vo(l+e€+e+e3) =V,(14+ V.u)
For the first approximation use (1 — 2d)~'/? ~ 1 + d for small d. For the second approximation
second order terms were neglected. In the last step the result of Problem 1.16a was used. Finally,
V-V,

7 Vu
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CHAPTER 3
eProblem 1. Start with
D 0 (gm0 o @) os,
_ (of  Of Bxk) (89 g 8a:k) B D_f Dyg
<8t+8k8t +f O 0t ) Dt+f

eProblem 2. Because J is a function of R and ¢, D/Dt = 0/0t. Start with J = €;;321,;72 T3 4-

Then
B =0 [(gpene) masmnact (Ggmns) mvssnn + (o) s
— — € o ;T x 14T —Z 142 4
Dt ijk ot T, 2,543k ot 2,5 1,543k ot 3,k 1,i42,5

Consider the first term. The time derivative gives:

0 0 8:61 15] 8:131 _ 8’01

axl’i - E&Xi N 0X; ot 0X;

Use v; = vi(x1, %2, 23,1); ; = (X1, X2, X3). Then
3’01 _ (9’01 8.751 8v1 (91‘2 (9’01 6.T3 _ (9’01 BLI,‘l a’l)l

OX, 011 0X; | 0,0X;  0ws0X;, 01, 0X;  0m b

Then the first term becomes

vy
€ijk Tl | T2,5%3 k = €ijk 7 T1iT2,T3 .k
ik \ gL J ik Gy T

If I = 1, the right-hand side of the expression above gives

vy Ovy

A €ijkT1,iT2,j T3k = 5 —
31‘1 1] ) 3] ) 31‘1

J

Ifl =2 we get
8’01

Oy

Here we used the fact that z3;x9 ; is symmetric in ¢ and j (1.4.60). Alternatively, we are in the
case of Problem 1.11(b). If I = 3 we also get zero.

€ijkT2,iT2,jT3k = 0

Similarly, the second and third terms of the first equation give

8’02 8’03
d
31'2 U an 8:173 93”

Finally, adding the three terms together gives:

DJ _ ovq Ovy 8’03) _
Dt =7 <6£C1 + 8562 + 8563 N J(V V) JUk k
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/ podVo = / pdV
Vo 14

change the variables of integration x; to X; in the second integral. This changes the integration
volume to V,. When changing variables the Jacobian (2.2.3) is needed. This gives

/ podV, =/ pJdv,
Vo Vo

/ (pJ — po)dVo = 0
Vo

eProblem 3. Given

Then

and
pJ = po

provided that the integrand is continuous (see the comments that follow (3.5.3)).

eProblem 4.
(a) From Problem 3.3, because p, depends on R only

D

Now use the results of Problems 3.1 and 3.2:

D DJ D
—(pJ) = J—-l—th J(—p-l-qu) =0

Dt Dt
and D
et
Dt +pVau =0
because J # 0 (p. 42).
(b) Use the result in (a) and (3.2.4,6)
Dp Op  Op Oxy op Bp __Op
e TP pV.u 8t+6k8t tpvek =0+ PRVE+ PUEE = S0 + (oK) & 8t+v( pv)

eProblem 5. Convert the integral over V into an integral over V, (the volume before deformation)
and note that V, is fixed in time, so that differentiation and integration commute. Then use the
result of Problem 3.1 and the first equation in Problem 3.4:

jt/pgbV /DthquV /[Dth)+JpDﬂdV /JDth / dV

eProblem 6. Using (3.3.2) and (3.3.3) we obtain

/TdS+/ (f——)dV-O
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The surface S is made of three surfaces; ST, S~ and 65. Let r and h be the radius and thickness
of the disk. The volume of the disk is 772k and the area of §S is 2nrh. We will use the following
result

/V (1,9, 23)dV < max{|f[}V

where f is any function defined within V. A similar result applies if the integration domain is a
surface. Apply this to the jth components of the surface and volume integrals in the first equation

TS < Tynas / dS = Tynag2nrh
S S

Duv.
/ p (f] - DUJ) av < Imaz/ av = Imawﬂ'TQh
v t 1%

where Ty, and I, are the maximum values of the absolute values of the integrands. When A
goes to zero, the two integrals go to zero.

eProblem 7.
(a). Equation of the plane through points A, B, C:

ax1 +bry+cxs=d

Let
P= (a’aba C)v n-= (nlan%n?’) = _(a”ba C)

Ip|

where p and n are a vector and a unit vector both normal to the plane. Also, if x = (%1, z2,z3) is
a vector from the origin to any point on the plane and p is the vector from the origin to the point
on the plane for which p is perpendicular to the plane, then the equation of the plane is

px=|plh=4d

where h is the distance from the origin to te plane (see figure 3.3, where the point P is the origin,
and Problem 19, page 21, of Spiegel (1959)). From this equation we have

d h
lp| = 7 n= E(a, b, c)

Now refer to Fig. 3.3. The coordinates of the points A, B, and C are
(io,o) - (i,o,o)
a s
(0.5:0) = (0.:2.0)
b no
d h
(07 Oa _> = <07 Oa _)
C ng

respectively. The area dS,, of the triangle ABC' is one-half of the absolute value of the vector
product of the vectors BA and C
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°Lo e &y 1 1 1
dS B A x C — A‘ = —h/n1 h/n2 0 = §h2 ( ’ ’ )‘
h/m 0 h/n3 nong ning nNing
1 1 A
2 ninang 2 ningnsg

and the volume of the tetrahedron is given by

3
/ dS,, (W) dh' = / prap =1 Ml
2’)’L1’1’L2’1’L3

6 ninaonsg 3
where dS,,(h') is the area of the triangle parallel to ABC a distance h' from the origin.
(b) As in Problem 3.6, and using the results in (a) and (c), we have

/ T;dS < Trnaw / dS = Tz (dSy + dSy + dSs + dS3) o< TrnazdSn
S S

because |n;| <1

/ ( fi— ) AV < Imas / dv = gImazhdSn

As h goes to zero, the volume and the surface of the tetrahedron go to zero, but the volume vanishes
faster (because of the factor h).

(c) As done in (a), for dS3 we have

€1 € €3 1 B2
dS; = ‘A PxB— P\ Bni 00 |=Z——les| = nydS,
0 h/’nQ 0 ninz
Similarly
dSl = ’)’leSn; dSQ = ’l’LQdSn
eProblem 8.
(a) Equation of the plane and normal unit vector:
1+ 3z + 323 =3
n= ! (1,3,3)
- \/E »
Stress vector. Use (3.4.15):
1 1 0 0 1
T=—(1 3 3){0 -1 1 |=-—(1,0,0
s s (0 1) - na00

(b) Normal and shearing stress vectors. Use (3.8.2) and (3.8.4):

1
TV = (T.n)n = —n
19
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1
1919

T3 (18, -3, -3)

Furthermore,
T n=0
so that T is in the plane determined in (a).

(c) Solving the eigenvalue problem gives 77 = 1, 77 = 0 and 7, = —2. Using (3.10.14), (3.10.16)
and (3.10.17) we obtain
Cy (Tn+1)2—l—7'5221

Cy : (Tn +1/2)% + 72 < (3/2)?
Cs : (tn — 1/2)% + 72 > (1/2)?
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CHAPTER 4

eProblem 1. Use an argument similar to that used in connection with (1.4.68). Start with

Tij = Cijkl€kl
' '

Tij = Cijki€ki

and write TZ-IJ- and €}, in terms of the unprimed variables,

!/
AimjinTmn = Cyjki10kpQiqEpq

Use the first equation to rewrite 7,,, and move the expression on the right-hand side to the left.
This gives

/
(aimajncmnpq - cijklakpalQ) €pg =0
which means that
/
CijklkpQlg = Aim@jnCmnpq
Contract with a,, and ag,
! _ ! — A — - .
CijklQkpQrpQlqGsq = Cijkl‘skr‘sls = Cijrs = QimQjnArpQAsqCmnpq

The last equality is the transformation law for a fourth-order tensor.

eProblem 2. Use ¢;jx; = c¢jiri- The coefficients of A and u have the symmetry of c;;z. Therefore
only the third term in (4.6.1) must be considered

v(0irdji — 0adjx) = v(djkdi — 6j10ik)
Use (1.4.65) and €,j; = —€pi;. This gives
2V€mij6mkl =05 m 7é 0]

When i # j and k # [, this gives v = 0. When i = j or k = [, the factor in parentheses in the third
term of (4.6.1) is identically equal to zero, and (4.6.2) is satisfied.

eProblem 3. Start with
€ijTj = Vs

and use (4.6.8). This gives
€ijx; = a(Tyj — bdsj)xj = aTijz; — abz; = vw;

where a and b represent obvious scalar factors. Then

1
TijTj = E(I/ + b):ci
Therefore, €;; and 7;; have the same principal directions.

eProblem 4. From (4.6.13) we obtain
A=
r= 20
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which can be rewritten as
A1 - 20)
H= 20
Rewrite (4.6.12) as

Atp= %(3“2“)

Replace A + p and p using the first two expressions

A Al —20 1—20
— = = A+ A
20 Y 20 (3 + g )

Simple manipulations give

_ Yo
- (o +1)(1—20)

so that
A1 - 20) Y

26 20+1) "

eProblem 5. Divide the numerator and denominator on the right of (4.6.12) and (4.6.13) by A

y = B +2u/X)
1+ p/A
1
o= ———
2(1 4+ p/X)
and let A go to co. This gives Y = 3y and o = 1/2.

eProblem 6. Replace (4.6.14) and (4.6.15) in (4.6.20).

. Yo Y Y
T 0t+00-20) "30%0)  30-20)

eProblem 7. From (4.5.13) and (4.6.3)
Tij = )\5ij5kk: + 2/1;6@'

Then
1

17

1 1
W = -mijei5 = EAgiiffkk‘i‘ﬂgijfij = §>\ (ekk) >+ (5%1 Ty + €3+ €5 + €5y + 653 + 31 +E3p + 5%3)

2

1
= 5/\ (ekk)” + p (5%1 + 65y + €33 + 26l + 2e33 + 25%3)
The symmetry of ¢;; was used.

eProblem 8. Using (4.7.3)

1 1 2
gij€ij = (Eij + gfkk(sij)(fz‘j + §€kk5ij) = &ij€ij + ggijsklc(sij + 9 (exk)® 0ij0ij =
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o 2 1 o 1
€ij€ij + §5ii5kk + 9 (€kk)2 0ii = Eij€ij + 3 (5kk)2

Recall that &;; has zero trace and d;; = 3. Now introduce this expression in the first equality of
(4.7.1) and use (4.6.20)

1 1 1
W= 5)\ (ekk)” + péij&ij + i (exr)” = §k (exk)” + pEijEis

eProblem 9.

V- [V(V-w)] = [V(V-u)l;; = (Vo) s = V2(V - )

VA(VxVxu)=[Vx(Vxu); = (ex(V X W) = [€jrerimUmijli = [t — tijj]

= UWjgi — ijji = Wijij — Uigji =0

Here (1.4.65) was used and because i and j are dummy indices, ©;;j; = u; jij-

{Vx[V(V-u)l}; = ek (wy) ; =0

because (uy;) ;; is symmetric in k and j.
[V X (V XV xu)]; = eijr(ur—urug) = €ijr (uig) = (€ijrung) y = —[(V x )], = —[V3(Vxu)];

eProblem 10. From (4.8.5)
w=pp°
A= pa® =2 = p(a® — 267)
Introduce these expressions in (4.6.13)

_ la?—2p?
0_2042—52

eProblem 11.
V.= us,3
V(Vu) = Uu3,33€3
Vxu= (U3’2, —U3’1,0) =0

0%u _ 0%us

or? o
Because all the relevant nonzero terms correspond to vector components in the x3 direction, when
introduced in (4.8.4) they satisfy

€3

a2 82u3 - 82’21,3
ox3  Ot?
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eProblem 12.

Vo= 'U/Q,Q =0
Vxu= —U2,3€1
VxVxu= —U2,33€2

6211 _ 82U2

oz o

Introducing these expressions in (4.8.4) shows that

€2

(92U2 _ (92’1,&2
or3  0Ot?

,82

19
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CHAPTER 5

eProblem 1. Application of the boundary conditions gives

h(—z/c) + g(z/c) = F(z) (1)
h(=z/c) +g'(z/c) = G(x) (2)
Integrate (2)
—c h(—z/e) +c g(z/c) = /0 G(s)ds+a (3)
Rewrite (3) as ,
—h(=a/e) + gla)c) = - /0 G(s)ds + k; p=t (4)
Solve (1) and (4) for h(—z/c) and g(z/c)
glw/c) = %F(a:) o [+ (5)
h(—z/c) = / (s ds—— 6)
Replace = by x + ¢t in (5) and by z — ¢t in (6)
gt +z/c) = ; (x +ct) +—/m+6t ds+§ (7)
h(t — z/c) = ;F(a: ety — 210/0 “ G(s)ds — g (8)
Adding (7) and (8) gives ¥(z,t)
bz, t) = %[F(w +et) — Fz — ct)] + ic /w _+tt G(s)ds )

eProblem 2. The Laplacian in spherical coordinates has the following expression
10 ou 1 0 ou 1 d%u
2 2
= (2 = 0— )y ———_ T~
Viu r2 Or (T 6r> + r2sin 6 60 (sm 80) + 72 sin? O O¢?

Here 6 and ¢ are the angles shown in Fig. 9.3. Do not confuse the angle ¢ with the function ¢
used in §5.5. When u = u(r), the Laplacian reduces to the first term

U2y — 10 ( 8u>_82u 20u

2or\"a) "2 T o

eProblem 3.
V- M= Mi,i = 6ijk¢,jiak =0

on account of the symmetry of ¢ ;.
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eProblem 4.
Yp = _i(k-r),zﬂp = _i(kjrj),pw = _ikjrj,zﬂp = _ikj‘sjzﬂp = —ikpy

eProblem 5. )

1 ;1
N, = EGquMq,j = _lgequ[(k X a)gl,; = _lzequ(k X a)q,;

1 . 1 1
= _lgfqu(k x a)q (—ik;9) = —gequ(k x a)gkjth = Eequ(k x a)qk;v

eProblem 6. The spatial derivatives are the same as those in §5.6. The only difference is the
replacement of —1/c? by k21 in equations such as (5.6.9), (5.6.14) and (5.6.22).

eProblem 7. From (5.8.60)
u; = C1 cos(wt — klxl)

ug = —cg sin(wt — ky1)
Then
uf | uj 2 - 2
o + 2 = cos”(wt — k1x1) + sin”(wt — ki1z1) =1

eProblem 8. The real parts of the displacements given by (5.8.53)-(5.8.55) are

)_
up = A(l,0,n) cos [w (t - u)]

(0]

usy = B(—n,0,1) cos [w (t - u)]

ugy = C(0,1,0) cos [w (t — %)]

In all cases,
p-r =lx1 4+ nxs

To get 7;; for the displacements given above use (5.9.5). For the P waves we have
. . A
Aug g = MAl(—sin[...])(—lw/a) + XAn(—sin[...]) (—nw/a) = /\aw sin]...]

because 12 +n? = |p|? = 1. The ellipsis represent the argument of the cosine in the expression for
up.
Let
aij = p (uij + ;)
Then
all = 2u§wl2 sin]...]

A
asy = 2u—wwn2 sin]...]
a
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A
a13 = az) = 2uln—w sin]...]
1o

All the other terms are zero because either us = 0 or u; and ug do not depend on xs.

For the SV waves B B
A = )\nlwﬁ sin|...] — /\lnwﬁ sin[...] =0

(as expected)

all = —QN%wnl sin]...]

B
as3 = Qp%wnl sin]...]

B
a3 = azl = ,u(l2 — nz)—w sin[...]

B

All the other terms are zero.
For the SH waves (nonzero terms)

c .
a12 — ag1 = uﬁwl sm[...]

a23 = A32 = MEOJ’H, sm[]

22

eProblem 9. To obtain the expressions (5.9.9)-(5.9.11) we must perform the matrix operations
indicated in (5.9.3). The expressions for 7;; are given in (5.9.6)-(5.9.8). The velocity vectors are
obtained by taking the derivatives with respect to ¢ of the displacement vectors given in Problem

5.8, which gives

up = —Aw(l,0,n)" sin]...]
gy = —Aw(—n,0,1)T sin]...]
sy = —Aw(0,1,0)7 sin]...]

The transposition is required for the matrix multiplications. For the P waves we need the following

product
(A+2ul?) 0 2uln l (A + 2ul?)l + 2uln?
e b o) ) )
2uln 0 (A+2un?) n 2ul?n + (X + 2un?)n
l
= (A+2u) (0> =(A+2u)p

n

When all the factors are included we obtain

A22
Ep=""

(A + 2p)psin?[...] = paw? A?p sin® [w (t — u)]
«

where (4.8.5a) was used.
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For the SV waves we have

and 52,2
= d psin[...] = pfw? B?p sin’ [w (t — pﬂ-rﬂ

where (4.8.5b) was used.

For the SH waves we have
0 17 0 0
I 0 n 1]=p
0 n O 0
and 2,2
Esyg =pu ﬁw psin[...] = pBw?C?p sin? [w (t — %)]

eProblem 10. It is straightforward to derive (5.9.12)-(5.9.14) because ag.p = n and p.r = [z when

$3::0.

eProblem 11. In general, if T' = 27 /w
wT'—b

1 1 .
— (u — —Sln2u)
—-b

I 1 T.2 B d 1 wT—b.2 p
_:F/O Sm(‘i,—_)/t_ﬁ/,b SULuan = o o1 2
u

Applying this result to (5.9.12)-(5.9.14) immediately gives (5.9.15)-(5.9.17).
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CHAPTER 6

eProblem 1. From (4.6.3), the general expression for 3; is

T3; = A03iukk + (Ui 3 + u3,;)

(1) P waves:
31 = p(u1,3 + us,1)

For the incident waves (see (6.2.4))

OS €

. . w C
u1,3 = iAsine expl...] = us;

where the ellipsis indicate the argument in the exponential in the expression for up. Then

T31 = 2013
Similar arguments show that this expression applies to the reflected and transmitted waves.

739 = 0 because us = 0 and uz has no dependence on z,.
33 = Mu1,1 +us3) + 2uug3 = Auig + (A + 2p)uss
(2) SV waves:
731 = p(urs +us31)
(the two partial derivatives are not equal)

739 = (0 because us = 0 and u3 has no dependence on zs.

T33 = 2pu3 3
because the divergence of ugy is zero.

(3) SH waves: 131 and 733 are equal to zero because u; = uz = 0 and us does not depend on z3.
T30 = p(u2,3 + u32) = pug 3
eProblem 2. The factor b; — by is a wave number, so that
w .
[ evmnds, = F(1) = 2ma(; - by)
—00

(see (A.62)) Interchanging the order of the integration and the summation in the left-hand side of
(6.5.12) and using the result above gives the right-hand side. Now use the fact that §(b; — by) is
different from zero if b; = by, and equal to zero if b; # by, (see the comments following (A.14). Then,
if k = 1, the right-hand side of (6.5.12) gives

3
QWZaj(S(bj — b1) = 27‘(’0,1(5(0) =0
7=0

so that a1 = 0. Similar results are obtained with k = 2, 3.
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eProblem 3.

(a) The third term in (6.5.10) is equal to zero when f; = 0,7/2, which means that ag in (6.5.11)
is equal to zero. Applying an argument similar to that used in the previous problem we conclude
that by = by or e = e1. Now use (6.5.14) with a3 =0

A A
(A +2ucos?e) = —— (A + 2ucos® e)

2 21

a a
so that A; = —A. This result agrees with (6.5.20) for f = 0 (recall that f; was renamed f). For
f1=m/2 see (c).

(b) Use the results above and f; = 0. After canceling the common factor of exp(iwt), from (6.5.9)
we get

A B
2— sin2e exp(—iwz; sine/a) + ?1 exp(0) =0
a

This implies that the argument of the exponential in the first term must be zero, which in turn
means e = (. But then the first term must be equal to zero, which means that B; = 0. This result
agrees with (6.5.21) for e = f = 0. The result e = f = 0 agrees with Snell’s law.

(c) From (a) we know that A1 = —A and e; = e. Use these results and fi; = 7/2 with (6.5.9)

A B
2— sin 2e exp(—iwz; sine/a) — =1 exp(—iwz;/B) =0
a

B

which implies

sine 1
a B
or . o
sme—ﬂ

However, because o > 3, this equation cannot be satisfied. This also agrees with Snell’s law, which
shows that fi; cannot be equal to /2.

eProblem 4. The denominator of (6.5.21) is always positive because e < 7/2. The numerator is

positive or zero as long as f < w/4, in which case B1/A < 0. Let us investigate whether f can be
larger than m/4. The largest value of f is attained for e = 7/2, in which case, from Snell’s law

Then, if f > n/4

or

However, from Problem 4.10 we see that this condition corresponds to a negative Poisson’s ratio.
Therefore, as long as 0 > 0, f < 7/4 and B1/A < 0.

eProblem 5. Start with (6.5.8) and use (6.5.15).
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Aside from the exponential factor, the component in the a; direction is given by

A B
A (sine + sineZ1 — cos fZl)

Use (6.5.20) and (6.5.21) and operate. Aside from a factor of A, the numerator of the resulting
expression is

2 2
sine [Sin2e sin2f + (%) cos? Qf] +sine lsinQe sin2f — (%) cos? Qf]

+ cos f (2% sin 2e cos2f) = sin 2e [2sinesin2f + 2% cosfcos2f]
Rewrite the second term within the brackets

2%COSfCOSQf=2%COSf(1_2Sin2f) =

2% cos f — 2% sinf sin2f = 2% cos f —2sinesin2f
B B B
(Snell’s law was used). Introducing this result in the previous expression gives

(67

B

(07

B

2% cos f sin2e = 2

B

(Snell’s law was used).

2
cos f2 sinfcose:2<g> sin2f cose

B

Aside from the exponential factor, the component in the a3 direction is given by

A B
A (—cose—l—cosef—l—sinfj)

Use (6.5.20) and (6.5.21) and operate. Aside from a factor of A, the numerator of the resulting
expression is

2 2
-2 (—) cosecos? f — 2% sin f sin2ecos 2f = —2 (%) cos e(cos? 2f + 2sin? f cos 2f)

a\? a\?
= -2 (E) cos ecos 2f (cos 2f 4 2sin? f) = —2 (E> cosecos 2f
(Snell’s law was used).

eProblem 6. Start with (6.5.27), divide by a cos e and use Snell’s law written as S/« = sin f/ sine.
This immediately gives (6.5.28).

eProblem 7. Equations (5.9.9)-(5.9.11) give the energy flux in the direction of propagation per unit
area. These equations are general and apply to the P and SV displacements included in (6.5.8).
Multiplication by the cross-sectional areas of the beams and averaging as in Problem 5.10 gives
(6.5.29)-(6.5.31).
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eProblem 8. After multiplying by 52/a? and using Snell’s law (3/a = sin f/sine) the numerator
of (6.5.36) can be written as

2
2sine cos esin 2 f (é> — cos? f = 2cosesin2f p sin f —cos?2f =0
@ @
for a value of f to be determined. In addition
2 1/2
ﬁcose = é(l —sin’e)'/? = (ﬁ—2 — sin? )
« @ @

Combining these two equations gives
B e )
251nfsm2f(¥—sm f) —cos“2f =0

This equation can be solved doing a forward search with a computer. The angles are 30° and 34.26°

for a/B = /3.

eProblem 9.

(a) Hilbert transform of cosat. Assume that a > 0. Use the method described after (B.14). Start
with the Fourier transform
F{cosat} = w[d(w — a) + §(w + a)]

(see Problem A.3). Change the phase as indicated in (B.13). The first and second deltas are
nonzero for w > 0 and w < 0, respectively. Then

7[id(w — a) —i0(w + a)] = in[6(w — a) — 6(w + a)] = —F{sinat}

(see Problem A.3). Therefore
H{cosat} = —sinat

(a) Hilbert transform of sinat. Proceed as in (a). The Fourier transform is given in Problem A.3.
Change the phase

in[—i0(w + a) — 16(w — a)] = 7[6(w + a) + d(w — a)] = F{cos at}

Therefore
H{sinat} = cosat

(a) Hilbert transform of §. The Fourier transform is equal to 1 (see A.60). Change the phase and

use (A.75)
isgnw=F { _—2}
s
Therefore 1

eProblem 10. For the reflection coefficient start with the expression to the left of the last equality
in (6.6.11), divide the numerator and denominator by 83’ and use y = pB% and an equivalent
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relation for p'. For the transmission coefficient start with (6.6.9) and divide the numerator and
denominator by 8. This gives
Ci  (u/B)cos f — (u/B)cos ' pBoos f — plf cos [’

C ~ (u/B)cosf + (/) cos '  pBeosf + pf cos '
c 2(u/B) cos f 208 cos f

C ~ (u/B)cos [ + (i [B)cos f)  pBeosf +pB cos [’

To compute the impedance for each of the three waves use 732/%2 (see page 163) with 732 given
by (6.4.8). For the incident wave from the first term in (6.6.1) we have

cos f

T32 = pug3 = iuCw expl...]

tp = iCwexpl...]
(the ellipsis indicate the argument in the exponential) and

zzﬁcosf:pﬂcosf
(LIS

For the reflected and transmitted waves use the second term in (6.6.1) and (6.6.2). This gives
—pPBcos f and p'B' cos f'.

eProblem 11. For u, start with (6.6.1) written as

u = axC expliw(t — z1/c)] {exp(iwacg cos f/B) + % exp(—iwzs cos f/ﬁ)}

where ¢ = 3/sin f. Use (6.6.21) for C;/C (assume w > 0)
u = axC expliw(t — z1/c)] {exp(iwzs cos f /) — exp[—i(wzs cos f/B) — 2ix]}
Now consider the factor in braces after it has been multiplied and divided by expiyx

exp(—ix){expli(wzs cos f/B + x)] — exp[—i(wz3 cos f/B + x)]}

= giexp(-in)sin (X2 4 1) = 2expicr/2 —0lsin (222 1)

For u’, multiply and divide (6.6.2) by C and use (6.6.22).
u’ = 2a,C'sinx exp(iwzs cos f'/B') expliw(t — x1/c)] expli(m/2 — x)]
and use Snell’s law to modify the exponent involving cos f’

! w2 1 \Y? 9\ 1/2
iCO;,f = (Suﬂlmf — @) =p"! (sin2f - @)

eProblem 12. We need the real part of the displacement u’ given in Problem 6.11. TUsing
exp(ir/2) =i we have

R {expliw(t — @1/c) +i(r/2 — )]} = R{i expliw(t — z1/¢) — x)]} = — sinfw(t — z1/c) — x)]
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Therefore
R{u'} = —2a,C sin x sin[w(t — z1/¢) — )] explwzs(sin® f — 52/8)/2 /4]
To get energy use (5.9.4),(5.9.3b) and (4.6.3)
Psu = a3.Egy = — 037315 = —Ti3tl; = —1'uy 315

(recall that v} = uf = 0). Using this expression with R{u'} and setting 3 = 0 gives

! 1/2
Psy = 2sin’ x %CQw2 (sin2 f - %) sin2[w(t — z1/¢) — x)]

Note that uj 3 and 45 contribute a factor of 4sin...] cos|...] = 2sin2[...].

Using T = 7 /w
T
/ sin 2[w(t — 1 /c) — x)]dt = 0
o
and Psy = 0.

eProblem 13. For normal incidence (6.6.56) reduces to
(é)Q y Asin2e (il)Q —1
A p sin2e \ A

sin2e¢’ sine’ cose! o cose

We need the following result
!/

sin 2e sine cose o cose

where Snell’s law was used. When e goes to zero, €’ goes to zero, their cosines go to one and

«
lim — = —
e—0 sin 2e o

Using this result in the energy equation together with (6.6.50) and (6.6.51) gives

=1

(p’a' - pa)2 4p' ! pa
Pl + pa (p'a! + pa)?

eProblem 14. Because y = 0 for an inviscid fluid, this problem is similar to that discussed in §6.5.1.
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CHAPTER 7

eProblem 1. Multiply (7.3.11) by itan K, add the result to (7.3.10) and use (7.3.19)

A(l +itan K)e K — B(1 —itan K)e'X =0

Using
) 2e:|:iK
1+itan K= m
the previous expression gives
2
gk ok A—B)=0

so that A = B.

eProblem 2. Start with (6.9.16a). For grazing incidence f = w/2, which means that ¢ = S (see
(6.9.2)). Use (6.9.5a).Then

1 1
Hszn':H%n':Hw W_E:mﬂ
(we are assuming 3 > ') and
B mm mmnf3
CTH &L B
B2 B2 B2

This equation is (7.3.32) withm =N —1 and 8, = 5.
eProblem 3. Start with (4.6.3)
Tij = Aéijuk,k + ,u(ui,j + u]-,i)
If A and p depend on position
Tijj = NjOigtuk ke + Adijur kg + g (i + uja) + p(ui gy + i)
= Nitye + Ak i + 1,5 (wig + w5) + (w5 + Wk ki)
= ptijj + (A + p)ukk + Nitw g + 1,5 (s + i j)
= u(V?u); + (A + 1) (V(V.)); + (VA)iVou + [(Vp).(Vu + uV);

If A and 4 depend on z only,

d\ dX
>\,i = &51'3; VA= &az

(the equation on the right gives the third term in (7.3.46)) and

d
P = 551'3; V= d—l:az
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Then the fourth term of 7;; ; includes the factor
[a;.(Vu+ U.V)]j = §i3(Vu + U.V)ij =u;3+us;

(any subindex can be used in the left-hand side). Now we show that this result is equal to the
following factor in (7.3.46)

Ou
2— 4+ a,xVxu) = 2u]-,3 + Ejik(sig,ekmn’u,n’m = 2u]-,3 + €kj3€kmnUn,m = Uj,3 + U3 j
J

0z

where (1.4.65) was used. The factor du/dz is common to both terms. The last term in (7.3.46)
comes from the corresponding term in (4.2.6).

kz gik(ct—z)

eProblem 4. Aside from a factor of e 7= we have

733 = Aut1 + (A + 2p)us s = —AAik + A(—iya)(—7a)k = Aik [—)\ + O+ 2u)7§]

C2 042 02 02

where (7.2.14) and A + 2 = pa?/3? were used (see (4.8.5)). When z = 0, e~ 7k = 1.
eProblem 5. For the displacement given by (7.4.35) we have
(Vxu); = €123u3 2 + €132u23 = 0
(because ug does not depend on z2 and ug = 0)
(Vxu)2 = e213u3,1 + €a31u1,3 = (kW — iU')eik(Ct_w)ag = a(z, 2)ay

(Vxu)3 = ez1ou2,1 + €321u12 = 0

Using (7.4.37) .
V(V - u) = (—ik(—kU + W'),0, kU’ + W")elk(c=2)

Use
V xV xu=Vx(0,a,0)

Then
(VXxVxu) =eszas

(VxVxu)=0
(V x V x 11)3 = €31201
a,xVxu = aagxay = —aa; = (—ikW + iU, 0,0)e?*(ct=2)

NOTE: There is a typo in (7.4.42); the parenthesis after U’ should not be there.

eProblem 6. After introducing (7.4.37)-(7.4.42) in (7.3.46), combining the terms with V(V - u),
canceling the exponential factor, and rearranging we get
Horizontal component:

A+ 2u) (—K*U + kW) + p(=kW' + U") + ' QU + kW — U") + w?pU
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=U [pw2 — O+ 2u)k2] MW + pkW' + pU" + U + kW

U [pw? = (\+ 2u)k2] + MW’ + dii (U +kW)] =0

In the last step the following was used

d d d
pkW' + pU" + /U + kW = $(uUl) + &(kuW) = $(uU' + kuW)

Vertical component:
= (A4 2u) (kU + W") — w(B*W — kU") + X (kU + W') +2u'W' + *Wp
= W (pw? — k2p) — pkU' + N+ 20)W" = XkU' = NEU + XW' + 2u'W'
= W(pw? — k*u) — ukU’ + diz [(A+2u)W' —kXU] =0

In the last step the following was used

A+ 20)W" + (N + 25 YW’ — k(AU + NU) = % [\ + 2u)W' — kAU

eProblem 7. For (7.5.7) and (7.5.8), start with (7.5.1) and (7.5.2) with z = 0 and equate the
corresponding z and z components.

For (7.5.9), add (7.4.7) and (7.4.8), add (7.5.4) and (7.5.6), equate the corresponding results, cancel
a common factor of & and use 1 + 7% =2-c%/p2.

For (7.5.10), add (7.4.10) and (7.4.11), add (7.5.3) and (7.5.5), and equate the corresponding results.

eProblem 8. Form (7.5.7)-(7.5.10), F(c) is given by

1 l’yg -1 I’y,g/
—17q 1 —1Yo -1
Fl(c) = . .
(©) 2y —ip(l+93)  2plve W (1+95)
in(1+3) —2pyp i (1+95)  —2u

Multiply the second and fourth rows by i. This multiplies the determinant by i’

1 I’Yﬂ -1 l’)’ﬂl
Yo i Yo' —i
F(c) = — . .
(©) —2uve  —ip(l4+3) 2y i (1+73)
—p(l+73)  “2pys  W(A+95) 2

Multiply the second and fourth columns by —i. This multiplies the determinant by i?

Yo 1 Yo! -1
F(c) =
© —2ua  —u(l+73)  “2ve W1+

—p(l+75)  —2uvp  W(+v) 24
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Dividing the third and fourth rows by y multiplies the determinant by 1/u?, but because we will
set it to zero this factor can be ignored, although it should have been included in (7.5.11).

eProblem 9. o2
=
62
,028_:1:];' — _,U2k2f

Introduce these two expressions in (7.6.1), use (7.6.3), change signs and cancel a common factor of
f. This gives (7.6.4).

eProblem 10. Let o
F{g(azx)} =/ g(am)eik‘”dx

—00

assume that @ > 0 and introduce the change of variables az = u, so that dz = du/a. Then

Flga) =+ [~ geetoran=1a (Y) = Lo (%)

—00 a - m a
where G(k) = F{g(z)}.

If a < 0 introduce the same change of variable but use a = —|al, so that az = —|a|]z = u and
dz = —du/|a|. Then

1 e i(k/a)u 1 o i(k/a)u 1 k
Flglaz)} = —m/ Q(U)e(k/ Ve du, = —‘/ g(u)e(k/ P du = —G (—)

la| J-oco la| ~ \a
Fourier transform of a Gaussian function

2
Flem} = Zoe /e
(e.g., Papoulis, 1962).

eProblem 11. Let ~
-3 / el (k=ko)) g,
2/

Let k — ko, = u, so that dk = du, and a = tw! /2. Then

1 ® jau? L[ 2 oo . 2
I:—/ e du:—/ oS au du—l—l—/ sinau” du
21 J oo 7 Jo ™ Jo
If ) <0, a<0. Let a = —|a|. Then
cos au? = cos(—|a|)u’® = cos |a|u’
sinau? = sin(—|a|)u® = — sin |a|u?

Therefore, for any a

*° 2 . o0 . 2 1 ™ s . . T
I= / cos |a|u” du +1 sgn a / sin|a|u® du = —,/— ( cos — +1i sgn asin —
0 0 27\ |al 4 4
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_ 1 ei(7r/4)sgn la| — 1 ei(7r/4)sgn wl
VAr|al V27| w,|
eProblem 12. In (7.6.17) the phase should be w(k)t+(k)—kz. Then (7.6.28), (7.6.29) and (7.6.30)
become )
x
¢(k) = w(k) + S9(k) — k-
# (ko) = ! (ko) + 59/ (k) = £ =0
1
B(k) ~ d(ko) + 56" (ko) (k — ko)*
where

1
9" (ko) = w' (ko) + ;?ﬁ"(ko)
In this case ¢"(k,) replaces the w”(k,) in (7.6.32) with ¢, given by

Bo = (ko) = wlko) + 3h(ko) — ko

eProblem 13. Start with
H = H2y2

tanm k
Bim

Take logarithms on both sides
Intanm kH = In poyy — In i
Take derivative with respect to k

1 d 1 1 d

d
—— kH = — -
tanm kH dk anm 1iays dk (pay2) i dk (L1m)
Operate
sec?mkH d 1 dvye 1 dm
——— —(mkH) = — -~ — ———~
tany b ak EH) = e T Ak
Using (1)

sec? mkH _ 1 + tan? mkH _ ,u127712 + /122’)’22
tanmkH tanmkH H1m1p27Y2

From (4) and (5)

2.2 2,2 1 1d
e + po e (n1H+kH%)=—@——ﬂ
(1711272 dk /) vz dk v dk
From (7.3.5)
d’ql 1 de d’YQ 1 dc
= = Cc—; —_ = — C—
dk — mp? dk dk Y22 dk

Introduce (7) in (6)

1

p’m?® + M22722H B 1 de 1 de de Hl¢127112 + po?yo?
M7 42772

=———5C—F — ——5C — C—
P1p272 Y2262 dk m2B % dk Tdk

b

)
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_ _ ol pm 2B pe + p1peBoye? + KH (u1%m? + po?y2?)v282° ®

dk 112812 oo ye?

Solve for dc/dk

de 1 Bl
B 9
dk C BQ ( )
where
By = (Wi + p3m;); B B3 ve H (10)
and
By = s (B3 + B303) + kH (u3n? + pi3m3) 7253 (11)
Use this expression with (7.6.15)
de k Bl 1 0232 - kIBl
U= k—=c— -——=2— "= 12
TR T B, c< B, (12)
By = Cpipa(ni B + B373) + CRH(uing + pnd) a3 (13)
I i

IT — kBy = kHvya(u1*m? + po’72?) B2° (2 — m*B1?) = kHya (1’ m?> + p2’v2°) 82" B1° (14)

The following was used

Bi? = —m?*B’ (15)
(square both sides of (7.3.5a)). Extracting a common factor of I/c? (see (13)), from (12) we obtain
_ B (e +0
U= c 14+ (16)
where (%12 2m02) 8,2
p17m” + pomye”) P2
O = kHy 17
papaGEBE + 373) 1o
From (15) and by squaring both sides of (7.3.5b) we get
npt = — Br%; Bivs = Ba* — ¢ (18)
so that
BT+ B3vs = Bo’ — Bi? (19)
Then - )0
Q= kHyy | 0P 2P (20)
pe(B2” — B1%)  pa(Be” — %)
Now use )
B _ 1B (21)

po  pafo’
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(see (4.8.5b)) and (18) in (20). This gives

2 2 2 2
o (55) £ 358
Hrz [92 (ﬂ%—ﬂ% T\ B (22)

From (16), if ¢ goes to B1, U goes to f1. If ¢ goes to B2, 2 and Q2 go to zero and U goes to [a.

eProblem 14. Equation (7.6.50) is obtained by straight substitution. When %k, > 0 the phase in
(7.6.32) can be written as ¢ = |wo|t — |ko|z + 7/4. When k, < 0, ko = —|ko|, wo = —|wo| (see
(7.6.47)) and sgn w) = —1 (see (7.6.48). In this case the phase is —¢. The two contributions give
2cos ¢. Then, from (7.6.32)

T
cos (wot — kox + Z)

1
f(fﬂat)zm

The argument of the cosine in (7.6.51) comes from (7.6.50). The factor in front of the cosine comes
from two times the coefficient in (7.6.32) and (7.6.49)

2 12 Votda ~ [2va t
Vort Wl V2rt (022 — 22)3/4 T V1 (v22 — g2)3/4

eProblem 15. After the change of variables, du = sgn ¢ ds/|c['/3. If ¢ > 0, sgn ¢ = 1 and

o0 1 o0
/_oo... duzm/;oo. dS

where the ellipsis represent the integrand. If ¢ < 0, sgn ¢ = —1 and

Therefore, after the change in variable the integral in (7.6.58) has the same expression for ¢ positive
or negative. Then the exponent in the integrand of (7.6.58) can be written as

3 3

bt U +s b sgn ¢
ub+c— = zs + —; z2=——
3 3’ |e|1/3

Note that |c[3sgn ¢ = ¢3 for ¢ > 0 or ¢ < 0. Therefore, (7.6.58) becomes

1 1 oo, 3 1
- - - i(zs+s3/3) — = A
2 [c]1/3 /fooe ds |c|1/3A1(z)
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CHAPTER 8

eProblem 1. Label the six terms on the right sides of (8.3.4) and (8.3.6)as follows

(cUef) ) j = ci(Ukf)y+ cUkf) i = cUkuf + iU fy
—— N —
I II
+ CUk,l]’f + CUk,lf,j + CUk,jf,l + Cka,lj
—— Y= Y= =
IIT v % VI
fuj = FTAT; — [Ty
——— N~
VII VIII
The coefficient of f in (8.3.8) comes from VI, VII and (3.8.7). The coefficient of f from II, IV,
V, VI, VIII and (8.3.5). The coefficient of f from I and III.
eProblem 2. Interchange j and [ in the expression for I';; and use the symmetry of c;jx (see
(4.5.11))

1 1 1
Ly = ;Cz’jle,lT,j = ;Cilij,jT,l = ;Clcjz‘lT,lT,j =T
(the obvious equality T';7; = T, T; was used).

eProblem 3. The determinant is

B+CTn CT2 CTis
D=| CT B+ CTa2 CTas
CTis CTas B+ CT33

where 7;; = T;T ;. Expanding the determinant gives
D = (B+CTi1)(B+CTa2)(B+CTs3)+2C 12 Tas Tis = C*(Ti5 (B+CTa2) + T (B+CTaz) + T4 (B+CTia )]
After operating D becomes

D = B3 + a1 B?C + a3 BC? + a3C?

The coeflicients ay depend on 7;;, which can written in full using 77,7771 = T21T22T% (no
summation over capital indices) and similar relations. After that is done it is found that a2 = a3 =
0. The following derivation, however, is shorter and shows the expressions for the ay. The starting
point is (1.4.55)

D = €;,didjodis = €;5x(Bdi + CTi1)(Bdjo + CTja)(Boks + CTis) =

€123 B>+ B2C (€13 Tjo+ €3 Tir) + €10k Tz + BC? (€ija T Tio + €16 T2 Ths + €12 Tit Tha) + C €1k Tt Tjo Tha

The coefficient of B? is one. To determine the coefficient of B2C recall that €;jk 1s zero when there
are repeated indices. Then the coefficient becomes

e193(Ti1 + Too + Tas) = TaTa + ToTo + T3Ts = T3 + T + T3 = |VT)?

The coefficient of BC? is the sum of three similar terms. The first involves €;j3, which is antisym-
metric in ¢ and j, and 7;1 T2, which is symmetric in ¢ and j. Then this term and the other two are
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equal to zero (see (1.4.60)). A similar argument shows that the coefficient of C? is also equal to
zero. Therefore, D is given by (8.3.16).

eProblem 4. Take the derivative of t.t = ¢;¢;

d d dt; dt
T (6:8) = T (tits) = 20 = 2.

eProblem 5. Refer to Fig. 8.2. Draw a line perpendicular to At bisecting Af. Then

QA0 (A2 1 A0
2 K 2

2
The approximation is valid for small As. Then, Af goes to |At| as As goes to zero.

eProblem 6. From (8.5.7)

dt
=~ =0
ds
which means that t is a constant vector, say e. Then, from (8.5.4)
& dr
= — =e
ds
and
r=aste
where a is another constant vector (see (8.4.24)).
eProblem 7. From (8.5.12)
db 0
ds
which means that b is a constant vector. We also know that
dr
tb=—b=0
ds

because the two vectors on the left are orthogonal. Using these two equations we obtain the

following result
d dr db db
—(rb)=—Db+r.—=r.— =
ds(r ) ds +rds rds
To compute the derivatives write in component form as in Problem 8.4. The last equation shows
that r.b is equal to a constant, which is the equation of a plane.

0

eProblem 8.

(a) Let
r = (acosu,asinu,b u)

From (8.5.3)
. dr

r = (—asinu,acosu,b)

="
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From (8.5.5)
1
t = —(—asinu,acosu,b); Ir| = Va2 + b?

£
To get dt/ds use (8.5.2)

dt_dtdu_ldt_ a

O~ duds ~ FPdu " —m(cosu,sinu,ﬂ)

Then, because a > 0

_|dt|_ @
~lds|  a?+b?
1 |dt
n=— = —(cos u, sinu, 0)

1
b=txn= m(bsinu, —bcosu,a)
db dbdu 1 . b
= duds Wb(cosu,smu, 0) = —Wn
Comparison of this result with (8.5.12) shows that

_ b
a2+ b2

(b) Proceeding as in (a)
r = (acos u, —asinu, b u)
1
t= m(—a sinu, —a cosu, b)
dt 1
i m(—acosu,asinu,O)
_a
a4
n = (— cos u,sinu,0)
1
b= —ﬂ(bsinu,bcosu, a)
r
a_ b
ds  |r|2
___b
a2+
For b > 0, 7 < 0 and the helix is left-handed.

eProblem 9. Intermediate results. Using (8.5.10)
(bXt)i = (txnxt)i = eijkejmntmnntk =tmtmn; — tinply, = (t.t)nl — (n.t)tl =N,

(bxn); = (txnXxn); = €€ jmnltmMnnk = tnMmni — tinpny = —t;
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Then
bxt = n; bxn = —t

Also, a x a = 0 (a arbitrary). Then

dxt = kbxt = xkn = %
ds
dn
dxn =71txn+xkbxn=7b — xkt = —
ds
dxb =71txb=—mn = db
ds

Equations (8.5.7), (8.5.10), (8.5.14) and (8.5.12) were used.

eProblem 10. Consider a narrow ray tube with square cross section (similar to that in Fig. 8.7)
with vertex at the source. The intersections of the tube with two spheres of radii r, and r; centered
at the origin have areas proportional to r§ and 7% (see 10.11.5). Then, using (8.7.10)

2,2 _ 42,2
Aoo_Al'rl

or

A1 To

Ao 71

eProblem 11. In the first term of (8.7.18) change the dummy index j to [, interchange i and k£ and
use the symmetry of c;jx; (see (4.5.11))

CijkpL jURU; = criipT Ui Uy = cip T URU;
This is equal to the second term.

eProblem 12. Start with (8.7.3) and use (8.7.25). This gives

21d4  _,
4 a4 T —
Ac? dt v 0

Multiply this equation by ¢2A4/2
d4
dt
If in (8.7.26) we set a?p = 1, we get the equation above. This is the same relation that exists
between the right-hand sides of (8.7.6) and (8.7.20) (with ¢ = «, |U| = A).

1
+ 5c2Av2T =0

eProblem 13. Multiply both sides of the first equality in (8.7.43) scalarly with t. This gives (8.7.42).
The second equality follows from the definition of n (see (8.5.7)).

eProblem 14. Multiply (8.7.53a,b) by cos# and sin @, respectively, add the corresponding results,
and use (8.7.47).

1 1 1
—kcos’O — ksin?0 = —k = =~ cosOVc. el + ~sinfVe. el =-Ve.n
C C C
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This is (8.5.28).

eProblem 15. Equations (8.7.47) and (8.7.48) can be written as

n e! cosf sinf
<b>_A(eH>’ A_(—sinO COSO)
Then I p -
e\ 1 (m\ 1 _ a7 _ [cos® —sin
(eH) A= (b)’ A=A = (sinB cos 6 )

eProblem 16. The raypath is symmetric with respect to the point (z/2,0). Therefore, if ¢ indicates
the total traveltime .1

L2 g2 4 g2

5 = a\/H + 22 /4

2 =12+

which means that

o?’

t, is the vertical traveltime.
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CHAPTER 9

eProblem 1. Similar to Problem 7.10. The required change of variable is az = u, so that dz = du/a.
After this step change u to .

eProblem 2. Consider

1= [~ j@-s)e@ids = [ [@)pla+s.)ds

—00 —00

where the second integral is obtained by the change of variables x — z, = u, so that dz = du and
the integration limits are +oo. If the § were a regular function, (9.2.12) would follow immediately
(see A-3), but in the context of distribution theory it is a definition (see A-10).

eProblem 3. Rearrange the argument of the Dirac’s delta as
r—c(t—t,) =c[to — (t —r/c)]
and use(9.2.7b).

eProblem 4. Start with (9.4.14)
u(x,t) = Vo + Vxy

Then
Va(x,t) = V.V + V.V

The second term on the right is zero (see (9.3.5)) and
V.Vé = (V)ii = pii = V6
From (9.4.14) we also get
Vxu(x,t) = VxV¢ + VxVxe¢

The first term on the right is equal to zero (see (1.4.61)). From the definition of Laplacian of a
vector (see (1.4.53))
VxVxth = -V + V(Vah) = -V

because of (9.4.15)

eProblem 5. Start with

¢:¢(‘Tla$3at); "p: (Oa¢($la$3at)50)
Then
V¢ = (d),laoa ¢,3)

and

(Vx¢)1 = ezoh3 = —13
(Vx¢)o =0
(Vx¥)s = e3129,1 = 91
Vxyp = (-93,0,9,)
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Apply (9.4.1)

u=Ve+ Vxip
_9¢ o
U1_8.’131 3333
’U,QZO
0 0
_ 99 oY

us = (9.’1,‘3 (9.’1,‘1
eProblem 6. Find the terms in (9.4.2) As in Problem 9.5
Vxu = (—u23,0,u,1) = v

(Vxv)1 = €123u,12 = 0

(VXV)2 = eg13un,11 — e231u2,33 = — (u2,11 + u2,33)
(Vxv)3 = —e321u232 =0
Also
V.u = (0,0,0); i = (0, ig,0)
Introducing these results in (9.4.2) gives
3(;2;2 — B2V 2uy,; 382;%2 _

eProblem 7. The dependence of W on r is through 1/r. Let

-1
v = (—,0, 0)
r

Then
(VXV)l =0
-1 0 1
(Vxv)2 = €231 <T),3 = —a—x?’;
-1 01
(VXV)?, = €321 (T),2 = 8—,7,‘2;

eProblem 8. Write (9.5.6) in component form. This gives three equations similar to (9.5.5). From
the equation for the first component we get (¥); = 0 (use (9.2.14) with ® = 0). For the other two
components the solutions are similar to (9.5.10). Written in vector form the solution to (9.5.6) is
given by (9.5.11).

eProblem 9. Use 6(35] - f])/al‘z = (5,'3' and (9513)

02 1_ 001 _ 9 (-ladr __i<l )
8:ci:cjr_8xixjr_3xi r? dz; - Omj 720
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2 10 (z; =& 2 0ij 1 -1 37ivj — 0ij
= T—g’)’ﬂ’j T2 (T) = r—3’)’ﬂ’j T3 2 (z; — &) (r_2> Vi = 3

eProblem 10.
(a) ,

By — dij)vi = 3vivivs — v =317 — v =2
7; is a constant, so it does represent I'.

(b) Unless the dot product of two vectors it is equal to zero, it is not possible to make general
statements about the angle between the vectors (see Problem 9.11).

eProblem 11. Let v; = 3v;y; — d0;; (j fixed) and @ the angle between v; and +y;. Then cos§ is given
by

vivi _ 2

VI[T[ v

where the numerator comes from Problem 9.10a. In addition

cosf =

V2 = 9y} + 8is — 697 =3 (7} +1)
Recall that é;; = 3. Therefore, cosd # 0, and v; is not perpendicular to -y; (see Problem 9.10b).
Now consider vxTI'. If v is parallel to I" their vector product should be zero.
(vXT)k = ek (3viv; — dig)n = 3(CXT)kyj — kv = —€xm

Let 5 = 1. Then
(vXT') = (—e1um, —€21373, —€31272) = (0,73, —72)

This vector product is different from zero for arbitrary I'. Similar results are obtained for j = 2, 3.

eProblem 12. Start with the integral in (9.5.16) an integrate by parts as indicated below

r/p r/B
/ TT(t — 7)dT = / \T/J”(t —7)dr = —7J'(t — 7) T;ﬂ + ///ﬂ J(t—7)dr
[ —— r/a rla
r/a rla ¥ dv
= gJ'(t—r/a)—%J'(t—r/ﬂ)—J(t—T)[ji = %J'(t—r/a)+J(t—r/a)—%J'(t—r/ﬁ)—J(t—r/ﬂ)

Introducing this expression in (9.5.16) gives the terms in 1/r® and 1/r% in (9.5.19). The terms in
1/r are obtained by replacing T with J”.

eProblem 13. Given 1 oo
_ = iwt
1) =5 /_0o Aw)etdw

we know from (5.4.25) that A(w) is the Fourier transform of f(¢). Apply this fact to the expressions
obtained by taking the first and second derivatives of both sides of the integral with respect to time
af _ 1

- = R A iwt
Frial /_oo[lw (w)]e“ dw
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d2f 1 o w
W =0 | A
—00

Therefore af
F {E} = iwA(w)

d*f 2
.7—"{?} = —w’A(w)
Now apply (11.6.16) to f(¢) and df/d¢

[ isora = [ AP

N
—oo | dt
The time integrals give the energies of f and df/dt (see §11.6.2), which depend on the frequency

content of f(¢). For example, if | A(w)| is negligible for w > 1, then f(¢) will have more energy than
df/dt.

2 1 * 2 2
dt = %/ww | A(w)2dw

eProblem 14. Start with ~
F{H ()} = / B ()e—tdt
—0oQ0

Integrate by parts and assume that h(+oc) = 0. Then
. |00 00 .
F{H @)} = hn)e ™~ +iw / h(t)e “tdt = iwF{h(t)}
S -
or

F{W ()} = iwF{h(t)}
Let us apply this result to our problem.

T(w) = FT(0) = FL"(0) = F{ S} =P (70} = - F )
Then .
F{I' ()} = —=T(w)
and )
FI0} = 5T

We also need

F{h(t —to)} = e F{h(t)}

(see (6.5.68) where h = J,J',J" and t, = r/a,r/B. Introducing these results in (9.5.19) gives
(9.5.20).

eProblem 15.

t

¢ ¢
J'(t) = / J'(1)dr = / a’re”dr = e Y (—at — 1)‘0 = (1 —e o ate_at) H(t)
0 0



Elastic Wave Propagation and Generation in Seismology, J. Pujol, CUP, 2003. 46

t 1 1
W)= [ Jrydr=tt e - ST
0 a a
where
¢ —aT 1 ! 1 1 —at —at
I=—/a7e dr=—=-J'(t) = ——+ —e % + te
0 a a a

Combining these results gives (9.5.21). To justify the H(t), consider a function g(t) = f(¢)H (t)
with f(0) = 0. The derivative of g(t) is ¢'(t) = f'(¢)H(t) + f(t)d(t) (see (A.30)), but f()d(t) =
f(0)4(t) = 06(t) = 0 (see (A.20)-(A.22)), so that this term does not contribute to the derivative.
This applies to J(t) and J'(t) because they are both zero at the origin.

eProblem 16.

oo . o] 00
F{J"(t)} = / a’te” e Wit = / a’te” coswt dt — i / a’te” " sin wt dt
0

0 0
ga? — w? (02 2aw?
a?+w? T a2+ uw?
2
a 1
IF{T" ()} = =

a’>+w? 14 (w/a)?

Note the combination at in J”(¢) an the combination w/a in its Fourier transform. This means
that the narrower the function in one domain, the broader it is in the other domain (see Problem
7.10).

eProblem 17.

(a) Plot of |cosf|. Draw a line segment from the origin making an angle 6 with the z3 axis and
having length r = | cos §|. This gives the point @) in Fig. 9.5a. The projection of @ on the z; and
z3 axes will be indicated with zg and yg. The Cartesian coordinates of  are

zg = rsinf = | cosf|siné
Yy = rcosf = | cos @] cos b
For —m/2 <6 < m/2 (or z3 > 0), | cos 8| = cos b, and
zg = cosfsinf

YyQ = cos? 6
Then

1\? 1 1
xé+(yQ—§> 20052031n29+c0s40—c0320+Z:—

4
2 1\? _ [1)?
Tot\¥e~3) =\3
This is the equation of a circle with center at (0,1/2) and radius 1/2.
For m/2 < 6 < 37/2 (or z3 < 0), |cos§] = — cos 6, and

and

zg = —cosfsinf
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Yo = — cos? 6

)
e \¥eTy) T2

This is the equation of a circle with center at (0, —1/2) and radius 1/2.
(b) Plot of |sin#|. In this case

Then

zg = rsinf = |sinf|sinf

yg = rcosf = |sinf|cos @
For 0 <6 <= (or z; > 0), |sinf| = siné, and
Tg = rsinf = sin? @
yq = 7 cosf = sinf cos 0

-2 et (2

This is the equation of a circle with center at (1/2,0) and radius 1/2.

Then

For 7 <0 < 2x (or 1 < 0), |sinf| = —sinf, and
xQ:rsin0:—sin29
yg = rcosf) = —sinf cos
Then

1\? 1\?
$Q+§ —I—sz 3

This is the equation of a circle with center at (—1/2,0) and radius 1/2.

47

eProblem 18. In (9.6.1), let ¢;; = v;y;. The time dependence comes from scalar quantities and can

be ignored. After a rotation of coordinates
tij = GimGjntmn = GimYm®jnYn = 157

Therefore, Green’s function is a tensor-valued function.

eProblem 19. To avoid dealing with the convolution apply the Fourier transform in the time domain

to both sides of (9.7.2):
ui(x,w) = u; = Fj(w)Gij(x,w;€,0) = Gy Fj

Here u; and F} are vectors. Start with

write u; and F} in terms of u,, and F,

!
QiU = GijajnFn



Elastic Wave Propagation and Generation in Seismology, J. Pujol, CUP, 2003.

use the first equation equation eliminate u,, and rearrange
!
This implies
!
aimen = Gz’jajn
contract with app,
! !

Therefore
/
Gz'p = Aimpn Gmn

This equation is similar to (1.4.10), which means that G;; is a tensor.
eProblem 20. Start with (9.9.1) in the frequency domain

Uur = Miiji,j = Mijskij

Here uy, is a vector and sg;; = G ; is a tensor (see the two previous problems and §1.4.3)

with
uj, = Mz',jS;cij
then
apu; = aklaimajnslmnMin

and

ag1Stmn Mmn = a'kla'imajnslmnMin
so that

(aimajnM{j - an) ak1Simn =0
Then

!

which means that M,,, is a tensor (see (1.4.12)).

eProblem 21. Start with (9.13.3)-(9.13.8). Using

) 0 0 1\ /m 7
MP=|0 0 0] 0
-1.0 0 V3 -7

I'"MT = 7173 — 1371 = 0

tr(M) =0

B 00 -1\ /m —73
Mr=[0 0 0 vl=1 0
10 0 V3 "

M+ MT =0

we obtain
AN:AIC!:AFP:O

48

. Start
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AP — _MTT - 2MT =
AFS — _MT =

(_737 03 ’71)T
(_73a Oa le)T

The last two vectors are perpendicular to I" and thus represent S wave motion.

eProblem 22. Start with (9.13.3) - (9.13.8). Because M is the identity matrix

r'Mr=r’r=1
MIT=Mr=r

Also B
tr(M) =3

Then
AIa — AFP -T

and all the other terms are equal to zero.

eProblem 23. Use (9.2.6)

TZ[@l—&f+Cw—§ﬂy+@3—&frﬂ

Then 5 1 8 ¢
T 29 ey TS
8—5]-_27"8£j (5 = &)" = Jr "= K

(see (9.5.13)) and
8%- i ad .7,'] £] B 1 3&

i 7 =& or Ly 137§
ij 853 T N Tafj r2 851 N T *

_1

m%—%)

eProblem 24. Refer to Fig. 9.10. The components of I' are the components of the point B in
spherical coordinates. Because © is perpendicular to I" and both vectors are in the same plane,
the angles between ® and the z; and z3 axes are ¢ and 6 + 7/2, respectively (assume that © has
been translated to the origin). Therefore, the coordinates of ® are obtained from those of I' with
0 replaced by 6 + 7/2 (recall that sin(6 + 7/2) = cos@ and cos(f + 7/2) = —sin#). For & the
corresponding angles are ¢ + 7/2 and 7/2. To verify that the three vectors form a right-handed

coordinate system perform the appropriate vector products.

eProblem 25. Start with (9.9.18a)

(0 ¢) = 1]79
The conditions for extremal values are
BRP P
- (); Bi =0
00 ¢
For a symmetric moment tensor we have
ORF O dy; Oy 07; 0v;
o0~ = o M + Mg = 5 Migni + iMiigg = 250

MZJ Yi =

aT

2> Z_Mr=0 (1)
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and Py 5
R™ _ gy
g~ Zop i =2

Now use

orT . . T

50 (cos @ cos ¢, cos O sin ¢, —sinfh) = O
and

or’ o . &l

8—¢ = (—sin@sin ¢, sinf cos ¢, 0) = sin P

50

(4)

(Harkrider, 1976; R. Herrmann, personal comm., 1994) Therefore, from (1), (3) and (9.9.18b) we

obtain

eTMr=rV =0

and from (2), (4) and (9.9.18¢c)

&TMT = sinR5H =0

eProblem 26.

1 0 0 1

_ 2

M’Rz(OO 0)%(0
0 0

) 110—1
RMRzi 0 0 O

eProblem 27. The rotation matrix is given by

tT 1 (1
R=|bl|=—1{0
(PT) ‘/§<1

Then
) (1 0 1 0
R'TM%*=_—"_10 2 0)(0
V2 4 0 -1 1

and
(1 01 1
RTMdCR:§ 0 0 0 0
-1 0 1 1

eProblem 28. From (9.12.4a)

RP = sin 26 cos ¢

Then
ORFY
00
and
ORF

o9

SO O oo o

]

=2cos20cosp =0

= —sin2fsin¢g =0
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The pairs (0, ¢) that satisfy these two conditions simultaneously are (7/4,0), (=7 /4,0) (7/2,7/2)
(this is not in the hint) and (0,7/2). The first two pairs define the directions of t and p and
correspond to extremal values of R (equal to 1 and -1, respectively). From (9.12.4b,c), RSV and
RSH are zero for these two directions. The third pair corresponds to the direction of b and in this
case the three radiation patterns are equal to zero. For the last pair RY and R5Y are equal to
zero, but not R, which is equal to -1. On the other hand sin 9R°H = 0, in agreement with the
last equation in Problem 9.25.

eProblem 29. In (9.13.1), using (9.13.2), there are combinations of the following types
YiMijyjm = (DT ML)(T)
83 Mijyw = Myyy, = tr(M)(D)y,
ki Mijyi = Myyi = (MTT)y,
kiMijyj = Myjy; = (MT)y,
Introducing these results in (9.13.1) immediately gives (9.13.3).
eProblem 30. Introduce (9.13.9) in the integral in (9.13.3) and integrate by parts

r/B

T 7"//3
/ T J({t—7)dr = —7J(t—T) /'8—{— J(t —T1)dr
y \u’/ﬁ’_/ r/o r/a
=—E({t—r/a)—=E{t—r/p)+ J(t—T7)dr
o B r/a

where (9.13.10) was used. Now let ¢ — 7 = u, so that d7 = —du. With this change of variable the
integral becomes

r/B t—r/B t—r/a t—r/B
/r = /t L Jdu= /0 T (u)du — /0 J(u)du = G(t — r/a) — G(t —1/8)

where (9.13.10) was used. Introducing these expression in (9.13.3) gives (9.13.11).

eProblem 31. The starting point are equations (9.13.4)-(9.13.8). Use M7 :_1\71, I''T =1, and the
orthogonality of I', ® and ®. Recall that FTMI‘ is a scalar, so that (I'"’ MTI')T is orthogonal to

© and ®. Therefore, this term as well as tr(M)I' cancel out for the projections in the ® and ®
directions.

To apply (9.13.15)-(9.13.17) to M9, note that its trace is equal to zero. In addition, for any
two vectors v and w we have B
vIM%w = V1wWs3 + v3Wwy

and
TTM% T = 2,43 = 2sin 6 cos ¢ cos @ = sin 20 cos ¢

OTM T = 0,75 + 0371 = cos® 0 cos ¢ — sin? 0 cos ¢ = cos 20 cos ¢
STM T = ¢y3 + 371 = — cosOsin
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RN = +95in 20 cos ¢
RN® = +(—6cos 26 cos ¢)
RN® = 46 cos fsin ¢

RIT = 45in 20 cos ¢
RI*® = _2¢0s 20 cos ¢
RI*® = 2 cos O sin ¢

RIFT = _3 sin 26 cos ¢
RIFO — 3 cos 20 cos ¢
RIP® — _3cosfsin ¢

Similar equations are given by Aki and Richards (1980). The equations for the far field are given
in (9.12.4).
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CHAPTER 10

eProblem 1. Introduce (10.2.10) and (10.2.11a) in (10.2.9), replace o; by (10.2.11b). From the left
side we get

[ o:o dt /V [0i6imd (%, —t:€, —7) — Gin (X, 1€, —7) £:]AV = un (€, 7) / dt / Gin(x, —:€, —7) fidV
(1)

The right-hand side of (10.2.12) is obtained immediately, with the first integral coming from (1).
The effect of the temporal ¢ is to replace ¢ with 7.

eProblem 2. Using (9.2.3) we can write

0 —0) =0(&1 — 01)d(€2 — 02)0(&3 — 03)

Introduce this expression in the first integral in (10.4.3)

I= /V 5(E1 = 01)8(2 — 02)5(€5 — 03) -2 Gy dé1dbndes

0&q

Then, using (A.27) or the first equality in (A-31) we can write

0
/5 an d§, = — 8—5(15(5(1 —0q)Gpp A&y = _/5,q(fq — 0¢)Gnp d§q

Therefore,
~ [ 846~ )G Ve

eProblem 3. Total body force: is given by the integral over V of e,(§,t). Start with (10.4.7) with
[Tp] =0
[ enterav == [fusto.mlesm(e) { [ 846 - Vi f vjds,

The volume integral involves the ¢ only, which using Gauss theorem can be written as
| b€ ~a)aVe = [ 8¢~ a)n,dS =0
14 S

where S and n, are as in (10.2.9). The integral on the right is zero because the ¢ is nonzero over
Y only and because V and S do not have a common point (Burridge and Knopoff, 1964).

Total moment: here we are interested in the torque caused by a force, which is given by the
vector product of the vector r = (z1, z2,z3) and the force (e.g., Arya, 1990). For a force f we have

T=rxf

The g-th component of the torque, 74, is given by 7, = €4p,fp. In our case the force is the
equivalent body force. To get the total moment integrate over V. Use &, instead of z,

Tq = /V €qrpr fpdVe = — /E €qrp|ti (T, T)]Cijpg(0) {/Vﬁr‘s,q(é —U)dvg} vjd¥,
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Consider the volume integral

/Vfw(s’q(é B G)dV'f - /VgT’q(S(g B O‘)d‘/& = —0Orgq = _5rq

where 6,4 is Kronecker’s delta. The first equality follows from an argument similar to that used in
Problem 10.2. Then

Tq = /zeqw[ui]ciqu‘srqyjdza - /Equp[“i]cijperdEU =0

The last result follows from the fact that the integral involves the product of a symmetric and
antisymmetric tensor (see (4.5.3b)) (after Burridge and Knopoff, 1964).

eProblem 4. Use (A.27) or the first equality in (A.31)

[ @gettaies =~ [ b = - [ s(endsa = -1
because £33 = 1.

eProblem 5. Green’s function Gy, (x,t;0, 7) satisfies (10.2.2) with f; given by the product of deltas
n (10.2.10) (after obvious modifications)

082Gy
o2

Now let us take as origin time the time at which the source acts. The time t' =t — 7 is known as
the elapsed time and Green’s function becomes Gy (x,t — 7;0,0) = Gp,(x,1';0,0). Then

(anquTp,q),j + 5np5(x =&é(t—7)=0p

o2 ot

and 2
(cnjrqGrp,q),j + Onpd (X —&)o(") = p 8t’;p

(after Haberman, 1983). Therefore, as long as the boundary conditions of the problem are time
independent, the origin time can be chosen arbitrarily (Aki and Richards, 1980).

eProblem 6. To get the moment tensor density use (10.6.2) and (10.5.2). The only nonzero
contributions come from [u3] and v3 =1

C33pq = )\533(51,(1 + H((Sgpégq + (53(1(531]) = Aépq + 2#(531)(53(1

Because &, # 0 for (p,q) equal to (1,1), (2,2) and (3,3) and d3,034 is nonzero for (p,q) = (3,3),
we have
mi1 = maog = A[us]; maz = (A + 2p)[us]

or
mij = [U3](A5w + 2/1'5i35j3)

To get the moment tensor use (10.6.5) and replace the integral by the area A times the average
value of [u3]. The basic features of this solution were derived by Burridge and Knopoff (1964).
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eProblem 7. Introduce (10.4.7) in (10.6.13) (assuming [T},] = 0)

Mpq == /Z[ui]cijpl {/Vo(gq - Eq)é,l( —a)dVg} vjdE, = /Z[ui]ciqu’/jdza = qu = Mpq

The second equality comes from the fact that the volume integral contributes a factor —dy (see
Problem 10.3, total moment). The term ¢, is a constant and its derivative with respect to §; gives

zero. The symmetry of Mpq follows from the symmetry of c;jpe. Finally, the last integral is the
definition of M4, as can be seen from (10.6.5) and (10.6.2).

eProblem 8.
(a) Start with b=t x p (see (9.11.6)) and use (10.7.15) and (10.7.16)
1
b= E(s—i—u) X(s—v)=vxs

This result follows from a x a = 0 and a X b = —b x a for arbitrary a and b.

(b) Using s.v = 0 and s.s = v.v = 1 we obtain

1 1
M;jp; = ﬁ(szﬂj +s5vi)(s5 — vj) = _ﬁ(si — Vi) = —p

so that p is an eigenvector of M;; with eigenvalue equal to -1.

1 1
Mijt; = ﬁ(sz"/j +svi)(sj +vj) = E(si +vi) =t

so that t is an eigenvector of M;; with eigenvalue equal to 1.
Now using b L v and b L s (see part (a)) we obtain

Mijbj = (Sillj + Sjl/i)bj = Silljbj + Z/Z‘Sjbj =0
so that b is an eigenvector of M;; with eigenvalue equal to 0.

eProblem 9. For a zero trace symmetric moment tensor from (9.13.4), (9.13.5) and (9.13.7) we
obtain the following expressions for the projections along I', @ and ®

rTAYN = or’Mr (1)
OTAYN = _60TMI (2)
dTAN = —66TMT (3)

rTAle —4rTMr (4)
eTAlx = 20TMr (5)
dTAlY = 287 MI (6)

rTA? = srTMr (7)

eTA = _3@"Mr (8)
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®TAP = _36TMI (9)
To get uf use the coefficients of (1), (4) and (7) in the expression in brackets in (10.10.3). This
gives
1 D,[9 /1 1 4 3 1 D, (3 1 -
P il (R [FI A I‘TMI‘———<———>I‘TMI‘
ur Amp r? [ (ﬁQ a2) + a? 52] 8rp r2 \ B2 o
In a similar way, using (2), (5), (8) and (3), (6), (9) we obtain
1 D 1 1 2 1 D, 1
s o T T
= 2ol g - =)= @'MT = — —2— @"MTI
e dmp r? [ (ﬁ a2) ﬂZ] Amp 12 o?
and | D, 1
5= — @TMr
Yo = dmp 2 o?

eProblem 10.
(a) Refer to Fig. 9.10. R is the product of two rotation matrices

R =RoR;

R; is a counterclockwise rotation of angle ¢ about the z3 axis. This puts the | axis and ® on the
same plane and the z/, axis and ® along the same direction

cos¢p sing 0
R: = (—sin¢ cos ¢ O)
0 0 1

Ry is a clockwise rotation of angle 8 about the x4 axis. This puts the 5 axis and I" along the same

direction
cosf 0 —sinf
Ry = 0 1 0

sin@ 0 cos@

Multiplication of the two matrices gives (10.10.8). The right-hand side of that equation follows

from (9.9.16).
eT eTe 1
Ro <q>) 0- (qﬂ@) _ (0)
rT r’e 0

(b) Apply R to ©
0 0
R@:(l); Rr:<0>
0 1

(c) Inverse matrix. Because R is a rotation matrix, its inverse is given by

Similarly,

cosfcos¢p —sing sinfcos
R !=RT = (@|®|I) = <cos€sin¢ cos ¢ sinﬁsinqﬁ)
—siné 0 cos @
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where the vertical bars indicate matrix partitioning. Recall that ®, ® and I' are column vectors.
@T
RR!'=( &7 | (@@ =1
FT

eProblem 11.

J(r) = H(r) [T 2o+ Te‘”] L HE) er e 1) = ()]

a

(see (9.5.21) and (9.5.22)). Then, using J(0) = 0 and (9.5.21) we obtain

t
¢ D, (a 1 D
=D d:_0_2__—a7_) o _
Gt =D, [ J(rydr =2 (5%~ Lo 7 T
D D
ﬁ (—Zate_“t — 6e”% + a?t? — dat + 6) = ﬁ [6 (1 - e_at) +at (at —4— 2e_at)]

G(0) = 0 and as discussed in Problem 9.15, we can multiply the expression above by H ().

eProblem 12. Refer to Fig. 10.14. Let A = 0 and r, = r. We are interested in the area do of the
surface element with corners B, C, D, F. Then, from (10.11.8) and (10.11.6) we obtain

do = BC BD =rsinf §¢ ré0 = r?sinf d6 d¢

In the last step an obvious change was made.
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CHAPTER 11

eProblem 1. Write (11.4.10) as follows

2 2 R
'UR - 'UI = — = MR
p
2’UR’U[ = — =my
Solve (2) for vg and introduce in (1)
2
my 2
—5 —vi=m
4o? I R
Operate
1
U% +mR'U% — me =0

Solve for U%
1 1
v} = 2 (ivm%ﬁm% _mR> = 2—p(|M| — MRg)

The + sign was chosen so that vy is real. Then

_ [IM] - Mg
v = ———
2p

Introducing v in (1) and solving for vg gives (11.4.11a).

eProblem 2. Start with the following general result valid for any «

F e} = 2

a? 4+ w?

(Papoulis, 1962) and use

F{f®)} = F(w); F{F(t)} = 2 f(-w)
(see (A.51)). Then

so that

Then, using (6.5.68) and « = T'/2Q we obtain the last factor in (11.5.5).

58

eProblem 3. From Standard Mathematical Tables (1981, W. Beyer editor, CRC Press, p. 376, No.

615)

00 a (et (¢ — ottt
/ 7( x da::m(“"'l_bc)/b[ ( b ) ( b ) : a>-1;>0m>0; ¢c>
0
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where ' is the gamma function. In our case, m = 1, b = 2, ¢ = 1, and the last condition above

requires a < 1. Using
T

T(1) = 1; [(z)[(1 - 2) =

sin 7z
(e.g., Arfken, 1985) we get
1 T

1 T
I(s) = 2sin(w(s + 1)/2) " 2cos Ts/2

If s goes to 1, I(s) goes to co. This result also follows from the fact that I'(0) = co. The reason
the lower limit of I(s) is 0 while it is —oo in (11.6.21) is that a(w) must be an even function (see
(11.5.17b)). Therefore, the integral in (11.6.21) is 2I(s).

eProblem 4. - a(w) 0 a(w') - a(w')
[2 oD g [ o) gy [0 g,
0o W — w' oo W —w' 0 w—uw

Consider I. Let w' = —u, so that dw’ = —du and use a(u) = a(—u) (see (11.5.17b)). This gives

I :_/O—a(u) du=/m7a(wl) du'’
! owtu  Jo wtw

In the first integral the dummy variable v was changed to w’. Then

00 1 1 © W
L+ 1 :/ a(w) ( -+ ,) dw' = 2w/ &)mdw'
0 w—w 0 —w

W+ w w?

eProblem 5. Start with

R du! w—0 dw' R dw'
I= P/ = lim / d +/ Y. ~“R<w<R
w—-—w —0\J_p W —w wts W —w

The second equality corresponds to the definition of principal value. The third integral is elementary

and gives
R !
/ o _ In(w' — w)

wts W —w

R

=In(R—-w)—Ind
w6

In the second integral let w' = —y. Then dw' = —dy; W' — w = —(y + w) and the integration limits
become R and ¢ — w, so that

o—w
— = =Ind -1
/_ w —w / y-l-w né —In(R+w)

Adding these two results gives

nR—w
R+ w

=In(R-—w)-In(R+w) =1

Finally, as R goes to 0o, I goes to In(1) =0 (Byron and Fuller, 1970). This proves (11.7.16).
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Using (11.7.16) we can write in general

P/ JW) = flwo) g, — P/ W~ f(w P/ —P/
W —w 0o W —w oW —w oow—w

as long as f(w,) is bounded. This result was used in (11.7.17).

eProblem 6. From (11.7.6b)
C
Tin()} = a(w)
Then,using (11.5.17b)

Tin(-w)} =~ a(—w) = ~o(w) = ~T{n(w))

This proves (11.7.20). To prove (11.7.21) start with
o0 I 0 7 o0 I
—o0

w (w w)

(see (11.7.19)). Rewrite the second integral as done in Problem 11.4. This gives

/0 Z{n(w')} dw':/ooo( Z{n(-w")} dw':—/ooo I{n(w")} d!

—oo W (W — w) —w(—w' —w) W (W' + w)
Then I , ) ) I ,
o o
P [T (LY, (¢ T
0 w' wtw Ww-—w 0 w(w?—w?)
Introducing this result and (11.7.4) in (11.7.19) gives (11.7.21).
eProblem 8. From (11.6.25)
w_ w+ Coot
c  Cx
Then
€ _Co o |
W WHced w14 (co/w)d
and
Coo J\ 1
C=Cxo (1 + —a)
w
Comparison of this expression with (11.8.2) shows that
. 2 In(l/aiw) 2 1
Ot((,()) = ;wao 1_70@(02 ~ ;wao lnm—w

Introduce the last expression and (11.8.1) in (11.8.5)

2 1
= 2Qa,w = ol + —way, In—
1 -|- o1 Coo s 1w

2Qa = 2Q)

Then ) 5 )
2Qa, = — -|— ao In —
a1 w
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Appendix A
eProblem A.1. Let o
1= (sgu(a), p(a) = [ sgu(a)p(—a)do

Let u = —z. Then du = —dz and
—0oQ o o
I=— [ sea-a)plyis = [ sgn(-a)p(a)ds =~ [ sgn()pla)ds = —(sga(s), p(z)
o0 —0oQ —0oQ
The dummy variable u was changed to z and sgn(—z) = —sgn(z) was used.

eProblem A.2. Let T = sgnz and D(w) = T = 2/iw (see (A.67)) and use the fact that 7" is odd.
Then

(D) = (T, ) = 2m(T, ) = ~2n (T )
((A.52) and (A.18) were used). Therefore

F{D(z)} = —2nT(w)

and
2

.7:{—} = —27sgnw

iz

1 .
.7-'{—} = —imsgnw

T

eProblem A.3. Start with (A.59). Use it to get the Fourier transform of exp(—ita). Use an approach
similar to that used in Problem A.2. Let T'= ¢4, T = D(w) = exp(—iwa). Then

or

(D) = (3,4) = 2m{8a, ) = 2(8a, () = 219p(~a) = 2m(3_q, %)

((A.16) was used) and
D =216_q = 216(w + a)

The expression on the right-hand side is a symbolic notation. Therefore
f{e_iat} = 2m0(w + a)

If a is replaced by —a we obtain
f{eiat} =270(w — a)

Write cos at in exponential form

cosat = (e‘”t + e_“‘t)

N =

Then
F{cosat} = w[d(w — a) + §(w + a)]

Write sinat in exponential form

sinat = % (eiat _ e—iat)
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Then x
F{sinat} = T[é(w —a)—0(w+a)] =ir[d(w+a) — §(w — a)]

Graphical representation of the transforms: For the cosine, a pair of spikes in the up direction
located at w = +a. For the sine, a pair of imaginary spikes, one in the up direction at w = —a and
one in the down directions at w = a.
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Appendix C

eProblem C.1. Using (9.2.3) we can write
0(x —Xo) = 0(x1 — T01)0(T2 — T02)0(T3 — T03) = O, 02,5003

The expression to the right of the first equality is a symbolic notation while the last expression is the
distribution notation. For each of the deltas we can use (A.59), but to satisfy the sign convention
introduced in (5.4.26), in (A.58) we have to change the sign in the exponential. In addition k; must
replace w. Then

F {80, | = €% j=1,2,3
Therefore, formally we can write

F{o(x —x,)} = eik1Zo1 gik2To2 JikaTos _ (i(K1Zo1+k2To2+k3203) — oikoXo

eProblem C.2. Here we are interested in the Fourier transform in the space domain (see (C.3)).
This means that we must use (5.4.26). As done in the previous problem, the exponent in the
integrand can be written as

ik.r = i(klwl + kozo + k3.’E3)

As in Problem 9.13, we can write

9’G ; ,
F{aT?}:—kJ?G(k); i=1,2,3

where G(k) indicates the Fourier transform of @ in the space domain. To get this result take the
derivative of (5.4.27) with respect to z;. Then, because

’G  9’G = 0°G

20y —
Vo= oz? = 0z% 0%

we obtain X R X
FIV2G} = — (K + K +4}) G = —[k*G = —k*G
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Appendix D
eProblem D.1. Let r = (z;z;)'/2. Then

VZ% =V? [(ﬂﬁm)_l/Q] = [(fﬂi)_l/ﬂ i

1
_1/2] .= _E(xzmz)_3/2($kwk),] = —(xixi)—3/2xj

),

[E

(use (zxzy),; = 2x;) and

[,

Then, for k = j, 6;; = 3 and

1
VQ; =0; r#0
which is (D.5).
For (D.6) note that
T m
o= (Tl = 2 = %

(see Problem 1.5f). Then

= 3(xia:i)*5/2mjxk — (1171'1171')73/2(%;C = 37‘75.’ij]€ — r’?’éjk = (37‘72.’17]'.%]6 — 5]k) r
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