Digital Logic Design: a rigorous approach © Chapter 3: Sequences and Series

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

December 5, 2012

Book Homepage:

http://www.eng.tau.ac.il/~guy/Even-Medina

Sequences

Definition

An infinite sequence is a function f whose domain is \mathbb{N} or \mathbb{N}^+ .

Instead of denoting a sequences by a function $f: \mathbb{N} \to \mathbb{R}$, one usually writes $\{f(n)\}_{n=0}^{\infty}$ or $\{f_n\}_{n=0}^{\infty}$. Sometimes sequences are only defined for $n \geq 1$.

Example

- $\{g(n)\}_{n=0}^{\infty}$ the Fibonacci sequence
- $\{d_n\}_{n=0}^{\infty}$ where d_n is the *n*th digit of $\pi \approx 3.1415926$.

finite sequences are *n*-tuples

Definition

A prefix of \mathbb{N} is a set $\{i \in \mathbb{N} \mid i \leq n\}$, for some $n \in \mathbb{N}$. One could similarly consider prefixes of \mathbb{N}^+ .

Definition

A finite sequence is a function f whose domain is a prefix of $\mathbb N$ or $\mathbb N^+$.

Note that if the domain of a sequence f is $\{i \in \mathbb{N} \mid i < n\}$ or $\{i \in \mathbb{N}^+ \mid i \leq n\}$, then f is simply an n-tuple.

important sequences

- arithmetic sequences
- geometric sequences
- harmonic sequences

arithmetic sequences

The simplest sequence is the sequence (0, 1, ...) defined by f(n) = n.

An arithmetic sequence is specified by two parameters: a_0 - the first element in the sequence and d- the difference between successive elements.

Definition

The arithmetic sequence $\{a_n\}_{n=0}^{\infty}$ specified by the parameters a_0 and d is defined by

$$a_n \stackrel{\triangle}{=} a_0 + n \cdot d.$$

Equivalent definition by recursion: The first element is simply a_0 . The reduction rule: $a_{n+1} = a_n + d$.

Claim

 $\{a_n\}_{n=0}^{\infty}$ is an arithmetic sequence iff $\exists d \forall n : a_{n+1} - a_n = d$.

arithmetic sequence - examples

① The sequence of even numbers $\{e_n\}_{n=0}^{\infty}$ is defined by

$$e_n \stackrel{\triangle}{=} 2n$$
.

The sequence $\{e_n\}_{n=0}^{\infty}$ is an arithmetic sequence since $e_{n+1}-e_n=2$, thus the difference between consecutive elements is constant, as required.

② The sequence of odd numbers $\{\omega_n\}_{n=0}^{\infty}$ is defined by

$$\omega_n \stackrel{\triangle}{=} 2n + 1$$
.

The sequence $\{\omega_n\}_{n=0}^{\infty}$ is also an arithmetic sequence since $\omega(n+1)-\omega(n)=2$.

③ If $\{a_n\}_{n=0}^{\infty}$ is an arithmetic sequence with a difference d, then $\{b_n\}_{n=0}^{\infty}$ defined by $b_n = a_{2n}$ is also an arithmetic sequence. Indeed, $b_{n+1} - b_n = a_{2n+2} - a_{2n} = 2d$.

geometric sequences

The simplest example of a geometric sequence is the sequence of powers of 2: (1, 2, 4, 8, ...). In general, a geometric sequence is specified by two parameters: b_0 - the first element and q - the ratio or quotient between successive elements.

Definition

The geometric sequence $\{b_n\}_{n=0}^{\infty}$ specified by the parameters b_0 and q is defined by

$$b_n \stackrel{\triangle}{=} b_0 \cdot q^n$$
.

One can also define the geometric sequence $\{b_n\}_{n=0}^{\infty}$ by recursion. The first element is simply b_0 . The recursion step is $b_{n+1} = q \cdot b_n$.

Claim

 $\{b_n\}_{n=0}^{\infty}$ is a geometric sequence iff $\exists q \forall n : a_{n+1}/a_n = q$.

geometric sequence - examples

- ① The sequence of powers of 3 $\{3^n\}_{n=0}^{\infty}$ is a geometric sequence.
- ② If $\{b_n\}_{n=0}^{\infty}$ is a geometric sequence with a quotient q, then $\{c_n\}_{n=0}^{\infty}$ defined by $c_n = b_{2n}$ is also a geometric sequence. Indeed, $b_{n+1}/b_n = a_{2n+2}/a_{2n} = q^2$.
- ③ If $\{b_n\}_{n=0}^{\infty}$ is a geometric sequence with a quotient q and $b_n > 0$, then the sequence $\{a_n\}_{n=0}^{\infty}$ defined by $a_n \triangleq \log b_n$ is an arithmetic sequence.
- If q = 1 then the sequence $b_n = a_0 \cdot q^n$ is constant.

harmonic sequence

Definition

The harmonic sequence $\{c_n\}_{n=1}^{\infty}$ is defined by $c_n \stackrel{\triangle}{=} \frac{1}{n}$, for $n \ge 1$.

Note that the first index in the harmonic sequence is n=1. The harmonic sequence is simply the sequence $(1, \frac{1}{2}, \frac{1}{3}, \dots)$.

Series

The sum of a sequence is called a series. We are interested in the sum of the first n elements of sequences.

Given a sequence $\{a_i\}_i$ we are interested in sums

$$\sum_{i \le n} a_i$$

arithmetic series

We generalize the formula

$$\sum_{i=1}^{n} i = \frac{1}{2} \cdot n(n+1).$$

Theorem

If
$$a_n \stackrel{\triangle}{=} a_0 + n \cdot d$$
 and $S_n \stackrel{\triangle}{=} \sum_{i=0}^n a_i$, Then

$$S_n = a_0 \cdot (n+1) + d \cdot \frac{n \cdot (n+1)}{2}.$$

geometric series

$\mathsf{Theorem}$

Assume that $q \neq 1$. Let

$$b_n \stackrel{\triangle}{=} b_0 \cdot q^n$$
 and $S_n \stackrel{\triangle}{=} \sum_{i=0}^n b_i$.

Then,

$$S_n = b_0 \cdot \frac{q^{n+1} - 1}{q - 1}.$$
(1)

Example

- $\sum_{i=0}^{n-1} 2^i = 2^n 1.$
- $\sum_{i=1}^{n} 2^{-i} = \frac{1}{2} \cdot \frac{1-2^{-n}}{1-1/2} = 1-2^{-n}$

harmonic series

Theorem

Let

$$H_n \stackrel{\triangle}{=} \sum_{i=1}^n \frac{1}{i}.$$

Then, for every $k \in \mathbb{N}$

$$1 + \frac{k}{2} \le H_{2^k} \le k + 1. \tag{2}$$

The theorem is useful because it tells us that H_n grows logarithmically in n. In particular, H_n tends to infinity as n grows. Compare with $\int_1^n \frac{1}{x} dx$.