
SOLUTION MANUAL FOR
SCHEDULING AND CONTROL OF

QUEUEING NETWORKS

GIDEON WEISS
The University of Haifa
Draft, Do Not Circulate

Last updated October 2, 2021

©by Gideon Weiss, 2014, 2016, 2017,2018,2020,2021

Contents

Foreword 1

Part I The Single Queue 3

1 Queues and their Simulations, Birth and Death Queues 5

2 The M/G/1 Queue 13

3 Scheduling 23

Part II Approximations of the Single Queue 33

4 The G/G/1 Queue 35

5 The Basic Probability Functional Limit Theorems 42

6 Scaling of G/G/1 and G/G/1 45

7 Di�usions and Brownian processes 53

Part III Queueing Networks 67

8 Product Form Queueing Networks 69

9 Generalized Jackson Networks 79

Part IV Fluid Models of Multi-Class Queueing
Networks 87

i

ii Contents

10 Multi-Class Queueing Networks, Instability and Markov Rep-
resentations 89

11 Stability of MCQN via Fluid Limits 94

12 Processing Networks and Maximum Pressure Policies 109

13 Processing networks with Infinite Virtual Queues 119

14 Optimal Control of Transient Networks 131

Part V Di�usion Scaled Balanced Heavy Tra�c 139

15 Join the Shortest Queue in Parallel Servers 141

16 Control in Balanced Heavy Tra�c 153

17 MCQN with Discretionary Routing 176

Part VI Many-Server Systems 201

18 Infinite Servers Revisited 203

19 Asymptotics Under Halfin-Whitt Regime 207

20 Many Servers with Abandonment 212

21 Load Balancing in the Supermarket Model 219

22 Parallel Servers with Skill Based Routing 229

References 245

Foreword

An essential part of a textbook are the exercises that accompany each
chapter. It is impossible to master the material of a new topic without
consulting some of the problems. The student, scholar, researcher may
just glance at them to see how they tie up with the text, or figure out an
approach, or see if she knows the solution, or sketch a proof, or solve some
problem completely – all according to her previous background knowledge
and degree of interest in the particular topic.

While writing “Scheduling and Control of Queueing Netowrks” I have
solved most of the exercises, as an integral part of writing the text, and in
this solution manual I have included solutions to all of them. The purpose
of this manual is not to teach the solutions, but rather to serve as an aid for
the reader in solving the problems on his own. The reader may find that the
style and level of the solutions is somewhat uneven – I solved some easy
problems at great length and am more terse on some other, possibly harder,
problems. Also, I was less careful in the writing, the student may find many
typos and slight errors, which I hope she will ignore. Furthermore, the
reader may find that I am completely wrong on some of the problems, or
even better, find a new shorter, easier, or more insightful solution to some.
I will be most happy to incorporate and acknowledge such contributions in
revising this manual.

Many of the exercises are extensions of the material in the text. For exer-
cises which require more work, in particular when an exercise summarizes
the results of an entire research paper, a reference is given at the end of the
problem formulation in the text. For a few of these exercises I do not pro-
vide the solution here, and the student will then have to consult the original
research paper.

Enjoy!
Gideon Weiss,

Haifa and San Mateo, September 2021

1

Part I

The Single Queue

3

1

Queues and their Simulations, Birth and
Death Queues

Exercises
1.1 Use Excel to simulate the following 2 queueing systems, using the same

pattern as in example (1.1):
(i) A single queue with two servers. Arrivals are Poisson rate 0.2, service

is exponential with mean < = 8.
(ii) Two servers in tandem. Arrivals are Poisson rate 0.25, each arrival

visits server 1 and then server 2. Service requirements are exponential,
with average < = 3

1.2 Find an analog to Lindley’s equation for " servers, under FCFS service.
Solution:
Define a vector V= = (+=,1, . . . ,+=,") to be the vector of remaining work-
loads on the " servers just before the arrival time of customer = at time �=,
ordered so that +=,1  . . .  +=," . This means that all the " servers will
complete the work that arrived before customer =, under FCFS policy, at the
times (+=,1 + �=,+=,2 + �=, . . . ,+=," + �=). Notice that the workload vector
is ordered from small to large, so +=,: is not necessarily on machine : .
If customer = requires service for a duration -=, and customer = + 1 arrives
after interarrival time)=+1 = �=+1 � �=, then:

V=+1 = R(V= + e-= � i)=+1).

where: e = (1, 0, . . . , 0), i = (1, 1, . . . , 1) andR(·) is the operator that returns
its arguments sorted from smallest to largest.

1.3 Derive the waiting and sojourn times for customers in a stationary M/M/B
queue.
Solution:
Let arrival rate be _, each server has processing rate `, and denote d = _

B`
.

?8 =
✓
_

`

◆
9 1
9!
?0, 8 = 0, . . . , B � 1,

?B+: =
✓
_

B`

◆
:

?B =
✓
_

`

◆
B 1
B!

✓
_

B`

◆
:

?0, : = 0, 1, . . . ,

5

6 Queues and their Simulations, Birth and Death Queues

and ne needs to calculate numerically the value of ?0,

?0 = ©≠
´
B�1’
9=1

✓
_

`

◆
9 1
9!

+
✓
_

`

◆
B 1
B!

B`

B` � _
™Æ
¨
�1

.

Then one has, expected number of busy servers:

⌫ =
1’
8=1

min(8, B)?8 =
1’
8=1

_

`

?8�1 =
_

`

,

where the second equality holds term by term, as is easily checked.
Probability that a customer has to wait:

⇧, =
1’
:=0

?B+: = ?B
B`

B` � _ =
?B

1 � d ,

expected number of waiting customers:

!@ =
1’
:=0

: ?B+: =
?Bd

(1 � d)2
= ⇧,

d

1 � d ,

and expected waiting time (by Little’s law), number in system, and sojourn
time:

,@ = !@/_, ! = !@ + ⌫, , = !/_ = ,@ + 1/`.

1.4 Calculate the average number of busy servers in an M/M/K/K queue.
Solution:
Using similar calculations to Exercise 1.3 one obtains

⌫ = (1 � ?)
_

`

.

1.5 A taxi rank is modeled as follows:
- The rank has space for waiting taxis and for waiting passengers
- Maximal number of taxis in the rank: 2
- Maximal number of passengers in the rank: 3
- Taxis arrive in a Poisson stream of rate _ = 1/6 cabs per minute.
- Passengers arrive in a Poisson stream of rate ` = 1/8 passengers per

minute.
- A passenger that arrives when there are cabs in the rank leaves immediately

with a cab. If there is no cab he joins the queue of waiting customers if
there is space for waiting, otherwise he leaves without service.

- A cab that arrives when there are passengers at the rank leaves immediately
with a passenger. If there are no passengers the cab joins the queue of other
cabs, if there is space in the rank, otherwise It leaves without a passenger.

Suggest a Birth and Death description of this system, and calculate the
following:

Exercises 7

(i) Make a diagram of states and of the transition rates.
(ii) Calculate the stationary distribution of the state of the system. In par-

ticular, the probability that the rank is empty, has 1 or 2 or 3 passengers,
or has 1 or 2 cabs.

(iii) What fraction of the passengers depart with a cab immediately.
(iv) What fraction of the passengers do not receive service.
(v) What is the distribution of the waiting time of passengers that receive

service.
Solution:
Define state of the system as Q(C) = G, G = �2,�1, 0, 1, 2, 3 where G > 0
is number of waiting passengers, G < 0 is number of waiting taxi cabs, and
G = 0 is empty rank. Q(C) is a birth and death process.

1.6 A K machines, M repairmen queueing system: A workshop has a total of
machines, with operating time between failures (MTBF) exponential with
rate _. When a machine fails it needs service by a repairman for exponential
rate ` repair time. There are "  repairmen. Describe this system as a
birth and death queue, illustrate its state and transition rates diagram, and
derive its stationary behavior. Performance measures for this system are the
fraction of time that machines are operational, and the fraction of time that
each repairman is busy. For `/_ = 4, prepare a table of these two performance
measures for = 3, . . . , 7 and " = 1, . . . , .
Solution:
The K machine M repairmen states and transition rates for Q(C), the number
of machines that are down, are illustrated by:

K (K-1) (K-2)

0 1 2

2

2

K-2 K

M

K-1

M µµMµµµ

λ λ λ λ λ

Birth and death rates for -machines "-repairmen

= = (� =),

`= =
⇢
=`, =  " ,

"`, = > " ,

= = 0, 1, 2, . . . , .

These can be used to calculate the stationary distribution of Q(C), that is
c: = P(Q(C) = :).
Fraction of time that machine is operational is � E(Q(C))/ .
The number of busy repairman is '(C) = max(" ,Q(C)), and the fraction of
time that each repairman is busy is E('(C))/" .

8 Queues and their Simulations, Birth and Death Queues

For example, if = 5 and " = 2, the probabilities for : machines down are:

: 0 1 2 3 4 5
%(:) 0.31 0.39 0.20 0.074 0.018 0.0023

Table of machine and repairmen utilization:

 " 1 2 3 4 5 6 7
3 utilization K 0.732 0.797 0.800 0 0 0 0

utilization M 0.549 0.299 0.200 0 0 0 0

4 utilization K 0.689 0.791 0.800 0.800 0 0 0
utilization M 0.689 0.395 0.267 0.200 0 0 0

5 utilization K 0.641 0.781 0.798 0.800 0.800 0 0
utilization M 0.801 0.488 0.333 0.250 0.200 0 0

6 utilization K 0.589 0.769 0.796 0.800 0.800 0.800 0
utilization M 0.883 0.576 0.398 0.300 0.240 0.200 0

7 utilization K 0.536 0.753 0.793 0.799 0.800 0.800 0.800
utilization M 0.937 0.658 0.463 0.350 0.280 0.233 0.200

1.7 A gas station is modeled as follows:

- There are two pumps, and space for a total of 4 cars.
- Cars arrive in a Poisson stream of rate _ = 20 cars per Hour.
- Time to fill up at the pump is exponential with mean 10 minutes.
- A car that finds the station full leaves without service

Suggest a Birth and Death description of this system, and calculate the
following:

(i) Make a diagram of states and of the transition rates.
(ii) Calculate the stationary distribution of the state of the system.
(iii) What fraction of the cars are lost ?
(iv) What is the distribution of the sojourn time of cars that receive service,

and what is its average.
Solution:
(i) The states are : = 0, 1, 2, 3, 4 the number of cars in the station

20 20 20 20

1212126

0 1 2 3 4

(ii) ?1 = 27
272 , ?2 = 45

272 , ?3 = 75
272 , ?4 = 125

272 .

Exercises 9

(iii) Lost are ?4 = 125
272 ⇡ 1/3.

(iv) Waiting time is 0 with probability ?1 + ?2 = 72
272 , Exp(6) with probability

?3 and Erlang(2,6) with probability ?4. Average wait is: 0+ ?3 ⇤5+ ?4 ⇤10 =
1625
272 = 6 minutes.

1.8 For the gas station of the previous example, simulate the system (you can use
excel or any other code) under the following alternative sets of conditions:

(i) The fill up time is exponential with mean 10.
(ii) The fill up time is distributed uniformly with mean ⇠ * (8, 12).

In either case simulate the system for 1100 cars, discard the first 100, and
present the following analysis of the results:

(i) What is the fraction of cars that abandon without service.
(ii) What is the mean and standard deviation of the sojourn time of cars

that get service.
(iii) Plot a histogram of the sojourn times.

1.9 A queue with abandonments: In a single server queue customers arrive at rate
_, service is at rate `, but customers have patience with mean 1/\ and leave
the system without service (abandon, or renege) if their waiting time exceeds
their patience. Assume Poisson arrivals, and exponential service and patience
times. Present this as a Markovian birth and death queue, and calculate its
stationary distribution, and the average waiting time of customers that get
served.
Solution:

n 0 1 2 3

λ λ λ λ λ

µ +θ µ + 2θ µ + nθµ µ + (n −1)θ

The stationary distribution is:

c= = c0

=÷
9=1

_

` + (9 � 1)\ .

The average queue length:

E(Q(1)) = c0

1’
==0

=÷
9=1

_

` + (9 � 1)\

and by Little’s law,

E(Sojourn) = E(Q(1))
.
_

1.10 A queue with balking: In a single server queue customers arrive at rate _,
service is at rate `, but a customer that sees a queue of = customers in the

10 Queues and their Simulations, Birth and Death Queues

system only joins the queue with probability ?= (otherwise he balks). Assume
Poisson arrivals, and exponential service times. Present this as a Markovian
birth and death queue, and calculate its stationary distribution, the fraction
of customers that balk, and the average waiting time of customers that join
the queue.
Solution:

n 0 1 2 3

µµµµµ

λ

n −1

λ p λ p2 λ pn−1 λ pn

c= = c0

✓
_

`

◆
=

?
=(=�1)/2

,

P(balk) = c0

1’
==1

✓
_

`

◆
=

?
=(=�1)/2 �1 � ?=

�
.

1.11 The Israeli queue: This describes a typical scenario in a queue for cinema
tickets in Israel on the weekend in the 1950’s. In a small country any two
people know each other with probability ?. When a person arrives at an
M/M/1 queue he scans the customers waiting in queue from first to last and
joins with the longest waiting customer, to be served jointly with him (at no
extra service time), or if he does not find one he joins the end of the queue.
Assume Poisson arrivals at rate_, exponential service at rate `. Present this as
a Markovian birth and death queue, and calculate the stationary distribution
of the queue length, the percentage of customers that find an acquaintance to
join, and the distribution of the waiting time.
Solution:
The transition rates for this model are:

n 0 1 2 3

µµµµµ

λ λ(1− p) λ(1− p)2 λ(1− p)n

n −1

From these we obtain the stationary distribution:

c= = c0

✓
_

`

◆
=

(1 � ?)=(=�1)/2
.

Note that it decays much faster the geometric.
To calculate the waiting time we recall that by PASTA arrivals see time aver-
age, so an arriving customer will see = people in the queue with probability

Exercises 11

c=. If the queue is empty his sojourn is ⇢G?(`) If there are = in the queue
on his arrival he will join in place : with probability (1 � ?):�1

? and his
sojourn will be ⇢G?(`)⇤: (convolution of : exponentials), i.e. Erlang(`, :).
Conditional on = in the system:

5
, |= (G) =

=’
:=1

?(1 � ?:�1 `
:
G
:�1

(: � 1)! 4
�`G

,

and

5, (G) = c0`4
�`G +

1’
==1

c= 5, |= (G).

1.12 (⇤) A queue with vacations: In an M/M/1 queue the server goes on a vacation
of duration⇠ Exp(\) whenever the queue becomes empty. Describe the queue
length for this system as a Markov chain, and find its stationary distribution
[Servi and Finn (2002)].
Solution:
This is not a birth and death queue. The states and transitions can be repre-
sented in two ways:

n 0 1 2 3

µµµµµ

λ λ λ λ

n 1 2 3
λ

λ λ λ λ

θ θ θ θθ

n 0 1 2 3

µµµµµ

λ λ λ λ

Transition probabilities from the beginning to the end of a vacation are

?0,= =
\

_ + \

✓
_

_ + \

◆
=

.

In the two row transition diagram, the top line is the state of the queue during
vacation time.

12 Queues and their Simulations, Birth and Death Queues

It can be shown (see Servi and Finn (2002)) that the stationary distribution
is:

P
�
Q(1) = =

�
= W

⇣
1 � _

`

⌘ ⇣
_

`

⌘
=

+ (1 � W)
⇣
1 � _

_ + \
⌘ ⇣

_

_ + \
⌘
=

where W =
\

_ + \ � ` .

Note that when \ > ` � _ then W > 1 and (1 � W) < 0, and when \ < ` � _
then W < 0 and (1 � W) > 1. When \ = ` � _, the stationary distribution is

just that of M/M/1:
⇣
1 � _

`

⌘ ⇣
_

`

⌘
=

.

In the derivation one obtains the generating function of the stationary distri-
bution:

%(I) =
1 � _

`

1 � _

`
I

1 � _

_+\
1 � _

_+\ I

which is product of the generating functions of two geometric distributions,
so the queue length itself is the sum of two independent geometric random
variables. The first is the queue length of the M/M/1 without vacations, and
the second is the number of arrivals during the vacation.
This is a special case of the decomposition property for queues with vacations,
that occurs for various more general single server models with vacations, see
Doshi (1986).

2

The M/G/1 Queue

Exercises
2.1 Take Figure 2.4 and, similar to Figure 2.5, plot the contributions to workload

of each job under preemptive LCFS, and under PS (for the latter assume that
Q(0) = 2, with equal processing times for both.
Solution
The figure for LCFS-preemptive and for PS are:

2

W (t)

t t
1 t2 t3 t4 t5

1

3
4 5

X

X
X X X

5Previous

LCFS Preemptive

1

2
3

4 5

2

W (t)

t t
1 t2 t3 t4 t5

1

3
4 5

X

X
X X X

PS

1 2
3

4
5

13

14 The M/G/1 Queue

2.2 Prove that the renewal function satisfies <(C) < 1 for all C > 0, that A(C) <
1 for all C > 0, and that <(C) ! 1, as well as A(C) ! 1 almost surely, as
C ! 1.
Solution
By P()= = 0) < 1 there is an G0 and ?0 such that P()= � G0) � ?0. Define

)̃= =
⇢

0 if)= < G0

G0 if)= � G0
,

and let Ã(C) be the renewal process formed by)̃=, with renewal function
<̃(C). Then)̃= <)=, = = 1, 2, . . ., and Ã(C) � A(C), C � 0. But <̃(C) =
1
?0
b C
G0

+ 1c < 1, hence <(C) < 1 and so also P(A(C) < 1) = 1.
If limC!1 A(C,l) = < 1 then there exists =  such that)= = 1, which
has probability 0. Hence P(limC!1 A(C,l) = 1) = 1, which also implies
limC!1 <(C) = 1.

2.3 Derive the following steps towards the proof of the elementary renewal
theorem, by the use of Wald’s equation:

(i) Show that A(C) +1 is a stopping time for the sequence)=, = = 1, 2, . . .,
while A(C) is not.

(ii) Use Wald’s equation to calculate E(�A(C)+1) and obtain a lower bound
on <(C)/C.

(iii) Obtain an upper bound for bounded)=, and prove the theorem for
bounded)=.

(iv) Consider the renewal process with truncated inter-event times)̃= =
min()=, 0), to upper bound <(C)/C, and complete the proof.

Solution
(i) A(C) +1 is a stopping time for)1,)2, . . .: once we see that �=�1  C < �=

we know that A(C) = =�1 and so �(C) +1 = =. Hence, �(C) +1 is determined
by)1, . . . ,)A(C)+1 as required.
A(C) is not a stopping time: if we observe �= < C all we know is that
A(C) � =, but we need to observe more than �= to determine A(C) = =.
(ii) By Wald’s identity,

E(�A(C)+1) = E
 A(C)+1’
==1

)=

!
= E(A(C) + 1)E()=) =

<(C) + 1
`

,

but: �A(C)  C < �A(C)+1, and we can write �A(C)+1 = C +Y(C), where Y(C)
is the remaining time of)A(C)+1 from C to �A(C)+1 (excess time). So

(<(C) + 1)/`, = C + E(Y(C)),

or:

<(C)
C

= ` + `E(Y(C))
C

� 1
C

.

Exercises 15

Because Y(C) � 0, we have <(C)
C

� ` � 1
C
, and so we have alower bound:

lim
C!1

<(C)
C

� `.

(iii) If)= are bounded, say)= < 1 then we obtain also and upper bound:

<(C)
C

 ` + `1

C

� 1
C

,

and in the limit:

lim
C!1

<(C)
C

 `.

Which completes the proof for bounded)=.
(iv) For general)=, consider the renewal process Ã(C) formed by)̃= =
min(1,)=), with renewal function <̃(C). Then)̃= )=, so A(C)  Ã(C), and
we get:

`  lim
C!1

<(C)
C

 lim
C!1

<̃(C)
C

=
1

E(min(1,)=))
,

which holds for any 1. Letting 1 ! 1 completes the proof.
2.4 Derive the following steps towards the proof of the elementary renewal

theorem, by showing that A(C)/C, C � 0 are uniformly integrable:
(i) Obtain a random variable)̃= with values 0 or 0 that is less or equal to

)=.
(ii) Calculate the renewal function of the renewal process Ã(C) of)̃=, to

show it is bounded above by 21C + 22C
2, for some constant 21, 22.

(iii) Use Markov’s (Chebyshev’s) inequality to show that for all C > 1,
P(Ã(C)/C > G)  21+22

G
2 and therefore A(C)/C, C � 0 are uniformly

integrable to complete the proof.
Solution
(i) Choose 0 such that 0 < � (0) < 1, define a sequence of truncated, smaller,
random variables)̃= = 0I()= > 0), and let Ã(C) be the corresponding
renewal process, with renewal function <̃(C).
(ii) Ã(C) has batch arrivals occurring at times which are multiples of 0, and
the batches are i.i.d. of sizes ⇠Geometric, with parameter ? = 1 � � (0).

A(C)  Ã(C) =
bC/0c’
9=1

 9 .

We estimate Ã(C), sum of i.i.d. geometric random variables.

E(Ã(C)) = bC/0cE(), Var(Ã(C)) = bC/0cVar(),

E(Ã(C)2) =
�
bC/0cE()

�2 + bC/0cVar() = 21C + 22C
2
.

16 The M/G/1 Queue

(iii) We now use Markov’s (Chebyshev’s) inequality:

P(A(C)/C > G)  P(Ã(C)/C > G) = P(
�
Ã(C)/C

�2
> G

2)

 E(Ã(C)2)
C
2
G

2
 2

C
2
G

2
, 2 = 21 + 22, C � 1,

which shows that A(C), C � 0 are uniformly integrable. Therefore

lim
C!1

<(C)/C = lim
C!1
E(A(C)/C) = E(lim

C!1
A(C)/C) = `.

2.5 Prove the renewal reward theorem.
Solution
(i) We write:

C(C)
C

=
A(C)
C

ÕA(C)
==1 ⇠=

A(C) ! E(⇠=)
E()=)

a.s.

by the elementary renewal theorem and by the SLLN.
(ii) Consider C(C)/C  Y(C) = 1

C

ÕA(C)+1
==1 |⇠= |. Recall that A(C) + 1 is a

stopping time for the sequence ()=,⇠=)==1,2....

E(Y(C)) = 1
C

E(A(C) + 1)E(|⇠= |) !
E(|⇠= |)
E()=)

,

by Wald’s equation and the elementary renewal theorem. In particular, this
implies that Y(C), C � 0 are uniformly integrable, and this implies also that
C(C)/C, C � 0 are uniformly integrable, and so

lim
C!1

2(C)
C

= lim
C!1
E(C(C))

C

= E lim
C!1

⇠ (C)
C

=
E(⇠=)
E()=)

.

2.6 Obtain the conditional probabilityP(Excess> H | Age= G), and use it to derive
the joint distribution of age and excess.
Solution
Theorem: In the stationary renewal process with interval distribution �,
p.d.f. 5 and expected value 1/`, the joint p.d.f. of age �(C) and excess . (C)
is: 5�,. (G, H) = ` 5 (G + H).

Proof We calculate first P(. (C) > H | �(C) = G):

P(. (C) > H | �(C) = G) =
= P(no renewals in (G, G + H) | �(C) = G)
= P(no renewals in (G, G + H) | no renewals in (0, G))
= P(Interval exceeds G + H)/P(interval exceeds G)

=
1 � � (G + H)

1 � � (G) .

But for a stationary renewal process, the p.d.f. of �(C) is 5�(G) = `(1�� (G)).

Exercises 17

Hence the joint probability/density that . (C) > H and �(C) = G is

1 � � (G + H)
1 � � (G) ⇥ `(1 � � (G)) = `(1 � � (G + H)),

and taking derivative with respect to H and reversing the sign we have:

� 3

3G

`(1 � � (G + H)) = ` 5 (G + H).

Note – Sanity check: integrating w.r.t. H we get the age p.d.f. and integrating
w.r.t. G we get the excess p.d.f. ⇤

2.7 Derive the joint distribution of age and excess directly from the renewal
reward theorem, by considering the length of time that excess > G and also
age > H, within an interval of length) .
Solution

P()�F3 (C) > G,)⌫F3 (C) > H)

= lim
C!1

measure of A 2 (0, C) that have forward recurrence > G and age > H

C

=
E() � G � H)+
E()) = `

π 1

G+H
(I � G � H)3� (I)

= `
π 1

G+H
(1 � � (I))3I.

Taking derivative w.r.t. G:

P()⌫F3 (C) > H,)�F3 (C) = G)3G = `(1 � � (G + H)),

and taking derivative w.r.t. H and reversing the sign:

5�F3,⌫F3 (G, H) = ` 5 (G + H).

2.8 Prove that when you observe a stationary renewal process at an arbitrary time
C, C is uniformly distributed along the interval that includes C.
Solution
For the stationary distributions of age and excess, we calculate the conditional
density:

5 (�64 = G |Age+Excess = I) = 5 (Age = G \ Excess = I � G)
5 (Interval = I) =

` 5 (I)
`I 5 (I) =

1
I

,

so �64 ⇠ Uniform(interval).
2.9 A bus arrives at your station according to a stationary renewal process, with

interarrival time distributions) ⇠ �. You arrive at some arbitrary time.
Calculate the distributions of: (1) the length of the interval in which you
arrived, (2) the time since the last bus arrived, (3) your waiting time for the
next bus, in the following cases:

18 The M/G/1 Queue

(i)) is uniform,) ⇠ * (0, 1), i.e. 5) (C) = 1
1�0 , 0 < C < 1.

(ii)) is exponential,) ⇠ exp(_), i.e. 5) (C) = _4�_C , C > 0.
(iii)) is Erlang 2,) ⇠ W(2, _), i.e. 5) (C) = _2

C4
�_C

, C > 0.
2.10 Use (2.11) to obtain the average number of customers in the queue, the

average number of customers waiting for service, and the average number of
customers at the server, for an M/G/1 queue.
Solution
Use Little’s law: Average number at the server is d = _

`
, average number

waiting for service: _+̄ = d
2

1�d
1+22

B
2 , average number in queue is their sum.

2.11 Calculate the average waiting time for an M/G/1 system with given d, when
the service time is distributed as (i) Exp(1), (ii) Erlang(: , :), (iii) Determin-
istic =1 (iv) 5- (G) = 1

1+0
1
0
4
�G/0 + 0

1+0 04
�0G .

Note: the last distribution is a called a hyper-exponential distribution and has
a large c.o.v.
Solution:
Recall the Pollaczek–Khinchine formula: + = < d

1�d
1+22

B
2 . The only part that

depends on the service time distribution is it c.o.v. Hence
(i) Exp(1): 22

B
= 1, (ii) Erlang(: , :): 22

B
= 1/: (iii) Deterministic 22

B
= 0

(iv) Hyper-exponential: The expected value is 1. The variance is 20�3+2/0,
hence 22

B
= 20 � 3 + 2/0, which is always � 1 with the minimum for 0 = 1,

i.e. exponential.
2.12 Consider a stationary M/M/1 queue at an arbitrary time C, and calculate the

remaining length of the busy period. This will be the waiting time of a so
called standby customer, who only starts service when the queue is empty.
Solution:
A standby arrival at an arbitrary time C will see the stationary workload,
F = W(C) and he will then need to wait for the length of an EFSBP starting
with F, so the conditional time for his start will be F

1�d . Unconditioning by
Pollaczek-Khinchine formula will give:

+̄standby =
W̄

1 � d = <
d

(1 � d)2

1 + 22
B

2
.

In particular for M/M/1 we get: +̄standby = < d

(1�d)2 .
2.13 Derive the following equation for the Laplace transform of the distribution

of the length of a busy period of the M/G/1 queue:

⌫%
⇤ (B) = ⌧⇤ �

B + _ � _⌫%⇤ (B)
�
,

where⌧⇤ (B), ⌫%⇤ (B) are the Laplace transforms of the service time distribu-
tion and the length of busy period distribution [Abate et al. (1995); Kendall
(1964)].
Solution:
Let -1 be the processing time of the first customer, and # (-1) the number

Exercises 19

of arrivals during his service, and let ⌫% 9 be the length of busy period of the
9’th arrival during that service. Then:

⌫%
⇤ (B) = E(4�B⌫%) = E(4�B (-1+

Õ# (-1)
9=1 ⌫%9)

= E-1

✓
4
�B-1E

(-1)

✓
4
�BÕ# (-1)

9=1 ⌫%9

◆◆

= E-1

✓
4
�B-1E

(-1)

✓
E

⇣
4
�B⌫%9

⌘
(-1)

◆◆

= E-1

⇣
4
�B-1E

(-1)
⇣
⌫%

⇤ (B)# (-1)
⌘⌘

= E-1

⇣
4
�B-1

4
�_-1 (1�⌫%⇤ (B))

⌘
= ⌧⇤ (B + _ � _⌫%⇤ (B)),

where we use the non-standard notation E- (·) = E(E(·|-)).
2.14 Derive the variance and the second moment of the length of an M/G/1 busy

period [Cohen (1982), Section II-2.2].
Solution:

Method 1
Take derivatives of the equation for the Laplace transform and solve.
Method 2
Let <,f2 be the mean and variance of the service times, and d the tra�c
intensity. Denote by*2 the variance of a busy period.
Condition on first customer of length G. The conditional expectation of the
busy period is G

1�d . We calculate the conditional variance, which we denote

by *2
G
: *2

G
= Var(G + Õ

(G)
9=1 ⌫% 9) where # (G) is the number of arrivals

in G which is Poisson(_G), and the ⌫% 9 are the busy periods started by the
arrivals, which are independent. Hence

*
2
G
= Var(G +

(G)’
9=1

⌫% 9) = _G
⇣
*

2 + <
2

(1 � d)2

⌘
.

Hence:

*
2 = E(*2

-
) + Var(-

1 � d) = d
⇣
*

2 + <
2

(1 � d2)
⌘
+ f

2

(1 � d2) ,

from which we get:

Var(⌫%) = *2 =
d<

2 + f2

(1 � d)3
.

E(⌫%2) = <
2 + f2

(1 � d)3
=
E(-2)
(1 � d)3

.

20 The M/G/1 Queue

2.15 Derive the Laplace transform of the length of a busy period for an M/M/1
queue. Use it to obtain the p.d.f. of the length of a busy period of an M/M/1
queue.
Solution:
We need to solve:

⌫%
⇤ (B) = ⌧⇤ �

B + _ � _⌫%⇤ (B)
�
,

where ⌧⇤ (B) = `

`+B :

⌫%
⇤ (B) = `

` + B + _ � _⌫%⇤ (B) ,

so %⌫⇤ (B) is a root of the equation

(_ + ` + B)G = ` + _G2
.

We need the root that is < 1, so

⌫%
⇤ (B) = 1

2_

✓
_ + ` + B �

q
(_ + ` + B)2 � 4_`

◆
.

The probability density function of the busy period is obtained by inverting
the Laplace transform:

5⌫% (C) =
1
C

p
d

4
�(_+`)C

�1 (2C
p
_`),

where �1 is the modified Bessel function of order one:

�1 (G) =
1’
:=0

(G/2)2:+1

:!(: + 1)! .

The main lesson from this is that although the mean busy period equals in
length to the mean sojourn time, the distributions are very di�erent. One can
obtain closed form expressions most performance measures of M/M/1, but
they are not always simple expressions.

2.16 Verify the derivation for the generating function of the M/G/1 embedded
Markov chain, given by equation (2.16).
Solution:
We have:

c8 = c0:8 +
8+1’
9=1

c 9 :8+ 9�1, 8 = 0, 1, . . . ,

Exercises 21

so we have:

⇧(I) =
1’
8=0

c8I
8 =

1’
8=0

c0:8I
8 +

1’
8=0

8+1’
9=1

c 9 :8� 9+1I
8

= c0 (I) + 1
I

1’
8=0

8+1’
9=1

c 9 I
9

:8� 9+1I
8� 9+1

= c0 (I) + 1
I

1’
9=1

c 9 I
9

1’
8= 9�1

:8� 9+1I
8� 9+1

= c0 (I) + 1
I

1’
9=1

c 9 I
9

1’
;=0

:;I
;

= c0 (I) + 1
I

(⇧(I) � c0) (I).

from which we get:

⇧(I) = c0
 (I) (1 � I)
 (I) � I =

(1 � d) (I) (1 � I)
 (I) � I .

2.17 Prove that the equation U = E(U⌫=) has a unique solution in (0, 1) if and
only if 1 > c0 > 0 and E(⌫=) > 1.
Solution:
5 (I) = E(I 9) = Õ1

9=0 c 9 I
9 satisfies 5 (0) = c0 > 0, and 5 (1) = 1. Also, if

c0 < 1 both 5 (I) and 5
0(I) are strictly increasing, with 5

0(0) = c1 < 1, and
finally, we have 5 0(1) = E(⌫=).
If E(⌫=) > 1 then 5 (G), 0 < G < 1 starts above 0, with slope < 1 and ends
at 1, with slope > 1, so it must cross the line 6(G) = G at least once, and
because 5

0(G) is increasing it will cross no more than once, so there is a
unique solution. On the other hand, if E(⌫=)  1, then it starts at 5 (0) = 0,
ends at 5 (1) = 1 and has derivative  1 throughout, so it cannot cross the
line 6(G) = G, and there is no solution.

2.18 Use equations (2.17), (2.19), to show that M/G/1 queue has the resource
pooling property: when service is speeded up B fold, and arrivals are speeded
up B fold, the queue length distribution remains exactly the same, while
waiting and sojourn times are improved by a factor of B.
Solution:
Consider (2.17), let⌧ (=) (G) be the distribution function of service time under
= speedup. Then ⌧ (=) (G) = ⌧ (=G), and we have for the Laplace transform:

⌧
(=)⇤ (=_(1 � I)) =

π 1

0
4
=_(1�I)G

3⌧
(=) (G) =

π 1

0
4
_(1�I)=G

3⌧ (=G)

= ⌧⇤ (_(1 � I)).

22 The M/G/1 Queue

Hence ⇧(I) is unchanged, i.e. the queue length distribution of the speeded
up system equals that of the original system. This immediately implies that
the waiting times are shorter by a factor of =.

2.19 Explain why the sojourn time of a job under preemptive LCFS equals the
length of a busy period. In particular, use this to explain why in the M/M/1
queue, the expected busy period equals the expected sojourn time of a cus-
tomer under any non-predictive work conserving policy.
Solution:
Clearly, the sojourn time of a customer under LCFS preemptive equals the
length of a busy period: he starts service immediately on arrival, but will not
depart until all customers arriving after him are all gone. On the other hand,
for any non-predictive policy, in the M/M/1 system, the departure process
while the server is busy is always Poisson with rate `, so looking at departures
minus arrivals in a busy period, the distribution of the total is independent
of the policy. So the expected sojourn times for M/M/1 are indeed equal to
the expected length of the busy period. Note: this is only true for M/M/1.
Note also: the sum of the sojourns is independent of the policy, but not the
individual processing times, so while expected sojourn time equals expected
busy period, the distribution of sojourn time depends on the policy.

2.20 Derive the expected length of a busy period for an M/G/1 queue with vaca-
tions, where the vacation time has distribution �.
Solution:
At the end of a vacation, there will be 0, 1, or more customers waiting, and
(assume FCFS) their processing will constitute an exceptional first service.
We include the case of 0, with a busy period of length 0 in the calculation,
i.e. we define BP as time batween two vacations. So the exceptional first
service will consist of. =

Õ
#

9=1 - 9 where # is the number of arrivals during
the vacation, and - 9 their processing times. Conditional on . the BP will
be expected to last .

1�d , so ¯⌫% = E(.)1�d (the remainder of BP is independent
of the exceptional first service). But, by Wald’s equation, E(.) = E(#)<.
Furthermore, conditional on the vacation length being / , E(# | /) = _/

(Poisson arrivals), and (again by Wald), E(#) = _⌘ where ⌘ is the expected
length of the vacation. So: ¯⌫% = _⌘<

1�d = d⌘

1�d .

3

Scheduling

Exercises
3.1 Prove that SPT minimizes the flowtime of a batch of # jobs scheduled on "

parallel identical machines [Lawler et al. (1993))].
Solution:
On the" parallel machines we can put up to" jobs as last on their machines,
so that delay only themselves, up to " jobs as before last, that delay 2 jobs
each and so on. By the same argument as for a single machine, we want the
longest jobs to go last on their machines, the next longest to go second to last
and so on. But this is exactly using FCFS, starting with the shortest job, and
putting the : shortest job on the first machine that is free after scheduling
the first : � 1 jobs. See the following figure to convince yourself that jobs
are ordered from shortest to longest and are then assigned to the machines in
order 1, 2, . . . ," repeatedly, until all are assigned.

3.2 What is the non-preemptive schedule that will minimize the flowtime for a
batch of # jobs, on parallel machines that are working at di�erent speeds,
B1, . . . , B" so that job 9 with processing requirement - 9 , performed on
machine 8 will need processing for a duration - 9/B8 [Lawler et al. (1993))].
Solution:
Construct the following schedule: Take the values of :/B8 for : = 1, . . . , # , 8 =
1, . . . ," as weights, and sort them from smallest to largest. Match the small-
est weights to the longest jobs. Then put each job on the machine it was
matched to in the :th to last position.
A more general problem is when job 9 on machine 8 requires processing time
- 9 ,8 . Then one can formulate the problem of scheduling the # jobs on "
machines as the following integer programming problem (it is actually an

23

24 Scheduling

assignment problem): Find values for D 9 ,8,: such that D 9 ,8,: = 1 indicates that
job 9 is scheduled on Machine 8 in the position of :th to last, such that

min
Õ
9 ,8,:

:- 9 ,8D 9 ,8,: ,

s.t.
Õ
8,:
D 9 ,8,: = 1 9 = 1, . . . , # ,Õ

9
D 9 ,8,:  1 8 = 1, . . . ," , : = 1, . . . , # ,

D 9 ,8,: 2 {0, 1} 8 = 1, . . . ," , 9 , : = 1, . . . , # .

This can be solved in polynomial time, by bipartite weighted matching.
3.3 The SPT-savings parameter of a distribution measures the amount by which

knowing the values of the job processing times and using SPT is better than
scheduling them in random order. For jobs with processing time distribution
⌧, it is defined as 3⌧ = <�<1:2

f
, where < is the mean, f the standard

deviation, and <1:2 the mean of the smaller in a sample of 2, drawn from ⌧.
Calculate 3⌧ for the following distributions:

(i) Exponential,
(ii) Normal,
(iii) Uniform.
Solution:
In general one needs to calculate:

<1:2 = 2
π 1

�1

π 1

G

G 5 (G) 5 (H)3H3G = 2
π 1

�1
G 5 (G) (1 � � (G))3G.

The value of 3 for - is the same as for (- � 0)/1.
(a) For - ⇠ Exp(_), < = 1/_, f = 1/_ and <1:2 = 1/2_, hence:

3Exp =
1/_ � 1/2_

1/_ = 1/2.

(b) For - ⇠ # (`,f) it is the same as for / ⇠ # (0, 1). The value then is:

3Normal = �<1:2 = �2
π 1

�1
Gq(G) (1 ��(G))3G = 2

π 1

�1
Gq(G)�(G))3G

=

r
1
c

= 0.564.

(c) For - ⇠ * (0, 1) we can look at . ⇠ * (0, 1), for which: < = 1/2,
f

2 = 1/12, and because %(.1:2 > H) = (1 � H)2, we have: <1:2 =
Ø 1
0 (1 �

H)2
3H = 1/3, so:

3Uniform =
1/2 � 1/3p

1/12
=

r
1
3
= 0.577.

3.4 Consider the policy of preemptive LRPT (longest remaining processing time).
Describe how this policy works, and show that it maximizes the number of
customers in the system at all times.

Exercises 25

Solution:
We start on the longest, then when its remainder reaches the size of the
second longest, we work on both, splitting the server, till the remainder of
both reaches the size of the third longest and we now work on all three splitting
the server equally, and so on. By the end we will work on all # jobs splitting
the server equally between all # , and all jobs will depart simultaneously
at time -1 + · + -# . Since there are # jobs in the system at all times, it
maximizes the number of customers in the system at all times.

3.5 Show that in a ⌧/⌧/1 queue LCFS non-preemptive maximizes the vari-
ance of the sojourn and of the waiting time among all non-predictive, non-
preemptive, work conserving policies.
Solution:
The proof follows the same ideas as in the proof of Theorem 3.7 that FCFS
maximizes the variance.
We know that in each busy period, arrivals will be �1  �2  · · ·  �# (not
under our control) and departures will be ⇡1  ⇡2  · · ·  ⇡# , determined
by i.i.d. service times also not under our control, and so mean service time
will be independent of the policy, and all we control is the permutation in
which order we assign arrivals to the server, so as to control

Õ
#

9=1 �B 9⇡ 9

where B1, . . . , B# is a permutation of 1, . . . , # , and we start the arriving jobs
in the order B1, . . . , B# . By Hardy-Littlewood-Polya inequality this will be
maximized, and the variance of sojourn times minimized, if we use B 9 =
9 , 9 = 1, . . . , # . To maximize variance we should minimize

Õ
#

9=1 �B 9⇡ 9 ,
which would be achieved by B 9 = # � 9 + 1, 9 = 1, . . . , # , but this may be
infeasible, since we may then have ⇡ 9�1 < �B 9 . So we need to minimizeÕ
#

9=1 �B 9⇡ 9 for given �1  �2  · · ·  �# , ⇡1  ⇡2  · · ·  ⇡# , under
the added constraint that �B 9  ⇡ 9�1 (where we let ⇡0 = �1). We now show
that LCFS assignment achieves that.
Assume that we have chosen an assignment that is not LCFS. Than for some
: < ;, we have �B: , �B; are both  ⇡:�1, but �B: < �B; , i.e. both were
available at time ⇡:�1 and we assigned the earlier arrival as the :th job, so
that it will depart at⇡: . Then we can switch the job assignments, and because
�B: < �B; and ⇡: < ⇡; we would have �B;⇡: + �B:⇡; < �B:⇡: + �B;⇡; .
We can in this way improve every feasible permutation that is not LCFS and
because there are only #! permutations, LCFS is minimizing.

3.6 In a multi-type M/G/1 queue under priority scheduling policy, show that the
longterm average amount of relevant work that a customer of type : finds on
arrival, is given by (3.4).
Solution:
By work conservation, for non-preemptive policy, the total workload for a

26 Scheduling

busy period of #: jobs of type : = 1, . . . , consists of

π
)

0
W(C)3C =

 ’
:=1

#:’
9=1

⇣
+ 9 ,:- 9 ,: + -2

9 ,:
/2

⌘
.

Taking long term average, dividing by) , and multiplying and dividing by
A()), and multiplying and dividing by A: ()):

1
)

π
)

0
W(C)3C = A())

)

1
A())

 ’
:=1

#:’
9=1

-
2
9 ,:

2
+
 ’
:=1

A: ())
)

1
A: ())

#:’
9=1

+ 9 ,:- 9 ,: ,

so for the long time average, recalling that + 9 ,: and - 9 ,: are independent:

W̄ = _
E(-2)

2
+

 ’
:=1

d:+̄: ,

which is the total amount of work that an arriving customer of type : sees, by
PASTA. Furthermore, the amount of work consisting of waiting customers
of type 9 is d 9+̄ 9 . Hence, the amount of relevant work that a customer of
priority : will see upon arrival is

:’
9=1

d 9+̄ 9 + _
E(-2)

2
.

3.7 Prove by induction the formula (3.5) for waiting time of customers of type :
under priority scheduling policy.
Solution:
Clearly by Exercise 3.6, for : = 1

+̄1 = d1+̄1 + _E(-2)/2,

so, as required,

+̄1 =
_E(-2)/2

1 � d1
.

Consider now +̄2. Assume that the amount of work that he sees on arrival
is G. The he will need to wait for a time G, and in addition for all the type 1
customers that arrive in time G, and their entire busy periods of customers
of type 1. his expected wait then will be, by (2.13), G/(1 � d1). Taking the
expected value of G by Exercise 3.6:

+̄2 =
d1+̄1 + d2+̄2 + _E(-2)/2

1 � d1
,

or

(1 � d1 � d2)+̄2 = d1+̄1 + _E(-2)/2 =
_E(-2)/2

1 � d1
.

Exercises 27

and we showed:

+̄2 =
_E(-2)/2

(1 � d1) (1 � d1 � d2)
.

Consider now customer of type : . His wait under the priority policy will be
the same as his wait under a policy that serves all customers of types 9 < :

using FCFS. So similar to the result for +̄2,

+̄: =
_E(-2)/2

(1 � Õ
9<:

d 9) (1 � Õ
9: d 9)

.

3.8 Prove that among all priority scheduling policies for M/G/1, SEPT minimizes
the average flowtime.
Solution:
Assume priorities 1, . . . , , with average waiting times for customers of all
types given by:

+̄1 < · · · < +̄ .

Recall that by work conservation,
Õ

9=1 d 9+̄ 9 is constant.
The average waiting time V satisfies:

_V =
 ’
9=1

_ 9+̄ 9 =
 ’
9=1

` 9 d 9+̄ 9 ,

where _ =
Õ
9
_ 9 .

Choose types : , : + 1 and switch their priorities to get new waiting times +̄ 0
9

and objective value V0. The switch will not a�ect any types except : , : + 1,
and so the di�erence between the objectives is

_(V0 � V) = `:
�
d:+̄

0
:
� d:+̄:

�
+ `:+1

�
d:+1+̄

0
:+1 � d:+1+̄:+1

�
.

But by work conservation,

d:+̄
0
:
+ d:+1+̄

0
:+1 = d:+̄: + d:+1+̄:+1

=)
�
d:+̄

0
:
� d:+̄:

�
= �

�
d:+1+̄

0
:+1 � d:+1+̄:+1

�
> 0,

so:

_(V0 � V) = (`: � `:+1)
�
d:+̄

0
:
� d:+̄:

�
.

This is < 0 if `: < `:+1, and for any static priority policy that is not SEPT
priority, switching priorities improves the objective.

3.9 Prove the formulas (3.6) (3.7) for expected waiting times in M/G/1 queue
under non-preemptive SPT.
Solution:
Let d(G) = _

Ø
G

0 H3⌧ (H). Then this is the o�ered load of the customers with
processing times  G. Let +̄ (G) be the average waiting time of a customer that
requires G processing time. We refer to such a customer as an G-customer.

28 Scheduling

We first calculate the expected amount of relevant work in the system that an
G-customer finds on arrival, under SPT. We note that it is the same amount
that he would find if we had a two type priority policy that gives priority to
H-customers with H  G over H-customers with H > G. This would then be
(see Exercise 3.7):

_E(-2)/2
1 � d(G) .

However, if the relevant work that he finds is H, he would then need to wait for
H plus all the work of serving to exhaustion all D-customers with D < G, i.e.
an EFSBP starting with H, which has expected value H/(1 � d(G�)). Taking
expectation over H:

+̄ (G) = _E(-2)/2
(1 � d(G)) (1 � d(G�)) .

Finally, averaging over all customer service times we get (3.7).
3.10 Jobs arrive at a single server station in a Poisson stream of rate _ = 0.1 jobs

per Unit time. The processing times of the jobs are i.i.d. uniformly distributed
⇠ * (6, 12).

(i) If no information about the processing time of the jobs is available to
the server, calculate the average waiting time per job (in steady state).

(ii) If each arriving job can be classified into one of three types, ⇠ * (6, 8),
⇠ * (8, 10), or ⇠ * (10, 12), and jobs are served according to non-
preemptive SEPT, calculate the average waiting time of each type, and
the overall average waiting time.

(iii) If the processing time of each job becomes known upon arrival, cal-
culate the average waiting time of each job, and the overall average
waiting time for non-preemptive SPT.

Solution

(i)

_ = 0.1,
E(-) = 6+12

2 = 9,
E(-2)/2 = (Var(-) + (E(-))2)/2 = (36

12 + 81)/2 = 42,
d = _E(-) = 0.1 ⇤ 9 = 0.9 .

By Khinchine-Pollaczek formulation, average waiting time is : +̄ = _⇢-
2

2⇤(1�d) =

0.1 84/2
1�0.9 = 42

average sojourn time is 42+9 = 51.
(ii)

d1 = _
Ø 8
6 H 3⌧ (H) = 0.1 ⇤ 7

3 = 0.233 ,

d2 = _
Ø 10
8 H 3⌧ (H) = 0.1 ⇤ 3 = 0.3 ,

d3 = _
Ø 12
10 H 3⌧ (H) = 0.1 ⇤ 11

3 = 0.367 ,

Exercises 29

+̄3 = _⇢-
2/2

(1�d1�d2) (1�d1�d2�d3) =
0.1⇤42

0.467⇤0.1 = 90 ,
sojourn time1 = ⇢-1 + +̄1 = 9 + 90 = 99 ,

+̄2 = _⇢-
2/2

(1�d1) (1�d1�d2) =
0.1⇤42

0.767⇤0.467 = 11.74 ,
sojourn time2 = ⇢-2 + +̄2 = 9 + 11.74 = 20.74 ,

+̄1 = _⇢-
2/2

(1�d1) = 0.1⇤42
0.767 = 5.48 ,

sojourn time3 = ⇢-1 + +̄1 = 9 + 5.48 = 14.48 .

+̄ = 1
3+̄1 + 1

3+̄2 + 1
3+̄3 = 35.74 .

mean sojourn time = 9 + 35.74 = 44.74 .

(iii) d(G) = (G2 � 36)/120, so:

+̄ (G) = _E(-2)/2
(1 � d(G))2

=
0.1 ⇤ 42�

(156 � G2)/120
�2
,

4.2 = +̄ (6)  +̄ (G)  +̄ (12) = 420 ,

+̄ = _E(-2)/2
π 12

6

1
6

. �
(156 � G2)/120

�2 = 4.2 ⇤ 8.19 = 34.4 .

mean sojourn time = 9 + 34.4 = 43.4 .

3.11 (⇤) Derive the expected sojourn time of a customer with processing time G in
a stationary M/G/1 queue under SRPT (preemptive) policy, and the expected
sojourn time over all customers [Schrage and Miller (1966), Wol� (1989)
Example 10-5].
Solution:
Assume service time - has distribution ⌧ that is continuous with density
6(H) and mean<. Under SRPT and this assumption, there is never more than
1 customer with remaining processing time H in the system.
Consider a customer with processing time A , we refer to him as type A . The
sojourn time of a customer of type A consists of two parts: +A is his waiting
time before he starts being served. 'A is his residence time from start of
service until he leaves, which includes preemptions.
We calculate E('A) first. Once processing starts, our type A will have re-
maining processing time going down from A to 0, and when his remaining
processing time reaches H he can only be preempted by jobs shorter than H,
which provide o�ered load d(H) = _

Ø
H

0 C6(C)3C. Then:

E('A) =
π

A

0

3H

1 � d(H)

30 Scheduling

The waiting time until start of service consists of service of all customers with
remaining service time  A that are in the system on the arrival of customer
type A , which we denote by *A , and the busy period of all arrivals of types
H < A which arrive during *A (note that this is independent of the service
policy, as long as we do not serve any customer with remaining service time
> A). Relevant to customer A is all the work in the system of customers of
processing of length < A, as well as processing amount A from all customers
of length � A . Denote -A = min(- , A) the processing time of jobs relevant to
customer A . Then:

E(-A) =
π

A

0
(1 � ⌧ (H))3H, E(-2

A
)/2 =

π
A

0
H(1 � ⌧ (H))3H.

Note that because we would preempt any jobs longer than A, we need to
consider work in process at the server of only E(-2

A
) rather than E(-2). By

PASTA, using the same derivation as of Khinchine-Pollaczek formula for
M/G/1:

E(*A) = _
⇣
E(*A)E(-A) + E(-2

A
)/2

⌘
.

The o�ered load of jobs with remaining processing times < A is:

1A = _E(-A) = _
⇣ π A

0
C6(H)3H + G(1 � ⌧ (H)

⌘
= _

π
A

0
(1 � ⌧ (H))3H,

we obtain:

E(*A) =
_E(-2

A
)

2(1 � 1A)
=

_

Ø
A

0 H(1 � ⌧ (H))3H
1 � _

Ø
A

0 (1 � ⌧ (H))3H
.

to this we need to add processing of arrivals of types < A during *A , so the
total waiting time of customer of type A before he starts processing is:

E(+A) =
_E(-2

A
)

2(1 � 1A) (1 � dA)
=

_

Ø
A

0 H(1 � ⌧ (H))3H⇣
1 � _

Ø
A

0 (1 � ⌧ (H))3H
⌘ ⇣

1 � _
Ø
A

0 H6(H)3H
⌘ .

The expected sojourn time is then:

E(,A) = E(+A) + E('A),

and the average sojourn time over all the customers is:

E(,) =
π 1

0
E(,A)6(A)3A .

3.12 In an M/G/1 queue, under what conditions should one use preemptions or
processor splitting to shorten the expected sojourn time.
Solution:
When ⌧ has decreasing hazard rate (DHR or DFR decreasing failure rate).

Exercises 31

The proof is by using the Gittins index theorem, when we allow any preemp-
tive policy: For IFR we should not use any splitting, since any job we start
will immediately be better than all others, while for DFR any job we start
should be preempted as soon as possible which proves that PS is optimal for
DFR.

3.13 Prove the optimality of Smith’s rule for minimizing flow time of a batch of
deterministic jobs, using the analogs of the three proofs for optimality of
SPT for flowtime.
Solution:
(a) Pairwise interchange: If we exchange jobs : and : + 1 in the sequence,
the new order minus old will be � = ⇠:-:+1 � ⇠:+1-: which is < 0 if
-:+1
⇠:+1

<
-:
⇠:

, so any non-Smith-rule pair should be interchanged.
(b) The total cost can be written in two ways:

+ =
#’
:=1

⇠:

:’
9=1

- 9 =
#’
9=1

- 9

#’
:= 9

⇠: ,

however, this does not indicate immediately that Smith rule is optimal.
(c) We write total cost as sum of delays, with X: ,; the indicator that jobe : is
scheduled before job ;:

+ =
#’
:=1

⇠:-: +
’
:<;

X: ,;⇠:-; ,

from which we see that for every pair it is best to have : before ; if ⇠:-; <
⇠;-: which is Smith rule.

3.14 Show that Smith rule minimizes expected weighted flowtime for stochastic
jobs, where priority is given to jobs with the smallest value of E(- 9)/E(⇠ 9)
where (- 9 ,⇠ 9), 9 = 1, . . . , # are # independent two dimensional random
variables.
Solution:
With the same comparison as in Exercise 3.13, we get for the expectation
that : should be before ; if

E(⇠:-;) = E(⇠:)E(-;) < E(⇠;-:) = E(⇠;)E(-:),

where we used the fact that the duration and cost of job : are independent
of those of job ;. So priority should be given to small E(⇠:)/E(-;) which
is Smith’s rule applied to the expected values. Note, -: ,⇠: need not be
independent.

3.15 Show that the "c`" rule minimizes expected weighted flowtime among all
static priority policies for M/G/1 with customer types.
Solution:
We proceed as in Exercise 3.8. Consider static priority order : before ; if
: < ;, for types 1, . . . , . Denote by V the overall average cost per customer,

32 Scheduling

and by +̄ 9 the average waiting time for type 9 . Use primes to denote quantities
for the policy where we switch the priorities of type : and : + 1. We have:

V =
 ’
:=1

_ 9

_

2 9+̄ 9 ,

then the di�erence in costs will satiisfy:

_(V0 � V) = 2:`: (d:+̄ 0
:
� d:+̄:) + 2:+1`:+1 (d:+1+̄

0
:+1 � d:+1+̄:+1).

By work conservation, as in Exercise 3.8,

d:+̄
0
:
� d:+̄: = �(d:+1+̄

0
:+1 � d:+1+̄:+1) > 0.

so:

_(V0 � V) = (2:`: � 2:+1`:+1) (d:+̄ 0
:
� d:+̄:)

which is negative if 2:`: < 2:+1`:+1, so we should give priority to large 2`
(costly and short over cheap and long).

Part II

Approximations of the Single Queue

33

4

The G/G/1 Queue

Exercises
4.1 Explain the di�erence between the sequence E= = max0 9=

Õ
=�1
8= 9 (-8 �)8)

and the sequence: E=�\�= = max�= 90
Õ�1
8= 9 (-8�)8), = = 0, 1, 2, . . ., which

is used in the Loynes construction.
Solution: While E= give the value of the waiting time of customer = when
starting from E0 = 0, so for each = it relates to a di�erent customer. In
contrast, the sequence E= � \�= give an approximation to the waiting time of
customer 0, for every =.
Furthermore, the sequence E= � \�= is non-decreasing in =, because from
= to = + 1 all that changes is adding another term to the maximization, but
retaining all the previous terms, whereas in the sequence E=, going from = to
= + 1 all the terms in the maximization change, with the addition of -= �)=
which may be positive or negative, and so the sequence is not monotone in =.

4.2 Explain why the sequence+= is stationary, and verify that it satisfies Lindley’s
equation.
Solution: += = sup

9=
Õ
=�1
8= 9 (-8 �)8) expresses += as a function of the

stationary sequence (- 9 ,)9), �1 < 9 < 1. It is then seen immediately that

+
=+1 =

sup
9=

=�1’
8= 9

(-8 �)8)
!
� \ = += � \.

Because the distribution of the sequence (- 9 ,)9), �1 < 9 < 1 is invariant
under \, the distribution of += is also invariant under \.

+
=+1 = sup

9=+1

=’
8= 9

(-8 �)8)

= max

"
sup
9=

=�1’
8= 9

(-8 �)8) + (-= �)=)
!
, 0

#

= max
�
+
= + (-= �)=), 0

�
=

�
+
= + (-= �)=)

�+
,

where we use the convention that summation over empty range is 0.

35

36 The G/G/1 Queue

4.3 Use a Loynes type construction to show that the waiting time += process for
G/G/B is stable if d = _/B` < 1 and unstable if d > 1. As before, assume
that ()=, -=) are a stationary sequence satisfying SLLN. Use the recursion
relation analogous to the Lindley’s equation for+= (see Exercise 1.2) [Loynes
(1962); Kiefer and Wolfowitz (1955); Brandt et al. (1990) page 165].
Solution:
Assume to start with that the system is empty at time �A. We define as in
Exercise 1.2, the ordered vector of workloads found by customer = on arrival,
as +A

=
= (+A

=,1, . . . ,+
A

=,B
). Then we have a recursion for +A

=
:

+
A

=+1 = 5 (+A
=
, -=,)=) =

⇥
'(+A

=
+ 41-=) � 40;;)=)

⇤+
,

where 41 = (1, 0, . . . , 0)T, 40;; = (1, . . . , 1)T, and ' is the operator that orders
the vector from small to large.
We note first that 5 (+ , G, C) is non-negative and it is monotone non-decreasing
in + : increasing any coordinate of + will cause all components of 5 (+ , G, C)
to increase (or stay the same). Therefore, +A0, 9 is non-decreasing in A for
9 = 1, . . . , B for every sample path. It follows that as we let A ! 1, +A0, 9
converges to a limit +1

0, 9  1. So far this is very similar to the single server
case.
However, we have not yet excluded the possibility that some components
of +A0, 9 converge to a finite limit while other components diverge. We show
now that this is cannot be. Consider G/G/s starting at time 0 with some
initial values of +0. Let *= = -= � B)=, it is a scalar stationary ergodic
sequence. Denote ⌃G =

Õ
B

9=1 G 9 . We now look at the scalar sequence 1= =
+=,B � ⌃+=, it is the sum of the di�erences between the largest +=,B and the
other components. Then:

if -= < +=,B �+=,1 then 1=+1  1= � -=,
if -= � +=,B �+=,1 then 1=+1  (B � 1)-=,
hence 1=+1  max(1= � -=, (B � 1)-=).

Let now 2= = 1= � (B � 1)-=, and let ⇡= = (B � 1)-=�1 � -=, then:

2=+1  (2= + ⇡=)+

The recursion ,=+1 = (,= + ⇡=)+ is exactly the recursion for G/G/1 with
E(⇡=) < 0, so it has a unique stationary solution ,=, = 2 Z, and clearly
for any initial value 20 = ,0, 2=  ,= will not diverge, and hence also 1=
cannot diverge.
We have therefore shown that components of += either all of them diverge to
infinity, or they all of them do not diverge.
We return to the recursion,+=+1 = ['(+=+-=48�)=40;;)]+, and the definition
*= = -= � B)=. We then have: ⌃+=+1 � [⌃+= + *=]+. Using the result for

Exercises 37

G/G1, if E(*=) > 0 then we have that ⌃+= diverges for any initial conditions,
i.e. if d > 1 the G/G/s is unstable.
We now assume that d < 1, i.e. E(-= � B)=) < 0. We will show that
in that case P

�
limA!1+A0,1 < 1

�
= 1. The events {limA!1+A0,1 < 1}

and {limA!1+A0,1 = 1} are tail evants, so by ergodicity of (-=,)= their
probability is either 0 or 1.
We use:

E(+A0 �+A1) = E(+A0 �+A�1
1)+E(+A�1

1 �+A1) = E(+A�1
1 �+A1)  0. (⇤)

and
B’
9=1

+
A

1, 9 = (+A0,1 + -0 �)0)+ +
B’
9=2

(+A0, 9 �)0)+

=
B’
9=1

+
A

0, 9 �
266664
+
A

0,1 ^ ()0 � -0) +
B’
9=2

(+A0, 9 ^)0)
377775

To get that:

E

266664
+
A

0,1 ^ ()0 � -0) +
B’
9=2

(+A0, 9 ^)0)
377775
 0.

Now, if P(+A0,1 ! 1) = 1 then of course also P(ÕB

9=2+
A

9 ,1 ! 1) = 1, and
then the expression in the square parentheses is a.s. equal to B)0 � -0 and so
divergence of +A0,1 implies ⇢ (B)0 � -0)  0, which contradicts d < 1. This
proves that d < 1 implies +1

0,1 < 1.
4.4 Show that the sequence of waiting time vectors for G/G/B, obtained by the

Loynes construction, is minimal in some sense. What else is needed to show
that it is unique ?
Solution:
It can now be shown exactly like the single server case that this sequence is
minimal among all stationary sequences that satisfy the generalized Lindley
equation.
To show that it is unique one would need to show that starting at 0 at some
time �A , the vector +A

=
is sure to reach 0 for some =. However this is not the

case, as the next example shows.
4.5 Consider the following sequences: 0= = 1, 12= = 2, 12=+1 = 3/2, �1 <

= < 1. Let a G/G/2 system have interarrivals {)= = 0=}�1<=<1, and
sequence of service times with probability 1

2 given by {-= = 1=}�1<=<1, and
with probability 1

2 given by {-= = 1=+1}�1<=<1. Show that the stationary
sequence of waiting times for this system is not unique. Explain why.
Solution:
let 3 2 (1, 3/2). Then the sequence += = (0, 3), +=+1 = (1/2, 1 � 3) with
probability half and+= = (1/2, 1� 3), +=+1 = (0, 3) wth probability half is a

38 The G/G/1 Queue

stationary sequence that satisfies the recursion, for every 1 < 3 < 3/2. This
is illustrated by the following figure:

d

The main point here is that this is di�erent from the single server case. For a
single server queue, d < 1 implies that the queue is repeatedly empty for a
whole time interval. With many servers this is not the case, here d < 1 but
the queue is never empty.
Note that in this example, the successive processing times are not i.i.d., -=
and -=+1 have the same distribution, but they are not independent: -=+1 is
completely determined by -=.

4.6 Let. 9 = 1 or. 9 = �1 with equal probabilities, and (0 = 0, (= = .1 + · · · +.=.
(= is the simple symmetric random walk. The path of the random walk is at
(C, :) if it is in position : at time C, i.e. (C = : .

(i) Let #C ,: be the number of paths that reach : in C steps, and ?C ,: =
P((C = :). Calculate #C ,: and ?C ,: .

(ii) Prove the reflection principle: The number of paths from (C0, :0) to
(C1, :1), both on the same side of the time axis, that cross or touch the
time axis equals the total number of paths from (C0,�:0) to (C1, :1).

(iii) Prove the ballot theorem: For 0 > 1, of all the paths with 0 positive and
1 negative steps, show that the probability of paths where the number
of positives exceeds negatives at all times is 0�1

0+1 .
(iv) Calculate D2= = P((2= = 0), the probability to return to 0 at time 2=.
(v) Show that the probability to return to 0 for the first time at time 2=,

52= = P((2= = 0, (9 < 0, 9 = 1, . . . , 2= � 1)

= D2=�2 � D2= =
1

2= � 1
D2= =

1
2= � 1

✓
2=
=

◆
1

22=

(vi) Prove that the simple symmetric random walk returns to 0 infinitely
often.

(vii) Show that the expected time to return to 0 is infinite (use Stirling’s
formula).

Solution:
(i) Let ?, @ be the number of positive and negative steps respectively, so:
= = ? + @, G = ? � @. Then: #C ,G =

�
?+@
?

�
, and P((C = G) = #C ,G2�C =�

?+@
?

� ⇣
1
2

⌘
?+@

(ii) Consider a path from (C0, :0) to (C1, :1) (:0, :1 > 0) that touches or
crosses the (C, 0) line. Let) be the first time that it touches or crosses (C, 0),
so () , 0) is on the path. The number of paths from (C0,�:0) to () , 0) equals

Exercises 39

those from (C0, :0) to () , 0). So there is a one to one mapping of paths from
(C0, :0) to (C1, :1) (:0, :1 > 0) that crosses the line (C, 0) to all paths form
(C0,�:0) to () , 0).
(iii) Total number of paths: #0+1,0�1 =

�
0+1
0

�
. Path where positives exceed

negatives go from (0,0) to (1,1) and then continue to (0 + 1, 0 � 1) without
crossing or touching the (C, 0) line. Their number equals all paths from (1,1)
to (0 + 1, 0 � 1), minus all paths from (�1, 1) to (0 + 1, 0 � 1). We get the
number of path where positives exceed negatives:✓

0 + 1 � 1
0 � 1

◆
�

✓
0 + 1 � 1

0

◆
=

✓
0 + 1
0

◆
0 � 1
0 + 1 .

(iv) D2= =
�2=
=

� ⇣
1
2

⌘
=

⇠ 1/pc= by Stirling’s formula (=! ⇠
p

2c=
�
=

4

�
=).

(v) We show first:

P((1 > 0, (2 > 0, . . . , (2= > 0) = 1
2
P((2= = 0) = 1

2
D2= . (⇤)

or equaivalently:

P((1 < 0, (2 < 0, . . . , (2= < 0) = P((2= = 0) = D2= . (⇤⇤)

We write:

P((1 > 0, (2 > 0, . . . , (2= > 0) =
1’
A=1

P((1 > 0, . . . , (2=�2 > 0, (2= = 2A).

Each term in the sum is the probability of going from (0, 0) to (2=, 2A) with
positives exceeding negative at all steps, terms for A > = are 0. By the ballot
theorem:

P((1 > 0, . . . , (2=�2 > 0, (2= = 2A) = 2A
2=

✓
2=
= + A

◆
2�2=

=
1
2

�
?2=�1,2A�1 � ?2=�1,2A+1

�
where it is useful to write it in this second way. It is now seen that the sum
above collapses, and we are left with: 1

2 ?2=�1,1.

P((1 > 0, . . . , (2= > 0) =
1’
A=1

P((1 > 0, . . . , (2= = 2A) = 1
2
?2=�1,1.

But D2= is the probability of going from (0, 0) to (1,±1), which is 1, and
then from (1,±1) to (2=, 0), and the latter equals the probability of going
from (0, 0) to (2= � 1,±1), which is ?2=�1,1, and we have proved (*).
It is also easy to see also that:

P((1 � 0, (2 � 0, . . . , (2= � 0) = D2= .

Since ((1 > 0(2 > 0, . . . , (2= > 0) happens if we go from (0, 0) to (1, 1)

40 The G/G/1 Queue

(probability 1/2), and then we have (1 � 0, (2 � 0, . . . , (2=�1 � 0) which,
because 2= � 1 is odd, means (2=�1 > 0, so also (2= � 0
We are now ready to show: 52= = D2=�2 � D2=. 52= is the probability of the
event that (1 < 0, . . . , (2: < 0, for : = = � 1 but not for : = =, so:

52= = P((1 < 0, . . . , (2=�2 < 0) � P((1 < 0, . . . , (2= < 0) = D2=�2 � D2= .

We also have:

D2=�2 � D2= =
✓
2= � 2
= � 1

◆
22=�2 �

✓
2=
=

◆
22= =

(2= � 2)!=24 � (2=)!
22=

=!=!

=
1

2= � 1

✓
2=
=

◆
22= =

1
2= � 1

D2=.

(vi) The state 0 is recurrent, i.e. state 0 is visited infinitely often since:
1’
==1

52= =
1’
==1

(D2=�2 � D2=) = D0 = 1.

(vii) The state 0 is null recurrent, i.e. expected time to return to 0 is infinite:

Expected time ot return =
1’
==1

2= 52= =
1’
==1

2=
2= � 1

✓
2=
=

◆
2�2=

⇠
1’
==1

2=
2= � 1

1p
c=

= 1.

4.7 Prove the formula (4.7) for the distribution of the stationary workload.
Solution:
When we observe the stationary G/G/1 queue at an arbitrary time C, then the
previous arrival was a time)⌫F3 earlier. At that time, independent of the
current interarrival, the last arrival had a waiting time+1 and an independent

service time -=. So the workload at C is,1
⇡= (+1 + -= �)⌫F3)+ where all

three components are independent. Recall that)⌫F3
⇡=)�F3

⇡=)4@
4.8 Find the average waiting time for the D/M/1 queue and compare it to the

Kingman bound.
Solution:
Solution of next Exercise shows that for heavy tra�c we have:

,̄ =
1

1 � W ⇡ 1
1 � d

1
2

4.9 Find the average waiting time for a G/M/1 queue and compare it to the
Kingman bound.
Solution:(G/M/1 queue described in most queueing texts)
Take service exponential with rate 1, interarrivals)= distributed � with rate
d < 1 The stationary distribution of queue length found by an arrival at
the regeneration times of arrivals is geometric: P(&�AA8E0;B = :) = (1 �

Exercises 41

W)W: , : = 0, 1, It follows that the sojourn time for an arrival, given by
is the sum of rate 1 exponential service times, is (similar to calculation for
M/M/1): ,̄ = 1

1�W . Unfortunately, W cannot be obtained explicitly, it is the
< 1 solution of the equation:

W =
π 1

0
4
�(1�W)H)3� (H)

However, for d close to 1, we will have heavy tra�c and also W close to 1.
We can then take Taylor expansion of the transform:

W =
1’
:=0

(�1): (1 � W:)
:!

E() :)

= 1 � (1 � W)E()) + 1
2
(1 � W)2E()2) + >(1 � W)2)

We get:

0 ⇡ 1�W� (1�W)E())+ (1�W)2 1
2
E()2) = (1�W) (1� 1

d

)+ (1�W)2 1
d

1 + 22
�

2

muliplying by d, cancelling (1 � W) we get:

1 � d = (1 � W)
1 + 22

�

2

and so the expected sojourn time is

,̄ =
1

1 � W ⇡ 1
1 � d

1 + 22
�

2

which is exactly what we would get from the Kingman bound.

5

The Basic Probability Functional Limit
Theorems

Exercises
5.1 A sequence of stochastic processes /= converges in probability to a stochastic

process / (written /= !? /) if for any n > 0

P(3 (/=, /) > n) ! 0, as =! 1.

Here ⇡ (·, ·) is the u.o.c. distance if /= 2 D and / 2 C, or it is the �1 topology
distance if /= 2 D and / 2 D.
Show that /= ! / a.s. implies /= !? / .
Solution
/= ! / means that except for a set$ of measure zero, 3 (/= (l), / (l)) ! 0.
Let

�= =
ÿ
<�=

{l : 3 (/< (l), / (l) > n}.

�= is a decreasing sequence of states, and so �1 =
—
=�1 �= is well defined.

The probabilities of �= are also decreasing, to P(�1). We show that this is
0. Assume l is not in $. Then for some =l , 3 (/= (l), / (l) < n) for all
= > =l , so l in not in �1. Hence �1 ✓ $, and so P(�1) = 0.
By the definition of �= we have {l : 3 (/= (l), / (l)) > n} ✓ �=, so:

P(3 (/=, /) > n)  P(�=) ! 0.

which completes the proof.
5.2 For a seqeunce of random variables -=, and a constant 2, show that if

-= !F 2, then -= !? 2.
Solution
Convergence -= !F 2 implies

lim
=!1
P(-=  G) =

⇢
0 G < 2

1 G > 2

i.e. convergence of �= to � at all points except the discontinuity of � at 2.
Hence, for n > 0:

P(-= � 2 > n) ! 0, P(2 � -= > n) ! 0

42

Exercises 43

i.e. P(|-= � 2 | > n) ! 0 which is the definition of -= !? 2.
5.3 For a sequence of stochastic processes /= with paths inD, and a deterministic

continuous function I, show that if Z= !F I, then Z= !? I, i.e. weak con-
vergence of a sequence of stochastic processes to a continuous deterministic
function implies convergence in probability.
Solution
Z= !F I means that we can construct a probability space in which / 0

=
is

distributed like /=, and in which almost surely for l, / 0
=
(C,l) ! I(C) u.o.c.

as C ! 1. Almost sure convergence implies convergence in probability, so
we have:

P(sup
0<C)

|/ 0
=
(C) � I(C) | > n) ! 0, for any) as =! 1

But for every =, / 0
=

and /= have the same distribution, and because I is
constant, the joint distributions of (/ 0

=
, I) and (/=, I) are the same, so

P(sup
0<C)

|/= (C) � I(C) | > n) ! 0, for any) as =! 1,

which completes the proof. This works because if - ,. have the same distri-
bution, then for every constant 2, (- , 2) and . , 2) have the same distribution.
It would not work for / (C) non-deterministic, because (/=, /) may have a
di�erent joint distribution than (/ 0

=
, /

0).
5.4 Show that the Strong Approximation Theorem 5.11, implies (̄= (C) = 1

=
((=C) !?

<C, (̂= (C) = p
=

�
(̄
= (C) � <C

�
!F f⌫" (C), i.e. the FSLLN (in probability

but not a.s.), and the FCLT for random walks.
Solution: We have, by the strong approximation theorem 5.11, assuming
existence of A > 2 moments, that we can construct copies (0(C) of ((C) and a
BM such that:

sup
0C)

|(0(C) � < C � f ⌫" (C) | =0.B >()1/A) as) ! 1

We then have for any) :

sup0=C=) |(0(=C) � < =C � f ⌫" (=C) |
(=))1/A !0.B. 0, as =! 1 or:

1
)

1/A
sup0C) |(0(=C) � < =C � f ⌫" (=C) |

=
1/A !0.B. 0, but =1/A

<

p
=, so:

sup0C) |(0(=C) � < =C � f p
=⌫" (C) |

p
=

!0.B. 0, as =! 1 or:

sup
0C)

��p
=((̄0= (C) � <C) � ⌫" (C)

�� ! 0, as =! 1.

which proves the FCLT. Clearly also dividing by = will give

sup
0C)

����((̄0= (C) � <C) � 1p
=

⌫" (C)
���� ! 0, as =! 1.

44 The Basic Probability Functional Limit Theorems

but clearly, sup0C)

��� 1p
=

⌫" (C)
��� ! 0, so we have:

sup
0C)

��((̄0= (C) � <C)�� ! 0, as =! 1.

This implies that (̄= (C) !F <C as = ! 1, but since <C is a deterministic
function, by Exercise 5.2, this implies that (̄= (C) !? <C as = ! 1, which
is a weaker version of FSLLN.

5.5 Complete the proof of the FSLLN for renewal processes.
Solution:

Proof of the FSLLN for renewal processes For -= � 0 i.i.d., E(-=) = <,
(= =

Õ
=

9=1 -=, ((C) = (bC c , X(C) = max{= : (=  C}. We showed that
1
=
((=C) ! <C a.s.. This means that for almost all sample paths, the lines

<C and 1
=
((=C) get arbitrarily close in the sense of u.o.c. as = ! 1. If we

reflect those lines around the 450 line we get the lines 1
=
X(=C) and 1

<
C. This

completes the proof. ⇤

5.6 Prove the following result:
If /= (C) !F / (C), and .= (C) !F H(C) where H(C) is deterministic, then the
jointly distributed sequence (/= (C),.= (C)) !F (/ (C), H(C)).
Solution:
We can construct sequences of stochastic processes (/ 0

=
,.

0
=
) that for every

= have the same distribution as the processes (/=,.=), and a stochastic
process / 0 distributed as / , so that /= (C,l) ! /

0(C,l) u.o.c. a.s., and
.= (C,l) ! H(C) u.o.c. a.s. Hence,

�
/= (C,l),.= (C,l)

�
! (/ 0(C,l), H(C))

u.o.c. a.s., and the limit is the same whatever the joint distributions of the
(/ 0
=
,.

0
=
), because (/ 0(C,l) and H(C)) are independent. This completes the

proof.

6

Scaling of G/G/1 and G/G/1

Exercises
6.1 Prove by induction that the implicit conditions of the dynamics, the non-

negativity, and work conservation, uniquely determine the queue length pro-
cess.
Solution
We have Q(0),A(C),S(C). While Q(C) > 0, as time moves on 3I(C) = 0
so 3T (C) = 1, and we wait for the next arrival or departure at C1. At the
next event, if arrival, Q increases, if departure, Q decreases. If the decrease
reaches Q(C1) = 0,
by the requirement that Q(C1 + B) � 0 we must have 3T (C1 + B) = 0 until next
arrival, so 3I(C1 + B) = 1, and we wait for next arrival. This completes the
description.

6.2 Show that H(C) = � inf{0, G(B) : 0  B  C} satisfies conditions (i) – (iii) of
the Skorohod reflection mapping.
Solution
(i) Let H(C) = � inf{0, G(B) : 0  B  C}. Then G(C)+H(C) = G(C)�inf{0, G(B) :
0  B  C} � 0.
(ii) Since G(0) � 0, H(0) = 0. Clearly, inf{0, G(B) : 0  B  C} is non-
increasing in C, so H(C) is non-decreasing
(iii) Assume that I(C) > 0 for 0  C  1. Then G(0) > inf{0, G(B) : 0  B 
0} = �H(0). Assume now than H(1) > H(0). Then inf{0, G(B) : 0  B 
1} < inf{0, G(B) : 0  B  0} and so inf{0, G(B) : 0  B  1} = inf{0, G(B) :
0  B  1} < 0. We now have:

inf
0B1

I(B) = inf
0B1

(G(B)+H(B))  inf
0B1

G(B)+ inf
0B1

H(B) = inf
0B1

G(B)� inf
0B1

G(B) = 0

which contrdicts I(C) > 0 for 0  C  1.
6.3 Show that H(C) = � inf{0, G(B) : 0  B  C} is the minimal function that

satisfies conditions (i) and (ii) of the Skorohod reflection mapping
Solution
Let H⇤, I⇤ = G+H⇤ satisfy (i) and (ii) and assume H⇤ (C) < H(C) for some C. Let C0
be the time point at which inf{0, G(B) : 0  B  C} = min{G(C0), limB%C0 G(B)}.

45

46 Scaling of G/G/1 and G/G/1

Note that

H
⇤ (C0)  H

⇤ (C) < H(C) = H(C0) = inf{0, G(B), 0  B  C0}.

But this implies that min{I⇤ (C0), limB%C0 I
⇤ (B)} < 0, which is a contradiction.

Hence, H(C) is minimal.
6.4 Show that H(C) = � inf{0, G(B) : 0  B  C} is the unique function that

satisfies conditions (i) – (iii) of the Skorohod reflection mapping.
Solution
For given G assume H⇤, I⇤ = G + H⇤ are another solution satisfying (i)–(iii).
We show that (I⇤ � I)2 = 0. We have:

1
2
(I⇤ (C) � I(C))2 =

1
2
(I⇤ (0) � I(0))2 +

π
C

0
(I⇤ (B) � I(B))3 [(I⇤ (B) � I(B))]

= 0 +
π

C

0
(I⇤ (B) � I(B))3 [(H⇤ (B) � H(B))]

=
π

C

0
(I⇤ (B) � I(B))3H⇤ (B) +

π
C

0
(I(B) � I⇤ (B))3H(B)

but
Ø
C

0 I
⇤ (B)3H⇤ (B) = 0 by (iii), and

Ø
C

0 I(B)3H
⇤ (B) � 0 by (i), (ii), so the first

part of the sum is  0, and by the same argument the second part of the sum
is  0, so (I⇤ (C) � I(C))2  0 which implies it is 0.

6.5 Show that conditions (i), (ii) and (iii) of the Skorohod reflection mapping are
equivalent to conditions (i), (ii) and (iii’).
Solution

(i) - (iii) () H(C) = � inf{0, G(B) : 0  B  C} () (i) - (iii’).

The first implication follows from Exercises 6.2, 6.4. The second follows
from Exercises 6.3, 6.4.

6.6 Show that for single server queue with renewal arrivals and i.i.d. service
times, under work conserving policy, the busy time T (C) ! 1 as C ! 1.
Solution
For time C, let C0 = inf{B : Q(A) > 0, B < A  C} � 0 be the last time that
the system was empty. Then T (C) = SA(C0) + C � C0. Then as C ! 1, either
C0 ! 1 or C � C0 ! 1 or both. If C0 ! 1, A(C0) ! 1, and so also does
SA(C0) , so T (C) = SA(C0) + C � C0 ! 1.

6.7 Derive the fluid limit for the workload directly from the fluid limit of the
queue length.
Solution
The fluid limit of the queues is Q̄= (C) ! [Q̄ (0) + (_ � `)C]+. Recall that
while the limit is > 0 it incorporates a very large number of customers, hence
as =! 1, 1

=

ÕQ(=C)
9=1 ! 1

`
Q̄ (C).

6.8 Derive the fluid limit for the workload by scaling and using Skorohod reflec-
tion on (6.3)–(6.4).

Exercises 47

Solution
We need to look at 1

=
(A(=C) :

1
=

(A(=C) =
1
=

A(=C)’
9=1

h 9 =
A(=C)
=

1
A(=C)

A(=C)’
9=1

E 9 ! _C

1
`

= dC.

This holds a.s. pointwise for all C. To complete the proof of u.o.c. convergence,
see proof of FSLLN, Theorem 5.8.
We have:

W̄= (C) =
✓
W̄= (0) + 1

=

(A(=C) � C
◆
+ Ī= (C).

By (6.4) this satisfies the conditions for Skorohod reflection, with G= (C) =
W̄= (0) + 1

=
(A(=C) � C, where G= (C) ! G(C) = W̄(0) + (d � 1)C so

W̄= (C) ! W̄(C) = k(G(C) = (W̄(0) + (d � 1)C)+.

6.9 Show that if Q= (0)/= ! 0, _= ! _, and _= � `= ! 0, then Q̄ (C) = 0 and
)̄ (C) = C.
Solution
Denote by * (C), + (C) the rate 1 unscaled renewal processes of arrivals and
services (i.e. A= (C) = * (_=C), S= (C) = + (`=C)). The netput is

X= (C) = Q= (0) + (_= � `=)C + (* (_=C) � _=C) � (+ (`=T (C)) � `=T (C)).

and for the fluid, scaling time and space by = we have

X̄= (C) = Q̄= (0) + (_= � `=)C + (*̄ (_=C) � _=C) � (+̄ (`=T̄ = (C)) � `=T̄ = (C)).

Now, as = ! 1: Q̄= (0) ! 0, (_= � `
=) ! 0, _= ! _, `

= ! _, and
uniformly on compacts, almost surely: *̄ (_=C) � _=C ! 0, since this is true
point wise, and it is true uniformly on compacts because for C 2 [0,)] we
have _=C 2 [0, _) + n] for = large enough. Similarly, because T̄ = (C)  C, also
+̄ (`=T̄ (C)) � ¯

`
=T (C) ! 0. So:

X̄= (C) !0.B.

D.>.2.
0, as =! 1

But,

Q̄= (C) = X̄= (C) + Ȳ= (C) = X̄= (C) + `= (C � T̄ = (C))

and these converge term by term to

Q̄ (C) = X̄(C) + Ȳ(C) = X̄(C) + _(C � T̄ (C))

but, since X̄(C) = 0, we have Q̄ (C) = k(X̄(C)) = 0, and Ȳ(C) = q(X̄(C)) = 0,
and hence also T̄ (C) = C.

48 Scaling of G/G/1 and G/G/1

6.10 Show that when&= (0)/=! 0, _= ! _ and _=�`= ! 0, then 1p
=

(A= (=C)�

_=C) !F (_22
0
)

1
2 ⌫" (C) as well as 1p

=

(S= (T (=C))�_=C) !F (_22
B
)

1
2 ⌫" (C),

and the joint distribution of the di�usion scaled arrival and service processes
converges weakly jointly to the joint distribution of two independent Brow-
nian motions.
Solution
Denote by * (C), + (C) the rate 1 unscaled renewal processes of arrivals and
services (i.e. A= (C) = * (_=C), S= (C) = + (`=C)), and let 20, 2B be the
coe�cient of variation of interarrival and service times.

1p
=

(A= (=C) � _==C) = 1p
=

(* (_==C) � _==C) =
p
=(*̄ (_=C) � _=C)

!F 20⌫" (_C) =⇡ (_22
0
)

1
2 ⌫" (C).

In fact, we have for the renewal process* (C) that
p
=(*̄ (C)� C) ! 20⌫" (C),

and by time change lemma, for the deterministic series of functions q= (C) =
_=C ! _C u.o.c., so

p
=(*̄ (_=C) � _=C) ! 20⌫" (_C).

For S= (T (=C) we use in addition the time change T= (C) ! C.
Finally, the processes * (C), + (C) are independent, so the convergence holds
for their joint distribution, which converges to jointly distributed independent
Brownian motions.

6.11 Obtain the fluid and di�usion scaling limits of SA(C) .
Solution
Fluid scaling limit:

1
=

SA(=C) =
1
=

A(=C)’
9=1

h 9 =
A(=C)
=

1
A(=C)

A(=C)’
9=1

h 9 ! _C

1
`

= dC, u.o.c. a.s.

Di�usion scaling limit:

p
=

✓
1
=

SA(=C) � dC
◆
=

p
=

©≠
´

1
=

A(=C)’
9=1

✓
h 9 �

1
`

◆™Æ
¨
+
p
=

✓
1
=

A(=C) 1
`

� dC
◆

=
1p
=

b= 1
=A(=C) c’
9=1

✓
h 9 �

1
`

◆
+ 1
`

1p
=

(A(=C) � _C)

!F fB⌫"1 (_C) +
1
`

(_22
0
)1/2

⌫"2 (C)

=
1
`

⇣
(_22

B
)1/2

⌫"1 (C) + (_22
0
)1/2

⌫"2 (C)
⌘
=

1
`

(_22
0
+ _22

B
)1/2

⌫" (C).

Here we used time change 1
=
A(=C) ! _C in the first limit.

6.12 Show that for all three cases, when d > 1, when d < 1 and when d= satisfies

Exercises 49

the conditions of heavy tra�c (6.12), we have `Ŵ= (C)/Q̂= (C) !F 1 (where
we let 0/0 = 1).
Solution
We will show that this is true for light tra�c and for heavy tra�c with d % 1.
For d > 1 the actual result needs modification: It is true for the fluid limit
but not for the di�usion scaled deviations.
(i) Clearly, when d < 1, the limits (convergence in probability) are Ŵ(C) =
Q̂ (C) = 0.
(ii) Consider next the case d ⇡ 1, specfically assume: d= ! 1 and

p
=(1 �

d
=) ! X, 0 < X < 1. Then Q̂= (C) = 1p

=

Q= (=C) and Ŵ= (C) = 1p
=

W= (=C),
We note then thatW= (=C) consists of the workload of exactly the customers in
Q= (=C), (except perhaps some of the work of the job in process. Furthermore,
Q= (=C) is of the order$ (p=). So, by the SLLN (ignoring the slight e�ect of
the single customer in service),

Ŵ= (C)
Q̂= (C)

=
W= (=C)
Q= (=C) =

ÕQ= (=C)
9=1 h 9

Q= (=C) ! `
�1
, u.o.c., a.s.

(iii) When d > 1, then by the same argument,

W̄= (C)
Q̄= (C)

=
W= (=C)
Q= (=C) =

ÕQ= (=C)
9=1 h 9

Q= (=C) ! `
�1
, u.o.c., a.s.

However, the scaled deviations from the fluid limit do not satisfy Ŵ= (C)
Q̂= (C) !

`
�1. For example, if arrivals are deterministic and service times have mean
< and variance f2, then clearly Q̂= (C) ! 0 while:

Ŵ= (C) =
ÕQ= (=C)
9=1 (h 9 � <)

p
=

⇠
Õ(_�`)=C
9=1 (h 9 � <)

p
=

!F (_ � `)1/2
f⌫" (C)

6.13 (⇤) Obtain fluid and di�usion scaling and limits for ⌧/⌧/B, fixed B, d % 1
[Iglehart and Whitt (1970a); Borovkov (1965)].
Solution Iglehart and Whitt (1970a)
It is tempting to write:

Q(C) =
266664
Q(0) + (_ � B`)C + (A(C) � _C) �

B’
9=1

(S 9 (T9 (C)) � `T9 (C))
377775

+
266664
`

©≠
´
BC �

B’
9=1

T9 (C)™Æ
¨
377775
= X(C) + Y(C)

where X(C) does indeed converge to a Brownian motion under di�usion
scaling. However, it is not true that Y(C) increases only when the system is
empty, so we cannot present Q(C) as the Skorohod reflection of X(C).

50 Scaling of G/G/1 and G/G/1

Instead we use a trick of Borovkov, we define a modified B server queueing
system, Q 0(C) as follows: We assume that a server never shuts o�, so it has
some real and some dummy service completions (potential services), and
when a customer arrives to a server that is doing a dummy job, he will
actually depart at the end of the dummy job (as if we made him arrive a little
earlier, or as if we have made his service shorter), and also any job is assigned
to the server that will finish it earliest (join shortest workload). The modified
queue has the following two properties: jobs leave in the same order that they
arrived, and each completion of a potential service generates a departure as
long as there are any jobs in the system.
The modified system now behaves almost like a single server queue with
service B`. To be exact:

Q 0(C) =
266664
Q 0(0) + (_ � B`)C + (A 0(C) � _C) �

B’
9=1

(S 9 (T 0
9
(C)) � `T 0

9
(C))

377775
+

266664
`

©≠
´
BC �

B’
9=1

T 0
9
(C)™Æ

¨
377775
= X0(C) + Y 0(C)

where now we have that the Y 0(C) only increases when Q(C) = 0.
Here we wrote A 0(C) for the modified arrival process, but A 0(C) �A(C)  B

for all C, so both have the same fluid and di�usion scaling limits. Also,Õ
B

9=1 S 9 (C) as a sum of independent renewal processes has fluid scaling limit

B`C and di�usion scaling limit (B`22
(
)�1/2

⌫" (C).
It follows that the fluid scaling limit for is (Q̄ (0) � B`C)+, and the di�usion
scaling limit is '⌫"Q̂ (0) (C, \, _22

�
+ B`22

(
), where \ = lim

p
=(1 � d=)

6.14 Prove equation (6.18) for the auto-covariance of the di�usion limit of Q(C)
for G/D/1.
Solution
For C > G and B < G:

Cov(Q̂ (C + B), Q̂ (C))
= _22

0
Cov

�
⌫" (C + B) � ⌫" (C + B � G), ⌫" (C) � ⌫" (C � G)

�
= _22

0
Cov

�
⌫" (C + B) � ⌫" (C) + ⌫" (C) � ⌫" (C + B � G),

⌫" (C) � ⌫" (C + B � G) + ⌫" (C + B � G) � ⌫" (C � G)
⌘

= 0 + _22
0
Cov

⇣
⌫" (C) � ⌫" (C + B � G), ⌫" (C) � ⌫" (C + B � G)

⌘
+ 0

= _22
0
(G � B).

For C > G, B > G the intervals are disjoint, so the covariance is 0, so

Cov(Q̂ (C + B), Q̂ (C))
= _22

0
(G � B)+.

Exercises 51

6.15 Calculate the auto-covariance function for the stationary di�usion limit of
the queue length process Q(C) for G/Discrete/1 system.
Solution
We assume arrivals are renewals A(C) with rate _C and c.o.v. 20, and pro-
cessing times are G1 < . . . < G with probabilities U1, . . . , U: . Then we
could have an infinite subset of servers serving each of the di�erent process-
ing time types. We note that each of the A8 (C) is then in itself a renewal
process, and for it Q8 (C) = A8 (C) � A8 (C � G8) is a G/D/1 process. How-
ever the A8 (C) are not independent. We investigate A8 (C). We note that
(�1 (C), . . . ,A: (C) ⇠ Multinomial(A(C), U1, . . . , U).

E(�8 (C)) = _CU8 ,
V(�8 (C)) = _C [U8 + U2

8
(22
0
� 1)],

Cov(�8 (C), � 9 (C)) = _C (22
0
� 1)U8U 9 .

We then have that the vector 1
=
A= (C) scaled with _= = =_, converges to a

BM vector with drift _U, and covariances as above.
To calculate the auto-covariance of Q(C) we need to add up covariance of
Â8 (C) � Â8 (C � G8) with Â 9 (C + B) � Â8 (C + B � G 9), over all pairs. For 8 < 9 :

Cov
�
Â8 (C)�Â8 (C�G8), Â 9 (C+B)�Â 9 (C+B�G 9)

�
= min(G 9�B, G8)+_(22

0
�1)U8U 9 ,

and also add up the covariances:

Cov
�
Â8 (C)�Â8 (C�G8), Â8 (C+B)�Â8 (C+B�G8)

�
= (G8�B)+_[U2

8
2

2
0
+U8 (1�U8)],

In summary for B > 0,

Cov
�
Q̂ (C), Q̂ (C + B)

�
=

 ’
8=1

(G8 � B)+_[U8 + U2
8
(22
0
� 1)]

+
’
8< 9

min(G 9 � B, G8)+_(22
0
� 1)U8U 9 .

6.16 Give an informal derivation of the expression (6.19) for the auto-covariance
function of the stationary di�usion limit of G/G/1, using the results of
Exercise 6.15.
Solution

52 Scaling of G/G/1 and G/G/1

For the variance:

V(Q̂ (C)) = _
 ’
8=1

G8U8 + _(22
0
� 1)

266664
 �1’
8=1

U8G8

 ’
9=8+1

U 9 +
 ’
9=1

U 9G 9

 ’
8= 9

U8

377775
= _

π 1

0
G3⌧ (G) + _(22

0
� 1)

π 1

0
G(1 � ⌧ (G))3⌧ (G)

+
π 1

0
G(1 � ⌧ (G�))3⌧ (G)

�

= _
1
`

+ _(22
0
� 1)

π 1

0
(1 � ⌧ (G))2

3G.

For the covariance:

Cov
�
Q̂ (C), Q̂ (C + B)

�
=

 ’
8=1

(G8 � B)+_[U8 + U2
8
(22
0
� 1)]

+
’
8< 9

min(G 9 � B, G8)+_(22
0
� 1)U8U 9 .

= _
π 1

B

(G � B)3⌧ (G) + 2_(22
0
� 1)

 ’
8=1

G8U8 (1 � ⌧ (G8 + B))3G

= _
π 1

0
G3⌧ (G + B) + 2_(22

0
� 1)

π 1

0
G(1 � ⌧ (G + B))3⌧ (G)

= _
π 1

0
(1 � ⌧ (G + B))3G + _(22

0
� 1)

π 1

0
(1 � ⌧ (G + B))2

3G.

7

Di�usions and Brownian processes

Exercises
7.1 Let - (C) be a standard Brownian motion. Let C = C0 < C1 < · · · < C= = C + g

and let n = min:=1,...,= (C: � C:�1). Show that for all C and g:

lim
n!0
E

=’
:=1

(- (C:) � - (C:�1))2 � g
!2

= 0.

In words, the quadratic variation of ⌫" (C) convergence in mean square to C
[Breiman (1992), Section 12.8].
Solution
We write

=’
:=1

(- (C:) � - (C:�1))2 � g =
=’
:=1

⇣
(- (C:) � - (C:�1))2 � (C: � C:�1)

⌘

=
=’
:=1

⇣
(- (C:) � - (C:�1))2 � E[(- (C:) � - (C:�1))2]

⌘

The summands above are independent, and have mean 0. Therefore:

E

=’
:=1

⇣
(- (C:) � - (C:�1))2 � (C: � C:�1)

⌘!2

=
=’
:=1

E

⇣
(- (C:) � - (C:�1))2 � (C: � C:�1)

⌘2
�

We note that (- (C:) � - (C:�1))2/(C: � C:�1) is distributed like /2 where
/ ⇠ # (0, 1), and /2 has mean and variance equal to 1. We obtain:

E

=’
:=1

(- (C:) � - (C:�1))2 � g
!2

=
=’
:=1

E(/2 � 1) (C: � C:�1)2


=’
:=1

E(/2 � 1) (C: � C:�1)n = gn ,

Which converges to 0 as n ! 0. (This solution quoted from Breiman (1992),
Section 12.8)

53

54 Di�usions and Brownian processes

7.2 Let / ⇠ # (0,f2) be a mean 0 normal random variable. Calculate the mean
and variance of |/ |.
Solution
For the expectation:

E(|/ |) = 2p
2c

π 1

0
G4

�G2/2
3G =

2p
2c

h
�4�G2/2

i1
0
=

r
2
c

For the second moment:

E(|/ |2) = E(/2) = V(/) = 1

so:

V(|/ |) = 1 � 2
c

7.3 Consider a sequence of M/M/1 birth and death queues, with arrival rates
_= and service rate `=, where _= ! _ and

p
=(`= � _=) ! \. let Q= (C)

be its queue length, and let Q̂= (C) = Q= (=C)p
=

. Write the decomposition into
netput and regulator, and consider the netput process as a birth and death
process. Then use Stone’s theorem to show that Q̂= (C) converges to a reflected
Brownian motion.
Solution
We are interested in:

Q= (C) = (_= � `=)C + (A= (C) � _=C) � (S= (T= (C)) � `=T= (C))
+`= (C � T= (C)) = X= (C) + Y= (C).

we will consider instead of Q̂= (C) = p
=
Q= (=C)
=

, the process X̂= (C) = p
=
X= (=C)
=

,
as =! 1.

X̂= (C) = Q= (0)p
=

+ A= (=C) � S= (=T̄ = (C))p
=

We have T̄ = (C) ! C, so by time change lemma we can replace T̄ (C) by C to
obtain the limit. Let

Ẑ= (C) = A= (=C) � S= (=C)p
=

This is a birth and death process, with jumps of ± 1p
=

that happen at rate =_=
up and =`= down, so

<= (G) = =_=
1p
=

� =`=
1p
=

=
p
=(_= � `=) ! \,

f
2
=
(G) = =_=

1
=

+ =`=
1
=

= _= + `= ! 2_.

Exercises 55

so, Ẑ(C) ! \C +
p

2_⌫" (C), and so X̂(C) ! Q̂ (0) + \C +
p

2_⌫" (C), and
Q̂= (C) goes to the corresponding RBM.

7.4 Obtain the reflection mapping (solution of Skorohod reflection problem) for
the following two functions (you can give a formula for q(G),k(G) or make
a drawing).
(a) G(C) = �0.5 + cos(C), C � 0.
(b) G(C) = C B8=(C), C � 0.
Solution
(a)

2 4 6 8

-1.5

-1.0

-0.5

0.5

1.0

1.5

2.0

(b)

5 10 15

-10

10

20

7.5 Show existence, uniqueness, and minimality of the two sided regulators, and
verify the recursive equation (7.17).
Solution
We show existence of solutions to (7.17):

! (C) = sup
0<BC

(G(B) �* (B))�, * (C) = sup
0<BC

(1 � G(B) � ! (B))�,

For given continuous G(C), with 0  G(0)  1, we define a sequence of !=

and*= upper and lower regulators as follows:

!
0 (C) = 0, *

0 (C) = 0,

!
=+1 (C) = q(G �*=) (C) = sup

0BC
(G(B) �*= (B))�,

*
=+1 (C) = q(1 � G � !=) (C) = sup

0BC
(1 � G(B) � != (B))�.

Clearly, != (C) and*= (C) increase with =, so they converge to a limit at every
C. Furthermore, there exist)1 <)2 < . . . such that for)= < C <)=+1,

56 Di�usions and Brownian processes

! (C) = !
= (C) and * (C) = *

= (C), where in the intervals between)= G(C)
crosses from lower to upper boundary, or from upper to lower boundary.
furthermore,)= ! 1, since otherwise, if)= !) < 1,) will be a
discontinuity point of G.
It is easy to see that these solutions indeed define the regulators.

7.6 Find the long time average lim)!1 1
)

Ø
)

0 (C)3C for the one sided regulated
Brownian motion (reflected Brownian motion).
Solution
For ⌫"0 (C;<,f2) with < < 0, we should expect

lim
)!1

1
)

π
)

0
(C)3C =

⇢
�< < < 0
0 < � 0

to counter the negative drift. We can obtain this by looking at the two sided
regulator, and letting the upper bound go to infinity, i.e. from equation (7.19)
by letting 1 ! 1.

7.7 Calculate the expectation of the stationary two side regulated Brownian
motion Z(C).
Solution
Let \ = 2</f2, where < is the drift and f2 the di�usion coe�cient of the
Brownian motion.
For < = 0, Z(C) ⇠ Uniform(0, 1) with expectation 1/2.
For < < 0

E(Z(C)) =
π

1

0

H\4
\H

4
\1 � 1

3H = 1 � 1

4
\1 � 1

� 1
\

7.8 The equations (7.24), (7.25) give the distributions of the regulator (C) and the
reflected Brownian motion Z(C), with drift < < 0 and di�usion coe�cient
f

2, starting at X(C) = Z(C) = 0. Obtain the distributions of (C) and Z(C) for
Z(0) = G0.
Solution
Let X(C) be ⌫"G0 (C;<,f2). Let) be the first time that X(C) hits 0. Condi-
tioned on) , the processX(C), 0  C ) behaves like a Brownian bridge, and
Z(C) = X(C), (C) = 0. Thereafter, for C >) , by the strong Markov property
it will behave as '⌫"0 (·;<,f2) and its regulator. So, conditional on) :

Z(C |)) ⇠
(
fB0 (C

)

) +) � C
)

G0, 0  C ) ,
'⌫"0 (C �) ;<,f2), C �) .

where B0 (·) is a standard Brownian bridge, and we have (see Section 18.1,
Exercise 18.1)

fB0 (C
)

) +) � C
)

G0 ⇠ #
�) � C
)

G0 ,
C

)

(1 � C

)

)f2�
The probability density of time to hit 0 starting from G0 is the same as hitting

Exercises 57

G0 starting from 0, with drift �<, so by equation (7.23):

5) (C)3C = P[) 2 (C, C + 3C)] = G0

f

p
2cC3

exp
⇣
� (G0 + <C)2

2f2
C

⌘
3C

and we have, by (7.25),

P(Z(C)  H) =
π

C

0
P
⇣
'⌫"0 (C �) ;<,f2)  H

⌘
5) ())3)

+
π 1

C

P
⇣
fB0 (C

)

) +) � C
)

G0  H

⌘
5) ())3)

=
π

C

0
�

⇣
H � <(C �))
f(C �))1/2

⌘
� 42<H/f2

�
⇣�H � <(C �))
f(C �))1/2

⌘
5) ())3)

+
π 1

C

�
⇣

H �) �C
)
G0�

C

)
(1 � C

)
)
�1/2

f

⌘
5) ())3) .

The distribution of (C) is then, by (7.24),

P((C)  H) =
π

C

0
�

⇣
H + <(C �))
f(C �))1/2

⌘
� 4�2<H/f2

�
⇣�H + <(C �))
f(C �))1/2

⌘
5) ())3) .

Note, when < > 0, there is a positive probability that the process will never
hit 0, so 5) (·) does not integrate to 1. The above expressions are still correct.

7.9 Provide a mathematical proof that the optimal control of stationary Manu-
facturing with stationary independent increments demand is to use an upper
inventory bound, and produce at maximal rate anywhere below that bound.
Solution
We can formulate a discrete space discrete time Markov decision problem
that approximates this problem. If we bound service capacity then it is a
problem with finite action space, and has a deterministic optimal solution. it
can then be shown that maximal production level and unique upper inventory
solve this discrete Markov decision problem.

7.10 Here is some data for a manufacturing system. Average demand rate is 0 =
100, with standard deviation f = 15. The rest of the data is: sales price
A = 14, material cost 2 = 5, workforce cost F = 6, inventory holding cost
⌘ = 1. Determine the optimal workforce : , and the optimal upper inventory
level bound 1, and calculate the long term average profit + .
How would the solution change if you vary any one of A, 2 F, ⌘ (say in what
direction would + , : and 1 move, and if you can obtain the rates).
Solution
The profit as function of workforce (85-100) and inventory (40-80) is plotted:

58 Di�usions and Brownian processes

86 88 90 92 94 96 98 100

250

255

260
40

50

60

70

80

Optimal is workforce of 94 or 95, and inventory of 70.
7.11 (⇤) The calculations in Section 7.7.5 were for optimal control of the stationary

manufacturing system. However, often one wants to take into account the
current initial state of the system. In that case it is more reasonable to optimize
the discounted profit, with some discount rate _. For the same policy of upper
bound inventory and full production, calculate the discounted infinite horizon
profit for initial state I0, and given : , 1, _ [Harrison (1985), Chapter 5, or
Harrison (2013), Chapter 6].
Solution(See Harrison (1985) sections 1.5, 3.2, 3.3, and 5.3)
We have - (C) = ⌫"G (C;<,f2), and / (C) = - (C) + ! (C) � * (C). We have
1, W, ⌘, A, 2. We wish to calculate, for 0  G  1:

: (G) = EG
⇢π 1

0
4
�WC [⌘/ (C)3C � A3! (C) + 23* (C)]

�
.

We start by defining the following Wald martingale:

+V (C) = 4V- (C)�@ (V)C
, where @(V) = <V + 1

2f
2
V

2
.

We also define the stopping time) =) (0) ^) (1), the first time that - (C)
reaches one of the boundaries 0 or 1. By the martingale optional stopping
theorem,

E(+V ())) = E(+V (0)) = 4VG .

We decompose E(+V ())) = E(+V ());) =) (0)) +E(+V ());) =) (1)) where
E(-; �) = E(- |�)PG (�), to obtain:

4
VG = E(+V ())) = E(+V ());) =) (0)) + E(+V ());) =) (1))

= E(4�@ (V)) ; - ()) = 0) + 4V1E(4�@ (V)) ; - ()) = 1),

This will yield expressions for the expected discounted time up to) , for both

Exercises 59

cases,) =) (0),) =) (1). we denote these by:

k⇤ (G; W) = E(4�W) ; - ()) = 0), k
⇤ (G; W) = E(4�W) ; - ()) = 1),

E(4�W)) = k⇤ (G; W) +k⇤ (G; W).

To calculate the discounted times we use the equation:

4
VG = k⇤ (G; @(V)) + 4V1k⇤ (G; @(V)).

There are two values of V (one positive, one negative) that correspond to
W = @(V) > 0,

V = �V⇤ (W) = f�2 [(<2+2f2
W)�1/2+<] > 0, V = V⇤ (W) = f�2 [(<2+2f2

W)�1/2�<] > 0,

and we get two equations:

4
�V⇤ (W)G = k⇤ (G; W)+4�1V⇤ (W)k⇤ (G; W), 4

V
⇤ (W)G = k⇤ (G; W)+41V

⇤ (W)
k
⇤ (G; W),

from which we obtain:

k⇤ (G; W) =
4
V⇤ (W) (1�G) � 4�V⇤ (W) (1�G)
4
V⇤ (W)1 � 4�V⇤ (W)1

, k
⇤ (G; W) = 4

V
⇤ (W)G � 4�V⇤ (W)G

4
V
⇤ (W)1 � 4�V⇤ (W)1

,

We note that both k⇤ (G; W) and k⇤ (G; W) have boundary values, and satisfy
the di�erential equation:

k⇤ (0) = k⇤ (1) = 1, k⇤ (1) = k⇤ (0) = 0,

Wk⇤ (G) � �k⇤ (G) = Wk⇤ (G) � �k⇤ (G) = 0,

where the initial conditions follow from the definition, and where the operator
� = < 3

3G
+ 1

2f
2 3

2

3G
2 .

We have now prepared the background for the calculation of : (G). We first
discuss calculation of

⌘(G) = EG
� π 1

0
4
�WC
⌘/ (C)3C

⌘
.

It consists of the integral up to time) , where we can replace Z(C) by - (C),
and then of the discounted value of either ⌘(0) if 0 is reached or ⌘(1) if 1 is
reached at) .

⌘(G) = EG
⇣ π)

0
4
�WC
⌘- (C)3C

⌘
+ k⇤ (G; W)⌘(0) + k⇤ (G; W)⌘(1).

We obtain first, by Fubini:

EG
⇣ π 1

0
4
�WC
⌘- (C)3C

⌘
=

π 1

0
4
�WC
⌘EG (- (C))3C

=
π 1

0
4
�WC
⌘(G + <C)3C = ⌘

✓
G

W

+ <

W
2

◆
,

60 Di�usions and Brownian processes

and from this we get:

⌘(G) = EG
⇣ π)

0
4
�WC
⌘- (C)3C

⌘

= EG
⇣ π 1

0
4
�WC
⌘- (C)3C

⌘
� EG

⇣ π 1

)

4
�WC
⌘- (C)3C

⌘

= ⌘

G

W

+ <

W
2
� k⇤ (G)

<

W
2
� k⇤ (G) (1

W

+ <

W
2
)
�

= ⌘

<

W
2
(1 � k⇤ (G) � k⇤ (G)) + 1

W

(G � k⇤ (G)1)
�
.

We again notice that ⌘(G) satisfies boundary conditions and di�erential equa-
tion:

⌘(0) = ⌘(1) = 0,

W⌘(G) � �⌘(G) = ⌘G,

where the boundary conditions say that at G = 0 and at G = 1 we have) = 0.
(In fact, this can be generalized to costs D(G) rather then constant cost rate ⌘G,
in which case the equation is W⌘(G) � �⌘(G) = D(G) with the same boundary
conditions).
We now turn to the calculation of : (G). It is the expectation of the following
functional of / , !,*: (/ , !,*) =

Ø 1
0 4

�WC [⌘/ (C)3C � A3! (C) + 23* (C)],
We notice that up to time) , ! ()) = * ()) = 0. By the strong Markov
property,

: (G) = ⌘(G) + k⇤ (G; W): (0) + k⇤ (G; W): (1).

We know that ⌘(G),k⇤ (G; W),k⇤ (G; W) all satisfy a di�erential equation of
the form W 5 � � 5 = 6, and so we have:

W: (G) � �: (G) = ⌘G,

(or = D(G) for cost D(G) replacing ⌘G) but now we need di�erent boundary
conditions, namely:

:
0(0) = A, :

0(1) = 2.

Those follow since close to 0 : (G) will gain at rate A of lost sales, and close to
1we will gain at rate 2 of less production costs. Since we already have explicit
expressions for ⌘(G),k⇤ (G; W),k⇤ (G; W) all we need now is to calculate : (0),
: (1) so as to satisfy the boundary conditions for : 0(0), : 0(1).

7.12 The following is the Skorohod embedding problem that was discussed in
Section 5.2.2: Let - be a random variable with E(-) = 0, Var(-) < 1.
Let ⌫" (C) be a standard Brownian motion. Find a stopping time) such that
⌫" ()) =⇡ - (equal in distribution) and E()) = Var(-).

The following exercises lead to an answer to this problem. This answer was

Exercises 61

found by Dubins (1968), there are many other answers, including the original
one by Skorohod, a survey of results related to this problem is Ob�ój (2004).
Solution
We construct an increasing sequence of stopping times g= such that g =
sup

=
g= solves the problem.

7.13 Quote a theorem that shows: sup0BC ⌫" (C) ! 1 and inf0BC ⌫" (C) !
�1 as C ! 1, almost surely. This means that almost every path of a Brownian
motion visits all of the values on the real line.
Solution
The law of the iterated logarithm says that:

lim sup
C!1

⌫" (C,l)p
C log log C

=
p

2 almost surely.

7.14 Show that ⌫" (C) and (⌫" (C)2 � C) are martingales.
Solution
Let F (C) be the filtering to which ⌫" (·) is adapted. In other words it is
the f-field generated by ⌫" (B), 0  B  C. By the property of independent
increments, for 0  B < C,

E(⌫" (C) � ⌫" (B) | F (B)) = 0,

so:

E(⌫" (C) | F (B)) = ⌫" (B),

and hence ⌫" (C) is a martingale.
Next by independent increments,

E
�
(⌫" (C) � ⌫" (B))2 | F (B)

�
= Var(⌫" (C � B) = C � B,

and

E
�
(⌫" (C) � ⌫" (B))2 | F (B)

�
= E(⌫" (C)2 | F (B)) � 2E(⌫" (C)⌫" (B) | F (B)) + E(⌫" (B))2 | F (B))
= E(⌫" (C)2 | F (B)) � 2⌫" (B)E(⌫" (C) | F (B)) + ⌫" (B)2

= E(⌫" (C)2 | F (B)) � ⌫" (B)2
.

Hence:

E(⌫" (C)2 � C | F (B)) = ⌫" (B)2 � B,

and hence (⌫" (C)2 � C) is a martingale.
7.15 Let . be a random variable with distribution concentrated on two points,

0 < 0 < 1 and mean zero. Find the distribution of . and its variance.
Solution

E(.) = 0P(. = 0) + 1P(. = 1) = 0

62 Di�usions and Brownian processes

P(. = 0) = 1

1 � 0 , P(. = 1) = �0
1 � 0

Var(.) = E(.2) = 02 1

1 � 0 + 12 �0
1 � 0 = |0 |1

7.16 Let)G = inf{C : ⌫" (C) = G}. Let) = min()0,)1). Then) solves the Skoro-
hod embedding problem for the two point random variable. of exercise 7.15.
Use the martingale ⌫" (C) to prove that ⌫" ()) =⇡ . , and the martingale
(⌫" (C)2 � C) to calculate ⇢ ()).
Solution
We quote the martingale optional sopping theorem

Theorem 7.1 (Doob (1953)). Let -= be a discrete time martingale,) a
stopping time for -=. Then E(- ())) = - (0) if one of the following holds:

(i)) is almost surely bounded, i.e. there exists 2 such that) < 2 a.s.
(ii) E()) < 1 and E(|-=+1 � -= |) < 2 for all = <) .
(iii) The truncated stopping times) ^ = are bounded: there exists 2 such

that - () ^ =) < 2 for all = almost surely.
Furthermore, the same holds for a continuous time martingale if it has
continuous paths.

Recall that ⌫" (C) is a martingale. We note first that) is finite almost surely
(by a exercise 7.13), and also that 0  ⌫" () ^ C)  1. By the martingale
optional stopping theorem condition (iii), E(⌫" ())) = ⌫" (0) = 0. So
⌫" ()) takes values 0 or 1 and has expectation 0. Hence ⌫" ()) =⇡ . .
Furthermore, since by exercise 7.14 ⌫" (C)2 � C is also a martingale, by the
same argument, E

⇥
⌫" ())2�)] = ⌫" (0)�0 = 0, so E()) = E(⌫" ())2) =

Var(.) = |0 |1.
7.17 Let - have zero mean and finite variance. Let<? = E(- |0 < - < 1), <= =

E(- |�1 < -  0). Define. as the two point distribution on<? and<=, with
mean zero. Show that P(. = <?) = P(- > 0), and P(. = <=) = P(-  0).
Solution
This follows immediately from:

0 = E(-) = %(- > 0)E(- |- > 0) + P(-  0)E(- |-  0),
= P(- > 0)<? + P(-  0)<=

0 = E(.) = P(. = <?)<? + P(. = <=)<= .

7.18 Define a sequence of stopping times) (:) as follows: Define H0,1 = E(-) = 0.
Start with H1,1 = <

? , H1,2 = <
=, and let) (1) =)H1,1 ^)H1,2 , the stopping

time on ⌫" (C) that stops at H1,1 or H1,2. Then {H0,1, H1,1, H1,2} divide the
real line into 4 = 22 intervals, �2, 9 , 9 = 1, . . . , 22. Let H2, 9 = E(- | - 2 �2, 9).
Define the stopping time) (2) = min{C : C >)

(1)
, C = H2, 9 for some 9}.

Next, proceed inductively: given)
(:) and the set of values {H8, 9 : 8 =

0, . . . , : , 9 = 1, . . . , 28}, these values divide the real line into 2:+1 intervals,

Exercises 63

�:+1,1, . . . , �:+1,2:+1 . Let H:+1, 9 = E(- | - 2 �:+1, 9) , 9 = 1, . . . , 2:+1, and
define) (:+1) = min{C : C >) (:)

, C = H:+1, 9 for some 9}.
Let . : take the values H: , 9 with probability P(- 2 �: , 9) Prove that:
(i) ⌫" () (:)) =⇡ . : .
(ii) E() :) = Var(. :).
Hint: Use the strong Markov property of ⌫" (·), and rules for calculating
means and variances from conditional means and variances.
Solution
At this point it is useful to describe the sequences . : ,) (:)

, : = 0, 1, 2, . . .
in more detail. We note that . : are discretizations of the random variable - ,
with some very special properties: In the first step we put a probability of 1
at the expected value of - . At stage : we have 2: intervals, and we take the
point which is the conditional expectation of - given that - is in the interval,
and put the probability of that interval at that point. Furthermore, we now
have a point in each of the 2: intervals, which divides it into 2 sub intervals,
and we use the resulting 2:+1 intervals for the next stage. The next figure
illustrates these stages:

To understand the stopping times, consider a single sample path of the Brow-
nian motion. Starting at 0, the Brownian motion will at time) (1) reach either
H1,1 or H1,2, say H1, 9 , and be on one or the other side of 0, in the interval �1, 9 .
It will then, at time) (2) , reach the point H2,2 9�1, or the point H2,2 9 which
are in the interval �1, 9 , on either one or the other side of H1, 9 . Note that
between) (1) and) (2) the Brownian motion does not leave the interval �1, 9 .
Once ⌫() (:)) = H: , 9 is reached, in the interval �: , 9 , at all future) (✓)

, ✓ > :

⌫() (✓)) will be inside that interval. The next figure illustrates successive
stages of the Brownian motion:

We now prove (i) and (ii) by induction. For : = 1 this was proved in exercises
7.16 and 7.17. Assume (i), (ii) hold for . : ,) (:) .

64 Di�usions and Brownian processes

We condition on ⌫" () (:)) = H: , 9 2 �: , 9 . By definition of H ·, ·:

H: , 9 = E(- | - 2 �: , 9), H:+1,2 9�1 = E(- | - 2 �: , 9 , -  H: , 9),
H:+1,2 9 = ⇢ (- | - 2 �: , 9 , - > H: , 9),

Let ⌫"⇤ (C) = ⌫" (C +) (:)) � ⌫" () (:)), by the strong Markov property it
is a Brownian motion, starting at 0. Let)⇤ =) (:+1) �) (:) . It is a stopping
time for ⌫"⇤ (C), it is independent of) (:) , and it is the first time that ⌫"⇤ (C)
hits one of the values H:+1,2 9 � H: , 9 or H:+1,2 9�1� H: , 9 . Using again exercises
7.16 and 7.17, we have:

P(⌫"⇤ ()⇤) = H:+1,2 9�H: , 9) = %(- > H: , 9 | - 2 �: , 9) = P(- 2 �:+1,2 9 | - 2 �: , 9).

To un-condition we then have:

P(⌫" () (:+1)) = H:+1,2 9) = P(⌫" () (:+1)) = H:+1,2 9 \ ⌫" () (:)) = H: , 9)
= P(⌫" () (:+1)) = H:+1,2 9 | ⌫" () (:)) = H: , 9)%(⌫" () (:)) = H: , 9)
= P(- > H: , 9 | - 2 �: , 9)P(- 2 �: , 9) = P(- 2 �:+1,2 9)

where the first equality follows since H:+1,2 9 is only reached by ⌫" () (:+1)

if ⌫" () (:)) = H: , 9 , and the second equality follows by the induction hy-
pothesis. Similar calculation hold for H:+1,2 9�1. This proves (i).
To prove (ii) note that by the above arguments about the definition of)⇤, and
exercises 7.16 and 7.17, we have, conditional on ⌫" () (:)) = H: , 9 :

E()⇤ | ⌫" () (:)) = H: , 9) = (H:+1,2 9 � H: , 9) (H: , 9 � H:+1,2 9�1)
= Var(. :+1 � . : |. : = H: , 9),

We then have:

Var(. :+1) = E(Var(. :+1 |. :)) + Var(E(. :+1 |. :))
= E(Var(. :+1 � . :) |. :)) + Var(. :)
= E(E() (:+1) �) (:) | ⌫" () (:))) + E() (:))
= E() (:+1)).

The first equality is the well known formula for calculating variance, the
second inequality uses that. : |. : has variance 0 and that E(. :+1 |. :) = . : ,
the third equality was proved in the previous equation, and the last follows
fromE(E() (:+1)�) (:) | ⌫" () (:))) = E() (:+1)�) (:)) by the strong Markov
propety and independent increments.

7.19 Show that) = lim:!1) (:) is a stopping time. Show that it solves the
Skorohod embedding problem.
Solution
We need to show three things: (i) that . : !F - , (ii) that . : are uniformly
integrable, and therefore ⇢ (. :), Var(. :) also converge, (iii) that) (:) con-
verges to a stopping time) .

Exercises 65

To prove all of these, we couple . : , : = 0, 1, 2 . . . and - , by generating -
and taking the value of . : = H: , 9 if - 2 �: , 9 .
We now have:
(a) By the construction it is clear that ⇢ (|- � . : |) = ⇢ (|. :+1 � . : |).
(b) Let 2 be such that P(- > 2) < n . Choose (: , 9) such that H: , 9 < 2 <

H: , 9+1 if that is possible. Then for all ✓ > : ,

P(. ✓ > H: , 9+1) = P(- > H: , 9+1)  P(- > 2) < n ,

On the other hand, if we cannot find any such (: , 9) then P(. : > 2) = 0
for all : . This proves that . : are uniformly integrable.

(c) The . : generated coupled to - form a martingale which is uniformly
integrable, so by the martingale convergence theorem it converges to
some variable . . But E(|- � H: |) = E(|. :+1 � . : |) ! 0 so . =⇡ - .

(d) In particular, because . : are uniformly integrable, Var(. :) ! Var(-)
Next we consider) (:) and generate a coupled version of them, by generating
a Brownian motion and the sequence of stopping times) (:) on this Brownian
motion. Then:
(a) The) : are non-decreasing, so they converge to some)
(b)) is a stopping time, since {)  C} = {) (:)  C all :} is F (C) measur-

able.
(c)) (:) =⇡ . : and . : !F - implies) =⇡ -

(d) E() :) = Var(. :) implies E()) = Var(-).

Part III

Queueing Networks

67

8

Product Form Queueing Networks

Exercises

8.1 Show that the conclusions of the Perron Frobenius Theorem ?? continue to
hold for � that is non-negative if there exists � such that �< is positive.
Solution
A non-negative matrix can be approximated by a positive matrix (say 0̃8, 9 =
08, 9 +n), for which all the conclusions hold, and the eigenvalues will converge
to those of �, so � will have a real eigenvalue with maximal absolute value.
Furthermore, �< will have an isolated maximal real eigenvalue, A1, and
so all maximal eigenvalues of � must be of the (possibly complex) form
A1

1/<
4G?(8 :

<
). However, if �< is positive so is also �

<+1, with maximal
isolated real eigenvalue A2, but then all the maximal eigenvalues of � must
be of the (possibly complex) form A2

1/(<+1)
4G?(8 :

<+1). This can only be the
case if there is a single real eigenvalue, corresponding to : = 0.

8.2 Show that if a transition matrix % satisfies %< is positive then the chain is
irreducible and a-periodic.
Solution
If %< is positive, all states communicate, with paths of length <, so the
chain is irreducible. Furthermore, %<+1 is also positive, and therefore ?<

8,8
>

0, ?<+1
8,8

> 0 and so the chain is a-periodic.
8.3 Show that a Markov chain is time reversible if and only if it satisfies the

detailed balance equations.
Solution
If the stationary chain is time reversible then

P(- (=) = 8, - (=+1) = 9) = c(8)?(8, 9) = P(- (=+1) = 8, - (=) = 9) = c(9)?(9 , 8).

If detailed balance holds than for the stationary process, for any sequence of

69

70 Product Form Queueing Networks

states 91, . . . , 9: ,

P(- (C) = 91, . . . , - (C + :) = 9:) = c(91)?(91, 92) · · · ?(9:�1, 9:)
= ?(92, 91)c(92)?(92, 93) · · · ?(9:�1, 9:)

.

.

.

= ?(92, 91)?(93, 92) · · · c(9:)?(9: , 9:�1)
= c(9:)?(9: , 9:�1) · · · ?(92, 91) = P(- (C + :) = 91, . . . , - (C) = 9:).

8.4 Prove the Kolmogorov criterion: a stationary Markov chain is time reversible
if and only if for any finite sequence of states 91, 92, . . . , 9: , the transition
probabilities satisfy:

?(91, 92)?(92, 93) · · · ?(9: , 91) = ?(91, 9:)?(9: , 9:�1), · · · ?(92, 91).

Solution
If - (C) is time reversible then

c(91)?(91, 92)?(92, 93) · · · ?(9: , 91) = c(91)?(91, 9:)?(9: , 9:�1), · · · ?(92, 91).

and cancelling c(91) we get Kolmogorov’s criterion.
In the opposite direction, we show that detailed balance holds. Start from a
reference state 90, consider arbitrary state 8, and a positive probability path
90, 91, . . . , 9: , 8. Define:

c(8) = ?(90, 91) · · · ?(9: , 8)
?(8, 9:) · · · ?(91, 90)

.

It may depend on 90, but no on the path, since by Kolmogorov criterion, fo
another path 90, 9 01, . . . , 9

0
;
, 8:

?(90, 91) · · · ?(9: , 8)
?(8, 9:) · · · ?(91, 90)

=
?(90, 9 01) · · · ?(9 0; , 8)
?(8, 9 0

;
) · · · ?(9 01, 90)

.

Consider now partial balance between 8 and 9 : If ?(8, 9) = 0 there is nothing
to prove. Else, we define:

c 9 =
?(90, 91) · · · ?(9: , 8)?(8, 9)
?(9 , 8)?(8, 9:) · · · ?(91, 90)

to obtain c(8)?(8, 9) = c(9)?(9 , 8). The cs need to be normalized, but are
then the unique stationary probabilities.

8.5 Show that every stationary birth and death process is time reversible.
Solution
For a continuous time birth and death process, we set up global balance

Exercises 71

equations, for the states 0, 1, 2, . . .:

_0c0 = `1c1,

(_1 + `1)c1 = _0c0 + `2c2 =) _1c1 = `2c2,

by using the previous equation and cancelling,
.
.
.

(_= + `=)c= = _=�1c=�1 + `=+1c=+1 =) _=c= = `=+1c=+1,

using induction and the same argument.

8.6 Write down the formula for the steady state distribution of the queue length
vector for Jackson tandem queueing systems and feed forward systems (in-
cluding solution of the tra�c equations). Show that if node 8 precedes node
9 then Q8 (C) is independent of Q 9 (B) for all B < C.
Solution
For the Jackson tandem queue, by Burke’s theorem, arrivals to all nodes and
departures form all nodes are Poisson at rate U, and if all ` 9 < U the steady
state distribution is

Tandem: c(=1, . . . , =�) =
�÷
8=1

✓
1 � U

`8

◆ ✓
U

`8

◆
=8

.

For the feed forward Jackson network, one obtains the flow rates through
each node from:

_ =
⇣
� + %T + %T2 + · · · + %T��1

⌘
U,

put di�erently, the rate _ 9 is the sum over all paths that lead from input to
9 , say 81 ! 82 ! 8: ! 9 of the product U81 ?81 ,82 · · · ?8: , 9 . The steady state
distribution, is then

Feed Forward: c(=1, . . . , =�) =
�÷
8=1

✓
1 � _8

`8

◆ ✓
_8

`8

◆
=8

We now show the independence result, by induction on the number of nodes.
There is nothing to show for a single node. Consider then a feedforward
network with � nodes, including a source node labeled 1, with input Poisson
U1. It has only flow from outside (by feed forward) and its output by Burke’s
theorem is Poisson, rate U1. This output is then split into independent Poisson
streams of rates U1?1, 9 , that flow into nodes 9 = 2, . . . , �. The system ex-
cluding node 1 is a feed forward network of nodes 2, . . . , �, with independent
Poisson inputs of rates U 9 + U1?1, 9 . By the induction hypothesis for all the
nodes 9 = 2, . . . , �, the statement of the theorem holds. So we just need to
check that Q1 (C) and Q 9 (B) are independent for B < C. This follows again by
Burke’s theorem: The state of the network of 2, . . . , � at time B is determined

72 Product Form Queueing Networks

by the departure process of node 1, and by all the flows of customers that did
not enter from node 1. But all of these are independent of Q1 (C) if B < C.

8.7 Verify the stationary distribution for the Jackson network with processing
rates `8 (=8) as given by Theorem 8.8
Solution
The partial balance equations are’
9<8

c(G)@(G,)8, 9 (G)) =
’
9<8

c()8, 9 (G))@()8, 9 (G), G), for G 2 (, 0  8  �,

with transition rates:

@(G,)8, 9 (G)) = U 9 , 8 = 0,
@(G,)8, 9 (G)) = `8 (G8)?8, 9 , 8 < 0, G8 > 0, 9 < 0,

@(G,)8, 9 (G)) = `8 (G8)
⇣
1 � Õ

:<8,0 ?8,:

⌘
, 8 < 0, G8 > 0, 9 = 0,

@(G,)8, 9 (G)) = 0 8 < 0, G8 = 0.

We need to verify that

c(=1, . . . , =�) = ⌫
�÷
8=1

_8
=8Œ

=8

<=1 `8 (<)
,

satisfy the balance equations.
For 8 < 0 and =8 > 0,

c(G)`8 (=8) = c(G)

`8 (=8)
_8

U8 +
’
9<8,0

`8 (=8)
_8

_ 9

` 9 (= 9 + 1) ` 9 (= 9 + 1)? 9 ,8
�
,

which, after canceling and multiplying by _8 yields the tra�c equation for
node 8:

_8 = U8 +
’
9<8,0

_ 9 ? 9 ,8 .

For node 0, arrivals to the system out of node 0 need to balance with depar-
tures, and on substituting:

c(G)
’
9<0

U 9 = c(G)
’
9<0

_ 9

` 9 (= 9 + 1) ` 9 (= 9 + 1)
⇣
1 �

’
:<0, 9

? 9 ,:

� �
,

which is simply:

1T (� � %T)_ = 1T
U,

i.e. summation of the tra�c equations.
For the normalizing constant, 1/⌫ is the sum of all the product form terms,
and the network is stable if and only if the sum is finite, i.e. ⌫ > 0.

Exercises 73

8.8 Prove Kelly’s Lemma 8.8.
Solution
We are given a stationary continuous time Markov chain - (C) with transition
rates @(9 , :), and with @(9) =

Õ
:< 9 @(9 , :). We assume we have values

@
0(9 , :) with @0(9) =

Õ
:< 9 @

0(9 , :) = @(9), and a vector of probabilities
c(9) such that: c(9)@(9 , :) = c(:)@0(: , 9). We claim that @0(9 , :) are the
transition rates of the reversed process, and c(9) the stationary probabilities
of the process and of the reversed process. For state 9 we now write:

’
:< 9

c:@(: , 9) =
’
:< 9

c 9@
0(9 , :) = c 9@(9),

so c(9) solves the global balance equations, and is the stationary distribution.
Furthermore,

P(- (C) = :
��
- (C + ⌘) = 9) = P(- (C) = : , - (C + ⌘) = 9)

P(- (C + ⌘) = 9)

=
P(- (C + ⌘) = 9

��
- (C) = :)P(- (C) = :)

P(- (C + ⌘) = 9)

=
c(:)
c(9) @(: , 9)⌘ + >(⌘) = @

0(9 , :)⌘ + >(⌘).

so @0(9 , :) are the transition rates of the reversed process.
8.9 Prove that a Jackson network considered in reversed time is again a Jackson

network, and calculate its parameters.
Solution
For any stationary Markov chain X(C) with transitions @(G, H) and stationary
distribution c(G), the reversed process X(�C) is a stationary Markov chain
with the same stationary distribution and transitions @⇤ (G, H) given by:

@
⇤ (G, H) = 1

c(G) c(H)@(H, G).

Clearly, in the reversed Jackson network transitions are again of single
customers moving between nodes (including node 0). We then have, for
= = (=1, . . . , =�) and 1  8, 9  �:

@
⇤ (=,)8, 9 (=)) =

c()8, 9 (=))
c(=) @()8, 9 (=), =)

=
`8 (=8)
_8

_ 9

` 9 (= 9 + 1) ` 9 (= 9 + 1)? 9 ,8

= `8 (=8)?⇤8, 9

where the new routing probabilities are ?⇤
8, 9

= _ 9

_8
? 9 ,8

74 Product Form Queueing Networks

For transitions of arrivals we have:

@
⇤ (=,)0, 9 (=)) =

c()0, 9 (=))
c(=) @()0, 9 (=), =)

=
_ 9

` 9 (= 9 + 1) ` 9 (= 9 + 1) (1 �
�’
8=1

? 9 ,8)

= U⇤
9

where the reversed arrival rate to node 9 is U⇤
9
= _ 9 (1 � Õ

�

8=1 ? 9 ,8)
Finally, for transitions of departures we have:

@
⇤ (=,)8,0 (=)) =

c()8,0 (=)
c(=) @()8,0 (=), =)

=
`8 (=8)
_8

U8

where the reversed departure rate from node 8 is U8
_8

We now check first that the ?⇤
8, 9

add up to 1 for all 8 < 0:

’
9<8,0

?
⇤
8, 9

+ ?⇤
8,0 =

’
9<8,0

_ 9

_8

? 9 ,8 +
U8

_8

= 1

by tra�c equation _8 = U8 +
Õ
9<8,0 _ 9 ? 9 ,8 .

We next check that U⇤
9

and U 9 add up to the same sum:

1T
U
⇤ = 1T (1 � %T)_ = 1T

U

by the tra�c equations.
8.10 The M/M/1 queue with feedback is a single queue with Poisson rate U arrivals

and exponential rate ` service times, where upon completion of service a
customer rejoins the queue with probability \, and leaves the system with
probability 1� \. Calculate the stationary distribution of the queue Q(C) and
show it is the same as M/M/1 with d = U

` (1�\) , and that customers leave
the system as a Poisson process of rate U. However, show that the stream of
customers entering service (new arrivals and returns) is not Poisson.
Solution
The simplest way to look at this system is to assume instead of FCFS that
each customer that feeds back is served immediately. Under this policy the
departure process has the same distribution as under any non-predictive non-
preemptive policy, including FCFS, so the distribution of queue length is
the same as for FCFS. But under this policy service time of each customer
will be Exp(`(1 � \), and the system will behave as an M/M/1 system with
service rate `(1 � \).
Alternatively, consider it as a Jackson network, with one node, arrivals at
rate U, routing probability ?1,1 = \ < 1. Then flow through the node is at

Exercises 75

rate U/(1 � \) and the stationary distribution is

c(=) =
✓
1 � U

`(1 � \)

◆ ✓
U

`(1 � \)

◆
=

.

In fact the process is time reversible:

c(=)@(=, = + 1) = (1 � d)
✓

U

`(1 � \)

◆
=

⇥ U,

c(= + 1)@(= + 1, =) = (1 � d)
✓

U

`(1 � \)

◆
=+1

⇥ `(1 � \),

and these are equal, so detailed balance holds, which implies reversibility. It
follows that the departure process from the system is Poisson.
Consider now a system with small U, large ` and \ = 4/5. Then d is small,
and most of the time the system is empty. So when there is an outside arrival,
that customer is usually served immediately, and that customer will then
return on average 5 times, in short intervals of average length 1/`. Clearly,
the sequence of arrivals to the server is not Poisson.

8.11 Consider the M/M/1 queue with feedback as a Kelly-type multi-class network,
where customers on their :th visit are class : customers. Obtain the stationary
distribution of this system.
Solution
In this Kelly-type network there is a single node, we have classes : = 1, 2, . . .,
with _1 = U external arrivals, and ?: ,:+1 = \ for the routing. To avoid dealing
with infinite dimensional states we choose a cuto� # and make class # all
the customers that visit # or more times, so we have classes : = 1, . . . , # .
Then the flow rates of customers are _: = U\

:�1
, : = 1, . . . , # � 1, and

_# = U\#�1/(1 � \). The total flow through the node is _̄ = U/(1 � d) and
processing is always at rate `, so the normalizing constant 1 is

1
�1 =

1’
==0

⇣
U/(1 � \)

`

⌘
=

=
⇣
1 � U

`(1 � \)
⌘�1

Let the state of the node be (:1, . . . , :=) when there are = customers at the
node, and the customer at position ; is type :; . Then the stationary probability
of observing this state is:

%(:1, . . . , :=) = 1
=÷
;=1

_:;

`

From this we obtain that the joint distribution of the numbers of customers
of each type. Let G 9 be the number of customers of type 9 , then

%(G1, . . . , G#) =
⇣
1� U

`(1 � \)
⌘ (G1 + · · · + G#)!

G1! · · · G# !

⇣
U\

#�1

`(1 � \)
⌘
G#

#�1÷
9=1

⇣
U\

9�1

`

⌘
G 9

.

76 Product Form Queueing Networks

8.12 Prove Theorem 8.14, on the stationary distribution of closed Jackson net-
works, by verifying partial balance.
Solution
The partial balance equations are’
9<8

c(G)@(G,)8, 9 (G)) =
’
9<8

c()8, 9 (G))@()8, 9 (G), G), for G 2 (, 1  8  �,

with transition rates:

@(G,)8, 9 (G)) = `8 (G8)?8, 9 , G8 > 0,
@(G,)8, 9 (G)) = 0 G8 = 0.

We need to verify that

c(=1, . . . , =�) = ⌫(#)
�÷
8=1

_8
=8Œ

=8

<=1 `8 (<)
,

satisfy the balance equations.
For =8 > 0,

c(G)`8 (=8) = c(G)
’
9<8

`8 (=8)
_8

_ 9

` 9 (= 9 + 1) ` 9 (= 9 + 1)? 9 ,8
�
,

which, after canceling and multiplying by _8 yields the tra�c equation for
node 8:

_8 =
’
9<8,0

_ 9 ? 9 ,8 .

which are exactly the tra�c equations defining _.
8.13 Prove the arrival theorem, customers in transit see a stationary state, for both

open and closed Jackson networks [Kelly (1979); Sevcik and Mitrani (1981)].
Solution
Consider a customer transiting from queue 8 to queue 9 . Insert between these
queues a virtual queue 0 with a very high service rate `0. In the limit `0 ! 1,
the added queue does not a�ect the system at all: the customers transiting
from queue i to queue j spend an infinitesimal time in the added virtual queue.
The virtual queue, however, enables ‘catching the customer in transition. The
transition occurs precisely in the short interval when there is a customer in
queue 0, i.e. when =0 (C) = 1. The state distribution seen by the transiting
customer is the distribution of the other queues conditioned on =0 = 1. The
new system is itself a Jackson network. The distribution of the rest of the
network when the customer is in transition is then given by:

P(=1, . . . , =� |=0 = 1) = c(=0 = 1, =1, . . . , =�)
c(=0 = 1) = c(=1, . . . , =�),

as seen immediately by the product form nature of the stationary distribution.

Exercises 77

This proof works both for the open and the closed Jackson network, and also
for Kelly networks.

8.14 Verify the expressions for the stationary distribution of Kelly networks and
Kelly-type multi-class networks as given by (8.14), (8.15) and (8.16), (8.17).
Solution
We give the proof for Kelly-type multi-class networks, Kelly networks with
deterministic routes are a special case.
The proof is by Kelly’s Lemma 8.11. Let ⇠ (8) = (2(8, 1), . . . , 2(8, =8)) be the
list of customer alsses in positions A = 1, . . . , =8 at node 8, and the state be
⇠ = (⇠ (1) . . . ,⇠ (8)). Transitions are arrivals of class : to position A at node
8 = B(:), transitions from class : in position A at node 8 = B(:) to class ;
in position ⌘ and node 9 = B(;) and departures from class : in position A at
node 8 = B(:), with rates:

)0,: ,A (⇠) = U:XA ,=8+1 B(:) = 8
): ,A ,;,⌘ (⇠) = `8 (=8)WA ,=8 ?: ,;X⌘,= 9+1 B(:) = 8, B(;) = 9

): ,A ,0 (⇠) = `8 (=8)WA ,=8@: @: = 1 � Õ
;<: ?: ,; , B(:) = 8.

Consider now the time reversed process. We use the same arguments as for
Exercise 8.9. The reversed process is again a Kelly-type multi-class network,
with the following parameters: The flow rates _: are the same. The arrival
rates are U⇤

:
= _:@: , the routing probabilities are ?⇤: ,; = _;

_:
?;,: , and the

departure rate is @⇤
:
= U:

_:
. The policy at node 8 is given by W⇤

A ,=8
= XA ,=8 ,

X
⇤
A ,=8+1 = WA ,=8+1.

By exactly the same argument as in 8.9, the
Õ
U
⇤
:
=

Õ
U: and

Õ
;
?
⇤
: ,;
+@⇤

:
= 1,

so the reversed process is indeed a Kelly-type multi-class network. Hence,
we actually know all the reversed transition rates.
It remains to check that for each possible transition, the conjectured c satisfy:
c(⇠)@(⇠,⇠ 0) = c(⇠ 0)@⇤ (⇠ 0

,⇠):
– For arrivals, check that: c(⇠)⇥@(⇠,)0,: ,A (⇠)) = c()0,: ,A (⇠))⇥@⇤ ()0,: ,A (⇠),⇠):

c(⇠) ⇥ U:XA ,=8+1 = c(⇠) _:

`8 (=8 + 1) ⇥ `8 (=8 + 1)XA ,=8+1
U:

_:

.

– For routing, check that: c(⇠) ⇥ @(⇠,): ,A ,;,⌘ (⇠)) = c(): ,A ,;,⌘ (⇠)) ⇥
@
⇤ (): ,A ,;,⌘ (⇠),⇠)

c(⇠)⇥`8 (=8)WA ,=8 ?: ,;X⌘,= 9+1 = c(⇠) `8 (=8)
_:

_;

` 9 (= 9 + 1)⇥` 9 (= 9+1)X⌘,= 9+1
_:

_;

?: ,;WA ,=8 .

– For departures, check that: c(⇠) ⇥ @(⇠,): ,A ,0 (⇠)) = c(): ,A ,0 (⇠)) ⇥
@
⇤ (): ,A ,0 (⇠),⇠)

c(⇠) ⇥ `8 (=8)WA ,=8@: = c(⇠)
`8 (=8)
_:

⇥ _:@:WA ,=8 .

8.15 (⇤) Consider an M/M/K/K Erlang loss system, where service rates of the
servers di�er, say server : has service rate `: . Use the policy of assign to

78 Product Form Queueing Networks

longest idle server (ALIS), so arriving customers go to the server which has
been idle for the longest time. Show that this system is insensitive [Adan and
Weiss (2012)].
Solution
We do not give the solution here. It is the main result of the paper Adan and
Weiss (2012)

8.16 (⇤) The following is a model for a Jackson network with positive as well as
negative customers. Nodes are 8 = 1, . . . , �, service rates `8 . Positive cus-
tomers arrive at rate U+

8
and are added to the queue at node 8. Negative cus-

tomers arrive at rate U�
8
, and on arrival they eliminate a customer from node

8 if not empty. On completion of service, positive customers move as positive
customers with routing probabilities ?+

8, 9
, and move as negative customers

with probabilities ?�
8, 9

, where on arrival at node 9 they eliminate a customer
if not empty, and depart at rate 38 = 1�Õ

9
(?+
8, 9

+ ?�
8, 9
). Arrivals, processing

and routings are independent and memoryless. The state of the system is
given by the queue lengths of positive customers, Q(C) = (=1, . . . , =�). Prove
that Q(C) has product form stationary distribution

Œ
8
d8 (1 � d8)=8 , where

d8 =
_
+
8

`8+_�8
< 1, where _+

8
, _

�
8
, 8 = 1, . . . , � solve the non-linear equations:

_
+
8
= U+

8
+

’
9

` 9 d 9 ?
+
9 ,8
,

_
�
8
= U�

8
+

’
9

` 9 d 9 ?
�
9 ,8
,

whenever these equations have a unique solution. Such systems are moti-
vated as modeling networks of neurons: a positive signal arriving at a neuron
increases its total signal count or potential by one; a negative signal reduces
it by one if the potential is positive. When its potential is positive, a neu-
ron“fires”, sending positive or negative signals at random intervals to other
neurons or to the outside. Positive signals represent excitatory signals and
negative signals represent inhibition [Gelenbe (1991)].
Solution
We do not give the solution here. It is the main result in the paper of Gelenbe
(1991).

9

Generalized Jackson Networks

Exercises
9.1 Prove by induction that the implicit conditions of the dynamics, the non-

negativity, and work conservation (9.1), (9.2), uniquely determine the queue
length process.
Solution
We note first that for any time C the number of arrivals and job completions is
finite. We therefore can use induction to prove that the equations determine
all the queue lengths up to time C. We proceed by induction on the events of
arrivals and job completions. Starting at time 0, the queue length is constant
Q(C) = Q(0) by (9.1), all the non-empty nodes are processing jobs so T (C)
for those nodes increases at rate 1, and idleness increases at empty nodes, by
(9.2). We are waiting for the first event at time C1, which can be an arrival or
a job completion. If an arrival occurs at noe 8, A8 (C) increases by one, and so
does Q8 (C) by (9.1). If a job completion occurs at node 8, S8 (T8 (C)) increases
by 1, and at the same time, we get a value for b8 (S8 (T8 (C)). As a result, a job
leaves so Q8 (C) decreases by 1, and if b8, 9 (S8 (T8 (C))) = 1, thenR8, 9 (S8 (T8 (C))
increases by 1, and Q 9 (C) increases by 1, all of this according to (9.1). We
now wait for the next event at time C2, where in (C1, C2) the evolution of T ,I
is governed by (9.2), and then at C2 the changes in A,S,R,Q are governed
by (9.1), and we proceed by induction up to time C. This proves that (9.1) and
(9.2) determine Q(C), C > 0.

9.2 Consider the Jackson network with the following data:

U =

2666666664

60
12.5

0
0
0

3777777775
, % =

2666666664

0 0.4 0.2 0.4 0
0 0 0.5 0 0.5
0 0 0 0 0.5
0 0.2 0 0 0.8

0.2 0 0 0 0

3777777775
, ` =

2666666664

62.5
30
50
30
75

3777777775
(a) Draw the network
(b) Classify the states into stable, overloaded and balanced and describe the

long term behavior.
(c) Find the steady state limiting distribution of the stable part of the network.

79

80 Generalized Jackson Networks

(d) Assume that initial limiting fluid, under fluid scaling

Q̄ (0) =

2666666664

62.5
30
50
30
75

3777777775
.

Calculate the fluid paths of the network.

Solution
(a)

1

4

3

2 5

(b) We use the algorithm developed in Exercise 9.4.
Iteration 1 We calculate the inflow rates to all nodes when the outflows from
all nodes are equal to the full processing rates:

a8 = `8 , _ = (75., 31., 40., 25., 64.), ` � _ = (�12.5,�1., 10., 5., 11.).

We conclude that nodes {3, 4, 5} are of type A, they are stable.
Iteration 2 we use equations (9.2) with * = {3, 4, 5}, and * = {1, 2}. We
obtain that if nodes in* are stable, and outflow from nodes in* are at rates
`8 , then the inflows are:

a1 = `1, a2 = `2, _ = (71., 30., 40., 25., 55.), `�_ = (�8.5, 0., 10., 5., 20.)

The set of nodes that must be stable has remained as after iterations 1. Hence

Type A: {3, 4, 5}, Type B: {2}, Type C: {1}

In the long run, node 1 will accumulate inventory at rate 8.5. Node 2 will be
transient. Nodes 3,4,5 will behave like a stable Jackson network. The tra�c
intensities of nodes 3,4,5 are:

d3 = 40/50 = 0.8, d4 = 25/30 = 0.833, d5 = 55/75 = 0.733.

(c) If input of customers is Poisson, and services exponential then

lim
C!1
P((Q3 (C),Q4 (C),Q5 (C)) = (=3, =4, =5) =

5÷
8=3

(1 � d8)d=1
8

Exercises 81

(d) The evolution is govem on the next table, at time points C = 5, 6, 6.2
bu�ers 3, 4, 5 empty, bu�er 2 reaches constant level 36 at time C � 6, and
bu�er 1 reaches level 140 at C = 6.2 and thereafter continues to fill up at rate
8.5. The following table shows levels G and rates of change in level E:

C0=0 C1=5 C2=6 C3=6.2
G h G h G h G h

1 62.5 12.5 125 12.5 137.5 12.5 140 8.5
2 30 1 35 1 36 0 36 0
3 50 -10 0 0 0 0 0 0
4 30 -5 5 -5 0 0 0 0
5 75 -11 20 -16 4 -20 0 0

9.3 Suppose that in the solution of the LCP (9.5), (9.6) the identities of the nodes
of type A (underloaded) are known, i.e. * = {8 : F8 > 0} is given. Derive
the solution of the LCP problem and the rate of inflow _ and outflows a for
the network.
Solution
Denote by %* ,+ the submatrix of % with rows * and columns + . Let the
complement of* be*. then:

_* = (� � %T
* ,*

)�1 (U + %T

* ,*

`
*
)

and a* = _* . Furthermore, a
*

= `
*

, and

_
*

= U
*
+ %T

* ,*

_* + %T

* ,*

`
*

Finally,

I* = 0, I
*

= _
*
� `

*
, F

*
= 0, F* = `* � _* .

It is now possible to identify nodes of type B by a8 = _8 and of type C by
_8 > a8 .

9.4 Prove that if you define _̃ = U + %T
`, then _̃8 > _8 , i.e. _̃ provides an upper

bound for the vector of inflows. Generalize this statement for subsets of nodes,
and use it to derive an algorithm to solve the LCP (9.5), (9.6) in at most �
iterations, each involving one matrix inversion.
Solution
Clearly, by a8  `8 , and non-negativity of %, U, `, a:

_̃ = U + %T
` � U + %T

a = _ (9.1)

This implies that all nodes* (1) = {8 : _̃8 < `8} must be of type A.
To generalize this, let * be a subset of the nodes. It is immediate to see that

82 Generalized Jackson Networks

if the spectral radius of % is < 1 so is the spectral radius of %* ,* . Then, by
non-negativity of (� � %T

* ,*
)�1,

_* = (� � %T
* ,*

)�1 (U* + %
* ,*

a
*
)  (� � %T

* ,*
)�1 (U* + %

* ,*
`
*
) (9.2)

From the previous exercise we have, assuming that 8 2 * have outflow rate
`8 , the inflow rates to all nodes are given by:

_* = (� � %T
* ,*

)�1 (U* + %T

* ,*

`
*
)

_
*

= U
*
+ %T

* ,*

_* + %T

* ,*

`
*

(9.3)

The iterative procedure will be:
· iteration 1: Let * (0) = ;, solve 9.3, for new values _ (1) . Set * (1) = {8 :
_
(1)
8

< `8}.
· iteration :: Solve 9.3 with * (: � 1), for new values _ (:) . Set * (:) = {8 :
_
(:)
8

< `8}.
· If* (:) = * (: �1), stop, you found the correct inflow rates _ = _ (:) . Else,

go to next iteration.

Proof if in step 1* (1) = {1, . . . , �}, the network is stable. If* (1) = * (0),
all nodes are of type B or C. In all other cases, we show by induction that
* (:) ◆ * (:�1). This is so trivially for step 1. Assume* (:�1) ◆ * (:�2),
if they are equal the algorithm will stop. Else assume* (: � 1) � * (: � 2).
Then by the above, _ (:)  _ (:�1) , and hence* (:) ◆ * (: � 1).
So the sets * (:) increase until they become maximal. At that point, _8 and
a8 = _8 ^ `8 , 8 = 1, . . . , � solve the generalized tra�c equations. ⇤

9.5 Consider a memoryless Jackson network Q(C), and let* = {8 : d8 = _8/`8 <
1} be its type A nodes. Define the network Q+(C) by:

U
+
8
=

⇢
U8 +

Õ
98* ` 9 ? 9 ,8 8 2 *

U8 8 8 *

?
+
8, 9

=
⇢

0 8 8 * and 9 2 *
?8, 9 otherwise

(i) Show that Q+
8
(C) �() Q8 (C)

(ii) Find the stationary distribution of the process Q+
*
(C), that includes only

the queues at the nodes in 8.
Solution
(i) We couple system Q(C) with system Q+(C), by letting the arrivals at rate
` 9 , 9 8 * in system + with job completions or dummy events at nodes 9 8 *.
It is then seen that nodes 8 2 * will receive more input in sytem +, so we
will have Q+

8
(C) � Q8 (C) , 8 2 *, and also D+

8
(C) � D8 (C) , 8 2 *, from which

we obtain that nodes 8 8 * will also receive more input in system +, so also
Q+
8
(C) � Q8 (C) , 8 8 *

(ii) In the system + the nodes 8 2 * are isolated from the nodes 8 8 *, as

Exercises 83

far as input, while output from the * sub-system goes partly to 8 8 * and
partly out. Thus it is a Jackson network with _8 , 8 2 * solving (9.5), (9.6)
with a8 = `8 , 8 8 *, a8 = _8 , 8 2 *, i.e. the _8 of the tra�c equations for Q.

9.6 Consider a memoryless Jackson network Q(C), and let* = {8 : d8 = _8/`8 <
1} be its type A nodes. Define the network Q�,n (C) by:

U
�,n
8

= U8
`
�,n
8

?
�,n
8, 9

= `8 ?8, 9

`
�,n
8
@
�,n
8

=
⇢
`8@8 8 2 *
`8@8 + _8 � `8 + n 8 8 *

where _8 is the inflow rate obtained from the tra�c equations for Q, and
@8 , @

�,n
8

are the fraction of completed jobs at node 8 that leave the system.
(i) Show that Q�,n

8
(C) () Q8 (C)

(ii) Show that Q�,n (C) is stable, and find its stationary distribution.
Solution
(i) We again couple Q(C) and Q�,n (C) by having the same coupled sequences
of arrivals, and job completions running all the time, with dummy comple-
tions when nodes are empty. Furthermore, when a job in system Q�,n (C) is
routed into a node 8 8 *, it leaves the system immediately with probability
(_8 � `8 + n)/_8 . Then in system Q�,n (C) there will be less items in nodes
8 8 *, and so altogether Q�,n (C)  Q(C).
(ii) Let _8 be the inflow rates in Q(C) (solving _ = U + %T (_ ^ `)). Consider
first the system Q� (C) = Q�,0 (C), with n = 0. In this system `

�
8
= `8 , 8 2 *

and `�
8
= _8 , 8 8 *, and ?�

8, 9
= ?8, 9 , 8 2 * while ?�

8, 9
= `8

_8
?8, 9 , 8 8 *. In the

Q� (C) system _ = U + %T
_, and nodes in * are type � the rest are type B.

For the systems Q�,n (C), the processing rates are higher, and all the routing
in and out of node in* as well as routing rates into nodes not in* are same
as for Q, the same _ will solve the tra�c equations, with `�,n > _8 for all
nodes, so the system Q�,n (C) is stable.

9.7 Use the results of the previous exercises to prove:

Theorem 9.1 (Goodman and Massey (1984)). In a Jackson network, for the
set of nodes* = {8 : d8 = _8/`8 < 1} (nodes of type A, stable nodes),

lim
C!1
P(Q8 (C) = =8 : 8 2 *) =

÷
82*

(1 � d8)d=8
8
,

by showing that &�,n (C), Q(C), Q+(C) can be coupled so that: &�,n (C) 
Q(C)  Q+(C).
Solution
All the systems Q(C),Q+(C),Q�,n (C) are Jackson networks. For the nodes in
*,

lim
C!1

Q�,n
*

(C)  lim
C!1

Q* (C)  lim
C!1

Q+
*
(C),

84 Generalized Jackson Networks

and with d8 = _8/`8 , 8 2 *,

lim
C!1

Q+
*
(C) =

÷
82*

(1 � d8)d=8
8
, lim

n&0
lim
C!1

Q+
*
(C) =

÷
82*

(1 � d8)d=8
8
,

and the theorem follows.
9.8 We have derived the di�usion limits for a stable GI/GI/1 queueing network,

where the queue length converges to '⌫" (C; \, _(22
0
+ 22

B
)), where \ =

lim
p
=(_= � `=) . For a queue with input consisting of the superposition of

several renewal processes, and with B servers, a similar result was derived by
Iglehart and Whitt (1970a,b). The proof requires quite a bit of technique, but
can you just write down what you think is the result ?
Solution
Assume that there are A renewal arrival streams, A8 (C), 8 = 1, . . . , A with
rates _8 and coe�cients of variations 28,0 and B processors, with processing
completions renewal processes, S 9 (C), 9 = 1, . . . , B with rates ` 9 and co-
e�cients of variations 2 9 ,B . All arrivals join single queue and services are
started in the order of arrivals. Assume a sequence oof such systems, indexed
by superscripts =, let _= =

Õ
A

8=1 _
=

8
and `= =

Õ
B

9=1 `
=

9
such that _=

8
! _8 ,

`
=

9
! ` 9 . Assume =1/2 (_= � `=) ! \ with �1 < 2 < 1.

Then the centralized queue length satisfies: Q= (C)/=1/2 converges to a re-
flected Brownian motion with drift \ and di�usion coe�cient

Õ
A

8=1 _82
2
8,0

+Õ
B

9=1 _;2
2
9 ,B

.
9.9 In Section 9.5 we derived the components of the variance covariance matrix

� when all the stations are heavily loaded. Generalize this for the case when
the nodes of the network are of type A, B, and C [Chen and Mandelbaum
(1991) or Chen and Mandelbaum (1994)].
Solution
See calculations in Chen and Mandelbaum (1991) or Chen and Mandelbaum
(1994).

9.10 Consider a tandem queueing network with two nodes. Construct an example
with deterministic arrivals and deterministic service times, for which d8 < 1
but the system never empties.
Solution
Arrivals are at times 0, 2, 4, . . ., service time at the both servers is 3/2.

server 1

server 2

9.11 Consider a parallel service system with two servers, in which arrivals are
assigned randomly to one of the servers, and leave at service completion.
Construct an example with deterministic arrivals and deterministic service
times, for which d8 < 1 but the system never empties.
Solution
Arrivals are at times 0, 1, 2, . . ., service time is 3/2, arrival assigned to server

Exercises 85

1 or server 2, each with probability 1/2. This system is stable, since arrivals
to each server are at rate 1/2, and service rate is 2/3, so d < 1 at each server.
Assume the system is not empty during (=, =+1), because a customer arrives
at time =, and goes to one of the servers, which may be busy or not busy,
but in any case with the new customer that server will be busy at least until
=+3/2, and at =+1 another customer arrives so the system will be non-empty
in (= + 1, = + 2).

Part IV

Fluid Models of Multi-Class Queueing
Networks

87

10

Multi-Class Queueing Networks, Instability
and Markov Representations

Exercises
10.1 Prove that the Lu-Kumar system, with U = 1 and deterministic arrivals and

service times, starting with G parts at time 0�, does not diverge under any
bu�er priority policy exept priority to bu�ers 2 and 4. Analyze the case that
priority is given to bu�ers 1 and 3 in detail.
Solution
There are 4=2x2 priority policies. We know that priority to 2 and 4 may blow
up. The following is a picture of how jobs are processed when priority is
given to bu�ers 1 and 3. The picture remains almost the same with priority
to 1 and 2. It is seen that eventually the initial workload of 3 is diminished,
and the system is stable.

Priority to buffers 1and 3,

1 2 3 4

10.2 The Lu-Kumar network has immediate feedback from class 2 to class 3 at
the same node. Show that a similar example can be constructed without
immediate feedback.
Solution
Adding a station serving bu�er 5 on the route between 2 and 3, will may still
be unstable under priority to 2 and 4.

1 2

34

5

10.3 Explain that the FIFO network of Bramson operates similarly to the Lu-
Kumar network under class 2,4 priorities.

89

90 Multi-class Queueing Networks

Solution
Starting from G customers in 1 and all others empty, they quickly move to 2.
all these customers have priority over bu�ers 3–5, since they arrived earlier.
When all are out of 2, they very quickly move through 3–5 snd into 6. Note
that at that time 1 is almost empty, since while 2 was processing all input from
1 went straight to 2. Now 6 has a very large quantity of arrivals that arrived
almost simultaneously, and further input to 1 has to wait as they arrived later,
so while 6 is working input to 2 is again blocked. So 2 and 6 form a virtual
machine also for this FIFO network.

10.4 Consider the Lu-Kumar network with Poisson input of rate 1, exponential
services with rates ` in bu�ers 2 and 4, and negligible processing time at
bu�er 1 and 3. Argue that under priority to bu�ers 2 and 4, it is stable for
` < 2 and blow up for ` > 2.
Solution
Assume at time 0� there are altogether G customers in bu�er 1. At time 0
they move to bu�er 2 which will work until empty. Time to get to this point
consists of the sum G independent busy periods of the M/M/1 queue. It can
be shown that the average number served in a busy period of an M/M/1
queue is (1 � d)�1 = `

`�1 . So when they move to bu�er 4, there will be .
customers, with E(.) = G`

`�1 . The duration of their service) has expectation:
E()) = G

`�1 , and the number of arrivals to bu�er 1 is then - with expectation
E(-) = G

`�1 . So now we compare: G with E(-):

E(-) = G

` � 1
Q G () ` R 2.

This shows that for ` < 2 the number in bu�er 1 after this cycle is larger than
at time 0�, so the queue blows up. It indicates that it is stable if ` > 2.
The complete proof of stability is: Starting from any state, one of the bu�ers
2, or 4 will empty first, and if it is bu�er 4, then at the end of work in bu�er 2
and 4 we will at time)0 be with G customers in bu�er 1 and all others empty.
We now look at the stopping times)= >)=�1 of this happening again and
use Foster multiplicative criterion to show stability.

10.5 Analyze the KSRS network with deterministic interarrivals and services,
under priority to bu�ers 2 and 4, when it satisfies all 3 conditions, and when
it violates the virtual machine condition.
Solution
Assume arrivals to bu�er 1 are at 1, 3, 5, . . . and to bu�er 3 at 2, 4, 6,
Procssing rates at bu�ers 1,3 are negligible and the are at rate ` in each
of the bu�ers 2,4. Assume the system starts at 0 with G in bu�er 1 and all
the others empty. We need ` > 1/2 so the two machines are stable. For the
virtual machine we need ` > 1.
For the example, bu�er 1 transfers to 2 and 2 will work for a time of length
G/(` � 1/2), at which time bu�er 3 will accumulate G/(2` � 1) which will

Exercises 91

transfer to bu�er 4 and bu�er 4 will the empty at G/(2(` � 1/2)2), and by
the time bu�er 4 will be empty, bu�er 1 will accumulate G/(2` � 1)2. So it
will be stable or unstable if:

⇢ (-) = G/(2` � 1)2 Q G () ` R 1

10.6 Propose a Markov process to describe MCQN under FCFS, that does not
require the ages of all the customers in the system.
Solution
It is enough in addition to the vector (&,*,+), to keep for each bu�er a
list of the classes of the items in the bu�er in their order of arrival. Then at
any event of a customer moving from bu�er 8 to bu�er 9 (including bu�er
0 for the outside world), the state of the two bu�ers 8, 9 is updated, by
deleting the leaving item from 8 (where he was first in the list) and adding
his class designation as last in the list of bu�er 9 . The next item to be
served at any bu�er is then the HOL item from the class that is first in the
list. Note that this list of classes for each bu�er is finite, the state space
of this additional information . is countable. Hence, for Poisson arrivals
and exponential service, the MCQN under FCFS has countable state space.
Unfortunately this does not make it any more tractable.

10.7 (⇤) To describe the dynamics of a single queue under SPT or SRPT, one
requires keeping track of the remaining processing times of all jobs. This
requires that the queue be described by a measure valued process. Describe
the dynamics of the single queue under SPT or SRPT.
Solution Down et al. (2009)
The state of the system is described by the measure valued process Z(C) =Õ
9A(C) Xh 9 (C) where A(C) is the number of initial and arrivals up to time C,

h 9 (C) is the remaining processing time of the 9 th arrival, and X
h 9 (C) is a point

measure of 1 at the remaining processing time of job 9 if positive, and is 0
if job h 9 (C) = 0 so job 9 has already departed. Denoting by j the function
j(C) = C, and by 1+ the function 1(C) = 1, C > 0, 1(0) = 0, and for function
5 and measure b let h 5 , bi be integral of 5 by measure b. Then:

Q(C) =
π

C

0+
13Z(G) = h1+,Zi,

W(C) =
π

C

0
G3 (Z(G) = hj,Zi,

D(C) = Z(0).

With this measure valued description we need to describe the dynamics: For
SRPT, all h 9 (C) except the shortest are unchanged, the shortest decreases at
rate 1. A job is preempted if a new shortest job arrives. At draws, lower 9 has
priority. For SPT there are no preemptions. The following figure describes
the measure valued process for SRPT:

92 Multi-class Queueing Networks

Point measure

Time

10.8 (⇤) Consider a single server queue. Denote by q(G) = 1/G, G > 0, q(0) = 0.
Define the attained service process [(C) =

Ø
C

0 q(Q(B))3B. It is the cumulative
amount of service per customer delivered by the server under PS policy.
Use it to express the measure valued process and the dynamics of the queue
[Gromoll et al. (2002); Gromoll (2004)].
Solution
With the measure valued process Z(C) as above the dynamics for PS are that
the value of

h 9 (C) =
�
h 9 � ([(C) � [(D 9)

�
_ 0

where D 9 is the arrival time of customer 9 , and h 9 is his processing time.
The following figure describes the measure valued process for PS:

Point measure

Time

10.9 Consider the M/G/1 queue, with state described by (=, G) where = is the
number of customers in the system, and G the age of the customer in service
(0 if empty). Show that {(0, G) : 0  G < ^} is a uniformly small set.
Solution
Let PC

=,G
(⌫) be the probability to go from state (=, G) at time 0 to set ⌫ at

time C. For given ^, define the measure b (⌫) = P)0,0 (⌫)4�_) , where) is any

Exercises 93

value > ^. Then for G < ^,

P)0,G (⌫) = P)0,G (⌫ | arrival in (0,)))P(arrival in (0,)))
+P)0,G (⌫ | no arrival in (0,)))P(no arrival in (0,)))

= P)0,G (⌫ | arrival in (0,)))P(arrival in (0,))) + P)0,0 (⌫)4�_)

� b (⌫).

10.10 Consider the GI/GI/1 queue, with state described by (=, G, H) where = is the
number of customers in the system, and G the age of the customer in service (0
if empty), and H the time since the last arrival. Assume that interarrival times
have infinite support. Show that {(0, G, H) : 0  G + H < ^} is a uniformly
small set.
Solution
The proof is the same, by replacing 4

�_) with P(interarrival >)). The
assumption of unbounded support cannot be relaxed if we want the result to
hold for any GI/GI/1 queue. Otherwise, if interarrival and service times are
deterministic the chain cannot be a Harris chain.

10.11 Show that if there is more than one input to a MCQN (or even a generalized
Jackson network), and interarrival times are integer, then the Markov process
describing the network cannot be ergodic.
Solution
Consider some stable MCQN, and let D1, D2 be the initial residual times
to arrival at station 1 and station 2. Assume at time 0 we have on paths
of scenario 1, D1 = 0, D2 = 1/c, an on the paths of scenario 2 we have
D1 = 0, D2 = 1/4. Then clearly, the states where the remaining times to
arrivals satisfy*1 (C) �*2 (C) 2 �, will occur in di�erent frequency of times
under scenario 1 and under scenario 2. So the process cannot be ergodic.

11

Stability of MCQN via Fluid Limits

Exercises
11.1 Derive the standard fluid model equations under the assumption that 1

=
*
=

:
(0) !

*̄: (0) > 0, and 1
=
+
=

:
(0) ! +̄ : (0) > 0, for : = 1, . . . , , as =! 1.

Solution
In vector form:

Q̄ (C) = Q̄ (0) + U
�
C � *̄ (0)

�+ � ' �
T̄ (C) � +̄ (0)

�+
Since exogenous input to : (excluding the first arrival that arrives at time
: (0)) only starts to accumulate after=

:
(0), and time devoted to processing

out of : (excluding time devoted to the first customer, which is equal to
+: (0)) only starts after +=

:
(0).

11.2 Explain the stochastic and the fluid model equations (11.5), (11.6) that are
added for static priority policies. Show that they determine the stochastic
queueing process, and verify that their fluid versions are satisfied by every
fluid limit.
Solution
For priority policy: we indeed require that while Q+

:
(C) > 0 all processing to

bu�ers that are not with priority equal to or exceeding : should be stopped,
and by work conservation there should be no idling, so C � T+

:
(C) cannot

increase. This explains (11.5).
We next show that the standard equations and the added (11.5) determine
Q(C). Evolution between events and the change in state at events are deter-
mined by the standard equations. So all that remains is the decision at arrivals
or job completions which job to start, and by HOL, which class to start. If at
node 8 class : has highest priority among customers present, then we cannot
start priority higher than : since empty, and not priority lower than : because
C � T+

:
(C) cannot grow by (11.5). Hence, by non-idling, HOL job of class :

will start.
To see (11.6) assume Q̄+

:
(C) > 0. By continuity of Q̄, Q̄+

:
(C) is positive for

some C1  C  C2, and so Q=
:

+(C) > 0 in =C1  C  =C2 for = > =0, and hence
C � T =

:
(C) is not increasing in =C1  C  =C2 for = > =0, and so C � T̄ +

:
(C) is

94

Exercises 95

not increasing in C1  C  C2. It follows that (11.6) is satisfied by every fluid
limit.

11.3 Write down the stochastic system equations for class and station immediate
workload, and the resulting standard fluid model equations for them.
Solution
The amount of work for class : at time C consists of residual service of
customer in service plus the work for all other customers in that class. Let
+: (C) be the residual service of job currently in service (or 0 if empty).

W: (C) = +: (C) +
S: (T: (C))+Q: (C)’
✓=S: (T: (C))+2

h: (✓).

Assume for simplicity 1
=
+
=

:
(0) ! 0 as =! 1. We have

1
=

W=

:
(=C) = 1

=

+
=

:
(=C) + 1

=

S=: (T=: (=C))+Q: (=C)’
✓=S=: (T=: (=C))+2

h: (✓)

The first summand converges to 0 by Lemma 11.5. The second summand can
be written as a di�erence between two sums starting at 1. Now:

1
=

S=: (T=: (=C))+1’
✓=1

h: (✓) =
S=
:
(T =

:
(=C)) + 1

=

1
S=
:
(T =

:
(=C)) + 1

S=: (T=: (=C))+1’
✓=1

h: (✓)

! `: T̄ : (C)<: = T̄ : (C), u.o.c. in C, a.s.

by the fact that T̄ : (C) < C, time change, and FSLLN. For the second sum:

1
=

S=: (T=: (=C))+Q=: (=C)’
✓=1

h: (✓) =
⇣S=

:
(T =

:
(=C))

=

+
Q=
:
(=C)
=

⌘

1
S=
:
(T =

:
(=C)) + Q=

:
(=C)

S=: (T=: (=C))+Q=: (=C)’
✓=1

h: (✓)

!
�
`: T̄ : (C) + Q̄: (C)

�
<: = T̄ : (C) + <: Q̄: (C)

�
u.o.c. in C, a.s.

So:
1
=

W=

:
(=C) ! W̄: (C) = <: Q̄: (C) u.o.c. in C, a.s.

The immediate workload for station 8 is defined as the sum of W: (C). It is
the time to finish the current operation on each of the jobs currently in any of
the bu�ers of the station. Arrivals after C from other stations are not included,
and also jobs that complete at station 8 are not readmitted for further visits to
station 8 after C.
Another way to calculate it is to look at what entered exogenously, A: (C),

96 Stability of MCQN via Fluid Limits

and what enters from other stations,
Õ
;<: R;,: (S; (T; (C))). Denote E: (C) =

Q: (0) + A: (C) +
Õ
;<: R;,: (S; (T; (C))), Then

W8 (C) =
’
:2⇠8

E: (C)’
✓=1

h: (✓) �
’
:2⇠8

T: (C).

Which counts all the work for bu�er : of all the jobs that entered before C,
added up over the stations, and subtract the total time that the station worked
before C.
For the fluid limit we again write:

1
=

W=

8
(=C) =

’
:2⇠8

266664
1
=

E=8 (=C)’
✓=1

h: (✓) �
1
=

T =

:
(=C)

377775
=

’
:2⇠8

266664
E=
8
(=C)
=

1
E=
8
(=C)

E=8 (=C)’
✓=1

h: (✓) �
1
=

T =

:
(=C)

377775
!

’
:2⇠8

<:

"
Q̄: (0) + U: C +

’
;<:

%;,:`; T̄ ; (C) � `: T̄ : (C)
#

=
’
:2⇠8

<: Q̄: (C), u.o.c. in C, a.s.

11.4 Explain the stochastic and the fluid model equations (11.7) – (11.9) that are
added for FCFS policies. Show that they determine the stochastic workload
and queueing processes, and verify that their fluid versions are satisfied by
every FCFS fluid limit.
Solution
The immediate workload is exactly all that at time C needs to be processed in
machine 8 before any job that arrived, from outside or from any other bu�er
after time C can be started. Under FCFS, this is exactly what will happen at
time C: from time C to time C +W8 (C), station 8 will not be empty and wiil be
working without idling (work conderving), and it will only be working on
jobs that arrived before C by FCFS, until C +W8 (C), at which time all the jobs
that arrived to machine 8 before C will be exhausted. So all arrivals prior to C
will form the departures up to time C +W8 (C).
This is again an implicit equation, but when considered event by event, it
exactly provides the unique sample path of the policy. In particular, when
a job joins the queue in bu�er : at time C, his start of processing time is
determined exactly as C +W8 (C).
We have already verified equation (11.9), that W̄: (C) = <: Q̄: (C), the re-
maining fluid equations follow immediately.

11.5 Prove Lemma 11.5.

Exercises 97

Solution

Proof of Lemma 11.5 (Bramson (2008), Lemma 4.13) We haveh8 � 0 i.i.d.
with E(h8) = < < 1. We wish to show that

1
=

max{h1, . . . , h=} ! 0 a.s. ,
1
=

E (max{h1, . . . , h=}) ! 0

Consider the random walk S(C) = Õ bC c
8=1 h8 . By FSLLN, 1

=
S(=C) ! <C a.s.

uniformly for C 2 [0, 1]. For n > 0, we have for = large enough:

1
=

max
C1=8C2=

h8 
1
=

bC2=c’
8= bC1=c

h8  (C2 � C1 + n)<,

holds uniformly for all 0  C1 < C2  1. Set C2 � C1 = n . We get:

max{h1, . . . , h=} = sup
C 2 [0,1]

max
C=8 (C+n)=

E8  2n<=,

and we have shown that: 1
=

max{h1, . . . , h=} ! 0 a.s. .
Clearly, byE(1

=
((=C)) = <C, 1

=
((=C) are uniformly integrable, and so 1

=
max{h1, . . . , h=}

are uniformly integrable, and therefore also:
1
=
E (max{h1, . . . , h=}) ! 0. ⇤

remark The condition h8 � 0 is not necessary: One can do the proof
separately for h+

8
and for h�

8
.

11.6 Prove Theorem 11.12
Solution

Proof of Theorem 11.12 (Bramson (2008), Proposition 5.21) We assume:
For any fluid limit with Q̄ (0) = 0 exists X such that Q̄ (X) < 0. Need to show:
for any fixed Q(0) = G and l 2 G, limC!1

& (C)
C

> 0.

Assume to contrary: for l 2 G, limC!1
& (C ,l)
C

= 0. Then for all 0= ! 1,
& (0= ,l)

0=
! 0, and also for any fixed X, & (0= X,l)

0=
! 0. By existence of

fluid limits, we have subsequence 0A ! 1 such that & (0A C ,l)
0A

! Q̄ (C). This

fluid limit must have Q̄ (0) = 0, since we had a single path, with fixed initial
condition. By assumption, ther exist X for this fluid limit for which Q̄ (X) < 0.
But then: lim0A!1

& (0A X,l)
0A

< 0, a contradiction. This proves (a)
To prove (b): We assume d8 > 1 for some station. We argue now for any fluid
limit that:

⇠'
�1 �

Q̄ (C) � Q̄ (0)
�
= ⇠'�1 �

UC � (� � %T)D̄ (C)
�
= 1C � ⇠T̄ (C).

But ⇠T̄ (C)  C componentwise, and therefore there exists 2 > 0 so that for
every fluid limit with Q̄ (0) = 0, |Q̄ (C) | � 2C. The same argument as for (a)
then leads to lim infC!1 |Q(C) |/C � 2. ⇤

98 Stability of MCQN via Fluid Limits

11.7 Prove Lemma 11.13
Solution

Proof of Lemma11.13 Assume at some regular C, 5 (C) = 0 but §
5 (C) < 0. If

§
5 (C) = 2 > 0, then for some small n and X, 5 (C�X)

X
< �2+n < 0, contradicting

5 � 0. The case 2 < 0 is similar.
Next, assume if 5 (C) > 0 then §

5 (C)  ^. Assume 5 (0) > 0, and assume
that 5 (B) > 0 for all B 2 [0, C]. By absolute continuity we have 5 (C) =
5 (0) +

Ø
C

0
§
5 (B)3B  5 (0) � ^C. So C  5 (0)/^, and so 5 (C) will reach 0 by

time 5 (0)/^.
Assume when 5 (C) > 0, §

5 (C)  0. We wish to show that if 5 (C0) = 0
then 5 (C) = 0 for all C > C0. We have: 5 (C) = 5 (C0) +

Ø
C

C0

§
5 (B)3B = 0 since

for B 2 [C0, C], if 5 (B) > 0, §
5 (B)  0, and if 5 (B) = 0, then as we saw,

§
5 (B) = 0. ⇤

11.8 Show that in a stable Jackson network, Q̄ (C) need not be a decreasing function
in all coordinates while C < C0.
Solution
Consider a two station tandem queue, with U = 2, `1 = 4, `2 = 3 and
initial fluid Q̄1 (0) = Q̄2 (0) = 5. The fluid in the two bu�ers is plotted in the
following figure:

1

2

11.9 Show that a feed forward MCQN is stable under any work conserving HOL
policy.
Solution
Order the stations 1, . . . , � so that customers never go from : 2 ⇠8 to ; 2 ⇠ 9
if 8 > 9 . The stability follows immediately, since the fluid model will empty
stations 1 in finite time (by Theorem 11.15 for the single station). Following
that, station 2, if not empty yet, will empty in finite time, and so on.

11.10 Prove that a re-entant line with d < 1 is stable under LBFS.
Solution
We take arrival rate 1, and consider 5 (C) = |Q̄ (C) |, and its derivative §

5 (C)
at regular points. First, because |Q̄ (C) | = |Q̄ (0) | + C � ` T̄ (C), we have

Exercises 99

§
5 (C) = 1 � 3 (C). Let :0 be the last non-empty fluid bu�er at time C, so by
(b) 3: (C) = . . . = 3 (C). We have that §̄T+

:
(C) = 1. On the other hand we

have §̄T+
:
(C) = Õ

;2�: <:3: (C) = 3 (C)
Õ
;2�: <: , so 3 (C) = 1/Õ

;2�: <: .
Let _ = 1/max18�

Õ
:2⇠8 <: = max8 d8 . Then, by the above, and the

assumption that d8 < 1 we have 3 (C) � _ > 1. Hence the system will be
empty at or before the time |Q̄ (0) |/(_ � 1).

11.11 Consider a fluid re-entrant line with input rate 1, and initial bu�er contents
Q1 (0) = 1 and all the other bu�ers empty. Show that this fluid re-entrant line
under FBFS policy will be empty by time

C =
 ’
:=1

<:

Œ
:�1
;=1

⇣
1 � Õ

92�;\; < 9

⌘
Œ
:

;=1

⇣
1 � Õ

92�; < 9

⌘

Solution (Dai and Weiss (1996)),
As we saw, under FBFS bu�ers will empty 1, 2, . . . so that bu�er : is empty
at time C: and stays empty thereafter. Since we started with all bu�ers except
1 empty, fluid will move from 1 to 2, then 2 will empty into 3, etc. We now
calculate recursively: from |Q(C:�1) | which is the content of bu�er : , we
obtain C: � C:�1, and then |Q(C:) |. Initially, |Q(0) | = 1, and C1 = <1

1�<1
, so

|Q(C1) | = (1 + C1) = 1
1�<1

.
At time C:�1, all the fluid will be in bu�er : , the quantity being |Q(C:�1) |.
The outflow rate from bu�er : will be 3: =

1�Õ
92�: \: < 9
<:

> 1 so §Q: =
�(3: � 1) < 0, and:

C: � C:�1 =
|Q(C:�1) |
3: � 1

= |Q(C:�1) |
<:

1 � Õ
92�: < 9

and:

|Q(C:) | = |Q(C:�1) | + C: � C:�1 = |Q(C:�1) |
✓
1 + <:

1 � Õ
92�: < 9

◆

= |Q(C:�1) |
1 � Õ

92�:\: < 9

1 � Õ
92�: < 9

We have:

C: � C:�1 = |Q(C:�1) |
<:

1 � Õ
92�: < 9

,

|Q(C:) | = |Q(C:�1) |
1 � Õ

92�:\: < 9

1 � Õ
92�: < 9

From which:

|Q(C:) | =
:÷
✓=1

1 � Õ
92�✓\✓ < 9

1 � Õ
92�✓ < 9

100 Stability of MCQN via Fluid Limits

and

C =
 ’
:=1

<:

Œ
:�1
✓=1 (1 � Õ

92�✓\✓ < 9)Œ
:

✓=1 (1 � Õ
92�✓ < 9)

Note: starting from any Q(0) with |&(0) | = 1, the time to empty under FBFS
will be not more than the above value of C .

11.12 Find a lower bound to the time needed to empty a fluid re-entrant line, and
suggest a policy that will achieve this time.
Solution
Let @: be the total fluid in bu�er : , let U be the inflow rate, <: processing
time for unit fluid at bu�er : , and ⇠8 the constituency of station 8. Dfine
@
+
:
=

Õ
:

9=1 @ 9 . Then the emptying time) must satisfy:

) >

’
:2⇠8

(@+
:
+)U)<: , 8 = 1, . . . , � .

Define

C8 =

Õ
:2⇠8 @

+
:

1 � UÕ
:2⇠8 <:

The the minimum time to empty is

)
⇤ = min(C1, . . . , C8).

It can be acieved if we use the processing rates for each of the bu�ers as

3
⇤
:
=
@
+
:
+ U)⇤

)
⇤ =

@
+
:

)
⇤ + U.

Note that inflow to : is 3⇤
:�1, so the rate of change at the level in each bu�er

is @:/)⇤. This means that we reduce all the levels at each of the bu�ers by a
constant rate until all the bu�ers are empty at the same time.

11.13 For the following two examples of fluid re-entrant lines, draw the fluid levels
for FBFS, LBFS, and minimum time to empty, and compare time to empty,
and inventory:
(i) ⇠1 = {1, 2}, ⇠2 = {3}, U = 0, < = (1, 0.5, 1), Q(0) = (1, 1, 0).
(ii) ⇠1 = {1, 3}, ⇠2 = {2}, U = 0, < = (1, 2, 0.5), Q(0) = (1, 0, 1).
Solution

Exercises 101

(a)

FBFS

LBFS

MinTime

1

2
3

1

2 3

3

1

2 2

(b)

FBFS

LBFS

MinTime

1 2

3

1 2

3

1

3

11.14 Consider a fluid MCQN with d < 1. Calculate a bound on the minimum
time to empty the network, and devise a policy that will achieve that lower
bound (use processor splitting, predictive policy). Use this to suggest a policy
that will be stable for any MCQN with d < 1.
Solution
The amount of work needed at stations 8 = 1, 2, . . . , � to empty the fluid
system by time T is given by F1, . . . ,F8 as follows:

(F8)8=1,...,� = ⇠ diag(<) (� � %T)�1 (Q(0) + U)) := " (Q(0) + U)).

We can now solve for individual nodes:

C8 =
⇣
"Q(0)

⌘
8

+
⇣
"U

⌘
8

C8 ,

to get:

C8 =

⇣
"Q(0)

⌘
8

1 �
⇣
"U

⌘
8

,

and we then have the lower bound on emptying time:

)
⇤ = max(C1, . . . , C�).

The amount of work at bu�er : if we empty all by time)⇤ is then:

(h:):=1,..., = diag(<) (� � %T)�1 (Q(0) + U)⇤) := '�1 (Q(0) + U)⇤),

and so a fluid policy for emptying in minimum time is to allocate a fraction
D
⇤
:

of the processing time of node 8 to bu�er : , where

D
⇤
:
=
h:

)
⇤ =

⇣
'
�1Q(0)

⌘
:

)
⇤ +

⇣
'
�1
U

⌘
:

.

102 Stability of MCQN via Fluid Limits

This will again empty the quantities in each bu�er gradually at a constant
rate, until all bu�er are empty at)⇤.
These allocated rates, using processor splitting will approximate minimum
time for a discrete stochastic system, when the system is large i.e. has many
customers in the systems, and high arrival and processing rates.
A non-splitting non-preemptive version will be to choose next to process a
job from bu�er : for which T: (C) � h:

)
⇤ C is maximal.

11.15 Consider a single station fluid re-entrant line with d < 1. Show that the total
amount of fluid in the network is minimized pathwise under LBFS policy,
and is maximized pathwise under FBFS policy.
Solution
Note first that the total time to empty is independent of the policy, as long as
it is non-idling, say it is) .
With LBFS, we wish to show that the maximal amount leaves the system up
to any time 0 < C <) . Clearly, if we do not work on bu�ers 1, . . . , : � 1
we can empty bu�ers : , . . . , faster than if we do also work on bu�ers
1, . . . , : � 1. So if we work only on bu�ers : , . . . , until they are empty
at time C: , we cannot do better in terms of total fluid leaving the system by
time C: . This shows that we should empty first, then � 1 etc., so LBFS
maximizes outflow and minimizes the quantity in the system pathwise. The
rates of outflow are: 1

<
for 0 < C < @ < = C , followed by 1

< �1+<
for C < C < C + @ �1 (< �1 + <) = C , and so on, so if bu�ers , �
1, . . . , : +1 are empty at time C:+1 this is followed by outflow at maximal rate
1/(<:+· · ·+<) for the time period C:+1 < C < C:+1+@: (<:+· · ·+<) = C: .
By the time that bu�ers 2, . . . , are empty, we still need to empty bu�er 1
which will take an additional time) � C2, to empty the quantity @1 + U) , at
rate 1/(<1 + · · · ,< .
With FBFS no outflow occurs at all until bu�ers 1, . . . , � 1 are empty, so
this is least possible outflow for the longest possible duration. After that all
the fluid in the system is emptied at rate 1/< . Because of non-idling we
cannot retain more in the system during that last period.

11.16 For a MCQN with several types of customers following deterministic routes,
devise static priority policies analog to FBFS and to LBFS, and prove their
stability. This could be termed a path priority policy
Solution
We can concatenate all the bu�ers to form a single sequence in which we
always keep bu�ers of the same route in their original order. Using FBFS or
LBFS will then empty bu�ers in a given order, and the only di�erence from
a re-entrant line is that by the time we reach a bu�er to start working on it,
it may have accumulated some input, and while we work on a bu�er it may
also still have exogenous inflow. if all d8 < 1, the proofs of stability for this
new system remain valid.

11.17 Consider a two station three classes fluid re-entrant line, where ⇠1 =

Exercises 103

{1, 3}, ⇠2 = {2}, and assume that U = 1, <1 + <3 < 1, <2 < 1. Show
it is stable under all work conserving HOL policies [Dai and Weiss (1996)].
Solution
We use piecewise linear Lyapunov functions as in Lemma 11.22. LetW8 (C) =Õ
:2⇠8 Q: (C) be the immediate workload of node 8, and Q+

:
(C) = Õ

:

;=1 Q; (C)
be the total current workload at bu�er : in the re-entrant line. Let \ = <1

<1+<3
.

Define:

⌧1 (C) = \Q+
1 (C) + (1 � \)Q+

3 (C),
⌧2 (C) = Q+

2 (C)

On W1 (C) = 0, ⌧1 (C) = (1 � \)Q2 (C) < &2 (C) = ⌧2 (C), and on W1 (C) = 0,
⌧2 (C) = Q1 (C)  Q1 (C) + (1 � \)Q3 (C) = ⌧1 (C), which is condition (ii) of
Lemma 11.22.
Next we considerW1 (C) > 0. Recall that in a re-entrant line Q+

:
(C) = Q+

:
(0) +

C � `:T: (C). Hence:

⌧1 (C) = ⌧1 (0)+C�\`1T1 (C)�(1�\)`3T3 (C) = ⌧1 (0)+C�(T1 (C)+T3 (C))/d1.

But when W1 (C) > 0 we have (§T1 (C) + §T3 (C)) = 1, so §
⌧1 (C) = 1 � 1

d1
< 0.

Similarly, if W2 (C) > 0 then §
⌧2 (C) = 1 � 1

d2
< 0, so condition (i) of Lemma

11.22 holds.
Take n = min((1

d1
� 1), (1

d2
� 1)), then by Lemma 11.22, ⌧ (C) = 0 for

C > ⌧ (0)/n , and so the fluid model of the re-entrant line is stable.
11.18 Write down the fluid model equations for the Lu Kumar network, under the

static priority policy of priority to bu�ers 2 and 4. Identify the properties of
all the fluid solutions of these equations.
Solution
The fluid model equations are (with `0 = U, T̄ 0 (C) = C):

Q̄: (C) = Q̄: (C) + `:�1T̄ :�1 (C) � `: T̄ : (C),

Ī8 (C) = C �
’
:2⇠8

T̄ : (C),
π

C

0

⇣ ’
:2⇠8

Q̄: (C)
⌘
3Ī8 (C) = 0,

π
C

0
Q̄2 (B)3

�
B � T̄ 2 (B)

�
= 0,

π
C

0
Q̄4 (B)3

�
B � T̄ 4 (B)

�
= 0.

We now consider three situations:
(i) both Q̄2 (C) > 0, Q̄4 (C) > 0: Then:

§̄Q1 (C) = U, §̄Q2 (C) = �`2,
§̄Q3 (C) = `2,

§̄Q4 (C) = �`4,

§̄I1 (C) = §̄I2 (C) = 0, §̄
⇡ (C) = `4.

104 Stability of MCQN via Fluid Limits

(ii) Q̄4 (C) = 0, Q̄1 (C) > 0, : Then:

§̄Q1 (C) = U � `1,
§̄Q2 (C) = `1 � `2,

§̄Q3 (C) = `2,

§̄I1 (C) = §̄I2 (C) = 0, §̄
⇡ (C) = 0.

(iii) Q̄4 (C) = 0, Q̄1 (C) = 0, : Then:

§̄Q1 (C) = 0, §̄Q2 (C) = U � `2,
§̄Q3 (C) = `2,

§̄I1 (C) = 1 � U/`1,
§̄I2 (C) = 0, §̄

⇡ (C) = 0.

(iv) Q̄2 (C) = 0, Q̄3 (C) > 0: Then:

§̄Q1 (C) = U, §̄Q3 (C) = �`3,
§̄Q4 (C) = `3 � `4,

§̄I1 (C) = §̄I2 (C) = 0, §̄
⇡ (C) = `4.

(v) Q̄2 (C) = 0, Q̄3 (C) = 0: Then:

§̄Q1 (C) = U, §̄Q4 (C) = �`4,

§̄I1 (C) = 0, §̄I2 (C) = 1, §̄
⇡ (C) = `4.

11.19 For the Lu-Kumar network with input rate U and initial fluid G in bu�er 1,
show that when d8 < 1 and <1 +<2 > 1/U then <2 > <1, <4 > <3, so that
Figure 11.3 is correct. With B0 = 0, calculate the values of C1, C2, C3, B1 and
Q̄ (C1), Q̄ (C2), Q̄ (C3)Q̄ (B1).
Solution

(1) <1 + <4 < 1/U
(2) <2 + <3 < 1/U
(3) <2 + <4 > 1/U

Subtract (1) from (3) to get <2 � <1 > 0, and subtract (2) from (3) to get
<4 �<3 > 0, so while machine 1 is emptying bu�er 1 into bu�er 2, bu�er 2
is filling up at rate 1/<1 � 1/<2, and while bu�er 3 is emptying into bu�er
4, bu�er 4 is filling up at rate 1/<3 � 1/<4.
We use `8 = 1/<8 . Bu�er 1 is filling at rate U, and emptying at rate `1 and
is empty at C1. So G + UC1 = `1C1 and C1 = G

`1�U .
At time C1, bu�er 1 is empty and all the fluid quantity G + UC1 = `1C1 is in
bu�ers 2 and 3. Bu�er 3 has been filling up at rate `2, while bu�er 2 has
been filling at rate `1 � `2. So, bu�er 2 contains C1 (`2 � `1) and bu�er 3
contains C1`2. we have:

C1 =
G

`1 � U
, Q̄ (C1) =

⇣
0,

(`1 � `2)G
`1 � U

`2G

`1 � U
, 0

⌘
.

At time C2, bu�ers 1 and 2 are empty, and all the initial fluid and the fluid that

Exercises 105

came in over 0, C2 is in bu�er 3. Station 2 is working all that time on bu�er
2, and the equation is G + UC2 = C2`2. All the fluid is now in bu�er 3, so:

C2 =
G

`2 � U
, Q̄ (C2) =

⇣
0, 0,

`2G

`2 � U
, 0

⌘
.

During (C2, C3) Bu�er 3 is emptying at rate `3 with no further input, while
bu�er 4 has inflow at rate `3 and outflow at rate `4, so that it is filling at rate
`3 � `4. Also, bu�er 1 is filling up during all that time at rate U. So:

C3 � C2 =
`2G

`2 � U
1
`3

, Q̄ (C3) =
⇣
`2G

`2 � U
U

`3
, 0, 0,

`2G

`2 � U
`3 � `4

`3

⌘
.

Next, during the entire interval (C2, B1) station 1 is working all the time on
bu�er 4, which is empty at the end, so (B1 � C2)`4 = `2G

`2�U . Also during this
whole period bu�er 1 is filling up, and we have:

B1 � C2 =
`2G

`2 � U
1
`4

, Q̄ (B1) =
⇣
`2G

`2 � U
U

`4
, 0, 0, 0

⌘
.

Reverting to <8 = 1/`8 ,

B1 =
G

`2 � U
+ `2G

`2 � U
1
`4

=
(`4 + `2)G
(`2 � U)`4

=
(<2 + <4)G

1 � U<2
,

Q̄1 (B1) =
<4

1/U � <2
G > G.

Substituting G = 1, U = 1 we verify the values in the text:

B1 = B0 +
<2 + <4

1 � <2
, Q̄ (B1) =

⇣
<4

1 � <2
, 0, 0, 0

⌘
.

We also calculate the time for the backward interpolation to reach 0:

C
⇤ =

C
⇤

1
=

B1 � B0
Q̄1 (B1) � Q̄1 (B0)

=
<2 + <4

1 � <2

.⇣
<4

1 � <2
� 1

⌘
=

<2 + <4

<2 + <4 � 1

11.20 Plot a fluid solution for the Lu-Kumar network when d8 < 1 and <1 +<2 <

1/U, for some initial fluid in bu�er 1, and priority to bu�ers 2 and 4.
Solution

106 Stability of MCQN via Fluid Limits

11.21 For the Lu-Kumar network, verify that the function ⌧ satisfies properties
(i) and (ii) necessary for the piecewise linear Lyapunov function to prove
stability, and that the linear program (11.14) is feasible with n > 0, if <1 +
<4 < 1, <2 + <3 < 1, <2 + <4 < 1 [Dai and Weiss (1996)].
Solution
We see that W1 = 0 implies ⌧1  ⌧2 and that W2 = 0 implies ⌧2  ⌧1 if
\2  \1.
For W1 (C) > 0, §T 1 (C) + §T 4 (C) = 1, and we get if <1  \1  1 � <4 then:

§
⌧1 (C) = 1 � \1`1 §T 1 (C) � (1 � \1)`4 §T 4 (C)

= (1 � \1`1) §T 1 (C) + (1 � (1 � \1)`4) §T 4 (C)
 �min

⇣
\1`1 � 1), ((1 � \4)`4 � 1)

⌘
< 0.

Similarly, for W2 (C) > 0, §T 2 (C) + §T 3 (C) = 1, and if we choose <2  \1 
1 � <3,

§
⌧1 (C)  �min

⇣
\2`2 � 1), ((1 � \3)`3 � 1)

⌘
< 0.

Clearly, any solution of the LP (11.14) will satisfy all the requirements for
⌧ = max(⌧1,⌧2).
Finally, if the conditions <1 + <4 < 1, <2 + <3 < 1, <2 + <4 < 1 hold then

X1 = (1 � <1 � <4)/2, X2 = (1 � <2 � <3)/2, X3 = (1 � <2 � <4)/3,
\1 = 1 � <4 � min(X1, X3), \2 = <2 + min(X2, X3),

n = min(X1, X2, X3).

is a feasible solution as required.
11.22 Consider a KSRS network with input rates U1, U2 and mean service times

<1,<2,<3,<4. Show that the conditions:
U1<1 + U2<4 < 1, U1<2 + U2<3 < 1, U1<4 + U2<2 < 1,

define a global stability region for the network [Botvich and Zamyatin
(1992)].
Solution
Since we are dealing with fluids, we can change the units of flow for each
of the items, and get Ũ1 = 1, Ũ2 = 1, ˜̀1 = `1/U1 etc., so W.L.G. we can
assume both arrival rates equal 1. Furthermore, the fluid model of the KSRS
with arrival rates 1 is equivalent to the fluid model for the Lu-Kumar network
with input rate 1.
Formally, without the rescaling, we can use ⌧ (C) = max(⌧1 (C),⌧2 (C)):

⌧1 (C) = \1
Q+

1 (C)
U1

+ (1 � \1)
Q+

4 (C)
U2

,

⌧2 (C) = \2
Q+

2 (C)
U1

+ (1 � \2)
Q+

3 (C)
U2

.

Exercises 107

and the verification is similar to the proof for the Lu-Kumar network.
11.23 Consider the example of the re-entrant line that is unstable under FCFS, of

Section 10.2.2. Plot an unstable fluid solution for it.
Solution
The figure below is the fluid picture.

2

1

6

1

3 4 5

43

3

Start with Q̄1 (C) = 1 the rest empty, and this is fluid. Let (1 be the time that
bu�er 1 empties for the first time. Let (2 be the time that all fluid present in
machine 2 at time (1 has been served. Let similarly (3, (4, . . . be the times
(; when all the fluid present in machine 2 at time (;�1 has been served. By
FCFS machine 2 is working on the fluid present at (;�1 only, up to (; , Note
that in the interval ((;�1, (;) no item is served twice in machine 2. What
happens is that items in bu�er 9 = 2, 3, 4, move to bu�er 9 + 1, while bu�er
1 continues to feed bu�er 2.
Let 2�1 ⇡ 0.9 < 1 be processing rates at bu�ers 2,6 and X�1 = 0.001 small
be processing rates at bu�ers 1,3,4,5. The intervals ((;�1, (;) are of length
2
; . At time (9 , fluid in machine 2 is as follows (for convenience we now take
X
�1 = 0 in the calculations, but these are approximately also the values for
X
�1 = 0.001):

Q̄2 ((1) = 1, Q̄3 ((1) = Q̄4 ((1) = Q̄5 ((1) = 0

Q̄2 ((2) = 2, Q̄3 ((1) = 1, Q̄4 ((1) = Q̄5 ((1) = 0

Q̄2 ((3) = 22
, Q̄3 ((1) = 2, Q̄4 ((1) = 1, Q̄5 ((1) = 0

Q̄2 ((4) = 23
, Q̄3 ((1) = 22

, Q̄4 ((1) = 2, Q̄5 ((1) = 1

108 Stability of MCQN via Fluid Limits

In all that time, machine 1 is empty. Next:

Q̄2 ((5) < 24
, Q̄3 ((1) = 23

, Q̄4 ((1) = 22
, Q̄5 ((1) = 2

Then at time (5 we have: Q̄6 ((5) = 1, and since still Q̄1 ((5) ⇡ 0, input to
bu�er 2 will almost stop, and machine 1 will now work on bu�er 6 exclusively.
Ashort time later, bu�er 6 will contain ⇡ 1 + 2 + 22 + 23. and by the time it
empties, bu�er 1 will contain more fluid than 1.

11.24 (⇤) HLPPS policy Under head of the line proportional processor sharing
policy, each station is splitting its service capacity between classes in pro-
portion to the number of customers present, and is then serving the head of
the line of each class. Show that a fluid MCQN with d < 1 is stable under
HLPPS [Bramson (1996, 2008)].
Solution
The proof for this theorem is quite involved and requires studying one of the
papers [Bramson (1996, 2008)].

11.25 (⇤) Early due date policy Consider the policy in which each customer
receives a due date upon arrival, and the policy is to give priority to the
customer with the earliest due date (EDD). Show that MCQN under EDD
policy is stable [Bramson (2001, 2008)].
Solution
The proof for this theorem is quite involved and requires studying one of the
papers [Bramson (2001, 2008)].

11.26 (⇤) Kelly-type networks under FCFS: Consider a Kelly-type network as in
Section 8.9, with general renewal arrivals and general processing times of
rate `8 at node 8. Show that with d8 < 1 it is stable under FCFS [Bramson
(1996, 2008)].
Solution
The proof for this theorem is quite involved and requires studying one of the
papers [Bramson (1996, 2008)].

12

Processing Networks and Maximum Pressure
Policies

Exercises
12.1 Show that there is always a feasible extreme allocation, i.e. if � < ;, then

⌅(C) is not empty at any C.
Solution
We need to satisfy:’

9

�8, 9 = 1, for every input source 8,

’
9

�8, 9  1, for every internal processor 8,

Since � is not empty, the first set of constraint is feasible, its solutions are a
convex set, with feasible extreme points, and because bu�er 0 is never empty
those allocations to input activities are available. For the other activities
idling is always available, and the combination of the extreme allocations to
the input activities and idling for the other activities is an extreme allocation.

12.2 Show that ⌅(C) defined as the extreme points of the available allocations
�(C), are also extreme points of all allocations, �, i.e.⌅(C) ✓ ⌅.
Solution
Assume 0 2 ⌅(C). Assume it is not an extreme point of �, then it can
be written as a convex combination of extreme points 0 (:) 2 �. But all
0 coordinates of 0 will be 0 in each of 0 (:) . It follows that 0 (:) 2 �(C)
contradicting the extremality of 0 in �(C).

12.3 Formulate and verify the analog of Theorems 11.10, 11.12 for processing
networks.
Solution

Theorem. If the fluid limit model of a processing network under some fixed
policy is weakly stable, then the processing network is rate stable, in the
sense that starting with any fixed Q(0), one has limC!1 Q(C)/C = 0.

The proof is exactly the same as the proof for Theorem 11>10

Theorem. (a) If the fluid limit model of a processing network under some

109

110 Processing Networks and Maximum Pressure Policies

fixed policy is unstable, then for any initial fixed state Q(0) = G and every
l 2 G, lim infC!1 Q(C)/C > 0.
(b) If d > 1 in the solution of the LP (12.7) then every fluid limit is unstable,
and the fluid limit model is unstable, and the processing network is unstable in
the stronger sense that there exists positive 2 such that lim infC!1 |Q(C) |/C �
2.

Proof The proof of (a) is just as for Exercise 11.6.
The proof of (b) needs to be modified from the proof of Exercise 11.6:
Recall that §T 9 (C) needs to satisfy all the constraints on G 9 , for every activity
9 . If d > 1 then there must be at least one service processor 8 for whichÕ
92J �8, 9G 9 � d > 0 for every feasible solutions.

We assume d8 > 1 for some station. We argue now for any fluid limit that:

⇠'
�1 �

Q̄ (C) � Q̄ (0)
�
= ⇠'�1 �

UC � (� � %T)D̄ (C)
�
= 1C � ⇠T̄ (C).

But ⇠T̄ (C)  C componentwise, and therefore there exists 2 > 0 so that for
every fluid limit with Q̄ (0) = 0, |Q̄ (C) | � 2C. The same argument as for (a)
then leads to lim infC!1 |Q(C) |/C � 2. ⇤

12.4 Show that the following processing network (taken from Dai and Lin (2005))
with the following data has d < 1, and is stable under some allocation policy,
but it is unstable under maximum pressure policy, because it does not satisfy
EAA assumptions.

In this network circles are processors, open boxes are bu�ers, lines represent
activities. Activities 1–5 are input activities each with its own input processor.
Processor 6 is a service processor with activities 6,7,8. Activity 6 processes
an item from each bu�er, activity 7 (activity 8) processes an item from bu�ers
1,2 (bu�ers 4,5). Each processed item leaves the system. Activity durations
are deterministic:

h1 (✓) = h2 (✓) = h3 (✓) = 2, ✓ � 1, h4 (1) = h5 (1) = 1, h4 (✓) = h5 (✓) = 2, ✓ � 2,

h6 (✓) = h7 (✓) = h8 (✓) = 1, ✓ � 1, `8 =
⇢

0.5, 8 = 1, . . . , 5,
1, 8 = 6, 7, 8.

Exercises 111

Solution
It is easily checked that an optimal solution to the LP (12.7) has d < 1,
G6 = 1/2, and indeed, using only activity 6, starting processing at 1, 3, 5, . . .
will be a stable policy. The only extreme allocations for activities 6,7,8 are:
0

1 = (1, 0, 0), 02 = (0, 1, 0), 03 = (0, 0, 1), 04 = (0, 0, 0). Starting with
Q(0) = 0, only 04 is feasible. at time 1 Q4 (1) = Q5 (1) = 1 while the other
bu�ers are empty, so only 03

, 0
4 are feasible, and 03 is the max pressure

policy, then at time 2 02 is max pressure, and so on. Allocation 01 is never
max pressure, so activity 6 is never used, and Q3 (C) ⇠ C/2 ! 1. This can
also be shown for parametrized maximum pressure.
We now show that for this processing network EAA fails: Take Q(C) =
(0, 0, 1, 0, 0). Then the unique maximum pressure allocation is 01, i.e. use
activity 6. But this activity requires items from all the bu�ers so it is not
available for Q(C).

12.5 Show that in a MCQN, the following conditions are equivalent:
- There exists G � 0 such that 'G > 0 in all components.
- The routing matrix % has spectral radius < 1.
Solution
Recall for MCQN, ' = (� � %T)©≠

´
�

`

�

™Æ
¨
.

(i) If % has spectral radius < 1 then (� � %) is invertible and (� � %)�1 =
� + % + %2 + · · · � 0, and furthermore, G = '�11 has all components > 0, and
'G = 1 > 0.
(ii) Assume for some G � 0, (� � %)G > 0 in all coordinates. This implies
actually that G > 0 in all coordinates. Then we have: (� � %)G > 0, so
G8 > (%G)8 , so (%G)8/G8 < 1 all 8. By the “Min-max” Collatz-Wielandt
formula, define 6(G) = max8{(%G)8/G8}, then: minH>0 6(H) = A where A is
the spectral radius. So we have: 1 > 6(G) � minH>0 6(H) = A .

12.6 Show that the set of {0, 1} allocations is composed only of extreme points of
�, i.e. � ✓ ⌅.
Solution
Recall the definition of an extreme point of convex set: it cannot be on an
interior point of an interval contained in the set, i.e. it is not of the form
UD + (1 � U)h for D, h, in the set, with D < h and 0 < U < 1.
Clearly, if 1 = UG + (1 � U)H, G < H, then one of G or H is > 1. Similarly, if
0 = UG+ (1�U)H, G < H, then one of G or H is < 0. Hence, if 0 2 � is a {0, 1}
allocation then for any vectors G < H such that 0 = UG + (1 � U)H, either G
has some > 1 or < 0 components, or H has some > 1 or < 0 components, so
either G or H is not in �. Hence 0 is an extreme point of �.

12.7 Show that the following processing network (taken from Dai and Lin (2005))
with the following data has d < 1, and is stable under maximum pressure
policy which allows processor splitting and preemptions, but is not stable
under non-splitting allocations.

112 Processing Networks and Maximum Pressure Policies

In this network circles are processors, open boxes are bu�ers, lines represent
activities. Activities 1–3 are input activities each with its own input processor.
Activities 4,5,6 are service activities, each uses two processors, in order to
process one item out of bu�ers 1,2,3. The input activities have processing
rates `1 = `2 = `3 = 0.4, the service activities have processing rates
`4 = `5 = `6 = 1.
Solution
For the processing part of the network the input output matrix and the resource
consumption matrices are:

' =
266664

1 0 0
0 1 0
0 0 1

377775
� =

266664
1 0 1
1 1 0
0 1 1

377775
d = 0.8, G = (0.4, 0.4, 0.4) solves LP 12.7, and the system is strictly Leontief,
so maximum pressure allowing splitting is rate stable.
The extreme allocations are:

(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1/2, 1/2, 1/2).

The system is stable under (1/2, 1/2, 1/2). However, under any non-splitting
allocation only one activity can be performed at any time, so the maximum
total departure rate is at most 1, while the input rate is 1.2, so the system
cannot be stable without processor splitting.

12.8 A processing network is reverse Leontief if every activity is using only
a single processor. Show that for reverse Leontief networks, all extreme
allocations are integer, i.e. processors are not split, with each allocation
0 9 2 {0, 1}, 9 = 1, . . . , �.
Solution
In a network that is reverse Leontief, all the columns of the resource con-
sumption matrix are unit columns. The columns that correspond to slacks in
the allocation constraints (for serivce activities) are also unit columns. Ex-
treme points correspond to basic solutions of the constraints, but the columns

Exercises 113

of every basis form a unit matrix, so their inverse is a unit matrix and the al-
location then consists of 0’s and 1’s (including the slacks). So each allocation
is integer.

12.9 Consider the following processing network (taken from Dai and Lin (2005))
with the following data:

1

1

1 3

2

2

2

In this network input processors are not included, circles are service pro-
cessors, open boxes are bu�ers, lines represent activities. Arrivals to bu�er
1 occur at times 0.5 + 2=, = = 1, 2, . . ., Arrivals to bu�er 2 occur at times
1 + 1.5=, = = 1, 2, Activity 1 uses processor 1 and serves bu�er 1, with
<1 = 1. Activity 2 uses processor 2 and serves bu�er 2, with<2 = 2. Activity
3 uses both processors, and serves bu�er 2, with<3 = 1. All processing times
are deterministic, and the system is empty at time 0.
Solve the static planning problem for this network to calculate d < 1, explain
why EAA holds. Show that using processor splitting non-preemptive maxi-
mum pressure policy the system diverges. Describe how the system operates
under preemptive processor splitting policy.
Solution
The static planning problem is:

min d

B.C. G1 = 1
2

1
2G2 +G3 = 2

3 ,

G1 +G3  d,

G2 +G3  d,

G8 � 0.

Solution, rate stable: d = 11
12 , G1 = 1

2 , G2 = 1
2 , G3 = 5

12 , with both processors
tight at this d.
The network is strictly Leontief, since every activity processes a single bu�er.
Hence, maximum pressure policy with preemption and processor splitting is
rate stable.
We now track the performance of maximum pressure policy that allows
processor splitting but does not allow preemptions. The following figure
shows the processing at the two bu�ers. We see the at times that jobs arrive
to bu�er 1, bu�er 1 is empty, and activity 2 is serving bu�er 2, so the
maximum pressure policy is allocation (1, 1, 0) and activity 1 is used to

114 Processing Networks and Maximum Pressure Policies

serivce bu�er 1 in the intervals (1/2+ 2=, 3/2+ 2=). Bu�er 2 is never empty,
and when activity 2 completes a service at time 1 + 2=, activity 3 is never
available since activity 1 is active, and so again the non-preemptive allocation
is (1, 1, 0). Clearly, bu�er 2 is accumulating jobs at rate 2/3 � 1/2, and the
system is unstable.

12.10 Consider the following network (taken from Dai and Lin (2005)). It is
modeled as a processing network with 3 service bu�ers, each with its own
processor and service activity, and with four input processors, one of which
has two input activities, which provide discretionary routing to bu�ers 1 or
2. All input processors have exponential service times (Poisson inputs) with

the rates indicated in the figure. Processing for the service activities are rate
1, the processing times of servers 2, 3, are exponential, while processing time
of bu�er 1 is generally distributed. Explain or show the following properties:
(i) Under HOL policy, and join the shortest queue for the discretionary
routing, the system is unstable if bu�er 1 processing times are exponential,
but it is stable if it is hyper-exponential with large enough variability.
(ii) It is stable under round Robin policy that directs a fraction of 90% of the
discretionary input to bu�er 1, but if the input rates are changed slightly, we
will need to change the fraction routed to bu�er 1.
(iii) Formulate the static planning problem and show that d < 1. Find how
maximum pressure is implemented here and check that it is stable whenever
d < 1.
Solution
(i) If processing at bu�er 1 is exponential, bu�ers 1 and 2 are homogenous,

Exercises 115

and so input from join the shortest queue is divided equally between the two
bu�ers, so the input rate to bu�er 3 is 0.8 + 0.05 + 0.17 = 1.02 > 1 so bu�er
3 will diverge. If bu�er 1 processing is hyper-exponential, the variability of
processing times is greater, so the queue length at bu�er 1 tends to be longer
than at bu�er 2, and a larger fraction of join the shortest queue customers
are directed to bu�er 2, and the input rate to bu�er 3 decreases. This leads to
stability.
(ii) With round robin routing as described this is close to a generalized
Jackson network (the inputs to bu�ers 1 and 2 are not independent, but we
can calculate their correlations). With the given rates it is stable.
(iii) This network viewed as a processing network has 4 input processors,
and the processor with the discretionary input processor has two activities,
corresponding to routing to bu�er 1 or 2. This is a unitary network: each
activity uses a single processor, and serves a single bu�er. Hence, maximum
pressure policy is rate stable, irrespective of processing time distributions,
for any input rates as long as d < 1 in the LP 12.7. Maximum pressure policy
works as follows: Bu�ers 2 and 3 use HOL non-idling service. Routing input
activities choose at any time to route to the shorter of the queues at bu�ers
1 and 2. Finally, at bu�er 1, bu�er 1 idles when Q3 (C) > Q1 (C). With this
policy, the queue at bu�er 3 is controlled and does not diverge, and the queue
at bu�er 1 grows when bu�er 3 gets more congested, which diverts input to
the shorter queue at bu�er 2.

12.11 Model the input queued switch as a processing network, and show that the
maximum weight policy is in fact maximum pressure for this processing
network.
Solution
There is one input bu�er 0, and one service bu�er : = (8, 9) for each pair
of input output ports. There is one input processor and one input activity for
each of the service bu�ers i.e. for each of the Q8 9 input queues. An activation
of input activity : = (8, 9) introduces a number of packets into bu�er (8, 9) in
a single time slot, where inputs are a stationary ergodic sequence, with mean
_8, 9 . Service processors are the input ports 8 and the output ports 9 . There
is one service activity for each service bu�er : = (8, 9), and it is using two
processors, the input processor 8 and the output processor 9 . Each activation
of service activity : = (8, 9) lasts one time slot, and removes one packet from
bu�er (8, 9) if Q8, 9 > 0.
Clearly for all input processors and activities, they work at all times, at rates
_8 9 . For service activity (8, 9) on bu�er (8, 9), each application takes one time
unit, and therefore has rate 1, and item from bu�er (8, 9) immediately leaves
the system, so the elements of the input-output matrix ' are '(8, 9) , (8, 9) = 1,
and ' is in fact an #2⇥#2 identity matrix, and so QT

' = Q, and the pressure
for allocation c is QT

'c =
Õ
8, 9
c8, 9Q8, 9 (A) = 5c (A).

116 Processing Networks and Maximum Pressure Policies

12.12 Show that the conditions (12.14) are exactly the conditions that the static
planning problem (12.7) has solution d  1.
Solution
Let H8, 9 denote the unknown allocations to input activity (8, 9), and G8, 9

denote the unknown allocations to service activity (8, 9). The #2 ⇥2#2 input
output matrix is of the form ' = [�⇤; �] with ⇤ the diagonal matrix of _8, 9
elements. The resource constrains for the input processors result in H8, 9 = 1

and the constraint '

H

G

�
= 0 results in G8, 9 = _8, 9 , so the constraints of the

input processors 8 = 1, . . . , # , and on the output processors 9 = 1, . . . , # are
then: ’

8

_8, 9  d,

’
9

_8, 9  d.

and so d  1 if and only if (12.14) hold.
12.13 Show that for the processing network modeling the input queued switch,

⌅ = �.
Solution
The set � consists of all the doubly sub-stochastic matrices, and all the
constraints of � are tight exactly for doubly stochastic matrices. The fol-
lowing is the basic theorem about doubly stochastic matrices: Every doubly
stochastic matrix is a convex combination of permutation matrices, i.e. the
extreme points are exactly permutation matrices. The maximization of the
pressure is always an assignment problem, and assignment problems have
{0, 1} solutions, in fact the optimum is alway a permutation.

12.14 (⇤) Discuss solution of the pressure maximization as an assignment problem,
using the Hungarian method, and using the transportation simplex algorithm,
and examine their online implementation using e�cient use of previous slot
solution for next slot solution.
Solution
(i) Hungarian method:
We wish to find at each time slot the assignment c that will maximize 5c (A) =
hc,Q(A)i =

Õ
8, 9
c8, 9Q8, 9 (A). The Hungarian method actually minimizes

assignment costs, so one should use 08,A = @max � &8, 9 with @max the value
of the longest queue. One then uses the Hungarian method to obtain the
cheapest assignment for the costs 08, 9 .
Use the linkhttps://en.wikipedia.org/wiki/Hungarian_algorithm
for a tutorial on the Hungarian method.
Once you obtain the best assignment at time slot C � 1, what you have
is a matrix with a single zero in each row and in each column, which is
the best assignment for time slot C � 1, and all other entries are residual
costs, 0̃8,A . To go to time slot C, let XQ8,A = �8,A (C) � c8, 9 (C � 1), where
�8,A (C) are the new arrivals. Let 18,A = @max � XQ8,A where now @max =

https://en.wikipedia.org/wiki/Hungarian_algorithm

Exercises 117

max{XQ8,A } � min{XQ8,A }. Now re-solve the assignment problem using the
Hungarian method on 08,A = 0̃8,A + 18,A .
(ii) Transportation problem. Use the optimal solution of the transportation
problem for time slot C � 1, and then modify the vector of costs by adding
XQ8,A (C) to the current costs.

12.15 Show that for a network of switches, the conditions (12.17) are exactly the
conditions that the static planning problem (12.7) is feasible with d  1.
Solution
The conditions 'G = 0 of (12.7) are simply that G (2, ;1, ;2) = U2 . The
conditions �input = 1 are satisfied automatically since input processor for 2
have single activity that is active all the time and produces inflow at rate U2 .
The constraints �service  d  1 for every the processing at every switch,
as given by (12.17) are exactly the same as for (12.14) summarized over the
flows 2 that go through the switch, which are exactly (12.7).

12.16 Prove proposition12.17.
Solution
We model the system as a processing network. We saw in the previous
exercise that if (12.17) holds the than the the static planning problem (12.7)
is feasible with d < 1. The processing network is strictly Leontief, so EAA
assumption holds. Further more, the extreme allocations are all integer, and
decisions are at slotted time points so preemptions are not an issue. Hence
the system is rate stable under any non-splitting, non-preemptive maximum
pressure policy.

12.17 Prove proposition 12.18.
Solution
In the description of the system as a processing network there is a single infi-
nite input bu�er, an input processor and corresponding input activity to pro-
vide input of packets of type 2 at rate U2 . Type 2 has route steps B = 1, . . . , (2
that go through switches 81, . . . , 8B , . . . , 8(2 , and classes/bu�ers/queues are
labeled (2, 8B , ✓1, ✓2), where ✓1, ✓2 are the input and output ports of switch 8B
that the route of 2 uses on step B. Recall that each node is only visited at most
once by the route of type 2. There is a single service activity labeled also by
(2, 8B , ✓1, ✓2) for each class/bu�er/queue, and it is using two service proces-
sors: input port (8B , ✓1, ·) and output port (8B , ·, ✓2). Each activation of activity
(2, 8B .✓1, ✓2) moves 1 item out of (2, 8B , ✓1, ✓2) and into (2, 8B+1, ✓1, ✓2). So the
input output matrix for the service bu�ers and activities has 1 in the main
diagonal positions, and �1 in the diagonal below the main diagonal for each
of the steps of the route of type 2. It follows that for activity 9 = (2, 8B , ✓1, ✓2),
the element of &T

' is:

(&T (C)')(2,8B ,✓1 ,✓2) = Q(2,8B ,✓1 ,✓2) (C) � Q(2,8B+1 ,✓1 ,✓2) (C),

The set of extreme allocations includes for each switch a permutation match-
ing of input and output switches, where for each match of input and output

118 Processing Networks and Maximum Pressure Policies

switches ✓1, ✓2 one can choose which of the types 2 that goes through that
pair of switches to use. Denote:

�8 (2, ;1, ;2) =
⇢

1 if flow 2 uses pair (;1, ;2) of one of the switches,
0 otherwise.

and let

/8,✓1 ,✓2 = max
n
Q(2,8B ,✓1 ,✓2) (C) � Q(2,8B+1 ,✓1 ,✓2) (C)

���2 : �8 (2, ;1, ;2) = 1
o
.

Then the pressure is maximized by choosing at switch 8 the permutation that
maximizes the sum of these /8,✓1 ,✓2 .

13

Processing networks with Infinite Virtual
Queues

Exercises
13.1 For the two node network with IVQ’s of Section 13.2.1, what are the marginal

stationary distributions of each of the standard queues.
Solution
Each of the processors is working all the time, and each node provides
continuous input, at rate `8 (1 � ?8) to the other node. Processing of the
standard queue at node 8 is at rate `8 whenever it is not empty, since the
standard queue has preemptive priority, and customers of the standard queue
that complete processing leave the queue. So standard queue 1 operates like
an M/M/1 queue with arrival rate `2 (1 � ?2), and processing rate `1, and
with d1 = `2 (1�?2)

`1
, it has stationary distribution P(Q1 = :) = (1 � d1)d:1 .

Condition for stability is d1 < 1. Queue 2 is similar.
13.2 (⇤) For the two node network with IVQ’s of Section 13.2.1, derive the

two dimensional stationary distribution, using the compensation method of
section 15.1 [Adan and Weiss (2005)].
Solution
For the complete derivation see Adan and Weiss (2005).

13.3 The following is a generalization of the two node IVQ network of Section
13.2.1. Consider a Jackson network, with nodes 8 2 I, with exogenous input
rates U8 , service rates `8 , and routing probabilities ?8 9 . Assume that the nodes
are partitioned into standard nodes I0, and IVQ nodes I1. each node 8 2 I1
has in addition to the queue of items received from outside or from other
nodes, also an infinite supply of work. At the IVQ nodes there is preemptive
priority to customers that arrive from outside or from other nodes. However
when the queue of such customers is empty, the IVQ node serves customers
from its infinite bu�er [Weiss (2005)].
(a) Find the flow rates, and conditions for stability for this system.
(b) Show that queue lengths at the standard nodes have a product form joint
stationary distribution.
(c) Find the stationary marginal distribution of the queue lengths at the IVQ
nodes, and show that they have Poisson input and output.
Solution

119

120 Processing networks with Infinite Virtual Queues

(a) The tra�c equations are:

_ = U + %a

where _ is the inflow rates, and a is the outflow rates, and a8 = _8 , 8 2 �0,
while a8 = `8 , 8 2 �1. The solution of these equations provides us with the
inflow and outflow rates from the standard queues, and the inflow rates for
the IVQs. The condition for stability is that _8 < `8 , 8 2 �.
(b) The main feature here is that nodes 8 2 �1 work all the time and produce
an outflow which is Poisson rate `8 independent of all else. So the set of
nodes 9 2 �0 act like a jackson network, where the exogenous input to node
9 is Poisson with rate U 9 +

Õ
82�1 `8 ?8, 9 . So, once we obtain _ 9 , 9 2 �0 and

calculate d 9 =
_ 9

<D 9
the stationary distribution of this part of the network is:

c(= 9 : 9 2 �0) =
÷
: 92�0

(1 � d 9)d= 9
9
.

(c) The outflow form each of the nodes 9 2 �1 is Poisson rate ` 9 . The inflow
to node 9 2 �1 consists of Poisson flows at rates `8 ?8, 9 for 8 2 �1, which
are independent of the rest of the system, and from the flows that exit the
Jackson part of the system. But output from a Jackson network consists of
independent Poisson processes, of rates _8 (1�

Õ
:2�0 ?8,:), for 8 2 �0, and so

the input to node 9 2 �1 from node 8 2 �0 is a Poisson process, independent
of all other inputs to node 9 , and of rate _8 ?8, 9 . Altogether, by the tra�c
equations, input to each node 8 2 �1 is Poisson rate _8 and the outflow is
Poisson rate `8 .
Remark The joint distribution of the standard queue at the IVQ nodes is
more complex, as the two node example of Section 13.2.1 shows.

13.4 For the 3 bu�er re-entrant line with IVQ of Section 13.2.2, write down
the balance equations for the random walk describing the queue length of
the standard queues, and derive the stationary distribution of (Q2 (C),Q3 (C))
[Adan and Weiss (2006)].
Solution
The balance equations are:

(`2 + `3)%(=2, =3) = `3%(<2, =3 + 1) + `2%(=2 + 1, =3 � 1), =2, =3 > 0,

(`1 + `2)%(=2, 0) = `3%(=2, 1) + `1%(=2 � 1, 0), =2 > 0,

`3%(0, =3) = `3%(0, =3 + 1) + `2%(1, =3 � 1)), =3 > 0,

`1%(0, 0) = `3%(0, 1).

We use trial solution %(=1, =2) = ⇠U
=2
3 U

=3
3 and obtain from the first two

equations:

(`2 + `3)U3 = `3U
2
3 + `2U3,

(`1 + `2)U2 = `3U3 + `1.

Exercises 121

We then have from the second equation

U2 =
`1

`1 + `2 � `3U3
,

and substituting into the first we obtain a cubic equation for U3. One root is
U3 = `2

`3
, with two other real roots, one smaller and one larger. The smallest

root is:

U3 =
`1 + `2 + `3 �

p
(`1 + `2 + `3)2 � 4`1`3

2`3

and substituting back,

U2 =
`1

`2

`1 + `2 + `3 �
p
(`1 + `2 + `3)2 � 4`1`3

2`3

It can now be checked that to satisfy also the third and fourth balance equa-
tions, the stationary distribution is given by (??). For the details see Adan
and Weiss (2006).

13.5 Obtain the stationary distribution for the push pull system of Section 13.2.3,
with exponential processing times, in the inherently stable case under pull
priority [Kopzon et al. (2009)].
Solution
Under pull priority this system is stable and its sample path alternates between
M/M/1 busy periods of the top stream, with arrival rate _1 and processing
rate `1, and busy periods of the bottom stream, with arrival rate _2 and
processing rate `2. When it reaches state (0, 0) it will start a top busy period
with probability _1/(_1 + _2), and a busy period of the bottom stream with
probability _2/(_1 + _2). The balance equations are birth and death type
equations. The stationary distribution is:

c(=2, 0) = c(0, 0)
✓
_1

`1

◆
=2

, =2 > 0, c(0, =4) = c(0, 0)
✓
_2

`2

◆
=2

, =4 > 0,

c(0, 0) = (`1 � _1) (`2 � _2)
`1`2 � _1_2

.

13.6 Show the equivalence of the two definitions of the policy for the inherently
unstable push pull system of Section 13.2.3 [Kopzon et al. (2009)].
Solution
Consider the second definition of the policy: Use full utilization, when =2 <

B2 do not serve Q2, when =1 < B1 do not serve Q4, and in all other cases
give priority to pull over push. Then: if =1 < B1, =2 < B2 we do not serve
either standard queue, so for full utilization we push at both IVQs. When
=2 = 0, =1 � B1, we need to push at at Q1 because Q4 is empty, and we
do not serve Q2 since 0 = =2 < B2, so we also push at Q3. Similarly, when
=1 = 0, =2 � B2, we push at both streams. When 0 < =1 < B1, we do not serve

122 Processing networks with Infinite Virtual Queues

Q4, so by full utilization we push at Q1, but in machine 2 we give priority
to Q2 so we both push and pull at stream 1. Similarly, when 0 < =2 < B2,
we push and pull at stream 2. Finally, when =1 � B1, =2 � B2 we are allowed
to pull at both streams, and since pull has priority, we pull at both streams.
These are exactly the actions under the first definition of the policy.

13.7 Obtain the stationary distribution for the push pull system with exponential
processing times in the inherently unstable case, under the policy described
in Section 13.2.3 [Kopzon et al. (2009)].
Solution
L et <, = denote the queue lengths of Q2,Q4 respectively. Consider < � B1,
and the states (<, 0), (<, 1), . . . , (<, =), with = < B1. For this subset of states
we get a balance:

_2%(<, =) + _1%(<, 0) = `2%(<, = + 1) + _1%(< � 1, 0).

and we then have a recursion:

%(<, =) =
✓
_2

`2

◆
=

%(<, 0) � _1

_2 � `2

✓✓
_2

`2

◆
=

� 1
◆
(%(< � 1, 0) � %(<, 0)).

We use this first to get expressions for %(B1, =). We use %(B1�1, 0) = 0 to
express %(B1, =) in terms of %(B1, 0), and then express %(B1, 0) in terms of
%(B1, B2). The result is:

%(B1, =) = %(B1, B2)

⇣
_2
`2

⌘
=

+ _1
_2�`2

⇣⇣
_2
`2

⌘
=

� 1
⌘

⇣
_2
`2

⌘
B2

+ _1
_2�`2

⇣⇣
_2
`2

⌘
B2

� 1
⌘ , 0  =  B2.

Next, observing transitions between &2 (C) = < � 1 and &2 (C) = <, we get
the balance:

_1%(< � 1, 0) = `1%(<, B2), < > B1,

and following several substitution steps we finally get:

%(B1, =) = %(B1, B2)

h
_1
`1

+ _1
_2�`2

⇣⇣
_2
`2

⌘
B2

� 1
⌘i
<�B1�1

h⇣
_2
`2

⌘
B2

+ _1
_2�`2

⇣⇣
_2
`2

⌘
B2

� 1
⌘i
<�B1+1

⇥


_1

_2 � `2

✓✓
_2

`2

◆
B2

� _1

`1

◆
+ _1

`1

_1 + _2 � `1 � `2

_2 � `2

✓
_2

`2

◆
=
�
,

< > B1, 0  =  B2

The same derivation leads to analogous expressions for %(<, =) when = �
B2, 0  <  B1. Finally, %(B1, B2) is calculated as the normalizing value.
Further details can be seen in Kopzon et al. (2009).

13.8 Consider the push pull system in Section 13.2.3, with symmetric rates, i.e.
_1 = _2 = _, `1 = `2 = `, with exponential processing times in the inherently

Exercises 123

unstable case of_ > `, under the following policy: While |Q1 (C)�Q2 (C) | > 1,
serve the shorter queue, using both push and pull for this queue. When the
queues di�er by no more than 1, use pull on both queues. Show that this
policy is stable, and obtain its stationary distribution [Kopzon et al. (2009)].
Solution
Theorem The stationary distribution for the Markovian symmetric push-pull
system is given for Q2 (C) = < � = = Q4 (C) by:

%(<, 0) = %(0, 0)
<�1÷
9=0

_

`
+ _

_�`

⇣⇣
_

`

⌘
9

� 1
⌘

⇣
_

`

⌘
9

+ _

_�`

⇣⇣
_

`

⌘
9

� 1
⌘ , < > 0,

%(<, =) = %(<, 0)
_

_�`

⇣
_

`

⌘
<�1

+ 2
⇣
_

`

⌘
=+1

� _

`

_

_�`

_

`
+ _

_�`

⇣⇣
_

`

⌘
<�1

� 1
⌘ , < > = > 0,

%(<,<) = %(<, 0) _
`

.

The transition rates for the diagonal policy are given in the following figure,
which also shows contours around which we obtain balance equations.

λ

λλ λ λ λ

λ

λ

λ

µ

µ

λ

µ

λ

µ

λ

µ

µ

µ µ

µ µ

µ

µ µ

µ µ

µ µ

λ µ λ µ λ µ

λ µ

λ µ

λ µ

n

m

From transitions in and out of the region Q2 (C),Q4 (C)  <�1 (square region
in figure), we get, using symmetry,

_%(< � 1, 0) = `%(<,< � 1)

The recursion reached in Exercise 13.7 is still valid here for < > 1 and
0  = < <, and we use it together with the above balance, for (<,< � 1) to

124 Processing networks with Infinite Virtual Queues

get the recursion

%(<, 0) = %(< � 1, 0)
_

`
+ _

_�`

⇣⇣
_

`

⌘
<�1

� 1
⌘

⇣
_

`

⌘
<�1

+ _

_�`

⇣⇣
_

`

⌘
<�1

� 1
⌘ , < > 0.

From which the expression for %(<, 0) is obtained.
The expression for %(<, =), < > = > 0 is obtained from the full recursion
of Exercise 13.7:

%(<, =) =
✓
_

`

◆
=

%(<, 0) � _

_ � `

✓✓
_

`

◆
=

� 1
◆
(%(< � 1, 0) � %(<, 0)).

by substituting the expressions that we got for %(<, 0), %(< � 1, 0).
Finally, the expression for %(<,<) follows from the balance across the large
domain in the figure.

13.9 Compare the performance of the two policies, of exercises 13.7, 13.8 [Kopzon
et al. (2009)].
Solution
We consider the symmetric system, with _ > `. The fixed threshold policy
with B1 = B2 = B will be stable whenever B � 2.
The fixed threshold policy has the following features:
- One of the queues is always longer than B.
- The decay rate of the probabilities %(<, =), < > B, =  B is seen from
exercise 13.7 to be asymptotically at rate:

'1 =

_

`
+ _

_�`

⇣⇣
_

`

⌘
B

� 1
⌘

⇣
_

`

⌘
B

+ _

_�`

⇣⇣
_

`

⌘
B

� 1
⌘ < 1

which improves as B increases.
- The behavior of the sample path is erratic: we alternate between busy
periods in which one queue is longer then the other (states in the corridor
0  Q4  2, Q2 � B and the symmetric corridor).
The diagonal policy is less erratic. It can be shown that its decay rate of
probabilities is increasing with <, for < � = towards:

' =
_

2_ � `
Which is also the limit of '1 as B ! 1.
For more details see Kopzon et al. (2009).

13.10 Verify that fluid limits for processing networks with IVQs exist and satisfy
the standard fluid equations.
Solution
We have for a processing networks with IVQs the following equations for

Exercises 125

work conserving HOL policies:

Q: (C) = Q: (0) �
’
92J

⇠ 9 ,:S 9 (T9 (C)) +
’
92J

’
;<:

⇠ 9 ,;R 9

;,:
(S 9 (T9 (C))), : 2 K0,

Q: (C) = Q: (0) �
’
92J

⇠ 9 ,:S 9 ()9 (C)) + U: C, : 2 K1.

and
’
92J

�8, 9T9 (C) + I8 (C) = C,
π

C

0

⇣ ’
:2K , 92J

�8, 9⇠ 9 ,:Q: (B)
⌘
3I8 (B) = 0.

We assume: All service processes S 9 (C) and routing processors satisfy FS-
LLN: S 9 (=C)/=! ` 9 C u.o.c. a.s., R 9

: ,;
(=B)/=! ?

9

: ,;
B u.o.c. a.s.. We denote

by G the set of l (of measure 1) for which convergence holds. We consider
a sequence of systems, indexed by =, that have the same processing time
and routing sequences, but di�er in the initial conditions Q= (0), and assume
Q= (0)/=! Q̄ (0). We state:
Theorem Fluid limits of Q,T ,I exist and are Lipschitz continuous, and for
work conserving HOL policies, every fluid limit for l 2 G satisfies the fluid
model equations for : = 1, . . . , :

Q̄: (C) = Q̄: (0) �
’
92J

⇠ 9 ,:` 9 T̄9 (C) +
’
92J

’
;<:

?
9

;,:
` 9 T̄9 (C) � 0, : 2 K0,

Q̄: (C) = Q̄: (0) �
’
92J

⇠ 9 ,:` 9 T̄9 (C) + U: , : 2 K1,

’
92J, :2K

�8, 9⇠ 9 ,: T̄9 (C) + Ī8 (C) = C, 8 = 1, . . . , �,

Ī8 (C) increases only when
’

:2K , 92J
�8, 9⇠ 9 ,:Q: (C) = 0.

Proof As for standard MCQN, T: (C,l) are nondecreasing Lipschitz contin-
uous, and the same holds for their fluid scaling T̄ =

:
(C) = T =

:
(=C,l)/=. By

the Arzela-Ascoli theorem, for every l there exists a subsequence of indexes
A ! 1 such that T A

9
(AC)/A = T̄ 9 (C) u.o.c.. Therefore there exists also a

subsequence for which it holds for all 9 2 J . So fluid limits for T exist.
The dynamics equations then follow for each l 2 G, since T̄ 9 (C)  C.
Lipschitz continuity follows from Lipschitz continuity of T . The work con-
servation equation for the fluid is proved similar to proof of Theorem 11.2.

13.11 Outline the proof of Theorem 13.1, in analogy with Theorems 11.10, 11.8.
Solution
(a) If the fluid model is weakly stable, then the system is rate stable: The
proof is exactly the same as for MCQN. Assume by contradiction that for
some l 2 G, and 0= ! 1, |Q: (0=,l) |/0= > 2 > 0, where we recall that
IVQs can be negative, so we use | |. By the Theorem on existence of fluid

126 Processing networks with Infinite Virtual Queues

limits, for a subsequence 0A we have limA!1 Q: (0A C,l)/0A = Q̄: (C) u.o.c.,
where Q̄: (C) is a fluid limit. Since we are looking at a single process Q(C),
Q(0) is fixed, and therefore Q̄: (0) = 0 for both standard and IVQs : 2 K.
On the other hand |Q̄: (1) | > 2 by the contrary assumption. This contradicts
the assumption that the fluid limit model is weakly stable.
(b) We can describe the processing network with IVQs by a Markov process
X(C), and we have as norm for its state |G | = Õ

:2K |Q: (C) | +
Õ
92J |+ 9 (C) |

The assumptions are: ⌫^ is petite (uniformly small), and the fluid limit model
is stable.
By Theorem 10.7 we need to show that lim |G |!1

���EG 1
|G |

�
X(|G |X

� ��� = 0 for
some X. The same argument that is used for Theorem 10.8 shows that
lim 1

|GA |+
GA
9
(|GA |C) = 0 u.o.c. a.s. and the same convergence holds for the

expectation. The argument for this is Lemma 11.5.
All that needs to be shown still is that lim 1

|GA | Q
GA

:
(|GA |C) = 0 u.o.c. a.s. and

same holds for the expectation. That lim 1
|GA | Q

GA

:
(|GA |C) = 0 follows from the

stability of the fluid model. The convergence for the expected value follows
if the sequences 1

|G= | Q: (|G= |C) are uniformly integrable. We now check that

the statement of Proposition 11.6, that 1
0=
Q: (0=C) are uniformly integrable,

holds for our processing networks with IVQs. Indeed, we again have the
bound:

1
0=

Q: (0=C)  ^ +
’
92J

1
0=

S 9 (0=C)

which will hold for all bu�ers, standard of IVQs. Since S 9 are renewal

processes, by the elementary renewal theorem they satisfy E
⇣

1
0=
S 9 (0=C)

⌘
!

` 9 C so they are uniformly integrable and so are 1
0=
Q: (0=C).

13.12 Outline the proof of Theorem13.5, in analogy with Theorem 12.6.
Solution
In the proof of Theorem 12.6 the main step was Lemma 12.7, that under
maximum pressure policy every fluid limit maximizes the pressure over all
of �. The proof of Lemma 12.7 remains unchanged for processing networks
with IVQs.
We need a another property of processing networks with IVQs.
Proposition If EAA holds then every activity that is processing a bu�er
: 2 K1 does not process any bu�er 2 0.
Proof Assume to the contrary that 9 serves : 2 K1 as well as ; 2 K0.
Assume first the 9 is the only activity processing : . Take state Q: (C) > 0,
all other bu�ers empty. Then the maximizing allocation has 0 9 > 0, but
Q; (C) = 0, contradiction to EAA. Assume next that some other activities are
also serving bu�er : . Take Q: (C) > 0, let all the bu�ers downstream of the
other activities that serve : excluding bu�er ; contain very large number of
items, all remaining bu�ers empty. Then again, the maximizing allocation

Exercises 127

has 0 9 > 0, but Q; (C) = 0, contradiction to EAA. ⇤
Corollary If EAA assumption holds, and Q: (C) < 0 for some : 2 K1, then
0 9 = 0 for { 9 : ⇠ 9 ,: = 1}.
Proof Clearly, if 0 9 > 0 this contributes a negative term to the pressure and
0 9 = 0 will increase the pressure. ⇤
Corollary If EAA holds, under maximum pressure policy, for every fluid
limit Q: (C) � 0 also for the bu�ers : 2 K1.
Proof This follows from §̄Q: (C) = U:�

Õ
92J ⇠ 9 ,:` 9

§̄T (C), : 2 K1, But from

the previous corollary it is easy to see that when Q̄: (C) < 0 then §̄T (C) = 0,
so by Lemma 11.13, once Q̄: (C) � 0 it is never negative again. ⇤

We are now ready to prove Theorem 13.5. Assume we are using some U  U⇤,
and maximum pressure policy. Let Q̄ (C), T̄ (C) be a fluid solution. We again
consider the quadratic Lyapunov function:

5 (C) =
 ’
:=1

(Q̄: (C))2 = Q̄ (C) · Q̄ (C),

We now note the by (13.9),

§̄QK1 (C) = �'K1
§̄T (C) + U,

§̄QK0 (C) = �'K0
§̄T (C),

So we obtain:

§
5 (C) = 2 §̄Q(C) · Q̄ (C)

= 2 §̄QK1 (C) · Q̄K1 (C) + 2 §̄QK0 (C) · Q̄K0 (C)
= �2('K1

§̄T (C) + U) · Q̄K1 (C) � 2'K0
§̄T (C) · Q̄K0 (C)

= �2' §̄T (C) · Q̄ (C) + 2U · Q̄K1 (C)
= �2 max

02�
'0 · Q̄ (C) + 2U · Q̄K1 (C) by Lemma 12.7

Let G⇤, U⇤ be an optimal solution of the production planning problem (13.11).
Then 'K1G

⇤ = U
⇤
'K0G

⇤ = 0, and from the constraints of (13.11), clearly
G
⇤ 2 �. We then have:

§
5 (C) = �2 max

02�
'0 · Q̄ (C) + 2U · Q̄K1 (C)

 �2'G⇤ · Q̄ (C) + 2U⇤ · Q̄K1 (C) since G⇤ 2 �, U  U⇤, and Q̄K1 (C) � 0

= 0 since ('G⇤)K0 = 0, and ('G⇤)K1 = U⇤.

The Lyapunov function 5 then has the properties: 5 (C) � 0, it is 0 only when
Q̄: (C) = 0, : = 1, . . . , , and §

5 (C)  0. It follows by Lemma 11.13 that
if 5 (0) = 0 then 5 (C) = 0 for all C > 0. Hence, Q̄: (0) = 0, : = 1, . . . ,
implies Q̄: (C) = 0 for all C > 0, so the fluid limit model is weakly stable.

128 Processing networks with Infinite Virtual Queues

13.13 Outline the proof of Corollary 13.6, in analogy with 12.14.
Solution
The proof that no splitting is needed is again because all extreme allocations
are {0, 1}. To see that preemptions are needed, follow all the steps of the
proof in Dai and Lin (2005), Section 8 and Appendix B.

13.14 Solve the static production planning problem for the push pull system of
Section 13.5, and plot the feasible region for all possible combinations of
parameter values [Guo et al. (2014)].
Solution
The dynamics of the push pull system are:

&: (C) = U: C � (: (): (C)), : = 1, 3,

&: (C) = &: (0) + (:�1 ():�1 (C)) � (: (): (C)), : = 2, 4.

with mean processing times <: = `
�1
:
, : = 1, . . . , 4. The static production

planning problem for the push-pull network is then:

max
D,U

F1U1 + F3U3

B.C.

26666664

`1 0 0 0
�`1 `2 0 0

0 0 `3 0
0 0 �`3 `4

37777775

26666664

D1

D2

D3

D4

37777775
=

26666664

U1

0
U3

0

37777775
,


1 0 0 1
0 1 1 0

� 26666664

D1

D2

D3

D4

37777775



1
1

�
,

D, U � 0.

The solution of this linear program is easily read from the following figure,

or from similar figures for any parameter values. According to the values of

Exercises 129

the parameters F, ` the optimal nominal inputs can be one of three:

(i) either U1 = min{`1, `2}, U3 = 0,
(ii) or U1 = 0, U3 = min{`3, `4},
(iii) or U1 = `1`2 (`3�`4)

`1`3�`2`4
, U3 = `3`4 (`1�`2)

`1`3�`2`4
.

If we exclude the singular cases of `1 = `2 or `3 = `4, we then have the
following results: In (i) only queues 1 and 2 are processed, and d1 = 1, d̃1 = 0
while d2 = d̃2 = `1

`2
and this is clearly stable for `1 < `2. The case (ii) is

similar, with only queues 3, 4 being processed. Case (iii) is the interesting
one: We have d1 = d2 = 1, but when we define d̃8 =

Õ
:2C(8)\K0

D: , as the
actual load imposed by the standard queues we have:

d̃1 =
`3 (`1 � `2)
`1`3 � `2`4

< 1, d̃2 =
`1 (`3 � `4)
`1`3 � `2`4

< 1.

13.15 Obtain the maximum pressure policy for the push pull system Section 13.5,
and show that the fluid model is weakly stable but not stable.
Solution
For the push pull network the matrix ' is:

©≠≠≠
´

_1 0 0 0
�_1 `1 0 0
0 0 _2 0
0 0 �_2 `2

™ÆÆÆ
¨

and we have that maximum pressure has the following instructions for ma-
chines 1 and 2:

for machine 1 max{0; _1 (Q1 (C) � Q2 (C); `2Q4 (C); }
choose correspondingly 0 = 0; 01 = 1; 04 = 1;

that is: idle; push; pull;

for machine 2 max{0; _2 (Q3 (C) � Q4 (C); `1Q2 (C); }
choose correspondingly 0 = 0; 03 = 1; 02 = 1;

that is: idle; push; pull;

We now see that if we start at time 0 with

^ = _1
�
Q̄1 (0) � Q̄2 (0)

�
= `2Q̄4 (0) = _2 (Q̄3 (0) � Q̄4 (0) = `1Q̄2 (0) > 0

then the fluid solution starting from this value will stay with Q̄ (C) = Q̄ (0)
for all C > 0. To see this we note: in this state, all four combinations of push
or pull are max-pressure policies. It is now seen that if any of them is used,

130 Processing networks with Infinite Virtual Queues

it needs to be followed by the opposite policy in a sense:

pull - pull will be followed by push - push
push - push will be followed by pull - pull
push - pull will be followed by pull - push for inherently stable
push - pull will be followed by pull - push or by pull - pull for inherently unstable

The fluid limit will then be to use a convex combination:

machine 1: pull \1 = `1 (_2�`2)
_1_2�`1`2

; push 1 � \1 = _2 (_1�`1)
_1_2�`1`2

;

machine 1: pull \2 = `2 (_1�`1)
_1_2�`1`2

; push 1 � \2 = _1 (_2�`2)
_1_2�`1`2

;

and this will keep the fluid bu�er levels constant.
13.16 For the inherently stable push pull system of Section 13.5, under pull priority,

show that the fluid model is stable, and show that the policy is a weak pull
priority policy [Nazarathy and Weiss (2010)].
Solution
See Nazarathy and Weiss (2010)

13.17 For the inherently unstable push pull system of Section 13.5, show that the
linear threshold policy described in Figure 13.8 has a stable fluid limit model
[Nazarathy and Weiss (2010)].
Solution
See Nazarathy and Weiss (2010)

13.18 Consider the process D(C) of departures from the push pull system. Calcu-
late the correlation between D1 (C) and D2 (C). For simplicity consider the
symmetric case `1 = `2 = `, _1 = _2 = 1 [Nazarathy and Weiss (2010)].
Solution
See Nazarathy and Weiss (2010)

14

Optimal Control of Transient Networks

Exercises
14.1 The objective (14.4) gives a reward of () � C)⌘: for each departure from

bu�er : at time C. Find an objective that will give a reward of F 9 ,: () � C)
for each completion of service of an item in bu�er : by activity 9 , write
the equation for this objective in terms of bu�er contents, and write its fluid
approximation.
Solution
Instead of

max
 ’
:=1

π
)

0
⌘:D: (C)3C

= max
 ’
:=1

π
)

0
⌘: () � C)3D: (C).

We now want to maximize rewards for completed activities, which amounts
to:

max
�’
9=1

π
)

0
F 9S 9 (T9 (C))3C

= max
�’
9=1

π
)

0
F 9 () � C)3S 9 (T9 (C)).

The fluid approximation for this is:

max
�’
9=1

π
)

0
F 9` 9 T̄ 9 (C)3C

= max
�’
9=1

π
)

0
F 9` 9 () � C) §̄T9 (C)3C.

131

132 Optimal Control of Transient Networks

More generally, if activity 9 processes simultaneously items from several
bu�ers we have

max
�’
9=1

 ’
:=1

⇠ 9 ,:

π
)

0
F 9 ,: () � C)3S 9 (T9 (C)),

with fluid approximation:

max
�’
9=1

π
)

0

⇣ ’
:=1

⇠ 9 ,:F 9 ,:

⌘
` 9 () � C) §̄T9 (C)3C

=: max
�’
9=1

π
)

0
A 9 () � C) §̄T9 (C)3C

14.2 Repeat the proof that fluid limits exist and are Lipschitz continuous, and that
almost surely for all l, the scaled queue lengths and allocations converge to
fluid limits that satisfy equations (14.6).
Solution
The proof of Theorem 11.2 needs almost no modifications, for general pro-
cessing networks with IVQs.

14.3 Show that the problems SCLP and its symmetric dual SCLP⇤ satisfy weak
duality, that is if G, D and H, h are feasible solutions then the objective value
of SCLP⇤ is greater or equal to the objective value of SCLP. Show that
the objective values are equal if and only if the complementary slackness
condition holds, in which case they are optimal solutions.
Solution
Let G, D be feasible solutions of SCLP and let H, h be feasible solutions of
SCLP⇤. We compare their objective values:

Dual objective =
π

)

0
(UT + () � C)0T)h(C) 3C +

π
)

0
1

T
H(C) 3C

�
π

)

0

✓π
) �C

0
D(B)T

⌧
T
3B + G() � C)T

�
T

◆
h(C) 3C +

π
)

0
D() � C)T

�
T
H(C) 3C

=
π

)

0
D() � C)T

✓π
C

0
⌧

T
h(B) 3B + �T

H(C)
◆
3C +

π
)

0
G() � C)T

�
T
h(C) 3C

�
π

)

0
D() � C)T (W + 2C) 3C +

π
)

0
G() � C)T

3 3C = Primal objective

where the first inequality follows from the primal constraints and from h, H

non-negative, the equality follows by exchange in the order of integration,
and the second inequality follows from the dual constraints and from D, G

nonnegative. ⇤
Clearly, if equality holds then both solutions are optimal. I is not clear that

Exercises 133

optimal solutions must achieve equality – if that is the case then one says that
strong duality holds.

14.4 Show how to reconstruct the primal and dual solutions of SCLP, SCLP⇤,
from G

0
, H
" , ⌫1, . . . , ⌫" . and) .

Solution
(step 1) Solve the Boundary-LP and Boundary-LP⇤. You now have G0 = G(0)
and H" = H(0).
(step 2) Solve the Rates-LP and Rates-LP⇤ with the basis ⌫1. Since the basis
is given, this requires solving the set of linear equations. Retain the dictionary
Dict1 = ⌫�1

1 #1. You now have D1
, §G1

, h
1
, §H1.

(step 3) Form the list of adjacent Rate-LP bases, obtain the variables leaving
and entering, Z<, b<, < = 1, . . . ," � 1
(step 4) Obtain the remaining rates for interval< = 2, . . . ," , where Dict<+1

is obtained by a single pivot from Dict<, in which Z< leaves and b< enters.
You now have D=, §G=, h=, §H=, = = 2, . . . , # .
(step 5) Solve the interval equations for G: (C<) = 0 if Z< = §G: , and H 9 () �
C<) = 0 if Z< = D 9 , where you use the coe�cients §G, §H, and the added
equation

Õ
g< =) . You now have g1, . . . , g<.

(step 6) Calculate all other G<, H< using G0
, H
" , the §G, §H, and the g.

You now have the complete solution.
14.5 Prove that solutions that satisfy all the conditions listed in section 14.4 are

optimal solutions of SCLP, SCLP⇤.
Solution
We will assume that all the bases of the Rates-LP are primal and dual non-
degenerate. The proof otherwise is by perturbation.
From the construction it follows that D, G, h, H are feasible and complementary
slack. Therefore they are optimal.
The key point to notice is that in each of the intervals, if §G: = 0 then
also G: = 0, and if §H

9
= 0 then also H 9 = 0. The argument is as follows:

Consider G: (C). If it has G0
:
> 0 then §G1

:
is in the basis (by compatibility of

⌫1 with G(0)), and by non-degeneracy it is non-zero. Hence, if §G1
:
= 0, then

G: (0) = 0, and §G: (C) = 0 in the interval (0, C1), so G: (C) = 0 in the interval
(0, C1). Proceeding we now have that if G: (C) > 0 in the interval (C<�1, C<),
then by non-degeneracy §G<�1

:
in non-zero. Then if Z< = §G: then G: (C<) = 0,

and in the next interval both §G: (C) = 0 and G: (C) = 0, while if Z< < §G: , then
§G: is basic in the next interval, and so it is non-zero and so is also G: (C). Next,
if G: (C) = 0 in the interval (C<�1, C<), then of course §G: (C) = 0 in the interval.
Then if b< < §G: , both §G: (C) = 0 and G: (C) = 0 in the next interval, while if
b< = §G: , then §G: is in the basis ⌫<+1 and is non-zero by the non-degeneracy.
This argument works for all G: and similarly for all H 9 .

14.6 For the fluid solution example described in section 14.5, describe what is
happening in intervals 4–9.
Solution

134 Optimal Control of Transient Networks

The following table shows in each of the 9 intervals which bu�ers are pro-
cessed by the 3 machines.

machine 1 machine 2 machine 3 empty bu�ers
Interval 1 1 5 9 none
Interval 2 7 5 9 none
Interval 3 7 5,8 9 9
Interval 4 4 5,8 9 7,9
Interval 5 7 5,8 6,9 7,9
Interval 6 7 8 6,9 5,7,9
Interval 7 7 8 6,9 5,9
Interval 8 7 8 3,6,9 5,9
Interval 9 7 8 3,6,9 5,9

14.7 For the example in section 14.5, write the Boundary-LP/LP⇤, write the Rates-
LP/LP⇤, list the primal and dual bases of the Rates-LP/LP⇤ for the 9 intervals,
and write the equations for the breakpoints.
Solution
We use the notation of Section 14.4, with G: primal state variables : =
1, . . . , 10, and dual variables H 9 = 1, . . . , 4. Here G=

:
= Q:�1 (C=) are the

fluid bu�er contents. The primal boundary LP is empty since � = ;, and its
solution is G0

:
= U, initial fluid level. The dual boundary LP⇤ has � and 1 all

non-negative values, and we set W = 0, so H#+1
9

= 0. These are the boundary
values for all 0 < C <) .
The rates LP is:

266666666666666664

`1
�`1 `2

�`2 `3
�`3 `4

�`4 `5
�`5 `6

�`6 `7
�`7 `8

�`8 `9
�`9 `10

377777777777777775

266666666666666664

D1
D2
D3
D4
D5
D6
D7
D8
D9
D10

377777777777777775

+

266666666666666664

§G1
§G2
§G3
§G4
§G5
§G6
§G7
§G8
§G9
§G10

377777777777777775

=

266666666666666664

U

0
0
0
0
0
0
0
0
0

377777777777777775

"
1 1 1 1

1 1 1
1 1 1

#

266666666666666664

D1
D2
D3
D4
D5
D6
D7
D8
D9
D10

377777777777777775


"

1
1
1

#

While the r.h.s. has 0 inflow for bu�ers 1, . . . , 9, we put some small values
0: to avoid degeneracy. Specifically, this will ensure that every non-empty
bu�er

Exercises 135

The bases and pivots for the 9 intervals of the solution are:

1 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 D2 D6 D10

pivot D2 ! D8

2 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 D6 D8 D10

pivot G10 ! D9

3 G1 G2 G3 G4 G5 G6 G7 G8 G9 D6 D8 D9 D10

pivot G8 ! D5

4 G1 G2 G3 G4 G5 G6 G7 G9 D5 D6 D8 D9 D10

pivot D5 ! D7

5 G1 G2 G3 G4 G5 G6 G7 G9 D6 D7 D8 D9 D10

pivot G6 ! �2

6 G1 G2 G3 G4 G5 G7 G9 D6 D7 D8 D9 D10 �2

pivot G9 ! G8

7 G1 G2 G3 G4 G5 G7 G8 D6 D7 D8 D9 D10 �2

pivot G7 ! D4

8 G1 G2 G3 G4 G5 G8 D4 D6 D7 D8 D9 D10 �2

pivot G8 ! D5

9 G1 G2 G3 G4 G5 D4 D5 D6 D7 D8 D9 D10 �2

The equations for the breakpoints are:

H8 (C1) : H
0
8 � Õ9

==2 g= §H=8 = 0,
G9 (C2) : G

0
9 � Õ2

==1 g= §G=9 = 0,
G8 (C3) : G

0
8 � Õ3

==1 g= §G=8 = 0,
H5 (C4) : H

0
5 � Õ9

==5 g= §H=8 = 0,
G6 (C5) : G

0
6 � Õ5

==1 g= §G=8 = 0,
G9 (C6) : G

0
9 � Õ6

==1 g= §G=9 = 0,
G7 (C6) : G

0
7 � Õ7

==1 g= §G=7 = 0,
G8 (C6) : G

0
8 � Õ8

==1 g= §G=8 = 0,

and the equation
Õ8
==1 g= =) .

14.8 (⇤) Reverse engineer the SCLP problem with the solution described in section
14.5.
Solution
I do not know what is the best way of reverse engineering the problem data
to obtain a given solution. Here is the actual data for this example:
Re-entrant line with 9 steps and 3 machines, having three successive passages
through the 3 machines. Bu�er 1 contains the input, served by input processor
1. Bu�ers 2, . . . , 10 are queues for the various steps, going through machines
2, 3, 4.
Initial fluid levels:

G
0
:

: 50, 24, 32, 47, 7, 43, 15, 20, 30, 32.

The matrix � contains average processing times, which are the values of `�1
:

,

136 Optimal Control of Transient Networks

for the input and queue bu�ers:

� =

2666664

0.0416 0 0 0 0 0 0 0 0 0
0 0.0579 0 0 0.0432 0 0 0.072 0 0
0 0 0.0323 0 0 0.0371 0 0 0.0173 0
0 0 0 0.0365 0 0 0.0268 0 0 0.0311

3777775
.

Very small inflow rates to all bu�ers, to avoid degeneracy, are given by:

0 = 0.00103, 0.00211, 0.00096, 0.00137, 0.00118, 0.00131, 0.00092, 0.00121, 0.00167, 0.00088.

Costs are 350 + the following:

2 : 5.03, 22.19, 19.31, 21.47, 17.04, 54.28, 25.31, 13.53, 10.11, 12.23.

14.9 Use the data for the 3-bu�er re-entrant problem of section 14.8 to calculate
the minimum time to empty solution, and the last bu�er first served solution.
Solution
The data is: ⇠1 = 1, 3, ⇠2 = 2, @(0) = (8, 1, 15), ` = (1, 0.25, 1).
Accordingly, @+ = (8, 9, 24), ,1 = 1 ⇥ 8 + 1 ⇥ 24 = 32, ,2 = 4 ⇥ 9 = 36.
Machine 2 is bottleneck, minimum time to empty is 36. We can use D =
(8/36, 1, 24/36) for the inventories to reduce gradually to 0 in that time.
Unde LBFS we have D(C) = (0, 1, 1), 0  C < 4, D(C) = (0, 0, 1), 4  C <

15, D(C) = (3/4, 1, 1/4), 15  C < 25.7, D(C) = (0, 1, 1/4), 25.7  C  47.
14.10 Find the optimal fluid solution for the 3-bu�er re-entrant problem of section

14.8. Discuss its properties in terms of bases etc.
Solution
The Boundary-LP solution is @(0) = (8, 1, 15), and the dual variables are
H(0) = (0, 0, 0)
The reward for the controls D are: F = ⌘

T
' = (0, 0, `3) = (0, 0, 1), since

only activity 3 reduces the inventory.
The Rates-LP is:

max 21D1 22D2 `3D3

B.C. `1D1 + §@1 = 01,

�`1D1 +`2D2 + §@2 = 01,

�`2D1 +`3D3 + §@3 = 03,

D1 +D3  1,
D2  1,

D � 0.

where 08 > 0 are exogenous inflows, which we assume are close to 0 (0 would
make the problem degenerate). Similarly, 21 > 0, 22 > 0 are reward rates,
close to 0. There are also two slack variables, D4, D5. The dual, Rates-LP is:

min 01h1 +02h2 +03h3

B.C. `1h1 �`1h2 + §H4 �§H1 = 21,

`2h2 �`2h3 + §H5 �§H2 = 22,

+`3h3 + §H4 �§H3 = 1,
h � 0.

Exercises 137

In the following we put §0 for infinitesimal values, replacing 28 , 08 .
– First interval: primal basis is ⌫1 = { §@1 = §0, §@2 = �1/4, §@3 = �1, D2 =
1, D3 = 1}. Dual basis is ⌫⇤

1 = { §H1 = 1, §H4 = 1, §H5 = §0
At time C1 = 4, @2 = 0. Pivot: §@2 leaves, D5 enters. Dual pivot in reversed
time: h2 leaves, H5 enters.
–Second interval: primal basis is ⌫2 = { §@1 = §0, §@3 = �1, D2 = §0, D3 = 1, D5 =
1}. Dual basis is ⌫⇤

2 = {h2 = §0, §H1 = 1, §H4 = 1}
At time C = 8, we start pumping out of 1 into 2 and out of 2. Pivot D5 leaves,
D1 enters. Dual pivot in reverse time is §H5 leaves, §H1 enters.
– Third interval: primal basis is ⌫3 = { §@1 = �1/4, §@3 = �1/2, D1 = 1/4, D2 =
1, D3 = 3/4}. Dual basis is ⌫⇤

3 = {h2 = 1, §H4 = 1, §H5 = �1/4}.
At time C = 24, bu�er 3 is empty. Pivot §@3 leaves the basis, D4 enters. Dual
pivot in reverse time is h3 leaves, §H4 enters.
– Fourth interval: primal basis is: ⌫4 = { §@1 = �1/4, D1 = 1/4, D2 = 1, D3 =
1/4, D4 = 1/2}. Dual basis is ⌫⇤

4 = {h2 = §0, h3 = 1, §H5 = 1/4}.
At time C = 40 the system is empty. Primal basis is ⌫5 = {D1 = D3 = D3 =
§0, D4 = D5 = 1}. Dual basis is ⌫⇤

5 = {h1 = h2 = h1 = 1}.
To complete the description of the solution we plot the dual variables:

y5

y1

y4

14.11 Write the equations for the tracking process for the 3-bu�er re-entrant prob-
lem of section 14.8, and describe the policies for tracking the fluid in each of
the intervals of the fluid solution.
Solution

– First period: Bu�er 1 stays constant, bu�ers 2,3 are IVQs, bu�er 2 empties
as stochastic process rate `2, bu�er 3 is filled by output of bu�er 2, and
empties as stochastic process rate `3. Interval ends when bu�er 2 is empty,
at ⇡ 4.
– Second period: Bu�er 1 stays constant, bu�er 2 is empty with no inflow or
outflow, bu�er 3 is an IVQ, emptying as stochastic process rate `3. Period
ends at time C = 8.
– Third period: Bu�ers 1 and 3 are IVQs. Bu�er 2 is a standard queue.
Nominal rate for bu�er 2 is `2. Tracking using maximum pressure would

138 Optimal Control of Transient Networks

suggest that when machine 1 is available it compares pressure at bu�ers 1
and 3. pressure at 3 is deviation from nominal. Pressure at 1 is deviation from
nominal minus level of Q2. Better alternative in this case: when bu�er 2 is
close to empty, work on bu�er1, otherwise on bu�er 3.
– Fourth period: Bu�er 1 is IVQ, bu�er 2, 3, are standard queues. Policy is:
work on 2 always, Chose between 1 and 3 accordigng to pressure. Pressure
for 3 is deviation from nominal. pressure for 1 is deviation from nominal
minus Q2 (C).

14.12 Simulate the control of the 3-bu�er re-entrant problem of section 14.8, for a
scaling by 10 and by 100. Use exponential processing times for each activity.

Part V

Di�usion Scaled Balanced Heavy Tra�c

139

15

Join the Shortest Queue in Parallel Servers

Exercises
15.1 (⇤) For the case of two symmetric ·/M/1 queues, under Join the Shortest

Queue policy, complete the derivation of the stationary distribution as an
infinite sum of product forms. Perform the following steps [Adan et al.
(1990)]:

(a) Write the balance equations, eliminate those for = = 0, and set up the
three sets of equations, for states in the interior of the quadrant, for states
on the horizontal = = 1 boundary, and for states on the vertical < = 0
boundary.

(b) Derive the quadratic equation for U, V that give product form solutions
for the states in the interior.

(c) Verify that U0, V0 satisfy balance equations for states (i),(ii).

(d) Do the first compensation, to satisfy (i),(iii).

(e) Derive the sequence of U: , V: and the coe�cients 2: , 3: .

(f) Show that the coe�cients and the roots converge geometrically.

Solution
(a) The balance equations are:

2(d + 1)%(<, =) = 2dP(< � 1, = + 1) + %(<, = + 1) + %(< + 1, = � 1), < > 0, = > 1, (8)
2(d + 1)%(<, 1) = 2d%(< � 1, 2) + %(<, 2) + d

1+d (2d%(< � 1, 1) + %(<, 1)) (88)
+ 1

1+d (2d%(<, 1) + %(< + 1, 1)), < > 0,
(1 + 2d)%(0, =) = %(0, = + 1) + %(1, = � 1), = > 1, (888)
2(1 + d)%(<, 0) = 2d%(< � 1, 1) + %(<, 1), < > 0, (8E)
2d%(0, 0) = %(0, 1). (E)

Where in the equation for%(<, 1) we substituted the values of%(<, 0), %(<+
1, 0) from equation (iv). Equations (iv), (v) now serve as definitions.
(b) Solutions of equation (i), for < > 0, = > 1 are %(<, =) = U<V= where
U, V are any solutions to the bi-quadratic equation:

2(d + 1)UV = 2dV2 + UV2 + U2
.

141

142 Join the Shortest Queue in Parallel Servers

which we can write as:

V
2 (2d + U) � 2VU(d + 1) + U2 = 0

or as:

U
2 � U(2V(d + 1) � V2) + 2V2

d = 0

to illustrate its role as quadratic for V with given U, and for U with given V.
Any linear combination of such solutions will satisfies (i).
(c) Our compensation method will give an infinite sum of product forms,
where each successive term will be smaller, so the first term should describe
the asymptotic behavior for <, = ! 1. Since we expect for large < that
= will be comparatively small, we should get behavior close to M/M/2, soÕ1
==0 %(<, =) ⇡ P(M/M/2 queue = 2<) = d2<, so U0 = d2.

If we take U0 = d2, there are two values that of V that satisfy the bi-quadratic

equation, two quadratic roots, namely d and V0 = d
2

2+d . The value d would
give %(<, =) of two independent M/M/1 queues, which is not what we want.
To satisfy equation (ii), U, V must satisfy (by rewriting (ii)):

U
<�1

h
(2d + U) (1 + d)V + U2 � U

⇣
2d2 + d + 2

⌘
+ 2d2

i
= U<�1

⌫(U, V) = 0.

So substituting U = d2, and V = d
2

2+d this holds, so U<0 V
=

0 will satisfy both (i)
and (ii).
(d) To satisfy equations (iii), with a single term we would need to have:

V
=�1 ⇥

V
2 � (1 + 2d)V + U

⇤
= V=�1

�(U, V) = 0.

However, in the next compensation step, we now have two terms, in the form
U
<

0 V
=

0 + 21U
<

1 V
=, and to satisfy (iii) we need to have that V = V0. In the

bi-quadratic, solving for U with the fixed value V0, one of the roots was U0.
So this determines U1 as the other root with V0. 21 is now determined from
the linear equation:

�(U0, V0) + 21�(U1, V0) = 0,

so:

21 = � �(U0, V0)
�(U1, V0)

= �
V

2
0 � (1 + 2d)V0 + U0

V
2
0 � (1 + 2d)V0 + U1

= �U1 � V0

U0 � V0
.

where we used that U1 +U0 = 2V0 (d+1)� V2
0 as two roots of the bi-quadratic

with V0.
(e) The next compensation step is to add a term so that (ii) again holds. Since
the U<0 , V

<

0 already satisfies (i) and (ii), the compensation needs to consider
compensating for U<1 , V

<

0 , so the U, V of the new term will need to satisfy:

21U
<�1
1 ⌫(U1, V0) + 2131U

<�1
⌫(U, V) = 0

Exercises 143

From which we see that U = U1, and so V1 needs to be the second root of the
bi-quadratic with U1 (the first root was V0). Once we have U1, V1, the linear
equation for 31 is:

⌫(U1, V0) + 31⌫(U1, V1) = 0,

and we obtain:

31 = �⌫(U1, V0)
⌫(U1, V1)

= �
V0 (2d+U1) (U1+d)

1+d � U2
1

V1 (2d+U1) (U1+d)
1+d � U2

1

= �
U1+d
V1

� (d + 1)
U1+d
V0

� (d + 1)
,

where we used: V0V1 (2d +U1) = U2
1 since V0, V1 are roots of the bi-quadratic

with U1.
So far we have:
U
<

0 V
=

0 satisfy (i) and (ii) but not (iii)
U
<

0 V
=

0 + 21U
<

1 V
=

0 satisfy (i) and (iii) but not (ii),
U
<

0 V
=

0 + 21U
<

1 V
=

0 + 2131U
<

1 V
=

1 satisfy (i) and (ii) but not (iii).

It is now clear how the infinite sequence of product form terms is constructed.
With U: we have the two roots V: > V:+1, and then we obtain U:+1 as the
second, smaller root (the first being U:) for V:+1. We note, either by looking
at the equation for the bi-quadratic, or simply by looking at Figure 15.2,
where each step crosses the line U = V, that

U0 > V0 > U1 > · · · > U: > V: > U:+1 > · · ·

The terms for 2: , 3: are then (with 20 = 30 = 1):

2:+1 = �U:+1 � V:
U: � V:

2: , 3:+1 = �
U:+1+d
V:+1

� (d + 1)
U:+1+d
V:

� (d + 1)
3: .

and the complete solution of the balance equations for < � 0, = � 1 is:

G(<, =) =
1’
:=0

3:

�
2:U

<

:
+ 2:+1U

<

:+1

�
V
=

:

= V=0U
<

0 +
1’
:=0

2:+1
�
3: V

=

:
+ 3:+1V

=

:+1

�
U
<

:+1

It is seen from these the 2: are all positive, while 3: alternate in sign.
To calculate U: , V: explicitly one can use:

U: + U:+1 = 2V: (d + 1) � V2
:
, U:U:+1 = 2V2

:
d,

V: + V:+1 =
2(d + 1)U:+1

2d + U:+1
, V: V:+1 =

U
2
:+1

2d + U:+1
,

This leads to a 2nd order di�erence equation for 1/V: , and to explicit solutions
of U: , V: .

144 Join the Shortest Queue in Parallel Servers

(f) For the convergence, one can define D: = U:/V: , E: = U:+1/V: . One can
express U: , V: , 2: , 3: in terms of D: , E: and one can easily see that D: " �1,
E: # �2, where �1 = d + 1 +

p
d

2 + 1, �2 = d + 1 �
p
d

2 + 1. One can
then show that all the terms in the summation converge geometrically, and
so the sum converges absolutely and it converges to a positive term G(<, =)
for every <, =.
Finally, looking at the

Õ
<,=

G(<, =), it can be shown that it converges, to a

finite ⌫�1, and ?(<, =) = ⌫G(<, =), with ⌫ = d(2+d)
2(1�d2) (2�d) .

(e) These are obtained as infinite sums of geometric terms. In particular
2< + = is the number of customers in the queue, < the length of the shorter
queue, and < is also the expected waiting time of a customer that joins the
shorter queue, conditional on <.

15.2 (*) The following model is called join the shortest queue with jockeying :
in the two symmetric ·/M/1 queues customers alway join the shortest queue,
however, when the di�erence in queue length at the two servers exceeds
a threshold 3 a waiting customer is moved from the longer to the shorter
queue. For 3 = 2, draw the states and transitions diagram, write the balance
equations and suggest how to solve them [Adan et al. (1993, 1994)].
Solution
It is convenient to represent the state as Q(C) = (<, =) where < is the length
of longest queue, and = = 0, 1, 2 records the di�erence in length (somwhat
counter intuitive, number in system is 2< � =). The following is the states
and transition diagram:

2ρ

2ρ2ρ

2ρ
1

2

2

m

n

12ρ1

1

The balance equations are:

2(1 + d)%(<, 2) = %(<, 1), < � 2,

2(1 + d)%(<, 1) = 2%(< + 1, 2) + 2d%(<, 2) + 2d%(< � 1, 0) + 2%(<, 0), < � 2,

2(1 + d)%(<, 0) = %(< + 1, 1) + 2d%(<, 1), < � 1,

(1 + 2d) %(1, 1) = %(2, 2) + 2d%(0, 0) + 2%(1, 0),
2d %(0, 0) = %(1, 1).

A simple approach to solve the balance equations is as follows: We note that
the total number of customers fluctuates between even and odd, where odd
are the states $< = (<, 1) with 2< � 1 customers, while even are the states
⇢< = {(<, 0), (< � 1, 2)} with 2< customers, and for 3 or more customers

Exercises 145

in the system, this is just like M/M/2. The transition rates for the new states
are

m 3 4

2ρ

2ρ
2ρ

2ρ

2ρ

2

(2,2)

(1.0)

(1,1)(0,0)

2ρ 2ρ

22
2

1

1

1
1

We obtain from this the stationary probabilities:

%(0, 0) = ⌫, %(1, 1) = ⌫2d, %(1, 0) = ⌫2 + 2d
2 + 3d

2d2
, %(2, 2) = ⌫ 2d

2 + 3d
2d2

,

%(3+) = ⌫2 + 4d
2 + 3d

2d3
,

%(") = ⌫2 + 4d
2 + 3d

2(1 � d)d" , total number " � 3,

%(<, 1) = ⌫2 + 4d
2 + 3d

2(1 � d)d2<�1
, < � 2,

%(<, 2) = ⌫ 2 + 4d
(2 + 3d) (2 + 2d) 2(1 � d)d2<�1

, < � 2,

%(<, 0) = ⌫ (2 + 4d) (2 + d)
(2 + 3d) (2 + 2d) 2(1 � d)d2<

, < � 1.

This problem can be solved by Matrix-Geometric techniques (a nice intro-
duction to these techniques is Haviv (2013) Chapter 12). In particular it is
shown in Adan et al. (1993, 1994) that for any number of parallel exponential
servers with di�erent service rates, JSQ with jockeying whenever the dif-
ference between the longest and shortest queue reaches a threshold, can be
solved explicitly.

15.3 For the case of two symmetric ·/M/1 queues, under join the Shortest Queue
policy, obtain the stationary marginal distribution of the di�erence in length
between the two queues, and find an M/M/1 type approximation that is an
upper bound for it.
Solution
Let . (C) denote the di�erence between the longer and shorter queue at time
C.
The exact expression for the stationary distribution of . (C), expressed by an

146 Join the Shortest Queue in Parallel Servers

infinite sum is as follows (for = � 1):

?(·, =) = ⌫
1’
<=0

1’
:=0

3:

�
2:U

<

:
+ 2:+1U

<

:+1

�
V
=

:

= ⌫
1’
:=0

3:

✓
2:

1
1 � U:

+ 2:+1
1

1 � U:+1

◆
V
=

:

= ⌫
1’
:=0

2:3:

(1 � U:+1) � U:+1�V:
U:�V: (1 � U:)

(1 � U:) (1 � U:+1)
V
=

:

= ⌫
1’
:=0

2:3:

(U:+1 � U:) (1 � V:)
(1 � U:) (1 � U:+1) (U: � V:)

V
=

:

. (C) on its own is not a Markov process. However, we can find an upper bound
for the stationary distributions of . (C) by looking at the transition rates of
. (C), as shown in the following figure: Here, the rate at which . (C) increases

n n+1n-110 2 3

1+ 2ρ1+ 2ρ 1+ 2ρ 1+ 2ρ

< 2 + 2ρ <1 <1 <1
>1+ 2ρ

by 1 is bounded: 1 + 2d < @(0, 1) < 2 + 2d, and 0 < @(=, = + 1) < 1, = � 1,
where the lower bound correspond to the shorter queue being empty, and the
upper bound to the shorter queue being not empty. This implies that:

c(0) = P(. (1) = 0) � d

1 + 2d
,

c(9) = P(. (1) = 9)  2d(1 + d)
(1 + 2d)2

✓
1

1 + 2d

◆
9�1

, 9 = 1, 2, . . .

The bounds are obtained as follows: We have as upper bound on c(9),
c(9)  c(1)

⇣
1

1+2d

⌘
9�1

, so
Õ1
9=1 c(9) < c(1) 1+2d

2d . We also have the upper

bound on c(1): c(1) < c(0) 2+2d
1+2d . Since probabilities add up to 1, we have

for the upper bounds on c(9), 9 � 1 and lower bound on c(0 that:

1 = c(0) + c(0) 2 + 2d
1 + 2d

1 + 2d
2d

=) c(0) = d

1 + 2d
.

15.4 For two identical ·/M/1 servers and any arrival stream, prove that join the
shortest queue maximizes the probability that : items will complete service
by time B, for all B and : (hint: use induction on : [Winston (1977); Weber
(1978)]).
Solution

Exercises 147

We wish to show, PG (D(B) � :), the probability that starting from Q(0) = G
the number of departures by time B will equal or exceed : is maximized by
JSQ, for all G, B, : . We show if by induction on : . For : = 0 there is nothing
to show. Assume the theorem is correct for : � 1. We will prove it for : .
After the first departure, by the induction hypothesis we should use JSQ. So
we only need to consider the period up to the first departure. Assume at time
0, queue 1 is longer than queue 2. Consider two strategies up to the time of
first departure:
– Strategy S1: Assigns first customer to queue 1, then continues in some
arbitrary fashion, until the first departure.
– Strategy S2: Assigns first customer to queue 2. Then imitate strategy S1 at
each arrival, until S1 assigns a customer to queue 2 (if that happens before
first departure) and assign that arrival not to queue 2 but to queue 1. We also
assume that as long as queue 2 is empty under strategy S1 we do not serve it
under strategy S2.
At the time of the first departure, there are two possibilities: either the two
queues have the same number of customers under both S1,S2, or, if under
S1 no arrival has been assigned to queue 2, then there will be one customer
more at server 2 and one less at server 1 under S2 than under S1. In the first
case we see that S2 is as good as S1. We now discuss the second case, and
show that in that case S2 is better than S1 in maximizing PG (D(B) � :).
Note that in this second case, at the time of the first departure there is a
single customer which is in queue 1 under S1 and in queue 2 under S2. Also,
because S1 has only assigned arrivals to queue 1, queue 1 is longer than
queue 2 if we do not count the extra customer. Imagine now that instead of
the extra customer being in the system before the first departure, it has arrived
just after the first departure. Then by the induction hypothesis it should be
assigned to queue 2. Hence the action of S2 at the time of the first arrival was
better than the action of S1. If under S2 we would have also served queue 2
when it was empty under S1, then the advantage of S2 would be even greater.
The same argument then hods also for the 2nd, and for all subsequent arrivals
before the first departure. This completes the proof.
Note that the proof is valid for any arrival stream, and for any number of
identical servers with exponential service time. We need the exponential
service assumption here to make the system Markovian and memoryless.
The same paper of Weber (1978) also shows that JSQ is optimal for identical
servers with IHR (increasing hazard rate) distributions.

15.5 Consider Poisson arrivals, and service time that is 0 with probability 1 � n ,
and = with probability n . Consider the following alternative to JSQ: If there
is an empty server or if the di�erence in queue length is 0 or 1, use JSQ.
Otherwise, join the longer queue. Show that for fixed _ and =, this policy
outperforms JSQ as n ! 0 (Hint: show that under any policy, the probability
that a busy cycle contains : long jobs is of order n : [Whitt (1986)]).

148 Join the Shortest Queue in Parallel Servers

Solution
For any fixed _, as n & 0 the system goes to light tra�c. We refer to the
customers according to service time as 0 or =. Consider the story of how
things work in a busy period: for most of the time, both queues are empty,
and an arriving customer is 0, he waits 0 and leaves immediately. Then we
have an arrival =, and for a duration of = he is in one queue and most of the
time, all arrivals during = are 0, they go to the empty queue, wait 0, and and
leave immediately. Eventually, we may have an arrival of = during = and we
now have both servers busy. Arrivals will now join alternating queue 1 and
2, which will remain almost equal, until the earlier of the = leaves, and most
of the time that queue will now be empty. We now get to the interesting part:
Occasionally, there will be an arrival of a third = before one of the two =s
leaves.
With probability 1/2 it joins the queue that does not empty, and then in most
cases the non-empty queue will empty from both = customers before the
other queue becomes non-empty.
With probability 1/2 the new = customer joins the queue of the = customer
that leaves first. In that case, the queue that has the other = will have nobody
leaving, while the queue of the = that leaves will become shorter, because all
the customer before the third = will leave. But now, usually, the second = will
complete, and all customers behind it will leave, while the third = is still in
process. So if you arrive in this situation, you should join the longest queue.
We have shown that for all cases that the busy period has no more than 3 =s,
the policy of join empty or join shortest when di�erence is 1, but if di�erence
is more than 1 join longest queue is better than the policy of JSQ.
To complete the proof, see Whitt (1986), for proofs of:
Lemma For - a Poisson random variable with parameter _,

_
: � P(- � :) � _:4�_/:!.

Theorem. The probability of : or more long jobs in a busy period is of order
n
:

15.6 Calculate the expected waiting time and the expected sojourn time for an
M/M/2 queue, and compare it with the expected waiting time and expected
sojourn time of an M/M/1 queue with a server that has twice the speed.
Solution
Denote , the sojourn time, + the waiting time, and & the number of cus-
tomers in the system in steady state..
For "/"/1 with arrival rate _ and service rate 2`, with < = 1/` and
d = _

2` ,

P(, = 0) = 1 � d, E(,) = </2
1 � d , E(+) = d </2

1 � d

Exercises 149

For M/M/2 with arrival rate _ and service rates `, with < = 1/` and d = _

2` ,

P(& = 0) = 1 � d
1 + d , P(& = :) = 1 � d

1 + d 2d: , : � 1

P(, = 0) = P(& = 0) + P(& = 1) = 1 � d 2d
1 + d > 1 � d.

and the waiting time once a customer has to wait is the same as for the M/M/1
double speed, so:

E(+) = d 2d
1 + d

</2
1 � d =

d
2

1 � d2
<, E(,) = < + E(+) = <

1 � d2

so with two servers, wait is shorter, sojourn longer than with a single double
speed server.
When d % 1, the di�erences disappear.

15.7 Calculate the expected waiting time for a system with B ·/M/1 queues, when
Poisson customers are routed on a round robin policy to the di�erent queues.
Solution
Assume arrivals are Poisson rate _, service at each server is exponential rate
`, and let d = _/B`.
Under this policy each server behaves like a G/M/1 queue with interarrival
times distributed Erlang(B, _). As we saw in Section 2.9, the stationary dis-
tribution is:

P(& = :) =
⇢
d(1 � U)U:�1

, : = 1, 2, . . .
1 � d, : = 0.

.

where U is the unique < 1 solution of

U = �⇤ (`(1 � U)) =
⇣

_

_ + `(1 � U)
⌘
B

and sojourn time is then exponential with parameter `(1�U). One can solve
for U numerically.
In heavy tra�c, i.e when d = _/B` ⇡ 1, we can use Kingman’s bound
approximation:

E(+) = E(,) = <

1 � d
1/B + 1

2

For B = 2 this is 3/2 the value for a double speed server, and 2/3 of the
random assignment sojourn. When the number of servers is large, this is half
the sojourn time of random assignment.

15.8 Verify the calculated values of the resource pooling e�ect on expected sojourn
time as listed in Table 15.1.
Solution
We already laid out all the necessary theory. The columns for Alternate

150 Join the Shortest Queue in Parallel Servers

routing and for JSQ need to be calculated numerically. The other columns
just need substitution in the closed form expressions.

15.9 An alternative to the proof of the bound on the di�erence between JSQ and
G/G/2, is to compare JSQ to a G/G/1 queue, with half the processing times.
With W(C) the unfinished workload of the soulbe speed GI/G/1 queue, show
that

W(C)  ,1 (C) +,2 (C)  ,̃ (C) + sup
0<B<C

��W1 (C) �,2 (C)
��

Solution
We compare JSQ for two identical ·/G/1 systems, with a single G/G2/1 system
with service times distributed as ⌧ (G/2) (twice the speed). We couple the
streams of arrivals and service requirements for the two systems and denote
,1,,2,, the remaining workload processes.
Denote ! (C) = W1 (C) + W2 (C) � W(C) and (C) = |W1 (C) �W2 (C) |, we
wish to show 0  ! (C)  sup0BC (B). Consider a single busy period of
the JSQ system, starting at time 0, so that ! (0) = (0) = 0. Let C0 be the
first time that G/G2/1 is busy, while JSQ has one server idle, if such a time
exists, or else we let C0 be the end of the busy period. Then ! (C) = 0 for
0  C < C0. At the time C0 w.l.g., assume server 2 is idle and server 1 is
busy. Then, ! (C0) � 0 and (C0) = W1 (C0) � W(C0) (they are equal for
C0 but we will need � for C1, C2 . . .). In the time following C0, while G/G2/1
is busy at rate 2, in JSQ only 1 server is busy, so ! (C) increases at rate 1,
while (C) decreases at rate 1. However, this can only continue for at most
a duration W(C0)/2, and so in this entire period that ! (C) is increasing,
0  ! (C)  ! (C0) +W(C0)/2  (C0) �W(C0)/2  (C0).
Before the time C0 + W(C0)/2 two things can happen: (i) There may be an
arrival, in which case both systems will again have two servers busy, or (ii)
we may reach a time C when W(C) = 0 while ! (C) = W1 (C) � 0. At that time
the JSQ system will have one busy server while the G/G2/1 system will be
idle, and ! (C) will be decreasing until it reaches 0 and the busy period ends,
or there is a new arrival, and both systems will again be processing at rate 2.
Throughout, 0  ! (C)  (C0) will be maintained, until the busy period is
over, or until at some time C1 > C0, again for the first time, system G/G2/1 is
busy while the JSQ system has one idle server.
Then at C1, ! (C1) � 0 and (C1) = W8 (C1), with W3�8 (C1) = 0 for 8 = 1 or
8 = 2. Note that (C1) = W8 (C1) = W1 (C1) + W2 (C1) = W(C1) + ! (C1) �
W(C1). In the next period, by the same argument, 0  ! (C)  (C1). This
can be repeated with C0 < C1 < · · · C: < · · · being successive times at which
G/G2/1 is busy and in the JSQ system one of the servers becomes idle. This
shows that ! (C)  sup0BC (B) holds throughout the busy period.

15.10 Complete the proof of proposition 15.3.
Solution
Because the longest queue is not receiving JSQ customers, we can assume

Exercises 151

that W̄1 (0) = W̄2 (0) = 0, and thereafter W̄8 (C) = 0, and we have Ŵ=

8
(C) =

W=

8
(C)/p=.

We will show that |Ŵ=

1 (C) � Ŵ=

2 (C) | !? 0 u.o.c., which is equivalent to
|Ŵ=

1 (C) � Ŵ=

2 (C) | !F 0. We wish to show for C > 0 and n > 0:

P(sup
0<BC

|Ŵ=

1 (C) � Ŵ=

2 (C) | > n) ! 0, as =! 1.

Assume first that Q̂ (0) = 0. Then for = large enough, Q̂= (0) < n/2. Consider
the event sup0<BC Q̂= (B) > n . If Q̂= (0) < n/2 and sup0<BC Q̂= (B) > n , then
we can define 0  g⇤= < g

=  C such that:

g
= = inf{B : Q̂= (B) > n}, g

⇤= = sup{B : 0  B < g
=

, Q̂= (B)  n/2}.

The rest of the proof follows the same steps as the proof of Theorem 6.3.
15.11 Complete the proof of Theorem 15.1 without assuming _1 = _2 = 0.

Solution
The proof needs only minor changes. We now have in addition to the JSQ
customers also arrivals to either of the queues. As long as both servers
work in both systems, ! (C) and (C) do not change. In those periods when
G/G/2 has two busy servers and JSQ only one, we now need to consider
also arrivals of server 1 and of server 2. Assume C: is a time when W2 (C:)
reaches 0, W1 (C:) > 0, in G/G/2 both servers busy, and we have: ! (C:) � 0,
W1 (C:) � W(C:), and consider the following period, in which ! (C) increases
and (C) decreases, but ! (C)  (C)  (C:) is maintained. Then we need
to consider two possibilities: we may have an arrival that joins server 2 in
both systems (it may be a server 2 customer or a JSQ customer), and both
servers are busy in both systems, and ! (C), (C) stop changing. Or it may be
a server 1 customer that joins server 1 in both systems at time B, and requires
service (. When he joins he leaves W2 (C) = 0, (C) increases by (, ! (C)
remains unchanged, and W(C) increases by (. Then the following period,
when ! (C) increases at rate 1 and (C) decreases by 1, can only last for a
time (W(B�) + ()/2 and ! (C)  max{ (C:), (B)} is maintained.
Consider then the sequence of times C0, . . . , C: , . . . at which one JSQ server
becomes idle and both G/G/2 servers are busy, and the times B1, . . . , B; , . . .,
at which a customer joins the longer queue when the other queue is empty,

and both G/G/2 servers are busy. The at all times, ! (C)  max
n
! (B) : B 2

{C0, C1, . . . , B1, B2, . . .}
o
 sup0BC (B). This completes the proof.

15.12 Prove that similar to Propositions 15.2, 15.3 about workloads, the following
theorem holds for the queue lengths:
(i) Under join the shortest queue, |Q̂=1 � Q̂=2 | !? 0 as =! 1.
(ii) Q̂=1 + Q̂=2 !F RBM(\,Õ_82

2
0,8

+ Õ
2

2
B,8
) as =! 1.

Solution
Let Q(C) be the queue length of the coupled G/G/2 system. We then have:

152 Join the Shortest Queue in Parallel Servers

(i) Q1 (C) + Q2 (C) � Q(C), (ii) By |Ŵ1 (C) � Ŵ2 (C) | !? 0 we also have
|Q̂1 (C) � Q̂2 (C) | !? 0, (iii) Q̂ (C) !F RBM(\,Õ_82

2
0,8

+Õ
2

2
B,8
) as =! 1.

The Theorem follows.

16

Control in Balanced Heavy Tra�c

Exercises
16.1 Derive the di�usion limits for the MCQN netput process 1

#
X(#2

C), using
the property that in balanced heavy tra�c lim#!1 1

#
T: (#C) = a: C u.o.c.

a.s..
Solution
We have

X: (C) =
�
A: (C) � U: C

�
�

�
S: (T: (C)) � `:T: (C)

�

+
 ’
;=1

�
R;,: (S; (T; (C))) � ?;,:`;T; (C)

�

We then have, by the FCLT for renewal processes:

1
#

�
A: (#2

C) � U:=2
C

�
!F (U:22

0
)1/2

⌫" (C).

Also, since 1
#
T (#C) ! C u.o.c. a.s., using time change, we have:

1
#

�
S: (T: (#2

C)) � `:T: (#2
C)
�

⇠ 1
#

�
S: (#2

C)) � `:T: (#2
C)
�
!F (`:22

B
)1/2

⌫" (C),

and, since 1
#
S; (T; (#C)) ! `C u.o.c. a.s., using time change, we have:

1
#

�
R;,: (S; (T; (#2

C))) � ?;,:`;T; (#2
C)
�

⇠ 1
#

�
R;,: (b`;#2

Cc) � ?;,:`;#2
C

�
!F

�
`; ?;,: (1 � ?;,:)

�1/2
⌫" (C)

The di�usion limits of arrivals and of service times for all : are independent.
The di�usion limits of the quantities R;,: , : = 1, . . . , are independent of
the arrivals and service time limits, but are correlated between themselves.
As a result:

1
#

X: (#2
C) !F

⇣
U:2

2
0
+ `:22

B
+

’
;2K

`; ?;,: (1 � ?;,:)
⌘1/2

⌫" (C).

153

154 Control in Balanced Heavy Tra�c

16.2 Verify equation (16.2) for the drift and covariance of the netput process,
Solution
The calculations are similar to the derivations of (9.17), Theorem 9.4 in
Section 9.5 and to Exercise 9.5. See also Chen and Mandelbaum (1991,
1994).

16.3 Show that the LP (16.8), that solves for Q̂ (C) in terms of Ŵ(C), is feasible
and bounded.
Solution
In the LP (16.8) the coe�cients matrix " is non-negative full rank, and the
r.h.s. Ŵ(C) � 0. This proves the solution is bounded and the dual is feasible.
The dual is:

max
�’
8=1

Ŵ8 (C)c8

"
T
c8  ⌘: ,

which also has non-negative coe�cient matrix where every row has some
positive terms, and non-negative r.h.s., and although the variables c8 are not
restricted in sign, its objective coe�cients are non-negative, so the maxi-
mizing optimal solution is bounded above. This implies that the primal is
feasivle.

16.4 Consider the criss-cross network with Poisson arrivals and exponential ser-
vice times. Assume that customers that arrive at station 1 are served on FCFS
basis. Analyze the performance of the network under that policy.
Solution
This is a feed forward Jackson type network. The situation in station 1 is
that it acts like an M/M/1 queue with _ = 2d, ` = 2. So in steady state, the
number of customers in queue 1 is

P(Q1 + Q2 = =) = (1 � d)d=,

with expectation d

1�d .
conditional on Q1 + Q2 = = the number of those in Q1 is ⇠Bin(=, 1/2), since
they arrived randomly and are served in order of arrival, so:

P(Q1 = : ,Q2 = ;) = (1 � d)d:+;
✓
: + ;
:

◆ ✓
1
2

◆
:+;

=
✓
: + ;
:

◆
(1 � d)

⇣
d

2

⌘
:+;

,

Exercises 155

The marginal distributions of Q1is:

P(Q1 = :) =
1’
;=0

✓
: + ;
:

◆
(1 � d)

⇣
d

2

⌘
:+;

= (1 � d)
⇣
d

2

⌘
:

1’
;=0

✓
: + ;
:

◆ ⇣
d

2

⌘
;

= (1 � d)
⇣
d

2

⌘
:
⇣
1 � d

2

⌘�(:+1)

=
✓
1 � d

2 � d

◆ ✓
d

2 � d

◆
:

,

by the binomial theorem formula 1
(1�G):+1 =

Õ1
==0

�
=+:
:

�
G
=. The marginal

distribution of Q2 is the same.
It is interesting to note that each behaves like M/M/1 with arrival rate d and
service rate 2� d, which is the service rate left over after using rate d for the
other class. This is a higher rate than the rate 1 it would get if it were on its
own. This is exactly the pooling e�ect.
Because this is a feed forward network, all the streams of customers are
Poisson, so input to station 2 is Poisson rate d, with service rate 1.

P(Q3 = <) = (1 � d)d<.

The value of the objective:

lim
)!1

1
)

π
)

0
(Q1 (C) + Q2 (C) + Q3 (C))3C = E(Q1 + Q2 + Q3) =

2d
1 � d

The sojourn time in station 1, for either type of customer is 1
2

1
1�d . The

soujourn time for customers of type B composed of the two stations is 3
2

1
1�d .

16.5 Consider the criss-cross network with Poisson arrivals and exponential ser-
vice times. Analyze the performance of the network under the policy of
priority to class 1 and under the policy of priority to class 2.
Solution
Under priority to customers of type B at station 1, the flow of customers of
type B will be as follows: They experience M/M/1 service at the first station,
with sojourn time exponential of rate 2 � d, and arrive in a Poisson stream
to station 2, and have sojourn time time exponential of rate 1 � d at station
2, and the two quantities are independent. The customers of type A will have
a much longer waiting time: The average waiting time will be (see equation

(3.5)) +̄ = 2d ·1/2·2/4
(1�d/2) (1�A⌘>) , and the sojourn time will be 2�d+d2

2�3d+d2 .
Under priority to customers of type A at station 1, the sojourn times at station
1 will be reversed. The sojourn time at station 2 will however be longer, since
the arrival process will no longer be Poisson but will be much more variable.

156 Control in Balanced Heavy Tra�c

16.6 For the criss-cross network, plot a schematic path of the bu�er contents,
using drift and deviations from the drift, to illustrating all possible states.
Solution
The following is a schematic picture of how fluid will empty under the optimal
Brownian policy.

A1

B1

B2

16.7 For the criss-cross network calculate the drift and the covariances for the
netput Brownian motion X̂(C) and for the netput Brownian workload Ẑ(C).
Solution
The scaled drift is 3̂: C = # (d � 1)C for each the queue lengths at station
1, which approximates 3̂C = 1

#
3#

2
C) = # (d � 1) from which we get the

the original drifts are 3 (C) = d � 1. The drift for the third queue is 0. The
covariance matrix of the X(C), recalling that for exponential service and
interarrivals 20,8 , 2B,: = 1, is:

�X =
266664

2d 0 0
0 2d �d
0 �d 2d

377775
The drifts of / (C) is:

1/2(d � 1) + 1/2(A⌘> � 1) = d � 1; (d � 1) + 0 = d � 1.

The covariance matrix is:

�Z =

d

1
2 d

1
2 d 2d

�

16.8 Obtain the marginal distributions of the Brownian workloads Ŵ8 (C) for the
criss-cross network under the optimal policy. Note they are not independent
and we cannot obtain their joint distribution. Try and estimate the mean
objective.

Exercises 157

Solution
We have: Ŵ8 (C) = Ẑ8 (C) + Î8 (C), where Ẑ8 (C) is a one dimensional Brow-
nian motion with known drift and variance, and Ŵ8 (C) is its one sided
Skorohod reflection, i.e. Ŵ8 (C) ⇠ '⌫" . The drifts are negative, so the sta-
tionary distributions are exponential. for drift < < 0 and variance f2 we get
⇠Exp(� 2<

f
2):

Ŵ1 (C) ⇠ Exp
✓
2(1 � d)

d

◆
, Ŵ2 (C) ⇠ Exp

✓ (1 � d)
d

◆

with means and standard deviations: d

2(1�d) and d

1�d .
Under heavy tra�c the lower bound (??) should approximate the actual
objective:

E(Q1 (C) + Q2 (C) + Q3 (C)) ⇡ E
�
Q1 (C) + Q2 (C) _ Q2 (C) + Q3 (C))

= E
�
2W1 (C) _W2) 

3
2

d

1 � d ,

Because both 2W1 (C) and W2 (C) are exponential random variables, with the
same parameter, and they are positively correlated. For two independent rate
_ exponential random variables the maximum has expectation 3

2
1
_

. If they
are positively correlated we get a value that is between 1

_
<

3
2

1
_

16.9 Consider a modified criss-cross network, where customers of type B can
start their service at station 2 without waiting to complete service at station
1, and customers of type B leave the system when both services are complete.
Assume Poisson arrivals and exponential service times, and server 1 is giv-
ing non-preemptive priority to customers of type A. Calculate the expected
number of customers in the system as d % 1.
Solution
This modified system is obviously an improvement on the actual system. The
expected number of customers waiting to complete service by server 1 is
d

1�d . In addition there will be . customers of type B that have been served
by server 1, and are still waiting for server 2. Since customers of type B have
lower priority for service by server 1 and have no competition for server 2,
. will usually be small, and so we can ignore Q3. For Q1 and Q2 the total
number in workstations 1 is independent of policy, and is queue length for
M/M/1 with tra�c intensity d. Hence: E(Q1 + Q2 + Q3) ⇡ d

1�d . This lower
bound is a factor 2 improvement on FCFS.
Together with the previous exercise we get the expected objective is bounded
between d

1�d ,
3
2
d

1�d as compared to 2 d

1�d for FCFS.
We can also calculate the values of the (approximate) expected waiting times
for type A and B, using the equations for waiting times in priority M/G/1,
Section ??, Equation (??). From it we get (ignoring station 2):

,̄� ⇡ 2.5, ,̄⌫ ⇡ 2
2 � A .

158 Control in Balanced Heavy Tra�c

16.10 Consider the criss-cross network under the policy of Maximum pressure, and
compare this to the proposed threshold policy. Evaluate both by simulation.
Solution
The input output matrix is:

' = (� � %T)diag(`) =
266664

1 0 0
0 1 0
0 �1 1

377775
266664

2 0 0
0 2 0
0 0 1

377775
=

266664
2 0 0
0 2 0
0 �2 1

377775
.

For bu�er contents Q we have:

QT
' =

⇥
Q� Q⌫1 Q⌫2

⇤ 266664
2 0 0
0 2 0
0 �2 1

377775
=

⇥
2Q�, 2(Q⌫1 � Q⌫2), Q⌫2

⇤
.

The maximization is over D1 + D2  1 and D3  1, so maximum pressure
policy will require:
– At station 2, work fully on bu�er B2.
– At station 1, work on A when Q� > Q⌫1 � Q⌫2,
– At station 1, work on B1 when Q⌫1 � Q⌫2 > Q�.
This works out as follows: Always work on B2, which will change at rate
D2 � 1. While Q� > Q⌫1 � Q⌫2 work on A, so it empties at rate d � 2.
Meanwhile pressure at Q⌫1 increases if bu�er ⌫2 is emptying, or stays
constant if bu�er ⌫2 is empty, so eventually equality Q� = Q⌫1 � Q⌫2 is
reached. If Q⌫1 � Q⌫2 > Q� work on B1, so Q⌫1 will empty at rate d � 2,
whileQ⌫2 will fill up at rate 2�1, so also in this case equalityQ� = Q⌫1�Q⌫2

will be reachd. Once equality is reached, work on both bu�ers A and B1,
with D1 = D2 = 0.5 so that bu�er B2 will receive input at rate 1, and process
at rate 1, which means it will stay constant (on the fluid scale), so maximum
pressure will equalize the pressure at station 1, and share the processing at
station 1 equally. This will continue until bu�er A will become empty, and
Q⌫1 = Q⌫2.
When fluid is 0, maximum pressure will be stable, but it is harder to say how
random fluctuation will a�ect the processing.
It is significant to note that even when B2 is above a threshold, i.e. it is in no
danger of starvation, maximum pressure will not give priority to A, but will
share processing of A and B1. This is in contrast to the Brownian inspired
threshold policy.

16.11 Consider the criss-cross network with general parameters, arrival rates U8 ,
service rates `: . Assume renewal arrivals and services, with coe�cients of
variation 20,8 , 2B,: . Follow the next steps:
(a) Write the dynamics of Q: (C), using nominal rates a: .
(b) Define netput processes X: (C), and write &: (C) in terms of the netput
X: (C) and the free times J: (C).

Exercises 159

(c) Write the dynamics of the workload processes W8 (C), define workload
netput Z8 (C), and write W8 (C) in terms of the workload netput Z8 (C) and the
idle time processes I8 (C).
(d) Calculate the o�ered load for each of the servers, d8 .
(e) Define a sequence of systems indexed by # . Use fluid scaling with time
and space scaled by # , and obtain the fluid limits of Q# ,X#

,J # and of
W#

, /
#
,I# .

(f) Formulate the conditions for balanced heavy tra�c and determine the
di�usion approximation to X(C) and Z(C).
(g) Calculate the drift and and covariance matrix for the di�usion limits X̂
and Ẑ.
Solution
(a,b) The nominal rates are: a1 = U1<1

U1<1+U2<2
, a2 = U2<2

U1<1+U2<2
, a3 = 1. If the

system is to be rate stabe, server 1 needs to devote a fraction a1 of its time to
class 1, and a2 of its time to class 2.

Q1 (C) = [(U1 � `1a1)C + (A1 (C) � U1C) � (S1 (T1 (C)) � `1T1 (C))]
+ [`1 (a1C � T1 (C)] = X1 (C) + `1J1 (C)

Q2 (C) = [(U2 � `2a2)C + (A2 (C) � U2C) � (S2 (T2 (C)) � `2T2 (C))]
+ [`2 (a2C � T2 (C)] = X2 (C) + `2J2 (C)

Q3 (C) = [(`2a2 � `3)C + (S2 (T2 (C)) � `2T2 (C)) � (S3 (T2 (C)) � `3T3 (C))]
� [`2 (a2C � T2 (C)] + [`3 (C � T3 (C)] = X3 (C) + `3J3 (C) � `2J2 (C)

Note that Q3 includes a combination of its own free time and the free time
of Q2 in its decomposition.

(c) The workloads are W(C) = "Q(C), with " =

<1 <2 0
0 <3 <3

�
where

<8 = 1/`8 are mean processing times. We have:

W1 (C) = <1X1 (C) + <2X2 (C) + J1 (C) + J2 (C)
= (U1<1 + U2<2 � 1)C + [<1 (A1 (C) � U1C) + <2 (A2 (C) � U2C)
�<1 ((S1 (T1 (C)) � `1T1 (C)) � <2 (S2 (T2 (C)) � `2T2 (C))]
+ [C � T1 (C) � T2 (C)] = Z1 (C) + I1 (C)

W2 (C) = <3 [X2 (C) + X3 (C)] + J3 (C)
= (U2<3 � 1)C + [<3 (�2 (C) � U2C) � <3 (S3 (T3 (C)) � `3T3 (C))]
+ [C �)3 (C)] = Z2 (C) + I2 (C)

(d) d1 = U1<1 + U2<2, d2 = U2<3. We assume that d8 < 1
(e) We assume that Q# (0) = 0, and the arrival and service processes are
obtained from the same sequence of i.i.d. interarriaval and service times,
di�erentiated only by their scaling (using di�erent rates) of the parameters.
We define fluid scaling of I(C) by Ī(C) = 1

#
I(#C). Then, by the FSLLN, as

160 Control in Balanced Heavy Tra�c

! 1, u.o.c. a.s. we get the fluid limits:

T̄ 1 (C) = a1d1C, T̄ 2 (C) = a2d1C, T̄ 3 (C) = d2C,

J̄
:
(C) = a: (1 � d

B (:))C, : = 1, 2, 3,

Q̄1 (C) = (U1 � a1`1)+C, Q̄2 (C) = (U2 � a2`2)+C, Q̄3 (C) = (a2`2 � `3)+C,
Z̄1 (C) = (U1 + U2 � a1`1 � a2`2)+C, Z̄2 (C) = (U2 � `3)+C, Ī8 (C) = (1 � d8)C, 8 = 1, 2.

Here we assumed that the policy is work conserving, and that the system is
made rate stable, so we follow the nominal rates. In particular, by d8 < 1,
since we start from Q̄ (0) = 0, we have Q̄: (C) = 0, : = 1, 2, 3, Z̄8 (C) =
0, 8 = 1, 2.
(f) The system will be in balanced heavy tra�c if # (1�d8) is of moderate size
for some large # . In that case the scaled netputs, 1

#
X(#2

C) and 1
#
Z(#2

C),
can be approximated by Brownian motions X̂#

:
(C), Ẑ#

8
(C).

X̂1 (C) =) \1C +
⇣
U1 (22

0,1 + 22
B,1)

⌘1/2
⌫" (C)

X̂2 (C) =) \2C +
⇣
U2 (22

0,2 + 22
B,2)

⌘1/2
⌫" (C)

X̂3 (C) =) (\3 � \2)C +
⇣
U2 (22

B,2 + 22
B,3)

⌘1/2
⌫" (C).

Ẑ1 (C) =) (<1\1 + <2\2)C +
⇣
<

2
1U1 (22

0,1 + 22
B,1) + <2

2U2 (22
0,2 + 22

B,2)
⌘1/2

⌫" (C).

Ẑ2 (C) =) <3\3C + <3

⇣
U2 (22

0,2 + 22
B,3)

⌘1/2
⌫" (C).

where we define:

\1 = # (U1 � a1`1), \2 = # (U2 � a2`2), \3 = # (a2`2 � a3`3),

The renewal processes A8 S: , counting arrivals and service completions
at rates U8 `: , with interval c.o.v. 20,8 and 2B,: . Then, because T̄ : (C) !
a: C, : = 1, 2, we have that 1

#
(S: (T: (#2

C))�`:T: (#2
C)) =) (`:22

B,:
)1/2

⌫" (a: C) =⇡
(a:`:22

B,:
)1/2

⌫" (C).
(g) For Q̂ (C) we obtained the drifts already. The covariances are:

� =

2666664

U1 (22
0,1 + 22

B,1) 0 0
0 U2 (22

0,2 + 22
B,2) �U22

2
B,2

0 �U22
2
B,2 U2 (22

B,2 + 22
B,3)

3777775
For Ẑ(C) the drifts are:<1\1+<2\2 = # (1� d1) and<3\2+\2 = # (1� d2).
The covariances are "�")

C:"
<

2
1U1 (22

0,1 + 22
B,1) + <2

2U2 (22
0,2 + 22

B,2) <2<3U22
2
0,2

<2<3U22
2
0,2 <

2
3U2 (22

0,2 + 22
B,3)

#

Exercises 161

16.12 Formulate the BCP of the general criss-cross network in heavy tra�c, and
solve it for general parameters, U8 , 8 = 1, 2 , `: , : = 1, 2, 3 and cost coef-
ficients ⌘: , : = 1, 2, 3. Note that there are several cases, according to the
parameters.
Solution
The general formulation is, find Q: , �8 such that:

min lim
)!1

1
)

π
)

0

3’
:=1

⌘: Q̂: (C)3C

s.t. <1Q̂1 (C) + <2Q̂2 (C) = Ẑ1 (C) + Ĵ 1 (C), C � 0

<3Q̂2 (C) + <3Q̂3 (C) = Ẑ2 (C) + Ĵ 2 (C), C � 0

Q̂ (C) � 0, Ĵ (0) = 0, Ĵ non-decreasing C � 0

Q̂, Ĵ non-anticipating with respect to X̂(C)
and for given Î1 (C), Î2 (C), we can solve it separately for each C, find Q̂: :

min + =
3’
:=1

⌘: Q̂:

s.t. <1Q̂1 + <2Q̂2 = ,̂1,

<3Q̂2 + <3Q̂3 = ,̂2,

Q̂ � 0,

It is useful to look at the dual problem, find H1, H2 :

max + =
2’
8=1

Ŵ8H8 ,

s.t. <1H1  ⌘1,

<2H1 + <3H2  ⌘2,

<3H2  ⌘3.

The following figure illustrates the possible extreme point solutions for the
dual,
The solutions for the dual are:
Case I: If ⌘1

<2
<1

+ ⌘3  ⌘2, then H1 = ⌘1
<1

, H2 = ⌘2
<3

, and the primal solution

is: Q̂1 = Ŵ1
<1

, Q̂2 = 0, Q̂3 = Ŵ2
<3

. The interpretation of this is that we
always give priority to class 2 at station 1, so it is always almost empty,
and customers are mainly kept in class 1 and class 3.

Case II: If ⌘1
<2
<1

+ ⌘3 > ⌘2, there are two extreme points, corresponding to
the solutions:

Case IIa:

(H1, H2) = (⌘2

<2
� ⌘3

<2
,

⌘3

<3
), (Q̂1, Q̂2, Q̂3) = (0, Ŵ1

<2
,

Ŵ2

<3
� Ŵ1

<2
),

162 Control in Balanced Heavy Tra�c

(c2
m2

− c3
m2
, c3
m3
)

(c1
m1
, c2
m3

− c1
m1

m2
m3
)

(c1
m1
, c2
m3
)

y1

y2

and objective value:

+0 = Ŵ1 (
⌘2

<2
� ⌘3

<2
) + Ŵ2

⌘3

<3

Case IIb:

(H1, H2) = (⌘1

<1
,

⌘2

<3
� ⌘1

<1

<2

<3
), (Q̂1, Q̂2, Q̂3) = (Ŵ1

<1
�Ŵ2

<3

<2

<1
,

Ŵ2

<3
, 0),

and objective value:

+1 = Ŵ1
⌘1

<1
+ Ŵ2 (

⌘2

<3
� ⌘1

<1

<2

<3
))

We will have:

+1 �+0 =
✓
⌘1
<2

<1
+ ⌘3 � ⌘2

◆
Ŵ1

<2
� Ŵ2

<3

!

because ⌘1
<2
<1

+ ⌘3 � ⌘2 > 0, we have that +1 > +0 () Ŵ1
<2

>
Ŵ2
<3

, which

is exactly the case that IIb is feasible, and +0 > +1 () Ŵ2
<3

>
Ŵ1
<2

, which
is exactly the case that IIa is feasible.

Exercises 163

The solution for case II is then:

Q̂2 (C) =
Ŵ2

<3
_ Ŵ1

<2
, Q̂1 =

<2

<1

Ŵ1

<2
� Ŵ2

<3

!+
, Q̂3 =

Ŵ2

<3
� Ŵ1

<2

!+
,

+ =
✓
Ŵ1

⌘1

<1
+ Ŵ2 (

⌘2

<3
� ⌘1

<1

<2

<3
)
◆
_

✓
Ŵ1 (

⌘2

<2
� ⌘3

<2
) + Ŵ2

⌘3

<3

◆

= ⌘2

Ŵ2

<3
_ Ŵ1

<2

!
+ ⌘1

<2

<1

Ŵ1

<2
� Ŵ2

<3

!+
+ ⌘3

Ŵ2

<3
� Ŵ1

<2

!+
.

16.13 For the closed two station multi-class network show that to maximize
throughput one should use a work conserving policy.
Solution
Assume at time C we can start job in bu�er : , and instead we idle for a period
X. Without loss of generality, assume that we count completion of circulations
at bu�er : . Then starting the job earlier will in crease the circulation at its
completion, without interfering with anything else.

16.14 For the closed two station multi-class network, write down the dynamics,
center and scale all components and derive a decomposition with a netput
process and control processes. Derive the drift and covariance matrix of the
limiting Brownian netput process.
Solution
For bu�er : we have:

Q: (C) = Q: (0) � S: (T: (C)) +
 ’
;=1

R;,: (S; (T; (C)))

=

"
Q: (0) �

�
`: �

 ’
;=1

?;,:`;

�
C �

�
S: (T: (C)) � `:T: (C)

�

�
 ’
;=1

�
R;,: (S; (T; (C))) � ?;,:S; (T; (C))

�
+

 ’
;=1

�
?;,:S; (T; (C)) � ?;,:`;T; (C)

� #

+
"
`:

�
a: C � T: (C)

�
�

 ’
;=1

?;,:`;

�
a: C � T; (C)

� #

= X(C) + 'J (C)

The drift vector for X(C) is N'a and the variance covariance matrix is given
by:

⌃ 9 ,; =
 ’
:=1

[a:`: ?: , 9 (X 9 ,; � ?: ,;) + a:`:f2
:
' 9 ,:';,:]

16.15 Prove that if the stochastic transition matrix % is irreducible, then the matrix
%\ has spectral radius < 1 so that � � %T

\ is invertible.
Solution

164 Control in Balanced Heavy Tra�c

Consider % a ⇥ irreducible stochastic matrix, %\ the matrix with last
row replaced by 0’s, ? ·, = (? ,1, . . . , ? ,)T the last row of %, transposed.
Let c be the stationary distribution of the transition probability matrix %, so
that c% = c. Then:

c%\ = (c1 � c ?1. , . . . , c � c ? , ,

or:

(� � %T
\)c

T = c ? ·, .

In other words, cT solve the tra�c equation for the network without node
with input rates proportional to ? ·, . This shows that � � %T

\ is invertible,
and hence %\ has spectral radius < 1.

16.16 Show that (⌥1,⌥2) is proportional to (d1, d2).
Solution
Since ⌥8 is the amount of work at machine 8 for a complete circulation
of a customer, which we calculated starting at the exit from bu�er , it
obviously should be proportional to the tra�c intensity. We now go through
a calculation to show that this is indeed the case.
Recall that c is the probability vector solving %T

c = c, and V solves 'V = 0,
so (� �%T)diag(`)V = 0 so we can take diag(`)V = c or V: = c:<: , and we
then define d = ⇠V where we adjust V so that max(d1, d2) = 1. In summary:

d = ⇠V / ⇠diag(<)c

Recall the definition of %\ as the matrix % with the last row replaced by

zeroes, and denote ? =

2666664

? ,1
.
.
.

? ,

3777775
⌥ = "? = ⇠'�

? = ⇠diag(<) (� � %\)�1
? .

so we need to show that (� � %T
\)

�1
? is proportional to c

This will follow from showing that ? is proportional to (� � %T
\)c.

We note that

%
T
\ c =

266666664

c1 � c ? ,1

c2 � c ? ,2
.
.
.

c � c ? ,

377777775
= c � c ? ,

and so (� � %T
\)c = c ? as required. This completes the proof.

16.17 For the closed two station multi-class network, use the results of Section
7.4 to obtain the stationary distribution of the Brownian workload imbalance
Ŵ� (C), when using the optimal policy, and find the stationary rate of idling
at the two stations.

Exercises 165

Solution
We need first to find the drift and variance of the Brownian motion that
drives the work imbalance, and we then use (7.19) to obtain the stationary
distribution of the work imbalance and the averaged reflection controls.
To calculate the drift and variance of the Brownian motion that drives the
work imbalance we start with

X: (C) = Q: (0) � S: (T: (C)) +
 ’
;=1

R;,: ((; (T; (C))),

We scale the queue, as Q̂ (C) = Q(#2
C)/# , where # is the total number in the

closed network, and assume that the scaled X̂: (C) is close to a Brownian mo-
tion. We treat it as a -dimensional Brownian motion. Recall the definitions of
V, d, a. By the scaling, the drift of X̂: (C) is \: = �#

�
a:`: �

Õ

;=1 ?;,:a;`;
�
,

and using a: = V: dB (:) and 'V = 0 we have that the drift of X̂ is:

\ = �#'a, of mderate size.

We now calculate the variance covariance matrix � of X̂, using the fact that
in balanced heavy tra�c, T̄ : (C) ⇡ a: C. The calculation follows, similar to
the proof of Theorem 9.4:

E
h
S: (a: C) �

 ’
9=1

R 9 ,: (S 9 (a 9 C))
���S(C)

i
= S: (a: C) �

 ’
9=1

? 9 ,:S 9 (a 9 C),

Var
h
S: (a: C) �

 ’
9=1

R 9 ,: (S 9 (a 9 C))
���S(C)

i
=

 ’
9=1

S 9 (a 9 C)? 9 ,: (1 � ? 9 ,:),

Cov
h
S: (a: C) �

 ’
9=1

R 9 ,: (S 9 (a 9 C)),S; (a;C) �
 ’
9=1

R 9 ,; (S 9 (a 9 C))
���S(C)

i

= �
 ’
9=1

S 9 (a 9 C)? 9 ,: ? 9 ,; ,

and from this we obtain (using Var(⌫) = Var(E(⌫|�)) + E(Var(⌫|�))):

�: ,: = Var
h
S: (a: C) �

 ’
9=1

R 9 ,: (S 9 (a 9 C))
i

=
h
`:a:2

2
B,:

(1 � ?: ,:)2 +
’
9<:

` 9a 92
2
B, 9
?

2
9 ,:

+
:’
9=1

` 9a 9 ? 9 ,: (1 � ? 9 ,:)
i
C.

166 Control in Balanced Heavy Tra�c

To get the covariance, we first calculate

Cov
h
S: (a: C) �

 ’
9=1

? 9 ,:S 9 (aC),S; (a;C) �
 ’
9=1

? 9 ,;S 9 (a 9 C)
i

=
h
� `:a:22

B,:
?: ,; � `;a;22

B,;
?;,: +

 ’
9=1

` 9a 92
2
B, 9
? 9 ,: ? 9 ,;

i
C,

from which we obtain, for : < ;, (usingCov(⌫,⇠) = Cov(E(⌫|�),E(⇠ |�))+
E(Cov(⌫,⇠ |�))):

�: ,; = Cov
h
S: (a: C) �

 ’
9=1

R 9 ,: (S 9 (a 9 C)),S; (a;C) �
 ’
9=1

R 9 ,; (S 9 (a 9 C))
i

= �
h
`:a:2

2
B,:
?: ,; + `;a;22

B,;
?;,: +

 ’
9=1

` 9a 9 (1 � 22
B,:

)? 9 ,: ? 9 ,;
i
C.

The workload for the two machines, for eace circulation that starts with exit
from bu�er , is then

Ŵ(C) = "Q̂ (C) = ⇠'�Q̂ (C), and Ẑ(C) = "X̂(C) is the workload netput

We now have the Workload process,

Ŵ(C) = Ẑ(C) + "'J (C)
= Ẑ(C) + ⇠diag(<) (� � %T

\)
�1 (� � %T

\))diag(`) J (C)

� "

2666664

? ,1
.
.
.

? ,

3777775
` J (C)

= Ẑ(C) + ⇠J (C) � ⌥[(C)
= Ẑ(C) + Î(C) � ⌥[(C),

were Î (C) is the two dimensional idling process, ⌥ the workload per circula-
tion at the two machines, and [the balancing control.
The 2-dimensional Brownian motion Ẑ(C) has drift #"'a, and variance
matrix "�"T.
We then define a scalar workload imbalance process Ŵ� (C) = d2Ŵ1 (C) �
d1Ŵ2 (C), with Brownian netput to the work imbalance, Ẑ� (C) = d2Ẑ1 (C) �
d1Ẑ2 (C). The one-dimensional Brownian motion Ẑ� (C) has drift and vari-
ance:

< = Ẑ� (C) drift = �
⇥
d2 ;�d1

⇤
"'a# = # (d1 � d2),

f
2 = Ẑ� (C) variance =

⇥
d2 ;�d1

⇤
"�"T


d2

�d1

�
.

Exercises 167

To show the final expression for the drift the calculation is:

"'a# = #⇠'�
h �
� � %T

\
�
diag(`)a � ? ` a

i
= #⇠diag(<)

�
� � %T

\
��1 �

� � %T
\

�
diag(`)a � #"? ` a

= #⇠a � #⌥` a

but, ⇠a =


1
1

�
, and ⌥ /


d1

d2

�
, and the expression for the drift follows.

The processŴ(C) is controlled between two barriers: 1 = X1 > · · · > X = 0
where X: = d2"1,: � d1"2,: . We write:

Ŵ� (C) = Ẑ� (C) + R̂(C) � (̂C),
0  Ŵ� (C)  1, 0 < C <) ,

and we can now obtain the "rate" of control which is the long term average of
the cumulative control, and the distribution of Ẑ� (C) in the range 0 < H < 1,
from (7.19):

lim
C!1

R̂/C =
8>>><
>>>:

f
2/2(1 � 0)

<

4
2<(1�0)/f2 � 1

limC!1 /̂C =
8>>><
>>>:

f
2/2(1 � 0)

<

1 � 4�2<(1�0)/f2

lim
C!1
P(Ẑ(C)  H) =

8>>>><
>>>>:

(H � 0)/(1 � 0)

4
2<(H�0)/f2 � 1

4
2<(1�0)/f2 � 1

< = 0

< < 0
.

We can now retrieve the idling rates

Î1 (C) = R̂ (C)/d2, Î2 (C) = (̂C)/d1.

16.18 Analyze the closed two station queueing network as a Kelly network under
a symmetric policy, and find the distribution of the stationary queue lengths
and the expected circulation time.
Solution
I do not see an easy way to calculate the circulation time. What I can say is:
In Exercise 16.23, we obtained the stationary distribution for such a network
with Poisson arrivals. Since a Kelly-type network satisfies partial balance,
the closed network has the same stationary probabilities as the open one,
with a di�erent normalizing constant, and a truncated set of states. So the
stationary distribution is:

P(node 8 has =8 customers, 8 = 1, 2) = ⌫d=1
1 d

#�=1
2

To see =: custmers of type : = 1, . . . , we have, subject to total #:

P(=1, . . . , =) = ⌫
 ÷
:=1

V
=:

:
.

168 Control in Balanced Heavy Tra�c

16.19 For the closed Kumar-Seidman Rybko-Stolyar two station network, de-
scribed in Figure 16.1, with # customers and feed back to the top or bottom
route with probabilities U, 1�U, perform all the steps of the analysis, to reach

α

1−α

µ1 µ2

µ3µ4

N

Figure 16.1 A closed KSRS network, with # customers

the BCP and solve it.
Solution

We take = 4 as the exit bu�er, so:

c = 1
2

⇥
U;U; 1 � U; 1 � U

⇤
, V =

⇥
U<1;U<2; (1 � U)<3; (1 � U)<4

⇤

and the system is in balanced heavy tra�c if:

U

1 � U ⇡ <4 � <3

<2 � <1
, d1 ⇡ d2 ⇡ 1.

If we take U = <4�<3
<2�<1+<4�<3

and d1 = d2 = 1, there is no drift in the netput
of the workload imbalance process.

Exercises 169

' = (� � %T)diag(`) =

26666664

`1 �U`2 0 �U`4

�`1 `2 0 0
0 �(1 � U)`2 `3 �(1 � U)`4

0 0 �`3 `4

37777775
,

%\ =

26666664

0 1 0 0
U 0 1 � U 0
0 0 0 1
0 0 0 0

37777775
, ?4 =

26666664

U

0
1 � U

0

37777775
,

'
� = diag(<) (� � %\)�1 =

26666664

<1
1�U

<1U

1�U 0 0
<2

1�U
<2

1�U 0 0
<3 <3 <3 0
<4 <4 <4 <4

37777775
,

" = ⇠'� =


1 0 0 1
0 1 1 0

�
'
� =

"
<1+<4 (1�U)

1�U
<1U+<4 (1�U)

1�U <4 <4
<2+<3 (1�U)

1�U
<2+<3 (1�U)

1�U <3 0

#

=
266664
<1 + <2<4�<1<3

<2�<1

<2<4�<1<3
<2�<1

<4 <4

<2 + <2<4�<1<3
<2�<1

<2 + <2<4�<1<3
<2�<1

<3 0

377775
.

We can now obtain the optimal strategy for the BCP: Since d1 = d2 = 1,
the workload imbalance is Ŵ� = Ŵ1 � Ŵ2, and for the 4 bu�ers we have
"1,: � "2,: :

(X:)4
:=1 = [<1 � <2 ; �<2 ; <4 � <3 ; <4] .

Clearly,

1 = max(X:) = X4 = <4, 0 = min(X:) = X2 = �<2.

The optimal policy is to give lowest priority to bu�er 4 at machine 1, and
bu�er 2 at machine 2 and idle only when a machine has 0 customers..
It is quite clear that by doing so, we make sure that machines will not be
starved: we give priority to bu�er 1 that feeds machine 2 and to bu�er 3 that
feeds machine 1.
Note that this system is similar to the push-pull system of Chapter 13, but the
optimal policy here is the opposite of that for the push pull, where we give
priority to bu�ers 2 and 4, unless starvation is threatened.

16.20 For the open two station network with admission controls, follow the steps
necessary to derive the formulation of the work imbalance BCP (16.29).
Solution
In this problem we wish to schedule service at the two stations, and control
the input to have rate of at least Ū. We then have flows _ = (� � %T)�1

?0Ū,

170 Control in Balanced Heavy Tra�c

with individual per bu�er o�ered load of V: = _:/`: , and d8 =
Õ
:2⇠8 V:

(i.e. d = ⇠V). We also have nominal flows a: = V:/dB (:) .
We have found from (16.25)–(16.27) that

Q(C) = X(C) + 'J (C) � ?0[(C),

where J (C) are the free time controls aC�T (C), [(C) is the admission control
ŪC �A(C), and the netput X(C) has drift and variance given by \, �. In order
to achive input at rate � Ū we need to idle each of the two stations for no
more than a fraction 1 � d8 of the time, i.e.

lim
)!1

A())/) � Ū () lim
)!1

I8 ())/)  1 � d8 .

We now approximate the scaled X(=2
C)/# by a Brownian motion X̂(C), with

drift #\ and variance matrix �, and our balanced heavy tra�c assumption is
that # (1 � d) and hence also #\ is of moderate size. With the same scaling
we now have the approximation

Q̂ (C) = X̂(C) + 'Ĵ (C) � ?0[̂(C),

and our Brownian control problem is: For Brownian motion X̂(C) find
Q̂ (C), Ĵ (C), [̂(C) such that:

min lim sup
)!1

1
)

E
⇥π)

0

 ’
:=1

⌘: Q̂: (C)3C
⇤

s.t. Q̂ (C) = X̂(C) + 'Ĵ (C) � ?0[̂(C)
Î8 (C) =

’
:2⇠8

Ĵ
:
(C),

lim
)!1

1
)

E(Î8 ()))  # (1 � d8),

Q̂: (C) � 0, Î (0), Ĵ (0), [̂(0) = 0, Î non-decreasing,

Q̂, Î, Ĵ , [̂ are non-anticipating w.r.t. X̂(C).

We now derive the workload formulation:

Ŵ(C) = "Q̂ (C) = ⇠'�1Q̂ (C) = ⇠diag(<) (� � %) C)�1Q̂ (C)

which is the expected amount of work at the two stations, for the current
queues. We let Ẑ(C) = "X̂(C), which is then a Brownian motion with drift
(d � 1) and variance "T�" .
We then have the workload formulations: For a given Brownian motion Ẑ(C)

Exercises 171

find Q̂ (C), Î (C), [̂(C) such that:

min lim sup
)!1

1
)

E
⇥π)

0

 ’
:=1

⌘: Q̂: (C)3C
⇤

s.t. Ŵ(C) = "Q̂ (C),
Ŵ(C) = Ẑ(C) + Î(C) � ⌥[̂(C)

lim
)!1

1
)

E(Î8 ()))  # (1 � d8),

Q̂: (C) � 0, Î (0), [̂(0) = 0, Î non-decreasing,

Q̂, Î, [̂ are non-anticipating w.r.t. X̂(C).

We claim that any policy that there is a one-to-one correspondence between
policies feasible for the X̂(C) problem and for the Ẑ(C) = "X̂(C) problem.
Clearly given Q̂,J , [̂ feasible for the X̂(C) problem, Q̂, Î8 =

Õ
:2⇠8 Ĵ :

, [̂ is
feasible for the Ẑ(C) problem, and vice versa, if Q̂, Î, [̂ are feasible for the
Ẑ(C) problem we retrieve Ĵ = '�1 (Q̂ (C) � X̂(C). So all we need is to solve
the workload formulation.
We now define workload imbalance: Ŵ� = d2Ŵ1 � d1Ŵ2, and similarly:
Ẑ� = d2Ẑ1 � d1Ẑ2. Ẑ� is a scalar Brownian motion with drift # (d2 � d1,
and variance dT

"
T�"d. With this the workload imbalance formulation is

(19.29).
The workload and the workload imbalance problems are equivalent, since
we can retrieve [̂ from Ŵ = "Q̂ and [̂ = 1

⌥8
(Ẑ8 + Î8 � Ŵ8).

16.21 For the open two station network with admission controls, show that X1 �
0 � X .
Solution
We have: 

d1

d2

�
= ⇠diag(<) (� � %T)�1

?0Ū = "?0Ū,

hence,

0 = [d2 ; d1]

d1

d2

�
= [d2 ; �d1]"?0

or:
 ’
:=1

(d2"1,: � d1"2,:)?0,: = 0.

?0 is a probability vector, assume first that ?0,: > 0, : = 1, . . . , . Then
either for all : d2"1,: � d1"2,: = 0, or else at least for one : 0, d2"1,:0 �
d1"2,:0 > 0, and for another : 00, d2"1,:00 � d1"2,:00 < 0.
Note that "8,: do not depend on the values of the ?0,: . Sonce for the
given Ū, d1 < 1 and d2 < 1 we can define a new probability vector. ?̃0

172 Control in Balanced Heavy Tra�c

with ?̃0,: = ?0,: + n: , such that ?̃0,: > 0, : = 1, . . . , and still the
new system has d̃1 < 1, d̃2 < 1, and for this system we can deduce that
either d2"1,: � d1"2,: = 0 for all : , or else we must have max: X: > 0,
min: X: < 0.

16.22 For the open two station network with admission controls, analyze the cases
when X1 = 0 > X , X1 > 0 = X , and X1 = X = 0. When can that happen?
Solution
We have answered this question in the solution of the previous exercise 16.21.

16.23 Analyze the two station queueing network with admission control as a Kelly
network. Assume Poisson arrivals with rate Ū, and find the stationary distri-
bution of the queue lengths and the expected waiting times.
Solution
We now assume independent Poisson arrivals of rates U: = Ū?0,: , so arrival
rates of customers of class : are _ = (� � %T)�1

U, and the o�ered load of
class : is V = diag(<)_ = '�1

U, with d8 =
Õ
:2⇠8 V: .

If we treat all customers in each station without paying attention to their
class, and use a symmetric policy, e.g. PS of LCFS-premeptive, then this is
a Kelly-type network, and the stationary distribution is given by (see Section
(8.7):

P(node 8 has =8 customers, 8 = 1, 2) =
÷
8=1,2

(1 � d8)d=8
8

and each customer at a node is type : with probability V:/dB (:) .
We also have by the arrival theorem (see Section 8.4) that customers that
arrive see time average, so they will see the stationary M/M/1 number of
customers at the node.
Furthermore, a customer at a node 8 that will have expected sojourn G/(1�d8)
since the policy is a symmetric policy (see Section 3.7). So average sojourn
of a class : customer is \: = <:/(1 � d

B (:)) per visit. Since route and
processing are independent, we can add up sojourn expectations over the
random stages of the route. We obtain the vector of expected sojourn times
for customers of the various types (see Section 8.5) as:, = (� � %)�1

\.
The overall average is

Õ

:=1 (U:/Ū), :

16.24 For the open two station network with admission controls, prove equation
(16.33) in Proposition 16.2 [Wein (1990)].
Solution
The details of the proof appear in Wein (1990).

16.25 For the open Kumar-Seidman Rybko-Stolyar two station network, described
in Section 10.2.3, with arrival rates U1, U2 to the top and bottom routes
respectively, perform all the steps of the analysis, to reach the BCP and solve
it.
Solution
We start with the queue lengths process Q(C) and its netput X(C). Parameters

Exercises 173

are Ū = U1 + U2, ?0,1 = U1/Ū, ?0,2 = U2//Ū, <8 = 1/`8 , 22
B,8

= f2
8
`

2
8
, 8 =

1, 2, 3, 4.

V =
©≠≠≠
´

U1<1

U1<2

U2<3

U3<4

™ÆÆÆ
¨

d =
✓
U1<1 + U3<4

U1<2 + U2<3

◆
, a =

©≠≠≠≠
´

U1<1
U1<1+U3<4
U1<2

U1<2+U2<3
U2<3

U1<2+U2<3
U3<4

U1<1+U3<4
,

™ÆÆÆÆ
¨

% =
©≠≠≠
´

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

™ÆÆÆ
¨
, '

�1 =
©≠≠≠
´

<1 0 0 0
<2 <2 0 0
0 0 <3 0
0 0 <4 <4

™ÆÆÆ
¨
.

Then the netput X(C) has drift:

\ =

©≠≠≠≠
´

U1 � U1
U1<1+U3<4

U1
U1<1+U3<4

� U1
U1<2+U2<3

U2 � U2
U1<2+U2<3

U2
U1<2+U2<3

� U3
U1<1+U3<4

™ÆÆÆÆ
¨
,

and variance �0 +
Õ4
9=1 � 9 with

�0 =
©≠≠≠
´

Ū?0,1 (1 � ?0,1) 0 �Ū?0,1?0,2 0
0 0 0 0

�Ū?0,1?0,2 0 Ū?0,2 (1 � ?0,2) 0
0 0 0 0

™ÆÆÆ
¨

� 9 see (16.27).

The scaled process is X̂(C) = X(#2
C)/# which in balanced heavy tra�c is

approximately a Brownian process, with drift #\ and variance �. We treat is
as a Brownian process and have the Brownian control problem.
The workload formulation has Ŵ(C) = "Q̂ (C), Ẑ(C) = "X̂(C) where

" = ⇠'�1 =
✓
<1 0 <4 <4

<2 <2 <3 0

◆
.

and the work imbalance is thenŴ� = d2Ŵ1�d1Ŵ2 driven by the Brownian
motion Ẑ� = d2Ẑ1 � d1Ẑ2.
The drift of Ẑ� is < = # (d2 � d1. The variance B86<02 is calculated from
d," , �.
From the values of these expressions it is now straightforward to calculate the
optimal range of imbalance, and the boundaries of the cone of (Ŵ1,Ŵ2)
outside of which customers are admitted.

16.26 Provide an argument to show that if Î (C) is given, then the LP (10.37) and
its dual (10.39) are bounded and feasible.
Solution

174 Control in Balanced Heavy Tra�c

Clearly the dual is feasible because ⌘: are positive, and so H: (C) = 0 is a
feasible solution.
To see that the primal is feasible consider the constraints of the workload
formulation, rather than the workload imbalances formulation:

 ’
:=1

"8,: Q̂: (C) = Ŵ8 (C),

Q̂ (C) � 0.

Here the r.h.s. is positive as are the coe�cients "� ,: . Choose one bu�er
:8 2 ⇠8 for each machine, and take the solution Q̂:8 (C) = Ŵ8 (C)/"8,:8 , 8 =
1, . . . , �, and all other Q̂: (C) = 0. This is a feasible solution, and clearly, these
values of Q̂ (C) are feasible for the workload imbalance formulation, (19.37).

16.27 For the multistation network with admission control, show that the objective
function � (Ŵ(C)) is convex [Wein (1992)].
Solution
Consider the dual problem (19.39), and its solution as a function of the
objective coe�cients Ŵ�,8 .
For each vector of Ŵ�,8 there is an optimal basic solution that maximizes
the objective. Consider then the finite collection of all the feasible basic
solutions. For each feasible basic solution, the value of the objective is a
linear function of Ŵ�. The optimal objective is the maximum of these linear
functions of Ŵ�, but a maximum of linear functions is a convex continuous
piecewise linear function.

16.28 For the multistation network with admission control, show that the boundary
forms a prism parallel to (d1, . . . , d�) [Wein (1990)].
Solution
The solution of the singular control problem (16.42) defines a bounded region
in R��1 that includes the origin, in which the � � 1 dimensional transformed
workload imbalance Ŵ�

� can move, and the singular controls Î� (C) keep the
workload imbalance in this region. This region corresponds to a region in
which the original (untransformed) workload imbalance Ŵ� moves, and it
is kept this region by the singular controls Î (C), denote this region in R��1

by ⌧. ⌧ is quite close to the transformed region, because all d8 are close to
1, it is bounded, and it contains the origin. Consider now the � dimensional
process, Ŵ(C). If Ŵ � (C) = H, then Ŵ�,8 (C) = d�Ŵ8 (C) � d8H, 8 < �, so
that

Ŵ8 (C) =
1
d�

Ŵ�,8 (C) +
d8

d�

H

So the � dimensional region in R� in which Ŵ(C) moves is a prism lifting
⌧/d� in the direction parallel to d.

16.29 (⇤) Analyze the control of a closed MCQN with � workstations, in analogy
with Sections 16.4 and 16.6.

Exercises 175

Solution
This is as far as I know an open problem. Here are some thoughts on it.
The workload imbalance formulation of the problem is: For an � � 1 dimen-
sional Brownian motion Ẑ� (C) with known drift and variance, find Q̂ (C) and
Î8 (C) to solve

min lim
)!1

1
)

��1’
8=1

Î8 ())

B.C. Ŵ� =
 ’
:=1

(d�"8,: � d8"� ,:)Q̂: (C),

Ŵ8,� (C) = Ẑ8,� (C) + d� Î8 (C) � d8Î � (C),
1TQ̂ (C) = 1, Q̂ (C) � 0, Î8 (0) = 0, Î8 non-decreasing,

Q̂ (C), Î (C) non-anticipating w.r.t. Ẑ�.

Clearly, since each control Î8 a�ects only one the machines, we should idle
only when the workload at a machine is 0.
Next we want to minimize the imbalance between the machines. A heuristic
for this is to solve at each moment C the problem:

min
��1’
8=1

Ŵ8 (C)2

B.C. Ŵ8 =
 ’
:=1

(d�"8,: � d8"� ,:)Q̂: (C),

Ŵ8,� (C) =
 ’
:=1

"8,: Q̂: (C),

 ’
:=1

Q̂: (C) = 1, Q̂ (C) > 0.

17

MCQN with Discretionary Routing

Exercises
17.1 Derive the factor three saving for the two station model with criss cross

customers and routing, over a random routing FCFS scheduling. Assume
Poisson arrivals and exponential service.
Solution
For random allocation of type A to the two stations and FCFS at each station,
station 1 will experience Poisson arrivals at rate 2_, station 2 will have
arrivals of type A as Poisson of rate _, and an independent Poisson stream of
customers of rate _ that exit from station 1. So each station acts as an M/M/1
queue with arrival rate (3/2)_ and service rate `. Sojourn time at each queue
is then 1

`�(3/2)_ , and half the customers wait only once, the other half waits
at both queues, so in total, average sojourn is:

1
2

1
` � (3/2)_ + 1

2
2

` � (3/2)_ =
3

2` � 3_
.

For the optimized system in heavy tra�c, both servers will work all the time,
and there will be no queue of type B customers between stations 1 and 2. So
it will behave like a single system (state space collapse) with Poisson arrivals
of rate 3_ and exponential service of rate 2` with expected sojourn time

1
2`�3_ . To be exact, we control the queue between the stations to be short, and
service of 2 exponential servers in heavy tra�c is the same as single server
with sum of the rates. So sojourn time is

⇡ 1
2` � 3_

,

for a saving factor of 3.
17.2 For the two station model with criss cross customers and routing, repeat

the Brownian problem formulation and solution for general parameters,
_�, _⌫ , `1, `2.
Solution
For stability we need to have: d = _�+2_⌫

`1+`2
< 1, and also _⌫ < `1 and

_⌫ < `2. in heavy tra�c we assume # (1 � d) is of mederate size for large

176

Exercises 177

, so d ⇡ 1. We equate the load on the two machines by directing in the long
run a fraction \ of type A customers to machine 1, so that \ = d`1�_⌫

_�
. We

could use any d1, d2 < 1 with # (d8 � d) of moderate size, but the choice of
d1 = d2 = d will result in a drift of zero in the final analysis.
So we have:

V1 = _⌫/`1, V2 = _⌫/`2, V3 = d � _⌫/`1, V4 = d � _⌫/`2,

and we have nominal allocations a: = V:/d.
Our controls for this system are the time allocations, T: (C) to processing
bu�er : , and the admissions A: (C) for the discretionary bu�ers, : = 3, 4,
where A3 (C) + A4 (C) = A�(C), and the nominal rates of admissions are
U3 = _, U4 = (1�\)_. We then have the deviations from nominal admission
rates, V: (C) = U: C � A: (C), : = 3, 4, and free times J: (C) = a: C � T: (C),
which embody our controls.
We scale the system: Q̂ (C) = Q(#2

C)/# , and approximate the netput by a
Brownian motion, and obtain for the Brownian approximation the Brownian
control problem:

min lim sup
)!1

1
)

E[
π

)

0

4’
:=1

Q̂: (C)3C]

s.t. Q̂ (C) = X̂(C) + ' Ĵ (C) � ⌧V̂ (C), C � 0.

Î (C) = ⇠Ĵ (C), �V̂ (C) = 0, C � 0.

Q̂ (C) � 0, Î (0) = 0, Î non-decreasing, C � 0,

Q̂, Ĵ , V̂ are non-anticipating with respect to X̂(C),

where the controls Ĵ
:
(C) are the bu�er free times Ĵ

:
(C) = �a:`: with

' = (� � %T)diag(`) =

26666664

`1 0 0 0
�`1 `2 0 0

0 0 `1 0
0 0 0 `2

37777775
, ⌧ =


0 0 1 0
0 0 0 1

�
,

⇠ =


1 0 1 0
0 1 0 1

�
, � = [1 � 1]

'
�1 =

26666664

<1 0 0 0
<2 <2 0 0
0 0 <1 0
0 0 0 <2

37777775
, " = ⇠'�1 =


<1 0 <1 0
<2 <2 0 <2

�

Workloads are given by

Ŵ(C) = "Q̂ (C) =

<1 0 <1 0
<2 <2 0 <2

�
Q̂ (C).

178 MCQN with Discretionary Routing

Similar to Chapter 15, routing pools the resources of the two stations in the
system. We therefore look at the sum of the workloads,

Ŵ⌃ =
⇥
<1 + <2 ; <2 ; <1 ; <2

⇤
Q̂ (C)

The pooled workload control problem is to find &̂, Î such that:

min lim sup
)!1

1
)

E[
π

)

0

4’
:=1

Q̂: (C)3C]

s.t.
�
(<1 + <2)Q̂1 (C) + <2Q̂2 (C) + <1Q̂3 (C) + <2Q̂4 (C)

�
= Ŵ⌃ (C),

Ŵ⌃ (C) = Ẑ(C) + Î1 (C) + Î2 (C),
Q̂ (C) � 0, Î (0) = 0, Î non-decreasing, C � 0,

Q̂ (C), Î (C) are non-anticipating with respect to Ẑ(C).

So clearly, inventory should be kept in bu�er 1, at station 1 we give priority
to bu�er 1 over 2, and we keep station 2 by means of the control V(C). We
idle when both bu�ers are empty.
In summary, the optima Brownian control policy is the same as for the case
where `1 = `2, and _� = _⌫ .

17.3 For the two station model with criss cross customers and routing, perform the
Brownian problem formulation and solution for general parameters, _�, _⌫
and individual processing rates, `: , : = 1, 2, 3, 4.
Solution
There is not much di�erent about this system for Exercise 17.2. Once it is
in balanced heavy tra�c, the calculations of workload at each station, and of
Ŵ⌃ are as before, and the optimal Brownian policy is the same. The only
question is when is it in balanced heavy tra�c, and to find this we solve
the static planning problem. Assume there are a rewards of F�, F⌫ for unit
items of type �, ⌫. Then:

max
a,U

F�U�,3 + F�U�,4 + F⌫U⌫

B.C.

26666664

`1 0 0 0
�`1 `2 0 0

0 0 `1 0
0 0 0 `2

37777775
a =

26666664

U⌫

0
U�,3

U�,4

37777775
,


1 0 1 0
0 1 0 1

�
a  1

U, a � 0

For properly chosenF�,F⌫ this will have a solution in which both servers are
fully utilized, and both U�, U⌫ are positive, and if we choose d < 1 such that
for large# we have# (1�d) of moderate size and take (_�, _⌫) = d(U�, U⌫),
then the system will be in balanced heavy tra�c.

Exercises 179

17.4 For the network of Laws and Louth, derive the formulation of the BCP,
equation (17.2).
Solution
There is little to say in this exercise. The matrix ' is 8 ⇥ 8 and composed of
4 blocks reflecting transitions from entry to exit bu�ers:

' =

�4⇥4 04⇥4

��4⇥4 �4⇥4

�

The matrix ⌧ reflects input to the four entry bu�ers,

⌧ =

�4⇥4

04⇥4

�

The matrix ⇠ is the resource consumption matrix,

⇠ =

26666664

1 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 1 0 0 1 0 0
0 0 0 0 0 0 1 1

37777775
and the matrix � embodies the constraint that the sum of deviations from the
nominal inputs for two horizontal bu�ers and for the two vertical bu�ers is
0,

� =


1 0 1 0
0 1 0 1

�

In the pooled workload processes,W1+4 includes all the work for workstation
1, which includes bu�ers 1,2, and for station 4 which includes what is cur-
rently in 7,8, and also what is currently in bu�ers 3,4, that will feed into 7,8.
Similarly, W2+3 includes work for workstation 2, which is what is currently
in bu�ers 4,5 and also what is currently in bu�er 1 and will feed into bu�er
5, and work for work station 3, which includes what is currently in bu�ers
3,6, and also what is currently in bu�er 2 and will feed into bu�er 6. so:

W? =

W1+4

W2+3

�
= <


1 1 1 1 0 0 1 1
1 1 1 1 1 1 0 0

�
X̂(C)

17.5 For the network of Laws and Louth, obtain the drift and variance of X̂(C) and
of Ẑ(C).
Solution
For simplicity we assume that both input streams have the same c.o.v. 20,
and the four service processes have the same c.o.v. 2B .
We rewrite

Q(C) = A(C) �
 ’
9=1

�
9 (T9 (C)),

180 MCQN with Discretionary Routing

where A: (C) is the controlled (routed) input to bu�er : , and � 9 (C) is the
controlled flow due to completions of service at bu�er 9 , so that � 9

:
(T9 (C)) =⇢

S 9 (T9 (C)) : = 9

R 9 ,: (S 9 (T9 (C))) : < 9

.

We then have, for the scaled process, Q̂ (C) = Q(#2
C)/# , that a fraction 1/2

of the input goes to each route, and that a: (C) = ?� = _�
�++ , : = 1, 3, 5, 7,

a: (C) = ?+ = _+
�++ , : = 2, 4, 6, 8. For the total system in balanced heavy

tra�c, we have that # (2_� + 2_+ � 4`) for large # is of moderate size.
Accordingly, the drift for X̂: (C) i.e. for Q̂: (C) when positive, is:

Drift of X̂: (C) \: =
⇢
(1

2_� � ?� `) : = 1, 3, 5, 7
(1

2_+ � ?+ `) : = 2, 4, 6, 8
.

For the variance matrix of X̂(C), we calculate the unscaled covariances, which
are the same as the scaled covariances. We note that A, �

9
, 1, . . . ,K are

independent, to get � = �� +
Õ

9=1 �� 9 .
Assume that arrivals are allocated randomly with probability 1/2 to each
route.

�� =

26666666666666664

1
4_� (1 + 22

0
) 0 � 1

4_� (1 + 22
0
) 0 0 0 0 0

0 1
4_+ (1 + 22

0
) 0 � 1

4_+ (1 + 22
0
)0 0 0 0

� 1
4_� (1 + 22

0
) 0 1

4_� (1 + 22
0
) 0 0 0 0 0

0 1
4_+ (1 + 22

0
) 0 � 1

4_+ (1 + 22
0
) 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

37777777777777775

.

The variances for � 9 are calculated similarly, we write just the first:

�
�

1 =

2666666666666664

a1`2
2
B

0 0 0 �a1`2
2
B

0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

�a1`2
2
B

0 0 0 +a1`2
2
B

0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

3777777777777775

.

or, more sucsicntly, the non-zero elements are:

(�
�
9) 9 , 9 = ?� `22

B
, (�

�
9) 9 , 9+4 = �?� `22

B
, (�

�
9) 9+4, 9 = �?� `22

B
, (�

�
9) 9+4, 9+4 = ?� `22

B
, 9 = 1, 3,

(�
�
9) 9 , 9 = ?+ `22

B
, (�

�
9) 9 , 9+4 = �?+ `22

B
, (�

�
9) 9+4, 9 = �?+ `22

B
, (�

�
9) 9+4, 9+4 = ?+ `22

B
, 9 = 2, 4,

(�
�
9) 9 , 9 = ?� `22

B
, 9 = 5, 7,

(�
�
9) 9 , 9 = ?+ `22

B
, 9 = 6, 8.

Exercises 181

We do not write down explicitly the sum of the 9 matrices in �X = �� +Õ

9=1 �� 9 .
In the pooled workload, we have (with < = 1

`
):

Ẑ(C) = "X̂(C) = <


1 1 1 1 0 0 1 1
1 1 1 1 1 1 0 0

�
X̂(C).

For Ẑ(C), it would at first glance appear that the drift of Ẑ(C) is "\X and
the covariance should be "�X") but this is misleading. We note that

W1+4 (C) = <
�
A1 (C) + A2 (C) + A3 (C) + A4 (C) � S1 (T1 (C)) � S4 (T1 (C))

�
W2+3 (C) = <

�
A1 (C) + A2 (C) + A3 (C) + A4 (C) � S3 (T1 (C)) � S4 (T1 (C))

�
and we obtian immediately that:

Drift of Ẑ(C) \1+4 = \2+3 = #<(_� + _+ � 2`)

and the variance covariance matrix is:

�Z =

(_� + _+)22

0
+ 2`22

B
(_� + _+)22

0

(_� + _+)22
0

(_� + _+)22
0
+ 2`22

B

�

17.6 Explain why the Brownian Laws and Louth network under optimal control
behaves exactly like the fork-join network, and explain why for the original
network the fork-join network provides a lower bound.
Solution
Consider the following fork-join system: There are two servers of service rate
2` each, these represent the combined servers 1+4 and the combined servers
2+3. Customers arrive at rate _� + _+ , and each arrival sends a task to each
server, and the customer leaves when both tasks are complete. Let 11, 12 be
the queue lengths at the two servers. Then the number of customers in the
system that are waiting to be completed is 11 _ 12.
But in the Laws and Louth system, under the optimal policy for the BCP,
the total number of customers in the system is also 11 _ 12, where 11 =
`Ŵ1+4, 12 = `Ŵ2+3. So under balanced heavy tra�c the fork-join system
approximates the behavior of the Lasw and Louth network.
It is a lower bound, since in reality, the fork join system will indeed achieve
11 _ 12, the 4 station system will not. So in the Brownian solution the servers
1+4 are pooled and servers 2+3 are pooled, and the two services of each
customer are performed in parallel rather than in series. The analogy to the
fork-join can be though of as if an arriving customer flips a coin and goes to
1+4 or to 2+3, and we clock the departure of the latest of the two.

17.7 In the network of Laws and Louth, assume Poisson arrivals and exponential
service times, and use the policy of random routing and FCFS. Analyze this
as a Jackson network, and find total expected number of customers in the
system, expected total workloads, and expected sojourn times.

182 MCQN with Discretionary Routing

Solution
Under this regime, the network behaves like a feed forward network, and all
the flows of customers will be poisson. Then each of the stations will have
Poisson input at rate _ = _� + _+ , and will serve it with exponential service
of rate `, with d = _/`. Hence, the distribution of the number of customers
at the stations, given by =1, . . . , =4 is

P(=1, . . . , =4) = (1 � d)4
4÷
8=1

d
=8
.

Each customer will require two services, each distributed ⇠ Exp(`�_). The
expected sojourn time of each customer will be 2

`�_ .
17.8 (⇤) For the fork-join network that imitates that Laws and Louth network,

under Poisson arrivals and exponential service times, find estimates for ex-
pected number in system, total workload, and sojourn time. Compare it to
the uncontrolled Jackson network.
Solution
We have a fork-join with two ·/M/1 service stations. Arrivals are at rate 2_
service of each task is at rate 2`.
It has been shown by Nelson and Tantawi (1988) that for this fork-join system,
the expected sojourn time is

)2 =
12 � d

8
)1,)1 = M/M/1 sojourn time.

Hence, in heavy tra�c, when d ⇡ 1, the sojourn time will be ⇡ 11
8

1
2`�2_

The savings compared to random routing FCFS are by a factor of 32/11 ⇡ 3.
17.9 For the network of Laws and Louth, repeat the derivations when service rates

of the four stations are not all equal. Notice that there are some conditions
on the processing rates that are needed so that the resulting balanced heavy
tra�c network will behave like the symmetric network.
Solution
Assume now that processing rates are `8 at station 8, and that c.o.v. of arrivals
are 20,� , 20,+ and for service are 2B,8 , 8 = 1, . . . , 4. The new matrix ' will
be (� � %T)diag(`) where the elements 8, 8 + 4 share the same `8 . Input to
bu�er : is U: , : = 1 . . . , 4 and U: = 0, : = 5, . . . , 8. The static planning
problem is:

max
a,U

F�U1 + F�U3 + F+ U2 + F+ U4

B.C. 'a = U,

⇠a  1,
U1 + U3 = _� ,

U2 + U4 = _+ ,

U, a � 0

Exercises 183

A su�cient condition for balanced heavy tra�c is:

_� + _� ⇡ `1 + `4 ⇡ `2 + `3,

_� < (`1 + `3) ^ (`2 + `4),
_+ < (`1 + `2) ^ (`3 + `4),

where the approximation is such that the di�erence time # is of moderate
size for large # .
Once this the system in in balanced heavy tra�c, the Brownian control
problem is exactly the same as for the symmetric case (17.2), and for the
“workload formulation” it is convenient to take the number of customers
in the bu�ers of 1+4 and of 2+3, rather then workload, and thus define
Ŵ1+4,Ŵ2+3, and the Brownian motion Ẑ1+4, Ẑ2+3.
The drift and variance of Ẑ are:

Drift of Ẑ(C) \1+4 = # (_�+_+ �`1�<D4), \2+3 = # (_�+_+ �`2�<D3)

and the variance covariance matrix is:

�Z =

"
_� 2

2
0,� + _+ 22

0,+ + `12
2
B,1 + +`42

2
B,4 _� 2

2
0,� + _+ 22

0,+
_� 2

2
0,� + _+ 22

0,+ _� 2
2
0,� + _+ 22

0,+ + `22
2
B,2 + +`32

2
B,3

#
.

This is independent of the controls and the policy. The solution of the Brow-
nian control problem is therefore the same as for the symmetric problem.

17.10 (⇤) Formulate the control problem for the Laws and Louth network with
additional admission control, and required total input rate of _̄ and describe
its optimal solution.
Solution This problem is open, to the best of my knowledge it has not been
discussed in the literature.
We now assume that A(C) is controlled, and each admitted customer will be
horizontal with probability ?� and vertical with probability ?+ . We write
the queue dynamics for some of the bu�ers. For bu�er 1,

Q1 (C) = Q1 (0) + N1 (C) � S1 (T1 (C))
=

h
Q1 (0) + (1

2 ?� ŪC � ?� `1C) � (S1 (T1 (C) � `1T1 (C))
i

+`1 (?� C � T1 (C)) � 1
2 ?� (ŪC �A(C)) + (N1 (C) � 1

2 ?�A(C))
= X1 (C) + `1J1 (C) � 1

2 ?�[(C) + V1 (C).

Here the input to bu�er 1 is totally controlled, we decide when to admit
a customer, and we then send it horizontally or vertically in deterministic
splitting according to ?� , ?+ . Once a customer is admitted to the horizontal
stream, we decide to route it to bu�er 1 or to bu�er 3. Hence in the netput
we include just the deterministic input to bu�er 1, 1

2 ?� ŪC.
We then have 3 controls: J1 is the free time for processing at bu�er 1, V1 is

184 MCQN with Discretionary Routing

the control for routing admitted customers to bu�er 1, beyond the nominal
1
2 , and [(C) is the admission control.
The dynamics of bu�ers 2,3,4 are analogous. Similarly for bu�er 5 (analo-
gously for bu�ers 6,7,8),

Q5 (C) = Q5 (0) + S1 (T1 (C)) � (5 ()2 (C))
=

h
Q5 (0) + ?� `1C � ?� `2C

+(S1 (T1 (C) � `1T1 (C)) � (S5 (T1 (C) � `2T5 (C))
i

�`1 (?� C � T1 (C)) + `2 (?� C � T5 (C)),

with free time controls J1,J5.
We can now scale time by #2 and space by # and write the approximately
Brownian dynamics as

Q̂ (C) = X̂(C) + 'Ĵ (C) � ⌧V̂ (C) + ⇡[̂(C),

where ⇡T =
h

1
2 ?� ; 1

2 ?+ ; 1
2 ?� ; 1

2 ?+ ; 0 ; 0 ; 0 ; 0
i
.

The Brownian control problem is

min lim sup
)!1

1
)

E[
π

)

0

8’
:=1

Q̂: (C)3C],

s.t. Q̂ (C) = X̂(C) + ' Ĵ (C) + ⌧V̂ (C) + ⇡[̂(C),
Î (C) = ⇠Ĵ (C), �V̂ (C) = 0,

lim
)!1

1
)

E(A())) � Ū,

Q̂ (C) � 0, Î (0) = 0, Î non-decreasing,

Q̂, Ĵ , V̂, [̂ are non-anticipating with respect to X̂(C).

This leads to the pooled workload formulation at the cut defined by stations
1+4 and 2+3, with (note, we call this workload, but in fact it is the pooled
number of customers)

Ŵ% =

Ŵ1+4

Ŵ2+3

�
=


1 1 1 1 0 0 1 1
1 1 1 1 1 1 0 0

�
Q(C) := "Q(C).

and with the two dimensional Brownian motion Ẑ(C) = "X(C), where:

Drift of Ẑ(C) \1+4 = \2+3 = # (Ū � 2`),

Variance of Ẑ(C) �Z =


2`22
B

0
0 2`22

B

�

The pooled workload Brownian control problen is: For Ẑ(C) find Q̂, Î, V̂, [̂

Exercises 185

such that

+ = min lim sup
)!1

1
)

⇢ [
π

)

0

8’
:=1

Q̂: (C)3C],

s.t. Ŵ% = "Q̂ (C),
Ŵ1,4 (C) = Ẑ1 (C) + Î1 (C) + Î4 (C) + [̂(C),
Ŵ2,3 (C) = Ẑ2 (C) + Î2 (C) + Î3 (C) + [̂(C),

lim
)!1

1
)

E(I1 ()) + I4 ()))  # (1 � d),

lim
)!1

1
)

E(I2 ()) + I3 ()))  # (1 � d),

Q̂ (C) � 0, Î (0) = 0, Î non-decreasing, C � 0,

Q̂, Î, [̂, are non-anticipating with respect to Ẑ(C),

with d = Ū/`
In the original problem we were given X̂ and wished to solve for Q̂, Ĵ , V̂, [̂.
We now defined Ẑ to solve for Q̂, Î, [̂. We claim that any solution of the
workload formulation, i.e. given X̂, and a solution Q̂, Î, [̂ for the workload
formulation, we can retrieve Ĵ , V̂. They should come from the equations:

'Ĵ + ⌧V̂ = Q̂ � X̂ � ⇡[̂,
⇠Ĵ = Î,

which have unique solution, since the ranks of the coe�cients matrix without
or with the added column of the r.h.s. agree and are 10.
We now note that given the pooled workloads the optimal solution will be:

+ = Ŵ1+4 _ Ŵ2+3,

Q̂1 + Q̂2 + Q̂3 + Q̂4 = Ŵ1+4 ^ Ŵ2+3

Q̂5 + Q̂6 = (Ŵ1+4 � Ŵ2+3)�, Q̂7 + Q̂8 = (Ŵ1+4 � Ŵ2+3)+.

Similar to the control of the Laws and Louth network with uncontrolled
input, we would keep 0 inventory in one of the sets of bu�ers at all times, i.e.
Q̂5 + Q̂6 ^ Q̂7 + Q̂8 = 0. But we now have an additional control, [̂(C)
for admissions. Using the admissions control we can keep all the input
bu�ers, Q̂: , : = 1, 2, 3, 4 empty while they still process customers. So all
the variability is concentrated in the otput bu�ers Q̂: , : = 5, 6, 7, 8.
We now look at the pooled workload imbalance: Ŵ� = Ŵ1+4 � Ŵ2+3. It
satisfies the following dynamics:

⌘,� = Ẑ� + (Î1 (C) + Î4 (C)) � (Î2 (C) + Î3 (C))

where the Brownian motion Ẑ� = Ẑ1+4 � Ẑ2+3 has drift< = 0 and variance
f

2 = 4`22
B
.

186 MCQN with Discretionary Routing

Our optimal policy then is: use [̂ to keep the input bu�ers empty. Keep one of
the output bu�er pairs Q̂5 + Q̂6 or Q̂7 + Q̂8 empty, using the routing controls,
and the sequencing at server 1. Use idling so as to keep �0 < Ŵ� < 0 where
0 is determined so that each server is idle a fraction # (1 � d) of the time,
calculated from (7.19). Sequencing at servers 2 and 3 gives priority to output
bu�ers, sequencing at server 4 is FCFS.

17.11 For the cube network with three types of customers, formulate the BCP
and derive the optimal Brownian solution. Show the analogy to a fork-join
network.
Solution
In the cube network there are 8 servers, and there are 24 bu�ers, 3 for each
server. 12 of the bu�ers are input bu�ers, the other 12 are exit bu�ers.
Server 1 serves 3 entry bu�ers, servers 2,3,5 serve 2 entry bu�ers and 1 exit
bu�er, servers 4,6,7 server 1 entry and 2 exit bu�ers, server 8 serves 3 exit
bu�ers.
We can number the bu�ers according to the route, (0, 81, 82), (1, 81, 82) for
entry and exit bu�ers of the route of servers 81, 82, with dynamics:

Q0,81 ,82 (C) =
h
Q0,81 ,82 (0) + (1

4
_ � 1

3
`)C � (S81 (T81 (C)) � `T81 (C))

i

+`(1
3
C � T81 (C)) + (V81 (C) �

1
4
_C),

Q1,81 ,82 (C) =
h
Q1,81 ,82 (0) + (S81 (T81 (C)) � `T81 (C)) � (S82 (T82 (C)) � `T82 (C))

i

�`(1
3
C � T81 (C)) + `(

1
3
C � T82 (C)).

We then scale and use a Gaussian approximation to get the Brownian control
problem:

min lim sup
)!1

1
)

E[
π

)

0

2’
:=1

4Q̂: (C)3C],

s.t. Q̂ (C) = X̂(C) + ' Ĵ (C) + ⌧V̂ (C),
Î (C) = ⇠Ĵ (C), �V̂ (C) = 0,

Q̂ (C) � 0, Î (0) = 0, Î non-decreasing,

Q̂, Ĵ , V̂ are non-anticipating with respect to X̂(C).

Where ' = `(� � %T), ⌧ is identity matrix for the 12 entry bu�ers and 0 for
the exit bu�ers, ⇠ is the constituency matrix, and � has 3 rows, adding up
the 4 routing controls of each face.
We now note that each customer has to go through one of the servers S1 =
(1, 4, 6, 7), and also through one of the servers S2 = (2, 3, 5, 8). We define

Exercises 187

the pooled workloads (actually numbers of customers):

ŴS1 = Q̂0,1,2 + Q̂0,1,3 + Q̂0,1,5 + Q̂0,2,4 + Q̂0,2,6 + Q̂0,3,4
+Q̂0,3,7 + Q̂0,4,8 + Q̂0,5,6 + Q̂0,5,7 + Q̂0,6,8 + Q̂0,7,8
+Q̂1,2,4 + Q̂1,2,6 + Q̂1,3,4 + Q̂1,3,7 + Q̂1,5,6 + Q̂1,5,7,

ŴS2 = Q̂0,1,2 + Q̂0,1,3 + Q̂0,1,5 + Q̂0,2,4 + Q̂0,2,6 + Q̂0,3,4
+Q̂0,3,7 + Q̂0,4,8 + Q̂0,5,6 + Q̂0,5,7 + Q̂0,6,8 + Q̂0,7,8
Q̂1,1,2 + Q̂1,1,3 + Q̂1,1,5 + Q̂1,4,8 + Q̂1,6,8 + Q̂1,7,8.

We note that we can write

ŴS1 = Q̂8= + Q̂
>DC�S1 , ŴS2 = Q̂8= + Q̂

>DC�S2 ,

where Q̂8= are all the input bu�ers, and Q̂
>DC�S8 , 8 = 1, 2 are the exit bu�ers

of S8 , 8 = 1, 2.
The workload formulation of the workload Brownian control problem is

min lim sup
)!1

1
)

E[
π

)

0

2’
:=1

4Q̂: (C)3C],

s.t. Ŵ ?>>;43 (C) = "Q̂ (C)
ŴS1 = ẐS1 + Î1 (C) + Î4 (C) + Î6 (C) + Î7 (C),
ŴS2 = ẐS1 + Î2 (C) + Î3 (C) + Î5 (C) + Î8 (C),
Q̂ (C) � 0, Î (0) = 0, Î non-decreasing,

Q̂, Î are non-anticipating with respect to X̂(C).

It needs to be checked that for given X̂, Ẑ, Q̂, Î we can reconstruct also Ĵ
:
,

V̂: . This is done by solving:

'Ĵ + ⌧V̂ = Q̂ � X̂,

⇠Ĵ = Î,
�V̂ = 0.

There are 44 equations, for 36 unknowns. However, a solution exists, because
one can check that the ranks of the coe�cient matrix with and without the
r.h.s. is 36.
The optimal policy is to idle only if ŴS1 or ŴS2 or both are empty, and

+ = ŴS1 _ ŴS1 , Q̂8= = ŴS1 ^ ŴS1

Q̂
>DC�S1 = (ŴS1 � ŴS1)+ Q̂

>DC�S2 = (ŴS1 � ŴS1)�

This behaves exactly like the Laws and Louth network, and in balanced heavy
tra�c limit it behaves like a two station fork join network.

188 MCQN with Discretionary Routing

17.12 For the ring network with six stations and three types of customers, formulate
the BCP and derive the optimal Brownian solution. Show the analogy to a
fork-join network.
Solution
The system has 18 bu�ers, that corresponds to entry, passage and exit of
each of the 6 routes (2 for each type). We index the bu�ers by (G, 81, 82, 83, G)
where G = 1, 2, 3 is the type of customer on the route, , 81, 82, 83 is the route,
and H = �, %, ⇢ for entry, passage and exit, for processor is the stage on the
route. The dynamics are:

QG,81 ,82 ,83 ,� (C) =
h
QG,81 ,82 ,83 ,� (0) + (1

2_ �
1
3 `)C

+ 1
2 (AG (C) � _C) � ((G,81 ,82 ,83 ,� (TG,81 ,82 ,83 ,� (C) � `TG,81 ,82 ,83 ,� (C))

i
+`(1

3 C � TG,81 ,82 ,83 ,� (C)) + (A81 ,82 ,83 � 1
2AG (C)),

QG,81 ,82 ,83 ,% (C) =
h
QG,81 ,82 ,83 ,% (0) + ((G,81 ,82 ,83 ,� (TG,81 ,82 ,83 ,� (C) � `TG,81 ,82 ,83 ,� (C))

�((G,81 ,82 ,83 ,% (TG,81 ,82 ,83 ,% (C) � `TG,81 ,82 ,83 ,% (C))
i

�`(1
3 C � TG,81 ,82 ,83 ,� (C)) + `(1

3 C � TG,81 ,82 ,83 ,% (C)),

QG,81 ,82 ,83 ,⇢ (C) =
h
QG,81 ,82 ,83 ,⇢ (0) + ((G,81 ,82 ,83 ,% (TG,81 ,82 ,83 ,% (C) � `TG,81 ,82 ,83 ,% (C))

�((G,81 ,82 ,83 ,⇢ (TG,81 ,82 ,83 ,⇢ (C) � `TG,81 ,82 ,83 ,⇢ (C))
i

�`(1
3 C � TG,81 ,82 ,83 ,% (C)) + `(1

3 C � TG,81 ,82 ,83 ,⇢ (C)).

We scale time by #2 and space by # and we write:

Q̂ (C) = X̂(C) + 'Ĵ (C) + ⌧V̂ (C),

where X is the Brownian motion netput, Ĵ (C) the sequencing control, and
V̂ the routing control. The matrices ' and ⌧ are obtained from examining
the dynamics equations above.
We note that every customer needs to go through one of the processors (1, 4)
one of (2, 5) and one o (3, 6). We look now at the workloads (number of
customers) in the system that require processing at the pooled server pairs
(1, 4), (2, 5), (3, 6). This is non-overlapping, and includes all the work in the

system. The scaled Pooled workload is Ŵ%>>;43 (C) =
266664
Ŵ1+4

Ŵ2+5

Ŵ3+6

377775
= "Q(C).

The matrix " is described in the following table: on top are listed the bu�er,
given by the route (vertical) and the step, I,P,E, and the three rows correspond
to the pairs of stations, (1, 4), (2, 5), (3, 6).

Exercises 189

1 2 3 2 3 4
6 1 2 3 4 5
5 6 1 4 5 6

I P E I P E I P E I P E I P E I P E

1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1

Having gone through the laborious process of identifying
The pooled Brownian control problem is now:

min lim sup
)!1

1
)

E[
π

)

0

1’
:=1

8Q̂: (C)3C],

s.t. Ŵ ?>>;43 (C) = "Q̂ (C)
Ŵ1+4 (C) = Ẑ1+4 (C) + Î1 (C) + Î4 (C),
Ŵ2+5 (C) = Ẑ2+5 (C) + Î2 (C) + Î5 (C),
Ŵ3+6 (C) = Ẑ3+6 (C) + Î3 (C) + Î6 (C),
Q̂ (C) � 0, Î (0) = 0, Î non-decreasing,

Q̂, Î are non-anticipating with respect to X̂(C).

We check that for given X̂, Ẑ, the values of Q̂, Î can be used to obtain the
controls of the original scaled network Ĵ , V̂. There are 27 equations for 24
unknowns, but 3 equations are redundant because they just say that the sum
of the relevant bu�ers in X̂ equal the component of Ẑ, on both sides of the
equations, and a solution exists (in fact is unique)
We can now solve the pooled Brownian control problem: We keep all the
inventory in the 6 input bu�ers, balancing the contents of the two routes, we
balances the workloads in the two servers of each pooled pair, and we idle
only when the pooled workload is 0.
We return to determination of the queue lengths. Denote 11 (C) = Ŵ1+4 (C), 12 (C) =
Ŵ2+5 (C), 13 = Ŵ3+6 (C). Then the minimization pathwise is to solve for each

190 MCQN with Discretionary Routing

C the problem:

min
18’
:=1

Q̂: (C),

s.t.
6’
:=1

Q̂: + Q̂8 (C) + Q̂9 (C)Q̂10 (C) + Q̂11 (C) + Q̂14 (C)Q̂17 (C) = 11 (C),

6’
:=1

Q̂: + Q̂7 (C) + Q̂10 (C)Q̂11 (C) + Q̂12 (C) + Q̂13 (C)Q̂16 (C) = 12 (C),

6’
:=1

Q̂: + Q̂7 (C) + Q̂8 (C)Q̂9 (C) + Q̂12 (C) + Q̂15 (C)Q̂18 (C) = 13 (C),

and the solution to this is:

+
⇤ (C) = 11 (C) _ 12 (C) _ 13 (C),
6’
:=1

Q̂: = 11 (C) ^ 12 (C) ^ 13 (C),

Q̂7 (C) + Q̂12 (C) =
�
12 (C) ^ 13 (C) � 11 (C)

�+
Q̂8 (C) + Q̂9 (C) =

�
11 (C) ^ 13 (C) � 12 (C)

�+
Q̂10 (C) + Q̂11 (C) =

�
11 (C) ^ 12 (C) � 13 (C)

�+
Q̂13 (C) + Q̂16 (C) =

�
12 (C) � 11 (C) _ 13 (C)

�+
Q̂14 (C) + Q̂17 (C) =

�
11 (C) � 12 (C) _ 13 (C)

�+
Q̂15 (C) + Q̂18 (C) =

�
13 (C) � 11 (C) _ 12 (C)

�+
This is analogous to a fork join network with 3 parallel servers, where each
arriving customer splits into 3 tasks that are processed in parallel at the 3
servers, and a customer departs when his three tasks are complete.

1,4

2,5
 All
customers

3,6

17.13 (⇤) For a ring network with 8 stations, obtain a pooled workload Brownian
problem, and show how to minimize the pooled workloads a.s. pathwise, but
then show that this solution does not minimize the sum of queue lengths, and
there is no a.s. pathwise optimal solution to the original BCP.

Exercises 191

Solution
This is based on Laws (1990). In this network there are eight workstations and
4 types of customers, each type can choose to go clockwise or anticlockwise
to receive service at four stations, as illustrated here:

Type 1

12

3

4

5 6

7

8

Type 3 Type 3

Type 4

Type 4

Type 1

Type 2

Type 2

Following the same steps as for the six station network, we pool the queues
for stations (1, 5), (2, 6), (3, 7), (4, 8), and obtain Ŵ ?>>;43 (C) = "Q̂ (C),
Ẑ?>>;43 (C) = "X̂(C), where

"A ,: =
⇢

1 : 2 ⇠A [⇠A+4

0 otherwise
, A = 1, . . . , 4, : = 1, . . . , 32.

and we get the workload BCP:

min lim sup
)!1

1
)

E[
π

)

0

32’
:=1

Q̂: (C)3C],

s.t. Ŵ ?>>;43 (C) = "Q̂ (C)
Ŵ1+5 (C) = Ẑ1+5 (C) + Î1 (C) + Î5 (C),
Ŵ2+6 (C) = Ẑ2+6 (C) + Î2 (C) + Î6 (C),
Ŵ3+7 (C) = Ẑ3+7 (C) + Î3 (C) + Î7 (C),
Ŵ4+8 (C) = Ẑ4+8 (C) + Î4 (C) + Î8 (C),
Q̂ (C) � 0, Î (0) = 0, Î non-decreasing,

Q̂, Î are non-anticipating with respect to X̂(C).

The solution to this workload BCP is similar to the one for the six stations
network: Since the pooled stations do not overlap, we can choose the idling for
each pair of stations independent from the others, and so, for given Brownian

192 MCQN with Discretionary Routing

motion Ẑ, we let

ÎA (C) + ÎA+4 (C) = sup
0<B<C

�
ẐA (B) + ẐA+4 (B)

��
, A = 1, . . . , 4.

We now try to minimize the queue lengths, by solving the LP at each point C,
and see that there is a problem. Denote 1A (C) = ŴA ,A+4 (C), A = 1, . . . , 4 we
get:

min+ (C)
32’
:=1

Q̂: (C),

s.t.
’

:2⇠A[⇠A+4

Q̂: (C) = 1A (C), A = 1, . . . , 4,

Q̂ (C) � 0.

It is immediate to see that (as in the six station case), + (C) � max(1A (C), A =
1, . . . , 4). In the six station case for any values of 1A this lower bound could
be achieved. However, this is no longer the case for the eight station case.
One can see that:

14 < 12 ^ (11 ^ 13 � 12) =)
32’
:=1

Q̂: (C) > max(1A (C), A = 1, . . . , 4.

It then turns out that to get close to this lower bound value it is better some
times to idle some stations even when there ar customers in the station. For
details see Laws (1990)

17.14 Obtain the exact expressions for ', ⌧, ⇠, � in equation (17.3).
Solution
The matrix ' is the input output matrix, (� � %T)diag(`). The matrix ⌧ has
dimension ⇥ ! where ! is the number of routes, the number of bu�ers
(classes), and ⌧: ,; = 1 if : is the first bu�er on route ; and 0 otherwise. ⇠ is
the constituency matrix, with⇠8,: = 1 when bu�er : is processed at station 8,
0 otherwise. � is the flow allocation matrix, of dimension "⇥!, where " is
the number of customer types, and �<,; = 1 if route ; is of customers of type
<, 0 otherwise, so multiplying by " sums the total flow rate of customers of
type <.
Thus, the first constraint writes the scaled bu�er contents Q̂ (C), as netput
under the nominal control, approximated by a Brownian motion X̂(C), plus
sequencing control given by the free times Ĵ (C) times ', plus discretionary
routing controls V̂ (C) times ⌧. The next two constraints say that the free
times have to add up to the total idling Î (C), and the routing controls which
are deviations form the nominal controls that determine the netput, have to
add up to zero.

17.15 Justify the formulation and the solution of the BCP (17.4).
Solution

Exercises 193

To wish to show that the solution of the BCP (17.4) is indeed the solution of
the Brownian control problem (17.3).
Consider first the workload Brownian control problem (17.4). We can solve
it optimally for every sample path and the solution is path-wise optimal:

min
π

)

0

 ’
:=1

Q̂: (C,l)3C]

s.t. Ŵ(C,l) =
 ’
:=1

<̄: Q̂: (C,l)

Ŵ(C,l) = Ẑ(C,l) +
�’
8=1

c
⇤
8
`8Î8 (C,l),

Q̂ (C,l) � 0, Î (0) = 0, Î non-decreasing,

Q̂, Î are non-anticipating with respect to Ẑ(C, ,l),

Then for given Ŵ(C,l), we can solve for Q̂: (C,l) pathwise at every C:

min
 ’
:=1

Q̂: (C,l)3C]

s.t. Ŵ(C,l) =
 ’
:=1

<̄: Q̂: (C,l)

Q̂ (C,l) � 0,

and the solution is any choice of Q̂: (C,l) such that only bu�ers with <̄: = ¯̄<
have any fluid.

’
:2 ⇤

Q̂: (C) =
1
¯̄<
Ŵ(C), Q̂: (C) = 0, : 8 ⇤

.

These will be first bu�ers on their route, and for those we have ¯̄< = max2 ⌘⇤2 .
Clearly we should try and minimize Ŵ(C,l), and this is done by the Skoro-
hod reflection. we can choose any combination of idle times that satisfy:

�’
8=1

c
⇤
8
`8Î8 (C,l) = � inf

0BC
Ẑ(B,l),

We now need to show that the solution of (17.4) solves (17.3). We first claim
that solution of (17.4) provides a lower bound for (17.3). We can see that
the single constraint expressing Ŵ in terms of Ẑ in (17.4), is obtained by
multiplying each bu�er constraint in (17.3) by <̄: and summing up. Hence
(17.4) is a relaxation of (17.3) and provides a lower bound.
Next needs to show that from a solution of (17.4) we can construct a solution
for (17.3). Solution of (17.4) determines Q̂ (C), Î (C), and we still also have

194 MCQN with Discretionary Routing

the original X: (C). Form these we wish to determine J: (C) and V̂A (C). They
are connected by a set of linear equations. One can show that these equations
always have a solution, which is a feasible set of controls for (17.3).
For details of the proofs see Laws (1990, 1992).

17.16 For the six node network of Figure 17.6, write the compatibility linear
program and its dual, and identify all the 29 cut constraints. Show that there
are no more than 29.
Solution
The network has machines 1, . . . , 6 and flows 1, . . . , 5. The compatibility LP
is:

min [

266666666664

1 0 1 0 0
1 0 0 1 0
1 0 0 0 1
0 1 1 0 0
0 1 0 1 0
0 1 0 0 1

377777777775

2666666664

51

52

53

54

55

3777777775
� 1[

266666666664

`1

`2

`3

`4

`5

`6

377777777775


1 1 0 0 0
0 0 1 1 1

� 2666666664

51

52

53

54

55

3777777775
=


_1

_2

�

5A � 0

The dual compatibility LP is:

max_1⌘1 + _2⌘2 � `1c1 � `2c2 � `3c3 � `4c4 � `5c5 � `6c6

2666666664

1 0
1 0
0 1
0 1
0 1

3777777775


⌘1

⌘2

�


2666666664

1 1 1 0 0 0
0 0 0 1 1 1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

3777777775

266666666664

c1

c2

c3

c4

c5

c6

377777777775
1c = 1, c8 � 0

Exercises 195

The matrix of coe�cients, including slacks HA , looks like this:

2666666666666664

_1 _2 `1 `2 `3 `4 `5 `6

⌘1 ⌘2 c1 c2 c3 c4 c5 c6 H1 H2 H3 H4 H5 A .⌘.B.

�1 0 1 1 1 0 0 0 �1 0 0 0 0 0
�1 0 0 0 0 1 1 1 0 �1 0 0 0 0
0 �1 1 0 0 1 0 0 0 0 �1 0 0 0
0 �1 0 1 0 0 1 0 0 0 0 �1 0 0
0 �1 0 0 1 0 0 1 0 0 0 0 �1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 ⇠

3777777777777775
In principle we may have as many as

� 13
6=1716

�
basic solutions. We are interested

in feasible bases, i.e. basic solutions which are non-negative. By putting ⇠
on the r.h.s. of the last constraint, we can make all solution be integer. We are
interested in cut of flow, so each basic solution must involve at least on _2 i.e.
have at least one of the ⌘2 > 0. Also we need at least one c8 positive by the
last constraint. in fact, to be a cut for _1 we need at east one c8 > 0, 8 = 1, 2, 3
and one of c8 > 0.8 = 4, 5, 6. For _2 we need at east one c8 > 0, 8 = 1, 4 and
one of c8 > 0.8 = 2, 5 and one of c8 > 0.8 = 3, 6.
The 29 generalized cuts are.
(a) Cuts for _1, no cost for _2: _1 < `1 + `4 or any _2 < `: + `; , : 2

1, 2, 3, ; 2 4, 5, 6. In these basic solutions the slacks H3 = H4 = H5 = 1.
If this cut is the only tight cut, customers of type 2 = 2 have routes that
are not moving through bottlenecks. Value of ⇠ = 2. Total of 9.

(b) Cuts for _2 no cost for _1: _2 < `1 + `2 + `3 or _2 < `4 + `5 + `6. In
these basic solutions the slacks H1 = H2 = 1. If this cut is the only tight
cut, customers of type 2 = 1 have routes that are not moving through
bottlenecks. Value of ⇠ = 3. Total of 2.

(c) Cuts for_1, _2, involving just three positive c8 , like:_1+_2 < `1+`2+`6,
or any _1+_2 < `:+`;+`<, where< 2 (1, 2, 3, 4, 5, 6), and conditional
on <, : < ; are in another row, in the other two columns. In these basic
solutions one of the slacks H1 or H2 equals 1, in fact the one of the row
that has : , ;. If this cut is the only tight cut, customers of type 2 = 1
will not use the route through : , ;, because it is too expensive. Value of
⇠ = 3. Total of 6.

(d) Cuts for _1, _2, involving just three positive c8 , like: 2_1 + _2 < `1 +
`2 + 2`6, or any _1 +_2 < `: + `; + `<, where < 2 (1, 2, 3, 4, 5, 6), and
conditional on <, : < ; are in another row, in the other two columns.
In these basic solutions the slack corresponding to node < i.e. H3 for
< = 1, 4, H4 for < = 2, 5, H5 for < = 3, 6 equals 1. If this cut is the
only tight cut, customers of type 2 = 2 will not use the route through <,
because it is too expensive. Value of ⇠ = 4. Total of 6.

(e) Cuts for _1, _2, involving foru positive c8 , and no slacks, like: 3_1+2_2 <

2`1 + 2`5 + `3 + `6, or any 3_1 + 2_2 < 2`: + 2`; + `< + `=, where

196 MCQN with Discretionary Routing

< < = are one of (1, 4), (2, 5), (3, 6) and <, =, : < ; are located : in
top row, ; in bottom row, occupying the two columns left by <, =. There
are no slacks. If one of these cuts is the only tight cut, all the nodes are
heavily loaded, all the customer types need to use bottlenecks, and all
the routes of each type have the same cost and will be used. Value of
⇠ = 6 Total of 6.

It is clear that these 29 cuts comprise all the possible cuts (i.e. some positive
⌘2 , cuts for some _2 , with 3, 2, 1, and 0 slacks.

17.17 Consider the six node network of Figure 17.6, with the following arrival and
processing rates: _ = (2, 4), ` = (2, 6, 3, 6, 2, 3). Locate the critical general-
ized cut constraint and formulate and solve the BCP. Obtain the distribution
of the pooled workload of the solution.
Solution
The network is given by the following figure:

11 2

 Type 1
Customers

 Type 2
Customers

43
36

8 9 10

11

1272 4

5

5 6

λ2 = 4

λ1 = 2

µ1 = 2 µ2 = 6 µ3 = 3

µ4 = 6 µ5 = 2 µ6 = 3

We can do one of three things: solve the LP(_, `) to obtain the optimal flows
and [, or solve the dual LP⇤ (_, `), to obtain the tightest cut, or calculate the
29 cut constraints, get those that go intto Heavy tra�c first.

Exercises 197

We take the third option:

26664

CH? _ ; .⌘.B. ` A .⌘.B X

1 0 1 2 1, 4 8 4
2 0 1 2 1, 5 4 2
3 0 1 2 1, 6 5 2.5
4 0 1 2 2, 4 12 6
5 0 1 2 2, 5 8 4
6 0 1 2 2, 6 9 4.5
7 0 1 2 3, 4 9 4.5
8 0 1 2 3, 5 5 2.5
9 0 1 2 3, 6 6 3
10 1 2 4 1, 2, 3 11 2.75
11 1 2 4 4, 5, 6 11 2.75
12 2 1, 2 6 5, 6, 1 7 1.167
13 2 1, 2 6 4, 6, 2 15 2.5
14 2 1, 2 6 4, 5, 3 11 1.833
15 2 1, 2 6 2, 3, 4 15 2.5
16 2 1, 2 6 1, 3, 5 7 1.167
17 2 1, 2 6 1, 2, 6 11 1.833
18 3 1, 2 8 5, 6, 1 9 1.125
19 3 1, 2 8 4, 6, 2 21 2.625
20 3 1, 2 8 4, 5, 3 14 1.75
21 3 1, 2 8 2, 3, 4 21 2.625
22 3 1, 2 8 1, 3, 5 9 1.125
23 3 1, 2 8 1, 2, 6 14 1.75
24 4 1, 2 14 1, 5, 3, 6 14 1
25 4 1, 2 14 4, 2, 3, 6 30 2.143
26 4 1, 2 14 1, 6, 2, 5 18 1.286
27 4 1, 2 14 4, 3, 2, 5 26 1.857
28 4 1, 2 14 2, 6, 1, 4 26 1.857
29 4 1, 2 14 5, 3, 1, 4 18 1.286

37775
We obtain that the tightest generalized cut is

3_1 + 2_2  2`1 + 2`5 + `3 + `6

and in fact with the values _ = (2, 4), ` = (2, 6, 3, 6, 2, 3) this cut becomes
critical, and the system becomes unstable. We assume then that the input
rates are _ = (2d, 4d) with d < 1,⇡ 1.
For this cut we have: ⌘⇤1 = 3, ⌘⇤2 = 2, c⇤ = (2, 0, 1, 0, 2, 1) (not normalized)
Looking at the primal problem, we note first that stations 2,4 are not bot-
tleneck, and we can discard those stations, and also discard bu�ers 2,4,6,8
which will be empty.
We now solve LP(_, ` for the various flows. Given the dual solution we can

198 MCQN with Discretionary Routing

obtain these flows for the equations (note that [= 0):

266666666664

1 0 1 0 0
0 1 0 1 0
1 0 0 0 1
0 1 0 0 1
1 1 0 0 0
0 0 1 1 1

377777777775

2666666664

51

52

53

54

55

3777777775
=

266666666664

2d
2d
3
3
2
4

377777777775

`1

`5

`3

`6

_1

_2

(note that [= 0) This is solved uniquely by the flows: 51 = 52 = d, 53 = 54 =
1, 55 = 2. Recall, these are the nominal flows.
These flows are the nominal rates. At the various bu�ers, : = 1, . . . , 12 we
then have the free time controls J: (C) = a: C � T: (C), and for the routing
controls we have V: (C) = A: (C) � 5: C. The Brownian control problem is
formulated for the scaled queues, Q̂: (C) = 1

#
&: (#2

C), as (17.3), where:

' =

2666666666666666664

1 3 5 7 9 10 11 12
1 `1 0 0 0 0 0 0 0
3 0 `1 0 0 0 0 0 0
5 0 0 `3 0 0 0 0 0
7 0 0 0 `5 0 0 0 0
9 0 0 0 0 `5 0 0 0
10 0 0 �`3 0 0 `6 0 0
11 0 0 0 0 0 0 `3 0
12 0 0 0 �`5 0 0 0 `6

3777777777777777775
For the various bu�ers we have <8,: as follows:

' =

2666666664

8\: 1 3 5 7 9 10 11 12
1 1 1
3 1 1 1
5 1 1
6 1 1 1 1

3777777775
and we obtain <̄: as cT [<8,:]4⇥8 (recall, c1 = c5 = 2, c3 = c6 = 1, so
c = (2, 1, 2, 1)which needs to be normalized):

<̄ = (3, 2, 2, 3, 2, 1, 2, 1)/6

We already see that ⇤ = (1, 7) so we should hold all the inventory in those
two bu�ers.
The pooled workload is:

Ŵ% (C) =
1
2
Q̂1 (C)+

1
3
Q̂3 (C)+

1
3
Q̂5 (C)+

1
2
Q̂7 (C)+

1
3
Q̂9 (C)+

1
6
Q̂10 (C)+

1
3
Q̂11 (C)+

1
6
Q̂12 (C).

and we have:

Ŵ% (C) = Ẑ% (C) + Î% (C),

Exercises 199

where Ẑ% (C) is a Brownian motion with drift:

\ = #
�
(3_1 + 2_2) � (2`1 + 2`5 + `3 + `6)

�
)

= #
�
(3 · 2 · d) + 2 · 4 · d) � (2 · 2 + 1 · 3 + 2 · 2 + 1 · 3)

�
= # (d � 1) · 14

If we take # = 1000 and d = 0.999 we get drift \ = �14, so it will take about
1000/14 ⇡ 70 time units to drift from 1000 to 0.
The variance of Ẑ% (C) is

f
2 = 9_12

2
0,1 + 4_22

2
0,2 + 4`12

2
B,1 + `32

2
B,3 + 4`52

2
B,5 + `62

2
B,6

= 22 for Poisson exponential with 22 = 1.

We will not calculate the exact values of Ĵ
:
(C), V̂ (C) for each realization

of Q̂ (C), ⌘- (C) that need to be solved at each C. However, for the Brownian
system our policy is: Work fully at all stations if there is fluid in the system,
keep all fluid in bu�ers 1 and 7, make sure that they empty together, and idle
all the machines whenever the system is empty.

Part VI

Many-Server Systems

201

18

Infinite Servers Revisited

Exercises
18.1 Calculate the auto-covariance function of the Brownian bridge ⌫" (G) �

G⌫" (1), 0  G  1, and conversely, show that the unique Gaussian process
with continuous paths and auto-covariance G^H�GH is ⌫" (G)�G⌫" (1), 0 
G  1.
Solution
The auto covariance is:

E
⇣ �
⌫" (C) � C⌫" (1)

� �
⌫" (B) � B⌫" (1)

� ⌘
= E

�
⌫" (C)⌫" (B)

�
BE

�
⌫" (C)⌫" (1)

�
� CE

�
⌫" (B)⌫" (1)

�
+BCE

�
⌫" (1)⌫" (1)

�
= B ^ C � BC � BC + BC = B ^ C � BC.

Clearly, ⌫" (C) is a Gaussian process, i.e. all its joint distributions are mul-
tivariate Gaussian, and so then is ⌫" (C)C⌫" (1), and a Brownian process is
determined by its mean and auto-covariance function. Hence the only pro-
cess which has mean 0 and auto-covariance function B ^ C � BC is indeed
⌫" (C) � C⌫" (1).
The true question is to show that ⌫" (C) � C⌫" (1) is the process / (C) =�
⌫" (C)

��
⌫" (1) = 0

�
. We show that now.

For C1 < C2, we look at ⌫" (C1), ⌫" (C2) |⌫" (1) = 0:

P
⇣
⌫" (C1) = G1, ⌫" (C2) = G2

���⌫" (1) = 0
⌘

= i(G1p
C1
)i(G2 � G1p

C2 � C1
)i(0 � G2p

1 � C2
)
.
i(0)

=
1

2c
p
C1 (C2 � C1) (1 � C2)

exp
n
�
C2 (1 � C2)G2

1 + C1 (1 � C1)G2
2 � 2C1 (1 � C2)G1G2

2C1 (C2 � C1) (1 � C2)
o

=
1

2c |⌃| exp
n
� (G1, G2) ⌃�1

✓
G1

G2

◆ o

203

204 Infinite Servers Revisited

which is the joint distribution of (- ,.) ⇠ # (0,⌃) where⌃ =

C1 (1 � C1) C1 (1 � C2)
C1 (1 � C2) C2 (1 � C2)

�

So the two Gaussian processes ⌫" (C)�C⌫" (1) and / (C) =
�
⌫" (C)

��
⌫" (1) =

0
�

have the same auto-covariance function, so they are the same.
18.2 For a Brownian bridge B(H) and a distribution function � (G) of a non-

negative random variable, derive the auto-covariance function of the process
B � � (G) (calculated as B(� (G), G � 0).
Solution
Since for a random variable - with distribution �, that is strictly increasing
from 0 to 1 in an interval [0, 1] (0 � �1, 1  1), � (-) ⇠ * (0, 1),
we have that B(� (G) has the auto-covariance function for G  H given by
� (G) (1 � � (H)), for 0  G  H  1

18.3 Specialize the results of Theorems 18.3 and 18.4 to the GI/GI/1, with inter-
arrival time distribution � service time distribution ⌧, starting empty.
Solution
We consider a sequence of systems, where the arrival stream for system =

is a renewal process A= (C) with interarrival times D 9/=, where D8 are i.i.d.
with distribution � and mean 1/_, and coe�cient of variation 20. Hence,
by FSLLN 1

=
�
= (C) ! _C u.o.c. a.s., and by FCLT for renewal processes,

p
=

⇣
1
=
�
= (C) � _C

⌘
!F

p
_2

2
0
⌫" (C).

Substituting into the expressions in Theorem 18.3, the fluid limit is:

1
=

Q= (C) !? _

π
C

0
⌧̄ (B)3B, u.o.c. a.s. as =! 1.

Substituting into the expressions in Theorem 18.4, the di�usion approxima-
tion is, that

Q̂= (C) =
p
=

⇣Q= (C)
=

� _
π

C

0
⌧̄ (C � B)3B

⌘
.

converges weakly to Q̂ (C),

Q̂ (C) =
q
_2

2
0

π
C

0
⌧̄ (C � B)3⌫" (B) �

π
C

0

π
C

0
1(B + G  C)3B(_B,⌧ (G)),

Note that for this case, Q̂ (C) is obtained as a linear transformation on gaussian
processes, and so this is a Gaussian process. We have already derived the
form of this Gaussian process for the G/G/1 model with renewal arrivals
and services in Section 6.9.

18.4 Specialize the results of Theorems18.3 and 18.4 to the G/G/1, with interar-
rival time distribution � and i.i.d. service time distribution ⌧, starting with
initial number of customers Q= (0)/= ! @0,

p
=(Q= (0)/= � @0) ! Q0 that

have i.i.d. residual service time distribution ⌧4@ .
Solution
For the fluid limit the only added term is: @0⌧̄4@ (C).

Exercises 205

For the di�usion limit we need to add two random terms: ⌧̄4@ (C)Q0, andp
@0B0 (⌧4@ (C)).

Remark: It is tempting to think that if Q0 has the stationary distribution then
this will be the stationary process for this G/G/1 process. However this is
wrong: the di�usion limit is not a di�usion, it is not Markovian, and so its
stationary distribution is not determined by its state at a single point in time.

18.5 Specialize the results of Theorems 18.3 and 18.4 to the G/M/1, with inter-
arrival time distribution � and exponential service time, starting with initial
number of customers with the same exponential service time.
Solution
The fluid limit is:

@04
�`C + _

`

(1 � 4�`C)

In particular, if @0 = _

`
, then 1

1
Q= (C) ! _

`
.

For the di�usion limit we have:

Q̂ (C) = 4�`CQ0 +
p
@0B0 (1 � 4�`C) +

q
_2

2
0

π
C

0
4
` (C�B)

3⌫" (B)

�
π

C

0

π
C

0
1(B + G  C)3B(_B, 1 � 4�`G)

One can then show that if @0 = _

`
, then Q̂ (C) satisfies the linear Ito equation:

Q̂ (C) = Q̂ (0) � `
π

C

0
Q̂ (B)3B +

q
_(22

0
+ 1)⌫" (C),

that is, Q̂ (C) is an Ornstein-Uhlenbeck process. This is given as Theorem
3, part II, of Krichagina and Puhalskii (1997), where the complete proof
appears.

18.6 Specialize the results of Theorems 18.3 and 18.4 to the M/G/1, with service
time distribution ⌧, starting with initial number of customers Q(0) where
Q(0) is a Poisson random variable, and the initial customers have i.i.d. service
time distribution ⌧4@ .
Solution
The fluid limit is

Q̄ (C) = @0⌧̄4@ (C) + _
π

C

0
⌧̄ (B)3B

and the di�usion limit is

Q̂ (C) = ⌧̄4@ (C)Q0 +
p
@0B0 (⌧4@ (C)) +

p
_

π
C

0
⌧̄ (C � B)3⌫" (B)

�
π

C

0

π
C

0
1(B + G  C)3B(_B,⌧ (G)),

206 Infinite Servers Revisited

There is no simplification beyond that obtained for the general G/G/1 case,
except in the third term we have 22

0
= 1.

18.7 Specialize the results of Theorems 18.3 and 18.4 to the M/M/1 stationary
process,

Solution
The answer is exactly as for Exercise 18.5 with the only simplification that
now 2

2
0
= 1.

19

Asymptotics Under Halfin-Whitt Regime

Exercises
19.1 Assume (1 � d=)

p
= ! V, and let -= be a Poisson random variable with

parameter =d=. Use CLT to show that P(-=  = � 1) ! �(V).
Solution
P(-=  =�1) = P((-=�=d=)/

p
=d=  a=) where a= = (1�d=)

p
= d

�1/2
=

�
(=d=)�1/2, but a= ! V, so by CLT, P(-=  = � 1) ! �(V).

19.2 Assume (1 � d=)
p
= ! V, and let -= be a Poisson random variable with

parameter d=. Use Stirling’s approximation to =! to show that P(-= = =)/(1�
d=) ! q(V)/V.
Solution

P(-= = =)/(1 � d=) =
(=d=)=

=!(1 � d=)
4
�=d=

⇠ 4
=(1�d=+log d=) /(

p
2c= (1 � d=))

⇠ 4
�=(1�d=)2)/2/(

p
2c= (1 � d=))

! 1

V

p
2c
4
�V2/2

19.3 In an M/M/= system show that if (1 � d=)
p
= ! 0 then the probability of

delay U= ! 1, and if (1 � d=)
p
=! 1 then U= ! 0.

Solution
The limits for W=, b= are valid also for V = 0, and V ! 1. Recall that the
limit is U = lim=!1 [1 + W=

b=
]�1 = [1 + V�(V)

q (V)]�1. Clearly, V�(V)
q (V) converges to

1 for V ! 1 and is 0 for V = 0.
19.4 Show that U is monotone decreasing with V, for 0 < V < 1.

Solution
Note that �(V) is increasing, so V�(V) is increasing, and q(V) is decreasing
for 0 < V < 1, so V�(V)

q (V) is increasing, and hence
⇥
1+ V�(V)

q (V)
⇤�1

is decreasing
for 0 < V < 1.

19.5 Verify equations (19.7), (19.8).
Solution

207

208 Asymptotics Under Halfin-Whitt Regime

To prove (19.7), by CLT for Poisson random variables:

P(&=  X= |&=  =) =
X=’
:=0

(=d=):
:!

?0

. =’
:=0

(=d=):
:!

?0

=
X=’
:=0

(=d=):
:!

4
�=d=

. =’
:=0

(=d=):
:!

4
�=d=

= P(-=  X=)
.
P(-=  =) where -= ⇠ Poisson(=d=)

= P
⇣
-= � =d=p

=d=

 X= � =d=p
=d=

⌘.
P
⇣
-= � =p
=d=

 = � =d=p
=d=

⌘

= P
⇣
-= � =d=p

=d=

 (= � =d=) � (= � X=)p
=d=

⌘.
P
⇣
-= � =p
=d=

 = � =d=p
=d=

⌘

! �(V � X)/�(V)

To prove (19.8):

P(&= (1) � X= |&= (1) � =) =
1’
:=X=

=
=
d
:

=

=!
?0

. 1’
:==

=
=
d
:

=

=!
?0

=
(=d=)=

=!(1 � d=)
d
X=�=
=

?0

. (=d=)=
=!(1 � d=)

?0

= d
X=�=
=

= exp
�
(X= � =) log(1 � (1 � d=))

�
= exp

�
(X= � =) (�(1 � d=))

�
⇠ exp

� X= � =p
=

[�(1 � d=)
p
=]

�
! 4

�XV

19.6 Verify the infinitesimal mean and variance (drift and di�usion coe�cients)
for M/M/=.
Solution
We have

<Q= (:) = lim
⌘!0

1
⌘

E
�
Q= (C + ⌘) � Q= (C)

��Q= (C) = : �
= _ � min(: , =)` = _ � `= + `(= � :)+,

f
2
Q= (:) = lim

⌘!0

1
⌘

Var
�
Q= (C + ⌘) � Q= (C)

��Q= (C) = : �
= _ + min(: , =)` = _ + `= � `(= � :)+.

We now center and scale the queue length, so that Q̂= (C) = Q= (C)�=p
=

, so that

if Q̂= (C) = G then Q= (C) =
p
=G + =. When =! 1 and

p
=(1 � d=) ! V we

Exercises 209

have:

< Q̂= (G) =
1p
=

<Q= (
p
=G + =)

=
1p
=

�
_ � =` + `(= � = �

p
=G)+

�

=
_ � =`p

=

+ `(�G)+

!
⇢
�`V, G > 0,
�`(V + G), G < 0.

f
2
Q̂=

(G) =
1
=

f
2
Q= (

p
=G + =)

=
1
=

�
_ + =` � `(= � = �

p
=G)+

�

=
_ � =`
=

� `(�G)+p
=

! 2`.

19.7 Consider the embedded Markov chain at arrival times of the GI/M/= system.
Derive the limit infinitesimal drift and di�usion under Halfin Whitt regime
for the sequence of centered and scaled queue length at the embedded times.
Solution
Let &= ("), " = 0, 1, 2, . . . be the embedded Markov chain just before
arrival times.

E(&= (" + 1) �&= (")
��
&= (") = :) = 1 � 1

_

(`= � `(= � :)+)

=
1
_

�
_ � `= + `(= � :)+

�
To calculate the variance we condition on D, the length of the period between
the arrivals:

Var(&= (" + 1) �&= (")
��
&= (") = :)

= E
�
Var(&= (" + 1) �&= (")

��
&= (") = : , D)

�
+Var

�
E(&= (" + 1) �&= (")

��
&= (") = : , D)

�
= E

�
(D(`= � `(= � :)+)

�
+ Var

�
1 � D(`= � `(= � :)+)

�
=

1
_

(`= � `(= � :)+) + f2
`

2 (= � (= � :)+)2

=
1
_

(`= � `(= � :)+) + 22
0

� `
_

�2 (= � (= � :)+)2

We are centering and scaling the queue, &̂=C =
&= (C)�=p

=

, so that when &̂=C = G

210 Asymptotics Under Halfin-Whitt Regime

then &= (C) = = +
p
=G. We then get the limits:

<
&̂
(G) =

1p
=

�
_ � `= + `

p
=(�G)+

�

!
⇢
�`V, G > 0,
�`(V + G), G < 0.

f
2
&̂

(G) = lim
=!1

⇣ 1
_

(`= � `
p
=(�G)+) + 22

0

� `
_

�2 (= �
p
=(�G)+)2

⌘

= lim
=!1

n
`=

_

h
1 �

⇣
� Gp

=

⌘+i
+ 22

0

⇣
`=

_

⌘2 h
1 �

⇣
� Gp

=

⌘+i2o

= (1 + 22
0
)`

We note that events in the embedded Markov chain occur at rate ⇡ 2_= as
= is large, independent of the state. So these are also the infinitesimal rates

for the continuous time process. What we do is to define ˜̂Q= (C) = &̂= ([=C]),
then this continuous time process is a Markov chain, with the same infinite
mean and variance, and will converge to the Halfin-Whitt limit. We then also
get be time change that Q̂= (C) converges to the same Halfin-Whitt limit.

19.8 (⇤) For the Halfin-Whitt di�usion limit of the centered and scaled M/M/=
process, in state Q̂ (C) = G, calculate the distribution of the times to return to
0 (no queue and all busy), from position G > 0 and G < 0 (hitting times).
Solution
We will only calculate the hitting time from G > 0. The calculation of hitting
times for Ornstein-Uhlenbeck process is a hard problem. A recent paper
on that question is Lipton and Kaushansky (2018), which gives theoretical
derivations and numerical metods.
For G > 0, we use the results of Section 7.7.2. For a Brownian motion
starting at 0, with drift < and di�usion f2, the first passage time distribution

to reach level H by time C has the distribution P() (H) > C) = �
⇣
H�<C
fC

1/2

⌘
�

4
2<H/f2

�
⇣
�H�<C
fC

1/2

⌘
.

For our case, we start at level G and want the hitting time of 0, where the drift
is �`V and the di�usion is f2 = 2`. We need to go from G > 0 to 0, which
is the same as from 0 to G with drift < = `V. Hence:

P(return to 0 from G > 0 > C) = �
⇣
G � `VC
(2`C)1/2

⌘
� 4VG�

⇣�G � `VC
(2`C)1/2

⌘

19.9 Solve the renewal type equation for the Example19.9.
Solution

Exercises 211

The equation for the fluid limit is:

Q̄ (C) = min(@0, 1)⌧̄0 (C) + (@0 � 1)+⌧̄ (C) +
π

C

0
⌧̄ (C � B)30̄(B)

+
π

C

0
(Q̄ (C � B) � 1)+3⌧ (B).

We assume: ⌧,⌧0 are deterministic 1, @0 = 1, and 0(C) = C, and we then
have:
For 0 < C < 1:

Q̄ (C) = 1 + 0 + C + 0 = 1 + C

where the last term is 0, since ⌧ (B) = 0 for 0 < B < 1.
For 1 < C < 2:

Q̄ (C) = 1 + 0 + 0 + (Q̄(C � 1) � 1) = Q̄ (C � 1)

where in the last integral, 3⌧ (B) has a single jump o 1 at B = 1, where the
integrand is (Q̄ (C � 1) � 1)+.
For < < C < < + 1:

Q̄ (C) = 1 + 0 + 0 + (Q̄(C � 1) � 1) = Q̄ (C � 1).

This is exactly the saw-tooth discontinuous periodic function.

20

Many Servers with Abandonment

Exercises
20.1 Use Figure 20.1 to obtain the limiting expected sojourn time for an arriving

customer if he abandons, or if he waits and and is patient enough to receive
service.
Solution
For customers that abandon, the mean sojourn time is:

mean sojourn for abandon =
π

F

0
(1 � � (H))3H

This is the integral of Figure 20.1, from 0 to F, divided by d.
For customers that wait and get served, the sojourn time consists of waiting
for F and service of 1,

mean sojourn for served = F +
π 1

0
(1 � ⌧ (H))3H = F + 1.

It equals the area in Figure 20.1, under a level of 1.
20.2 For the M/M/=+M system, represent the queue length process as a birth and

death process and derive its stationary distribution.
Solution

n 0 1 2

λ λ λ λλ

nµ + sγµ 2µ nµ nµ + γ

n + s

The stationary distribution is:

c: =

8>>>>>>><
>>>>>>>:

c0
1
:!

⇣
_

`

⌘
:

, 0  :  =,

c=

:�=÷
9=1

_

=` + 9W , : > =.

212

Exercises 213

20.3 For the M/M/=+M system, assume that = is fixed, and that the value of `
increases according to the arrival rate_, so that ` (_) = (_+V

p
_)/=. Calculate

the infinitesimal mean and variance for the birth and death queue length
process and obtain its limits as _ ! 1. Obtain the di�usion approximation
for the scaled queue length [Ward (2012)].
Solution
We have

<Q= (:) = lim
⌘!0

1
⌘

E
�
Q= (C + ⌘) � Q= (C)

��Q= (C) = : �
= _ � min(: , =)` � W(: � =)+

= _ � `= + `(= � :)+ � W(: � =)+,

f
2
Q= (:) = lim

⌘!0

1
⌘

Var
�
Q= (C + ⌘) � Q= (C)

��Q= (C) = : �
= _ + min(: , =)` + W(: � =)+

= _ + `= � `(= � :)+ + W(: � =)+.

We now scale the queue length. Since = is fixed, and _ as well as ` tend
to infinity, the proper scaling is Q̂= (C) = Q= (C)p

_

, for which the infinitesimal
means and variances are:

< Q̂= (G) =
1p
_

<Q= (
p
_G)

=
1p
_

⇣
_ � =` + `(= �

p
_G)+ � W(

p
_G � =)+

⌘

=
1p
_

_ � (_ + V

p
_) + _ + V

p
_

=

(= �
p
_G)+ � W(

p
_G � =)+

!

!
⇢
�V � WG, G > 0,
1, G < 0.

as _ ! 1,

f
2
Q̂= (G) =

1
_

f
2
Q= (

p
_G)

=
1
_

⇣
_ + =` � `(= �

p
_G)+ + W(

p
_G � =)+

⌘

=
1
_

⇣
2_ + V

p
_ � `(= �

p
_G)+ + W(

p
_G � =)+

⌘
= ! 2, as _ ! 1.

What we see here is that the limiting process behaves as an Ornstein-
Uhlenbeck process when positive, and is reflected at zero.

20.4 For the M/M/=+M system, assume that both = and ` increase according to
the arrival rate _, so that ` (_) = `(_1�U + V_ 1

2�U), and =(_) = _
U/` for

0  U  1. Show that the system goes into heavy tra�c with d_ ! 1 as
_ ! 1. Calculate the infinitesimal mean and variance for the birth and death

214 Many Servers with Abandonment

queue length process and obtain its limits as _ ! 1, and obtain the di�usion
approximation for the scaled queue length [Ward (2012)].
Solution
The arrival rate is _. The service rate is

`
(_)
=
(_) = `(_1�U + V_ 1

2�U)_U/` = _ + V
p
_,

so indeed, d_ = _

`
(_)
=
(_) ! 1 as _ ! 1.

As before

<Q= (:) = lim
⌘!0

1
⌘

E
�
Q= (C + ⌘) � Q= (C)

��Q= (C) = : �
= _ � min(: , =)` � W(: � =)+

= _ � `= + `(= � :)+ � W(: � =)+,

f
2
Q= (:) = lim

⌘!0

1
⌘

Var
�
Q= (C + ⌘) � Q= (C)

��Q= (C) = : �
= _ + min(: , =)` + W(: � =)+

= _ + `= � `(= � :)+ + W(: � =)+.

We scale the queue length process, defining Q̂= (C) = Q= (C)�=(_)
p
_

, so that

(Q̂= (C))+ is the scaled number of customers that are waiting, and (�Q̂= (C))+
is the scaled number of idle servers. With Q̂= (C) = G, we have Q(C) =p
G + =() . We get:

< Q̂= (G) =
1p
_

<Q= (
p
G + =())

=
1p
_

⇣
_ � =(_)` (_) + ` (_) (�

p
_G)+ � W(

p
_G)+

⌘

=
1p
_

⇣
_ � (_ + V

p
_) + `(_1�U + V_ 1

2�U) (�
p
_G)+ � W(

p
_G)+

⌘

!
⇢
�V � WG, G > 0,
1, G < 0.

as _ ! 1,

f
2
Q̂= (G) =

1
_

f
2
Q= (

p
G + =())

=
1
_

⇣
_ + =(_)` (_) � ` (_) (�

p
_G)+ + W(

p
_G)+

⌘

=
1
_

⇣
_ + (_ + V

p
_) � `(_1�U + V_ 1

2�U) (�
p
_G)+ + W(

p
_G)+

⌘
! 2 for G > 0.

which again is a reflected Ornstein-Uhlenbeck process.
20.5 For the M/M/=+M system in Halfin-Whitt regime, derive the asymptotic

distribution of the number waiting in queue when positive, the number of

Exercises 215

idle servers when positive, and the probability of waiting, as given in equation
(20.1) [Browne et al. (1995)].
Solution
We found that Q̂ (C) is the di�usion process defined by,

3Q̂ (C) = <(Q̂ (C))3C + f(Q̂ (C))3⌫" (C)

where the drift and di�usion coe�cient are:

<(G) =
⇢
V � WG, G > 0,
V � `G, G  0.

f
2 (G) = 2.

This is a piecewise Ornstein Uhlenbeck (OU) process, which for G > 0 is
centered at V/W with drift down at rate WG, and for G < 0 it also is centered
at V/` and drifts towards it at rate `G. The OU process is time reversible
and the restriction of its state space to an interval has the same stationary
distribution as the OU process over the whole real line, renormalized.
The OU process has drift <(G) = �0(G � <) and di�usion parameter
f

2 (G) = f
2, and its stationary distribution is ⇠ # (<,f2/20), with den-

sity
q

20
f

2 q

⇣ q
20
f

2 (G � <)
⌘
.

So, for <(G) = V � WG, f2 = 2 we get that the OU process has density
p
Wq

⇣p
W

�
G � V

W

� ⌘

P
⇣ (Q(C) � =)+p

_

2 (G, G + 3G)
��� Q̂ (C) > 0

⌘
=

p
W

q

⇣p
W

⇣
G � V

W

⌘⌘

�
⇣
Vp
W

⌘ 3G, G > 0,

and for <(G) = V � `G, f2 = 2 we get that the OU process has density
p
`q

⇣p
`

�
G � V

`

� ⌘
, and we are interested in �Q̂ (G), G < 0, so

P
⇣ (= � Q(C))+p

_

2 (G, G + 3G)
��� Q̂ (C) < 0

⌘
=

p
`

q

⇣p
`

⇣
G + V

`

⌘⌘

�
⇣
� Vp

`

⌘ 3G, G > 0.

We now want to obtain U > 0, the probability of waiting, i.e. Q̂ (C) > 0). We
wish to have that P(Q̂ (C)  G) be continuous at 0, so we need to have:

U

p
W

q

⇣p
W

⇣
� V

W

⌘⌘

�
⇣
Vp
W

⌘ = (1 � U) p`
q

⇣p
`

⇣
V

`

⌘⌘

�
⇣
� Vp

`

⌘

U = P(waiting) = P(Q̂ (C) > 0) =
©≠≠
´
1 +

r
W

`

q

⇣
� Vp

W

⌘

�
⇣
Vp
W

⌘ �
⇣
� Vp

`

⌘

q

⇣
Vp
`

⌘ ™ÆÆ
¨

�1

.

216 Many Servers with Abandonment

20.6 For the M/M/=+G system, explain why (# (C),+ (C)) is a Markov process
[Baccelli and Hebuterne (1981)].
Solution
Clearly, while not all the servers are busy, the system behaves like an M/M/=
system, with arrival rate _ and departure rate # (C)`. When all the servers
are busy and+ (C) = G > 0 then+ (C) decreases at rate 1 until either an arrival
occurs, or + (C) reaches 0. If an arrival occurs then all servers remain busy,
and the virtual waiting time+ (C) is unchanged if the new arrival does not join,
which has probability⌧ (+C)), or it is increased with probability 1�⌧ (+ (C)),
and the increase is by a quantity which is exponentially distributed with rate
=`.

20.7 For the M/M/=+G system, explain the Kolmogorov transition equations (20.2)
for the process (# (C),+ (C)) when # (C) = =, + (C) = G > 0 [Baccelli and
Hebuterne (1981)].
Solution
The states # (C + X) = =, and + (C + X) > G > 0 will be reached from # (C) = =
and + (C) > G + X, if no arrivals occur in (C, C + X). If an arrival occurs, which
has probability _X, then this state can be reached from one of the following
states: from (# (C) = =,+ (C) > G) with certainty, or from # (C) = = � 1 if
the arrival has processing time >

G

=`
, which has probability 4�=`G , or from

(C) = = and + (C) = D where 0  D  G and the arrival has patience
exceeding D which has probability 1�� (D), and has processing time >

G�D
=`

[Baccelli and Hebuterne (1981)].
20.8 For the M/M/=+G system, show that for the stationary system, ? 9 and E(G)

satisfy the equations (20.5) [Baccelli and Hebuterne (1981)].
Solution
The expressions for ?0, . . . , ?=�1 are those for the standard M/M/= system.
In the equation (_ + (= � 1)`)?=�1 = _?=�2 + E(0), the terms (= � 1)`?=�1

and _?=�2 cancel to give: E(0) = _?=�1.
Equation (20.2) leads to the di�erential-integral equation:

P(# (C + X) = =,+ (C + X) > G) � P(# (C) = =,+ (C) > G + X))
.
X

= _
h
� P(# (C) = =,+ (C) > G + X)) + P(# (C) = =,+ (C) > G))

+P(# (C) = = � 1) 4�=`G

+
π

G

0
P(# (C) = =,+ (C) = D) (1 � � (D)) 4�=` (G�D)3D

i
+ >(X)/X,

Exercises 217

Which is in fact✓
m

mC

+ m

mG

◆
P(# (C) = =,+ (C) > G)

= _
h
P(# (C) = = � 1) 4�=`G

+
π

G

0
P(# (C) = =,+ (C) = D) (1 � � (D)) 4�=` (G�D)3D

i
.

When C ! 1, i.e. for steady state, m

mC
= 0, and we have:

E(G) = _
⇥
?=�14

�=`G +
π

G

0
E(D) (1 � � (D)) 4�=` (G�D)3D

⇤
.

and multiplying by 4=`G we have:

E(G)4=`G = _?=�1 + _
π

G

0
E(D)4=`D (1 � � (D))3D

20.9 For the M/M/=+G system, verify the solution of the integral equation (20.6)
for E(G) [Baccelli and Hebuterne (1981)].
Solution
Let 5 (G) = E(G)4=`G . the equation to be solved is:

5 (G) = _?=�1 + _
π

G

0
5 (D) (1 � � (D))3D

taking derivatives we get:

5
0(G) = _ 5 (G) (1 � � (G))

so
5
0(G)
5 (G) = _(1 � � (G))

solved by:

log(5 (G)) = 21 +
π

G

0
_(1 � � (D))3D

so

5 (G) = 224
_

Ø G
0
(1�� (D))3D

and substituting G = 0 we find: 22 = _?=�1, and so

5 (G) = _?=�14
_

Ø G
0
(1�� (D))3D

and we have:

E(G) = _?=�14
_

Ø G
0
(1�� (D))3D�=`G

218 Many Servers with Abandonment

20.10 For the M/M/=+G system, verify Theorem 20.3 [Zeltyn and Mandelbaum
(2005)].
Solution
(i) The probability of needing to wait is ?=. We saw that ?= = _?=�1�. By
definition, ?=�1 (E_�) = 1, and (i) follows.
(ii) Start from equation (20.5) and integrate both sides from 0 to 1 to get:

?= =
π 1

0
E(G)3G =

π 1

0
_?=�14

�=`G
3G +

π 1

0
_

π
G

0
E(D) (1 � � (D))4�=` (G�D)3D 3G

=
_

=`

?=�1 +
π 1

0

π 1

D

_E(D) (1 � � (D))4�=` (G�D)3G 3D

=
_

=`

?=�1 +
π 1

0
_E(D) (1 � � (D))

π 1

D

4
�=` (G�D)

3G 3D

=
_

=`

?=�1 +
_

=`

π 1

0
E(D) (1 � � (D))3D

=
_

=`

?=�1 +
_

=`

?= �
_

=`

π 1

0
E(D)� (D)3D.

and we obtain:

P(01) =
π 1

0
E(D)� (D)3D = (1 � =`

_

)?= + ?=�1

and (ii) follows.
(iii) follows immediately from

E(+ (C) |+ (C) > 0) =
Ø 1
0 GE(G)3G
P(+ (C) > 0

=

Ø 1
0 GE(G)3G

?=

=

Ø 1
0 GE(G)3GØ 1
0 E(G)3G

=
_?=�1�1

_?=�1�
.

20.11 For the M/M/=+G system, verify the asymptotics for QD, ED and QED
[Zeltyn and Mandelbaum (2005)].
Solution
The calculations of the explicit expressions for the probability of waiting, the
average waiting time, and the probability of abandonment, are quite complex.
The interested reader is directed to the internet supplement to Zeltyn and
Mandelbaum (2005) and to its internet supplement.

21

Load Balancing in the Supermarket Model

Exercises
21.1 Consider the = server system with Poisson arrivals and exponential service

time, and assume that customers are dispatched to the servers in round robin
order. Show that in heavy tra�c, the expected waiting time of each customer
approaches 1

2(1�d) as =! 1, i.e. half of the time under random dispatching.
Solution
Under round robin dispatching the interarrival times of each server will by
⇠ Erlang(=, _=), with mean _. But then 22

0
= 1

=
! 0 as = ! 1 and by

Kingman’s bound the expected waiting time approaches 1+22
0

2(1�d) ! 1
2(1�d) .

21.2 (⇤) Show that the stationary queue length for choose shortest of 3, 3Q= is
smaller in the sense of convex majorization than the stationary queue length
under random dispatching 1Q=, and prove that the choose shortest of 3 is a
stable ergodic system [Vvedenskaya et al. (1996)].
Solution
We will show convex majorization, i.e.:

E
�
(1Q= (C) � :)+)

�
� E

�
(3Q= (C) � :)+)

�
.

Clearly, if this holds then the ergodicity of choose shortest of 3 follows from
the ergodicity of random assignment, when _ < 1.
We note that:

P(3Q= (C) = :) = E(3(̄=
:
(C) �3 (̄=

:+1 (C)),
P(3Q= (C) � :) = E(3(̄=

:
(C)),

E
�
(3Q= (C) � :)+)

�
=

1’
9=:

P(3Q= (C) � 9) =
1’
9=:

E(3(̄=
9
(C)).

Similarly,

E
�
(1Q= (C) � :)+)

�
=

1’
9=:

E(1(̄=
9
(C)).

219

220 Load Balancing in the Supermarket Model

So, what we wish to show is that:

"
(1)
:

(C) :=
1’
9=:

E(1(̄=
9
(C)) �

1’
9=:

E(3(̄=
9
(C)) := " (3)

:
(C).

The proof of this is quite technical. We recall the equations:

E(3(̄=
:
(C + ⌘) �3 (̄=

:
(C)

��3
(̄(C))

= _⌘(3(̄=
:�1 (C)3 �3 (̄

=

:
(C)3) � ⌘(3(̄=

:
(C) �3 (̄=

:+1 (C)) + >(⌘), 3

(̄

=

0 (C) = 1,

E(1(̄=
:
(C + ⌘) �1

(̄

=

:
(C)

��1
(̄(C))

= _⌘(1(̄=
:�1 (C) �1

(̄

=

:
(C)) � ⌘(1(̄=

:
(C) �3 (̄=

:+1 (C)) + >(⌘), 1
(̄

=

0 (C) = 1.

(These are the equations for the generator of the Markov chains (3(̄= (C), (1(̄= (C).)
Adding up the first one from ::

1’
9=:

E(3(̄=
9
(C + ⌘) �3 (̄=

9
(C)

��3
(̄(C))

= _⌘3(̄=
:�1 (C)3 � ⌘3(̄

=

:
(C) + >(⌘)

 _⌘3(̄=
:�1 (C)3 � ⌘3(̄

=

:
(C) + >(⌘),

where the inequality follows from (
=

:�1 (C)  1 (< 1, : > 1).
Taking expectations, and going to the limit as ⌘ ! 1, we get the following
di�erence-di�erential set of inequalities for " (3)

:
(C).

3

3C

"
(3)
:

(C)  _E
�
3

(̄

=

:�1 (C)
�
� E

�
3

(̄

=

:
(C)

�
= _

�
"

(3)
:�1 (C) � "

(3)
:

(C)
�
�

�
"

(3)
:

(C) � " (3)
:+1 (C)

�
,

"
(3)
0 (C) � " (3)

1 (C) = 1.

Similarly, without inequality, for the random choice policy:

3

3C

"
(1)
:

(C) = _
�
"

(1)
:�1 (C) � "

(1)
:

(C)
�
�

�
"

(1)
:

(C) � " (1)
:+1 (C)

�
,

"
(1)
0 (C) � " (1)

1 (C) = 1.

The result follows by showing the for any initial values<: with 1 = <0�<1 >

<1 � <2 > · · · , <: ! 0, : ! 1, this implies " (1)
:

(C) � "
(3)
:

(C).
21.3 Justify the inequalities:

⇡̃;

✓
=

π
C

0
V; (-̄= (B))3B

◆

 sup
DC

⇡̃;

�
=V̄;D

�


⇥
⇡̃;

�
=V̄;C

�
+ =V̄;C

⇤

Exercises 221

.
Solution
(i) For the first inequality, we note that ⇡̃;

⇣
=

Ø
C

0 V; (-̄= (B))3B
⌘

is the value of

the process ⇡; (F) �F at the single point F = =
Ø
C

0 V; (-̄= (B))3B, and so it is

less or equal to sup
DF |⇡; (D)�D |. Next we see thatF = =

Ø
C

0 V; (-̄= (B))3B 
=C V̄; , and so it follows that the ⇡̃;

⇣
=

Ø
C

0 V; (-̄= (B))3B
⌘
 sup

D=C V̄; |⇡; (D) �
D | = sup

DC
��
⇡; (=C V̄;) � =C V̄;

�� = sup
DC |⇡̃; (=C V̄;) |.

(ii) For the second inequality, we note that both ⇡ (D) and D are monotone
non-decreasing functions, and hence sup

DC |⇡ (D) � D |  ⇡ (C) + C.
21.4 Show that with

� (B(C)) =
⇥
_(B:�1 (C)3 � B: (C)3) � (B: (C) � B:+1 (C))

⇤
:=1,2,... ,

� is Lipschitz continuous, i.e. there exists " such that |� (G) � � (H) | 
" |G � H |.
Solution
We use the norm:

|D � h | = sup
:=1,2,...

|D: � h: |
:

under which the space of decreasing sequences is compact, and convergence
is equivalent to component-wise convergence. We have:

|� (D) � � (E) | = sup
:=1,2,...

|_(D:�1 � D:) � (D: � D:+1 � _(h:�1 � h:) � (h: � h:+1

:

 sup
:=1,2,...

_ |D:�1 � h:�1 |
:

+ sup
:=1,2,...

_ |D: � h: |
:

+ sup
:=1,2,...

|D: � h: |
:

+ sup
:=1,2,...

|D:+1 � h:+1 |
:

 5|D � h |.

21.5 Complete the steps of the proof of Proposition 21.6.
Solution
We first check that substituting B⇤

:
gives 3

3C
B: (C) = 0:

_

⇣
_

3:�1�1
3�1

⌘3
�

⇣
_

3:�1
3�1

⌘3�
�

h
_

3:�1
3�1 � _ 3

:+1�1
3�1

i

= _
⇣
_

3:�3
3�1 � _ 3

:+1�3
3�1

⌘
�

⇣
_

3:�1
3�1 � _ 3

:+1�1
3�1

⌘

=
⇣
_

3:�3
3�1 +1 � _ 3

:+1�3
3�1 +1

⌘
�

⇣
_

3:�1
3�1 � _ 3

:+1�1
3�1

⌘

=
⇣
_

3:�1
3�1 � _ 3

:+1�1
3�1

⌘
�

⇣
_

3:�1
3�1 � _ 3

:+1�1
3�1

⌘
= 0

Next, we show that if 3

3C
B: (C) = 0, : � 1 then B: (C) = B⇤

:
, : � 1.

222 Load Balancing in the Supermarket Model

The added conditions apply
Õ1
:=1 B: (C) < 1, and B: (C) � 0,so we can sum

all the equations:

0 =
1’
:=1

⇣
_(B:�1 (C)3 � B: (C)3) � (B: (C) � B:+1 (C))

⌘

= _(B0 (C)3 � B 9 (C)3)) � (B1 (C) � B 9+1 (C))
= _ � B1 (C),

hence for the fixed point B1 (C) = _. We now proceed by induction:

Assuming B8 (C) = _
38�1
3�1 , 8  : we need to evaluate B:+1 (C), where we use

the :th equation and 3

3C
B: (C) = 0:

0 =
3

3C

B: (C) = _
⇣
_

3:�1�1
3�1

⌘3
�

⇣
_

3:�1
3�1

⌘3�
�

h
_

3:�1
3�1 � B:+1 (C)

i

and looking at the first derivation above, we get: B:+1 (C) = _
3:+1�1
3�1 .

Note that the condition B 9 (C) = 0 for all C � 0 is necessary. Without it we get
that ((C) = {1, 1, . . .} is also a fixed point.

21.6 For the supermarket model, under choose shortest of 3, show that in the
limiting infinite server system (21.5) if we increase B 9 (0) for some 9 , this
will increase or leave unchanged B: (C) for all C > 0 and all : .
Solution
Consider the = server system with states (: (C) at time 0. Assume we add
a single customer to a queue of length 8 � 1. We now couple the original
system to the system with the added customer, with state (̃: (C). We do
the coupling by uniformizing all events to a single Poisson process of rate
(_ + 1)=, and then choosing randomly if arrival or completion, and in the
case of completion, decrease queue if > 0 or have dummy event, but, exclude
the event of completion of the added customer. taking out one point from
a Poisson process, leaves it as a Poisson process. Then, for as long as that
new customer is in the system, the new system has one more customer in that
particular queue, but that implies that so (̃: (C) � (: (C) for all : and C up
ot that time. Once it leaves the system we have equality (̃: (C) = (: (C). This
holds for any =, and should also hold for the continuous B: (C).
A formal proof is as follows: we see from 3

3C
B: (C) = _(B3

:�1� B3:)� (B: � B:+1

that 3

3C
B: (C) is increasing or unchanged by increasing any B 9 (C), 9 < : . This

means that the sequence B: (C) is quasimonotone. This implies that increasing
any component increases or leaves unchanged all others as proved in Deimling
(2006), pages 70-74.

21.7 In the proof of Proposition 21.7 show that " (0) < 1/_1/(3�1) .
Solution
(i) Let c: = _

3:�1
3�1 be the fixed point. Define " (C) = sup

:
(B: (C)/c:)1/3:

Then: " (C)  " (0).

Exercises 223

Proof Recall from above, that increasing B 9 (0) increases all B: (C). For the
sequence B: (C), consider the sequence that will be obtained by increasing all
components (including B0, to start with B̆: (0) = " (0)3: c: .
We show that B̆: (0) is a fixed point of the di�erential equations (with perhaps
B̆0 (0) > 1:

_(B̆:�1 (0)3 � B̆: (0)3) � (B̆: (0) � B̆:+1 (0))

= _
⇣
" (0)3:�1

c:�1

⌘
3

�
⇣
" (0)3: c:

⌘
3

�
�

h
" (0)3: c: � " (0)3:+1

c:+1

i

= _
⇣
" (0)3: c3

:�1 � " (0)3:+1
c
3

:

⌘
�

⇣
" (0)3: c: � " (0)3:+1

c:+1

⌘

= " (0)3: (_c:�1 � c:) � " (0)3:+1 (_c: � c:+1)
= 0

where in the last expression equality to 0 holds for each of the two terms.
Therefore B̆: (C) = " (0)3: c: for all C, so "̆ (C) = " (0) for all C. However,
since B̆: (0) � B: (0) for all : , we also have B̆: (C) � B: (C) for all : , C, and so
" (C)  "̆ (C) = " (0) for all C. ⇤

(ii) So we have seen that " (C)  " (0). Let 9 be the smallest for which
B 9 (0) = 0 (we assumed there is such a 9). We then start from the smallest
non-zero, which is B 9�1 (0). Recall also that B:  1 (by definition), and that
_ < 1 (by stability). Then:

" (0)  (1/c 9�1)1/3 9�1
< 1/_ 1

3�1

To see this:

" (0) = BD?: (B: (C)/c:)1/3:  BD?0:< 9 (1/c:)1/3:

and

(c:)1/3: =
⇣
_

3:�1
3�1

⌘1/3:
= _

1
3�1

.
_

1
3: (3�1) .

but _
1

3: (3�1) < 1 and it is increasing in : . Hence, for all 0  :  9 � 1:

(c:)1/3: = _
1
3�1

.
_

1
3: (3�1) � (c 9�1)1/3 9�1

= _
1
3�1

.
_

1
3 9�1 (3�1) > _

1
3�1 .

We then have:

B: (C)  " (C)3: c:  " (0)3: c: = _�
1
3�1

⇣
_

1
3�1 " (0)

⌘
3
:

and we saw that _
1
3�1 " (0) < 1, so:

B: (C)  WUV
:
, U = _

1
3�1 " (0) < 1, V = 3 � 2, W = _�

1
3�1 .

(iii) If the system starts empty, then " (0) = 1 so B: (C)  c: .

224 Load Balancing in the Supermarket Model

21.8 Show that one can find an increasing sequence F: � 1 and X > 0 that satisfy

F:+1  F: +
(1 � X)F: � F:�1

_(2c: + 1)
so that this sequence is bounded by a geometric sequence.
Solution
We now construct an increasing sequence ofF: starting withF0 = 0, F1 = 1,
that satisfies this inequality. For the finite number of : such that _(2c: +1) �
1+_

2 we take: F:+1 = F: + (1�X)F:�F:�1
3 , for the rest of : , with _(2c: + 1) <

1+_
2 we take: F:+1 = F: + 2(1�X)F:�2F:�1

1+_ . We can choose X small enough
that this sequence is increasing, and it is dominated by a geometric increasing
sequence.
To see the choice of X, note that for _(2c: + 1) < 1+_

2 ,

(F: � F:�1) (1 � X) 2
1 + _  F:+1 � F:  (F: � F:�1)

2
1 + _

21.9 Prove that

lim
_!1

Õ1
:=0 _

3
:

log 1
1�_

=
1

log 3

and use this to prove Proposition 21.10 [Mitzenmacher (1996)].
Solution
The proof of the limiting result is quite lengthy, it is given in Mitzenmacher
(2001), as Lemma 3.
We now use this limiting result to prove Proposition 21.10 . Let _̃ = _1/(3�1) .
Then:

,3 (_) =
1’
:=1

_

3:�3
3�1 =

Õ1
8=1 _̃

3
8

_
3/(3�1) ,

Hence:

lim
_%1

,3 (_)
,1 (_)

= lim
_%1

,3 (_)
log 1/(1 � _)

= lim
_%1

Õ1
8=1 _̃

3
8

_
3/(3�1) log 1/(1 � _)

= lim
_%1

Õ1
8=1 _̃

3
8

log 1/(1 � _̃)
log 1/(1 � _̃)
log 1/(1 � _)

1
_
3/(3�1) ,

The last two terms tend to 1, and the first converges to 1/log 3, by the above
result.

21.10 Show that the M/M/=-JSQ model can be described by a density dependent
Markov chain.
Solution

Exercises 225

Strictly speaking, this will only be the case if the arrival rate is _=, which is
not the case for the Halfin-Whitt regime. If we make this assumption,

(
=

:
(C) = number of queues of length : , Transitions are ±4:

@G,G�4: = =
⇣
(
=

:

=

�
(
=

:+1

=

⌘
, : = 1, 2, . . . ,

@G,G+41 = =_1
⇣
(
=

1

=

< 1
⌘
,

@G,G+4: = =_1
⇣
(
=

:�1

=

= 1,
(
=

:

=

< 1
⌘
, : = 2, 3,

21.11 For the M/M/=-JSQ model, prove that for the limiting system, the scaled
counts of the queues (̂: (C), : � 3 are given by

(̂: (C) = ©≠
´
(̂: (0) +

8�:’
9=1

C
9

9!
(̂:+ 9 (0)™Æ

¨
4
�C
, 3  : < 8,

(̂8 (C) = (̂8 (0)4�C

Solution
The limiting equations for (̂: (C), 3  :  8 are

(̂: (C) = (̂: (0) �
π

C

0

⇣
(̂: (B) � (̂:+1 (B)

⌘
3B, 2 < : < 8,

(̂8 (C) = (̂8 (0) �
π

C

0
(̂8 (B)3B,

For 8 we have:

3

3C

(̂8 (C) = �(̂8 (C), with boundary value (̂8 (0),

which is solved by:

(̂8 (C) = (̂8 (0)4�C

Next we have:

(̂8�1 (C) = (̂8�1 (0)4�C + (̂8 (0)C4�C

and it is then easily checked by induction that

3

3C

(̂: (C) = �(̂: (C) + (̂:+1 (C), with boundary value (̂: (0)

is solved by

(̂: (C) = ©≠
´
(̂: (0) +

8�:’
9=1

C
9

9!
(̂:+ 9 (0)™Æ

¨
4
�C

226 Load Balancing in the Supermarket Model

21.12 Show that if F̃1 (C), F̃2 (C) solve equations (21.28), then (F1,F2) = (F̃1, F̃2+
q0 (F̃1) solve equations (21.27), and show that if (F1,F2) solve equations
(21.27), then G1 = k0 (F1), D1 = q0 (F1), G2 = k⌫ (F2), D2 = q⌫ (F2) solve
equations (21.25).
Solution
Define the Skorohod reflection transformation: for H 2 D and a constant ⌫, let
I be non-decreasing I(0) = 0, G(C) = H(C) � I(C)  ⌫, and 1(G < ⌫)3I = 0,
then the transformation is G = k⌫ (H), I = q⌫ (H), which is unique and
continuous.
Consider first the equations:

F̃1 (C) = 11 + H1 (C) �
π

C

0

⇣
k0 (F̃1 (B)) � k⌫

�
F̃2 (B) + q0 (F̃1 (B))

� ⌘
3B,

F̃2 (C) = 12 + H̃2 (C) �
π

C

0
k⌫

�
F̃2 (B) + q0 (F̃1 (B))

�
3B,

and let (F̃1, F̃2) be their solution.
Let (F1,F2) = (F̃1, F̃2 + q0 (F̃1). Then we first show that (F1,F2) solve the
equations:

F1 (C) = 11 + H1 (C) �
π

C

0
(k0 (F1 (B)) � k⌫ (F2 (B))) 3B,

F2 (C) = 12 + H̃2 (C) + q0 (F1 (C)) �
π

C

0
k⌫ (F2 (B))3B.

Proof

Into F2 (C) = 12 + H̃2 (C) + q0 (F1 (C)) �
π

C

0
k⌫ (F2 (B))3B,

Substitute (F1,F2) = (F̃1, F̃2 + q0 (F̃1),

F̃2 (C) + q0 (F̃1 (C)) = 12 + H̃2 (C) + q0 (F̃1 (C)) �
π

C

0
k⌫

�
F̃2 (B) + q0 (F̃1 (B))

�
3B,

or F̃2 (C) = 12 + H̃2 (C) �
π

C

0
k⌫

�
F̃2 (B) + q0 (F̃1 (B))

�
3B, as required.

Into F1 (C) = 11 + H1 (C) �
π

C

0
(k0 (F1 (B)) � k⌫ (F2 (B))) 3B,

Substitute (F1,F2) = (F̃1, F̃2 + q0 (F̃1),

F̃1 (C) = 11 + H1 (H) �
π

C

0

⇣
k0 (F̃1 (B)) � k⌫

�
F̃2 (B) + q0 (F̃1 (B))

� ⌘
3B, as required.

⇤

Let (F1,F2) be the solutions of the second set of equations. Let G1 =
k0 (F1), D1 = q0 (F1), G2 = k⌫ (F2), D2 = q⌫ (F2). We next show that

Exercises 227

(G1, G2) solve the equations:

G1 (C) = 11 + H1 (C) �
π

C

0
(G1 (B) � G2 (B)) 3B � D1 (C),

G2 (C) = 12 + H̃2 (C) �
π

C

0
G2 (B)3B + D1 (C) � D2 (C),

0 =
π

C

0
1(G1 (B) < 0)3D1 (B),

0 =
π

C

0
1(G2 (B) < ⌫)3D2 (B),

G1 (C)  0, 0  G2 (C)  ⌫, C � 0,

Proof

Into G1 (C) = 11 + H1 (C) �
π

C

0
(G1 (B) � G2 (B))3B � D1 (C),

Substitute G1 = k0 (F1), D1 = q0 (F1), G2 = k⌫ (F2),

k0 (F1 (C)) = 11 + H1 (C) �
π

C

0

⇣
k0 (F1 (B)) � k⌫ (F2 (B))

⌘
3B � q0 (F1 (C))

and using F1 (C) = k0 (F1 (C)) + q0 (F1 (C))

we get F1 (C) = 11 + H1 (C) �
π

C

0

⇣
k0 (F1 (B)) � k⌫ (F2 (B))

⌘
3B as required.

Into G2 (C) = 12 + H̃2 (C) �
π

C

0
G2 (B)3B + D1 (C) � D2 (C),

Substitute G2 = k⌫ (F2), D1 = q0 (F1), D2 = q⌫ (F2),

k⌫ (F2 (C)) = 12 + H̃2 (C) �
π

C

0
k⌫ (F2 (B))3B + q0 (F1 (C)) � q⌫ (F2 (C))

and using F2 (C) = k⌫ (F2 (C)) + q⌫ (F1 (C))

we get F2 (C) = 12 + H̃2 (C) + q0 (F1 (C)) �
π

C

0
k⌫ (F2 (B))3B, as required.

⇤

21.13 For the M/M/=-JSQ model, show that the transformation:

)1 (F̃1, F̃2)) = 11 + H1 (C) �
π

C

0
(k0 (F̃1 (B)) � k⌫ (F̃2 (B)) � q0 (F̃1 (B))) 3B,

)2 (F̃1, F̃2)) = 12 + H̃2 (C) �
π

C

0
(k⌫ (F̃2 (B)) � q0 (F̃1 (B))) 3B,

is a contraction mapping from D2 to D2.
Solution

228 Load Balancing in the Supermarket Model

By standard estimates,

| |)1 (F̃) �)1 (h̃) | |C  5C | |F̃ � h̃ | |C ,
| |)2 (F̃) �)2 (h̃) | |C  3C | |F̃ � h̃ | |C ,

so for C0 < 1/5 this is a contraction mapping, so the solution exists and
is unique for the interval [0, C0]. By the same argument it is unique for
C 2 [C0, 2C0], [2C0, 3C0], . . ., so it exists and is unique for all C > 0.

21.14 Show that under Halfin-Whitt heavy tra�c sta�ng, with choose shortest of

3 policy, the stationary average sojourn time grows like
log =

2 log 3
.

Solution
We use Proposition 21.10 by which as _ % 1:

,̄3 (_=) ⇠ log ,̄1 (_=)
�

log 3

and substitute

,̄1 (_=) = 1/(1 � _=) = 1/(1 � (1 � V/
p
=)) =

p
=/V

so

,̄3 (_=) ⇠ log(
p
=/V)

�
log 3 ⇠ log =

2 log 3
,

and by E(3,=) ! ,̄3 the proposition follows.

22

Parallel Servers with Skill Based Routing

Exercises
22.1 For state s = ((1, =1, . . . , (8 , =8 , (8+1, . . . , (�) of the PSS system under FCFS-

ALIS, write all the transitions out of state s and their transition rates [Adan
and Weiss (2014); Visschers et al. (2012)].
Solution
Denote:

X 9 (() =
8>><
>>:

_U((1 ,...,(9)
_U((1 ,...,(9 ,()

U((1, . . . , (9 , () < ;,

0 U((1, . . . , (9 , () = ;.

(i) Arrival of customer that joins the queue:

@

�
s ! ((1, . . . , (8 , =8 + 1, (8+1, . . . , (�)

�
= _U((1 ,...,(8)

(ii) Arrival of customer of type that activates idle server (9 where 8 < 9 
�:

@

�
s ! ((1, . . . , (8 , =8 , (: , 0, (8+1, . . . , (:�1, (:+1, . . . , (�)

�
= _C((:)\C((:+1 ,...,(�)

(iii) Completion of service by server (9 where 1  9  8 that becomes idle:

@

�
s ! ((1, . . . , (9�1, = 9�1 + = 9 , (9+1 . . . , (8 , =8 , (9 , (8+1, . . . , (�)

�
= `(9 X 9 ((9)= 9 · · · X8 ((9)=8 .

(iv) Completion of service by server (9 , which immediately starts service
of customer ; among the =: customers between (: and (:+1, where
9  :  8 and 1  ;  =: :

@

�
s ! ((1, . . . , (9�1, = 9�1 + = 9 , (9+1 . . . , (: , ; � 1, (9 ,

=: � ;, (:+1 . . . , (8 , =8 , (9 , (8+1, . . . , (�)
�

= `(9 X 9 ((9)= 9 · · · X: ((9);�1 (1 � X: ((9)).

22.2 (continued) For state s = ((1, =1, . . . , (8 , =8 , (8+1, . . . , (�), write all the pos-
sible transition into this state, and find their transition rates.

229

230 Parallel Servers with Skill Based Routing

Solution
Denote:

X 9 (() =
8>><
>>:

_U((1 ,...,(9)
_U((1 ,...,(9 ,()

U((1, . . . , (9 , () < ;,

0 U((1, . . . , (9 , () = ;.

(i) Transition due to a departure, where a server becomes idle, as illustrated
in Fig. 22.1

Mi+1 Mi

nk − l

   

nil

 

Mk+1

 

idlekl (s)

s

Mk Mi+2

Mi

nk − l

   

nil

 

Mk+1

 

Mk Mi+1 Mi+2

*

**

MJ

MJ

*

* 

 

Figure 22.1 Transition from state 83;4: ,; (s) to state s

The state from which the transition is made:

83;4:; (s) = ((1, =1, . . . , (: , =:�;, (8+1, ;, (:+1, . . . , (8 , =8 , (8+2, . . . , (�),

and the transition probability, conditional on service completion by
server (8+1, is

?: ,; (s) = X: ((8+1);X:+1 ((8+1)=:+1
. . . X8 ((8+1)=8 , : � 1, ; = 0, . . . , =: ,

?0,0 (s) = ?1,=1 (s).

(ii) Transition in which a customer departs, and the server starts a new
service, as illustrated in figure. 22.2
The originating state is

BF0?: ,;, 9 (s) = ((1, =1, . . . , (: , =:�;, (9 , ;, . . . , (9�1, = 9�1+1+= 9 , (9+1, . . . , (�),

and the transition probability, conditional on service completion by
server " 9 , is

@: ,;, 9 (s) = X: ((9);X:+1 ((9)=:+1
. . . X 9�1 ((9)= 9�1

�
1 � X 9�1 ((9)

�
,

9 = 2, . . . , �, 1  : < 9 , ; = 0, . . . , =: ,

@0,0, 9 (s) = @1,=1 , 9 (s),
@0,0,1 (s) = 1.

Exercises 231

M j+1M j M j−1

   

nj−1l

Mk+1

 

swapklj (s)

Mi+1

*

MJ

*  

nj

 

M j+1M jM j−1

   

nj−1l

Mk+1

 

s

Mi+1

*

MJ

*   

nj

Figure 22.2 Transition from state BF0?: ,;, 9 (s) to state s.

(iii) Transition in which an arrival joins the queue. The originating state is

F08C (s) = ("1, =1, . . . , . . . ,"8 , =8 � 1,"8+1, . . . ,"�), =8 > 0,

and the transition rate is _U({"1 ,...,"8 }) .
(iv) Transition in which an arrival activates an idle server, as illustrated in

figure 22.3

M1 Mi−1

  

ni−1

activatek (s)

MJ

* 

s

Mi+1

* 

Mi Mk

 **

M1 Mi−1

  

Mi MJ

* 

Mi+1

* 

Mk

 *

Figure 22.3 Transition from state 02C8E0C4: (s) to state s.

The originating state is

02C8E0C4: (s) = ((1, =1, . . . , (8�1, =8�1, (8+1, . . . , (:�1, (8 , (: , . . . , (�),

and the transition rate is _C((8)\C({(: ,...,(� }) for : = 8 + 1, . . . , �, and
in the case that (� is activated, we use the convention that : = � + 1,
and the rate is _C((�) .

22.3 (continued) Write down the partial balance equations for the four type of
balanced transitions.

232 Parallel Servers with Skill Based Routing

Solution
Define the sum of all transition rates in which a server completes service and
becomes idle,

P(8+1 (s) =
8’
:=1

=:’
;=0

?: ,; (s)c(83;4: ,; (s)) + ?1,=1 (s)c(83;40,0 (s)),

and the sum of transition rates in which a server completes service and moves
on to become the 9 th active server.

Q(9 (s) =

8>>>>>>><
>>>>>>>:

9�1’
:=1

=:’
;=0

@: ,;, 9 (s)c(BF0?: ,;, 9 (s))+

+@0,0, 9c(BF0?0,0, 9 (s)), if U({(1, . . . , (9 }) < ;,

0, otherwise.

Four types of partial balance need to be verified. In these four categories of
transitions, we have transitions out of state s on the left, balanced against
transitions into state s on the right.
(i) The total probability flux out of state s due to an arrival that activates

a server equals the total probability flux into state s due to a departure
which idles a server:

_
⇠ ({(8+1 ,...,(� })c(s) = `(8+1P(8+1 (s). (22.1)

(ii) The total probability flux out of state s, due to an arrival that joins the
queue, equals the total probability flux into state s, due to a departure
which is followed by another start of service (so that the set of idle servers
is unchanged):

_U({(1 ,...,(8 })c(s) =
8’
9=1

`(9Q(9 (s). (22.2)

(iii) The total probability flux out of state s in which =8 = 0 due to a
departure, equals the total probability flux into state s, due to an arrival of
a customer which activates server (8:

`{(1 ,...,(8 }c(s) =
�’

:=8+1

_C((8)\C({(: ,...,(� })c(02C8E0C4: (s))

+_C((8)c(02C8E0C4�+1 (s)), =8 = 0. (22.3)

(iv) The total probability flux out of state s in which =8 > 0 due to a
departure, equals the total probability flux into state s, due to an arrival of
a customer which joins the queue:

`{(1 ,...,(8 }c(s) = _U({(1 ,...,(8 })c(F08C (s)), =8 > 0. (22.4)

Exercises 233

22.4 (continued) Verify that the proposed stationary distribution (22.2) satisfies
the four partial balance equations.
Solution
We consider the state s = ((1, =1, . . . , (8 , =8 , (8+1, . . . , (�), so the permuta-
tion is (1, . . . , (� , the number busy is 8, and we denote 0 9 = _U((1 ,...,(9) ,
1 9 = `(1 ,...,(9 , 9 = 1, . . . , 8, and 2 9 = _⇠ ((9 ,...,(�) , 9 = 8 + 1, . . . , �. Denote
also 0 9 ,(= _U((1 ,...,(9 ,() , 1 9 ,(= 1 9 + `(,
Accordingly, the presumed expressions for the various states are:

c(s) = ⌫
8÷
9=1

0

= 9

9

1

= 9+1
9

�÷
9=8+1

1
2 9

,

c(83;4:; (s)) = c(s)
1

1: + `(8+1

✓
1:

1: + `(8+1

◆
;
✓
0: ,(8+1

0:

◆
;

8÷
9=:+1

✓
1 9

1 9 + `(8+1

◆
= 9+1 ✓

0 9 ,(8+1

0 9

◆
= 9

28+1,

c(83;40,0 (s)) = c(83;41,=1 (s))
11

`(8+1

c(BF0?:;A (s)) = c(s)
1

1: + `(A

✓
1:

1: + `(A

◆
;
✓
0: ,(A

0:

◆
;

A�1÷
9=:+1

✓
1 9

1 9 + `(A

◆
= 9+1 ✓

0 9 ,(A

0 9

◆
= 9

0A�1,(A

recall that X 9 (() = 0 9

0 9,(
, to get that:

?: ,; (s) = X: ((8+1);X:+1 ((8+1)=:+1
. . . X8 ((8+1)=8

=
✓
0:

0: ,(8+1

◆
; 8÷
9=:+1

✓
0 9

0 9 ,(8+1

◆
= 9

,

?0,0 (s) = ?1,=1 (s),
@: ,;,A (s) = X: ((A);X:+1 ((A)=:+1

. . . XA�1 ((A)=A�1 (1 � XA�1 ((A))

=
✓
0:

0: ,(A

◆
; A�1÷
9=:+1

✓
0 9

0 9 ,(A

◆
= 9

✓
1 � 0A�1

0A�1,(A

◆
,

@0,0, 9 (s) = @1,=1 , 9 (s), 9 > 1, @0,0,1 (s) = 1

234 Parallel Servers with Skill Based Routing

so that:

?: ,; (s)c(83;4:; (s)) = c(s)
1

1: + `(8+1

✓
1:

1: + `(8+1

◆
; 8÷
9=:+1

✓
1 9

1 9 + `(8+1

◆
= 9+1

28+1,

@: ,;,A (s)c(BF0?:;A (s)) = c(s)
1

1: + `(A

✓
1:

1: + `(A

◆
; A�1÷
9=:+1

✓
1 9

1 9 + `(A

◆
= 9+1

(0A�1,(A � 0A�1)

We are now ready to verify (i) and (ii):
(i) We need to verify:

_
⇠ ({(8+1 ,...,(� })c(s) = `(8+1P(8+1 (s).

We need to show that:

`(8+1P(8+1 (s)
.
_
⇠ ({(8+1 ,...,(� })c(s) = 1.

Recall that 28+1 = _
⇠ ({(8+1 ,...,(� }) , so we ned to show, using the above that

1 =
8’
:=1

=:’
;=0

`(8+1

1: + `(8+1

✓
1:

1: + `(8+1

◆
; 8÷
9=:+1

✓
1 9

1 9 + `(8+1

◆
= 9+1

+
8÷
9=1

✓
1 9

1 9 + `(8+1

◆
= 9+1

.

This is in fact correct, since we have here the sum of probabilities of a
sequence of Bernoulli trials, with success probabilities V: =

`(8+1
1:+`(8+1

, for the
=:+1 attempts, : = 8, 8 � 1, . . . , 1, and in the last attempt we count both the
probability of success and of failure.
(ii) We need to show:

_U({(1 ,...,(8 })c(s) =
8’
9=1

`(9Q(9 (s).

To do so we need to show that

8’
9=1

`(9Q(9 (s)
�
_U({(1 ,...,(8 })c(s) = 1

Exercises 235

That is:

1 =
8’
A=1

⇥
`(A 1(U(B1, . . . , (A) < 0)

A�1’
:=1

=:’
;=0

@: ,;,A (s)c(BF0?: ,;,A (s))

+@0,0,Ac(BF0?0,0,A (s))
⇤ .
_
⇠ ({(8+1 ,...,(� })

=
8’
A=1

1(U(B1, . . . , (A) < 0)

266664
A�1’
:=1

=:’
;=0

`(A

1: + `(A

✓
1:

1: + `(A

◆
; A�1÷
9=:+1

✓
1 9

1 9 + `(A

◆
= 9+1

+
=1’
;=0

11

11 + `(A

✓
11

11 + `(A

◆
; A�1÷
9=2

✓
1 9

1 9 + `(A

◆
= 9+1377775

(0A�1,(A � 0A�1)
.
_
⇠ ({(8+1 ,...,(� })

The expressions inside the square brackets in the last line add up to 1, as for
(i). What is left to show is:

8’
A=1

1(U(B1, . . . , (A) < 0) (0A�1,(A � 0A�1)
.
_
⇠ ({(8+1 ,...,(� })

=
8’
A=1

1(U(B1, . . . , (A) < 0) (_U((1 ,...,(A � _U((1 ,...,(A�1)
.
_
⇠ ({(8+1 ,...,(� })

=
Õ
8

A=1 _U(BA)
_
⇠ ({(8+1 ,...,(� })

= 1.

(iii) When =8 = 0 we have that

c(02C8E0C4: (s)) = c((1, =1, . . . , (8�1, =8�1, (8+1, . . . , (:�1, (8 , (: , . . . , (�)

= c(s) `(1 ,...,(8

_C((: ,...,(�) + _C((8)\C((: ,...,(�)

:�1÷
9=8+1

_C((9 ,...,(�)
_C((9 ,...,(�) + _C((8)\C((9 ,...,(�)

We wish to verify:

`{(1 ,...,(8 }c(s) =
�’

:=8+1

_C((8)\C({(: ,...,(� })c(02C8E0C4: (s))

+_C((8)c(02C8E0C4�+1 (s)),

236 Parallel Servers with Skill Based Routing

So we need to show:

1 =
�’

:=8+1

_C((8)\C({(: ,...,(� })
_C((: ,...,(�) + _C((8)\C((: ,...,(�)

:�1÷
9=8+1

_C((9 ,...,(�)
_C((9 ,...,(�) + _C((8)\C((9 ,...,(�)

+
�÷

9=8+1

_C((9 ,...,(�)
_C((9 ,...,(�) + _C((8)\C((9 ,...,(�)

Denote: ; 9 = _C((9 ,...,(�) and ;¬ 9 = _C((8)\C((9 ,...,(�) . We rewrite the sum
of products by rearranging the terms and get:

;¬8+1
;8+1+;¬8+1

+ ;8+1
;8+1+;¬8+1

⇣
;¬8+2

;8+2+;¬8+2

+ ;8+2
;8+2+;¬8+2

⇣
;¬8+3

;8+3+;¬8+3

+ ;8+3
;8+3+;¬8+3

⇣
.
.
.⇣
;¬:
;:+;¬:

+ ;:
;:+;¬:

⇣
.
.
.⇣
;¬�
;�+;¬�

+ ;�
;�+;¬�

⌘
· · ·

⌘

,

It is now seen immediately that the sum within each of the nested parentheses
is 1, verifying the balance equation. (iv) when =8 > 0, we have:

c(F08C (s) = c(s) `(1 ,...,(8

_U((1 ,...,(8)
.

which verifies:

`{(1 ,...,(8 }c(s) = _U({(1 ,...,(8 })c(F08C (s)), =8 > 0.

22.5 (continued) Calculate the normalizing constant ⌫ given by (22.3).
Solution
We start from

c((1, =1, . . . , (8 , =8 , (8+1, . . . , (�) = ⌫
8÷
9=1

_U({(1 ,...,(9 })
= 9

`{(1 ,...,(9 }
= 9+1

�÷
9=8+1

_C({(9 ...,(� })
�1

For fixed (1, . . . , (� and 8, we obtain adding over = 9 = 0, 1, . . . for 9 =
1, . . . , 8:

c((1, ·, . . . , (8 , ·, (8+1, . . . , (�) = ⌫
8÷
9=1

(`(1 ,...,(9 � _U((1 ,...,(9))�1
�÷

9=8+1

_C({(9 ...,(� })
�1

Exercises 237

and the expression for ⌫ follows.
22.6 Use the distributional form of Little’s law to prove Theorem 22.3 [Visschers

et al. (2012)].
Solution
We note that customers of type 2 arrive in a Poisson stream, their arrival has
no influence on future arrivals and on service times of previous arrivals, and
they leave in the same order as they arrived. These are exactly the conditions
for the distributional form of Littles’s law. Hence we have that the LST of
the waiting time of type 2 customers until entry to service can be obtained
from the generating function of the number of waiting customers of type 2.
That is E(4�_2,2 (1�I) = E(/#2), where _ is the arrival rate,,2 the waiting
time, and #2 the number of type 2 customers in the system. Equivalently,

and useful here: E(4�B,2) = E(
⇣
_2�B
_2

⌘
#2

). Note that ,2 does not include

the actual service time, since #2 only counts waiting customers.
The following calculations are done conditionally on the permutation (1, . . . , (�

with (8+1, . . . , (� idle. Form the conditional stationary distribution we see
the variables # 9 , the number of customers between the 9 and 9 + 1 server,
are independent, and # 9 ,2 , those of type 2, where 2 2 U((1, . . . , (9) are
binomial:

9 ⇠ Geometric0

✓
1 �

_U((1 ,...,(9)
`(1 ,...,(9

◆
, #2, 9 ⇠ Binomial

✓
9 ,

_2

_U((1 ,...,(9)

◆
.

If # is geometric with parameter U, and " conditional on # is binomial with
parameters (# , \) then:

E(I#) =
1 � U\

1�U(1�\)

1 � U\

1�U(1�\) I

i.e. " is itself a geometric random variable, with parameter U\

1�U(1�\) (prob-
ability of failure). Substituting we get the parameter for #2, 9 :

[2, 9 =
_2

`(1 ,...,(9 � _U((1 ,...,(9) + _2
and therefore,

E(I#2 |(1, . . . , (8) =
8÷

9 = 1
2 2 U({(1 , . . . , (9 })

1 � [2, 9
1 � [2, 9 I

.

We now have for each of the internal waiting times

E(4�B,2, 9) = E[
✓
_2 � B
_2

◆
#2, 9

] =
1 � [2, 9

1 � [2, 9 _2�B
_2

=

1�[2, 9
[2, 9

_2

1�[2, 9
[2, 9

_2 + B

238 Parallel Servers with Skill Based Routing

which is an exponential random variable, with parameter:

1 � [2, 9
[2, 9

_2 = `(1 ,...,(9 � _U((1 ,...,(9) ,

The theorem follows.
22.7 Use equation (22.4) to obtain expressions for the first and second moment of

the waiting time.
Solution
Recall equation (22.4)

i,2 (B) = E(4�B,2) =
’
P(�)

�’
8=0

c((1, ·, . . . , (8 , ·, (8+1, . . . , (�)

8÷
9 = 1

2 2 U({(1 , . . . , (9 })

`{(1 ,...,(9 } � _U({(1 ,...,(9 })
`{(1 ,...,(9 } � _U({(1 ,...,(9 }) + B

,

We need to obtain E(,2) = � 3

3B
i,2 (B)

i
B=0

and E(,2) = 3
2

3B
2 i,2 (B)

i
B=0

.

However, recall that each of the expressions inside the summation is the LST
of the sum of independent exponential random variables. Hence:

E(,2) =
’
P(�)

�’
8=0

c((1, ·, . . . , (8 , ·, (8+1, . . . , (�)

8’
9 = 1

2 2 U({(1 , . . . , (9 })

�
`{(1 ,...,(9 } � _U({(1 ,...,(9 })

��1
,

For the secon moment it is still easier to calculate the second derivative:

E(,2
2
) =

’
P(�)

�’
8=0

c((1, ·, . . . , (8 , ·, (8+1, . . . , (�)

8’
9 = 1

2 2 U({(1 , . . . , (9 })

⇣
2
�
`{(1 ,...,(9 } � _U({(1 ,...,(9 })

��2

+
’
: < 9

2 2 U({(1 , . . . , (: })

�
`{(1 ,...,(9 } � _U({(1 ,...,(9 })

��1 �
`{(1 ,...,(: } � _U({(1 ,...,(: })

��1

22.8 For the infinite bipartite matching model, show that matching of B1, B2, . . .,
and 21

, 2
2
, . . . is unique, and if each type occurs infinitely often it matches

all customers and servers [Adan and Weiss (2012)].
Solution

Exercises 239

Proposition 22.1. For every " , # there exists a full FCFS matching, and it
is unique

Proof We prove this by induction on" , # . For (" , #) = (1, 1), if (21
, B

1) 2
⌧, then � = {(1, 1)}, else � = ;. Clearly this is a full FCFS (1, 1) matching,
and it is unique.
To prove existence, assume that a unique full FCFS matching exists for
(" , #), denoted by �. We will show how to extend it to (" , # + 1). The
extension to (" + 1, #) is analogous. We consider B#+1 and define

80 = arg min{8 : 1  8  " , 8 8 �2 , (28 , B#+1) 2 ⌧},

if the set on the right hand side is not empty, and let �̃ = � [{(80, # + 1)}.
Else, if the set is empty, let �̃ = �. It is immediate to see that �̃ is full and
FCFS: it is full, since the added B#+1 is either matched or has no match, and
to check that it is FCFS, we need to check the condition only for B#+1, but
all 28 compatible with B#+1 with 8 < 80 are matched to one of B1, . . . , B# , so
the condition holds.
To prove uniqueness, assume that for all (" 0

, #
0) with " 0

< " , #
0  #

or " 0  " , #
0
< # there is a unique full FCFS matching, and consider

" , # . Assume that there are two full FCFS (" , #) matchings and denote
them by �, ⌫. Define �̃ by removing B# , and if (8, #) 2 � for some 8, then
�̃ = �\{(8, #)}. It is immediate to see that �̃ is a full FCFS matching on
(" , # � 1): If B# was not matched in �, then � and �̃ consist of the same
pairs, so there is nothing to show, and if (8, #) 2 �, then after removal of
B
, customer 28 cannot have any match, since it was previously matched to
B
, and so there is no earlier unmatched server that is compatible with it.

Define ⌫̃ analogously. By the induction hypothesis, since both �̃ and ⌫̃ are
(" , # �1) full FCFS matchings, they must coincide, so �̃ = ⌫̃. It remains to
consider pairs (8, #) 2 ⌧, and see that the same ones appear in � and ⌫, to
show that � = ⌫, and prove the uniqueness. If B# has no match in either �
or ⌫, there is nothing more to show, � = ⌫. Assume that (81, #) 2 �. If B#

has no match in ⌫, then 281 is unmatched, which contradicts the fact that ⌫
is full. If (82, #) 2 ⌫, and 81 < 82, then we have a contradiction to the FCFS
property. Hence � = ⌫ is proved.
That every item is matched if there are infinitely many of each type follows
since if B= is the earliest not matched up to (" , #), let 2< be earliest with
< > " that can match it, which exists by assumprion. Then the full match
(<, #) will include the match for B=. ⇤

22.9 Show that the three conditions of the CRP definition (22.5) are equivalent.
Solution
We wish to show that the following conditions for complete resource pooling

240 Parallel Servers with Skill Based Routing

(CRP)

(i) VS(⇠) > U⇠ , (ii) UC(() > V(, (iii) V(> UU(() ,

are equivalent.
These conditions essentially say that there is enough service capacity to
serve every subset of customer types, and enough service demand to keep
each subset of the servers fully occupied. In particular, for every subset of
servers there is enough service capacity to serve the unique customers of this
subset. We now prove the equivalence: Consider any ⇠ < ;, C, (< ;,S.
Assume (i). We haveS(U(()) = (, so V(= VS(U(()) > UU(() which proves
that (i)=)(iii). Next, assume (iii). 1�V(= V

(
> UU(() = UC(() = 1�UC(() ,

which proves (iii)=)(ii). So we have shown that (i)=)(ii). But the roles of
B 9 , VB 9 and of 28 , U28 are completely interchangeable. Hence (ii)=)(i) follows
from (i)=)(ii).

22.10 Write down the first 7 states of the processes .̊ (=) and /̊ (=), for the matching
in Figure 22.2.
Solution
We recall the figure:

11

112

2

2 2 3 3

3 34 4 c2c1 c3 c4

s1 s2 s3

s1 s2 s3 s4 s5 s6 s7

c7c1 c2 c3 c4 c5 c6

s8 s9

c8 c9

G
C

S

For .̊ (=):

.̊ (1) = (B2, B2, 2̃1), .̊ (2) = (B2, B2, 2̃1, 2̃4), .̊ (3) = (B2, B2, 2̃1, 2̃4, B2, 2̃1),
.̊ (4) = (B2, 2̃1, 2̃4, B2, 2̃1), .̊ (5) = (B2, 2̃1), .̊ (6) = ;, .̊ (7) = ;.

For /̊ (=):

/̊ (1) = (21; I2), /̊ (2) = (21, 24; B2, B2), /̊ (3) = (24, 21; B2, B2, 2̃1),
/̊ (4) = (21, B̃2; B2, 2̃1, 2̃4), /̊ (5) = (21, B̃2, B̃2; B2), /̊ (6) = ;, /̊ (7) = ;.

22.11 For the infinite bipartite matching model, show that -̊ (=) = (G1, . . . , G!)
is a possible state of the process -̊ if and only if: for any 1  : < ;  !,
if G: = 28 and G; = B̃ 9 then (28 , B 9) 8 G with a similar characterization for
possible states of .̊ and /̊ [Adan et al. (2018b)].
Solution
Proof of only if: Assume that 1  : < ;  !, if G: = 28 and G; = B̃ 9 and that
(28 , B̃ 9) 2 G. Then we could have had the earlier match between these two,
which contradicts FCFS.
Proof of if: Assume we have a state -̊ (#) = G1, . . . , G! . Assume in this

Exercises 241

sequence all the matched and exchanged servers are in positions <1 < <2 <

· · · < < , and they are B̃1, . . . , B̃ . Consider the sequences: 21
, . . . , 2

! ,
B

1
, . . . , B

 , where B 9 = B̃ 9 , 9 = 1 . . . , , and 28 = G8 , 8 8 (<1, . . . ,<),
and 2< 9 = 2 9 , 9 = 1, . . . , , where (B̃ 9 , 2 9) 2 G. For this initial state of the
sequences, under server by server scheduling, by the condition of if, B1 = B̃1
is incompatible with G1, . . . , G<1�1 and will match FCFS with 2<1 = 21, etc.
so for this initial sequence, -̊ () = G1, . . . , G! .

22.12 Show how to construct /̊ (=) from -̊ (=) and .̊ (=), and show that if /̊ (=) =
((G1, . . . , G!), (H1, . . . , H)) then (G1, . . . , G! , H , . . . , H1) is a possible state
of -̊ (=).
Solution
Let -̊ (#) = (2# , . . . , I# , . . . , B̃#), .̊ (#) = (B" , . . . ,F

#
, . . . , 2̃

"), Then:
Z(#) = ((2# , . . . , I#), (B" , . . . ,F

)). To see this, note that in server by
server matching up to # , what we do to the original 21

, . . . , 2
is that we

match all 2=, = < # that could be matched by servers up to # , but no others,
which gives us (2# , . . . , I#), and in customer by customer matching up to
, what we do to the original B1, . . . , B# is that we match all B=, = <

that could be matched by customers up to # , but no others, which gives us
(B" , . . . ,F

).
Consider /̊ (=) = ((G1, . . . , G!), (H1, . . . , H)), then (G1, . . . , G!) is a begin-
ning of -̊ (#), and (H1, . . . , H) is a beginning of .̊ (#). So for any D < h:
(i) for GD = 28 , Gh = B̃ 9 then (28 , B̃ 9) 8 G, as part of -̊ (#).
(ii) for HD = B 9 , Hh = 2̃8 then (B 9 , 2̃ 9) 8 G, as part of .̊ (#).
(iii) for G: = 28 , H; = B 9 , then (28 , B 9) 8 G, by definition of /̊ (#).
This implies that in all cases, for any D < h if the D item and the h item
in (G1, . . . , G! , H , . . . , H1) are a customer and server respectively, then they
must be incompatible, so it is a possible state of -̊ (#).

22.13 Prove the subadditivity property of FCFS matching, Proposition 22.11.
Solution
We prove first that if in the FCFS matching of � = (21

, . . . , 2
") with

⌫ = (B1, . . . , B#) there are unmatched customers and ! unmatched servers,
then in the FCFS matching of 20

, 2
1
, . . . , 2

" with B1, . . . , B# there are no
more than +1 unmatched customers and no more than ! unmatched servers.
In the matching of (20

, �) and ⌫, if 20 has no match, then all the other links
in the matching are the same as in the matching of � and ⌫, so the total
number of unmatched customers is +1 and unmatched servers is !. If 20 is
matched to B= and B= is unmatched in the matching of � and ⌫, then (20

, B
=)

is a new link and all the other links in the matching of (20
, �) and ⌫ are the

same as in the matching of �, ⌫, so the total number of unmatched customers
is and unmatched servers is ! � 1.
If 20 is matched to B=1 and B=1 was matched to 2<1 in the �, ⌫ matching,
then (20

, B
=1) is a new link, and the link (B=1

, 2
<1) in the �, ⌫ matching is

disrupted. We now look for a match for 2<1 in the matching of (20
, �) and

242 Parallel Servers with Skill Based Routing

⌫. Clearly, 2<1 is not matched to any of B 9 , 9 < =1, since in the construction
of the �, ⌫ matching 2<1 was not matched to any of those. So 2<1 will either
remain unmatched, or it will be matched to some B=2 , where =2 > =1. In
the former case, all the links of the �, ⌫ matching except (B=1

, 2
<1) remain

unchanged in the (20
, �) and ⌫ matching, and so the numbers of unmatched

items remain + 1 and !. In the latter case, there are again two possibilities:
If B=2 is unmatched in the �, ⌫ matching, then the (20

, �), ⌫ matching will
have disrupted one link and added 2 links retaining all other links of the �, ⌫
matching, so the numbers of unmatched items are and ! � 1. If B=2 is
matched to 2<2 in the �, ⌫ matching, then the link B=2

, 2
<2 is disrupted, and

we now look for a match for 2<2 in the (20
, �), ⌫ matching. Similar to 2<1 ,

either 2<2 remains unmatched, resulting in + 1 and ! unmatched items
in the (20

, �), ⌫ matching, or, by the same argument as before, 2<2 will be
matched to B=3 , where =3 > =2. Repeating these arguments for any additional
disrupted links, we conclude that we either end up with one more link, so the
number of unmatched items are and ! � 1, or we have the same number
of links and the number of unmatched items are + 1 and !.
We now consider matching of �0 with ⌫0, of �00 with ⌫00, and of �0

�
00 with

⌫
0
⌫
00. Assume in the matching of �0 with ⌫0 that 21

, . . . , 2
 and B1, . . . , B!

are unmatched. The number of unmatched in �0
�
00 with ⌫0

⌫
00 is the same

as in the match of (21
, . . . , 2

), �00 with (B1, . . . , B!), ⌫00. We now add them
one by one, from last to first, and by the proof above, at each step the number
of unmatched either remains the same, or it decreases by 1 for both customers
and servers.

22.14 Prove the monotonicity result of Proposition 22.12.
Solution
proof: This follows directly from the subadditivity. Consider the blocks of
customers 0  =  "0 and the block "0 + 1  =  "1. The second block is
perfectly matched so it has 0 unmatched. So the union of the two blocks has
no more unmatched than the first block, and thatmeans #0 � #1, and by the
same argument #1 � #2 etc.

22.15 For an incompatible pair (20
, B

0), construct (20
, 2

1
, . . . , 2

⌘
, B

0
, B

1
, . . . , B

⌘),
that are perfectly matched by FCFS, and find a lower bound for the probability
of such a sequence, to prove Proposition 22.13.
Solution
proof: Because the bipartite graph is connected, and there is no direct edge
between 2

0
, B

0, there exists a simple path (i.e. with no repeated nodes),
2

0 ! B 91 ! 281 · · · ! B 9⌘ ! 28⌘ ! B
0 which connects them, with 1  ⌘ 

min{�, �} � 1. Clearly, the FCFS matching of 20
, 2

1
, . . . , 2

⌘
, B

0
, B

1
, . . . , B

⌘ ,
where 2; = 28; , B

; = B 9; , ; = 1, . . . , ⌘ is perfect, with exactly the links of the
path, where 20 is matched to B1, and B0 is matched to 2⌘ . Note that FCFS
matching of 21

, . . . , 2
⌘
, B

1
, . . . , B

⌘ consists of ⌘ perfectly matched blocks of
length one.

Exercises 243

22.16 Show that the exchange transformation on a perfectly matched block will
retain the same links if we now do FCFS in reversed time, as stated in
Proposition (22.16).
Solution
A necessary and su�cient condition for FCFS perfect matching of a block is
that:

(i) If 2< = 2
0 and B

= = B
0 are matched then for all ; < = If B; = B

00

is compatible with 20 then we cannot have B; matched with 2: where
: > <.

(ii) If 2= = 2
0 and B

< = B
0 are matched then for all ; < = If 2; = 2

00

is compatible with B0 then we cannot have 2; matched with B: where
: > <.

But then when we do the exchange transformation we get that these conditions
now hold for the match 2̃= = 20 with B̃< = B0. The proof for condition (i) is
illustrated in the following figure:

sl = sk = ′′s

ck = cl = ′′c

cm = cn = ′c

sn = sm = ′s

cm sm

sn cn

ck sk

sl cl

m

n

k

l (c ', s ')∈G (c ', s '')∈G

22.17 Prove the uniqueness theorem, 22.18 for the ridesharing model [Adan et al.
(2018a)].
Solution
The proof is very similar to the proof of Theorem 22.5 for the symmet-
ric bipartite matching system. There is subadditivity, monotonicity, forward
coupling and backward coupling. Details are in Adan et al. (2018a)

22.18 Prove the time reversal theorem, 22.19 for the ridesharing model.
Solution
The proof is very similar to the proof of Theorem 22.7, for the symmetric
bipartite matching system. The somewhat surprising part of the theorem is
that time reversal leaves unmatched servers in their place, unmatched. For
the proof one shows that the exchange transformation of a perfectly matched
block gives the same links for directed FCFS in the reversed time direction,
and that the probability of a perfectly matched block equals that of the
reversed block. Next one regards the conditional process, conditioned on
being empty at time 0. One then has that this process of perfectly matched
blocks has the reversal property. Therefore, by uniqueness of Palm measure
the reversal theorem also holds for the unconditional system. Details are in
Adan et al. (2018a).

244 Parallel Servers with Skill Based Routing

22.19 Verify the Bernoulli type stationary distributions, Theorem 22.20 for the
ridesharing model [Weiss (2020)].
Solution
The proof is similar to the proof of Theorem 22.9, for the symmetric bipar-
tite matching system. One defines the detailed matching Markov chain that
includes the list of unmatched and of matched and exchanged items in the
sequence. By the reversal theorem we then have both the forward and the
backward transition rates, and on can then use Kelly’s Lemma to verify that
the stationary distribution is multi-Bernoulli. An important part in the proof
is the characterization of the possible states. Details are in Weiss (2020).

22.20 Prove the ergodicity condition of (22.21) and verify equations (22.14)–
(22.17) [Weiss (2020)].
Solution
For details for these calculations see Weiss (2020).

22.21 The following table has data for a system with 3 types of customers and 3
types of servers. Calculate matching rates, and provide designs for ED with
, = 1, for QD with) = 0.5, and for QED, for _ = 20, 50, 100, 200 and
simulate the systems to evaluate the performance [Adan et al. (2019)].

Example – System and Data

c1 c2 c3

s3s2s1

.2λ .5λ .3λ

Patience time distributions

�28

21 Exp(0.1)
22 U(0,10)
23 Exp(0.2)

Service time distributions

⌧28 ,B 9 21 22 23

B1 Pareto(2, 3) Exp(0.125)
B2 Exp(0.2) U(2, 6)
B3 Pareto(3, 3) U(1, 5)

Only the mean service times are used by the design algorithms. The full
distributions are used in the simulations.

Resource allocation design parameters are: VB1 = 0.3, VB2 = 0.3, VB3 = 0.4.

References

Abate, J.C., Gagan, L., and Whitt, W. 1995. Calculating the M/G/1 busy-period den-
sity and LIFO waiting-time distribution by direct numerical transform inversion.
Operations Research Letters, 18(3), 113–119.

Adan, I., and Weiss, G. 2005. A two-node Jackson network with infinite supply of work.
Probability in the Engineering and Informational Sciences, 19(02), 191–212.

Adan, I., and Weiss, G. 2006. Analysis of a simple Markovian re-entrant line with
infinite supply of work under the LBFS policy. Queueing Systems, 54(3), 169–183.

Adan, I., and Weiss, G. 2012. Exact FCFS matching rates for two infinite multitype
sequences. Operations Research, 60(2), 475–489.

Adan, I., and Weiss, G. 2014. A skill based parallel service system under FCFS-ALIS
– steady state, overloads, and abandonments. Stochastic Systems, 4(1), 250–299.

Adan, I., Wessels, J., and Zijm, H. 1990. Analysis of the symmetric shortest queue
problem. Stochastic Models, 6, 691–713.

Adan, I., Wessels, J., and Zijm, H. 1993. Matrix-geometric analysis of the shortest queue
problem with threshold jockeying. Operations Research Letters, 13(2), 107–112.

Adan, I., van Houtum, G. J., and van der Wal, J. 1994. Upper and lower bounds for the
waiting time in the symmetric shortest queue system. Annals of Operations Research,
48(2), 197–217.

Adan, I., Kleiner, I., Righter, R., and Weiss, G. 2018a. FCFS parallel service systems
and matching models. Performance Evaluation, 127, 253–272.

Adan, I., Busic, A., Mairesse, J., and Weiss, G. 2018b. Reversibility and further proper-
ties of FCFS infinite bipartite matching. Mathematics of Operations Research, 43(2),
598–621.

Adan, I., Boon, M., and Weiss, G. 2019. Design heuristic for parallel many server
systems. European Journal of Operational Research, 273(1), 259–277.

Baccelli, F., and Hebuterne, G. 1981. On queues with impatient customers. Tech. rept.
RR-0094 inria-00076467. INRIA Rapports de Recherthe.

Borovkov, A.A. 1965. Some limit theorems in the theory of mass service, II multiple
channels systems. Theory of Probability & Its Applications, 10(3), 375–400.

Botvich, D. D., and Zamyatin, A. A. 1992. Ergodicity of conservative communication
networks. Rapport de Recherche, INRIA, 1772.

Bramson, M. 1996. Convergence to equilibria for fluid models of head-of-the-line
proportional processor sharing queueing networks. Queueing Systems, 23(1-4), 1–
26.

245

246 References

Bramson, M. 2001. Stability of earliest-due-date, first-served queueing networks.
Queueing Systems, 39(1), 79–102.

Bramson, M. 2008. Stability of Queueing Networks. Springer.
Brandt, A., Franken, P., and Lisek, B. 1990. Stationary stochastic models. Vol. 227.

Wiley.
Breiman, L. 1992. Probability. SIAM.
Browne, S., Whitt, W., and Dshalalow, J.H. 1995. Piecewise-linear di�usion processes.

Advances in queueing: Theory, methods, and open problems, 4, 463–480.
Chen, H., and Mandelbaum, A. 1991. Stochastic discrete flow networks: Di�usion

approximations and bottlenecks. Annals of Probability, 1463–1519.
Chen, H., and Mandelbaum, A. 1994. Hierarchical modeling of stochastic networks,

Part II: Strong approximations. Pages 107–131 of: Stochastic Modeling and Analysis
of Manufacturing Systems. Springer.

Cohen, J.W. 1982. The Single Server Queue. North-Holland.
Dai, J.G., and Lin, W. 2005. Maximum pressure policies in stochastic processing

networks. Operations Research, 53(2), 197–218.
Dai, J.G., and Weiss, G. 1996. Stability and instability of fluid models for reentrant

lines. Mathematics of Operations Research, 21(1), 115–134.
Deimling, K. 2006. Ordinary di�erential equations in Banach spaces. Vol. 596.

Springer.
Doob, J.L. 1953. Stochastic processes. Wiley.
Doshi, B.T. 1986. Queueing systems with vacations?a survey. Queueing systems, 1(1),

29–66.
Down, D.G, Gromoll, H.C., and Puha, A.L. 2009. Fluid limits for shortest remaining

processing time queues. Mathematics of Operations Research, 34(4), 880–911.
Dubins, L.E. 1968. On a theorem of Skorohod. Annals of Mathematical Statistics,

39(6), 2094–2097.
Gelenbe, E. 1991. Product-form queueing networks with negative and positive cus-

tomers. Journal of applied probability, 656–663.
Goodman, J.B., and Massey, W.A. 1984. The non-ergodic Jackson network. Journal of

Applied Probability, 21(4), 860–869.
Gromoll, H.C. 2004. Di�usion approximation for a processor sharing queue in heavy

tra�c. Annals of Applied Probability, 14(2), 555–611.
Gromoll, H.C., Puha, A.L., and Williams, R.J. 2002. The fluid limit of a heavily loaded

processor sharing queue. Annals of Applied Probability, 12(3), 797–859.
Guo, Y., Lefeber, E., Nazarathy, Y., Weiss, G., and Zhang, H. 2014. Stability of multi-

class queueing networks with infinite virtual queues. Queueing Systems, 76(3),
309–342.

Harrison, J.M. 1985. Brownian Motion and Stochastic Flow Systems. Wiley.
Harrison, J.M. 2013. Brownian models of performance and control. Cambridge Uni-

versity Press.
Haviv, M. 2013. Queues: A Course in Queueing Theory. Springer.
Iglehart, D.L., and Whitt, W. 1970a. Multiple channel queues in heavy tra�c. I.

Advances in Applied Probability, 2(1), 150–177.
Iglehart, D.L., and Whitt, W. 1970b. Multiple channel queues in heavy tra�c. II.

Advances in Applied Probability, 2(2), 355–369.

References 247

Kelly, F.P. 1979. Reversibility and Stochastic Networks. Wiley, Reprinted Cambridge
University Press, 2011.

Kendall, D.G. 1964. Functional equations in information theory. Zeitschrift für
Wahrscheinlichkeitstheorie und verwandte Gebiete, 2(3), 225–229.

Kiefer, J., and Wolfowitz, J. 1955. On the theory of queues with many servers. Trans-
actions of the American Mathematical Society, 78(1), 1–18.

Kopzon, A., Nazarathy, Y., and Weiss, G. 2009. A push–pull network with infinite
supply of work. Queueing Systems, 62(1-2), 75–111.

Krichagina, E.V., and Puhalskii, A.A. 1997. A heavy-tra�c analysis of a closed queueing
system with a GI/1 service center. Queueing Systems, 25(1-4), 235–280.

Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., and Shmoys, D.B. 1993. Sequencing
and scheduling: Algorithms and complexity. Handbooks in Operations Research and
Management Science, 4, 445–522.

Laws, C.N. 1990. Dynamic routing in queueing networks. Ph.D. thesis, Cambridge
University.

Laws, C.N. 1992. Resource pooling in queueing networks with dynamic routing. Ad-
vances in Applied Probability, 24(3), 699–726.

Lipton, Alexander, and Kaushansky, Vadim. 2018. On the first hitting time density of
an Ornstein-Uhlenbeck process. arXiv preprint arXiv:1810.02390.

Loynes, R.M. 1962. The stability of a queue with non-independent inter-arrival and
service times. Pages 497–520 of: Mathematical Proceedings of the Cambridge
Philosophical Society, vol. 58. Cambridge Univ Press.

Mitzenmacher, M. 1996. The power of two choices in randomized load balancing. PhD
thesis, University of California at Berkeley.

Mitzenmacher, M. 2001. The power of two choices in randomized load balancing. IEEE
Transactions on Parallel and Distributed Systems, 12(10), 1094–1104.

Nazarathy, Y., and Weiss, G. 2010. Positive Harris recurrence and di�usion scale
analysis of a push pull queueing network. Performance Evaluation, 67(4), 201–217.

Nelson, Randolph, and Tantawi, Asser N. 1988. Approximate analysis of fork/join
synchronization in parallel queues. IEEE transactions on computers, 37(6), 739–
743.

Ob�ój, J. 2004. The Skorokhod embedding problem and its o�spring. Probability
Surveys, 1, 321–392.

Schrage, L.E., and Miller, L.W. 1966. The queue M/G/1 with the shortest remaining
processing time discipline. Operations Research, 14(4), 670–684.

Servi, L.D., and Finn, S.G. 2002. M/M/1 queues with working vacations (m/m/1/wv).
Performance Evaluation, 50(1), 41–52.

Sevcik, K.C., and Mitrani, I. 1981. The distribution of queuing network states at input
and output instants. Journal of the ACM (JACM), 28(2), 358–371.

Visschers, J., Adan, I., and Weiss, G. 2012. A product form solution to a system with
multi-type jobs and multi-type servers. Queueing Systems, 70(3), 269–298.

Vvedenskaya, N., Dobrushin, R., and Karpelevich, F. 1996. Queueing system with
selection of the shortest of two queues: An asymptotic approach. Problemy Peredachi
Informatsii, 32(1), 20–34.

Ward, A.R. 2012. Asymptotic analysis of queueing systems with reneging: A sur-
vey of results for FIFO, single class models. Surveys in Operations Research and
Management Science, 17(1), 1–14.

248 References

Weber, R.R. 1978. On the optimal assignment of customers to parallel servers. Journal
of Applied Probability, 15(2), 406–413.

Wein, L.M. 1990. Optimal control of a two-station Brownian network. Mathematics of
Operations Research, 15(2), 215–242.

Wein, L.M. 1992. Scheduling networks of queues: heavy tra�c analysis of a multistation
network with controllable inputs. Operations Research, 40(3-supplement-2), S312–
S334.

Weiss, G. 2005. Jackson networks with unlimited supply of work. Journal of Applied
Probability, 42(3), 879–882.

Weiss, G. 2020. Directed FCFS infinite bipartite matching. Queueing Systems, 1–32.
Whitt, W. 1986. Deciding which queue to join: Some counterexamples. Operations

Research, 34(1), 55–62.
Winston, W. 1977. Optimality of the shortest line discipline. Journal of Applied

Probability, 14(1), 181–189.
Wol�, R.W. 1989. Stochastic Modeling and the Theory of Queues. Prentice Hall.
Zeltyn, S., and Mandelbaum, A. 2005. Call centers with impatient customers: Many-

server asymptotics of the M/M/n+ G queue. Queueing Systems, 51(3-4), 361–402.

	Foreword
	Part I The Single Queue
	Queues and their Simulations, Birth and Death Queues
	Exercises
	The M/G/1 Queue
	Exercises
	Scheduling
	Exercises

	Part II Approximations of the Single Queue
	The G/G/1 Queue
	Exercises
	The Basic Probability Functional Limit Theorems
	Exercises
	Scaling of G/G/1 and G/G/
	Exercises
	Diffusions and Brownian processes
	Exercises

	Part III Queueing Networks
	Product Form Queueing Networks
	Exercises
	Generalized Jackson Networks
	Exercises

	Part IV Fluid Models of Multi-Class Queueing Networks
	Multi-Class Queueing Networks, Instability and Markov Representations
	Exercises
	Stability of MCQN via Fluid Limits
	Exercises
	Processing Networks and Maximum Pressure Policies
	Exercises
	Processing networks with Infinite Virtual Queues
	Exercises
	 Optimal Control of Transient Networks
	Exercises

	Part V Diffusion Scaled Balanced Heavy Traffic
	Join the Shortest Queue in Parallel Servers
	Exercises
	Control in Balanced Heavy Traffic
	Exercises
	MCQN with Discretionary Routing
	Exercises

	Part VI Many-Server Systems
	Infinite Servers Revisited
	Exercises
	Asymptotics Under Halfin-Whitt Regime
	Exercises
	Many Servers with Abandonment
	Exercises
	Load Balancing in the Supermarket Model
	Exercises
	Parallel Servers with Skill Based Routing
	Exercises
	References

