
Solutions to exercises in chapter 10

1. Static magnetic fields

Far away, only the sum of the currents matters, hence B = µ0I/(2πr)

2. Static magnetic fields 2

For one mole, the total magnetic moment is M = NA ·µ = 6·9·10−24 ·1023J/T = 5.4 J/T. This dipole
moment can be associated to a fieldB = µ0M/(2πr3) = 4π·10−7Vs/(Am)·5.4V·As/T/(2π10−6m3) =
1.08V2s2/(Tm4) ' 1(Vs/m2)2/(Vs/m2) = 1 T

3. Static magnetic fields 3

a) Ampere’s law says:
∫
~B · d~s = µ0Ienclosed. For a coil, we have: Ienclosed = NlI/L, where l is

the length of the enclosing path. Choosing the path such that it runs parallel to the coil inside
and then moved perpendicularly outside to return only far away, where the field is zero, we have∫
~B · d~s = Bl (the scalar product is zero on the perpendicular parts of the path). This gives for

the field of the coil: | ~B| = µ0NI/L or numerically: | ~B| = 4π · 10−7Vs/(Am)500 · 0.1A/0.25m =
8π · 10−5Vs/m2 ' 2.5 · 10−4T.

b) Using relative errors we have: r2B = r2N + r2I + r2L. With rN = 0.01 and rL = 0.004 much smaller
than that of the current, rI = 0.1, they can be neglected and we have rB ' rI = 0.1.

4. Coulomb-force vs. Lorentz-force

a) The charge per unit length of the beam is Q/l = λ. According to Gauss’ law we therefore have

for the ~E-field of a linear chain of charges at a distance r: | ~E| = Q
2πrlε0

= λ
2πrε0

. The distance of
the beams is d, hence the field of one beam at the place of the other is:

| ~E| = λ
2πdε0

This gives for the Coulomb force: |~FC | = q| ~E| = λq
2πdε0

.

b) The Lorentz force is given by ~FL = q~v × ~B. Using Ampere’s law to obtain the field ~B we

have:
∫
~B · d~s = µ0I. For a straight conductor, this gives for the field at a distance r: | ~B| = µ0I

2πr

(pointing azimuthally). Therefore we have for the Lorentz force: |~FL| = µ0Iqv
2πr , or setting r = d as

the two beams are a distance d apart. |~FL| = µ0Iqv
2πd . Finally, we have to relate the current with

the flow speed of the charges. The flowing charge is q(t) = Qvt/l = λvt, which gives the current

I = dq(t)
dt = λv. Inserting this into the Lorentz force:

|~FL| = µ0λqv
2

2πd .

For the ratio of the two forces we obtain:
|~FL|
|~FC |

= µ0λqv
2

2πd
2πdε0
λq = µ0ε0v

2 = v2/c2

c) As only the speed enters here (squared), the relative error of this ratio is given by twice the
relative error of the speed.

5. Lorentz-force

The maximum Lorentz force is if speed and field are perpendicular and given by F = qvB, hence
v = F/(qB) = 3·10−12N/(30Vs/m2 ·1.6·10−19As) = 10−12N/1.6·10−18Js/m2 = 106/1.6N/(Ns/m)'
6 · 105 m/s.

6. Lorentz-force 2

a) The Lorentz force is F = qvB · sin(α). For a circular trajectory, this would correspond to
the centripetal force, i.e. F = mv2/r. This gives the radius of curvature of the trajectory as
r = mv/(qB · sinα). The charge here is the total charge of an erythrocyte, i.e. q = NHb · 4 · 2 · e =
3 · 108 · 8 · 1.6 · 10−19C= 3.9 · 10−10C. Numerically this gives: r = 1.5 · 10−13kg·0.2(m/s)/(3.9 ·
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10−10C·10T
√

3/2) = 1.5 · 10−3kg·m/s0.1/(
√

3 · 10CVs/m2) = 1.5 · 10−5kgm/s/(
√

3Js/m2) = 0.8 ·
10−5(kgm/s)/(kg/s) = 8 · 10−6m= 8µm.

b) With relative errors we have r2r = r2q+r2m+r2v. Numerically r2r = 1/9+1/9+1/16 = 2/9+1/16 ==

59/225 and hence rr =
√

59/225 ' 7.5/15 = 0.5

7. Mass spectrometer

For given U,B and r we have a mass of m = qr2B2/(2U). If only r has a significant uncertainty,
the error in m is given by σm/m = 2σr/r. So if we are given the uncertainty σr, the radius of
curvature needs to be: r = 2σrm/σm. If we want to be able to distinguish C12 and C14, we also
know the relative uncertainty in m that we at least need to have, namely σm/m = 1/13, because
for an atomic mass of 13 we need to have a resolution of better than plus or minus 1. Therefore
the radius of curvature need to be: r = 26σr = 26 mm.

8. Nuclear magnetic resonance

a) We are using a length of 20 cm rather than 120 as written in the text, as the 1 is a typo. The field
difference is ∆B = dB/dx∆x = 20cm·0.5 · 10−4T/cm= 10−3T. The frequency difference is directly
given by the field difference, ∆ω = γp∆B = γpdB/dx∆x = 10−3T·42 · 106Hz/T= 1000 · 42Hz= 42
kHz. This is the differnce in frequency relative to the main frequency of ωL = 5 · 42 · 106Hz = 210
MHz.

b) For a given gradient dB/dx, the uncertainty in B, σB , is directly given by the one in x,
σx, through σB = dB/dxσx. Hence the spatial resolution is given by σx = (dB/dx)−1σB =
(dB/dx)−1σB/B·B = (dB/dx)−1σω/ω·B = (dB/dx)−1σω/γp. Numerically: σx = 2·104cm/T·10Hz/(42·
106Hz/T) = 1/210cm' 50µ m.

9. Nuclear magnetic resonance 2

For a circular current I over an area A we obtain a magnetic moment of µp = I ·A. For the model
of the proton this means µp = eω/(2π) · πr2p = eωr2p/2. If we get the angular frequency from the
angular momentum, i.e.: ω = ~/(mpr

2
p) we get: µp = e~/(mpr

2
p) · r2p/2 = e~/(2mp) or numerically:

µp = 1.6 · 10−19C·10−34Js/(4 · 10−27kg) = 4 · 10−27J·kg·m·m·s/(V·kg·s2) = 4 · 10−27J·m2/(V·s) =
4 · 10−27 J/T.

10. Nuclear magnetic resonance 3

The potential energy is ∆E = µp · B = 1.4 · 10−26J. If 10% of the protons are supposed to be
aligned, we have to have ∆E/(kBT ) = 0.1 (approximating the Boltzmann distribution for small
ratios of ∆E/(kBT ). Hence, we need to have kBT = 10 ·∆E. Numerically kBT = 1.4 · 10−25 J. At
300 K, kBT = 4 · 10−21 J, hence the temperature we look for is T = 300K·0.35 · 10−4 = 10 mK.
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