
Solutions to exercises in chapter 9

1. Electrostatics

∆E = q∆V , so the charge is: q = ∆E/∆V , or numerically: q = 1.92 · 10−17 J/600(J/C)=
1.92/6 · 10−19C= 3.2 · 10−20 C. This would be 0.2 elementary charges and since e is the smallest
charge freely observable, this result cannot be!

2. Electrostatics 2

The screening length is λ =
√
εε0kBT/(2ρq), where ρ is the chare density of the ions and q their

charge. With 0.16 M NaCl the charge is q = e and the density is ρ = 0.16mol/L · e = 0.16 · 6 · 1023 ·
1.6 ·10−19C/(10−3m3) = 1.6 ·107C/m3. Hence 2ρq = 2 ·1.62 ·10−12C2/m3 = 5 ·10−12C2/m3. Which
finally give the screening length as: λ =

√
80 · 8.85 · 10−12C/(V m) · 4 · 10−21J/(5 · 10−12C2/m3) =√

8 · 8.85 · 0.8 · 10−20m' 8 · 10−10m= 8Å.

3. Electrostatics 3

Nernst-Potential: ∆V = kBT/qln(c1/c2). The ion charge is the elementary charge, hence numeri-
cally: ∆V = 4·10−21J/(1.6·10−19C) ln(160/20) = 4/1610−1 ln(8)V= 0.025·ln(23)V= 0.075·ln(2)V=
0.05V= 50mV.

4. Electrostatics 4

a) The applied field created by the charge is E = V/d = 7/5 · 107V/m. According to Gauss’ law we
can also write EA = Q/(εε0) or solving for ε: ε = Q/(Aε0) · d/V = 1.6 · 10−19 · 6 · 1015C/m2/(8.85 ·
10−12C/(Vm)) · 5/7 · 10−7m/V= 50/(8.85 · 7)10−11/10−12 = 50/6 ' 8.

b) Everything enters linearly into a ratio, hence we add relative errors in squares: rε =
√
r2V + r2d + r2n.

Numerically rV = 0.1; rd = 0.2; rn = 0.1, hence rε =
√

6 ∗ 0.1 ' 0.25.

5. Electrostatics 5

a) The E-field will point radially towards the centre of the DNA over the entire length, i.e. will have
the symmetry of a cylinder. In that case we can use Gauss’ law for its strength: E · A = Q/(εε0),
with a cylinder surface at a distance r and length L, i.e. A = 2πrL. The charge is given by the
charge density time the DNA length, i.e. Q = σL, where σ = e/d with a base pair distance d.
Taking everything together, we obtain: E2πrL = eL/(dεε0) or E = e/(2πrdεε0). The field decreases
with 1/r and has a prefactor: e/(2πdεε0) = 1.6 ·10−19C/(2π ·0.34 ·10−9m80 ·8.85 ·10−12C/(Vm)) =
1.6/(2π · 0.34 · 0.8 · 8.85)V' 1/8.85V' 0.11 V.

b) The binding energy can be obtained from the electrostatic potential energy E = Q1Q2/(4πεε0r),
where we are given r = 1nm and Q2 = e = 1.6 · 10−19 C as the charge of the histone. The charge
of the DNA we obtain from, Q1 = e · 2π(R + r)/d = eπ12nm/0.34 nm = 370/3.4 e ' 110e. With
εwater = 80 we get: E = 110e2/(80 · 10−10As/(Vm)·10−9m= 11/81.62 · 10−19 · 10−19/10−19VC'
3.5·10−19 J. For comparison the bending energy from the exercise in chapter 8 was Ebend = 2.5·10−19

J.

6. van der Waals interaction, dipoles

a) The pre-factor in van der Waals is given by M = αP 2/(4π2ε20), where P = qd is the fluctuating
dipole moment. This then gives the polarisability of: α = M ∗4π2ε20/P

2. From the values given, we
have P = 1.6 ·10−19 C·2 ·10−10m = 3.2 ·10−29Cm and 2πε0 = 5 ·10−11 As/Vm. We therefore obtain:
α = 1.6·10−77Jm6·25·10−22C2/(V2m2)/(3.22·10−58C2m2) = 4·10−41C2m2/J= 2.5·10−2C2Å2/(eV).

b) We have a power law with the size entering quadratically andM linearly. Hence rα =
√

4r2r + r2M .

Numerically rr = 0.1 and rM = 0.06, so rα =
√

0.04 + 0.0036 =
√

0.0436 ' 0.21

7. Dipoles

a) The dipole moment is p = q · d, thus, the average charge per atom is: q = p/d. Numerically:
q = 3.4 · 10−30 Cm/10−10m= 3.4 · 10−20 C or only about 0.2e. The effective average charge of the
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atom is due to the fact that the electrons are at slightly different positions on average. Therefore,
this does not have to correspond to a multiple of the elementary charge.

b) r2q = r2p + r2d with rd = 0.1 and rp ' 0.06 we obtain: rq =
√

1 + 0.62 · 0.1 =
√

1.36 · 0.1 ' 0.12.

c) Epot = −~p · ~E = −|~p|| ~E| cos(θ). For a rotation by 45◦ we have cos(θ) = 1/
√

2, and hence:

Epot = −|~p|| ~E|+|~p|| ~E|/
√

2. Numerically: Epot = 3.4·10−30Cm2.5·104V/m(−1+0.7) ' 2.5·10−26J .

8. Capacitors

The field of a plate capacitor is E = Q/(Aεε0). The electric potential then is: V = Ed =
Qd/(Aεε0). Therefore, the work performed on a test charge dQ is W =

∫
V dQ = d/(Aεε0)

∫
QdQ =

Q2d/(2Aεε0). This is the energy stored in the capacitor.

9. Capacitors 2

a)

b) Take a cylinder of radius r with R1 < r < R2 and length L for the flux determination in
Gauss’law. Then the flux of the E-field is: Qinnen

ε0
= EA = E2πrL and hence for the field in this

region: E = Qinnen

2πε0rL
. total charge enclosed by a cylinder in these cases is zero.

c) With V = −
∫
~E · d~r and the result from b) we get: V = −

∫ R2

R1

Q
2πε0rL

dr = − Q
2πε0L

∫ R2

R1
dr/r =

Q
2πε0L

ln(R1/R2).

From the definition of the capacitance C = Q
V we finally have: C = 2πε0L

ln(R2/R1)

10. Atomic Physics

a) The energy difference is given by the Rydberg energy times (1/n21−1/n22) with n1 = 10 and n2 = 3
we obtain 1/100−1/9 = 0.01−0.111 ' 0.1 or in other words an energy of ∆E = 0.1·ERyd = 1.36eV .
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b) For a standing wave, we have: Circumference c = 2πaB must be equal to a wave-length, i.e.
λ = 2πaB ' πÅ.

11. Atomic Physics 2

a) The binding energy is proportional to Z2/n2. For the outer electron in lead with n = 6 and
Z = 82 the binding energy thus increases by a factor of (82/6)2 ' 12.52 ' 150. Therefore EB '
13.6eV · 150 ' 2keV .

b) The binding energy is linear in the mass of the particle, hence it is increased by a factor of 200:
EB = 200·13.6 eV ' 2.7 keV

c) As the mass is increased by another factor of 10, the energy is correspondingly increased by
another factor of ten to EB = 27keV . To be more exact, we would have to take into account the
fact that now two objects of equal mass are circulating around their common centre of mass, which
would change the result by another factor of two.

12. Currents

The current density multiplied by the time gives the charge density deposited on the membrane,
which according to Gauss’ law gives the field and hence the voltage difference: V = j · τ · d/(εε0)
numerically: V = 0.8A/m2 ·10−3s·5 ·10−9m/(7 ·8.85 ·10−12As/(Vm)) = 4/(7 ·8.85) ·10−12/10−12V'
60 mV.

13. Currents 2

With 50 channels/µ m2 and an area of 106 µ m2, we have a total of 5·107 ion channels. There’s a
current of 5 · 1010 ions/ms or 5 · 1013 ions/s through all of these channels and with one elementary
charge per ion, we get a current of 5 · 1.6 · 10−6 C/s= 8 · 10−6A.

14. Currents 3

The mobility is µ = ±e/(6πηr), so for Cl: µCl = −e/(6πηrCl) = −1.6 · 10−19 C /(18 · 10−3Pa
s1.5 · 10−10m) = −1.6/2.710−7m2/(Vs)= −6 · 10−8m2/(Vs), and for Na: µCl = e/(6πηrNa) =
1.6 · 10−19C/(18 · 10−3Pa s 2 · 10−10m) = 1.6/3.610−7m2/(Vs)= 4.5 · 10−8m2/(Vs).

The conductivity is given by the charge density times the mobility, i.e. σ = qNanNaµNa +
qClnClµCl = en(µNa − µCl). The charge density is directly given by the ion concentration n =
160 · 10−3 · 6 · 1023/10−3 m3 = 1026m−3 multiplied by the charge, i.e. en = 1.6 · 10−19 · 1026

C/m3 = 1.6 · 107 C/m3. Together with the mobility we thus have: σ = 1.6 · 107 · (4.5 + 6) · 10−8

C/m3·m2/(Vs)= 1.05 · 1.6 A/(Vm) = 1.7 A/(Vm), or for the resistivity ρ = 1/σ = 1/1.7V m/A '
0.6Ωm.

15. Currents 4

The power is given by P = V · I. Since we know the power and the voltage, we get the average

current as I = P
V = 109W

5·107V = 20A. The charge is given by the current times the time this current
is flowing, hence Q = I · t = 20A·0.2s = 4C.

16. Resistors

The volume (AL), as well as the resistivity (ρ) of the clay are constant. The resistance is given
by R = ρL/A. Because volume is conserved, we have LA1 = A2L/2, hence A1 = A2/2 and thus

R2 = ρL2/A2 = ρL1/2
2A1

= ρL1/(4A1) = R/4.
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