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Exercise: concepts from chapter 6  
 

Reading: Fundamentals of Structural Geology, Chapter 6 

 

1) The definition of the traction vector (6.7) relies upon the approximation of rock as a 

continuum, so the ratio of resultant force to surface area approaches a definite value at 

every point. Use the model of rock as a granular material suggested by Amadei and 

Stephansson (1997) and (6.15) to compute multiple realizations of the ratio tp/t and 

recreate a figure similar to Figure 6.7b. Choose a mean and standard deviation for 

grain/pore widths based on the geometry of the sandstone in Figure 1 and use these to 

define a normal distribution of widths. A representative spring constant for quartz grains 

is 6x10
7
 N/m, and for the pores the spring constant is zero. 

 

 
Figure 1. SEM images of Aztec sandstone, Valley of Fire, NV. (Sternlof, Rudnicki and 

Pollard, 2005). The base of each image is approximately 1.5mm wide; the gray shapes 

are grains of quartz; the black shapes are pores. 

 

2) Slip on faults may be thought of as driven by the shear component, ts(n), and resisted 

by the (negative) normal component, tn(n) of the traction vector t(n) acting on the fault 

surface. Consider the surface of a vertical strike-slip fault oriented with outward unit 

normal, n, in the direction 350
o
. Choose Cartesian coordinates, x and y, in the horizontal 

plane in the directions 100
o
 and 010

o
 respectively. Consider a right triangular free body (a 

2D analogue to the Cauchy tetrahedron as shown in Fig. 6.8) with hypotenuse parallel to 

the fault, side a with outward normal in the positive x-direction, and side b with outward 

normal in the negative y-direction. We postulate that no shear tractions act on sides a and 

b, and that the normal components of the tractions on them are tx(a) = -425 MPa and ty(b) 

= +135 MPa respectively.  
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a) Draw a carefully labeled sketch map of the fault surface with normal vector n, the 

triangular free body, the traction vector components tx(a) and ty(b) acting on this 

free body, a north arrow, and the Cartesian coordinate system.  

 

b) Calculate the Cartesian components of the traction vector t(n) starting with the 

fundamental equations for balancing forces on the triangular free body in the two 

coordinate directions. Include these components on your sketch map. 

 

c) Calculate the magnitude and direction of the traction vector t(n). Determine the 

magnitude and direction of the traction vector acting on the adjacent fault surface 

with outward unit normal -n. 

 

d) Calculate the normal and shear traction components acting on the fault surface 

with outward normal n. Draw these traction components on another sketch map of 

the fault surface. Indicate if you would expect slip resulting from the traction to 

be left- or right-lateral and show this on your sketch map with appropriate arrows. 

 

3) We postulate the following stress state in the horizontal plane of the outcrop pictured 

in Figure 2 at the time of motion on the fault: 

 40 MPa, 60 MPa , 100 MPaxx xy yx yy           (1) 

Note that a Cartesian coordinate system is prescribed along with the outward unit normal 

vector, n, for one surface of the fault. Also note that both normal stress components are 

negative (compressive) and the shear stress is negative.  

 

 
Figure 2. Outcrop from the Lake Edison granodiorite of the Sierra Nevada, CA with a 

small left-lateral fault (Segall & Pollard, 1983). The unit normal vector n is positioned on 

the fault surface that bounds the block of rock in the lower right hand part of the 

photograph and points outward from this block. In what follows we will be seeking the 
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traction vector that represents the mechanical action of the block in the upper left hand 

part of the photograph on the block in the lower right hand part. 

 

a) Find the components of the outward unit normal vector, nx and ny, in the prescribed 

coordinate system and use them to compute tx(n) and ty(n), the x- and y-

components of the traction vector acting on the fault surface. The direction angles 

can be measured on Figure 2 with a protractor. 

 

b) Calculate t(n)and(n), the magnitude and direction of the traction, t(n), acting on 

the fault surface with outward normal n. Remember to use the proper inverse 

tangent function in Matlab for the direction. 

 

c) Draw a carefully labeled sketch map of the fault surface with normal vector n, the 

traction vector t(n), a north arrow, and the Cartesian coordinate system. Use your 

sketch to indicate if this traction pushes or pulls against that surface. Remember it 

represents the mechanical action of the rock in the upper left part of the photo.  

 

d) Calculate the normal and shear traction components on the fault surface. Recall the 

right-hand rule for the normal and tangential axes. Is the sign of the shear traction 

component consistent with the sense of shearing indicated by the offset dike in 

Figure 2? Explain your reasoning.  

 

4) Any vector, v, may be resolved into two vector components that are, respectively, 

parallel and perpendicular to an arbitrary unit normal vector, n (Malvern, 1969): 

        v v n n n v n  (2) 

This vector equation has important applications in structural geology where the vector in 

question is the traction, t, acting on a geological surface with outward normal n. 

 

a) Use a carefully labeled sketch of the Cauchy tetrahedron to illustrate the 

application of (2) to the traction vector acting on a planar surface of arbitrary 

orientation. Show the Cartesian coordinate system, the normal vector, the traction 

vector, and the normal and shear vector components of the traction with their 

magnitudes. 

 

b) Use the definition of the scalar product to write an equation for the scalar 

component, tn, of t acting parallel to n in terms of the angle  between these two 

vectors. Illustrate this relationship on your sketch of the Cauchy tetrahedron. 

Describe how this scalar component informs one whether the traction pulls or 

pushes on the prescribed surface. Write this scalar component in terms of the 

Cartesian components of t and n, and use this result to write an equation for tn, 

the vector component of t acting parallel to n. 

 

c) Use the definition of the magnitude of a vector product to derive an equation for 

the magnitude, |ts|, of the scalar component of t acting perpendicular to n in terms 

of the angle  between these two vectors. Illustrate this relationship on your 

sketch of the Cauchy tetrahedron. This is the component of the traction taken 
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tangential to the plane of the surface, so it is referred to as the shear component. 

Explain why the sign of the shear component is ambiguous. Use the second term 

on the right side of (2) to write an equation for ts, the vector component of t acting 

perpendicular to n in terms of the Cartesian components of t and n. In doing so 

explain geometrically what is meant by the two cross products. Use your sketch to 

derive a simple equation for the magnitude of the shear component in terms of t 

and tn. 

 

5) Write a MATLAB script that takes as input the six independent components of the stress 

tensor associated with a given Cartesian coordinate system and a homogeneous stress 

field. Provide as output the following quantities: 

 

a) the components (tx, ty, tz) of the traction vector, t, acting on surfaces with outward 

unit normal vector n defined by its components (nx, ny, nz); 

 

b) the magnitude of t and the direction of t in terms of direction cosines; 

 

c) the magnitude of the shear component, |ts|, and the normal component, tn, of the 

traction vector; 

 

d) the direction of the shear component in terms of direction cosines; 

 

e) the principal values of the stress tensor and the direction cosines for the principal 

directions; and  

 

f) the traction ellipsoid corresponding to this state of stress. 

 

6) Consider the elastic stress field within a circular disk loaded by opposed point forces 

(Figure 3). The two-dimensional solution is given in equations (6.97 – 6.99). 

  

 
Figure 3. Photoelastic image of the maximum shear stress field in a circular disc loaded 

by diametrically opposed forces (Frocht, 1948). 



Fundamentals of Structural Geology 
Exercise: concepts from chapter 6 

October 31, 2012 © David D. Pollard and Raymond C. Fletcher 2005 5 

 

a) Write a MATLAB script to generate contour plots of the principal stress magnitudes 

and the maximum shear stress magnitude in the circular disk. Compare your plot 

of the maximum shear stress distribution to the photoelastic image in Figure 3. 

Frocht concluded from his experimental and theoretical results that, “Inspection 

of these curves shows the corroboration to be well-nigh perfect.” 

 

b) Using equations (6.97 – 6.99) describe what happens to the stress components near 

the point of application of the point forces according to the elastic theory. Indicate 

whether you think this state of stress can be realized in the photoelastic 

experiment. Suggest what happens near these points in the experiment 

considering both the nature of the implement used to apply the loads and the 

nature of the material making up the disc.   

 

c) Compare your plot of the maximum shear stress to the photoelastic images of 

model sand grains in Figure 6_frontispiece. Pick a couple of examples that are 

similar and a couple that are different and explain why. 

 

d) Use the distribution of principal stresses to deduce where tensile cracks might 

initiate in the disk and in what direction those cracks might propagate. Explain 

you reasoning. Point out a couple of examples of cracks within the sand grains of 

Figure 1 that are consistent with your deductions, and examples that are not. 

Suggest some reasons why cracks in the sand grains might not be consistent with 

your deduction from the elastic theory. 

 

7) The polar stress components given in equations (6.108 – 6.110) solve the two-

dimensional elastic boundary value problem of a pressurized cylindrical hole in a biaxial 

remote stress state. This solution was published by G. Kirsh in 1898 and has found many 

applications in structural geology and rock mechanics. Figure 4 shows the distribution of 

maximum shear stress induced by a remote uniaxial tension of unit magnitude. 

 
Figure 3. Contour map of maximum shear stress around a cylindrical hole with uniaxial 

remote tension. Note the stress concentrations and diminutions on the edge of the hole. 
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Here we use the Kirsh solution to address some practical problems related to wellbore 

stability and hydraulic fracturing. Consider a vertical cylindrical hole (the model 

wellbore) loaded by an internal pressure of magnitude P, and remote horizontal principal 

stresses of magnitude SH and Sh (Figure 6.33). 

 

a) Write a MATLAB script to calculate the polar stress components. Verify your script 

(at least in part…) by determining that the following boundary conditions are 

satisfied. A good way to accomplish this is to plot graphs similar to those in 

Figure 6.34a. Also, write down the remote boundary conditions for  = /2. 
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b) Write a MATLAB script to plot a graph, similar to Figure 6.34b.  Begin by plotting 

the polar stress components for the same boundary conditions used in part a) and 

describe their variation. Then use this script to determine what internal fluid 

pressure, P, is required to exactly nullify (reduce to zero) the compressive stress 

concentration in the circumferential stress component, , on the edge of the hole 

imposed by a remote lithostatic pressure PL, where  SH = Sh = PL. Plot the polar 

stress components for PL = 2 MPa and P = 1 MPa. Define the relationship 

between the fluid pressure and the lithostatic pressure that marks the transition 

from a compressive to a tensile stress, , at the wellbore. 

 

c) Predict where hydraulic fractures would initiate and where those fractures would 

propagate given the ratio of horizontal principal stresses, SH / Sh = 3 / 2. Use the 

same remote stress conditions to predict where borehole breakouts would occur. 

Draw a sketch of each prediction including the wellbore and the horizontal 

principal stresses. 

 

d) The average unit weight of rock at a particular drilling site is 2.5 x 10
4
 N/m

3
 and 

the unit weight of the fluid in the wellbore is 1.0 x 10
4
 N/m

3
. Calculate the 

circumferential stress at the wellbore at a depth of 1 km. Calculate the pressure 

that must be imposed at the wellhead to reach the transition state where the 

circumferential stress goes from compressive to tensile. Also calculate the 

wellhead pressure necessary to induce the hydraulic fracture at this depth. 

 

 


