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Problems

6.1 Derive that following alternative form of the Lippmann Schwinger equation

Eq.(6.7a)

U(r, ν) = U (in)(r, ν) +

∫
d3r′G+(r, r′)V (r′)U (in)(r′, ν)

where G+ is the full Green function of background with embedded scatterer.

We start with two defining equations for the (total) field and full Green

function

[∇2
r′ + k2

0 − V (r′)]U(r′, ν) = 0, [∇2
r′ + k2

0 − V (r′)]G+(r, r′) = δ(r− r′).

Applying standard Green function techniques we then obtain
∫

∂τ

dS′[U (in)(r′, ν)
∂

∂n′G+(r, r′)−G+(r, r′)
∂

∂n′U
(in)(r, ν)] = U(r, ν), r ∈ τ.

We now apply standard Green function techniques to the equation satisfied

by U (in)(r′, ν) and G+(r, r′) to obtain
∫

∂τ

dS′[U (in)(r′, ν)
∂

∂n′G+(r, r′) −G+(r, r′)
∂

∂n′U
(in)(r, ν)]

= U (in)(r, ν) +

∫

τ

d3r′G(r, r′)V (r′)U (in)(r′, ν), r ∈ τ.

Substituting our earlier result in the above equation and letting τ →∞ then

yields the alternative form of the LS equation.

6.2 Prove that the full outgoing wave Green function G+(r, r0) is a symmetric

function of its arguments.

This is proven in an identical manner as was done in the homogeneous

background case in Section 2.8.4. The only difference is that here we use the

fact that the Green function is outgoing at infinity to make the surface integral

vanish.

6.3 Use Theorem 6.2 to compute the scattering amplitude of a scattering potential

of the general form

V (r) =

M∑

m=1

Vm(r−Xm)
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in terms of the scattering amplitudes of the component potentials Vm(r).

According to the theorem each component scattering potential produces a

scattering amplitude given by

fm(s, s0; Xm) = e−ik0(s−s0)·Xmfm(s, s0; 0)

where fm(s, s0; 0) is the scattering amplitude for the potential centered at

the origin. Since scattering is a linear transformation from the incident to

scattered fields the overall scattering amplitude of the set of potentials is then

given by

f(s, s0) =

M∑

m=1

fm(s, s0; Xm) =

M∑

m=1

e−ik0(s−s0)·Xmfm(s, s0; 0)

An important special case of this is when the scattering potentials are all

identical. In this case the overall scattering potential is given by

f(s, s0) = f0(s, s0)

M∑

m=1

e−ik0(s−s0)·Xm

where f0 is the scattering amplitude of the single scattering potential centered

at the origin. The above special case occurs in X-ray crystallography and is

the basis for structure determination using X-ray scattering experiments.

6.4 Use the angular spectrum expansion of the scattered field given in Eq.(6.33)

and the angular spectrum expansion of the outgoing wave multipole fields

given in Eq.(3.49) of Chapter 3 to derive a multipole expansion of the scattered

field including expressions for the multipole moments in terms of the scattering

amplitude.

We can expand the scattering amplitude in spherical harmonics in the form

of Eq.(6.40b)

f(s, s0) =

∞∑

l=0

l∑

m=−l
fml (s0)Y

m
l (s), fml (s0) =< Y ml , f(s, s0) >Ωs

which, when used in Eq.(6.33) yields

U
(s)
+ (r, s0) =

∞∑

l=0

l∑

m=−l
fml (s0){

ik0

2π

∫ π

−π
dβ

∫

C±

dα sinαY ml (s)eik0s·r}

= il+1k0

∞∑

l=0

l∑

m=−l
fml (s0)h

+
l (k0r)Y

m
l (r̂)eik0s·r,

where we have used Eq.(3.49). On comparing the above multipole expansion

with Eq.(6.40a) we then obtain

qml = −ilfml (s0),

which is the required relationship between the multipole moments and the

expansion coefficients of the scattering amplitude.
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6.5 Use the scattering amplitude of a homogeneous sphere in the angular spectrum

expansion given in Section 6.5 to compute the multipole expansion of the

scattered field. You will need to make use of the angular spectrum expansions

of the multipole fields given in Section 3.4.2. Verify that the expansion you

obtained agrees with the one obtained in Section 6.3.

We showed in Section 6.5 that the scattered field admits the angular spec-

trum expansion

U
(s)
+ (r, s0) =

ik0

2π

∫ π

−π
dβ

∫

C±

dα sinα f(s, s0)e
ik0s·r

which, on using the scattering amplitude of a homogeneous sphere found in

Example 6.1 yields

U
(s)
+ (r, s0) =

ik0

2π

∫ π

−π
dβ

∫

C±

dα sinα

f(s,s0)︷ ︸︸ ︷

−4πi

k0

∞∑

l=0

l∑

m=−l
RlY

m
l (s)Y ml

∗(s0) e
ik0s·r

= 2

∞∑

l=0

l∑

m=−l
RlY

m
l

∗(s0)

∫ π

−π
dβ

∫

C±

dα sinαY ml (s)eik0s·r

The angular spectrum integral in the above equation was obtained in Sec-

tion 3.4.2 where it was shown to equal 2πilh+
l (k0r)Y

m
l (r̂). The above expres-

sion for the scattered field thus reduces to

U
(s)
+ (r, s0) = 4π

∞∑

l=0

l∑

m=−l
ilRlY

m
l

∗(s0)h
+
l (k0r)Y

m
l (r̂).

The easiest way to insure that the above result agrees with the result ob-

tained in Section 6.3 is to evaluate the scattering amplitude. If make use of the

asymptotic expansion of the spherical Hankel function given in Example 6.1

which then yields the desired result:

U
(s)
+ (rr, s0) ∼ 4π

∞∑

l=0

l∑

m=−l
ilRlY

m
l

∗(s0)

h+
l

(k0r)︷ ︸︸ ︷
(−i)l+1 e

ik0r

k0r
Y ml (r̂)

= −4πi

k0

∞∑

l=0

l∑

m=−l
ilRlY

m
l

∗(s0)Y
m
l (r̂)

eik0r

r

which is the expression for the scattering amplitude found in Section 6.3.

6.6 Use the scattering amplitude of a homogeneous cylinder in the 2D angular

spectrum expansion to compute the multipole expansion of the scattered field.

You will need to make use of the angular spectrum expansions of the 2D

multipole fields found in Problem 4.13 of Chapter 4. Verify that the expansion

you obtained agrees with the one obtained in Section 6.3.
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The 2D angular spectrum expansion of a general outgoing wave field is

found from Eq.(4.39b) of Section 4.6.3 to be of the form

U+(r, ω) =

√
k0

2π
eiπ/4

∫

C±

dαA(s, ω)eik0s·r

where A(s, ω) is the radiation pattern of the field U+. The scattered field from

a 2D scattering potential having scattering amplitude f(s, s0) is then obtained

by simply replacing A in the above equation by the scattering amplitude. For

a homogeneous cylinder the scattering amplitude is found from Example 6.2

to be

f(s, s0) =

√
2

πk0
e−i

π
4

∞∑

l=−∞
Rle

il(φ−φ0)

thus yielding the angular spectrum expansion

U+(r, ω) =
1

π

∞∑

l=−∞
Rl

∫

C±

dαeil(α−α0)eik0s·r.

The angular spectrum expansion of the 2D outgoing wave multipole fields

was found in Eq.(4.6) of the solution to Problem 4.13 of Chapter 4 to be

H+
l (k0r)e

ilφ =
(−i)l
π

∫

C±

dα eilαeik0s·r.

On making use of this result in the above angular spectrum expansion of the

scattered field we obtain

U+(r, ω) =

∞∑

l=−∞
ilRlH

+
l (k0r)e

il(φ−φ0)

where we have set α0 = φ0. Finally, we use the fact that (see Example 6.2)

bl(s0) = Rla0l = ilRle
−ilφ0 ,

so that the expansion reduces to that found in Section 6.3.

6.7 Express the multipole moments of the scattered field in terms of its boundary

value over a sphere that completely surrounds the scattering volume.

This was done in Section 4.8.2 for radiated fields and the same solution

applies here for a scattered field. Thus, following the procedure employed in

that section we express the scattered field over the surface of a sphere having

radius a in the multipole expansion

U
(s)
+ (r, ν)|r=a = −ik0

∞∑

l=0

l∑

m=−l
qml (ν)h+

l (k0a)Y
m
l (r̂)

from which we find that

qml (ν) =
i

k0

uml (ν)

h+
l (k0a)

,



63 Problems

where

uml (ν) =

∫
dΩU

(s)
+ (r, ν)|r=aY ml ∗(r̂).

6.8 Compute the 2D Born approximation of the scattering amplitude of a homo-

geneous scatterer with wavenumber k1 and having a radius a0 and centered at

X0. Verify that this scattering amplitude is in agreement with Theorems 6.4

and 6.5 but does not satisfy the optical theorem 6.6.

Within the Born approximation the 2D scattering amplitude of a potential

centered at X0 is given by

fX0 (s, s0) = −
√

1

8πk0
ei

π
4

∫
d2r V (r−X0)e

−ik0(s−s0)·r.

On making the change of variable r′ = r−X0 we then obtain

fX0 (s, s0) = −
√

1

8πk0
ei

π
4 e−ik0(s−s0)·X0

∫
d2r V (r)e−ik0(s−s0)·r,

where we have then replaced the dummy variable r′ in the integral by r.

We conclude from this that this scattering amplitude is in agreement with

Theorems 6.4 and 6.5.

For a homogeneous scatterer with wavenumber k1 and having a radius a0

the above integral becomes

∫
d2r V (r)e−ik0(s−s0)·r = V0

∫ a0

0

rdr

∫ 2π

0

dφ e−ik0|s−s0|r cosφ,

where V0 = k2
1 − k2

0 and we have aligned the x axis with s − s0 so that

(s− s0) · r = r cosφ. The integral over φ is 2πJ0(k0|s− s0]r) so that

∫ a0

0

rdr

∫ 2π

0

dφ e−ik0|s−s0|r cosφ = 2π

∫ a0

0

rdrJ0(k0|s− s0|r).

If we now make use of the recursion relationship

d

dx
[xJ1(x)] = xJ0(x)

and make a simple change of variable in the r.h.s. of the above equation we

obtain

2π

∫ a0

0

rdrJ0(k0|s− s0|r) = 2πa0
J1(k0|s− s0|a0)

k0|s− s0|

which then yields our final result

fX0 (s, s0) = −
√

π

2k0
ei

π
4 a0e

−ik0(s−s0)·X0
J1(k0|s− s0|a0)

k0|s− s0|
. (6.1)

6.9 Repeat problem 6.8 for the 3D case of a sphere of radius a0 centered at X0.
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This problem is done in a entirely parallel manner as employed in the pre-

ceding problem. In particular, within the Born approximation the 3D scatter-

ing amplitude of a potential centered at X0 is given by

fX0(s, s0) = − 1

4π

∫
d3r V (r−X0)e

−ik0(s−s0)·r,

which on making the change of variable r′ = r−X0 we then obtain

fX0(s, s0) = − 1

4π
e−ik0(s−s0)·X0

∫
d3r V (r)e−ik0(s−s0)·r

where we have then replaced the dummy variable r′ in the integral by r.

We conclude from this that this scattering amplitude is in agreement with

Theorems 6.4 and 6.5.

For a homogeneous scatterer with wavenumber k1 and having a radius a0

the above integral becomes
∫
d3r V (r)e−ik0(s−s0)·r = 2πV0

∫ a0

0

r2dr

∫ π

0

dθ e−ik0|s−s0|r cos θ

where V0 = k2
1 − k2

0 and we have aligned the z axis with s − s0 so that

(s− s0) · r = r cosφ. The integral over θ is 2j0(k0|s− s0|r) so that
∫ a0

0

r2dr

∫ π

0

dθ e−ik0|s−s0|r cosφ = 2

∫ a0

0

r2drj0(k0|s− s0|r).

If we now make use of the recursion relationship

d

dx
[x2j1(x)] = x2j0(x)

and make a simple change of variable in the r.h.s. of the above equation we

obtain

2

∫ a0

0

r2drj0(k0|s− s0|r) = 2a2
0

j1(k0|s− s0|a0)

k0|s− s0|
which then yields our final result

fX0 (s, s0) = −e−ik0(s−s0)·X0a2
0

j1(k0|s− s0|a0)

k0|s− s0|
. (6.2)

6.10 Compute the generalized scattering amplitude of a homogeneous sphere for

the case of an incident free multipole field jl(kr)Y
m
l (r̂) by using the technique

given in Section 6.5.

We found the plane wave expansion of the free multipole fields in Exam-

ple 3.4 to be

jl(kr)Y
m
l (r̂) =

(−i)l
4π

∫
dΩs Y

m
l (s)eiks·r,

Thus yielding the plane wave amplitude

A(s0, ν) =
(−i)l
4π

Y ml (s0).
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The plane wave scattering amplitude of a homogeneous sphere was found in

Example 6.1 to be

f(s, s0) = −4πi

k0

∞∑

l=0

l∑

m=−l
RlY

m
l (s)Y ml

∗(s0).

Thus, using Eq.(6.35b) we obtain

f(s, ν) =

∫

4π

dΩs0 A(s0, ν)f(s, s0)

=

∫

4π

dΩs0

A(s0,ν)︷ ︸︸ ︷
(−i)l
4π

Y ml (s0)

f(s,s0)︷ ︸︸ ︷

−4πi

k0

∞∑

l′=0

l′∑

m′=−l′
Rl′Y

m′

l′ (s)Y m
′

l′
∗
(s0)

=
(−i)(l+1)

k0
RlY

m
l (s).

6.11 Compute the field scattered from an infinite Dirichlet plane (a plane over

which the field vanishes) located at z = 0 due to an incident wave field radiated

by a source Q(r) located in the l.h.s. z < 0. Express your answer in terms of

the outgoing wave Green function G+(r− r′).

This problem was posed in terms of a radiation problem as Problem 2.14 in

Chapter 2. In that problem we computed the total field radiated by a source

located in the l.h.s. in the presence of a Dirichlet plane at z = 0 and obtained

the solution

U(r, ω) =

∫

τ0

d3r′GD(r, r′, ω)Q(r′, ω), z < 0,

where GD is the Dirichlet Green function that vanished at z = 0. The above

field is the radiated field throughout the half-space z < 0 that vanishes on the

boundary z = 0; i.e., is the solution to the radiation problem in the presence

of a perfectly conducting infinite plane located at z = 0. This field can be

interpreted as being the sum of the incident wave radiated by Q in infinite

free space and the scattered wave generated by the Dirichlet plane surface.

On setting

GD(r, r′) = G+(r− r′) −G+(r− r̃′), r′ = (x′, y′, z′), r̃′ = (x′, y′,−z′)

we obtain

U(r, ω) =

U (in)(r,ω)︷ ︸︸ ︷∫

τ0

d3r′G+(r− r′, ω)Q(r′, ω)

U (s)(r,ω)︷ ︸︸ ︷
−

∫

τ0

d3r′G+(r− r̃′, ω)Q(r′, ω), z < 0,

which is the required result.

6.12 Use the result obtained in the previous problem to derive the so-called “law-

of-reflection” which states that a plane wave incident from the left-half space

with unit propagation vector s0 onto an infinite plane Dirichlet surface located
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on the (x, y) plane will generate a reflected plane wave that propagates into

the left-half space with unit wave vector s̃0 = (s0x
, s0y

,−s0z
).

An incident plane wave to some region of space τ0 is generated by a delta

function source located asymptotically far from τ0. Thus we take the source

Q(r, ω) in the previous problem to be

Q(r, ω) = δ(r−R0),

with R0 = (x0, y0,−z0) located in the l.h.s. and z0 arbitrarily large. This then

generates an incident field given by

U (in)(r, ω) =

∫

τ0

d3r′G+(r−r′, ω)Q(r′, ω) = G+(r−R0, ω) = −e
ikR0

4π
e−ikR̂0·r.

This corresponds to an incident plane wave with amplitude − exp(ikR0)/4π

and unit propagation vector s0 = −R̂0 and s0z = ẑ · s0 > 0. The plane wave

thus propagates in the positive z direction.

6.13 Express the scattered (reflected) wave field found in Problem 6.11 in an an-

gular spectrum expansion and interpret your result in terms of the law of

reflection stated in the previous problem.

See Problem 4.10

6.14 Derive the Ricatti equation Eq.(6.72a) from the Helmholtz equation.

Using the representation of the field in terms of a complex phase given in

Eq.(6.71) we find that

∇U = ik0∇WU, ∇2U = ik0∇2WU+ik0∇W ·∇U = ik0∇2WU−k2
0∇W ·∇WU

from which we obtain

∇2U+k2
0n

2U = [ik0∇2W−k2
0∇W ·∇W+k2

0n
2]U = 0→ ik0∇2W−k2

0∇W ·∇W+k2
0n

2 = 0.

6.15 Derive the form of the Ricatti equation given in Eq.(6.75) from Eq.(6.72a).

This form of the equation is obtained by expressing the phase W in the

form

W (r, ν) = W0(r, ν)+ δW (r, ν)

where W0 is the phase of the field in free space and δW the perturbation in the

phase introduced by the presence of the scatterer. We now have to substitute

the above decomposition of the phase into the Ricatti equation to obtain

the form of this equation given in Eq.(6.75). On making this substitution we

obtain

ik0∇2W︷ ︸︸ ︷
ik0(∇2W0 +∇2δW )+

−k2
0∇W ·∇W︷ ︸︸ ︷

−k2
0(∇W0 +∇δW )2 +k2

0n
2 = 0

which simplifies to

−k2
0︷ ︸︸ ︷

ik0∇2W0 − k2
0(∇W0)

2 +ik0∇2δW − k2
0(∇δW )2 − 2k2

0∇W0 · ∇δW + k2
0n

2 = 0

ik0∇2δW − k2
0(∇δW )2 − 2k2

0∇W0 · ∇δW + k2
0(n

2 − 1) = 0
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6.16 Derive Eq.(6.83).

Here we start with the Rytov Ansatz given in Eq.(6.82)

ik0δWR(r; s0) = e−ik0s0·rF (r).

where the phase perturbation is assumed to satisfy the linearized Ricatti equa-

tion Eq.(6.78b). We have that

∇δWR = [−ik0s0F +∇F ]
e−ik0s0·r

ik0

∇2δWR = [−2s0 · ∇F +
1

ik0
∇2F + ik0F ]e−ik0s0·r.

Eq.(6.83) results from using the above two expressions in the linearlized Ri-

catti equation and simplifying the resulting equation.

6.17 Derive Eq.(6.85).

For plane wave incidence we have that

UR = eik0[s0·r+δWR] = eik0s0·reik0δWR = eik0s0·r
[
1 + ik0δWR +

1

2
(ik0δWR)2 + · · ·

]

∼ eik0s0·r + ik0e
ik0s0·rδWR = eik0s0·r + U

(s)
B (r; s0)

where we have made use of Eq.(6.84).


