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Lecture 5: Source detection and identification

· basic methods of detection and estimation theory, and application to the problem of the detection and identification of sources.  

· Classical statistical methods are emphasized

·  probabilistic and hierarchical matching of resources to the difficulty of the estimation and detection tasks.  

· use the least resources by taking maximum advantage of domain knowledge.

Introduction to detection and estimation theory

· Many problems in signal processing and communications consist of 

· detection of a signal in noise, or 

· identification of the category to which the signal belongs.  

· Must then estimate some parameters of the signal which form the basis of some hypothesis space.  

· In detection problems, there are two hypotheses:

H0: desired signal absent

H1: desired signal present

· In identification problems, there is generally a larger number of hypotheses among the various identification classes

· Includes possibility that no signal in a desired class is present.

· In estimation problems, objective is to estimate some parameter set of the signal, 

· E.g. phase of carrier wave in noise, or sampled channel impulse response.

Hypothesis Space

· from observed random process Z(t) a sequence of decision variables Z0, Z1,…,ZN-1 is extracted. 

· For detection and ID problems, choose one of M hypotheses H0,…,HM-1  

· each vector z=(z1,…,zN-1) is associated with a particular hypothesis Hi; the decision region for hypothesis i is the set of decision variables associated with this hypothesis.  

· there is no requirement for M>N or N>M.
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Hypothesis space

Hypothesis Selection Criteria

· Many criteria used to associate hypotheses with decision vectors, ranging from statistical measures to inference logic on human expert inputs.  

· choice of criteria depends upon the application and the domain knowledge.

· desirable to find a method that reduces the dimension of the hypothesis space 

· limits size of the search required to make a decision.  

· often accomplished by performing a transformation of the original observables (e.g., using a Fourier series) and then truncating the transformed sequence to a region of interest known to strongly distinguish among the alternative hypotheses (e.g., the first few harmonics).  

· Also need some type of simple measure (e.g., mean squared error) that indicates the reliability of the decisions among the hypotheses.  

· goal of the transformation is to make the decision process easier. 

· insight to know which transformation will lead to a reduced representation often comes from some physical heuristic.

Example: Digital Communications (as presented in EE 132A)

· Correlation receiver or equivalently matched filter front end enables signal space representation

· Signal vectors provide sufficient statistics for maximum likelihood decision

· Signal space=hypothesis space; problem is to identify which signal was sent

· Decision regions chosen to minimize error probability (the objective)

· Euclidean distance is the metric

· Modulations designed to maximize minimum Euclidean distance among signal points, subject to signal energy constraint
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Correlation Receiver
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Signal space representation of 4-QAM

· In communications, can design the signals so that they are easy to detect or identify

· In sensing, we can design the set of sensors to make the identification problem more tractable, but there is inherently more uncertainty

· Many different techniques are needed, not just maximum likelihood 

· We will explore some of the classic ones

Example: Image and Video Features

· Change

· Scene change (differences) provide huge cue

· Colors

· Often easier to distinguish

· Affected by light levels

· Partial obstructions; how large a connected area required?

· Lines and shapes

· Good edge-detection algorithms

· Edges often enough to identify objects

· Perspective

· Same object looks different from different directions

· Size changes

· Many different transforms required to get to these features

Acoustic Features

· Get a windowed time series

· Frequency domain—look for peaks, concentration of energy

· Filter bank—look for weighted combination of responses matching particular patterns

· Change detection in time domain—energy changes to trigger further processing

Detection of signals in additive noise

Detection Criteria

MAP and ML Criteria

· distinguish between two signals s0 (hypothesis H0 is that s0 is present) and s1 (H1 is that s1 is present).  

· maximum a posteriori (MAP) criterion: choose the signal for which the conditional probability is highest (given the observations).  

Choose H1 if P(s1|z) > P(s0|z), and H0 otherwise. 

· if z is the result of a signal being perturbed by noise, may know both the prior probabilities of the signals P(si) and the conditional probabilities P(z|si) (the latter can in some cases be simply related to the noise distribution).  

· Then more convenient to use Bayes’ theorem so that rule is
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· This can be rearranged as a likelihood ratio test (LRT):
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· LHS of inequality is the likelihood ratio, denoted (z).  

· decisions are made with respect to a threshold, in this case equal to the ratio of the prior probabilities of the signals.  

· when the signals are equally likely, the ratio becomes 1, and the test amounts to maximum likelihood (ML) detection. 

· the MAP and ML criteria can be extended to a multi-hypothesis situation by choosing the most likely of the M hypotheses, given the observations.

· ML detection is often used when the prior probabilities are unknown, since for high SNR gives similar decision probabilities to the MAP criterion.  

· At low SNRs the performance difference can be large.

Example: Binary choice in Gaussian noise

· signal voltage z can be zero (H0) or k (H1), each hypothesis with probability 1/2. 

· voltage measurement is perturbed by AWGN of variance 2.  

· Compute the decision threshold for the MAP criterion, and the error probabilities P(D1|H0) and P(D0|H1), where D1 means that H1 was decided, and D0 means H0 was decided.

Solution:  The situation is depicted below
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Binary choice in Gaussian noise

· The decision threshold  is chosen under the MAP criterion so that P(z|H1)=P(z|H0), 

· i.e., equal error probabilities result.  

· Due to the equal prior probabilities, this is also the ML threshold. 

· Should be k/2 due to the symmetry of the Gaussian distribution, with the error probability being the area of the tail past the threshold, namely
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· error probability determined by ratio of the voltage difference between the two hypotheses to the expected noise amplitude, and not the absolute voltage levels.

Neymen-Pearson Criterion

· MAP and ML criteria are not always the best ones to use

· Some probabilities may be unknown (e.g., prior probabilities for the signals are often unknown) 

· may be a bigger cost for accepting one decision compared to another (e.g., not taking precautions for a catastrophic event versus preparing based on indicators).

· E.g. detecting a target in noise (e.g., an aircraft using radar).  

· noise process is well-characterized, but the prior probabilities of the target being present or absent are unknown (and unknowable by any means). 

· assume that no cost can be assigned to the various outcomes. 

· Use the Neyman-Pearson (NP) criterion:

· Specify the probability of false alarm PF=P(decide present|absent) be set to some probability , and the probability of missed detection PM=P(decide absent|present) is minimized.  

· alternatively specify PM and then minimize PF.  

· Either (but not both) probability constraints can be satisfied using a threshold test to decide whether the target is present or absent.  

· Typically, solve an integral equation to determine the threshold.

Example: NP criterion for target in Gaussian noise

· same situation as previous example except that the prior probabilities are unknown.  

· Let k=5, =1, and PF=0.01.  

· What is the threshold that leads to minimization of PM, and what is PM?

Solution: 

· false alarm occurs when noise exceeds the threshold , and there is no signal present.  

· Make threshold as small as possible while meeting the false alarm constraint. Thus
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· from the Q-function table =1.28.  PM=Q((k-)/)=Q(3.72)=10-4.

Bayes Criterion 

· assign a cost function to the various outcomes

· cij is cost of deciding hypothesis i when j is true.  

· Di is a decision in favor of hypothesis i, and let P(Di|Hj) denote the probability that Di is decided given Hj is true. 

· objective is to minimize the average cost
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· cost function shifts the thresholds, and thus the decision boundaries in hypothesis space.  

· If the cost is 0 for accepting Di when Hi is true, and the cost is 1 otherwise, reduces to the MAP criterion.  

· Allows broader class of problems to be treated, including problems of maximization of revenue (revenue being a negative cost).  

· For a binary choice, the Bayes criterion like the NP criterion has the effect of changing the decision threshold.

Example: Binary choice in Gaussian noise with cost functions

· Return to binary choice example, where now the costs are c00=c11=0, but c01=10 and c10=1.  Let k=5 and =1.  

· Compute the threshold value that minimizes the average cost.

Solution: 

· the prior probabilities are equal so that the cost is .5(Q()+10Q(5-)).  That is
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· To solve, differentiate with respect to  and set the result equal to zero.  

· Alternatively, observe the minimum will occur with  just a little bit less than the optimal value without cost, due to exponential dependence of the Q function with its argument.  

· =2.5, 2.0, and 1.5 result in average costs of 0.034, .0179, and .0346 respectively; so =2 is close to the optimum.

Decision Trees

· For communications problems, the signals to be detected are precisely known.

· not usually the case in detecting signals from the natural world, for which knowledge will be statistical. 

· a filter bank where each filter is matched to some feature to extract (e.g., a band of frequencies) is useful in many problems.  

· With greater knowledge of the signal, the fewer noise dimensions must be admitted for each filter; with less knowledge, the more the design is a compromise (and thus providing less distinguishability between signals).  

· classic signal identification structure is to construct a tree of filters

· the first admits several signal classes

· successive refinement to more narrow signal classes the deeper one goes into the tree, possibly with intermediate decision making.

· Decision trees may also be used with mixed processing at various stages, using orthogonal transformations other than the Fourier transform or a signal space description.  Transforms include 

· Wavelet transform (a mixed time-space domain transformation which preserves certain temporal features)

· discrete cosine transform (used mainly for images) 

· differentiation (to capture change in an image or data sequence). 

· basic decision strategy remains to maximize the distinguishability of the signals in the transform domain, even as the number of dimensions is made as small as possible.  

· Observing how likelihood functions behave as the number of dimensions is decreased is a good indicator of suitability of the transform

Data Fusion

· Likelihood functions are the means of linking information from multiple sensors or signal processing modes in making a decision.  

· data fusion: information is combined from sensors of the same or different types to come to a decision.  

· Two main categories are coherent and noncoherent combining

Coherent Combining: 

· the phase relations of the signals to be combined are known, so that a weighted sum of the amplitudes can be constructed.  

· these signals are represented as complex signals at baseband, i.e.,  the carrier frequency is removed.  

· Phase information is captured via the relative values of the real and imaginary components.  

· Weights are also complex numbers.  

· common type of problem represents the channels between the source(s) and the receivers by complex impulse responses, with additive white Gaussian noise. 

· maximum likelihood reception achieved by solving a least squares problem, that deals jointly with the various channel impulse response and the combining operation.

Maximal Ratio Combining

· for a single source and channels that only multiply by a single complex coefficient, the ML solution is achieved by maximal ratio (MR) combining.  

· multiplicative coefficient for channel k is 
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· noise added is wk.  

· noise variance is the same for each channel, and noise is independent from one channel to another. 

· received signals xk are then combined to form the decision variable 
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· s is the signal.  

· signals add up in phase with this choice of ck, with more weight given to signals that were transmitted over channels with high gain.  

· generalize to unequal noise variance in the various channels by adjusting the weighting so that SNRs follow the same ratio as in the above maximal ratio combining formula. 

Example: Coherent detection of pulse in Gaussian noise

· source emits a pulse s(t) over (0,T), with energy E=4.  

· (real) propagation coefficient is known for each of the four detectors.  (This is equivalent to knowing and compensating for the phase in the case of complex coefficients). 

· coefficients are 0.1, 0.5, 0.9, and 0.01. 

· AWGN with psd N0/2=0.2 added to signal received at each detector.  

· What is the ML detection strategy? 

Solution:  

· Each detector should use a correlation or matched filter receiver to produce the sufficient statistic. 

· then weight according to maximal ratio combining to form the final statistic.  

· decision threshold is chosen at half the expected value since ML detection is assumed; otherwise the threshold can be adjusted to meet the needs of other criteria.  

· energies of the noise-free correlation receiver outputs are respectively .4, 2, 3.6, and .04, when signals are present. 

· noise variance at each output is (assuming use of energy-normalized basis function) 0.2.  

· combined signals plus noise are weighted by 0.1, 0.5, 0.9, and 0.01. 

· signals and noise are uncorrelated, this results in a composite noise variance of 1.51x0.2=0.30, and the signal component of the decision variable being 4.28.  

· Assuming signal presence or absence is equally likely, the decision threshold is 2.14, and the error probability is Q(5.53)=2x10-8.

Non-coherent Combining

· Sometimes it is not possible to estimate the phases, or the sensors whose outputs are to be combined may be of different types.  

· fusion consists of a weighted combination of likelihood functions (or approximations of likelihood functions). 

· Suppose the M possible decisions for a sensor are each assigned a probability.  

· these likelihoods may be summed over all sensors, and the outcome with the largest total chosen as the decision (Bayes optimal fusion)

· Sensors which observe the signals with poor SNR will assign probabilities to the various outcomes that are close to one another and will not contribute large weighting to the final decision.  

· if each sensor makes a hard decision, then combining consists of simply majority voting among the sensors (for a detection problem) or plurality voting if there are multiple possible outcomes.  

· leads to considerable loss in performance but requires very little information to be sent to the fusion center.  

· appropriate strategy when the individual sensors can make only poor estimates of the channels.  

· hybrid strategies are also possible 

· Defective sensors can be identified by how often their decisions are different from that of the majority of their neighbors, with reduced weight assigned in subsequent decisions.

Example: Noncoherent combining

· Consider prior example, but now assume that phases cannot be estimated.  

· Each sensor receives different signal energy.  

· mathematical expressions for the likelihoods are complicated, and determination of the optimal weights for combination will be quite difficult.  

· approximation is to weight the li’s from each sensor according to the square roots of the respective SNR’s, and then sum them.  

· threshold is then 1/4 of the weighted sum of their energies (by analogy to a single source being noncoherently detected). 

· At high SNR, very similar to maximal ratio combining.

Example: Selection, maximal ratio, and majority logic combining

· selection diversity: the best sensor is chosen (i.e., with highest SNR, often the closest to the source).  

· majority logic combining or majority voting: a group of sensors in the vicinity of the source are selected, with the decision resting on the votes of the sensors. 

· Suppose three sensors are at distances of a, 1.5a and 2a from source, in a medium with propagation losses obeying a square law.  

· signal power is S and the noise variance is 2, where S/a22=4.  

· Compute detection probabilities using optimal thresholds with three different fusion strategies: selection diversity, maximal ratio (MR) combining, and majority logic.

Solution:

· Selection diversity achieves SNR S/a22=4, by picking the closest sensor.  

· by far the simplest fusion strategy: weight the best sensor output by 1 and the rest by 0.  

· For a binary hypothesis of this type, probability of detection error is Q(
[image: image13.wmf])=Q(1.4)=0.08.

· MR combining achieves SNR= 1.69S/a22  and thus P(e)=.033 as follows. 

· weights are the amplitude losses 1/a, 1/1.5a, 1/2a 

· signal power=(1+1/2.25+1/4)2 S/a2 =(1.69)2S/a2 

· noise power =(1+1/2.25+1/4)2 =1.692 

· For majority voting, compute the individual sensor error probabilities as p1=Q(2), p2=Q(1.4), p3=Q(1). 

· detection mistake is made if all three or two of three are in error, ie.,

p1 p2 p3+ (1-p1 )p2 p3+ p1 (1-p2 )p3+ p1 p2 (1-p3 ).  Grinding this, P(e)=0.067.

Estimation of signals in additive noise

Estimation Criteria

· detection and identification problems: the objective is to distinguish among some finite number of possibilities, making best decisions in presence of uncertainty and any prior knowledge, or notions of cost of decisions.  

·  decision process often make use of particular parameters of the signals.  

· estimation problems: objective is make decisions on the values of parameters themselves, also using whatever prior knowledge is available, or notions of cost of particular decisions.

· basic problem set up below

· parameters a reside in parameter space.  

· noise process is characterized by P(z|a), where z represents the observables.  

· From the observables, the decision is made using an estimation rule
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Estimation problems

· estimation error e=a-
[image: image16.wmf].  

· Bayes estimation problems: a cost function is assigned to the errors, with goal to minimize the average cost. 

· if C(a,
[image: image17.wmf]) is the cost of accepting 
[image: image18.wmf] for a, then in a Bayes estimation problem C(a, 
[image: image19.wmf])=C(e).  

· most popular cost function for estimation problems is the squared error, (a-
[image: image20.wmf])2, and its vector analog, the squared Euclidean norm:
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· Bayes estimation problem becomes minimization of the mean squared error (mse) between the estimate and the parameter sets.  

· for continuous random variables we minimize the expected cost
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· But since z is what is actually observed, sufficient to minimize
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· usually Bayes’ rule will be invoked to deal with f(z|a) instead.  

· results in wide variety of least squares optimization problems.

· MAP estimate is to maximize f(a|z) over all a 

· The value of a leading to the maximum is selected to be 
[image: image24.wmf].  In this case, 
[image: image25.wmf]=E[a|z].  

· If the parameter values are equally likely (uniformly distributed), the ML estimate is obtained as
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· That is, the estimate is obtained at the maximum of the log of the conditional probability.  

· fairly easily evaluated when a parameter is embedded in Gaussian noise.

Example: Signal to noise ratio

· often useful to have an estimate of the signal to noise ratio, based upon the measurements of signals within noise.  

· requires estimates of both the signal and noise power, where both the signal and noise are random.  

· Suppose the signal consists of a sequence of real pulses drawn according to the Gaussian distribution N(0,s), with the noise samples drawn from a N(0,n) distribution. 

· Successive noise and signal samples are statistically independent. 

· Devise a procedure that leads to a ML estimate of the SNR.

Solution: 

· unknown parameters are the signal and noise variances, which are not random even though the observables are.  

· Let the observed samples be denoted by xi=si+ni.  

· Assuming that the receiver can synchronize with the source, compute
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· where sgn(si) is the sign (+/-) of signal si.  

· For high SNR, the result is similar if instead the argument of the second sum is |xi|. 

· In the first sum, the signals combine noncoherently so that the expected variance is k(s2+n2) 

· In the second sum, the signals will add coherently while the noise terms will add noncoherently so that the variance is k(ks2+n2). 

· now two equations in the two unknowns. 

· Solving, s2=(Yk-Zk)/(k2-k), and then n2=Zk/k-s2.  

· SNR estimate iss2/n2.  

· the estimates are noisy: all that is guaranteed is that the expected values of the terms are equal to the mean.  

· variance of the estimate of the SNR can be very large when k is small.

Example: Power of pulse sequence in Gaussian noise

· This example is similar to the preceding one, except that now explicit consideration needs to be given to the receiver.  

· Should follow this procedure for acoustic tracking of the hiding and seeking “robots”

· A sequence of pulses si(t)=aig(t) each of duration T seconds is sent, where the variables ai are drawn according to the N(0,s) distribution.  

· Determine the signal power in the presence of noise.

Solution: 

· Employ a matched filter receiver for the signal g(t), with the observables being the outputs

· Note: matched filter is time reversed version of signal of interest

· May alternatively use correlation receiver  

· Then follow the procedure outlined in prior example.  

· Alternatively, at high SNR, the noise variance can be neglected and all that is required is the average of the matched filter samples at lT, l an integer.  

· This procedure can also be used to estimate channel propagation losses, if the transmitted signal power is known.

Least Squares Estimation

· popularity of MSE criterion for parameter estimation due not only on the natural relation to problems with Gaussian noise.  

· Whenever the conditional distribution is symmetric about the peak and monotonically decreasing about that peak the optimal estimator will give the same outcomes as an estimator designed for Gaussian noise.  

· cost functions that have the same symmetry and monotonicity as the mse (e.g., absolute value) also lead to the same solutions, if the parameters are uniformly distributed.  

· even if they are not, the deviation from the optimal estimate is often small at high signal to noise ratios. 

· These properties allow considerable scope for modeling  a problem to ensure tractability, and also provides estimators with robustness with respect to modeling errors.

· MSE criterion also leads to least squares problems, for which there are efficient solution methods from linear algebra.  

· We will however skip them in this iteration of the course.

Cramer Rao Bound

· how well a parameter can be estimated given a set of N observations and a given level of noise?  

· Bounds on the variance of the estimate can be used to 

· compare estimation techniques

· provide guidance on overall system design

· e.g. the required lengths of training sequences or if it is possible to estimate a parameter to desired accuracy in time available. 

· most prominent such result is the Cramer-Rao bound.  

· For a deterministic parameter in noise the form of the bound is
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· If an estimator meets this bound with no bias (misadjustment in the mean) it is known as an efficient estimator.  

· The corresponding bound for a random parameter is
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· when f(|z) is a Gaussian, the ML, MAP and MMSE estimators yield the same estimate and are efficient.  

· The CR bound amounts to a fundamental limit on the quality of estimates that can be obtained

· regardless of the complexity of the estimator, one can never do better.

Example: CR Bound for parameter in Gaussian noise

· For a deterministic parameter S perturbed by zero mean Gaussian noise with variance 2, the CR bound is
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· where N is the number of independent observations.  

· variance in the estimate declines linearly with the number of independent observations.  

· relative error s2/S declines linearly with the signal to noise ratio S/2.

· parameters can be estimated more quickly at high SNR.  

· If channels are changing quickly or the SNR is low, difficult to obtain good estimates, 

· can limit the types of communication or detection system choices available and thus overall system performance.

Data Fusion for Multiple Sensing Modes

· Can be unclear how the data should be fused.  

· E.g. audio and video signals can both give information on the location of a moving object, but the signal processing involved is very different (e.g., coherent beamforming for the audio signal, change detection in combination with geometric optics for the video signals).  

· Here derive a data fusion rule that is optimal according to the Bayes criterion when prior probabilities are known

· 
[image: image31.wmf]is a set of observations {z(1), z(2),  … z(r)} to time r.  

· recursive form of the Bayes (MAP) estimator is
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· needs only the most recent observations to be stored while computing posterior probability.  

· Suppose such calculations are carried out at multiple sensors; 

· question for data fusion is how to weight the results so that the final result is the overall posterior probability.  

· can be accomplished using the likelihood opinion pool estimator, shown below, which implements the recursive fusion equation,
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· where  is a normalizing constant.  Taking logarithms and then expectations on both sides, one obtains
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(5.62)

· interpreted as posterior information is equal to the prior information plus the observation information. 

· maximization of the posterior probability will also maximize the mutual information.
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Likelihood opinion pool

· If the prior probabilities are known, this provides clear fusion rule.  

· Any processing procedure that results in computation of the posterior probabilities will allow optimal combining 

· data may be fused from vastly different sensors.  

· in practice the prior probabilities may not be known, it may be unclear how to actually compute the posterior distributions for any given class of sensors, or it may be computationally too difficult.  

· approximations to the above procedure can be considered.

· Bayes techniques such as this one similarly apply to dealing with higher level questions of strategy

· Assign costs to different outcomes

· Fuse information according to MAP rule

· Compute expected costs of different decisions

· Where probabilities not precisely known, insert some guesses

· As information degrades, procedure devolves towards majority voting

· Choose the decision with least cost

Hierarchical detection and identification systems

· which sensors participate in fusing information, and at what level (coherent combining, weighted probabilities, voting).  

· issues include

·  delay

· energy

· bandwidth

· scaling to be considered in the formation of subnetworks to actually perform the fusion.  

· E.g. in a small network where each node has a reliable power supply, best thing to do is clearly to send all data to a fusion center, where coherent combining will be performed.  

· as the number of nodes increases leads to network congestion.  

· if finite energy reserves, the value of transmission of raw data over distance for better accuracy in a small number of decisions must be weighed against the ability to make less accurate decisions in a much larger number of cases through 

· imitation of the number of nodes involved in performing coherent combining or 

· lower resolution noncoherent fusion methods (also with limited numbers of nodes participating.) 

· There are thus several design issues to weigh: 

· how to select the nodes to participate in a detection decision

· how to select the fusion center 

· what fusion strategy or sequence of strategies will be employed.  

· Resolution of such questions is dealt with through optimization of a cost function, which balances detection/identification probability against the resource constraints. 

· must usually employ heuristics concerning the signals of interest and the resource costs to make much progress. 

· divides the problems into classes for which efficient algorithms can be devised

· designer is then presented with the meta-problem of knowing in advance what problem class the system will work for, or devising a higher-level algorithm that can identify the problem class and thus apply the appropriate fusion strategy.  

· Here we assume bandwidth and energy are finite, and the number of nodes is large.  

· two basic situations 

· the signal is received  at high SNR by a small number of sensors

· is received by a very large number of sensors.  These situations then both divide into problems of detecting and identifying one or multiple signals.  In this section, a hierarchical approach will be taken to solving each of these problems.

Benefits of Signal Attenuation

· signal attenuation provides a degree of spatial isolation

· sensors that are far enough apart will receive information about disjoint sets of sources. 

· if the variation in the distances from the source to the sensors is large compared to the average distance the SNRs at the sensors will display large variations 

· small subset of the sensors will contribute most of the information to any detection or identification decision.  

· if a source is strong but distant, then all sensors will detect it with similar SNR and may potentially usefully contribute to the decision. 
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Local and distant sources

Example: Signal strength variations

· Propagation losses follow the second power of distance.  

· What is the ratio of the maximum to minimum received power among the four nodes for sources at the various positions

· how might this ratio be used to distinguish whether a target is near or far?
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 Signal locations

Solution: 

· For position 1, clearly the ratio is 1.  

· For position 2, the ratio is (5/4)/(1/4)=5

· for position 3 it is (17/4)/(5/4)=17/5 

· for position 4 it is 36.25/25.25.  

· as the source gets further away the ratio will tend towards 1.  

· While close-in signals will display larger variations in strength among the four sensors, a source in position 1 is equidistant from all of them.  

· To distinguish this case from more distant but powerful sources, a second ring of sensor nodes could be queried, or the time series analyzed if the source is in motion.

Multi-layered detection

· given a resource constraint such as energy or bandwidth is to achieve the desired detection or identification probability constraints with the minimum number of active nodes.  

· Prior probabilities are seldom known in sensor network problems, resulting in missed detection and false alarm probability constraints.  

· Multi-layered detection is a natural approach to such problems 

· E.g. sensors for detection and identification problems in which there is an energy constraint. 

· sensor itself may consume no energy, and the A/D conversion and amplification circuitry will be low power due to low clock rates.  

· Energy consumed mainly in radio communications with other nodes and if sophisticated local signal processing is employed.  

· average energy consumption at each node can be minimized while meeting missed detection and false alarm probability constraints by pursuing a hierarchical processing approach, depicted below 
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Signal processing hierarchy

· At the bottom of the signal processing hierarchy is detection of events based on received energy.  

· simple test that uses little energy; operates all the time. 

· most of the time there are no sources of interest, the average power consumption will be close to that of this operation. 

· threshold is set so as to guarantee the missed detection probability.  

· The next level of processing is some form of feature extraction (e.g., in the frequency or wavelet domains) to determine whether the detected signal is of the desired type.  

· If confidence level in identification decision is high enough, nearby nodes may be alerted to suppress reporting (as this node has made a good enough decision) and the decision is communicated through the network.  

· Alternatively, if the location of the source is to be determined, or the confidence level is not high enough, neighboring nodes are alerted to begin some cooperative signal processing.  

· first level of this cooperation can be noncoherent combining among a local cluster: sharing of likelihood values (for data fusion) or signal strengths (for coarse position location). 

· exchange of relatively short messages.  

· this level of cooperation demands an algorithm for creating the cluster and organizing the sequence of messages, as well as a protocol for queuing the data and decisions at each node.  

· If the results are satisfactory, the final decision is sent out, otherwise, the nodes may engage in coherent combining which requires sending raw data to one node.  This requires orders of magnitude more message traffic.  

· decision may be ambiguous so raw data may go to a remote location for final processing.  

· Usual approach to remote sensing data; guarantees best identification probability.  

· not scalable (due to bandwidth) and leads to short network lifetimes (if run off batteries).  

· With the hierarchical approach, identification performance of most expensive strategy can be obtained when needed, at bandwidth and energy costs similar to the least expensive strategy of energy detection.  

· Requires an integrated suite of networking, signal processing, and database management algorithms together with local signal processing and storage resources.

Example: SNR-based network cooperation

· source in additive white Gaussian noise

· the likelihood function grows with the SNR.  

· Maximum likelihood data fusion done by maximal ratio combining.  

· combined signals effectively produce an aggregate SNR higher than for individual sensors.  

· Algorithm:

· Nodes determine the received signal strength.  

· Nodes with very high SNR quickly communicate to their neighbors that they have made a decision, and route decision back to end user.  

· The lower the SNR, the more time a node waits, in case a message from a higher-SNR node should arrive.  

· avoids congestion, and wasted messages.  

· Nodes whose SNR is below that needed for a making their own decision with certainty issue an inquiry to their neighbors for help.  

· These nodes respond with a delay that reflects their own SNR.  

· In the example depicted below

· the nearest neighbors (b and d) had insufficient SNR for the fused decision to be reliable enough, and a second inquiry is sent, to nodes that are further away.  

· Node e has insufficient SNR to respond, but node c does. 

· decision variable is transmitted back to node a via node b and the decision is made

· lower SNR decision variables can be described with fewer bits of resolution, so protocol enables variable resolution messages.
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A data fusion algorithm

· Not optimal; not necessarily best fusion center

· However, can often get effective algorithms from simple heuristics

· Goal is often to be “good enough”

Modular Design

· processing hierarchies fit a modular software construction approach. 

· processing, communications, and cooperation stages can be included or not according to the capabilities of the platforms or the application.  

· Higher functions of the stack (e.g., for networking) can be re-used among a variety of sensing modes.  

· hierarchy naturally accommodates heterogeneous networks in which some nodes possess greater capabilities than others, whether for 

· processing 

· long-range communications

· ability to serve as gateways to the Internet. 

Domain Knowledge

· desirable for sensor networks to be able to adapt to local conditions, the less adaptation required the better in terms of the cost, size, and power consumption of the nodes.  

· custom design integrated circuit is roughly 1000-10,000 times more power-efficient than a general  purpose processor

· requires exact foreknowledge of the algorithms to be implemented.  

· The adaptations will typically include a limited parameter set and some type of least squares algorithm such as LMS or variants of LMS such as back-propagation in neural networks.  

· Higher-level adaptations will typically need to reside in software (or human wetware), and require large quantities of data (and thus also communications).  

· the more knowledge of the application, the less communications and signal processing cost, since the processing/communications hierarchy can be closely matched to the physical phenomenon, with specialized processors.  

· the first time phenomena are investigated on large scales, platforms should have large processing, storage, and communications capability to enable a variety of algorithms to be tested for their effectiveness.  

· design time in terms of hardware and software debugging is greatly eased if larger resources are at hand. 

Adaptive Node Density

· required node density depends on 

· signal propagation conditions 

· SNR requirements for a reliable decision.  

· with higher node densities, SNR improves, due to 

· lower distance losses 

· reduced chances of intervening obstructions.  

· Problems:

· node laydown and topography may both be random

· sources can vary in signal strength so that may have to plan for worst case. 

· undesirable for all nodes to be active in less difficult detection situations, since they will unnecessarily consume energy. 

· May trade network lifetime, against sensor resolution 

· In all adaptive fidelity problems, aim is to meet the performance requirements by having the minimum number of nodes active.  

· accomplished through consideration of the likelihood functions

· for Gaussian detection problems, SNR is thus a good heuristic.

Example: Density, coverage, and propagation laws

· Is it better to have N sensors at one location or spread them out over some region of interest

· Objective: likelihood of detecting signal sources at acceptable SNR. 

· having the sensors in a single system eases coordination costs (e.g., synchronism, sharing of coherent data). 

· Cost: the sensors are further from targets and have increased probability of obstruction.  Propagation laws play a critical role in determining whether centralized arrays of sensors are even feasible.

· network of digital cameras to cover a region X.  Assuming a network can be deployed at a constant number of pixels per unit area, is there a difference in coverage for distributed or centralized networks?

· Solution: Each camera has angular field of view, ; signal intensity drops as the second power of distance.  

· Doubling number of pixels doubles area that can be viewed with a given camera with same resolution.  

· whether pixels are distributed or concentrated in one camera the same coverage area results, assuming there are no obstructions. 

· As having pixels co-located eliminates communication costs, this would be preferred in non-obstructed environments.  

· If there are barriers prefer distributed system

· Now consider a network of acoustic sensors to cover a region X, with a constant density of microphones per unit area.  Would centralized or distributed networks be favored?

· Solution: acoustic signals decay with second power of distance, and so a directional array provides coverage similar to network of microphones.  

· atmospheric attenuation is variable with frequency, wind, refractions due to turbulence, and multipath propagation.  

· data collected at a distance will be different in character from that collected close to a source. 

· So which approach is favored depends on the application.

· Repeat for a radar array.

· Solution: For radar or any other phenomenon in which the propagation loss exceeds second power with distance, distributed network will achieve either better SNR or increased coverage.

Example: Multiple cameras with obstructions

· One or more cameras with a 180 degree field of view (e.g., from panning a camera with lesser field of view) are emplaced on the periphery of a square region which contains small obstructions, shown below. 

· Which pairs of camera positions are more desirable?


[image: image40.wmf]
 Shadow regions and their overlap

Solution: 

· Clearly the regions of shadow overlap become small when the two cameras are oriented at 90 degrees to each other, 

· either (1,3) or (2,3) are good choices

· (1,2) have a substantial region of mutual shadowing. 

· situation is analogous to fading: 

· obstruction creates a catastrophic fade in SNR (to zero in this case) 

· camera diversity in orthogonal look angles almost completely overcomes the effect as the mutual shadowing region is very small.  

· Hence two cameras placed with orthogonal fields of view are much more robust to random obstructions.

· Now suppose there are two random obstructions.  

· Can two cameras enable small mutual shadowing region?

· Solution:  This situation is depicted below  

· Some object locations such that one object shadows camera 1 while the other shadows camera 2 over some substantial region, shaded here with horizontal lines.  

· more cameras than obstructions are required in general to be able to have line of sight guaranteed for nearly all of the scene.  

· placing one camera on each of the four edges there will be excellent coverage for random placements of large numbers of small obstructions.
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Shadow regions for two objects
· sensor diversity good means in general to achieve robustness

· can be multiple sensing modes

· high-density network of sensor nodes also useful for dealing with multiple signal sources.  

· in principle M sensors can separate up to M-1 independent targets, but the signal processing cost can be enormous 

· due to noise, correlation of sources, and propagation issues the separation is always less than perfect.  

· A spread-out distributed system has decreased likelihood of many sources being in range of any given sensor, allowing natural propagation losses to separate targets with less signal processing effort.

Construction of Models

· model of the interaction of the physical source with the sensor network.  

· Begin with physical principles, a simulation is constructed and a variety of algorithms are tested.  

· Lessons learned from this phase lead to construction of experiments to collect a large enough reference data set to compare algorithms.  

· Refinements to the model may be needed, which in turn may necessitate collection of a new data set that includes a sufficient number of environmental factors.  

· Every experiment will only answer certain questions

· a sequence of experiments will typically be required over course of sensor network development to produce an efficient and robust design.  
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