
Figure 1.1 The Trans-Alaska Pipeline starts at Pump Station 1 in Prudhoe 
Bay. [Figure from www.clui.org/ludb/site/alaska-pipeline-
origin.]

Figure 2.1 Trajectory of a Brownian Particle.



Figure 2.2 In the time interval from t to t + ∆t, probability flows out 
of the interval [x1, x2] (note that the flux J(t, x1) is negative). Figure 2.3 Gaussian solution of the diffusion equation (2.1) with 

drift A = 0 and diffusion coefficient D = 1 for t = 1 (continuous 
line), t = 4 (dashed line), and t = 9 (dotted line); the initial 
condition at t = 0 is assumed to be a ∂ function or a Gaussian of 
zero width located at the origin.



Figure 2.4 Solution of the diffusion equation (2.1) with drift A 
= 0 and diffusion coefficient D = 1 for t = 0 (continuous line), 
t = 0:02 (dashed line), and t = 0:2 (dotted line); the initial 
condition at t = 0 is chosen as a rectangular probability 
density.

Figure 3.1 Solution of the diffusion equation (2.1) with drift A = 0 and
diffusion coefficient D = 1 for t = 0:02 obtained from Brownian 
dynamics simulations (error bar symbols). For comparison, the exact 
solution is included (continuous line), and the result is a smeared 
version of the rectangular initial probability density.



Figure 3.2 Solution of the diffusion equation (2.1) with drift A = -1 nd
diffusion coefficient D = 1 for t = 0:3 obtained from Brownian 
dynamics simulations (error bar symbols). For comparison, the 
solution (3.19) is included (continuous line) where the particles start 
at x = 1 for t = 0. Figure 4.1 Emmy Noether, 1882-1935.



Figure 4.2 Illustration of the relevance of the Clapeyron equation. Figure 4.3 Gibbs free energy G for a system with chemical reaction as a
function of extent of reaction  .  . At equilibrium, G is minimized at eq.



Figure 5.1 Arbitrary volume, fixed in space, over which 
mass, momentum, and energy balances are made.

Figure 5.2 Streamline for a two-dimensional flow in the 1-2 plane 
showing unit tangent vector t at position r. Also shown is a second 
streamline connected to the first one by a dashed line at arbitrary 
positions.



Figure 5.3 Element of surface dA across which a force dA is 
transmitted.

Figure 5.4 James Clerk Maxwell, 1831-1879.



Figure 6.1 A global nonequilibrium system with local 
equilibrium subsystems 1 and 2.

Figure 6.2 Lars Onsager, 1903-1976.



Figure 7.1 Schematic of Couette flow geometry with 
sample having viscosity      between stationary inner 
cylinder and outer cylinder rotating with angular 
velocity . Figure 7.2 Evolution of velocity field for Couette flow of a Newtonian fluid in an annulus 

with  = 0:5 given by (7.12) for = 0:003, 0:01, 0:03; 0:1,      0:3 (bottom to top).



Figure 7.3 Steady-state pseudo-pressure contours for Couette
flow of a Newtonian fluid in an annulus given by (7.14) with  = 0:5 and

= 1.

Figure 7.4 Schematic of transient hot-wire (THW) experiment with 
wire of radius R that uniformly generates energy at a rate per unit 
length of surrounded by a sample with thermal conductivity .



Figure 7.5 Evolution of the temperature field for THW experiment given by 
(7.24) for = 1, 3, 10, 30, 100 (bottom to top).

Figure 7.6 Temperature rise of wire in THW technique given by 
(7.25). Dashed curves at small and large times indicate non-
idealities associated with finite heat capacity of the wire and the 
finite sample radius.



Figure 7.7 Schematic of sorption experiment with sample having mass diffusivity
in contact with a gas that maintains the concentration             at the surface

.
Figure 7.8 Evolution of concentration prole in sorption experiment 
given by (7.43) for = 0:01; 0:03; 0:1; 0:3; 1:0 (bottom to top).



Figure 7.9 Normalized mass uptake in sorption experiment given by (7.44).
The slope of the line for                       0.5 is              .

Figure 7.10 Schematic showing flow of a liquid (light shaded region) that
partially fills the annular region between horizontal concentric cylinders.



(Above) Figure 8.1 Flow in a tube showing cylindrical fluid element.

(Left) Figure 8.2 Experimental pressure drop data for gas flows in microchannels
with height 2H and width B normalized by pressure drop for incompressible
flow versus normalized isothermal compressibility. Different symbols
correspond to different gases: N2 , He      , Ar , Air (see Venerus &
Bugajsky, Phys. Fluids 22 (2010) 046101). The dashed line is the incompressible
case (see Exercise 8.2) and the solid curve is given by (8.36), which
is based on the lubrication approximation.



(Above) Figure 8.3 Schematic of flow in a tube of radius R and length L. Note that
2V is the maximum velocity only for incompressible flow.

(Left) Figure 8.4 Axial velocity profile for compressible flow in a tube from
(8.28) for 80 and = 1/8 or = 1/4 (solid lines) for =
0, 0:5, 1 (bottom to top). The dashed line is for the incompressible case,        = 0.



Figure 8.5 Pressure profile for compressible flow in a
tube from (8.29) for  80 and = 0 (bottom curve) and = 1/8 (top 
curve). The dashed line is for the incompressible case,  = 0.

Figure 8.6 Normalized pressure drop for compressible flow in a tube 
from (8.30) for four values of 8 = 0:3, 1, 3, 10 (solid lines from 
bottom to top). The dash-dotted line is from the lubrication 
approximation (8.36). The dashed line is for the incompressible case,  
= 0.



Figure 8.7 Friction factor versus Reynolds number for 
incompressible flow in a smooth tube. The solid line for laminar flow                  
is from (8.38). For turbulent flow                         , the solid line is from (8.42) 
and the dashed line is from (8.43).

Figure 9.1 Schematic of forced convection in a heated tube.



Figure 9.2 Temperature field                for laminar flow in a heated tube for
= 0:005, 0:01, 0:05, 0:1, 0:2, 0:3, 0:4 (bottom to top). Also

shown for 0:1 (dashed lines) is the temperature from (9.10). Figure 9.3 Schematic temperature profile across interface between 
solid and fluid phases showing thermal boundary layer with 
thickness      .



Figure 9.4 Nusselt number as a function of axial position 
for laminar flow in a heated tube from (9.30) The dashed line is 
from the asymptotic solution given in (9.31).

Figure 10.1 Schematic of gas absorption with homogeneous chemical 
reaction in a liquid film flowing along a vertical solid surface.



(Above) Figure 10.2 Species A concentration profile from (10.27) for gas absorption
without = 0 (left), and with = 1 (right), homogeneous chemical
reaction at several locations along film: =  = 0:3; 1; 3; 10.

(Left) Figure 10.3 Species C concentration profile (left) from (10.30) and temperature
prole (right) from (10.33) with = 10 for gas absorption with
homogeneous chemical reaction with = 1 at several locations along
film: = 0:3, 1, 3, 10.



Figure 10.4 The dependence of molar rate of absorption  on 
reaction rate and film length as given by (10.35).

Figure 11.1 Concentration of the enzyme RNase A as function of position
within sample cell for different times (increasing from left to right at 20 min
intervals) for an analytic ultracentrifuge experiment run at 20˚C, pH 6.5,
and rotation rate of 60,000 revolutions per min. [Adapted from Laue &
Staord, Annu. Rev. Biophys. Biomol. Struct. 28 (1999) 75.]



Figure 11.2 Schematic of centrifuge with sample cell rotating with angular
velocity . The sample occupies the region between                                                     
and has solute concentration                    .

Figure 11.3 Steady state concentration field for an ultracentrifuge from
(11.30) with  = 0:1 for = 10, 30, 100, 300.



Figure 11.4 Time evolution of the solute concentration field for 
an ultracentrifuge obtained from numerical solution of (11.15)-
(11.17) with = 0.1 and      = 100 for different times 
= 0, 0.01, 0.03, 0.1, 0.3.

Figure 11.5 Two-dimensional representation of a non-inertial coordinate
system with origin O’ relative to an inertial coordinate system with origin O. Point P is an 
arbitrary point in space.



Figure 11.6 Exiting average concentrations versus time for the 
separation of different blood proteins (species      ) in an electric F3 
experiment carried out at 25˚C, pH 4:5, and electric potential 
gradient of 2:95 V/cm. The parameter  r     (see Exercise 11.9) is 
proportional to the molecular weight of the protein. [Adapted from 
Krishnamurthy & Subramanian, Sep. Sci. 12 (1977) 347.]

Figure 11.7 Schematic of thermal field-flow fractionation (F3) channel. For
t < 0, the liquid is pure solvent (      = 0) and has uniform temperature T0.
At t = 0, a liquid plug having concentration 10 and length Lp is injected
at the channel entrance (x1 = 0), and for t ≥ 0 a temperature difference
∆T is maintained between the channel walls.



Figure 11.8 Dependence of the coefficients          and       with            1 
on                                       given by (11.47) and (11.48) from dispersion 
theory solution.

Figure 11.9 Time evolution of the radial-average solute concentration eld
for laminar ow in a channel without temperature gradient = 0 from
(11.46){(11.48) with 1 in a coordinate system that moves with the
average velocity of the fluid for different times  = 1, 3, 10, 30.



Figure 11.10 Time evolution of the radial-average solute 
concentration field for laminar flow in a channel with temperature 
gradient = 2 from (11.46)-(11.48) with 1 in a coordinate 
system that moves with the average velocity of the fluid for 
different times = 1, 3, 10, 30.

Figure 11.11 Elution curves at channel location = 1 in thermal
F3 method from (11.46)-(11.48) with 1 for = 0, 2, 4, 8.



Figure 12.1 Time dependent shear flow between parallel 
plates with shear rate        .

Figure 12.2 Stress growth in start-up of steady shear flow.



Figure 12.3 Shear storage G’ (squares) and loss G” (circles) moduli 
versus frequency for three polystyrene melts at 180˚C: = 100 kDa
(open);        = 200 kDa (dots); = 400 kDa (crosses), from experiments 
performed by Teresita Kashyap at IIT, Chicago.

Figure 12.4 Pipkin diagram showing dependence of material response on
Deborah and Weissenberg numbers.



Figure 12.5 Steady state viscosity  and first normal-stress 
difference N1 versus shear rate for a polystyrene melt at 180˚C (             
=200 kDa), from Schweizer et al., Rheol. Acta 47 (2008) 943. The 
solid curve is the t of the expression given in (12.39).

Figure 12.6 Occurrence of normal-stress differences in shear flow of 
viscoelastic liquids.



Figure 12.7 Translation and deformation of a 
vector by convection.

Figure 12.8 The velocity profile (12.68) for t = 1 (dashed line) and
t = 2 (continuous line).



Figure 13.1 Calcium transport across a cell membrane.

Figure 13.2 Two-way coupling between bulk phases and 
interfaces.



Figure 13.3 True continuous density profile (continuous line) and an idealized
profile for two bulk phases touching at a dividing interface (dashed line).

Figure 13.4 Relationship between change of normal vector and radius of
curvature.



Figure 13.5 Contact angle  for two fluid phases I and II in 
equilibrium with a rigid substrate. Figure 13.6 Meniscus formed by liquid in contact with a planar solid with

local height h and contact angle .



Figure 14.1 Density profile of a conserved quantity. As a consequence of a net 
accumulation of that quantity in the interfacial region, the dividing interface for as = 
0 (dashed line) moves to the right.

Figure 14.2 Instead of mapping equivalent points of a 
continuously deforming interface at two times t1 and t2 (thick 
lines), we can alternatively look at the trajectories associated 
with equivalent points (thin arrows) and their time derivatives 
providing the translational velocity field        .



Figure 14.3 Falling liquid (II) jet surrounded by 
gas (I).

Figure 14.4 Liquid (II) cylinder with unperturbed radius R0 
surrounded by gas (I).



Figure 16.1 Schematic of process for the production of 
polymer fibers.

Figure 16.2 Schematic of flow through a circular die.



Figure 16.3 Velocity prole for flow through a circular die given by 
(16.6) for different values of the power law index n = 1.0, 0.5, 0.33 
bottom to top.

Figure 16.4 Schematic of wire coating flow through a circular die.



(Above) Figure 16.5 Schematics of extruder with screw rotating with angular velocity      inside 
stationary barrel (left) and unwound channel formed between screw and barrel (right).

(Left) Figure 16.6 Representative streamline showing recirculating nature of transverse 
flow within extruder channel. Solid lines indicate flow described by (16.11).



Figure 16.7 Velocity distributions is single-screw extrusion. Left plot
shows transverse velocity v1 given by (16.11), right plot shows velocity
along channel v3 given by (16.12) for several values of the quantity

. 

Figure 16.8 Mass flow rate versus pressure difference for 
single-screw extrusion (    =10) of a Newtonian fluid. Line 
marked `die' is from (8.5) with                               = 0:5, and line 
marked `extruder' is from (16.13). The intersection of the two 
lines gives the operating point of the extruder.



Figure 16.9 Schematic of fiber spinning 
process showing lament of length L and 
local radius R. Note that in practice R << L.

Figure 16.10 Axial velocity along lament for fiber spinning of an upperconvected
Maxwell fluid for = 0, 0.01, 0.02, 0.03, 0.04, 0.05 (bottom to top) 
obtained by solution of (16.36) for DR = 20. The Newtonian case (         = 0) given by 
(16.39).



Figure 16.11 Dependence of FL on NDe for the fiber
spinning of an upperconvected Maxwell fluid for DR = 
20. Note that the maximum possible Deborah number is 
given by = (DR -1) -1

Figure 17.1 Sphere of radius R with its center at the origin of 
rectangular and spherical coordinate systems surrounded by an infinite 
medium.



Figure 17.2 Normalized temperature isotherms in the
x2-x3 plane around a sphere imbedded in an infinite medium predicted by
(17.10) and (17.11) with = 0 and  = 4 (left) and  1=4 (right).

Figure 17.3 Schematic of heterogeneous system composed of multiple
spheres with thermal conductivity imbedded in a medium with 
thermal conductivity     , and its representation as an effectively 
continuous medium with effective thermal conductivity eff.



Figure 17.4 Dependence of normalized effective 
thermal conductivity as a function of thermal 
conductivity ratio  predicted by (17.16) for  = 0.1
with = 0 (solid line) and = 0.1 (dashed line).

Figure 17.5 Normalized stream function  in the x2-x3 plane for creeping flow around a 
sphere predicted by (17.29) with = 0 (left) and                         (right).



Figure 17.6 Normalized pressure contours in the x2-x3 plane
for creeping ow around a sphere from (17.32) with = 0 (left) and  
(right).

Figure 17.7 Albert Einstein (1879-1955) in 1904.



Figure 18.1 Schematic of gas bubble with radius R 
surrounded by infinite liquid.

Figure 18.2 Representative concentration field w1 in liquid (r > R) versus
radial position r for bubble growth (R > R0) and collapse (R < R0).



Figure 18.3 Representative solute chemical potentials for the gas phase ,
interface and liquid near the gas-liquid interface for bubble growth
showing nonequilibrium (left) and equilibrium (right) cases.

Figure 18.4 Bubble radius and pressure versus time during bubble growth
for the following parameter values: Nw = 1 and  = 0.001. Solid lines are
for diffusion-induced case where Nn = 0.1, N∆p = 0.5 and = 0.25.
Dashed line is diusion-controlled case Nn = = 0; dotted line is for
(18.30) with  = 1.34.



Figure 18.5 Bubble radius and pressure versus time during bubble 
collapse for the following parameter values: and      = 0.001. 
Solid lines are for diffusion-induced case where Nn = 0.1, N∆p = 2 and 
= 0.5. Dashed line is diffusion-controlled case N = N = 0.

Figure 19.1 Image of the Intel 4004 microprocessor circa 
1970 with overall dimensions of       10mm x 10 mm. This 
device contains 2300 transistors and has device features of                         
10    m in size. Current microprocessors have device 
features with sizes  25nm and over 500 million 
transistors.



Figure 19.2 Schematic of selected semi-conductor 
processing steps: a) Si wafer with SiO2 layer; b) surface 
coated with positive photoresist film; c) exposure of 
photoresist through mask; d) photoresist after selective 
removal; e) selective removal of SiO2 layer by etching; f) 
SiO2 feature left after photoresist removal. Figure 19.3 Schematic of Czochralski crystal growth process.



Figure 19.4 Normalized temperature ( T - Tg)/(Ts - Tg) isotherms in Czochralski crystal 
growth process given by (19.8) with = 1.0 for three crystal lengths L/R = 1, 2.5, 5 (left to 
right).

Figure 19.5 Schematic of Si oxidation process showing SiO2 layer having thickness h.



Figure 19.6 Oxide lm thickness h in m versus time t in hours 
given by (19.28) with and                             , and 
the following parameter values: 
Different curves correspond to different values of D/ks = 0.0, 
0.01, 0.03   m (top to bottom).

Figure 19.7 Schematic of spin coating process. Note that film thickness h is exaggerated for 
clarity.



Figure 19.8 Normalized stream function                for velocity within 
a uniform film given by (19.43) and (19.44) in terms of the stream 
function given in (19.49) as found in Exercise 19.8. Contours are for 
constant values of             .

Figure 19.9 Evolution of film prole predicted by (19.48) with an initially Gaussian profile 
Different proles are for different values of time t = 0, 0.3, 1.0, 3.0 (top 

to bottom).



Figure 20.1 Two equivalent particle configurations for a gas of spherical
particles.

Figure 20.2 Peaked distribution of a macroscopic variable such as the internal
energy U’ in a canonical ensemble.



Figure 20.3 Two subsystems brought in contact to identify the 
statistical expression for the entropy.

Figure 20.4 Open subsystem with fluctuating internal energy and 
particle number within a large equilibrium bath.



Figure 21.1 Gas particles with a positive velocity 
component toward the right wall of a cubic container 
(particles with a negative velocity component
are not shown). [Reprinted with permission from 
Öttinger, Beyond Equilibrium Thermodynamics (Wiley, 
2005). Copyright by John Wiley & Sons.]

Figure 21.2 A particle has a collision a distance ∆z above the plane and transports property 
a to another particle a distance ∆z below the plane. [Reprinted with permission from 
Öttinger, Beyond Equilibrium Thermodynamics (Wiley, 2005). Copyright by John Wiley & 
Sons.]



Figure 22.1 Under ow conditions, such as the indicated shear ow, polymer
molecules become stretched and oriented. To develop a simple kinetic
theory, we model the polymer conformations by a dumbbell.

Figure 22.2 The volume that must be occupied by bead 1 when the 
connector vector Q intersects the shaded rectangle with unit normal 
vector n.



Figure 22.3 Temporary network conformation.

Figure 23.1 Schematic of porous medium with magnified view of averaging
volume Veff at position r.



Figure 23.2 Schematic of spatially periodic unit cells (left) and a 
single unit consisting of a spherical solid surrounded by a spherical 
fluid (right).

Figure 23.3 Comparison of experimental effective diffusivities in porous
media comprised of spheres (circles) and sand (squares) and model predictions
from (23.32){(23.34) for a periodic array of spheres (solid curve)
and for (23.37) (dashed curve): . [Adapted from
Whitaker, The Method of Volume Averaging (Kluwer, 1999)].



Figure 23.4 Schematic of a spherical porous catalyst 
particle with radius R surrounded by a gas that 
maintains concentration cAg at particle surface.

Figure 23.5 Reactant concentration prole within catalyst particle from (23.40) for = 3 at 
different times = 0.01, 0.03, 0.1, 0.3, 1 (left); steady state reactant concentration prole 
from (23.41) for different values of = 0.3, 1, 3, 10 (right).



Figure 23.6 Effectiveness factor n for catalyst 
particles with spherical (23.43) and thin disk (23.52) 
shapes as a function of modified Thiele modulus

Figure 23.7 Schematic of tubular packed bed reactor having length Lb and radius Rb containing 
spherical catalyst particles with magnified view of
averaging volume           .



Figure 23.8 Schematic of liquid lm between porous and impermeable
disks.

Figure 24.1 A sarcomere as the basic unit of a muscle. The ends of the
myosin laments are actually attached to the Z-disc by means of highly
elastic molecules which, for simplicity, are not shown in the figure. [For
a more realistic sketch see, for example, Kim et al., Trends Cell Biol. 18
(2008) 264.]



Figure 24.2 Transition rates for the two-state model of translational motors.

Figure 24.3 Dwell time distribution (24.18) for (continuous
line); for comparison, the single exponential decay is also shown 
(dashed line).



Figure 24.4 Normalized forward drift velocity as a function 
of the backward pulling force f divided by the stall force f0; 
the continuous and the dashed lines correspond to the rate 
parameters (24.2) and (24.3), respectively, where the 
coefficients are chosen as c+ = 1, c_= 0:2, and f0 = 20.

Figure 24.5 Randomness as a function of the backward pulling force f
divided by the stall force f0; the continuous and the dashed lines 
correspond to the rate parameters (24.2) and (24.3), respectively, where 
the coefficients are chosen as c+ = 1, c_ = 1, and f0 = 20.



Figure 24.6 Experimental data for the dwell time histogram for the 
myosin V motor protein. [Redrawn from Purcell et al., Proc. Natl. 
Acad. Sci. U.S.A. 102 (2005) 13873.]

Figure 24.7 Experimental data for (a) the molecular motor velocity and
(b) the randomness parameter for kinesin moving along microtubules at
high ATP concentration. [Redrawn from Visscher et al., Nature 400 (1999)
184.]



Figure 24.8 Schematic of phospholipid bilayer membrane 
with Ca-ATPase protein for active transport of Ca2+ (left); 
idealization of membrane as an interface with molar flux  
from interface into phase I and                    (right).

Figure 24.9 Thermodynamic efficiency n of Ca2+ ion pump versus Z for
different values of the coupling coefficient q given by (24.29) and (24.30).



Figure 24.10 Qualitative behavior of the activation energy           .

Figure 25.1 Schematic of Brownian motion of spherical particle (bead) with radius R
showing particle position rb and displacement ∆rb vectors.



Figure 25.2 Mean-square displacement for microbead
rheology experiment performed on a wormlike 
micellar solution measured using diffuse wave 
spectroscopy [see Willenbacher et al., Phys. Rev. Lett. 
99 (2007) 068302].

Figure 25.3 Complex modulus for a wormlike micellar solution from the mean-square 
displacement data in Figure 25.2 and from mechanical rheology: G’ (squares); G” (circles) [see 
Willenbacher et al., Phys. Rev. Lett. 99 (2007) 068302]. The solid curves are obtained using 
(25.18) and the dashed curves using (25.19) [curves provided by Tsutomu Indei at IIT, Chicago].



Figure 26.1 Lord (John William Strutt) Rayleigh (1842-
1919).

Figure 26.2 Plot of the time dependence of a property A(t) fluctuating
about its average value <A>indicated by the dashed line.



Figure 26.3 Schematic plot of time dependence of autocorrelation function
obtained from time dependence of A(t) in Figure 26.2.

Figure 26.4 Schematic of dynamic light scattering (DLS) setup.



Figure 26.5 Schematic of scattering from a single stationary 
particle located at the origin.

Figure 26.6 Schematic of scattering from two stationary particles located near the 
origin.



Figure 26.7 Normalized autocorrelation function of density 
fluctuation                                  predicted by (26.51) with
=

Figure 26.8 Normalized dynamic structure factor (scaled by
) predicted by (26.52) with and

= 1:15. Inset shows magnfied view of the Rayleigh peak.
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