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EXCITONIC EFFECTS
AND MODULATION OF
OPTICAL PROPERTIES



EXCITONS: ELECTRON-HOLE PAIRS
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(a) The bandstructure in the independent electron picture and
(b) the Coulombic interaction between the electron and hole
which would modify the band picture.

Exciton energies (referred to the bandgap):
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A conceptual picture of the peiodic envelope function extent
of the Frenkel and Mott excitons. The Frenkel exciton
periodic function is of the extent of afew unit cellswhile the
Mott exciton function extends over many units cells.



OPTICAL PROPERTIES: INCLUSION OF EXCITON EFFECTS

At low temperatures in high quality materials one can see excitonic
structure along with band-to-band transitions.
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A schematic picture of the absorption spectrawith (solid ling) and without (dashed line)
excitonic effects.
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Typical optical transitionsin GaAs. As can be seen, the excitonic peak essentially merges
with the band-to-band absorption onset at room temperature. (see M.D. Sturge, Physical
Review, 127, 768 (1962).)
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EXCITONS IN QUANTUM WELLS

Exciton binding energy increases in quasi-2D systems
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Variations of the heavy-hole exciton binding energy as afunction of well sizein
GaAgAlg 3Gag 7As wells. The binding energy of the infinite barrier well should approach

four times the 3D exciton binding energy as the well size goes to zero.
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A comparison of absorption sepctrain (a) 100 A GaAs/Alg 3Gag 7As and
(b) Ing 53Gag.47AINg 50A 5. 4gAS quantum wells. The excitons in INGaAs suffer alloy

broadening which reduces their sharpness. (After D.S. Chemla, Nonlinear Optics: Materials and
Devices, eds. C. Flytzanisand J.L. Oudar, Springer-Verlag, New Y ork (1986).)
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ELECTRO-OPTIC EFFECT

An electric field can alter the electronic spectra of amaterial and thus
modify the refractive index or dielectric constant.

The effect can be exploited for optical switches.
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A schematic of the effect of achangein optical properties of amaterial on an optical beam
For energy hw!, the main effect of the change in the optical propertiesis achangein
propagation velocity. For hw?, the effect is achangein intensity.
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QUANTUM CONFINED STARK EFFECT

A transverse electric field aters the shape of quantum wells and
modifies the effective bandgap.

electron and hole wavefunctions.

A schematic showing how an electric field alters the quantum well shape and the
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Calculated variation of the ground state HH and LH (to conduction band ground state)
intersubband transition energies as a function of electric field. Thewell isa 100 A
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QUANTUM CONFINED STARK EFFECT. POLARIZATION EFFECTS

Due to the different polarization selection rules for HH to electron and
LH to electron transitions QCSE has strong polarization dependence.

(i): F=16x104V/cm
(i): F=10x105V/cm
(iii): F=1.3x10°V/cm
(iv): F=1.8x105V/cm
(v): F=22x10°V/cm
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Measured polarization dependent transmittances in GaAg/AlGaAs (100 A)
multiquantum well structures when light is coming in the waveguide geometry.
(a) Incident polarization parallel to the plane of the layers. (b) Incident
polarization perpendicular to the plane of layers. (After D.A.B. Miller, et d.,
|EEE J. Quantum Electronics, QE-22, 1816 (1986).)
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POLAR HETEROSTRUCTURES: INGaN/GaN QUANTUM WELLS

For c-axis growth InGaN/GaN has strong interface polar charge
guantum wells are under alarge electric field.
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Band profile for 30 A Ing 15Gg gaN/GaN quantum well grown
lattice-matched to GaN in the (0001) orientation.

Electron-hole recombination times are long due to the small e-h overlap.
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