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Figure 1.1. Block diagram of radar detection system.

is sent out. If there are no objects in range of the radar, the radar’s amplifiers produce only a
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Figure 1.2. Matched filter input (top) in which the signal is hidden by noise. Matched filter output (bottom) in

which the signal presence is obvious.
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Figure 1.4. Histogram of Example 1.2 with overlay of a Gaussian density.



Example 1.2. We performed the experiment with outcomes S0, . . . ,S100 1000 times and

counted the number of occurrences of each outcome. All trials produced between 33 and 68

heads. Rather than list N1000(Sk) for the remaining values of k, we summarize as follows:

N1000(S33)+N1000(S34)+N1000(S35) = 4

N1000(S36)+N1000(S37)+N1000(S38) = 6

N1000(S39)+N1000(S40)+N1000(S41) = 32

N1000(S42)+N1000(S43)+N1000(S44) = 98

N1000(S45)+N1000(S46)+N1000(S47) = 165

N1000(S48)+N1000(S49)+N1000(S50) = 230

N1000(S51)+N1000(S52)+N1000(S53) = 214

N1000(S54)+N1000(S55)+N1000(S56) = 144

N1000(S57)+N1000(S58)+N1000(S59) = 76

N1000(S60)+N1000(S61)+N1000(S62) = 21

N1000(S63)+N1000(S64)+N1000(S65) = 9

N1000(S66)+N1000(S67)+N1000(S68) = 1.

This summary is illustrated in the histogram shown in Figure 1.4. (The bars are centered

over values of the form k/100; e.g., the bar of height 230 is centered over 0.49.)
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Figure 1.4. Histogram of Example 1.2 with overlay of a Gaussian density.
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Figure 2.5. The Poisson(λ ) pmf pX (k) = λ ke−λ /k! for λ = 10,30, and 50 from left to right, respectively.
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Figure 2.8. Sketch of bivariate probability mass function pXY (i, j).
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Figure 3.1. The binomial(n, p) pmf pY (k) =
(

n
k

)

pk(1− p)n−k for n = 80 and p = 0.25,0.5, and 0.75 from left to

right, respectively.
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Figure 3.3. Sketch of bivariate probability mass function pXY (i, j) of Example 3.10 with n = 5. For fixed i,

pXY (i, j) as a function of j is proportional to pY |X ( j|i), which is geometric0(i/(i + 1)). The special case i = 0

results in pY |X ( j|0) ∼ geometric0(0), which corresponds to a constant random variable that takes the value j = 0

with probability one.
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Figure 4.3. Several common density functions.
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Figure 4.6. (a) Triangular density f (x). (b) Shifted density f (x − c). (c) Scaled density λ f (λx) shown for

0 < λ < 1.
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Figure 4.7. The gamma densities gp(x) for p = 1/2, p = 1, p = 3/2, p = 2, and p = 3.
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Figure 4.12. Comparision of standard normal density and Student’s t density for ν = 1/2, 1, and 2.
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Figure 5.15. Illustration of the central limit theorem when the Xi are exponential with parameter 1. The dashed

line is FY30
(y), and the solid line is the standard normal cumulative distribution, Φ(y).
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Figure 5.16. Plots of log10(1−FY30
(y)) (dashed line), log10(1−FY300

(y)) (dash-dotted line), and log10(1−Φ(y))
(solid line).
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Figure 5.17. For Xi i.i.d. exp(1), sketch of fYn (y) for n = 1,2,5,30 and the N(0,1) density.
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Figure 5.19. Rice density fZ1/2
(z) for different values of m.
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Figure 5.20. Rice density fZ1
(z) for different values of m.
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Figure 5.21. Rice density fZ2
(z) for different values of m.



0 1 2 3
0

1

2

3

ν=−1/2

ν=0

ν=1/2 ν=1 ν=2

Figure 5.22. Graphs if Iν (x) for different values of ν .
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Figure 6.1. Normalized histogram of 1000 i.i.d. binomial(10,0.3) random numbers. Stem plot shows pmf using

pn = 0.2989 estimated from the data.
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Figure 6.2. Normalized histogram of 1000 i.i.d. exponential random numbers and the exp(λ ) density with the

value of λ estimated from the data.
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Figure 6.6. Best-fit line through points in Figure 6.5.

Figure 6.7. Scatter plot (left) and best-fit cubic (right).
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Figure 7.7. Joint cumulative distribution function FXY (x,y) of Example 7.7.



0

1

2

3

4

0

1

2

3

4

0

0.1

0.2

0.3

0.4

x−axis
y−axis

Figure 7.8. The joint density fXY (x,y) = xe−x(y+1) of Example 7.12.
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Figure 7.9. The Gaussian surface ψρ (u,v) of (7.22) with ρ = 0 (left). The corresponding level curves (right).
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Figure 7.10. The Gaussian surface ψρ (u,v) of (7.22) with ρ = −0.85 (left). The corresponding level curves

(right).
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Figure 7.11. The bivariate normal density fXY (x,y) of (7.25) with mX = mY = 0, σX = 1.5, σY = 0.6, and ρ = 0

(left). The corresponding level curves (right).



−3
−2

−1
0

1
2

3
−3

−2

−1

0

1

2

3

0

0.1

0.2

0.3

v−axis

u−axis

Figure 7.12. Two slices from Figure 7.10.
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Figure 8.1. The point on the plane that is closest to p is called the projection of p, and is denoted by p̂. The

orthogonality principle says that p̂ is characterized by the property that the line joining p̂ to p is orthogonal to the

plane. The symbol ◦ denotes the origin.



Figure 9.1. Ellipsoid level surfaces of a three-dimensional Gaussian density.
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Figure 10.1. Three realizations of an i.i.d. sequence of Bernoulli(p) random variables {Xn, n = 1,2, . . .}.
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Figure 10.2. Three realizations of an i.i.d. sequence of N(0,1) random variables {Zn, n = 1,2, . . .}.
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Figure 10.3. Three realizations of 5sin(2π f n)+Zn, where f = 1/25. The realizations of Zn in this figure are the

same as those in Figure 10.2.
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Figure 10.4. Three realizations of Yn =
1
2
Yn−1 + Zn, where Y0 ≡ 0. The realizations of Zn in this figure are the

same as those in Figure 10.2.
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Figure 10.5. Three realizations of the carrier with random phase, Xt := cos(2π f t +Θ). The three different values

of Θ are 1.5, −0.67, and −1.51, top to bottom, respectively.
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Figure 10.6. Three realizations of a counting process Nt .



−1 0 1
−1

0

1

X
t

Y
t

0 1

0

1

t

Y
t

−1 0 1
0

1

X
t

t

Figure 10.7. The two-dimensional Brownian motion (Xt ,Yt) is shown in the upper-left plot; the curve starts in the

center of the plot at time t = 0 and ends at the upper right of the plot at time t = 1. The vertical component Yt as a

function of time is shown in the upper-right plot. The horizontal component Xt as a function of time is shown in

the lower-left plot; note here that the vertical axis is time and the horizontal axis is Xt .
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Figure 10.8. Three examples of a correlation function with a sample path of a process with that correlation

function.
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Figure 10.9. Three correlation functions (left) and their corresponding Fourier transforms (right).
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Figure 10.14. Bandlimited white noise processes with the power spectral density in Figure 10.10 and the correla-

tion function in Figure 10.11 for W = 1/2 (top), W = 2 (middle), and W = 4 (bottom).
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Figure 10.16. Three realizations of a lowpass RC filter output driven by white noise. The time constants are

RC = 4 (top), RC = 1 (middle), and RC = 1/4 (bottom).
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Figure 10.19. Deterministic signal v(t) and its correlation function Rv(τ).
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Figure 10.20. Block diagram of radar system and matched filter.
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Figure 10.21. A triangular signal v(t) and broadband noise Xt (top). Their sum, v(t)+Xt (bottom), shows that the

noise hides the presence of the signal.
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Figure 10.23. Matched filter output terms vo(t) and Yt (top) and their sum vo(t)+Yt (bottom), when v(t) is the

signal at the top in Figure 10.19 and H( f ) is the corresponding matched filter.



1

2

3

4

5

t
T1 T2 T3 T4 T5

Figure 11.1. Sample path Nt of a counting process.
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Figure 11.2. Plots of h(t) = e
−t

u(t) (left) and h(t) = t
2
e
−t

u(t) (right), where u(t) is the unit step function.
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Figure 11.3. Point process Nt (top) and corresponding shot noise Yt in Eq. (11.8) for h(t) = e
−t

u(t) (middle) and

for h(t) = t
2
e
−t

u(t) (bottom), where u(t) is the unit step function.



that the process Vt of Example 11.6 has the same covariance function; see Problem 25.
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Figure 11.4. Two sample paths of a standard Wiener process.
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Figure 11.5. Sample path Sk,k = 0, . . . ,75 (top). Sample path W
(75)

t (bottom).



0 0.25 0.5 0.75 1
−1

−0.5

0

0.5

1

t

0 0.25 0.5 0.75 1
−1

−0.5

0

0.5

1

t

Figure 11.6. Sample path of W
(n)

t for n = 150 (top) and for n = 10000 (bottom).
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Figure 11.7. Two sample paths of Sbntc/n
2/3 for n = 10000 when the Xi have Student’s t density with 3/2 degrees

of freedom.
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Figure 12.1. Realization of a symmetric random walk Xn.
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Figure 14.2. (a) Sketch of FXn
(x) for increasing values of n. (b) Pointwise limit of FXn

(x). (c) Limiting cdf FX (x).
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Figure 15.1. Fractional Brownian motions with H = 0.15, H = 0.5, and H = 0.85.


