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Problems for Chapter 8 of Advanced Mathematics for Applications

Sequences and Series

by Andrea Prosperetti

Notes: The semi-factorials of odd and even numbers are given by

(2n + 1)!! = 1 · 3 · 5 . . . (2n − 1)(2n + 1) , (2n)!! = 2 · 4 · 6 . . . (2n − 2)(2n) = 2nn! .

The connection between the factorial and the Γ function (p, 442) is n! = Γ(n + 1). Stirling’s formula for
Γ(z) is given on p. 445.

1 Convergence

1. For what range of the parameter p are the series

∞
∑

1

1

np
,

∞
∑

1

1

np log n
,

convergent?

2. For what range of the parameter p are the series

∞
∑

1

1

n(log n)p
,

∞
∑

1

1

n logn (log log n)p
,

convergent?

3. For what range of the parameter p is the series

1 +

∞
∑

1

(

(2n − 1)!!

(2n)!!

)p

convergent?

4. Show how the radius of convergence of the hypergeometric series given in (2.5.45) p. 48 is determined
by the ratio test.

5. The series
x + 1 + x3 + x2 + x5 + x4 + . . .

is a rearrangement of the geometric series
∑

∞

n=0
xn and therefore it certainly converges for 0 < x < 1.

An application of the ratio test illustrates the point that an+1/an does not have to have a defined limit
to draw conclusions on the convergence of the series.

6. Prove that, if
∑

nan is convergent, so is
∑

an.
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7. By using (a) the ratio test and, (b) the root test with the Stirling formula, verify the convergence of
the Bessel series

∞
∑

n=0

(−z2)n

22n(n!)2

for all values of z.

8. Show, by using the M -test (p. 227), that the series

∞
∑

n=1

x

n(1 + nx2)

is uniformly convergent for all values of x.

9. Show that the two series

S1(x) =

∞
∑

n=1

1

n3 + n4x2
and S2(x) =

∞
∑

n=1

1

n2 + n4x2

are uniformly convergent for all values of x. However, while S′

1 can be obtain by term-by-term differ-
entiation, S′

2(0) cannot and, in fact, it does not exist.

10. Determine the radius of convergence of the following series

∞
∑

n=1

n!

nn
zn ,

∞
∑

n=0

zn! ,

∞
∑

n=0

z2
n

,

∞
∑

n=0

[3 + (−1)n]
n

zn ,

∞
∑

n=0

(n + an)zn ,

∞
∑

n=0

zn cos in .

Usee of Stirling’s formula to approximate n! will be useful in some cases.

11. Show that the two sequences having terms

Fn =
n
√

x

1 + n2x3
, Fn =

n2x

1 + n3x3
,

are examples of sequences for which term-by-term integration fails.

12. Given that the radius of convergence of the (complex) series
∑

∞

n=0
cnzn is R, with 0 < R < ∞,

determine the radius of convergence of the following series:

∞
∑

n=1

nkcnzn ,
∞
∑

n=0

cn

n!
zn ,

∞
∑

n=1

nncnzn ,
∞
∑

n=0

(1 + zn
0 ) cnzn .

13. If the radii of convergence of the (complex) series
∑

∞

n=0
anzn and

∑

∞

n=0
bnzn are Ra and Rb, re-

spectively, with 0 < Ra, Rb < ∞, what can be said about the radius of convergence of the following
series

∞
∑

n=1

(an ± bn)zn ,

∞
∑

n=0

anbnzn ,

∞
∑

n=1

(an/bn)zn ?

2 Summation of series

1. Show by using summation by exact differences that

∞
∑

n=1

1

(a + n)(a + n + 1)
=

1

a + 1
.
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2. Show by using summation by exact differences that

∞
∑

n=1

zn

(1 − zn)(1 − zn+1)
=

{

z(1 − z)−2 if |z| < 1
(1 − z)−2 if |z| > 1

.

3. Calculate the radius of convergence of the following series and find their sum in closed form:

∞
∑

n=1

zn

n2 − 1
,

∞
∑

n=1

zn

(2n + 1)2 − 1

4. Show that
∞
∑

n=1

zn

n(n + 1)
= 1 −

(

1

z
− 1

)

log
1

1 − z
.

5. Calculate the radius of convergence of the following series and find their sum in closed form:

∞
∑

n=1

n

n + 1
zn+1 ,

∞
∑

n=1

zn

n(n + 1)
.

6. Calculate in closed form the sums of the series

∞
∑

n=0

1

n4 − a4
, −

∞
∑

n=2

(−1)n

n4 − a4

7. Calculate the radius of convergence of the following series and find their sum in closed form:

∞
∑

n=1

zn

n(4n2 − 1)
,

∞
∑

n=1

(n − 1)zn

(n + 2)n!
.

8. Write the series

1 − 1 · 3
2 · 4z2 +

1 · 3 · 5 · 7
2 · 4 · 6 · 8z4 + . . .

in a compact form as an infinite summation and calculate its sum.

9. Show that
∞
∑

n=−∞

1

1 + a2n2
=

π

a
coth

π

a
.

10. Show that
∞
∑

n=1

sin nθ

2n−1
=

4 sin θ

5 − 4 cos θ
.

11. Show that
∞
∑

n=0

(2n − 1)!!

(2n)!!
cosnθ =

(

2 sin
θ

2

)

−1/2

cos
π − θ

4
.

12. Calculate in closed form the sums of the series

−
∞
∑

n=2

cos(nπ/2)

n2 − 1
cosnθ , −

∞
∑

n=2

n cos(nπ/2)

n2 − 1
sin nθ .
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13. Calculate in closed form the sums of the series

−
∞
∑

n=2

sin(nπ/2)

n2 − 1
sinnθ , −

∞
∑

n=2

n sin(nπ/2)

n2 − 1
cosnθ .

14. Calculate in closed form the sums of the series

∞
∑

n=2

sin nθ

n2 − 1
, −

∞
∑

n=2

sin θ

n(n2 − 1)
.

15. Calculate in closed form the sums of the series

∞
∑

n=1

(−1)n−1 n

n2 + 1
sin nθ ,

∞
∑

n=1

cosnθ

n2
.

16. Calculate in closed form the sums of the series

1

a
+ 2a

∞
∑

n=1

cosnθ

n2 + a2
,

1

a
+ 2a

∞
∑

n=1

(−1)n cosnθ

n2 + a2
.

17. Calculate in closed form the finite sums

n
∑

n=1

n sin nθ ,

n
∑

n=1

n cosnθ .

18. Show by using the Laplace transform method that

∞
∑

n=1

log

(

1 +
a2

π2n2

)

= log
sinh a

a

19. Show by using the Laplace transform method that

∞
∑

n=1

[

a

n
− log

n + a

n

]

= γa + log Γ(a + 1) ,

where γ is Euler’s constant (p. 150).

20. Show by using the Laplace transform method that

∞
∑

n=1

tan−1 2

n2
=

3

4
π .γa + log Γ(a + 1) ,

21. Show that
∞
∑

n=1

(−1)n

n2 + a2
=

π

a

1

eπa − e−πa
− 1

2a2
.

22. Show that the locus represented by

∞
∑

n=1

(−1)n−1

n2
sinnx sin ny = 0

consists of two systems of lines at right angles dividing the (x, y)-plane into squares of area π2.
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23. Define

f(θ) =

∞
∑

n=2

cosnθ

n2 − 1
, g(θ) =

∞
∑

n=2

sinnθ

n2 − 1
.

Show that, if 0 < θ < 2π, the function P (θ) = f(θ) + ig(θ) satisfies the equation

dP

dθ
+ iP = ieiθ

[

1

2
i(π − θ) − log

(

2 sin
θ

2

)]

.

Deduce that

f(θ) =
1

2
+

1

4
cos θ − 1

2
(π − θ) sin θ , g(θ) =

1

4
sin θ − sin θ log

(

2 sin
θ

2

)

.

24. Show, by using the standard integral representation of the function J0 (see (12.2.25) p. 308), that

1

a2
+ 2

∞
∑

n=1

(−1)n J0(nπ)

a2 − n2π2
=

J0(a)

a sin a
.

25. Show that

∞
∑

n=1

(−1)nnJ2n(a) = −1

4
aJ1(a) ,

∞
∑

n=0

sin[(2n + 1)θ] J2n+1(a) = sin(a sin θ) .

26. Show that

∞
∑

n=−∞

J0(an) =

{

2a−1 0 < a < 2π
2a−1 + 4

∑m
k=1

(a2 − 4π2k2)−1/2 2mπ < a < 2(m + 1)π
.

27. Show that, if −1 < a < 1,
∞
∑

n=−∞

J0(nπ) cosnπa =
2

π
√

1 − a2
.

28. Show that
2

π

∞
∑

m=−∞

K0([(2m + 1)a]) =
∞
∑

n=−∞

(−1)n

√
a2 + π2n2

.

29. Show that
∞
∑

n=1

Jn(na) =
1

2

a

1 − a
,

∞
∑

n=1

J2n(2na) =
1

2

a2

1 − a2
.

3 Double series

1. Consider the double series
∞
∑

m=1,n=1

′

1

m2 − n2

in which the prime signifies that the terms with m = n are omitted. Show that

∞
∑

m=1

(

∞
∑

n=1

′

1

m2 − n2

)

= −3

4

∞
∑

m=1

1

m2
, while

∞
∑

n=1

(

∞
∑

m=1

′

1

m2 − n2

)

=
3

4

∞
∑

n=1

1

n2
.
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2. Consider the double series
∞
∑

m=0,n=0

′

(m − n)(m + n − 1)!

2m+nm!n!

in which the prime signifies that the (0, 0) terms is omitted. Show that

∞
∑

m=1

(

∞
∑

n=0

′

(m − n)(m + n − 1)!

2m+nm!n!

)

= −1 , while

∞
∑

n=1

(

∞
∑

m=0

′

(m − n)(m + n − 1)!

2m+nm!n!

)

= 1 .

3. Prove the following relation concerning the product of the two series indicated:

(

∞
∑

n=0

xn

(n!)2

) (

∞
∑

n=0

(−x)n

(n!)2

)

=
∞
∑

n=0

(−x2)n

(n!)2(2n)!
.

6


