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We list a number of projects for groups work that may be useful testing grounds for
the methods taught in the book. In each case, we do not have a complete understanding
of the problem under study, but we also cannot guarantee that the problems are open.

We would be grateful to obtain reports on any progress or suggestions for similar
projects.

1 Coloring generalized LEGO-structures

The smallest number of color needed to color buildings with a X b LEGO bricks (the
LEGO-chromatic number (Example 8.1.2)) has been studied in the book. As an inter-
esting variation, think of the brick as a a X b X c-box (often with ¢ = 1) which may
be placed in any of 6 different directions, as long as the corners are in Z3, and ask
the same question: what is the smallest number Y, . so that any such building with
a X b x c-bricks can be colored with y, . colors so that no two adjacent bricks have
the same color? An argument provided in 2013 to the authors by Eigil Rischel shows
that 150 colors will suffice for any fixed choice of a,b,c € N, but surely that can be
dramatically improved. In fact, we know of no examples where more than 6 colors are
necessary.

1. How can y, ;. be bounded above and below for small values of a, b, c?

2. Are there good estimates on m, ;. defined as the largest number so that there
exists a building where every brick has at least m, ;. neighbors?

2 Y-functions

Consider an increasing function f : N U {0} — N, having the property that f(0) = 1. If
X is an arbitrary finite set, set f*(X) = f(|X]).
Choose any four finite subsets X, ..., X4 of N. For some subset A C {1, 2, 3,4} set

g(A) = f*(NieaX)).



We abbreviate 12 = {1, 2}, etc., so that for example, g(12) = f*(X; N X3)
We say that f is a Y-function if

g(13)°g(14)°g(34)°4(23)g(24) < g(1)g(12)g(3)*g(4)*g(134)" g(234)

no matter how you choose X1, ..., Xy.
Group theory leads to the following examples of Y-functions:
@ f(n) = n!

aD f(n) =q"
) f(m) = ¢B(g-Dg* =D (¢" = 1.
where ¢ in (ii) is an arbitrary integer, and ¢ in (iii) is a prime power.
1. Find examples of increasing functions which are not Y-functions.

2. Examine how for various examples of Y-functions one may choose X, ..., X4 —
all different — with

8(13)°g(14)*¢(34)°¢(23)g(24)
8(1)g(12)g(3)°g(4)*g(134)*g(234)

as close to 1 as possible.

3. The given examples of Y-functions grow very quickly; is there a lower limit for
how quickly a Y-function can grow?

e Project idea: Jgrn Bgrling Olsson
e Material:

— T.H. Chan and R. Yeung: On a Relation Between Information Inequalities
and Group Theory. IEEE Trans. Inform. Theory 48 (2002).

3 Packing bricks in R”

Note that for any n € N and any vector (xj, ..., x,) € R} we have
n(xp X)) < (e x)"

which can be interpreted as expressing that the volume of »” little bricks (parallelepipeds)
of dimension
X1 XXy X+ XX,

does not exceed the volume of one large cube of dimension
(Xp 4+ X)) XX (X + -+ Xp).

A question, raised by Hoffman, is: for which » can these n" bricks be packed inside the
cube irrespective of the given dimensions? For n = 2 a general solution is easily found,
but already with n = 3 it is non-trivial to find such a concrete packing.



1. Can packings for larger n be located experimentally?
2. How many packings exist, as a function of n, up to rigid transformations?

3. Is there a computable threshold on the “eccentricity” of the bricks so that the
number of packings is finite under this threshold, but infinite above?

e Material:

— D.G. Hoffman: Packing problems and inequalities. In: The mathematical
Gardner, Wadsworth International, Belmont, Calif, 1981.

4 HJ-permutations

We consider permutations in S, as maps on Z/n. In recent work of Helfgott and
Juschenko, the number 7(rr) for such a permutation is defined as

nm =N xeZ/n:nlx+1)=2n(x)}.
For instance, the permutation of S 1;

(01 2345678 9 10
= 361 4820510 9

has n(m) = 7 because the entries in bold satisfy the condition given. In cycle form we
have
m=(0,7)1,3)(2,6)(,8)(9,10)

so we note that the order of r is 2.
1. Fix N € N. What is the maximal value n(rr) for 7 a permutation of order N?

2. Fix N € N. Does there exist a sequence of permutations m; € S, so that
n(my)/n; — 1 while the order remains bounded by N?

e Material:

— Harald Helfgott & Kate Juschenko: Soficity, short cycles and the Higman
group (arXiv:1512.02135)

5 Probability distributions on graphs

This project is inspired by the following problem: given n points in the plane, deter-
mine a point and a minimal circle with center in this point such that every point is in
the interior or on the boundary of the circle. There exists an algorithm to solve this
problem, but the corresponding problem in information theory is open: given a subset
§ € M{(F) of probability distributions on a finite set F, find a probability distribution
p on F and a radius R,,;, such that D(g||p) < R, for all g € S, and Ry, is the smallest



number with this property. Here, D(qllp) = > .cr g(x) log(g(x)/p(x)) is the Kullback-
Leibler divergence between g and p, which is a natural measure of distance between
probability distributions (one could think of it as a non-symmetric metric).

The general problem is probably too difficult to tackle experimentally, so this project
only concerns the following special type of probability distribution. Let F be a co-tree,
i.e., a finite set equipped with an order such that every non-maximal element has a
unique follower. Let S be the set of probability distributions g € M; (F) such that
q(x) < q(y) if and only if x > y. A simple special case is a linearly ordered set.

1. How does one determine the central probability distribution p and the minimal
radius Ry, when F is a linearly ordered set?

2. How does one find them if F is a general co-tree?

3. How does one find them if F contains a single non-maximal element without a
unique follower?

e Project idea: Henrik Densing Petersen
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