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Preface

This document gives detailed solutions to the problems and exercises in the first edition of
Fundamental of Particle Physics.

Equation numbers starting with an S are specific to this document. Other equation num-
bers, such as 1.1, refer to the equations in the book. Notations are those used in the book.



Particle physics landscape

1.1.

1.2.

As fvd3xV -E(x) = fvd3xp(x)/eo = Q/&, the Gauss’s theorem, yields ﬁ E-dS =
Q/e. With p(x) = q0(53(x), 0O = qo. Since the volume of integration is arbitrary, so is
the surface, and using the surface of a sphere with radius |r|, dS = |r|d@|r|sin6d¢ it

yields
T 2
§ E-dS =|r]? f sin@ do f d¢|Ela - it = |r|*4n|E).
S 0 0
Therefore,
q0 . q0 r
E| = ,ie. E= -,
= e dreolrl? |7

the electric field being radial for symmetry reasons. As the force due to the electric field
for a charge g is f = gE, we conclude

__499 I
4neglr)? I’
The Fourier transform of
V2 - ) f(r) = -6(r) (SL.1)

is (—|k|*> — %) f(k) = —1, leading to f(k) = 1/(|k|> + 2%). Therefore,

tkr 2 t|k||r|cos0 ) 5
fr )_<2 B fff e+ ¢ (27r>3f ff e o SO dOIkT dikl

ie.

S f | LS kP singkin)
=—— | dkl-—— [ d(cos® """"wse:—f dik .
1= ox >2f M e ]| dcosOe 27 Jo MEp 2 Tk

Setting u = |k||r|, f(r) reads

11w 11
= — dy ————— i =——03U
J0 =50 |r|f0 2T gy 2|r|f e o o ?

where A’ = Ar| and
I= Imdu T e,

The calculation of [ is very similar to the examples presented in Appendix F of the
book. We first calculate the integral in the complex plane

R u ) T . Rei&’ . .
§ dz———— 5 €% = lim f du > > et 4+ f do iReleﬁe’R cosO—Rsin 6
Z +/l’ R—oo _R u + 0 R2e2i0 4+

with a contour defined by a half-circle of radius R in the positive side of the imaginary




Particle physics landscape

1.3.

1.4.

1.5.

axis since A’ > 0 (same contour as the first figure of the Appendix). As sin6 > 0, the
second integral is zero when R — oo. The poles are z; = id’ and z, = —id’, and the
residue theorem leads to

00
u ; A g, .
f du———e" + 0 = 2ir—€™ = ine™".

0 u? + 12 221
Therefore,
11, e
= — —jr¢ " = . S1.2
TO= 2 m™ " = aan (51.2)

The solution of Poisson’s equation V2V = —éé(r) is obtained from the general solution
(S1.2) of Eq. (S1.1) with A = 0 and f(r) = Z—“V(r), ie.

e

V(r) =

4relr|’

Similarly, the comparison of the general solution (S1.2) to the Yukawa potential ¢(r) =
£ ¢ Jeads to the identification 1 = 1/ry, which using Eq. (S1.1) shows that the

4 r
Yukawa potential is the solution of

1
(V2 - r—2)<p(r) = —gd(r).

0

The result is straightforward:

1 2 x4 1 T
f f 1(6) cos 0 dQ = f I, (cos 0)* d(cos 6) f dp =1,|=| 2n =I1,=.
0 0 4 0 2

If the particle lifetime is 7, when it travels with a velocity v = fSc, its apparent time in

the lab frame is y7, and hence, it travels over a distance / = Scyt. As the particle energy
2_, 2y2

is E = ymc® and y = ——, it follows that 82 = Z=4<  Therefore,

i 2 B E2 _ (mCZ)Z E2
cr) E? (mc?)?’

which leads to the result

7\
E =mc®+|1 + (—) .
cT
As the Lorentz force is f = gv X B, the power P = f - v = 0, and therefore, the kinetic
energy T is constant since P = dT/dt = 0. As T = (y — I)mc?, it implies that vy is
constant. It follows from Newton’s law that

Setting w = ¢|B|/(my), the equation above implies for B along the z-axis that

d*x _dy d%y o dx d’z _

P T T T TR
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1.6.

1.7.

1.8.

Thus, z(¢) = z(0) + v,(0)t. Setting u = x + iy, the evolution of u is governed by

Pu_ e Ly (de dy) L du
d? ~ dr  d dr  dr] dr’
Therefore, after an integration

du _(du
dr dr

) €7 = [v,(0) + ivy(0)]e ™™,
1=0
and we conclude with another integration that

) = S, 0) + iny O] (7 = 1) + x0) + 50,

The coordinates x(f) and y(f) are obtained by taking the real part and imaginary part of
u(t), respectively, yielding

x(1) = x(0) + v,(0)/w + [vx(0) sin(w?) — v, (0) cos(w?)]/w,
y(#) = y(0) = vx(0)/w + [vy(0) sin(wt) + v,(0) cos(wt)]/w.

For small angles, ¢ ~ L/R. Similarly, R ~ s + R cos(¢/2). Therefore,

¢) ¢2 R (L)2 L2
=R(1-cosZ|~R==-(Z) = =.
g ( ) 8§ 8\R) " 8R
Since for a charge |g| = 1, |p|cosA = 0.3|B|R [Eq. (1.30) in the book] and the pitch
angle A satisfies cos A = |p_|/|p| [see Eq. (1.28)], we deduce

0.3|B|L2
8s

p.l=

leading to the relative uncertainty o (|p.|)/|p.| = o(s)/s = o(s) 8|p.|/(0.3BL?).
The negative log-likelihood of measurements distributed according to a Gaussian law

G(F"ﬂ o ): 1 e_%(:’r::‘)
iU \/Eg'r[

is
1 ri— U .
1
== —— | + constant.
L 2 Z( Or; )

The best value of the average /i is obtained for the minimum of £, i.e.

oL ri 1
=N L oaN — oo,
ou — o} H Z o?
yielding
Zig
H= > 1

1. The result is straightforward given that Nyecay(f) = N(£)=N(t+Af) = Ny (1 - e‘VA’) e,
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2. If the number of counts 7y, i.e. the number of decays between f; and f;, + At, has a
standard deviation o, the standard deviation of the random variable In(n;) satisfies
2

2

Inne —

~ ' 1n(ny)
6nk

since o-% = n.
The y? variable is defined by
5 25
Inng +yt, — a
X = Z (—y ) =Y m(nm +yt — @),
k=1 Tl k=1
where t; = (k — 1)At. The variables y and a can be considered independent (or

equivalently, v and Ny). Therefore, we minimise y> with respect to these variables,

ie.
2 = 23 mnmg + 7yt —a) =0
,")az_ ke ny Yk o) =0,
n —9 Simnng + vyt — a)t = 0.

9y
The substitution of « from the first equation into the second yields
_ (e In ) (B i) = (B 1) (B 1 In )

(X ) (Zk ”kt/%) - (2« ”/cfk)2
1 (X In ne) (B ik = 1) = (g i) (X i In g (k — 1))'

= (k) (Zicmlk = 17) = (S mk = DY’
Using the values of the table, one finds y = 0.039 or equivalently T = 1/y = 25.45,

which is close to the actual value.



Preliminary concepts: special

relativity and quantum mechanics

2.1.

2.2

2.3.

24.

2.5.

The result is immediate since x’ - X" = x,.x’7 = g,-x*x’. Given that x’” = A°%x" and
x? = A%, it follows that x’ - X' = gpe A", x*A%x”, while x - x is obviously g,,x*x”.
Eq. (2.14), i.e. o A% A’ = g, is equivalent to A, AY, = g,,. The multiplication by
g"7 yields
87 AN = 8" gy
AN, =55,

By definition, the inverse of A satisfies

Therefore, we conclude

(A1) =Af (S2.1)
Let us consider a Lorentz transformation along the x-axis,

ct =yct' + Byx,

x = Byct’ +yx,

y=y,

z=7.
As dQ = ¢ drdV = cdrdx dy dz, its expression as a function of the transformed
variables is

a
dQ = 'g; 4l df dy dy dZ = L}y Brlel  ar av ay a7
a  dr e Y

The Jacobian (i.e. the determinant above) is thus y? — 82y* = y*(1 — %) = 1. Therefore,
dQ=cdrdV=cdtdxdydz=cd dx' dy’ d7,

showing that dQQ is a Lorentz scalar.

As1b=10"cm?, 1 ub = 1073 m?. A cross-section o expressed in natural units (in
GeV~2) would be o/(10%)? j=2. The quantity 7ic has the units j - m. Therefore, o in b
is obtained by

2
o (ub) = (i) x 10730 (GeV™2) ~ 389 o (GeV72).

10%

The law of transformation of velocities is given in Eq. (2.24). Let us apply it to particle
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(1),1.e. w = vq in the rest frame of the particle (2), i.e. 8 = v, /c. This yields the velocity
of particle (1) in the rest frame of the particle (2),

vi+(y =Dz v — vy
(i-2)

@ _
Vl =

It follows that

2
o vi-va— [t (v 1) ® V1 X V2
v vy = o = S vy = —— =,
1 = 1 = vz 1 ] =
2 2 Y-z

o vy V2 ’ R ’ 1 W1 -v2) ) v x )’
|V1 | = + = > + > >
[val [val (1 _ Vl"’:) [val Vw2l
CZ
and y? = 1/(1 — |[v3*/c?), we conclude

2
(1 =2 wa? + T |v2|2)] L 22

|v(2>|2 — .
! val?

: [
2
(-]
Using the identity given in the text with @ = vy — v, and b = v,, we obtain
(1 =v2) x¥2)* = 1 = v2Paf’ = (V1 = v2) - ¥2)%,
showing that
(1 =v2) - v2)” = vy = w2 pal* — (1 X ¥2)°.

The insertion of this result into Eq. (S2.2) leads to
2
o v - (2)

(1-22)

2
wylm =

Hence, the result announced in the text.
2.6. Addition of two spin 1.

1. Looking at Clebsch-Gordan tables, we find

1 2 1
S =2,8,=0)=—|S;. =+1;8, - 1)+ \/j|0;0)+ —| = 1;+1).
i Vo ‘ 3 V6
2. From the tables we have

1 1 1
[S1, =-1;8;, =+1) = —6|S =2,5,=0)-—|1,0) + —]0,0).

Ve v
So we form |2,0) with probability 1/6, |1,0) with probability 1/2, and |0,0) with
probability 1/3.
3. Since S, is conserved, we can form
—astate |S = 1,5, = +1) from S|, =0;5,, = +1)or |+ 1;0);
— astate |[1,0) from |0;0), | — 1;+1) or | + 1;—1);
— astate |1, —1) from |0; —1) or | — 1;0).



Collisions and decays

3.1.

3.2

Without loss of generality, let us first show that d*p/E = dp, dp,dp./E is Lorentz
invariant under a boost in the z-direction. The components in the boosted frame are

E' =vyE - Byp,
p;c = px,
Py = Dy

P, = —BYE +yp.,

where E = \/ p3 + p3 + p? + m?. Therefore,

e _dpedp: (g 2., Ndp:  E'dp._ dp.
E  dp, E 2E E EE E’
Hence, d*p/E = d*p’/E’. The Lorentz invariant phase space in Eq. (3.3), i.e.
&p;,

ny
do =6YAp) | | —=%,
g Qn)32E,

also includes a delta function ensuring 4-momentum conservation, denoted here 5 (Ap).
From the Fourier transform in Eq. (E.9),

! f d*x &P,
(2ny*

The term in the exponential is a 4-scalar, while d*x is the 4-volume, already shown to
be invariant in Problem 2.3. Therefore, d® is indeed Lorentz invariant.

§P(Ap) =

The check is straightforward: in the centre-of-mass frame, when masses are neglected,
the incoming particles have 4-momentum p; = (|p*|,p*) and p, = (|p*|,-p*). The
4-momentum of the outgoing particles p3 = (|p’*|, p’*) and py = (|p’*|,—p’*) are con-
strained by the energy conservation, which imposes

Ip*l +1p* = p"" | + |p”"),
i.e. |p’*| = |p*|.Therefore, s = (p1 + p2)? = 4|p*|?, while
t=(p1-p3)’=-2pi-ps=-20p"F = p*- p’") = 22(p*P ~ "I cos ),

Similarly,

u=(p1—pa)* =-2pi-ps==20p*F +p* - p’*) = =2(p** + |p*|* cos 0).
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3.3.

34.

3.5.

This exercise is a simple application of formulas such as in Eq (3.50), i.e.
dm?

dO(P — p1pap3ps) = 52 dO(p12 = p1p2) dO(P — p1ap3ps)
dm?

_ dmp

dm?
5 dO(p12 = p1p2) =+ dO(p3s = paps) dO(P — prapas).

. N 2 N 2 .
Let us evaluate the sign of 6 = (Zkzl pk) - (Zk=1 mk) . Denoting the 4-momentum

P = (Ex, pi) with |pg| = (JE} — m, we have
N 2 N N
[Zpk) =Zmi+2ZPk'Pku (ka)
=1 =1

k' >k

Therefore, 6 = 2 Y1 o g With

_ _ 2,2 [ 2
O = ExEp — pr - prr — mymy = ExEp — mygmy — \/Ek —my \/Ek, — my, oS Oy,

where 6y is the angle between py and pyr. As —cos Gy > —1,

O = ExEpy — mpmy — \/E/% - mi \/E/%, - mi,.

The right-hand side is the difference between two positive terms, respectively, A =

ELE — mgmy and B = \/E,% —-m; \/E,% —m?,.If A > B*, then A > B since the square
root function is an increasing function and A, B are positive quantities. In such a case,
S would be larger than A — B > 0. Therefore, we determine the sign of A? — B2:

A? - B? = E}E}, + mim;, — 2E¢Epmymye — (E} — m))(E}, —m3,)
= —2EkEk/mkmk/ + Eimi, + E,%,m,%
= (Exmy — Epmy)?
>0

In conclusion, 6z > 0, which implies 6 > 0.
n* decay in utv,,.

1. The decay is isotropic in the rest frame (it is true only for 1 — 2 decays). Therefore,
we have dN/ dQ* = Ny/4r constant. Integrating over ¢ gives dN/ d cos 6* = Ny/2.
2. Using Egs. (3.32) and (3.33) with s = m2 and neglecting the neutrino mass yields

mi+m2 m,zr—mz
E*_ H E*_ /4_|*|
7 2 4 v 2 =PI
Mgy My

With the numerical values, we obtain E; ~ 110 MeV/c? and |p*| =~ 30 MeV.
3. Let R be the lab frame and R* the rest frame of 7*. We start from

Ey = yriz- (Ej, = Briz: - P}) -

The lab frame is boosted backwards with respect to the rest frame of 7%, so we have
Brir- = —fB e, if we define e, as the unit vector along the 7" momentum in R. As a
result

E, =y (E} +Bpjcost). (S3.1)
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The minimal energy is obtained for backward muons (cos 8* = —1) and is about 168
MeV; the maximal energy is for forward muons (cos 6* = +1) and is about 272 MeV.

. All quantities are constant in Eq. (S3.1). so we simply get

dN dN dcos@® Ny 1

2 == ~5.7MeV™".
dE, dcosf* dE, 2 yBp;, ©

To draw it in a 1-MeV binning, we would expect ~ 5.7 events per bin, for all bins be-
tween 168 and 272 MeV. However, the number of events should be integers! There-
fore, it will look like Poisson fluctuations around a mean value of 5.7 events per
bin.
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Conservation rules and symmetries

4.1. Forbidden reactions.

(1) p+ p — vy is excluded by 4-momentum conservation since in the centre-of-mass frame

of the initial state, m, = /mlz, + Ippl2 + | — p,| cannot be satisfied because necessarily

the photon momentum p, = —p, cannot vanish.
(2) n — p + vy is forbidden by the electric charge conservation.

(3) A — 1t + ¢” + ¥, violates the baryon number conservation.

(4) K~ — 7" + ¢ violates the lepton number conservation.

(5) p = n+e' +v, is kinematically forbidden since m,, < m,

(6) v - e* + e is excluded by 4-momentum conservation.

(7) n° — yyy does not conserve the charge-conjugation parity (which is not violated by the

electromagnetic interaction).
(8) p+v, — n+u* violates the lepton number conservation (Ly, = +1 whereas L~ = —1).

9) p+ p — A°+ A° violates the baryon number conservation.
4.2. Reaction ™+ p — A” = 70 +n.

1. The total angular momentum projection is conserved during the whole process so
Ji = §& = JL For the initial particles, J| = S? + ST + L,. Pions are spinless
so S ;” = 0. More tricky is the value of L,. Even if we could show, as in the next
question, that L = 1, we can prove in full generality that L, = 0. Indeed,

— “classically”: given that L = rXp, we know that L is orthogonal to p. By definition

p is aligned with the z-axis so we can only have a O projection on that axis;
— with spherical harmonics: the only possible values are for the total orbital mo-

mentum are L = 1 or L = 2. Looking at the expression of spherical harmonics in
Table 2.1, p. 68, we see that the only Y;(6, ¢) that are non-zero at § = 0 are Y?
and Yg. Therefore, we necessarily have L, = m = 0.

Finally we conclude Ji = §¥ = £1/2.

2. Looking at the A°, the total angular momentum has to be 3/2. For the final particles,
we have to combine S; = 0, S, = 1/2 and the orbital angular momentum, Z, to form
a 3/2 spin representation. The constraint 0 ® 1/2Q 1 =1/2® 1 = 3/2 requires I = 1
or 2. Looking now at parity conservation, we have 175 = 1,17, (—=1)". Therefore, L has
to be an odd number, i.e. [ = 1.

3. We are in the |3/2, +1/2) state which decomposes into

1 2
13/2,+1/2) = %mz = +1;8" = -1/2) + \/;Lz =0;8" = +1/2)

(the pion is spinless, so only the orbital momentum and the neutron spin matter). We
thus have L, = +1 with probability 1/3 and L, = 0 with probability 2/3. Now, we
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use the spherical harmonics to get the angular distribution of the neutron: recall that
|Y7(6, #)|* gives the probability density to have the particle at (6, ¢).

— case L, = +1: we use Y11 and the probability density is |Y1l =3 sin’ 6/(8n);
— case L, = 0: we use Y and the probability density is [Y?]* = 3 cos? 6/(4n).

The angular distribution is finally given by

1 +3cos’6
YIPx1/3+ VP x2/3=—" 00
8
. If (A% = —1/2, we have the same situation as the previous question if we reverse

the z-axis. It corresponds to the change 6 — 7 — 6 and ¢ — ¢ + 7. We see that the
probability density is not changed. We thus expect the same result.



From wave functions to quantum

fields

5.1.
5.2.

5.3.

13

The check is straightforward using the explicit representation in Eq. (5.30).
It is immediate: the insertion of the wave function ;(x) = v;(p)e*t”~ into the Dirac
equation leads to

(iy"8, — myvi(p)e™™* = 0 & (iy*(ipy) — mvi(p)e*™™ =0
Y pu + mvi(p) = 0.
The transformation in Eq. (5.40) that must be applied to spinors under the Lorentz
transformation with the transformation parameters w,, involves the matrices S ¥ given
in Eq. (5.39), where, as usual, the Einstein notation is used. As explained in Appendix
D, the boost parameters corresponding to a rapidity { = {p/|p| corresponds to wy; =
;i [see Eq. (D.26)]. Since wy; is antisymmetric, i.e. wy; = —wj, as well as S, the
expression of the transformation (5.40) takes the form

i ;o ; _ ; 1. pi o
S(A) = exp (—Eme 0 _ E‘”iOSlO) = exp (—sziSO ) = exp (Eg’%yoy ) ,

where §% = %yo'y" has been used. Inserting the expression of the y matrices in the Dirac
representation, it follows that

i ap
ﬁyoyi:ﬁ(O. o-):(fp Ipl)_
Ip| lpl\c* 0} \37 O
Therefore,

5 P i LI G Y L
T Lk \2pl) \o-p O k+ D!\ 2/pl o-p O

Given the properties of the Pauli matrices, it is easy to check that

2% 21 o
0 o-p s 1 0 0 o-p * _ ppe! 0 Ff
o-p O 0 1)’ o-p O LA 0

pl
[see for instance Eq. (5.57)]. We conclude that

sr=eon(Z)(} Y rsm(§)(S F)

pl
B Ie 1 tanh(é) o
- C"Sh(z)(tanh(g)% p )
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According to Eq. (2.44),

{) \/cosh{+1 \/7+1 \/E+m
h — | = = =
cos (2 2 2 m

tanh(g)zsmh(%)mh(%)_ silhg By __Ip]

coshz(%> Tcoshi+1 y+1 E+m

2

where y = E/m and By = |p|/m have been used. Therefore,

_ [E+m(1 Z&
SW—\/W(M 1

E+m
)2 Px—ipy
1 0 E i—m E+m
Pxtipy _ P
- E+m 0 1 E+m E+
Pz DPx—tDy
2m E :m E+m 1 0
DPxtipy _ P
E+m E+m 0 1

The spinors for a particle at rest are given by Eq. (5.52) up to the normalisation defined
on page 139, i.e. £ VE + m = = V2m for a particle at rest. They read

1 0 0 0
~—|0 |1 ~—10 ~—10

(,012 2m ol l//2= 2m ol lﬂ3=— 2m 1l lﬁ4= 2m ol
0 0 0 1

The application of matrix S (A) yields the spinors defined in Eq. (5.63).
5.4. Covariance of the Dirac equation.

1. [A,BC] = ABC — BCA = ABC — BAC + BAC — BCA = [A,B]C + B[A,C]. and
similarly with anti-commutators.

2. If u = v, S# = 0. Therefore [S*",S?P] = 0. On the other hand, the right-hand side
of the Lie algebra then reads

i(gHTSHP — gHTSHO 1 gHPSHT _ GHOGHTY = ()
The Lie algebra is thus trivially satisfied. The same conclusion is obviously obtained

if o = p.
3. Wheno #p, S = é)f"yf’. Applying the identity of the first question leads to

i i
[SH*,87F] = E[S”V,)’UVP] =5 [S™, y7 1y + 7 [S*, 97D .
4. Fortp # v, S* = Lyty”
[S#,87°] = =1([Y*Y". " Iy + ¥ [¥"y".¥"])
= 17 Y+ 1 YY)
= 1y Y =y Y

YN =y YD)
= 387V = g7V + 8Ty = 8V,
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Y'Y =Y =Y VY VY =Y = YT+ Y - v
using the Clifford algebra (5.29), we deduce the identity (with a,b = 0, 1,2, 3)
a.b 1 a b 1 a b 1 a b ab
Yy =§[y,y]+§{y,y }=§[7,7]+g .
It follows that

[S#. 7] = (831" ¥"1 + 878" — g7 3 [V "] — g7
+ 85y Y + g™ = g 31y v — 878 ™).
— _i(go'/lsvp _ g(rvsyp + gp,uso'v _ vaO'y)’

where the symmetry of the g tensor has been used. Since S#¥ is antisymmetric, the
previous equation yields the Lie algebra so(1, 3) of the Lorentz group, i.e.

[SMV’SO'[)] — i(gV(Tsl_lp _ g[_l(TSvp + g;tpSwr _ gva,uO').
5.5. Bilinear forms. Under a Lorentz transformation, we saw in Supplement 5.3 that
xoxX =Ny, YY) =SAN®, P - ) =S A) T

where the matrix S (A) is
S(A) = exp (—%wapsgp), S = %[}/‘T,'yp].

1. Y(x)y’¥(x): As y° anti-commutes with any y* matrix, it commutes with S and
thus with S (A), giving

WY ) = P08 (A) Y S (MY(x) = B(0)S (A) 'S (M) (x) = P(x)y (x).
This is the behaviour of a Lorentz scalar.

2. Y)Y Y Y(x):
Y E Y YY) = YOS (MY VS (AP = ()Y’ S (M) S (My(x),
which, using the constraint (5.36), p. 131, becomes
VY YY) = gy Ny ) = A ()Y Y Y.
This shows that /(x)y>y*y(x) is a Lorentz vector.
3. Y)Yy P(x):
YOO YY ) = S (A Py’ S (M)
= Y(0)S A PSS (NS (A Y’ S (M (x)
= !//(X)Aﬂtr_'yo—Avpyp‘//(x)
= NN ()Y Yy (x),
where Eq. (5.36) has been used. The bilinear form J(x)y“y"lp(x) is thus a rank-2
tensor.

Under the parity transformation, we have

x=(6x) = X =(6,-x), Y =Y W), P - P = YOux) = Py’
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4. Y(x)y’y(x) transforms into

YY) = gy Yy w) = =)y’ Y Y 0 = g0y ().
This is thus a pseudo-scalar.
5. Y(x)y "y (x) transforms into

YY) = gy YY) = gy Y Yy u().
For u = 0, y%y#y° = y#, while for u # 0, y'y*y° = —y#y%9® = —y#. Therefore
_ — (VI ,u=0
W’(X')‘ys)’”l//'(X') — { (//()C)}/ Y '/’(x) M

@)Y YY), p# 0
This is the behaviour of a pseudo-vector.

5.6. Determination of the helicity states.

1. By definition of the helicity eigenstates, we have iy, = Ay, with ¥, = uze” 7, and
where

A~ P
heg P _Mowm O
lpl 21 0

ol
Ipl
In the helicity operator, P = —iV acts on e"7* as Pe™P* = pe~'P*, Looking at the
upper bi-spinor of u,, we then obtain
lo-
>4 = 29,
2 |pl

2. In polar coordinates we have p = p (sin 8 cos ¢, sin 8 sin ¢, cos 6), so that

pl sin@ - ¢

For A = +1/2, we have to solve

o-p [ cosf  sinf-e
- —cosf |’

. _qin2 8 ) 0. iy
(0' P_1)¢]:2(. gsm g sin§cos§-e )¢
|pl 2 sin

0 o 8. id 02 0 1 =0,
Zcosze COSZ 2

from which we can check that

s cos &
1 = Lo
2 \esin g

3. We just need to find the expression for the lower part of u,. From the eigenvalue
equation, we know that o.p ¢, = 24|pl¢, with 1 = 1/2, so simply

is a solution.

a.p
E+m

b1 = Ipl

T E+m

¢

4. Let us make as few computations as possible. First, note that the eigenstates are
defined up to a phase and that i — —/ under parity.

(STt

1.
2
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® {_1:wecan apply the parity transformation on ¢1 to get ¢_ 1. Parity transforma-
tion reads 6 — 7 — 6 and ¢ — ¢ + x. Therefore,

0
sin 5
¢—% = ( i > 9) .
—e'¥cos 3
For the lower component, we proceed as in question 3 with 4 = —1/2. We end
up with the result in Eq. (5.74) of the book on p. 144, up to a sign.

° ¢/+% and ¢ _7: the general formula of a v-spinor is

=1

T
Vi = VE+m(E+’"XA).
Xa
For the helicity eigenstates of antiparticles, we start again from iy, = Ay,
but now, we apply P to e*'P* as Pe*P* = —pe*iP~. As a result, the eigenvalue
equation reads

o.px1=-24plxa
We can simply take)(% =¢_1 and)(_% =¢1.

5.7. For p = pe,, as €(p,i) - p = 0, the set of 4-polarisation vectors (5.129) is obviously
reduced to Eq, (5.122). Then, denoting the 4-polarisation vectors in the basis (5.129)
with primed symbols, we have €#(1) = A€ (A). In this basis, the left-hand side of Eq.

(5.128) reads

3 3
D e (D" W) = Ny (N,) D gue” (W) = Ny (A7) g7 = Ny, g
=0 =0
since the elements of the SO(1, 3) group (i.e. the Lorentz group) are real matrices. Now,
to prove that A’;A” g7? = g, we notice that A", A”,g7" = A';g7P(AT),, which in
matrices notation reads AgAT. Since A~! is also a Lorentz transformation, it satisfies
the definition (2.14),i.e. (A1) TgA™! = g. Let’s multiply A = AgAT by g = (A"})TgA™!
from the right. It yields

Ag = AgAT(A™HTgA™ = AggA™! = AA! = 1.
Therefore, A = g~! = g, which proves that A, ~N,87 = g". We conclude

3
Z g€ (e’ ()" =g,
A=0

which shows that the 4-polarisation vectors in the basis (5.129) also satisfy Eq. (5.128).
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The Lagrangian (6.15) is reproduced below:
Lo = )" Gaidsgds = mbuplatss.
af

Applying the Euler-Lagrange equation to i yields:

0L 7
5_,/,5 = Zar _maafﬁl//a

Lo Gaity } e Z PubaiYop =0

0uiip)

which is simply the 8 component of the Dirac adjoint equation (5.43).
The electromagnetic Lagrangian can be written

1 1 1 . 1 1 o 1
Ly = =g FuP" = —ZFOVFO" = FwF" = —ZFOVFOV - ZFJ-OFJ0 - 3 FiF”,

where i and j = 1,2, or 3. As Fyg = 0, Fy, is reduced to Fy,. Since F is antisymmetric
FP = —F% it follows that

1 1 o1 " 1 1 .
L, = —ZFOiFO‘ -~ ZFOjFOJ - Faf" = —EFOiFO’ = JFaf".

Note that F; = —F% because we lower one time-component and one spatial-component,
whereas F;; = F"/ because two spatial-components are lowered. Therefore,

1 on2 1 i\
Ly=+§Z(F ) —Z;(F ).

Using the components of the electric and magnetic fields given in Eq. (2.40), this ex-
pression is equivalent to
1
L, = 5(EP - 1BP),
withc = 1.

Canonical quantisation of the electromagnetic field.

1. After the insertion of F*” = 9*A” — 0”A*, the Lagrangian (6.20) with { = 1 reads

L = —5F F™ - 1(0,A")?
= — 3B ANPA) = 1A A + 3B AN@AY) + 1B, ANGAY) = 5B, AM)G,A).

As u and v are dummy indices, they can be swapped in the second and fourth terms,
yielding

L= —%(6#AV)(6“A") + %(@,AV)((?VA") - %((%A”)(a,,A").
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But
9u[A(0"A") - A*(8,AM)] = (0,A))(0"AF) + A,0,(8"A¥) - (0,A")(8,A") — A*0,(9,A"),
where the second and fourth terms vanish since
A,0,(0"A") = A,0"0,A" = AY0,0,A" = A*9,0,A".
Therefore,
L= —%8,,AV6"AV + %%[AV(SVA") — A*(0,AM)].

2. The second term is a 4-divergence which does not contribute to the action. Therefore,
it can be ignored, i.e.

1 1 1 .
Lo L=—2APA = —anAVa"AV - 0A"TA,.

The canonically conjugate field I, belonging to A” thus reads

oL 1 A 1
VT 8(00AY) 2 A 2

Consequently,

B@B0A”)

=-8'A,.
A(8pAY)

1 1
LA, - z(aOAV) A, - 5(80Av)

Au(x),A,(9)
A0, 4,()

= - [4u(0), TLO)] = —iguwdP(x - y),
= [0, T,()] = 0.

6.4. Trace of the product of four y matrices.

Te(yPy*y™y") = Te(y*y"y"y")
= =Te(*y"y?y") + 287 Tr(yy")
= =Te(y"y"y?y") + 87"
=Ty y?yTy") — 88" 8" + 8¢ g
= =Te(y"y"y"y") + 8% g™ — 8¢ + 85”8,

and therefore,
Tr(yy*yy") = 4 (g™g™ — g gl + ¢7) g

6.5. Feynman diagrams and amplitudes of reactions with ¢* and u*. We note in all this
exercise ¢ = —e the charge of the electron (or the muon), not the positron (nor u*). The
Feynman diagrams of the first three reactions (at lowest order) are:

et —igy* et et —igy* et et T
vy -
y «— gy
_ —1qY” _ _
1 1 1




A brief overview of Quantum Electrodynamics

1. ef(k) + e (p) = u™ (k') + u (p').

It’s a t-channel and
_ig,uv
t+ie

iM =i, (p") - (=igy") - uu(p) X X Ve(k) - (=igy”) - ve(k"),

where t = (k—k’)> = (p’ — p)°. The amplitude should be a C-number. Therefore, one
should always check that all ¥ matrices are correctly contracted between an adjoint
spinor and a spinor.

2. e"(k) + " (p) = e (k) + ().
Same as 1, except for the muon current:

. _ = (s . ’ _ig/»“’ - (s vy . ’
iM=7,(p)- (—igy") - vu(p") X e X Ve(k) - (=igy”) - ve(k').
3. ef(k)+ e (p) = ut (k') +pu (p)).
It’s a s-channel and
IM = 5,(K) - (—igy") - ue(p) X —22 s i, (p) - (=igy”) - vk,
S+ 1

where s = (k+ p)*> = (K’ + p)~.

4. et +u- > e +ut.
Not allowed at any order: the process violates the individual lepton numbers, which
are conserved in QED processes. Note that the conservation is ensured by the inter-
action Lagrangian in QED, which has no term of the kind /"y ;A,,, where f and
f” are two different fermions.

6.6. Reactions with e* and e™.

1. e= + e — e + e~ (Mgller scattering).
There are two diagrams:

(1) e” e (3) (1) e” e (3)

(2) e” e (4) (2) e” e (4)

To check if they are equivalent, look at the hidden part (that is, the vertices and
propagators — everything but external lines) of the diagrams. If they are different
(e.g. the momenta flowing in the propagators are different), then the two diagrams
are not equivalent, and we need to add/subtract them. Here we have a 7- and a u-
channel that have p; — p3 and p| — p4, respectively, flowing in the photon propagator
(assuming a downward flow). We can retrieve one from the other by exchanging the
two outgoing electrons so, we put a minus sign between the two amplitudes since
fermions are exchanged. Note that a diagram where the incoming electrons would
be interchanged would be equivalent to the second diagram since the 4-momentum
in the photon propagator would be p, — p3 = ps — p1 by 4-momentum conservation
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(the sign of the 4-momentum in the propagator is physically meaningless since the
photon can be seen as going upward or downward).
2. et + e~ — " + ¢~ (Bhabba scattering).
There are two diagrams:
(1) et et (3) (1) et et (3)
v
Y
(2) e~ e (4) (2) e~ e (4)
An s- and a t-channel. The label (1) and (3) are used for positrons, while (2) and
(4) are for electrons. We transform the first diagram into the second by exchanging
the outgoing electron (4) with the incoming positron (1). As the exchange concerns
fermions, the two amplitudes must be subtracted. Note that the interchange of (3)
and (4) should not be considered since (3) would no longer label a positron but an
electron. When new diagrams are envisaged, the labelling convention used in the
first diagram should always be followed.

3. ¢ + e — v+ (pair annihilation).
There are two diagrams:

(1) e” 7 (3) (1) e~ v (3)
(2) e* v (4) (2) e* v (4)
A t- and a u-channel. We transform one into the other with the exchange of the two

outgoing photons. Since they are bosons, the amplitudes must be added.

6.7. To show that the absolute amplitude squared (6.93) of the scattering e™ +u~ — e~ +pu~,

—  2¢*
IMP> = - [(s —m? — mi)2 +u—m— mﬁ)2 +2t(m? + mﬁ)] ,

is equivalent to

4 2

—_— e t
7 _ 222y 2 2, 2

IMP? = " [(s my, — my)(my +m, —u) + t(m; +m,) + >

b}

it is easier to start from the second formula,

— 26
IMP = =

Y, —

[2(s = mZ = m2)mZ + ml, = w) + 260m2 + m2) + 7]
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Giventhat s + 7+ u = ?:1 ml2 = 2m§ + Zmﬁ, the Mandelstam variable 7 satisfies
= (ng + Zmi —s—u)?
:(mg+m5—s+mg+ml%—u)2
— (2 2 2 2 2 2 2 2 2 2
= (m; +mﬂ—s) + (m; +my, —u)” + 2(m; +mﬂ—s)(me +m121—u)

_ 2 2\2 2 2y2 2 2N(2
—(s—mg—my) +(u—me—m#) —2(s—me—mﬂ)(me+mﬂ—u).

The insertion of 7> into the second formula leads to the first.
6.8. Eq. (6.98) is a simple consequence of 4-momentum conservation. In the reaction, e~ +
u~ — e~ + u~, for an initial muon at rest, 4-momentum conservation imposes

{Ee+mﬂ =E,+E),
Pe = Pet Py
When the electron mass is neglected, the second equation implies
pe = Pl = 1Pl
E2 + E?* -2E,E/cosf = Eﬁ - mf,

Inserting £, from energy conservation yields

E; + E}> = 2E,E, cos 0 = (E, +m, — E)* — m
= E? + E> - 2E,E, - 2m,E, — 2m,E..

It follows that
E.m,

’

e =

my, + E.(1 —cos6)’

69. As p? = p? = % = p? =t and £ = 0.4 = Te(p''Cp” + )PP + 1)
reads
A = 4P (Y pya) + 2Te (p v kp?ye) + 2Tk (p v pPs) + T (' vy py k)
= 4m? [TI' (P,’Y”W'y,u) +Tr (P,'yﬂk’)’ﬂ)] +Tr (P/,yuk,yvp%/kyﬂ)
The identity (G.6) tells us that y*py, = p,y*y"y, = =2y"p, = =2p, ¥"ky, = -2k, and
¥’ py» = —2p. Consequently,

am® [<2T (p'y") (py + k)| = 29, Te (' By k)
—8m? [4p™ (p, + k)] + 4p, T (p by k),
where the identity (6.85) and (G.8) have been used. Therefore, with the help of Eq.
(6.89), it follows that
A= =32m>(p' - p+ p k) + 4T (p kpk)

“R2m*(p p+p k+16(p kp-k—p -pkP+p -kk-p)
=32[-m’p' - p+p - k(p-k—m*)].

A

Similarly, B = Tr(y*(2p” + ky")2py + y»£)y,) becomes
B = 4p>Te(y*y,) + 2Te(y* phy,) + 2Te(v*kpy,) + Te(y ey y by,

= 16m>Tr(1) + 8p - kTr(1) + 8k - pTr(1) + 4Tr(y“lé2y,l)
= 64m> + 64p - k.
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6.10. For Q° = —¢* > m?,

F@) =6y dzz(1 - 2)In[1+ Lz(1 - 2)|
= 6](‘)1 dzz(1-2)In %Z(l —Z)(l + sz(ll—7))]
~6 [ dzz(1-0In| L1 -0
=6 [ dzz(1 -2 In(Z)+6 [ dzz(1 - In[z(1 - 2)]
=6X %ln(%) +6f0I dz z(1 —z)lnz+6f01 dzz(1 =z)In(z—-1)

=ln(%)+6x§+6x;—g
()

Therefore,
2 2 2
(0P - £(Q3) = ln(%) . ln(ﬂ%) _ ln(Q—),

and Eq. (6.115) becomes Eq. (6.116).
6.11. The ultra-relativistic regime of the reaction e”(p) + e* (k) — u~(p’) + u* (k).

1. In the ultra-relativistic regime, helicity and chirality are the same since masses are
neglected. In Section 6.5, p. 207, for a reaction described by an s-channel diagram
(which is the case, see Fig. 6.6), we listed the allowed configurations in Fig. 6.10.
Only four amplitudes can contribute to the process, i.e.

Mirsirs Mgk, Merisir,  Merisere

where M4 denotes the amplitude for e~ with the helicity (or chirality) a, e* with
b, u~ with ¢ and u* with d.
2. The s-channel amplitude reads

—iguv

‘?e(k) - (—igy") - ue(p) X rie X Unu(P") - (—igy") - viu(K)
22 (e (s

iM

(S6.1)

with s = (p + )%, (e = qPe(k)y*ute(p), and (j")mu = Gilmu(P')Y" Vimu (k). Let us use
the centre-of-mass frame and orient the z-axis in the direction of propagation of the
electron. As the initial particles are the same, so is the energy E,- = E+ = /s/2.
Similarly the final particles are the same, so E,- = E,+ = +/s/2. As a result, all
leptons have the same energy E = +/s/2. Since we neglect all masses, all leptons
have the momentum |p,| = E.

Let us start with the amplitude M;g_, . Using the spinor formula (5.96), rotation
invariance allows to set ¢ = 0. For the electron (8,-,¢.-) = (0,0) while for the
positron (6,+, ¢.+) = (m,0), giving, respectively, for u.(p) and v.(k),

0 1
1 0
Upe = U_L = VE ol VRe ¥V, 1 X vE 1l (S6.2)
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For the muon, for simplicity, we orient the x-axis in the muon direction of propaga-
tion. Hence, we have (6,-,¢,-) = (6,0). The anti-muon is emitted back-to-back so
we take (6,+, ¢y+) = (m—6,-, 7+¢,-) = (m—6, m). Then, the spinors read, respectively,
for um,(p’) and v (k'),

—S C
C S

Uy ~u_y ~ VE o ey s VE e (S6.3)
—C -5

using s = sin%) and ¢ = cos g.

To compute the electron current (j*)iR = q(vRZyoy“uLe) for u = 0...3, note that
yOy* are

082 _ 0. _ Ti
) =1 77—(@ )

namely

1 -1 1

This yields ()i = ()R = 0, (/)EF = 2, (PR = 2igE, ie.
0 0
H)LR .0 -2 -1
()" = qOrey Y'ure) = qE 5 = qvs i
0 0
Similarly, we find

0 0

. —2cos6 —cosf
(P = QY Y vema) = gE | | =a Vs
2siné sin &
Therefore, given that g = —e, the amplitude is

[
= % IR GHER

1
= (UM GO = GHE DR - I Gt = GO G
= —¢*(cos @ + 1). (56.4)

MLR%LR

For the three other amplitudes, no need to redo the whole calculation. Since parity
is conserved by QED processes, the amplitude of the parity transformed process
is equal to the original amplitude up to a phase. The parity transformation inverts
helicity. Therefore, we should have

Mgri—rr = MrReMirsLr, Mgrr—ir = NLRMir—RL



25

A brief overview of Quantum Electrodynamics

with |n.g| = Ingel = 1. Hence, only Mz g, needs to be evaluated, imposing to
re-evaluate the muon current for the RL helicities. Following the same approach as
before, one finds

c s
Ugma ~ ty1 = VE z . Vim~voyx VE _SC : (S6.5)
s —c
This yields
0
UL = gl ¥vime) = a¥5| ~ <),
sin 6

and thus

Mir-re = ﬂ (ER (RL = (1 - cos 6). (S6.6)

. The four processes differ by observable quantities. Therefore, there are no interfer-

ences. We then have

— 1
Ml = 7 (Meroal + IMezoel + IMerorel + IMeioial’)

5[(1+cost9) +(1- cos@)z]
4(1 + cos 0)

. Using the Mandelstam variables,

s = (p+k)? =4E? = 4|pP,
=(p-p)P=-(p-p) =-2pP -cos¥),
u=(p-ky3?=-(p-k)y>=-2pP{1 +cos),

it follows that (1 + cos 8)% = 4u?/s* and (1 — cos 6)> = 4¢%/s%, and thus

2, .2
" +u
4

2e -

|Mtot|2 =

N

. Starting from Eq. (S6.1), we have

4 *
IMP = 55 [3ek0 P (P, K] 30yt P (P Y7, i (K1)

Therefore, the unpolarised amplitude squared is

4
e
IMil* = — " (e)Lyy(mu),
s
with

L7(e) =13, [Pl ue(p)] [Fe()y ue(p)] = $Tr[priy’]
Lyv(mu) = % Zx,x’ [umu(p,)'yyvmu(k )] [umu(p )’)’vvmu(k’)] = éTr [k )’yp')’v] s
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where the trace results from Eq. (6.83), when masses are neglected. Now, the trace
of the product of four y matrices is given by Eq. (6.88). This yields

4
e ’ ’ /7 ’ ’
IMial* = §8[(P~k)(k P+ (p-pHk-K)].
Sincet = -2p-p’ =-2k-k"andu = -2k - p’ = =2k’ - p, it follows that

2 2
41"+ u

IMial* = 2e 5
s

6.12. The non-relativistic Hamiltonian in the presence of a magnetic field reads

v (p-qA? P* g, . ¢A P q, .
H==——"="—-—=A-p+—=>——-—=A-
2m 2m  m p 2m 2m  m p

where the term in ¢ is neglected. We identify the non-relativistic kinetic energy p?/(2m)
and the additional energy given by
Ex=-ZLA.p.
m

But, B = V X A and A can be chosen satisfying the gauge V - A = 0. Therefore
A= %B X r and Eg become

Es=-LBxr p=-Laxp)-B=-Li.B=—p-B,
2m 2m 2m

where the circular shift property of the scalar triple product has been applied in the
second step. We finally find the expected expression for the magnetic moment fi.
6.13. Starting from the definition of

ot = % oY =y,

we have fork, j = 1,2,3,

=t 2 ) () )

_ i [~(cFo = oiok) 0
2 0 —(c*od — aio*)
_ —ZiZlEijO'l 0 ’
2 0 =21 ZZ € j10 !
!
o 0
= €
21 €jt ( 0 O_z)
where €, is the usual antisymmetric tensor appearing in the commutator of the Pauli
matrices (g = 1 for cyclic permutation of 123, = —1 for anti-cyclic permutation, 0

otherwise). Similarly,

PSRRIy

_iOO'j
T \e? 0 )
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Ug

6.14. In Eq. (6.124), given that in the low energy limit the spinor u = (§ ), the term #;0%/1;9 A
is explicitly
ki 1 0\(o! O0\(u,
I/th'k‘]MiajAk = Z Ekﬂ(uzf, 0) (0 _1) ( 0 O'Z)( 0') 0;A = Z €l ulfo-lua,-ajAk.
] ]

(S6.7)
Let us focus, for example, on the component k = 1 of A;. It is contracted by

Eth'Uuiaj = ﬁf-O'“@lui + ﬁfo'lzazu,- + ﬁfa'1363u,~,
which according to Eq. (S6.7) is

S i o . . .
o uidj = 3 €111 U 0 Ottt + Xy €121 Ug, 0" Oolha, + 21 €131 Ug, 0 O3,
_ ! I I
= Uq, (Zz €110°01 + X €210702 + X €130 53) U,

The properties of the antisymmetric tensor € are such that €;1; = 0, and €5; and €3; are
non-zero only for / = 3 and 2, respectively. Therefore,

ﬁfa'ljui(')j = qu (O’362 - 0'2(93) U,
= —ulf [0 x 8] Ug,.
We would have reach a similar result for the other components. Therefore,

u_fO'kjuﬁjAk = uz[ (Z €kji 0-1(3_,-Ak) Ug, = —sz ([O’ X 6]" Ak) Ug; .
1



From hadrons to partons

7.1. Spinless scattering: the Rutherford cross-section of e” (k) + p(p) — e~ (k') + p(p’).

1. Using the Feynman rules for scalars, the amplitude is given by a 7-channel diagram
and reads

—i
-

iM = [—i(—e) (k" + k™))

with ¢ = k — k’. Consequently,

62 7, /7 e2 7 ’ /7 7
M=——E +k")pu+p)=——=k-p+tk-p'+k'-p+k-p).
q q

For a proton at rest and neglecting its recoil, energy conservation implies E + M =
E’' + M, so E = E’, and then, the 4-momenta are k = (E, k), kK’ = (E, k'), p=p’ =
(M, 0). Therefore, the scalar products in the amplitude are all equal to EM. When
the electron mass is neglected, as

¢ =(k-k') ~=2k-k' = -2(E* - E* cos §) = —4E? sin® g,

with 6 the scattering angle of the electrons, the amplitude finally reads

2

e draM

= g EM = ——.
4E? sin 5 Esin® 5

2. Formula (3.44) is appropriate to express differential cross-sections in the lab frame
since

do dodt 1 |IMP dr

dQ ~ dr dQ  64ns |p*]E dQ

Since particles are considered spinless, |M|? = |M|*. The quantity p* is the momen-
tum evaluated in the centre-of-mass frame and reads, with the help of Eq. (3.34),
o (5= M>)(s—M?)
p*I" = 4
s
As s = (p+k)? = M?> + 2EM, |p*|* = E>M?/s. Moreover, t = g> = —2E*(1 — cos 6)
implies df = 2E? d(cos 6). Given that dQ = 2x d(cos ), df = E>dQ/n, it follows
that
do 1 s
dQ ~ 64ns E2M?

draM : E? _ a?
E sin® g) m  4E?sin*} '

This is the well-known Rutherford formula, usually derived using a spinless particle
(historically alpha) in a static Coulomb field.

28
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7.2. The Mott cross-section with a spinless proton and spin 1/2 electron, e~ (k) + p(p) —
(k) +p(p).

1. The proton current is the same as in Problem 7.1, but this time, the electron current
is the Dirac current. The amplitude reads

_iguv
612

iIM = [ (K (iey)u, (k)] [—ie(p” + p™)],

with, as before, q2 = —4EE’ sin2(0/2) since the electron mass is neglected. The
unpolarised amplitude squared is now given by

4
e /7
IMP? = ;L’”(pp + P )Py + D)),

where
L =15, (e )y u ()] [ (K )y u, (k)]
= 3Tr (ky"i'y")
=2(kKY —k-K'g" + kK'kH),
where the formulas (6.83) and (6.88) have been successively used. Inserting L/ into
|M|? formula leads to

IMP> = Z—i[(k -p)K - p)+ (k- p)(k - p’) + (k- p' )K" - p)+ (k- p))(K - p’)
— M2k - K) = (k- K)(p - p)]-

Now, the proton recoil is no longer neglected, but the colliding proton is at rest.
Therefore, k = (E, k), k¥’ = (E',k'),p=M,0)andp’ =k+p—-k =(E+ M -
E’,k — k). It follows that

k-K =2EE'sin® 8, p-p'=ME+M-E), k-p=EM, K -p=EM,
and

k-p =-2EE’sin’§ + EM, k' - p’ = 2EE’sin> § + E'M.
Inserting these scalar products in [M|? formula yields
IMP = 32 EE’ (2M? + EMsin® § — E'M sin” § — 2EE’ sin* § — 2M?sin” §)
= S EE [2M? cos® § + Msin” § (E — E' — 2EL sin” §)].

However, according to Eq. (7.9),

EE’ 0
sin’ . (S7.1)

E-E =2
M 2

Therefore

16¢*
7

IM]2 = EE'M? cos? g,

with ¢* = 16E2E” sin*(6/2).
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2. To get the differential cross-section, we proceed as in Problem 7.1, i.e.

do 1 IMP dt
dQ ~ 64xns |pr? dQ°

The momentum |p*|? is still given by E>M?/s. However, even if ¢ has the same
expression, the calculation of d¢/ dQ) requires some precautions. This time, E’ also
depends on 6 [see Eq. (S7.1)], so dt/ dQ is no longer E?/x. It is easier to calculate
dt/ dQ using

t=(k-k)Y = -pP=2M*-2p" - p=2M*>-2E+M-E)M,

so that

oy dE

dQ 2 d(cos 6)
Actually, the calculation is exactly the same as that done on page 199 in the book,
where the role played by the muon is now played by the proton. This leads to the

expression (6.99), which is now

dQ " 64 M2\ E

do 1 IMP(E
= -

The insertion of the expression of | M|? yields the Mott differential cross-section,
do a? E 5,0
dQ  4p2 sin4§ E 2
7.3. The general elementary cross-section formula applied to the reaction e~ (k) + p(p) —

e~ (k") + p(p’) with the assumptions k = (E, k), k¥ = (E', k'), |k| = E and |k’| = E’,
p=(M,0)is

1
4p - k|

d3 pl d3 k'

20 6P + kK - p — k)M .
Q2m)* 6 (p p—bIM| 720 Ony2E

do

Writing &*k’ = E’>dE’ dQ and p - k = EM yields

dor 1 — &y
= SV + K - p - RIMP——=.
aEd0 - sman P P=BIMEE 2%

To integrate over d*p’, we first use Eq. (E.6), i.e.

+00 +00 d3 ’
f d4p' 6(p’2 _ Mz)g(p,o) _ f ap

- e 2p/0 ’

yielding
225 = [ & 6 = MO ) s 0P (0 + K - p — DIMPE
= sz O(p + @) - MHIMPE
= s 0@ +2p - QIMPE

= 8M(]2n_)2 5(612 +2M(E - E/))|M|2%-
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Finally, using a property of the -function, we conclude

do B 1
dE’dQ ~ 16M2(2n)?

2 ’

q N oz E

—+E-F 2. 2
6(2M+ )IMI 7 (87.2)

7.4. With ¢, (x) = u(p’)e " and Yp(x) = u(p)e~7~, the expression of the proton current
Jts, = U Oy, (x) is

JE ) = PO [ @ + A@P + pY + @ |ulp),
with g = p’ — p. According to the Gordon decomposition (7.12),
a(p’) (p" + p)* ulp) = 2M a(p"yy*u(p) — ia(p o' q,u(p),
where M is the proton mass, the current becomes
Jt () = €7 (p) | (A(g)) + 2MA@) Y - i@ g, + f(g)e | ulp),

which, after defining 7, and %>, such as F1(¢*) = fi(¢>) + 2M f>2(¢*) and fo(¢*) =
—ﬁl%(c]z), reads

. ig-x — 7 . K v
) = ) |Fi@ + i3 T g + (e | o)
Its conservation d,,jf = 0 implies
7 . K v
Gl | FUG@W + i T2, + (@ [ up) = 0.
Due to the Dirac equation in momentum space, i.e.

(p —mu(p) =0, u(p" ) —m) =0,

the term u(p’) 7, (qz)qu(p) = 0. Moreover, o*” is an antisymmetric tensor which implies
q.0"q, = —q,0"q, = —q,0*"q,. Therefore, q,0*"q, = 0. As a result, the current
conservation reduces to the constraint

H@HGupHu(p) =0,
for all p, p’ and g = p — p’, imposing f3(¢*) = 0. The current is thus
. igx—, 1 . K v
) = €T | Ty + i T g | u(p),
7.5. Estimation of the proton radius from the form factor.

1. For a charge distribution p(r) with a spherical symmetry [p(r) = p(r)], the form

factor reads
T 2
G(g) = fp(")eiq" d&’r = fdrp(r)r2 f dé sin Gei""’cosgf de
0 0
The integral over 0 is [_ ei\zl;cljs9];r = 2sin(gr)/(|q|r) while that over ¢ is simply 2.

Therefore,

4
Glg) = ﬁ f rp(r) sin(lglr) dr.
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2. The density normalisation requires

fp(r)rzdrsinedé d<p:Af ~or 12 drsin g df de = 4”Af car 2y - 1

With two successive integrations by part, the integral is 2a°. Therefore, A = o /(87).
3. Let us calculate G(|q|):

3 oo -
G(g) = a_f re""" sin(|q|r) dr = _5 (f rel-atighr dr).
2lql Jo 2lql

An integration by part eliminates r, yielding

o3 eatiahr a3 1 ot 1
T N (N N N
2lql —a + iq| gl \(-a+ilgh?) (a” +Iql) (1+ la? )

This matches the dipole formula in Eq. (7.24) for @ = 0.71 GeV (given Q* =~ |¢?|).
The mean value of the proton radius is then obtained from

2\ _ 2 3 _i Do4—0zr
(r'y= [ ro(r) d’r = rre " dr
2 Jo

giving, after multiple integrations by part, 24/a°. Therefore,
V12 12 [12
= iy = —= = |/ = GeV! = \[—— x0.197 fm,
= 071 071" "
giving r, = 0.8 fm.
7.6. We start from

v v W Wi ., Wa v
WH = —W, g + Wp“pv+ Wq"q + W(p"q +p'q"),

and impose g, W*" = 0, i.e.

W 2

qu“V=—W1q + w249 PP+ 35979 +—(q g’ +q*p")
|- W1+W‘ 2+ p]+p [qu P+ ped]

—O.

As it is zero for all ¢ and p, this implies each bracket above is zero. Therefore,

q-p

Wy = - W,
7
and
M? : M? p\
Wz—?W1—¥W4— 2W1+(qq—2p) W,

It follows that
p\2 v . Vv
W = Wi+ S+ | LW+ () W ﬂ_[uw]w
oV
=W1(—gﬂv+2—?)+% pip’+
= Wy (=g + LL) + 33 (" -
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7.7. Deep inelastic scattering cross-section of neutrinos on nucleons. According to the text,

FY(x) = 2ald(x) + B(2)],

where d and & are the PDFs of the d quark and & quark (from the sea) in the proton. This
is coming from the charge-current interaction of neutrino where the interaction with v,
on quarks produces

Vu+td—u +u, Vu+l/_t—>,ll_+£7.

(The contribution of quarks heavier than u and d are neglected here). Note that the
charge-current interaction of v, + u or v, + it is impossible. As neutron also contains d
quarks (and # from the sea), we expect

FP(x) = 2x[d" (x) + " ()],

where d" and #" are the PDFs of quarks in the neutron. The isospin symmetry tells us
that d" = u? = u and @" = d? = d, and thus

F}'(x) = 2x[u(x) + d(x)].
Therefore, the nucleon structure function is
FN(x) = % [F;p(x) + F{"(x)] = x[u(x) + d(x) + a(x) + d(x)].
Similarly, we saw in Eqs. (7.36) and (7.37) that

FL0) = x| (2) W) + ax) + (3) (deo) + d) |
2 - 2
Fg'(0) = x|(3) (d0) + d) + (3) ) + @),

such as

1 2\ (1Y
F') = 5 [F57(x) + F§'(x)| = % [(5) + (5) ] [u(x) + d(x) + @(x) + @(x)] .

FsV 12\ NE 1 s
Y 2\3) T\3) ]
where 2/3 and 1/3 are coming from the electric charge of quarks. In other words,

FeN
pox =3l ail

Therefore,

If g, or g, were integers, we would have at least g2 > 1 or qfl > 1 since the proton is

electrically charged, implying F5¥/F;N > 1/2. As measurements are consistent with
5/18 < 1/2, necessarily, one of the quarks has a fractional charge.
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8.1. Applications of the isospin symmetry.

1. In the reaction p + p — n* + d, in terms of isospin representations, the initial state
2 ® 2 forms a total 3 (isospin 1) or 1 (isospin 0) representation. Looking at the third
component of isospin 7’3, we have T3(pp) = 1/2+1/2 = 1. Therefore, total isospin 0
is excluded, leaving isospin 1 as the only possibility. In the final state, since deuteron
has isospin 0, the pion needs to have isospin 1, as the isospin of the final state must
be 1. Pions are thus members of an isospin triplet.

2. The particles involved in the reactions p + p — n* +d and n + n — 7~ + d have
isospin representations

The reaction n + n — 7~ + d is the isospin conjugated of p + p — 7" + d reaction
(in each representation, we take the particle with opposite T3 : p — n, 77 — 7,
d — d). Since isospin is considered here to be a symmetry of strong interactions,
the cross sections are the same.

3. In terms of isospin states, we have

p=|1/2,+41/2), n=]1/2,-1/2), d=10,0), =°=|l,€)fore e {x1,0}
Therefore, the reactions involve the isospin transitions

p+por+d: |1/2,+1/2)®]1/2,+1/2) — |1,+1)®[0,0),
n+n—on +d: |1/2,-1/2)®|1/2,-1/2) — |1,-1) ®]0,0),
n+tpon’+d: |1/2,-1/2)®|1/2,+1/2) — [1,0)®|0,0).

Using the Clebsch-Gordan table in Fig. 2.1, p. 72, we have

[1/2,-1/2) ®|1/2,+1/2) = %(|1,0>+ 0,0)),

where the right-hand side is written in terms of total isospin. With total isospin, the
reactions are described by
ptpont+d: |L+1) —|1,+1),

n+n—on +d: |1,-1) — |1,-1),

n+p—on’+d: |1,0) +10,0)) — |1,0).

1
o
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8.2.

8.3.

From the n+ p, state we thus have 50% probability of producing the |1, 0) state (7°d)
and 50% probability of producing the |0, O) state (d). As a result, we expect

1
o(np — n°d) = §O'(pp — ntd).

Note: the formalism from this question can also be used to answer the first two
questions.

Weight diagrams with 3 ® 3 ® 3. When we start from the fundamental representation
3 (the triangle) and superimpose on each corner another triangle (i.e. we do 3 ® 3), we
obtain the diagram in Fig. 8.6 located on the left-hand side of the equal sign of the first
row. Starting from the highest weight uu and applying the ladder operators /- and V_
(Fig. 8.5 tells us the action of the ladder operators) generates the states corresponding to
the second diagram of the first row (after normalisation). The third diagram is obtained
by requiring its states to be orthogonal to that of the second diagram. For instance, the
state (ud +du)/ V2 in the second diagram must be orthogonal to a linear combination of
du and ud, which have degeneracy 2 in the first diagram. We obtain (ud—du)/ V2,i.e. the
state in the third diagram. The diagrams in the second and third rows are obtained using
the same recipe. We end up with the well-known decomposition 3®3®3 = 10+8+8+1.

Let us determine the missing states in Fig. 8.6. Let us focus on the octet in the second
row in Fig. 8.6. Starting from the state (2uus — usu — suu)/ V6, we can apply V_ to get
the state in the lower-right corner. We find —(2ssu — uss — sus)/ V6. We then apply 1_
to get the state in the lower-left corner, obtaining —(2ssd — dss — sds)/ V6. Similarly,
for the octet in the last row, starting from (usu — suu)/ V2, we obtain:

usu —suu V- uss—sus L. dss— sds
— —
V2 V2 V2

For the decuplet, we start from uuu and apply twice V_, obtaining successively (suu +
usu+uus)/ V3 and (ssu+ sus +uss)/ V3. Finally, starting from ddd and applying twice
U_ yields (sdd + dsd + dds)/ V3 and (ssd + sds + dss)/ V3.

In the context of the spin, let us called the two states T and |. The action of the ladder
I, is obviously I_|T) = [|) and I, ||) = |T). In the weight diagrams, the representations
are represented along the I, axis, the fundamental representation 2 having its member
in I, = +£1/2. The construction proceeds as in the previous problem. The result is:

41l =1l
Wt WoE el
N\ | | — | -~ o o 69 | | . |
i 2®2 3 1
R W M
L@t el I, — I I I I I I @ | | | |
7 \ 32 4 7 A 1 A \
e A B e 1 1 2 A e 2 e i 20ttt 28T
B e e A o e A e A et R
V2 V2

V2 V2
I | . 1 I I — I I | I 1 I

1®2 2
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84.

The first row is straightforward to obtain. The second row starts from the 3 represen-
tation (in grey in the first diagram of the second row), and we superimpose the funda-
mental representation on top of each grey point to obtain the black points of the first
diagram. Then, we apply the ladder operator /_ to the highest weight 717 (successively
three times), which generates the second diagram of the second row. The third diagram
is obtained by requiring the orthogonality of the states with those of the second dia-
gram. For instance, let’s take the state at I, = 1/2. According to the first diagram of the
second row, it must be made of a linear combination of 77| and | TT + 7T/7T (those states
located at I, = 1/2 in the first diagram), i.e. a TT] +b(ITT + T.T). Moreover, it must be
orthogonal to the state located at I, = 1/2 in the second diagram of the second row, i.e.

ITT+NT+T 1
+b + ——— )= —=(@+2b) =0,
<a L +bUTT + T NG > \/g(a )
implying b = —a/2. Since the state must be normalised, we also have the constraint

a* +2b* =1, givinga = 2/ V6 and b = —1/ V6. The other state in the third diagram at
I, = —1/2 is obtained by applying the ladder operator I_,

R el 5 O 5 S g A
_ NG NG .
The A baryons belong to the spin 3/2 decuplet (see Fig. 8.1). Comparing Fig. 8.1 with

Fig. 8.6, the flavour content of the A* baryon is (uud + udu + duu)/ V3, which for a
spin-up state [see Eq. (8.21)] gives

+ uud+udu+duu LITHTIUT+TTY
A%, 1) = wdssdusd g 111

=MulutdT+utuldt+ututdl+
uldtulT+uldlul+uldlul +
diutul+dtulut+dlutul).

Similarly, A? is a member of the baryon spin 1/2 octet located at the centre. There are
two baryons in this location (see Fig. 8.1): £°, which belongs to an isospin triplet with
its partner *, and A°, which is necessarily a singlet of isospin. Looking at the flavour
contents given in Fig. 8.6, it is easy to check that (usd + sud — dsu — sdu)/2 in 85
(the octet in the second row) and [2(uds — dus) + usd — sud — (dsu — sdu)]/ V12 in
84 (the octet in the third row) is an isosinglet since the action of /. on these states
yields 0. The symmetric combination under the exchange of the first two quarks in 8/
must be combined with the symmetric combination under the exchange of the first two
spins, while the anti-symmetric combination in 8,74 must be combined with the anti-
symmetric combination of spins. Therefore,

1A%, 1)

5 (18us) ®12us) + 18ua) ® 124) )
— L (md+sud—dm—sdu ® 2AT-TITUT 2(uds—dus)+usd—sud—(dsu—sdu) ® =117 )
V2 2 V6 Vi2 V2

= ﬁ [usd(Z =200 + sud2 770 =2 TU1)
—dsu2 7L =211 — sdu2 770 =2 TU1)
F2uds(TLT = 1T = 2dus(T1T - lTT)]-
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8.5.

8.6.

By definition, the magnetic moment of A° is

pa = (A2 1A% 7).

Using the expansion of |A?, T) obtained in the previous problem, only the combinations
of flavour and spin with identical initial and final states can contribute to the calculation.
For instance, the first term in the expansion is

2
() Cusd 2 110 1 pe s 2 171
= Laqusd 1) | pg@lel+log,el+1eleu, lusd 1)
= %(ﬂu + U5 — Ha)-

Therefore, we globally find

_ 1
HA = 13

[(Juu +ﬂs_,ud)+(_/~1u + Us +,ud)+(ﬂs + My _ﬂd)"'(/ls — Mu +/1d)
+(Ug + py = ) + (pg + pg + ) + (g + pg — ) + (g = g + i)
(= Ha + ) + (i + Ha + 15) + (g = g+ 1) + (~pta + g + 1)

= [

Given that the measured value is up = —0.61uy, we deduce from Eq. (8.23)
1M
my= =3 —py = 0.55M = 513 MeV/c?,
Hs

where M = 938 MeV/c? is the proton mass.
The reaction e*e™ — ¢g

1. In this reaction, the initial state is colourless. As colour conservation is always sat-
isfied, the ¢g pair has zero colour hypercharge and zero isospin.

2. By construction, the singlet (7r + gr + bb)/ /3 obtained in the product 3®3 = 8§ &1
has Y. = I3, = 0. The states in the octet satisfying this constraint are (#r — 3g)/ V2
and (Fr + gg — 2bb)/ V6 [see Eq. (8.52) obtained for gluons].

3. We saw on page 266 that the cross-section of the reaction is given by

4ma® Q?

2
Tete—gg =~ C=00Q°C,

where C = 3 is a colour factor due to the three possible colour-anti-colour combina-
tions carried by the pair. It can also be interpreted as the number of possible states
satisfying the colour constraint: we have C = Nocter + Niinglet = 2 + 1 = 3.

4. If the gg pair is produced in a colour octet state, even if Y, = I3, = 0, it carries,
by definition, a non-zero colour since it is not a singlet. Therefore, strictly speaking,
the reaction e*e™ — ¢g cannot occur since the initial state is obviously a singlet of
colour. Hence, other decay products must be present in the final state to form at the
end a singlet. The presence of a gluon is a good candidate. We know that gluons are
members of an octet, and according to the product 8 ® 8 = 27 @ 10e8v1a10a 8,
if gg is in 8 and the gluon in 8, there is a possibility of forming a singlet with

e*e” (singlet) — gg (octet) + g (octet).
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8.7.

8.8.

If finally, gg (octet) forms a meson, as mesons are colour singlets, for the same
reason as before, the pair must radiate a gluon, i.e.

qq (octet) — meson (gg singlet) + g (octet).
Therefore, we would have globally
e*e” (singlet) — meson (singlet) + g (octet) + g (octet).

The other possibility is the direct production (with no consideration for parity or
charge conjugation conservation)

e*e” (singlet) — meson (singlet).

Colour factor for two quarks in 3. To calculate the colour factor, let us take a member of
3, for instance, (rg — gr)/ V2 (the two other members lead to the same factor by colour
symmetry). Following the calculations in Section 8.3.3, we obtain

® 1 (2 0 ®

® 11 1 1 1y 2
= — — 1 — —+ = —|l-— - - - — — — = ——
rg—rg rg—gr 8gr—rg gr—)gr) 2 6 2 2 6 37

re—gr_, rg-gr —
e e
w w2

For a transition between a colour sextet state to a colour anti-triplet state, we take, for
instance, rr as a member of the sextet. The calculation gives

1
) _ 0 (1)
frr—»“‘%"‘ = % (frr—»rg - rr—>gr)

By colour conservation, we know that necessarily, ,(,t)%,g = ,(,[Lg, = 0. This can be
checked by using Eq. (8.70) since ffﬁL,g =C }% and ]‘,(,[Lg, = C1211 There are no Gell-
Mann matrices with (1,)11(4,4)21 # 0 [see Eq. (8.34)]

Fierz identity. As any Hermitian matrix M can be decomposed onto the basis made of
{1, A,...,48},1.e. M = col +c,A,, and given that the Gell-Mann matrices are traceless,
it follows that Tr(M) = coTr(1) = 3¢, implying ¢y = Tr(M)/3. Similarly, Tr(1,M) =
caTr(/lg) = 2¢, according to Eq. (8.35). Therefore, the component M, reads

M., = { Tr(3M)5a’a/ + M(/la)a/a = %Mﬁﬁ’éﬁ’ﬁé‘aa’ + %(ﬂa)ﬁ’ﬁMliﬁ’(/lu)a’a
T\ Mg Sarpap

which shows that
1 1
Mg 6apbop = gMﬁﬁ/(sﬁ'ﬁ(Saa’ + z(/la)ﬁ’ﬁMﬁ/j'(/la)a’m
or equivalently (making the summation over a explicit),
1 1<
Mpg | 6wpdap — 50pp00a | = Mpp = A)pp(Aa)wa-
ﬁﬁ( pOap ~ 3985 ) ﬁﬁza;( )pp(Aa)

Since this equality must hold for all Hermitian matrices, this implies the Fierz identity.

8
1 1 1
Z Z(/la)(va (g BB = E (6(1’,86&,8’ - 350'053,3) ’
a=1
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8.9. Alternative proof of Eq. (8.79). The Gell-Mann matrices being Hermitian, it follows
from Eq. (8.70) that

a2
|C,Bﬁ’ |~ = 16 Z(/l oo (Ao )ﬁﬁ Z(/lh)(y’a (/lh)/g/g 16 ;(/la)a’a (/ld)ﬁﬂ(/lh)my (/lh)ﬁﬁ
Therefore,
aa’ |2 _ 2
N ry'zﬁ:ﬁ’ |C,3ﬁ' "= 16 ; azﬁ;,(/l aAp)wa (Aa /lb)ﬁ”ﬁ/ = — Z (Tr(A,4p))” .

Given the normalisation of Gell-Mann matrices in Eq. (8.35), p. 268, we conclude

D 1G5 = Z(zéabf 426aa—2

' Bp
8.10. AS fipa = fras, making explicit the summation over a (that over b remains implicit
below)
1 1 Aa 1 Ay Ay
;ﬁzbdirrr (AaApAe) = ETT [Zu: fhda?/lh/lc] = —z?Tr( ]/lbfh),

where Eq. (8.36) has been used in the last equality. Therefore,

1 i
D fabazzTr (Ao de) = 55 =T dadde) + TeAadpodo)]. - (S8.1)

The trace Tr(1,444pA4.) is by definition ), ﬂ(/l;,/ld/l;,)a/ﬁ (A¢)gor - Now, with the help of the
Fierz identity (8.78),

b 35 dad)ars = X Dop 35 (oo (Ad)ap (Ap)pp
= Yo 3Aap § p(b)ara(db)pp
= Yo 3A)ap 3 (Swplap — $00alpp)
= Za le(ﬁd)aaéa’ﬁ - %(/ld)aﬁéa’ow
As Y (AD)ae = Tr(1,) = 0, we conclude

1 1
Z = ApAgAp)arp = ——=(AD)wp-
3
2 12
Now, multiplying by %(/lc)ﬁa/ on both sides and summing over ,8@’ yields

1 1
—T ApAgAp A, ——— Ad)a Ay = ——= =Tr(AyA, ——04c-
; t(ApAdgApAc) ;( 4) ﬁz( B 372 Tr(A4.) = 135

For the second trace in Eq. (S8.1), we can use Eq. (8.88), i.e.

2 55 T Apde) = 55 S ps(Adapzs Lp(Apdn)ps(Ae)sa
= %l‘_Z Za,,[i,é(/ld)aﬁCFéﬁ(g(/lc)(M
= 2_2F Za,ﬁ(/ld)aﬁ(ﬂc)ﬁa
= SETr(44,)
= %6116
= %6dca
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8.11.

8.12.

since Cr = 4/3. It follows from the calculation of both traces that

2

1 3
Zfabd Tr(Aa o) = ( 6d6+36dc) Jiduc

which is the result given in Eq. (8.97).

Colour factors for baryons. Let us follow the approach followed for mesons on page 310
in the book. As 3®3®3 = (6 ® 3) ® 3, we can re-use the result of the calculation done
in Problem 8.7 for 6 and 3. We found for the anti-triplet, fg = —2/3 < 0. For the sextet,
let us take the state rr, fg = ,,_),, = 1/3 > 0, using the result in Eq. (8.75). In QED, the
potential between two particles of the same electric charge is repulsive V(1) ~ +a/r.
Making the hypothesis of similar potential in QCD, we expect V,(r) ~ +C a,/r, where
C is the colour factor. Therefore, if C > 0, the potential is repulsive and if C < 0, it is
attractive. Two quarks placed in the sextet thus feel a repulsive force while it is attractive
in the anti-triplet. In this naive approach, adding the third quark, we thus expect it will
likely combine with the attractive anti-triplet to form the baryon. It is consistent with
the fact that 3® 3 = 8 @ 1 generates the singlet used by baryons while 6®3 = 10 ® 8
does not. Note that the colour state in the singlet reads

wbaryon _
colour

( rgb — rbg + gbr — grb + brg — bgr)
rg—gr gb—bg br—rb
( b+ 7 r+ 7 g)
rg—gr gb—bg br=rb
bRt TeTy
(gbr—rbg " brg—gl'b " rgb—bgr).

sk s sk s

V2 \2 V2

The three two-quark states with the V2 written with a small font size above are just
those of the anti-triplet. We observe (look at the last three lines) that each pair of quarks
is in the anti-triplet state, i.e. feeling the attractive state.

Quarks annihilation into gluons.

1. There are three diagrams:

q g q g q g
@, p1 v a,p3 @, P1 v a,p3 @, p1 a,p3,1n
C d
1 v
B,p2 H b, pa B,p2 H b, pa B,p2 b,pa, p
q g q g q g

2. Asbosons are exchanged, the amplitude is the sum of the amplitudes associated with
each diagram, M = M; + M, + M;.
3. Using the notations g(p;, colour @)+g(p-, colour ) — g(ps, colour a)+g(p4, colour b)
and applying the QCD Feynman rules, one finds
iMy = 3(pa)c) (~igar" %) €x(ps) l% (~igsy' %) e (pa)ulpr)ca
= §i¢, 3 3 [tMQ @7 = )z |-
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where Q, is the quark electric charge in units of e. Similarly,

iMy = P(pa)ch (—iga " %) €n(pa) iliets (—igy" %) € (pa)u(pi)ce

= g e |iMEP(aa > v |-
The third amplitude is specific to QCD (due to its non-Abelian structure). It involves
the three-gluon vertex. This vertex factor is given in the QCD Feynman rules assum-
ing that the 4-momenta point towards the vertex. As p; + p» = p3 + ps, we have
(p1 + p2) + (—p3) + (—p4) = 0. So the three momenta entering into the three-gluon
vertex are p; + p», —p3 and —py, leading to the factor (see the diagram above)

_g‘vfdab [ng(Pl +p2t p3)p + gnp(_pS + pa)y + gpv(_p4 - P1- p2)77] .

The amplitude thus reads

iMs = V(pz)c; (—igw”%) u(p1)Ca (—i s 6 )
X (=85 | 8yp(P1 + P2 + P3) + &np(=P3 + P4y + 8p(—Ps = P1 = P2)y])

X€e™(p3)€” (pa)s

with a summation over all repeated indices (including colour indices).
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9.1. Sm" — Sm + . The excited atom Sm" can be considered at rest, and the recoil of Sm
non-relativistic. If Ey denotes the difference in energy level between Sm* and Sm (both
have the same mass), the conservation of energy-momentum leads to

Ey = %mv2 + Ey

L
Z —Ey=
0 =mv—Ey/c}2mv +mve — Ey =0,

where v is the velocity of the recoiling atom. Therefore,

—mc + \m*c* + 2mE E E
mc mec moz_c+c(1+_0)__o

m mc’

mc?

It follows that AE = Ey — E,, is

1 1 E}
AE = —mv? = - —%
"™ =3 mc?
using mc? = 141.51 GeV and Ey = 963 keV.
9.2. Muon decay = (p) — e~ (k) + V.(k') + vu(p").

~33eV,

1. Using the Feynman rules, the amplitude reads

g = . 8w 1—75 ._guv"‘q;t‘h/M%V _ . 8w V1—75 ,
iM= uvu(P )(l \/5 2 )u/t(P) [l q2 _ M%, ite(k) | —i \57 B Vve(k )

where ¢ = p — p’ = k + k’. Neglecting the mass of the outgoing particles, the Dirac
equation implies fu,(k) = 0 or equivalently i, (k)k = 0 and ¥'v, (k") = 0. Therefore,

—d _ . — ,
guite () (=" 52 0, 0 = e+ KB (=59 5 v, 1)
A5
= —if (K + H) v, (K)
—3 5
= i (. (OR L, () + 00 W, ()
=0.
Hence, for ¢* = (p — p')* < M3,, the amplitude reduces to
g

M= -2
8M2,

[0, (071 = Y2y (P) | [ )y (1 = ¥y, (K))]

As Gr/ V2 = g2 /(8M2)), the spin-averaged amplitude squared reads

IMP = G L5 i [, (071 = PP [, (01" (1 = P (p)]
Spins | 2R Vu(1 = ¥y, ()| [y yu(1 = )y, (K1)

42
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The sum over the spins is easily performed using Eq. (6.84) with T'; = y*(1 — y°),
I'; = ¥’(1 —9°), and neglecting the masses. It yields, given that yol";yo =0[y*(1 -
Py =1 -9,
G
IME = —ETr [py (1 =y Y (=) Te [Fy(0 = k(1 =)
which according to Egs. (9.8) and (9.9) reads
IMP = 64GE (p - k)@’ - ).

. The general formula for the decay width is given in Eq. (3.4), yielding

1 —, d&p &$k P
dr = Qo) =—6“W(p’ +k+k - 2 .
Q1) g 0P kK = DM S5 8 G2k Gy 20

We can integrate over p’ using Eq. (E.6), i.e. [ ‘;;—’,’(; = [d*p’ 6(p™)6(p"°) (neglecting

the mass of v,). This yields in the muon rest frame,

3G} &k EK
= Sl(p —k—K)16(m, —kK° = k) p - K)[(p -k — k') - k] —— ——.
@, [(p )"16(m,, )p - KDOI(p ) Kl=5 0
Let us denote 6, the angle between k and k’. We have

p?=m?, K> =0, kK? =0,

p-k= mﬂko, p-k = mﬂk’o, kK -k = k%1 — cos ),

Bk = 4n(k®)? dk°, Ak’ = 22(k’)? d(cos ),

where the integration over the angles of the solid angles has been performed in d*k
and d*k’ (since the amplitude depends only on the relative angle between k and k).
Inserting the previous quantities in dI” yields
dr = Zf—} 8 [m2 = 2m, k= 2m, k' + 2k°% (1 — cos 6)] 6(m,, — k° — K)x
K [mk® = k°KO(1 = cos 6)| K° dkOk"® dk d(cos )

G m
=% §|5mm — o — -+ 1 —cos|00m, — k0 — k)

k" [mﬂko — K°%°(1 - cos 9)] dk® dk’° d(cos 6).

After the integration over cos 6, the value

m
cosf=1+———— — — (S9.1)

is fixed, giving

7 = GUOKO [y, — K + K cos 6] 6(m, — KO — K°)
2
= bk Omy [m,, — 2K | 6Gm,, — KO — &),

. The kinematics is constrained by Eq. (S9.1), where necessarily |cosf| < 1. First,

cos 6 < 1 implies

2
my my oy

2 kO kl() k/O kO -
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Secondly, cos 8 > —1 implies

m2 m my, m m
_H H 0 [ 70 (
4k0k0  2k0 240 2 2

Therefore, either k* > % and k'* > 2 or k” < 2 and k" < Z*. The first possibility

would imply k° + k’° > m,,, which is ruled out by the presence of (m, — k° —
that imposes m,, > k” + k°. In conclusion, necessarily,

ﬂ_k()sk/()s_:”

It follows that

r= f—m,, fO* a0 [,F K0 [m, = 2] 60m, - K0 - k) dK”

== mﬂ f() dkO fmu o k/O [mu k/O] dk/O
Let us change the integration variable for x = % — k0. Tt follows that

I = ﬂ3mﬂf0 dkof0 (——x)xdx
= G, 7 dko(m”(ka) )

= Toa M

We conclude,
1 19273

9.3. Eq. (9.37) is equivalent to

Oap = Z [Var Vil + ZA](]?

k#j
where
Apj = V:;kVﬁkanV;j.
Note that Ay; is such that A = AZ]'- Therefore,
D= A+ Y A= A+ D A=Y 2R (A},
k#j k>j k<j k>j k>j k>

and hence,

Zlvm Vel = 6ap = D" 2R (A}

k>j

Moreover, in Eq. (9.39),

%{ZAkjexp( L"‘C]} Z% Ayj cos[ LI;C]—S{Akj}sin(—Z % .

k>j k>j
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94.

9.5.

Therefore, Eq. (9.39) can be written

Py (L) = 8ap — Y j 2R {Akj} +2%; R {Akj} cos (271#) +3 {Akj} sin (27'(#?)
= Gup — 4 Yo, sin’ (%f) +25; 9 [Ay)sin (271#)
which is Eq. (9.40).
We start from M* = CTy%# PxC in Eq. (9.51), with C = iy? from Eq. (5.84). Given that
)" =y"y"y", M* reads
M = —iy* Y’y Y Priy® = y'y*y" Pry’.
The calculation of (M*)" is easy given that (y°)*> = 1, P;; = Pg and y*y° = —y%y2. This
leads to

(M*)' = —y? PryPy"y?.

Now, (M*)T = (M*)'" and since ()/2)* = —72 and all the other y matrices are real in the
Dirac representation (including ), this yields

(MT = =y’ Py’ ()7,
Therefore,
(M7 = = Pry’ (7)Y = V' Pry’y’y? = =V'Pry” = =y’ PL ="V’ Py,
while
(M)T = = Pry™y'y? = =V’ Pry®y*y" = =7 Py’ = Piy’™y" ="y Pr.
Consequently, for all y,
(M) = 5Py
Therefore, the charge conjugate transformation of ¥, y* Py j1s
Coiy'PryiC™" =~y (MY =~y Y Puiyi = = " P,

which is Eq. (9.52).
With the definition of K; and Ky in Egs. (9.69a) and (9.69b) , we have

{|KL> = pIK®) —qlK®) _ [IK®) = B0R
Ks) = pIK®) +q[K% | K% = Kaplf
Therefore, for |K°(0)) = K°,
KO(1)) = 55 [IKLY et + [Ks) ems!]
ﬁ [p |K) (e—im + e—i/lsl‘) + qﬁo)(e‘“ﬁ _ e‘“L’)] (89.2)
g+ K% — Lg_ (DK,

where
e_i/ll‘t + e—i/lgf

g+(0) = )
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Similarly, for [K°(0)) = [K°),

KO(0) = 5 [IKsy et — |Kp) ] 59.3)
= g.(1)|K") — §g-(t) IKO). '
The probabilities of finding a given state at ¢ are then
2
Prosgo(t) = KKK )] = g+ (1), (S9.4a)
—0 = 2
Pro_zo(®) = [(KOK' )] = g+ (0)%, (89.4b)
2
— 2
Pro_go(0) = (KK )| = ]%' lg-(0)P, (S9.4¢)
070, |2 _ | P 2 2
Proot) = (KR = ]5' 8- (OF. (59.4d)
With A, =m; —il'L/2and Ag = mg — il's/2,
|g¢(t)|2 — %( lere 2 + e zmgte—r%t) (eilnLte—%t + eimgte—r%t)
— l[ —I'pt +e —I'st + e—(l"L+1"s)z/2 (ei(mL—ms)l + e—i(mL—mg)r)]
1
=3 [e-“f +e st £ oA cos ((my, — mg )t)] (S9.5a)
- 41; e TSN (OS2 4 TL=TSN2 13 o5 (G, — ms )0
1
= Ee-m*rs M2 [cosh (T, — Ts)/2) + cos ((my, — mg)1)]
1
= Ee—“ [cosh (AL'7/2) + cos (Am1)], (S9.6a)

where I' = (I', + T5)/2, AT =T, — 'y, and Am = m; — mg > 0. The insertion of Eq.
(59.5a) into Egs. (S9.4a)-(S9.4d) leads to the expressions (9.72a)-(9.72c) in the book.

9.6. Transitions Ago_, ¢ = (fIT|K®) and Afo_,f = (fIT|K°). Using the expressions (S9.2) and
(89.3) from the previous problem, we deduce

Ao (D) = (AITIKO(0) = g (DAgos — %girmm -
and hence,

q Koﬂf

ks OF = Ao |lgnOF + 4522 lg- (0P - 2R (g20g- (r)FAK;;)}

— g Pl 02 + |1, 1e-0R — 2% (e:0-0)-

with A, = 4250 Slmllarly,
K

|Afoﬁ ,m]z = 2[ Jaxo P l1s-@P + 4, 18,08 2% (g2 0.0,

The quantity |g. (r)|? has already been calculated in the previous problem in Eq. (S9.6a).



Weak interaction

A very similar calculation leads to

i _ imet — LS —i YA —imet — 1S
el o=t 4 pimst =5t \ [ =impt p==5t _ =imst, 2t)

NN
—

gi(ng-(1)

—I'pt —Igt

el —e7lst ¢
= —%e‘r’ [sinh (AI't/2) + i sin (Amt)],

iAmt p=Tt | ,=ilmt e—Ft]

Therefore, inserting the expressions of |g..(f)|* and g% (1)g_(¢), we deduce

Ao, ;0" = [Ago [ Le T ’[ cosh (AT#/2) + cos (Ami)
+ ][ [cosh (AT#/2) = cos (Ami)]
+2R (Ay [sinh (AT#/2) + i sin (Am)]) ]

= |k 2| (1444 ) osh are/2) + (1 = |47 cos (amn
+2R () sinh (AT?/2) - 23 () sin (Amr) ]

Similarly,

|Afoq f(t)|2 = |§‘2 lAko [ %e—“[ (1 + |/lf|2)cosh (AT'1/2) + (1 - |/lf|2)cos (Amt)

+2R (A7) sinh (AT#/2) + 23 () sin (Ame) ]

When there are no direct and indirect CP violations, |Ago_, /Axo_, > =Tandlg/pl* =1
and thus |/lf|2 = 1. The previous expressions become

koo O = [Agog|” e [cosh (AT?/2) + R (A;) sinh (AT?/2) — 5 (A;) sin (Amr) |
)Afoq f(t)'z = |Ago_ [ e |cosh (AT#/2) + R (A;) sinh (AT7/2) + 3 (A7) sin (Ami) |
Therefore, the asymmetry is

Ago_ [ (OF = 1Ago_ ;P I(As) sin(Ami)

Azo_, (DR + |Ago_, (P ~ cosh(ATt/2) + R(Ay) sinh(AL'7/2)’

. The vectors AB and AC are defined by

R(VaVi) R(VaV3,)
AB =|3(VaVip|, AC=[3(VaVy) |,
0 0

This ABC area, S'/, = |AB x AC|/2, is thus

St = ROV VIDI(ViaViy) = SV ViDR(Va V)
= 5 ROVAVIDIVaVi) + IV VDRV V)

= Hsvvavavy)|,

the last equality coming from the property J(zz') = R(2)I(Z) + R(Z)T(z) . We can
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generalise this result and define AB and AC by

R(ViaV},) R(VigVy)
AB = S(WSv;a) , AC = S(VigV;ﬂ) :

and get the area

b}

ij 1 % *
St = 5 19V ViaVisVip)

or
R(VaiV,) R(VuV;)
AB = S(V%,-Vaj) , AC= S(V,;Vﬁj) :

with the area

1
af _ * .
ST = 5 |3VeVaiVaiVi)

Now, let us multiply the first equation of Eq. (9.78) by V| V1. This yields
2 3k * % *
[VaVal” + ViVaVaViy + Vi Vi ViV = 0.
Taking the imaginary part, it follows that
I(ViViVaVy) = =3 (ViVaViaVs).

Similarly, by multiplying the first equation of Eq. (9.78) by V;;V 5 or V4V 3, we would
conclude

3(VaViaVaVy) = =3 (VaViaVsVy).

I(ViViVaVy) = =3 (VaVisVaV;).

With the last three equalities, we conclude, given that J(z*) = —J(z), that

—S(ViViiVisVig) = =S(VaVpVi Vi) = S(VaViaVisVy),

VIV, Vi Ve =
VaVinVeV) {—5(Vi§vj3Viszz)=3(‘/,-§Vj3VnV;1).

Therefore, S Z,B are all the same regardless of @ and 3, provided that a # 8 for a given i
and j. We can proceed similarly with the second equation of Eq. (9.78). It yields

3(Vivivavs)) = -9 (ViviVavi).
N ViVaiViVy; =-9 (V;‘,-Vz,-VsiV;‘j),
(Vi VaVaiVy,) = =3 (ViVavivy)).

Therefore, all these quantities are equal up to a sign, leading to conclude that Sz.ﬁ are
all the same regardless of « and B, provided that @ # B for a given i and j. What we
found for S;]ﬁ and S fjﬁ shows that all (non-trivial) triangles have the same area (a # 3,
i # j, otherwise the area is zero).
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9.8.

9.9.

The reactions

l.n>p+et+v, 2.p+7r‘—>n+7r°, .pon+et+v,,
4. 7% = yy, S5.p—o e+, 6.7 = y.

Only reactions 2 and 4 are possible by strong and QED interactions, respectively. Note
that the parity conservation in reaction 4 implies that necessarily, the two-photon final
state has odd orbital angular momentum (actually, their polarisation vectors are nec-
essarily perpendicular to each other). All reactions involving neutrinos (1, 3, 5) would
have required weak interaction, but none is allowed (charge is not conserved for 1, mass
is too small for proton decay in 3, and baryon number is violated in 5). Finally, reaction
6 is a 1-to-1 decay which would imply p,0 = p,,i.e. mpo = m,, which is not the case.

Electron-neutrino scattering: (1) v,(k)+e™(p) = ve(K)+u(p), (2) v.(k)+e (p) —
Tk + ().

1. For reaction (1), we have a 7-channel diagram with the exchange of a W boson. We
denote g = k — k’, the 4-momentum of the W boson, with ¢ = qz. The amplitude
reads

u
w 1= 8wt N
,-M1=u<p’)-(—i—f5yﬂ 27)~u(k)xi—t_ T xu(k')-(—i—g y 7)-u<p)
Gr

V2

Given that we neglect the lepton masses with respect to My, the term ¢g,g, in the
propagator does not contribute to the amplitude (see the solution of Problem 9.2).
We also replaced above the coupling g2 /8M2, by Gr/ V2 and considered ¢t < M?,.
For reaction (2), we have an s-channel with the exchange of a W boson. With the
same assumptions as for (1), we write the amplitude as

a(p) ¥ (1 =) uk) x ak’) y,(1 = v°) u(p).

=-i

G
iMy = —i—== a(p’) ¥ (1 = y°) v(k') X (k) y,(1 = ) u(p).
V2

2. We start by

MIE =5 > MM,

all spins

where 1/2 stands for the average over the initial polarisation of the electron. Note that
we use 1/2 instead of 1/4 because neutrinos only have one helicity (left-handed). We
still sum over neutrino polarisations to be able to use the completeness relations

Dlapup)=p+m=p, Y Wpw(p)=p-—m=p.

spins spins
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The calculation of MMy is very similar to that of Problem 9.2, giving
GZ
MM = =5 ap) v (1= ) ulk) X 7k') y,(1 = ¥") u(p)

X (k) y'(1 =) u(p’) X @(p) y(1 = °) u(k)
_Gr @(p') (1 =) uk) x (k) y'(1 =) u(p’)
5 up Y u uk) y Y’ u(p
X a(k') v, (1 =) u(p) x a(p) v, (1 =) u(k’).
Using Eqgs. (9.8) and (9.9), the sum over the spins yields

IMP = 22T [p (L =) H 7' (=) T [k 71 =) i 70 =)
= ZL256(p - k)(K - ).

Now, as s = (p+k)> = p> +k>+2p-k =~ 2p -k (since we consider massless fermions)
and s = (p’ + k')? ~2p’ - k', we conclude that

2

— G 52
2 — F — 2
IMi] T X 256 (2) 64GE— F

The second spin-averaged amplitude squared is obtained by substituting s <  since
the crossing properties show that the s-channel of reaction (1) corresponds to the
t-channel of reaction (2). Therefore,

—_— s —_— 12
M = 64G§Z and |Mf? = 64c;§Z

3. We now need to integrate over the angular variables to determine the cross-sections.
Using the centre-of-mass frame, we have

1 |p”
dQ.
647rs Ip*I f'Ml

As fermions masses are neglected, the 4-momenta read p = (E, p*), k = (E,—p*)
and k' = (E,p’™), p’ = (E,—p'"), with E = |p*| = |p"*| = +/s/2.
The cross-section ratio can be simply expressed as

o [s7dQ

o [rdQ

(S9.7)

There is no angular dependence in s, so the numerator is simply 4752, while for ¢,
t=(p-k)=-2p-k =-2E* - pk’) = —2E*(1 — cosb) = —%(1 —cosb),

where 6 is the angle between p* and p’* (i.e. between e~ and ¥,). The integration
f 2dQ gives 4rs? /3, so we conclude that

ocvy+e > v, +u’)

oV, +e =V, +u)
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10.1. We start with the sum of Egs. (10.25) and (10.26) and keep only the term proportional
to Z*. It reads
JH = Lyt (gw cosb, % — g sinewg) L—gsind, (%y”%:,lqg + t//_;ﬂ/”%lﬁ)
= Ly (8 c08 0, T3 — g 5in 6,,(Q — T3)) L — g sin 0y, (Yry" Qui + Wy Q)
where Y/2 = Q — T3 and T3yg = T3y}, = 0 for singlets. Now, as
Ly QL + Yy Qi + Wy Oy _
=YLy QUL + Yy QU + YRy Quir + Yy QY
=YY QY + YU,
with ¢ = ¢y + g and ' = ) + it follows that
j* = Ly* (g, cos @, + gsinb,) T3 L — gsin6, (Ey" QU + Y/ y* Qw’)
= g [Ty T L= sin® 6, (0 Qu + v Qv )|
since according to Eq. (10.30), g = g,, sin,,/ cos 6,,. This result is Eq. (10.31).
10.2. The Lagrangian in Eq. (10.52) is

Lyzow-w- = —egucos b, [2Wi WHZ,AY - WiW™Z,A4 = Wi W ™A, 2.
Let us rewrite each product of fields with appropriate labels:

WiWHZ,AY = WiWHZ,AT = g, gasWH W ZPAC,
Wi WTZA = WHWZ,A, = gys8ua WHW T ZPA?,
WiW™A,ZH = WHWAZ, = gyagusW W YA ZP,

Therefore,
Lyzww- = —gw €08 O | 28uv8up — B8y — Zvaup| WHW ' ZPA.
The vertex factor is thus simply i times the terms in front of W+ W="ZPA®,
10.3. The Lagrangian in Eq. (10.53) is
2
8 -V - - v
Lww-wew- = 7W [W;Wﬂ‘WV W — Wy WHW, W* ]
We first change the labels of the first term:
Wl-li— W+/1 WV— W—V - W;/ W+ﬂ’ W; W—yl — g'u/a/ gV'ﬁ' W+(z/ W+ﬂf W_ 4 W_w ]

In the Feynman diagram, we want the labels to be W+, W*#, W=, W~". Four combina-
tions of (o, u') pairs and (v',8’) pairs lead to this result. They are:

{(a’,u’) = (a, ) {(o/,u’) = (u, @) {(a’,u’) = (u, @) {(a’,ﬂ') = (@, )
.B) =(p) .B) =p) .8 = B,v) .B) = (B,v)
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10.4.

Therefore, they contribute to a factor proportional t0 g4,8vs + 8ua&v8 + 8ua&py + 8au8sv =
48,08vs. Now, the second term in Ly+w-w+w-,

WiWH W, W = WEWH WL Wr = WH WL W™ Wy = gupgya WH WP WY W
Here again, four combinations match the desired labels,
{(//,,3') = (u.p) {(ﬂ',ﬁ’) =(a.p) {Ol',ﬁ') =(a,v) {(/1',,3’) = (1, v)
,a') = (v, p) ,a') = (B.p (/,a') = (B,a)

giving a factor g,s8va + 8ap&vi + 8ov8Bu + 8uv&Ba = 28up8av +28uv8ap- Overall, the vertex
factor is thus

,a) =)

2
.8
X 7‘4} [4g,uagv/3 - Zg,uﬁng - ngvgczﬁ] .
Determination of the number of light neutrinos.

1. The Z boson can decay in ff for all fermions f such that 2m; < my. It includes
quarks, charged leptons, and invisible particles, i.e. neutrinos in the context of the
Standard Model. Therefore, by definition, we have for the total decay width,

;= Z rZqu + Z Iz -0+ + Diny.
q t
Quarks hadronise, so in the quark sector, we only observe
'z had = Z Iz 45

q

The lepton universality hypothesis states that weak couplings are the same for all
lepton families: the amplitudes Myz_,,-p+ are then all the same. Neglecting lepton
masses, the integration over the phase space gives also the same results for all gen-
erations so that the partial decay widths I'z_,,-4+ are also all the same. We finally
deduce

I'z =Tz haa + 30z -0+ + Dy
Using the definition of branching ratios, we conclude

iy = I.[1 = BR(h) - 3BR(0)].

2. Assuming lepton universality and neglecting neutrino masses, we have, as for charged
leptons, an identical value of I'z_,,; for all neutrinos. Therefore,

Ciny = NIz,

where N, is the number of neutrinos satisfying the constraint m, < M/2. The par-
tial decay width I';_,,; cannot be measured experimentally, so instead we use the
Standard Model prediction I'" and
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which should be
T T/
NV = r—[ X F—{/h

if the Standard Model is correct for the charged lepton sector.
3. We wish now to calculate I'/* and I'".

1. If ¢ = p1 + p> denotes the 4-momentum of the Z boson and ¢, its polarisation
vector, the amplitude of Z° — f(p;)f(p,) reads

v ol
iM=i(py)- (_icogs o 75 (cv - CA')’S)) V(p2) - €(q)

8w
2cos 6,

=-i B(p1)y* (cv = cay’) v(p2) - €u(q).
2. There are three possible polarisations for the Z boson, so the spin-averaged am-
plitude squared | M|? reads

—
2 _ *
IMP = 3 ZMM
spins
g
~ 12cos? 0,

x 3 [a(piy (ev = cxr* ()| [ap0y (ev = ey’ wip)|
& ( (P1 + P2)u(p1 + pz)v)
a— uy +

“12cos? 0, %

x " [apoy*(ev = exy’wpn)| [a(pry"(ev = ey w(po)]

51,852

X D &l 9)e A, q)
A

m

*

3. We use the Dirac equation in spinor space with neglected masses, i.e. ppv = 0
and itpy; ~ 0. Therefore,

(p1 + ) [P Y (cv = cay’W(p2)| = @(pOm ey = eay W(p2)
+a(p1)(cy + cay)ph v(p2)

has both terms vanishing. The spin-averaged amplitude squared simplifies to

R A *
M % x " [ap0yev = exr’wpn)| [a(pry" ey = ey wipo)|
_g2 8uv -
= oo X 3 [apY v = ear’ W) | [Wp2)y ey = eay u(pn)
8% 8w -
) ﬁ % Tr[HWF(CV — e )y ey - CA)’S)].

The trace can be rewritten as

Tr[yly”yzyy(cv - CA’}/S)Z] =(c} + Ci)TI'[H'] y“yzyv] - ZCVCATr[my”myVyS].
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Given that the second term is an antisymmetric tensor under u <> v (it evaluates
to —4i p1apag £ and that the full trace will be contracted with the symmetric
tensor g, only the first term has a non-zero contribution. Therefore, we conclude

that

g%

M2 = —w
M 12 cos? 6,

(—gw) (c%, + cﬁ)Tr [y”ylyvyz] .
4. We need first to determine the trace. We have
Te [y 1’| = PrapasTe [y v ¥*y]
= 4(p/{ps + pirh — (p1 - p2)E™).

Contracted with g, this gives —8(p; - p2). In the Z rest frame, we can write
p1 = (E, p)and py = (E, —p) with E = |p| = mz/2, so that

2
m
prpr=E +Ipl’ = =%,
Therefore, the spin-averaged amplitude squared is

2.2
8wz

IMP = 2555 + <),
and the partial decay width is
I, = ol fdQ IM?2 = g—i‘mz(cé +c3).
11 32712m% 48 cos? 6,

However, if f is a quark, one should also take into account the colour degree of
freedom. As the pair ¢g can be produced in three different colour configurations,
the partial decay width finally reads

Ipl — 8w
T, 7= W dQIMP? = mmz(cé + DN,  (S10.1)

where N.(f) is the colour factor: 3 for quarks and 1 for leptons.
4. T /T reduces to the ratio of ¢, + ¢ factors, i.e.
Iy (e +ch
I (c‘z/ + ci)v
According to Table 10.2, for neutrinos ¢y = ¢4 = 1/2, so c%/ + cf‘ = 1/2; for charged
leptons, cy = —1/2 + 2sin% 6, and ¢4 = —1/2 so0
¢y +ch = 1/2 +4sin* 6, — 2sin” 6, ~ 0.252.

As a result, I“@,h /F’V]’ ~ 0.504. Using the measured values for [, = 83.984 MeV and
Iy = 499.0 MeV given in the text, we compute the number of neutrinos N, ~ 2.98.
We thus have three light neutrinos (m, < mz/2).
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5. Given our computation of the partial decay width I';_, ;7, the total decay width reads

7= 487 cos2 0, X Z (cv)2 + (CA)Z]N f),

where the sum runs over all fermions such that my < mz/2, i.e. all but the top quark.
We have:

e 3 neutrinos with c%/ + ci =1/2;

e 3 charged leptons with ¢, + 2 = 1/2 + 4sin*#6,, — 2sin® 6, ~ 0.252;

e 3 d-type quarks with ¢ + ¢2 = 1/2 +4/9 sin* 6, — 2/3 sin® 6, ~ 0.370;
1/2 +16/9 sin*#6,, — 4/3 sin®6,, ~ 0.287;

e 2 u-type quarks with c%, + cf\

so the numerical factor from the sum amounts to ~ 7.31. Using Mz = 91.19 GeV
and gﬁ, = 0.426, we finally find

' ~ 2.45 GeV.
It is close to the measured value I'; ~ 2.495 GeV. The Z lifetime is

17 = h/T7 ~2.67-105s.

10.5. The W* decay width of the W boson.

As in the previous problem, we neglect the masses of the decay products. We can re-use
the previous calculations by comparing the coupling of fermions to the W boson with
that to the Z boson. The vertex factors are given in sections 10.4.1 and 10.4.3 of the
book. They are:

W: —i— 1- Z: —i -
1\/_)/“2( Y), cosawyﬂ (cv = ca¥).
Therefore, we go from Z to W by taking cy = ¢4 = 1 and changing g,/ cos6,, for
gw/ V2. The W* boson can decay into ff’ with ff = v, v, ud, us, ub,

cd, ¢5 and cb. As before, for quarks, we have to take into account the colour factor.
Moreover, the elements of the CKM mixing matrix must also be taken into account in
the quark sector since we use mass eigenstates. Starting from Eq. (S10.1), we deduce
gz 2
Twogje = geamw X [ 12+ PV PN(f) = JomulVip PN(P),

with N.(f) = 3 for quarks and 1 for leptons, and V is the CKM matrix for quarks and
the identity for leptons. Therefore, the total decay width is

Fw = Je=my ) VPN,
1f

Note that for quarks,

DIV PN =3 D Vgl =3[Vl + Visl + Vi + [Veal? + Vel + V| = 6,
£F £r e o
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the factors 1 coming from the unitarity of the CKM matrix. For leptons,
VPN = Y 1=3.

(ff)=(ve.0).(vup),(v2,7) (S

It follows that

_ 9,

T agg

Using the numerical values, gﬁ, = 0.426 and My = 80.38 GeV, one finds I'y

2.04 GeV, in good agreement with the experimental value I'yy = 2.08 GeV.

I'y
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11.1.

11.2.

11.3.

Electroweak symmetry breaking

AsH = %4+ o' % — £, with £ = ¢'¢ + 8," 0 — V(9), it follows that

H = ¢'9+6'd— (69 +04' 96— V(g)
=¢'¢—0ip" o+ V(9)
=¢Th+ Vo' Vo + 120 ¢ + A¢7¢)
=617 + Vo1 + p?lpl* + Alg*.
Let us insert ¢(x) = % [v + h(x)] €9 into V() = 1|¢|* + Ag|*. As

¢ = % [y + ()] e

rememoer, an are real scalar nelds), ¢ ¢ = (v + . ererore, glVeIlt at
( ber, h and 6 | scalar fields), ¢'¢ = (v + h)2/2. Therefore, given th
2__/12
W= =2,

V(g) = v+ m2 (£ + 4w+ h)2)
=(v+h)? —”Tvz+*TV22+/‘2L’1+AT}'2)2
=(v2+2vh+h2)(—%+%+%)
= -2t + Wh? + kP + 404

The derivatives in the Lagrangian (11.1) read
1 ; . 1 . .
Fo" = — [(0*h)e™ — i + h)e |, 8,6 = — |(9,h)e” + i(8,0)(v + h)e? |,
¢ ‘\/E [ ] ﬂ¢ \/z [ H H ]

yielding for the Lagrangian,
L= 1hdh+ L0+ h12#09,0 + 2 — W2h> - vk} - &
2 o
= 3 (Buhorn — [ V2] ) + 40,005+ 25 + ..,

where —Av? = u? = —|u|?> and @ = v have been used.
Conditions to ensure that photons stay massless.
1. Checking that (D,®)" = 9,07 - igw(DT%Wl’; - i%Bﬂ(I)T is straightforward. We just

need to set Y = 1 as @ has the hypercharge eigenvalue 1 and to remember that ®

has a doublet structure of isospin so that (o;®)" = ®'o;, the Pauli matrices being

hermitian. Note also that WL, i = 1,2,3 are also hermitian, whereas Wlf are not.
2. (D,®)"(D*®) reads

(D, ®) (D ®) = (aﬂqﬂ - igwcbf%wli - i%Bﬂqﬂ) (6"613 + igW%W”i(I) + i%B”CD).

We need to find out where the A A* terms come from. Because of the mixing due
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to the Weinberg angle in Eq. (10.24), Wicontributes to a sinf,,A, term and B, to
cos6,,A,,. As aresult, given that after spontaneous symmetry breaking, ® = %( ?)
implies that ®'® = 1?/2, and ®o3® = —1?/2, the terms depending on A* are
—ig DT DLW X ig, ZWHD — £ DF(05)2D sin® 6,4,4% =
% sin? O, A, AY,
—i£B,® X i B'D — %zgﬂcb cos? 0,4, AF =

£ cos? 6,,A,AF,

—ig, T FW, X i§B'® — &5 (D:0-3CD sin @, cos 6,,A,A" =
— &8 sin 6, cos 6,,A,A¥,

-i$B, 0" x ig, ZWHD —> —% sin 6,, cos 6,,A,AH,
so that we obtain globally

V2

2 (g2 cos’ 6, + g2 sin® 6,, — 2g,,g sin 6, cos HW) AL A%

The numerical factor in front of A,A* is interpreted as m% /2. Using the relations
e = gcos b, = g, sinb,, we conclude that m} = 0.

3. We have previously set ¥ = 1, obtaining a term in D*® of the form i§ B*®. But the
generic expression of D*® includes a term i§ Y B*®. Therefore, by changing ¢ — g¥,
we deduce the photon mass

mi = VZ ng2 cos’ 6,, + gfv sin? 6, — 2g,,8Y sin 6, cos Ow)

2,2

_vet s

= (v2+1-2v)
2,2
Ve

=—(Y-1)7
1 ( )

The photon is massless if and only if the hypercharge of the Higgs doublet is 1.
Recall that before spontaneous symmetry breaking, ® writes in full generality

-t}
$2
¢1 and ¢, being two complex scalar fields. The Gell-Mann—Nishijima relation relates
the charge of these fields to the hypercharge of the doublet:

Q@)= +1)/2 and Q) = —1)/2.

With our spontaneous symmetry breaking prescription, the non-zero v.e.v. is carried
by ¢, so that the photon mass writes m, = ev |Q(¢>)|: the photon is massless if and
only if the vacuum expectation value is carried by the neutral component. Since the
Higgs boson is a radial excitation around the vacuum expectation value, it carries
the same charge as the initial field. Therefore, the photon is massless if and only if
the Higgs is neutral.

11.4. Higgs boson decay H — f(p1) + f(p2).
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1. The diagram corresponds to a simple two-body decay. Using the Feynman rules, the
amplitude reads

iM = _i( \/EGF)I/2 myg u(p1) - v(p2)-

2. The squared amplitude reads

IMP = N2Gr m3 a(p1)v(p2) W(p2)u(py).

The spin/colour-averaged amplitude squared is then

MP=3" % > IMP

pol.H pol. f, f colors
= N(f) Y V2Gr m a(pv(pa) ¥(p2)u(p),
pol.f,f

given that there is only one polarisation for the Higgs. Of course, the colour factor is
1 for leptons. Concerning quarks, there are three colours and three anti-colours, so
nine combinations. However, only three (r7, gg and bb) are possible since the initial
state is colourless. As a result, N .(¢) = 3. The sum over the fermion polarisations
yields a trace [see Eq. (6.84) with '} =T, = 1],

Spo 7 HPOV(P2) Hp2)u(pr) = Tr [(g + my) (112 = my )|

=Tr Dipr +my (”1 - 172) - mjz,l] .
As Tr(y*y”) = 4g"” and Tr(y*) = 0, we conclude that
Tr [Hly'z +my (H'l — H’z) - m?l] = 4p1 s P2 — 4m12c,

yielding
IMP = 4N2m3Gr(p1 - pa = mMIN(S).

3. Inthe Higgs rest frame, the two fermions are emitted back-to-back, so the expression

of the momenta are p; = (E*, p*) and p, = (E*, —p*), with E* = my/2 and |p*|* =
E*? - m? =m} /4 - m? Therefore, p - p» = m%/2 - m?c and

2 4m?>
IMP = 4N2m3Gr (% - 2m_§] - Ne(f) = 2 V2mm}yGre {1 - m—j] “Ne(f).
H

The decay partial width reads

g f dQIMP,

32n2s

which leads to

— GF 2 4m;]2
I'H = M 1-—1,
(= [ = Hmf[

given that s = m, and there is no angular dependence in | M.
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12.1. Assuming the lepton universality, i.e. I';p = I';e = 'y, and I'rz = I'ge(1 + J7) to take into
account the difference of phase space due to the large mass of 7’s, the total decay width
is by definition

Fiot = Tee + r,u/l +Tr + Thad + Diny = 30 + Tpp67 + Ier + Thags

implying
| _ Lot Thag
Lo T Ty

-3 -0

Now, from Eq. (12.12),

o0 _ 12a0lhaa 127 Lpelhag
tot — W 0 =32 0

Z  Thad Mz Thad
so that
v _ [ 127 Do Toa 4,
Ly miod  Tee T -

12.2. The reaction e~ (k) + et (k') — u~(p) + u* (p’).
1. The y or Z° exchange proceeds via s-channel diagrams. The amplitudes are
= [a(p) (ieyﬂ) v(p)] ( i) [7(K) ey uth],
Mz = [a(p) (=i S o) (et ) s (- y S e
where g = p + p’. After rearrangement, they read

My = & (i) [v(k’mu<’<>]
My = 40052 % [u(p)y”(c” 7 Ww(p’ )] (%)[ﬁ(k’)y"(c@ - zys)u(k)].

2. Since we neglect the lepton masses, the Dirac equation implies ii(p)p = f'v(p’) =
Fu(k) = (k)X = 0. We have already seen in previous problems that this implies that
the term ¢"q”/ m% from the Z° propagator does not contribute to the amplitude. (See,
for example, Problem 9.2). It follows that

2
Mz = g [ B0 = Gy W) | [i)yue, = ey ut)].

3. Masses being neglected, the helicity eigenstates match the chirality eigenstates. In

this context, we learned in Chapter 6 that necessarily the helicity of the anti-fermion
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is opposite to that of the fermion. Therefore, introducing & = ¢?/(4n) and the Man-
delstam variable s = q2, M, reads

M,

2 [ (p)y va(p') + Br(PYYVi(p)] [TLK )Y uttr(k) + Vr(K Yy (K) |
M2 (App, + ALr + Are + ARg) s

(S12.1)
with the variables Ay, Arg, Agr, Agg given in the text. Concerning My, with the
definition of cg and ¢;, cy = (¢, + cg)/2 and c4 = (¢ — cg)/2. Therefore,

1-9 1+
C\/—CA}/5 =CL 27 + CR 27 = CLPL+CRPR,

where P; and Py are the usual chirality projectors. Moreover, using the definition of

Gr and the relation coming from the electroweak unification,

Gr _ & 2
- Smiv}: 8w _8Gr ,

= mZ,
= M cos? @ <
mz Cos Oy w \/E

it follows that

Mz =

S [a(p)y (¢4 Py + PRV [FK )7, P+ cProu(b)|

ey [y (¢4 P + PRIV (p) | [P Yyules P + cPr)uck)|

where y is the variable defined in the text. Now, as y* Py g = Pg/ry", note that
w(p)y!(¢y PL + cPrIV(P') = W(p)y* (¢, PLPL + cyPrPRIV(D)

= G u(p)Pry*vr(p') + it(p)PLy*vi(p).

Given that
_ ot 0 _ o F 0 _ A0 - —
u(p)Pr =u'(p)y Pr =u'(p)Pry” = (Pru(p))' y" = ur(p)
and similarly, u(p)P = ug(p), (k)P = v (k’), v(k')Pgr = vg(k’), we deduce

()Y (¢ PL + cPrIV(D') = fur(p)y*ve(p’) + ur(p)y*vi(p'),
V(K )yu(c) Pr + cuPR)u(k) = civr(k"yyur(k) + cuvi (k') yur(k).
Therefore,
Mz = 22y | 4ur(p)y ve(p') + ir(p)yvi(p)] X
i VR(K Yy ur (k) + CRW(k'))’puR(k)] (512.2)
= 4%)( cic’i AL + c;c’ZARL + cic’;e Arr + c;c’;e ARR] .

. Most of the calculation has already been done in Problem 6.11, where we showed in

Egs. (S6.4) and (S6.6) that
2 [Vrey ur,(p)]
& [re (K ur, (p)]

The momentum labels in Problem 6.11 were e~ (p) + e¢* (k) — u~(p’) + u* (k") while
in this problem they are e~ (k) + e* (k") — u~(p) + u*(p’). Therefore, we conclude

[VR(K )y ur (k)]
[VR(K )y ur (k)]

= —e2(1 + cos ),
= ¢%(1 — cosb).

UL, (D" )Y iVR (K)
UR, (P )YV Ly (K)

i (p)yuwr(p)| = AL = —s(1 + cos 6),

_ (S12.3)
ur(p)yve(p’)

= A = s(1 —cos ).
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Problem 6.11 also showed that Agg = Ay and Ag; = Afgr.

. Masses being neglected, in the centre-of-mass frame,

do 1 2
dQ ~ 64n2s M

As the quantities A7, or A;g do not depend on the azimutal angle,

do 1 )
d(cos9) 327rs|M|

The reaction e; +ej — p; +p involves the term with Ay in Eq. (S12.2). Therefore,

drar dna dra
M= My + MZ = TALL + TXCZC/ZALL = TALL(l +XCZC/Z),

yielding
_da' =t s M@ 2 o up  ma? ) o a2
d(cos 0)(€L€R = UpHR) = 2_S3|ALL| |1 +)(ch’2| = X(l + cos 6) |1 +)(ch’£| .

. e 4 .
For the pure QED process, we can simply set ch‘L = 0. Therefore, the ratio of
differential cross-sections is
do
d(cos 8)

dgQED
d(cos 0)

= |1 +XCZCJZ|2.

If we neglect I'z, y is real and the constraint » = 2 implies

N V2GrmZ s _i\/§—1
TN e T g

Table 10.2 tells us that ¢ = ¢} = cy + ¢4 = —0.54, implying y = 1.43 or y = —8.36.
Only the latter value leads to a positive Mandelstam constant,

47ram§/\/

=— 2 ~7053 GeV?,
dray — \/EGpm%

N

leading to E = +/s = 84 GeV. At this value, the weak interaction (Z exchange) and
the QED interaction (y exchange) contribute equally to the cross-section.

. For the reaction e; + e}, — g + 1, only the term with A;r in Eq. (S12.2) matters.

As in the previous question, the differential cross-section is then

do

o2
d(cos 0) K

-+ - ﬂ-az 2 ecjt 2 T 2 eCI—l 2
(efeg = Hry) = F'ALRl ll + xci Rl = 2—(1 —cos b)) |1 + xcy R| .
The cross-section vanishes when 6 = 0. In the reaction e + ey, — up + uj, if the z-
axis is along the electron direction, both ¢~ and e* have a spin projection s, = —1/2,

so a total spin projection s, = —1. On the other hand, at 6 = 0, the final state pu;
would have s, = +1, which is forbidden by angular momentum conservation.
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7. For the reaction e + e;; — p~ + ', the muon can be left or right-handed. Therefore,
both terms with A;; and A7 must be taken into account, such that

IMP? = |MLLf + Mgl 5 2
= (42" [(aus + et + (e o xcsiaue) |

This leads to

do _ _ na? 2 2
m(eLe; S )= [(1 +c0s0) |1+ xcs |+ (1= cos 0)7 |1 + xcl | ]
Similarly,
d—a—(e_(fr —uut)= n;‘/z [(1 + cos 0)? |1 +)(c"’c”|2 +(1 = cos )’ |1 + xc$ cﬂ|2]
d(cosf) F'L 2s R"R RELL |-

12.3. In this problem, the amplitude is reduced to Eq. (S12.2) since the photon exchange is
neglected.
This problem uses notations and results from Problem 12.2. We are now interested in
the reaction e~ + et — u~ + u* for /s = mz. Therefore, the y exchange contribution
can be safely neglected.

1. The polarised amplitudes squared are thus given by

IMpl? = (%)2 yI* (CELJZ)Z A, Mgl = (4%“)2 [* (CEC%)Z |Argl®,
IMeal? = (32 W (e ) Al IMeel? = (222) i (ces) el

The quantities |A;;|> = |Azel* = s2(1 + cos 0)% and |A z]* = |Agcl? = s*(1 — cos 6)?
are given in Eq. (S12.3). Now,

4\ 4\
(e -(22
s s
where C is given in Eq. (12.17). Hence, the polarised amplitudes squared correspond
to Eq. (12.16).

2. The muon polarisations being ignored (i.e. summed over), if the initial electron is
left-handed, the corresponding amplitude squared reads

IMLP = IMul + IMgl?

SICP [(c5 21 + cos ) + (c§ )2(1 - cos 6)?]

SICPC)? [(@)? + () + (1) + (cf)?) cos? 8 + 2 ((c))? = (¢g)?) cos B]
= $2CP(co ) (())? + (g)?) |1 + cos? 0 + 2A, cos 6]

\/EG F m% Ky

s —m + imzI'z 4na

\/EG F m%

s — m% +imgzl'y

2
2
=ICI,

where A, is defined in Eq. (12.19). Similarly, for a right-handed electron,
IMgl? = IMggl* + IMge?
= §%|CP [(cfec“,é)z(l + 008 0)% + (c5¢))*(1 — cos 9)2]
= S2CP(c)? [()? + (g)? + (()? + (cp)?) cos? 6 = 2((ch)? = (cg)?) cos b]
= CP(ce)? (()? + (g)?) |1 + cos? 6 — 2A, cos 0]

The positron is unpolarised. Therefore, we have to average the amplitude squared.
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On the other hand, the electron is polarised, such as P, = 1 if the electron beam is
100% right-handed and P, = —1 if it is left-handed. The spin-averaged amplitude
squared for a given polarisation p, of the electron is thus

1+P, 1

2

— 1 - P,
IM(PP = > IMgl® + IMLP).
2 2
Note that if P, = 0, the electron beam is not polarised, and we recover the usual
formula |M|? = %%(I/VIRI2 + |M_.[?). Inserting the expressions of |Mg[*> and |M;|?

determined above, it follows that

IM(Pe)? = 28 ()2 + () | [ + () = Pe ((¢9)? = ()] (1 + cos? 6)
+2[(€5)? = () = Pe((c5)? + (c)?)] Ay cos 6},
ie.

IMPe)P = S ()7 + () ((¢5)? + ()?) x
{(1 = P.A) (1 + cos? 6) + 2(A, - P.) A, cosb.

3. The expression of the cross-section is thus

e = S IMPe)P = 258 ()7 + () () + (c)%)
{(1 = PoA) (1 + cos? ) + 2 (A, = P.) A cos 6.
(S12.4)
By definition,

1 o 5| e e
o = [} dleos ) gilig|, = (7 + (@) () + () x
1} (1+cos? 6+ 2A.A, cos 6) d(cos 6).

x=1
where the integral is just [x + %3 + ﬂe‘(ﬂl‘xz]x:_l = 8/3. Therefore,

d 3
T = 2o [(1 = PoA)( + cos? ) + 2(A, — P)A, cos b,
dcosf 8

12.4. According to Eq. (10.38), the 73 = 1/2 component of the weak isospin doublet satisfies
el /ch = 1-4sin’6,0,
while the T3 = —1/2 component satisfies
el [ch =1+ 4sin?6,0.

Since for charged fermions, the up component of the isodoublet always has a positive
electric charge and the down component a negative charge, both equalities above can
be summarised as

ik =1~ 4sin?6,|0,

which implies Eq. (12.20).
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12.5. The reaction ™ + ¢* — f + f. With the results of the previous problem, we just have

to change u for f in Eq. (S12.4). Therefore, given the calculation of o, checking Eq.
(12.21) for o and o p is straightforward since

! do
= d 0
ar fo (cos ) d(cos 0)

= 50tot

3 x=1
3 4
X+ % + ﬂgﬂfx2] = go'wt(— + ﬂgﬂf)

Pe=0 8 x=0 3
and
do P , x=0 3 4
op = fjd(COS 9) d(cos 0) heo = gO’tot X+ ? +ﬂeﬂfx Lz_l = go—tot § —j{eﬂ” .
Therefore,
OF — 0B 3
Af _Y9r-08 2 .
FB = oot og 4?[6?[”
i = 1 do .
Concerning, o and o7, they are defined by o/, = f_ , d(cos 0) Teosd | p s Using Eq.

(S12.4), this yields

or = [ 20w (1= A1 + cos?6) + 2(A, — 1)A cos 0] d(cos )
= 30 [(1 = AN+ 5) + (A~ DA
= oor(1 = Ao).

Similarly,
o= [ 2o [(1+ A1 +cos? 0) + 2(A, + 1Ay cos 6] d(cos )

3 2 21
= 300 [(1+ AN+ 5) + (A + DA
Tior(1 + A).

Consequently,

f _O'L—O'R _
Al =——L=a,
o+ O0Og



