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Preface

This document gives detailed solutions to the problems and exercises in the first edition of
Fundamental of Particle Physics.

Equation numbers starting with an S are specific to this document. Other equation num-
bers, such as 1.1, refer to the equations in the book. Notations are those used in the book.
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1 Particle physics landscape

1.1. As
∫

V d3x∇ · E(x) =
∫

V d3x ρ(x)/ε0 = Q/ε0, the Gauss’s theorem, yields
∮

S E · dS =

Q/ε0. With ρ(x) = q0δ
3(x), Q = q0. Since the volume of integration is arbitrary, so is

the surface, and using the surface of a sphere with radius |r|, dS = |r| dθ |r| sin θ dφ n̂
yields ∮

S
E · dS = |r|2

∫ π

0
sin θ dθ

∫ 2π

0
dφ |E|n̂ · n̂ = |r|24π|E|.

Therefore,

|E| =
q0

4πε0|r|2
, i.e. E =

q0

4πε0|r|2
r
|r|
,

the electric field being radial for symmetry reasons. As the force due to the electric field
for a charge q is f = qE, we conclude

f =
qq0

4πε0|r|2
r
|r|
.

1.2. The Fourier transform of

(∇2 − λ2) f (r) = −δ(r) (S1.1)

is (−|k|2 − λ2) f̃ (k) = −1, leading to f̃ (k) = 1/(|k|2 + λ2). Therefore,

f (r) =
1

(2π)3

$
eik·r

|k|2 + λ2 dk =
1

(2π)3

∫ 2π

0
dφ

"
ei|k||r| cos θ

|k|2 + λ2 sin θ dθ |k|2 d|k|,

i.e.

f (r) =
1

(2π)2

∫ ∞

0
d|k|

|k|2

|k|2 + λ2

∫ 1

−1
d(cos θ) ei|k||r| cos θ =

1
2π2

∫ ∞

0
d|k|

|k|2

|k|2 + λ2

sin(|k||r|)
|k||r|

.

Setting u = |k||r|, f (r) reads

f (r) =
1

2π2

1
|r|

∫ ∞

0
du

u
u2 + λ′2

sin u =
1

4π2

1
|r|

∫ ∞

−∞

du
u

u2 + λ′2
sin u =

1
4π2

1
|r|
=(I)

where λ′ = λ|r| and

I =

∫ ∞

−∞

du
u

u2 + λ′2
eiu.

The calculation of I is very similar to the examples presented in Appendix F of the
book. We first calculate the integral in the complex plane

Iz =

∮
C

dz
z

z2 + λ′2
eiz = lim

R→∞

{∫ R

−R
du

u
u2 + λ′2

eiu +

∫ π

0
dθ iReiθ Reiθ

R2e2iθ + λ′2
eiR cos θ−R sin θ

}
with a contour defined by a half-circle of radius R in the positive side of the imaginary
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3 Particle physics landscape

axis since λ′ > 0 (same contour as the first figure of the Appendix). As sin θ > 0, the
second integral is zero when R → ∞. The poles are z1 = iλ′ and z2 = −iλ′, and the
residue theorem leads to∫ ∞

−∞

du
u

u2 + λ′2
eiu + 0 = 2iπ

z1

2z1
eiz1 = iπe−λ

′

.

Therefore,

f (r) =
1

4π2

1
|r|
πe−λ

′

=
e−λ|r|

4π|r|
. (S1.2)

The solution of Poisson’s equation ∇2V = − e
ε0
δ(r) is obtained from the general solution

(S1.2) of Eq. (S1.1) with λ = 0 and f (r) =
ε0
e V(r), i.e.

V(r) =
e

4πε0|r|
.

Similarly, the comparison of the general solution (S1.2) to the Yukawa potential ϕ(r) =
g

4π
e−r/r0

r leads to the identification λ = 1/r0, which using Eq. (S1.1) shows that the
Yukawa potential is the solution of∇2 −

1
r2

0

ϕ(r) = −gδ(r).

1.3. The result is straightforward:"
I(θ) cos θ dΩ =

∫ 1

0
Iv (cos θ)3 d(cos θ)

∫ 2π

0
dφ = Iv

[
x4

4

]1

0
2π = Iv

π

2
.

1.4. If the particle lifetime is τ, when it travels with a velocity v = βc, its apparent time in
the lab frame is γτ, and hence, it travels over a distance l = βcγτ. As the particle energy
is E = γmc2 and γ = 1√

1−β2
, it follows that β2 =

E2−(mc2)2

E2 . Therefore,

(
l

cτ

)2

=
E2 − (mc2)2

E2

E2

(mc2)2 ,

which leads to the result

E = mc2

√
1 +

(
l

cτ

)2

.

1.5. As the Lorentz force is f = qv × B, the power P = f · v = 0, and therefore, the kinetic
energy T is constant since P = dT/ dt = 0. As T = (γ − 1)mc2, it implies that γ is
constant. It follows from Newton’s law that

f =
dp
dt

= γm
dv
dt

= qv × B.

Setting ω = q|B|/(mγ), the equation above implies for B along the z-axis that

d2x
dt2 = ω

dy
dt
,

d2y
dt2 = −ω

dx
dt
,

d2z
dt2 = 0.



4 Particle physics landscape

Thus, z(t) = z(0) + vz(0)t. Setting u = x + iy, the evolution of u is governed by

d2u
dt2 =

d2x
dt2 + i

d2y
dt2 = −iω

(
dx
dt

+ i
dy
dt

)
= −iω

du
dt
.

Therefore, after an integration

du
dt

=

(
du
dt

)
t=0

e−iωt = [vx(0) + ivy(0)]e−iωt,

and we conclude with another integration that

u(t) =
i
ω

[vx(0) + ivy(0)]
(
e−iωt − 1

)
+ x(0) + iy(0).

The coordinates x(t) and y(t) are obtained by taking the real part and imaginary part of
u(t), respectively, yielding

x(t) = x(0) + vy(0)/ω + [vx(0) sin(ωt) − vy(0) cos(ωt)]/ω,
y(t) = y(0) − vx(0)/ω + [vy(0) sin(ωt) + vx(0) cos(ωt)]/ω.

1.6. For small angles, φ ∼ L/R. Similarly, R ∼ s + R cos(φ/2). Therefore,

s = R
(
1 − cos

φ

2

)
∼ R

φ2

8
=

R
8

( L
R

)2

=
L2

8R
.

Since for a charge |q| = 1, |p| cos λ = 0.3|B|R [Eq. (1.30) in the book] and the pitch
angle λ satisfies cos λ = |p⊥|/|p| [see Eq. (1.28)], we deduce

|p⊥| =
0.3|B|L2

8s
,

leading to the relative uncertainty σ(|p⊥|)/|p⊥| = σ(s)/s = σ(s) 8|p⊥|/(0.3BL2).
1.7. The negative log-likelihood of measurements distributed according to a Gaussian law

G(ri ; µ, σri ) =
1

√
2πσri

e
− 1

2

(
ri−µ
σri

)2

is

L =
1
2

∑
i

(
ri − µ

σri

)2

+ constant.

The best value of the average µ̂ is obtained for the minimum of L, i.e.

∂L

∂µ
=

∑
i

ri

σ2
ri

− µ̂
∑

i

1
σ2

ri

= 0,

yielding

µ̂ =

∑
i

ri

σ2
ri∑

i
1
σ2

ri

.

1.8. 1. The result is straightforward given that Ndecay(t) = N(t)−N(t+∆t) = N0

(
1 − e−γ∆t

)
e−γt.
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2. If the number of counts nk, i.e. the number of decays between tk and tk + ∆t, has a
standard deviation σk, the standard deviation of the random variable ln(nk) satisfies

σ2
ln nk

=

∣∣∣∣∣∂ ln(nk)
∂nk

∣∣∣∣∣2 σ2
k =

1
n2

k

σ2
k =

1
nk
,

since σ2
k = nk.

3. The χ2 variable is defined by

χ2 =

5∑
k=1

(
ln nk + γtk − α

σln nk

)2

=

5∑
k=1

nk(ln nk + γtk − α)2,

where tk = (k − 1)∆t. The variables γ and α can be considered independent (or
equivalently, γ and N0). Therefore, we minimise χ2 with respect to these variables,
i.e.

∂χ2

∂α
= −2

∑
k nk(ln nk + γtk − α) = 0,

∂χ2

∂γ
= 2

∑
k nk(ln nk + γtk − α)tk = 0.

The substitution of α from the first equation into the second yields

γ =

(∑
k nk ln nk

) (∑
k nktk

)
−

(∑
k nk

) (∑
k nk ln nktk

)(∑
k nk

) (∑
k nkt2

k

)
−

(∑
k nktk

)2

=
1

∆T

(∑
k nk ln nk

) (∑
k nk(k − 1)

)
−

(∑
k nk

) (∑
k nk ln nk(k − 1)

)(∑
k nk

) (∑
k nk(k − 1)2) − (∑

k nk(k − 1)
)2 .

Using the values of the table, one finds γ = 0.039 or equivalently τ = 1/γ = 25.45,
which is close to the actual value.



2 Preliminary concepts: special
relativity and quantum mechanics

2.1. The result is immediate since x′ · x′ = x′σx′σ = gρσx′ρx′σ. Given that x′σ = Λσ
νxν and

x′ρ = Λ
ρ
µxµ, it follows that x′ · x′ = gρσΛ

ρ
µxµΛσ

νxν, while x · x is obviously gµνxµxν.
2.2. Eq. (2.14), i.e. gρσΛσ

νΛ
ρ
µ = gµν, is equivalent to ΛρνΛ

ρ
µ = gµν. The multiplication by

gνσ yields

gνσΛρνΛ
ρ
µ = gνσgµν

Λ σ
ρ Λ

ρ
µ = δσµ .

By definition, the inverse of Λ satisfies(
Λ−1

)σ
ρ

Λ
ρ
µ = δσµ .

Therefore, we conclude (
Λ−1

)σ
ρ

= Λ σ
ρ . (S2.1)

2.3. Let us consider a Lorentz transformation along the x-axis,

ct = γct′ + βγx′,
x = βγct′ + γx′,
y = y′,
z = z′.

As dΩ = c dt dV = c dt dx dy dz, its expression as a function of the transformed
variables is

dΩ =

∣∣∣∣∣∣ dt
dt′

dt
dx′

dx
dt′

dx
dx′

∣∣∣∣∣∣ c dt′ dx′ dy′ dz′ =

∣∣∣∣∣∣ γ βγ/c
βγc γ

∣∣∣∣∣∣ c dt′ dx′ dy′ dz′

The Jacobian (i.e. the determinant above) is thus γ2 − β2γ2 = γ2(1− β2) = 1. Therefore,

dΩ = c dt dV = c dt dx dy dz = c dt′ dx′ dy′ dz′,

showing that dΩ is a Lorentz scalar.
2.4. As 1 b = 10−24 cm2, 1 µb = 10−34 m2. A cross-section σ expressed in natural units (in

GeV−2) would be σ/(109e)2 j−2. The quantity ~c has the units j ·m. Therefore, σ in µb
is obtained by

σ (µb) =

(
~c

109e

)2

× 10−34σ (GeV−2) ' 389 σ (GeV−2).

2.5. The law of transformation of velocities is given in Eq. (2.24). Let us apply it to particle
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7 Preliminary concepts: special relativity and quantum mechanics

(1), i.e. w = v1 in the rest frame of the particle (2), i.e. β = v2/c. This yields the velocity
of particle (1) in the rest frame of the particle (2),

v(2)

1 =
v1 + (γ − 1)(v2 · v1) v2

|v2 |2
− v2γ

γ
(
1 − v2·v1

c2

) .

It follows that

v(2)

1 · v2 =
v1 · v2 − |v2|

2

1 − v1·v2
c2

=
(v1 − v2).v2

1 − v1·v2
c2

, v (2)
1 × v2 =

v1 × v2

γ
(
1 − v1·v2

c2

) .
As

|v(2)

1 |
2 =

(v(2)

1 · v2

|v2|

)2

+

(v(2)

1 × v2

|v2|

)2

=
1(

1 − v1·v2
c2

)2

( (v1 − v2) · v2

|v2|

)2

+
(v1 × v2)2

γ2|v2|2


and γ2 = 1/(1 − |v2|

2/c2), we conclude

|v(2)

1 |
2 =

1(
1 − v1·v2

c2

)2

[
((v1 − v2) · v2)2 +

(v1 × v2)2

c2 (c2 − |v2|
2)
]

1
|v2|2

. (S2.2)

Using the identity given in the text with a = v1 − v2 and b = v2, we obtain

((v1 − v2) × v2)2 = |v1 − v2|
2|v2|

2 − ((v1 − v2) · v2)2 ,

showing that

((v1 − v2) · v2)2 = |v1 − v2|
2|v2|

2 − (v1 × v2)2.

The insertion of this result into Eq. (S2.2) leads to

|v(2)

1 |
2 =

(v1 − v2)2 −
(

v1×v2
c

)2(
1 − v1·v2

c2

)2 .

Hence, the result announced in the text.
2.6. Addition of two spin 1.

1. Looking at Clebsch-Gordan tables, we find

|S = 2, S z = 0〉 =
1
√

6
|S 1z = +1; S 2z − 1〉 +

√
2
3
|0; 0〉 +

1
√

6
| − 1; +1〉.

2. From the tables we have

|S 1z = −1; S 1z = +1〉 =
1
√

6
|S = 2, S z = 0〉 −

1
√

2
|1, 0〉 +

1
√

3
|0, 0〉.

So we form |2, 0〉 with probability 1/6, |1, 0〉 with probability 1/2, and |0, 0〉 with
probability 1/3.

3. Since S z is conserved, we can form

– a state |S = 1, S z = +1〉 from |S 1z = 0; S 2z = +1〉 or | + 1; 0〉;
– a state |1, 0〉 from |0; 0〉, | − 1; +1〉 or | + 1;−1〉;
– a state |1,−1〉 from |0;−1〉 or | − 1; 0〉.



3 Collisions and decays

3.1. Without loss of generality, let us first show that d3 p/E = dpx dpy dpz/E is Lorentz
invariant under a boost in the z-direction. The components in the boosted frame are

E′ = γE − βγpz,

p′x = px,

p′y = py,

p′z = −βγE + γpz,

where E =
√

p2
x + p2

y + p2
z + m2. Therefore,

dp′z
E′

=
dp′z
dpz

dpz

E′
=

(
−βγ

2pz

2E
+ γ

)
dpz

E′
=

E′

E
dpz

E′
=

dpz

E
.

Hence, d3 p/E = d3 p′/E′. The Lorentz invariant phase space in Eq. (3.3), i.e.

dΦ = δ(4)(∆p)
n f∏

k=1

d3 p′k
(2π)32E′k

,

also includes a delta function ensuring 4-momentum conservation, denoted here δ(4)(∆p).
From the Fourier transform in Eq. (E.9),

δ(4)(∆p) =
1

(2π)4

∫
d4x ei∆p·x.

The term in the exponential is a 4-scalar, while d4x is the 4-volume, already shown to
be invariant in Problem 2.3. Therefore, dΦ is indeed Lorentz invariant.

3.2. The check is straightforward: in the centre-of-mass frame, when masses are neglected,
the incoming particles have 4-momentum p1 = (|p∗|, p∗) and p2 = (|p∗|,−p∗). The
4-momentum of the outgoing particles p3 = (|p′∗|, p′∗) and p4 = (|p′∗|,−p′∗) are con-
strained by the energy conservation, which imposes

|p∗| + |p∗| = |p′∗| + |p′∗|,

i.e. |p′∗| = |p∗|.Therefore, s = (p1 + p2)2 = 4|p∗|2, while

t = (p1 − p3)2 = −2p1 · p3 = −2(|p∗|2 − p∗ · p′∗) = −2(|p∗|2 − |p∗|2 cos θ),

Similarly,

u = (p1 − p4)2 = −2p1 · p4 = −2(|p∗|2 + p∗ · p′∗) = −2(|p∗|2 + |p∗|2 cos θ).
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9 Collisions and decays

3.3. This exercise is a simple application of formulas such as in Eq (3.50), i.e.

dΦ(P→ p1 p2 p3 p4) =
dm2

12
2π dΦ(p12 → p1 p2) dΦ(P→ p12 p3 p4)

=
dm2

12
2π dΦ(p12 → p1 p2) dm2

34
2π dΦ(p34 → p3 p4) dΦ(P→ p12 p34).

3.4. Let us evaluate the sign of δ =
(∑N

k=1 pk

)2
−

(∑N
k=1 mk

)2
. Denoting the 4-momentum

pk = (Ek, pk) with |pk| =

√
E2

k − m2
k , we have N∑

k=1

pk

2

=

N∑
k=1

m2
k + 2

∑
k′>k

pk · pk′ ,

 N∑
k=1

mk

2

=

N∑
k=1

m2
k + 2

∑
k′>k

mkmk′ .

Therefore, δ = 2
∑

k′>k δkk′ with

δkk′ = EkEk′ − pk · pk′ − mkmk′ = EkEk′ − mkmk′ −

√
E2

k − m2
k

√
E2

k′ − m2
k′ cos θkk′ ,

where θkk′ is the angle between pk and pk′ . As − cos θkk′ ≥ −1,

δkk′ ≥ EkEk′ − mkmk′ −

√
E2

k − m2
k

√
E2

k′ − m2
k′ .

The right-hand side is the difference between two positive terms, respectively, A =

EkEk′ − mkmk′ and B =

√
E2

k − m2
k

√
E2

k′ − m2
k′ . If A2 ≥ B2, then A ≥ B since the square

root function is an increasing function and A, B are positive quantities. In such a case,
δkk′ would be larger than A − B ≥ 0. Therefore, we determine the sign of A2 − B2:

A2 − B2 = E2
k E2

k′ + m2
km2

k′ − 2EkEk′mkmk′ − (E2
k − m2

k)(E2
k′ − m2

k′ )
= −2EkEk′mkmk′ + E2

k m2
k′ + E2

k′m
2
k

= (Ekmk′ − Ek′mk)2

> 0

In conclusion, δkk′ ≥ 0, which implies δ ≥ 0.
3.5. π+ decay in µ+νµ.

1. The decay is isotropic in the rest frame (it is true only for 1→ 2 decays). Therefore,
we have dN/ dΩ∗ = N0/4π constant. Integrating over φ gives dN/ d cos θ∗ = N0/2.

2. Using Eqs. (3.32) and (3.33) with s = m2
π and neglecting the neutrino mass yields

E∗µ =
m2
π + m2

µ

2mπ
, E∗ν =

m2
π − m2

µ

2mπ
= |p∗|.

With the numerical values, we obtain E∗µ ' 110 MeV/c2 and |p∗| ' 30 MeV.
3. Let R be the lab frame and R∗ the rest frame of π+. We start from

Eµ = γR/R∗
(
E∗µ − βR/R∗ · p∗µ

)
.

The lab frame is boosted backwards with respect to the rest frame of π+, so we have
βR/R∗ = −β ez if we define ez as the unit vector along the π+ momentum in R. As a
result

Eµ = γ
(
E∗µ + β p∗µ cos θ∗

)
. (S3.1)
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The minimal energy is obtained for backward muons (cos θ∗ = −1) and is about 168
MeV; the maximal energy is for forward muons (cos θ∗ = +1) and is about 272 MeV.

4. All quantities are constant in Eq. (S3.1). so we simply get

dN
dEµ

=
dN

d cos θ∗
d cos θ∗

dEµ
=

N0

2
1

γβp∗µ
' 5.7 MeV−1.

To draw it in a 1-MeV binning, we would expect ∼ 5.7 events per bin, for all bins be-
tween 168 and 272 MeV. However, the number of events should be integers! There-
fore, it will look like Poisson fluctuations around a mean value of 5.7 events per
bin.



4 Conservation rules and symmetries

4.1. Forbidden reactions.

(1) p + p̄→ γ is excluded by 4-momentum conservation since in the centre-of-mass frame

of the initial state, mp =
√

m2
p + |pp|2 + | − pp| cannot be satisfied because necessarily

the photon momentum pγ = −pp cannot vanish.
(2) n→ p + γ is forbidden by the electric charge conservation.
(3) Λ0 → π+ + e− + ν̄e violates the baryon number conservation.
(4) K− → π0 + e− violates the lepton number conservation.
(5) p→ n + e+ + νe is kinematically forbidden since mp < mn

(6) γ → e+ + e− is excluded by 4-momentum conservation.
(7) π0 → γγγ does not conserve the charge-conjugation parity (which is not violated by the

electromagnetic interaction).
(8) p + νµ → n + µ+ violates the lepton number conservation (Lνµ = +1 whereas Lµ+ = −1).
(9) p + p̄→ Λ0 + Λ0 violates the baryon number conservation.

4.2. Reaction π− + p→ ∆0 → π0 + n.

1. The total angular momentum projection is conserved during the whole process so
Ji

z = S ∆
z = Jf

z. For the initial particles, Ji
z = S p

z + S π−

z + Lz. Pions are spinless
so S π−

z = 0. More tricky is the value of Lz. Even if we could show, as in the next
question, that L = 1, we can prove in full generality that Lz = 0. Indeed,

– “classically”: given that L = r×p, we know that L is orthogonal to p. By definition
p is aligned with the z-axis so we can only have a 0 projection on that axis;

– with spherical harmonics: the only possible values are for the total orbital mo-
mentum are L = 1 or L = 2. Looking at the expression of spherical harmonics in
Table 2.1, p. 68, we see that the only Ym

L (θ, φ) that are non-zero at θ = 0 are Y0
1

and Y0
2 . Therefore, we necessarily have Lz ≡ m = 0.

Finally we conclude Ji
z = S p

z = ±1/2.
2. Looking at the ∆0, the total angular momentum has to be 3/2. For the final particles,

we have to combine Sπ = 0, Sn = 1/2 and the orbital angular momentum, l, to form
a 3/2 spin representation. The constraint 0 ⊗ 1/2 ⊗ l = 1/2 ⊗ l = 3/2 requires l = 1
or 2. Looking now at parity conservation, we have η∆ = ηπ ηn (−1)l. Therefore, L has
to be an odd number, i.e. l = 1.

3. We are in the |3/2,+1/2〉 state which decomposes into

|3/2,+1/2〉 =
1
√

3
|Lz = +1; S n

z = −1/2〉 +

√
2
3
|Lz = 0; S n

z = +1/2〉

(the pion is spinless, so only the orbital momentum and the neutron spin matter). We
thus have Lz = +1 with probability 1/3 and Lz = 0 with probability 2/3. Now, we

11



12 Conservation rules and symmetries

use the spherical harmonics to get the angular distribution of the neutron: recall that
|Ym

L (θ, φ)|2 gives the probability density to have the particle at (θ, φ).

– case Lz = +1: we use Y1
1 and the probability density is |Y1

1 |
2 = 3 sin2 θ/(8π);

– case Lz = 0: we use Y0
1 and the probability density is |Y0

1 |
2 = 3 cos2 θ/(4π).

The angular distribution is finally given by

|Y1
1 |

2 × 1/3 + |Y0
1 |

2 × 2/3 =
1 + 3 cos2 θ

8π
.

4. If S z(∆0) = −1/2, we have the same situation as the previous question if we reverse
the z-axis. It corresponds to the change θ → π − θ and φ → φ + π. We see that the
probability density is not changed. We thus expect the same result.



5 From wave functions to quantum
fields

5.1. The check is straightforward using the explicit representation in Eq. (5.30).
5.2. It is immediate: the insertion of the wave function ψi(x) = vi(p)e+ip·x into the Dirac

equation leads to

(iγµ∂µ − m)vi(p)e+ip·x = 0⇔ (iγµ(ipµ) − m)vi(p)e+ip·x = 0
(γµpµ + m)vi(p) = 0.

5.3. The transformation in Eq. (5.40) that must be applied to spinors under the Lorentz
transformation with the transformation parameters ωσρ involves the matrices S σρ given
in Eq. (5.39), where, as usual, the Einstein notation is used. As explained in Appendix
D, the boost parameters corresponding to a rapidity ζ = ζ p/|p| corresponds to ω0i =

ζi [see Eq. (D.26)]. Since ω0i is antisymmetric, i.e. ω0i = −ωi0, as well as S 0i, the
expression of the transformation (5.40) takes the form

S (Λ) = exp
(
−

i
2
ω0iS 0i −

i
2
ωi0S i0

)
= exp

(
−iω0iS 0i

)
= exp

(
1
2
ζ

pi

|p|
γ0γi

)
,

where S 0i = i
2γ

0γi has been used. Inserting the expression of the γ matrices in the Dirac
representation, it follows that

pi

|p|
γ0γi =

pi

|p|

(
0 σi

σi 0

)
=

 0 σ·p
|p|

σ·p
|p| 0

 .
Therefore,

S (Λ) = exp
 ζ2

 0 σ·p
|p|

σ·p
|p| 0


=

∞∑
k=0

1
(2k)!

(
ζ

2|p|

)2k (
0 σ · p

σ · p 0

)2k

+
1

(2k + 1)!

(
ζ

2|p|

)2k+1 (
0 σ · p

σ · p 0

)2k+1

.

Given the properties of the Pauli matrices, it is easy to check that(
0 σ · p

σ · p 0

)2k

= |p|2k
(
1 0
0 1

)
,

(
0 σ · p

σ · p 0

)2k+1

= |p|2k+1
 0 σ·p

|p|
σ·p
|p| 0


[see for instance Eq. (5.57)]. We conclude that

S (Λ) = cosh
(
ζ

2

) (1 0
0 1

)
+ sinh

(
ζ

2

)  0 σ·p
|p|

σ·p
|p| 0


= cosh

(
ζ

2

)  1 tanh
(
ζ
2

)
σ·p
|p|

tanh
(
ζ
2

)
σ·p
|p| 1

 .
13



14 From wave functions to quantum fields

According to Eq. (2.44),

cosh
(
ζ

2

)
=

√
cosh ζ + 1

2
=

√
γ + 1

2
=

√
E + m

2m
,

tanh
(
ζ

2

)
=

sinh
(
ζ
2

)
cosh

(
ζ
2

)
cosh2

(
ζ
2

) =
sinh ζ

cosh ζ + 1
=

βγ

γ + 1
=
|p|

E + m
,

where γ = E/m and βγ = |p|/m have been used. Therefore,

S (Λ) =

√
E + m

2m

(
1 σ·p

E+m
σ·p
E+m 1

)

=

√
E + m

2m


1 0 pz

E+m
px−ipy

E+m

0 1 px+ipy

E+m −
pz

E+m
pz

E+m
px−ipy

E+m 1 0
px+ipy

E+m −
pz

E+m 0 1

 .
The spinors for a particle at rest are given by Eq. (5.52) up to the normalisation defined
on page 139, i.e. ±

√
E + m = ±

√
2m for a particle at rest. They read

ψ1 =
√

2m


1
0
0
0

 , ψ2 =
√

2m


0
1
0
0

 , ψ3 = −
√

2m


0
0
1
0

 , ψ4 =
√

2m


0
0
0
1

 .
The application of matrix S (Λ) yields the spinors defined in Eq. (5.63).

5.4. Covariance of the Dirac equation.

1. [A, BC] = ABC − BCA = ABC − BAC + BAC − BCA = [A, B]C + B[A,C]. and
similarly with anti-commutators.

2. If µ = ν, S µν = 0. Therefore [S µν, S σρ] = 0. On the other hand, the right-hand side
of the Lie algebra then reads

i(gµσS µρ − gµσS µρ + gµρS µσ − gµρS µσ) = 0.

The Lie algebra is thus trivially satisfied. The same conclusion is obviously obtained
if σ = ρ.

3. When σ , ρ, S σρ = i
2γ

σγρ. Applying the identity of the first question leads to

[S µν, S σρ] =
i
2

[S µν, γσγρ] =
i
2

([S µν, γσ]γρ + γσ[S µν, γρ]) .

4. Fort µ , ν, S µν = i
2γ

µγν

[S µν, S σρ] = − 1
4
(
[γµγν, γσ]γρ + γσ[γµγν, γρ]

)
= 1

4
(
[γσ, γµγν]γρ + γσ[γρ, γµγν]

)
= 1

4
(
{γσ, γµ}γνγρ − γµ{γσ, γν}γρ

γσ{γρ, γµ}γν − γσγµ{γρ, γν}
)

= 1
2
(
gσµγνγρ − gσνγµγρ + gρµγσγν − gρνγσγµ

)
.
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As

γaγb = γaγb − γbγa + γbγa + γaγb − γaγb = [γa, γb] + {γa, γb} − γaγb,

using the Clifford algebra (5.29), we deduce the identity (with a, b = 0, 1, 2, 3)

γaγb =
1
2

[γa, γb] +
1
2
{γa, γb} =

1
2

[γa, γb] + gab.

It follows that

[S µν, S σρ] = 1
2
(
gσµ 1

2 [γν, γρ] + gσµgνρ − gσν 1
2 [γµ, γρ] − gσνgµρ

+ gρµ 1
2 [γσ, γν] + gρµgσν − gρν 1

2 [γσ, γµ] − gρνgσµ
)
.

= −i
(
gσµS νρ − gσνS µρ + gρµS σν − gρνS σµ),

where the symmetry of the g tensor has been used. Since S µν is antisymmetric, the
previous equation yields the Lie algebra so(1, 3) of the Lorentz group, i.e.

[S µν, S σρ] = i(gνσS µρ − gµσS νρ + gµρS νσ − gνρS µσ).

5.5. Bilinear forms. Under a Lorentz transformation, we saw in Supplement 5.3 that

x→ x′ = Λ
µ
ν x, ψ(x)→ ψ′(x′) = S (Λ)ψ(x), ψ(x)→ ψ′(x′) = ψ(x)S (Λ)−1,

where the matrix S (Λ) is

S (Λ) = exp
(
−

i
2
ωσρS σρ

)
, S σρ =

i
4

[γσ, γρ].

1. ψ(x)γ5ψ(x): As γ5 anti-commutes with any γµ matrix, it commutes with S σρ and
thus with S (Λ), giving

ψ′(x′)γ5ψ(x′) = ψ(x)S (Λ)−1γ5S (Λ)ψ(x) = ψ(x)S (Λ)−1S (Λ)γ5ψ(x) = ψ(x)γ5ψ(x).

This is the behaviour of a Lorentz scalar.
2. ψ(x)γ5γµψ(x):

ψ′(x′)γ5γµψ(x′) = ψ(x)S (Λ)−1γ5γµS (Λ)ψ(x) = ψ(x)γ5S (Λ)−1γµS (Λ)ψ(x),

which, using the constraint (5.36), p. 131, becomes

ψ′(x′)γ5γµψ(x′) = ψ(x)γ5Λ
µ
νγ

νψ(x) = Λ
µ
ν ψ(x)γ5γνψ(x).

This shows that ψ(x)γ5γµψ(x) is a Lorentz vector.
3. ψ(x)γµγνψ(x):

ψ′(x′)γµγνψ′(x′) = ψ(x)S (Λ)−1γµγνS (Λ)ψ(x)
= ψ(x)S (Λ)−1γµS (Λ)S (Λ)−1γνS (Λ)ψ(x)
= ψ(x)Λµ

σγ
σΛν

ργ
ρψ(x)

= Λ
µ
σΛν

ρψ(x)γσγρψ(x),

where Eq. (5.36) has been used. The bilinear form ψ(x)γµγνψ(x) is thus a rank-2
tensor.

Under the parity transformation, we have

x = (t, x)→ x′ = (t,−x), ψ(x)→ γ0ψ(x), ψ(x)→ ψ′(x′) = γ0ψ(x) = ψ(x)γ0.
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4. ψ(x)γ5ψ(x) transforms into

ψ′(x′)γ5ψ′(x′) = ψ(x)γ0γ5γ0ψ(x) = −ψ(x)γ5γ0γ0ψ(x) = −ψ(x)γ5ψ(x).

This is thus a pseudo-scalar.
5. ψ(x)γ5γµψ(x) transforms into

ψ′(x′)γ5γµψ′(x′) = ψ(x)γ0γ5γµγ0ψ(x) = −ψ(x)γ5γ0γµγ0ψ(x).

For µ = 0, γ0γµγ0 = γµ, while for µ , 0, γ0γµγ0 = −γµγ0γ0 = −γµ. Therefore

ψ′(x′)γ5γµψ′(x′) =

{
−ψ(x)γ5γµψ(x), µ = 0
+ψ(x)γ5γµψ(x), µ , 0

This is the behaviour of a pseudo-vector.

5.6. Determination of the helicity states.

1. By definition of the helicity eigenstates, we have ĥψλ = λψλ, with ψλ = uλe−ip·x, and
where

ĥ = Ŝ.
P̂
|p|

=
1
2

σ. P̂
|p| 0

0 σ. P̂
|p|

 .
In the helicity operator, P̂ = −i∇ acts on e−ip.x as P̂e−ip.x = pe−ip.x. Looking at the
upper bi-spinor of uλ, we then obtain

1
2
σ · p
|p|

φλ = λφλ.

2. In polar coordinates we have p = p (sin θ cos φ, sin θ sin φ, cos θ), so that

σ · p
|p|

=

(
cos θ sin θ · e−iφ

sin θ · eiφ − cos θ

)
.

For λ = +1/2, we have to solve(
σ · p
|p|
− 1

)
φ 1

2
= 2

(
− sin2 θ

2 sin θ
2 cos θ

2 · e
−iϕ

sin θ
2 cos θ

2 · e
iφ − cos2 θ

2

)
φ 1

2
= 0,

from which we can check that

φ 1
2

=

(
cos θ

2
eiφ sin θ

2

)
is a solution.

3. We just need to find the expression for the lower part of uλ. From the eigenvalue
equation, we know that σ.p φλ = 2λ|p|φλ with λ = 1/2, so simply

σ.p
E + m

φ 1
2

=
|p|

E + m
φ 1

2
.

4. Let us make as few computations as possible. First, note that the eigenstates are
defined up to a phase and that ĥ→ −ĥ under parity.
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• ψ− 1
2
: we can apply the parity transformation on φ 1

2
to get φ− 1

2
. Parity transforma-

tion reads θ → π − θ and φ→ φ + π. Therefore,

φ− 1
2

=

(
sin θ

2
−eiϕ cos θ

2

)
.

For the lower component, we proceed as in question 3 with λ = −1/2. We end
up with the result in Eq. (5.74) of the book on p. 144, up to a sign.

• ψ
+ 1̄

2
and ψ

− 1̄
2
: the general formula of a v-spinor is

vλ =
√

E + m
( σ.p

E+m χλ
χλ

)
.

For the helicity eigenstates of antiparticles, we start again from ĥψλ = λψλ,
but now, we apply P̂ to e+ip.x as P̂e+ip.x = −pe+ip.x. As a result, the eigenvalue
equation reads

σ.p χλ = −2λ|p|χλ.

We can simply take χ 1
2

= φ− 1
2

and χ− 1
2

= φ 1
2
.

5.7. For p = pez, as ε(p, i) · p = 0, the set of 4-polarisation vectors (5.129) is obviously
reduced to Eq, (5.122). Then, denoting the 4-polarisation vectors in the basis (5.129)
with primed symbols, we have ε′µ(λ) = Λ

µ
σε

σ(λ). In this basis, the left-hand side of Eq.
(5.128) reads

3∑
λ=0

gλλε′µ(λ)ε′ν(λ)∗ = Λ
µ
σ

(
Λν

ρ

)∗ 3∑
λ=0

gλλεσ(λ)ερ(λ)∗ = Λ
µ
σ

(
Λν

ρ

)∗
gσρ = Λ

µ
σΛν

ρg
σρ

since the elements of the SO(1, 3) group (i.e. the Lorentz group) are real matrices. Now,
to prove that Λ

µ
σΛν

ρg
σρ = gµν, we notice that Λ

µ
σΛν

ρg
σρ = Λ

µ
σgσρ(Λᵀ) νρ , which in

matrices notation reads ΛgΛᵀ. Since Λ−1 is also a Lorentz transformation, it satisfies
the definition (2.14), i.e. (Λ−1)ᵀgΛ−1 = g. Let’s multiply A = ΛgΛᵀ by g = (Λ−1)ᵀgΛ−1

from the right. It yields

Ag = ΛgΛᵀ(Λ−1)ᵀgΛ−1 = ΛggΛ−1 = ΛΛ−1 = 1.

Therefore, A = g−1 = g, which proves that Λ
µ
σΛν

ρg
σρ = gµν. We conclude

3∑
λ=0

gλλε′µ(λ)ε′ν(λ)∗ = gµν,

which shows that the 4-polarisation vectors in the basis (5.129) also satisfy Eq. (5.128).



6 A brief overview of Quantum
Electrodynamics

6.1. The Lagrangian (6.15) is reproduced below:

LD =
∑
α,β

ψ̄αiγµαβ∂µψβ − mδαβψ̄αψβ.

Applying the Euler-Lagrange equation to ψβ yields:

∂LD
∂ψβ

=
∑
α −mδαβψ̄α

∂LD
∂(∂µψβ) =

∑
α ψ̄αiγµαβ

 − mψ̄β −
∑
α

∂µψ̄αiγµαβ = 0,

which is simply the β component of the Dirac adjoint equation (5.43).
6.2. The electromagnetic Lagrangian can be written

Lγ = −
1
4

FµνFµν = −
1
4

F0νF0ν −
1
4

F jνF jν = −
1
4

F0νF0ν −
1
4

F j0F j0 −
1
4

F jiF ji,

where i and j = 1, 2, or 3. As F00 = 0, F0ν is reduced to F0i. Since F is antisymmetric
F j0 = −F0 j, it follows that

Lγ = −
1
4

F0iF0i −
1
4

F0 jF0 j −
1
4

F jiF ji = −
1
2

F0iF0i −
1
4

F jiF ji.

Note that F0i = −F0i because we lower one time-component and one spatial-component,
whereas Fi j = F i j because two spatial-components are lowered. Therefore,

Lγ = +
1
2

∑
i

(
F0i

)2
−

1
4

∑
i, j

(
F ji

)2
.

Using the components of the electric and magnetic fields given in Eq. (2.40), this ex-
pression is equivalent to

Lγ =
1
2

(|E|2 − |B|2),

with c = 1.
6.3. Canonical quantisation of the electromagnetic field.

1. After the insertion of Fµν = ∂µAν − ∂νAµ, the Lagrangian (6.20) with ζ = 1 reads

L = − 1
4 FµνFµν − 1

2 (∂µAµ)2

= − 1
4 (∂µAν)(∂µAν) − 1

4 (∂νAµ)(∂νAµ) + 1
4 (∂µAν)(∂νAµ) + 1

4 (∂νAµ)(∂µAν) − 1
2 (∂µAµ)(∂νAν).

As µ and ν are dummy indices, they can be swapped in the second and fourth terms,
yielding

L = −
1
2

(∂µAν)(∂µAν) +
1
2

(∂µAν)(∂νAµ) −
1
2

(∂µAµ)(∂νAν).

18
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But

∂µ[Aν(∂νAµ)−Aµ(∂νAν)] = (∂µAν)(∂νAµ)+ Aν∂µ(∂νAµ)− (∂µAµ)(∂νAν)−Aµ∂µ(∂νAν),

where the second and fourth terms vanish since

Aν∂µ(∂νAµ) = Aν∂
ν∂µAµ = Aν∂ν∂µAµ = Aµ∂µ∂νAν.

Therefore,

L = −
1
2
∂µAν∂

µAν +
1
2
∂µ[Aν(∂νAµ) − Aµ(∂νAν)].

2. The second term is a 4-divergence which does not contribute to the action. Therefore,
it can be ignored, i.e.

L → L = −
1
2
∂µAν∂

µAν = −
1
2
∂0Aν∂0Aν −

1
2
∂iAν∂iAν.

The canonically conjugate field Πν belonging to Aν thus reads

Πν =
∂L

∂(∂0Aν)
= −

1
2
∂0Aν−

1
2

(∂0Aν)
∂(∂0Aν)
∂(∂0Aν)

= −
1
2
∂0Aν−

1
2

(∂0Aν)
∂(∂0Aν)
∂(∂0Aν)

= −∂0Aν.

Consequently, [
Aµ(x), Åν(y)

]
= −

[
Aµ(x),Πν(y)

]
= −igµνδ(3)(x − y),[

Åµ(x), Åν(y)
]

=
[
Πµ(x),Πν(y)

]
= 0.

6.4. Trace of the product of four γ matrices.

Tr(γργµγηγν) = Tr(γµγηγνγρ)
= −Tr(γµγηγργν) + 2gρνTr(γµγη)
= −Tr(γµγηγργν) + 8gρνgµη

= Tr(γµγργηγν) − 8gηρgµν + 8gρνgµη

= −Tr(γργµγηγν) + 8gρµgην − 8gηρgµν + 8gρνgµη,

and therefore,

Tr(γργµγηγν) = 4 (gρµgην − gηρgµν + gρν) gµη.

6.5. Feynman diagrams and amplitudes of reactions with e± and µ±. We note in all this
exercise q = −e the charge of the electron (or the muon), not the positron (nor µ+). The
Feynman diagrams of the first three reactions (at lowest order) are:

�

µ�

e+

µ�

e+

�

µ+

e+

µ+

e+

�

e�

e+

µ�

µ+

1

�iq�µ

�iq�⌫

�iq�µ

�iq�⌫

�iq�µ �iq�⌫

1
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1. e+(k) + e−(p)→ µ+(k′) + µ−(p′).
It’s a t-channel and

iM = ūµ(p′) · (−iqγµ) · uµ(p) ×
−igµν
t + iε

× v̄e(k) · (−iqγν) · ve(k′),

where t = (k−k′)2 = (p′− p)2. The amplitude should be a C-number. Therefore, one
should always check that all γ matrices are correctly contracted between an adjoint
spinor and a spinor.

2. e+(k) + µ+(p)→ e+(k′) + µ+(p′).
Same as 1, except for the muon current:

iM = v̄µ(p) · (−iqγµ) · vµ(p′) ×
−igµν
t + iε

× v̄e(k) · (−iqγν) · ve(k′).

3. e+(k) + e−(p)→ µ+(k′) + µ−(p′).
It’s a s-channel and

iM = v̄e(k) · (−iqγµ) · ue(p) ×
−igµν
s + iε

× ūµ(p′) · (−iqγν) · vµ(k′),

where s = (k + p)2 = (k′ + p′)2.
4. e+ + µ− → e− + µ+.

Not allowed at any order: the process violates the individual lepton numbers, which
are conserved in QED processes. Note that the conservation is ensured by the inter-
action Lagrangian in QED, which has no term of the kind ψ̄ fγ

µψ f ′Aµ, where f and
f ′ are two different fermions.

6.6. Reactions with e+ and e−.

1. e− + e− → e− + e− (Møller scattering).
There are two diagrams:

�

(2) e�

(1) e�

e� (4)

e� (3)

�

(2) e�

(1) e�

e� (4)

e� (3)

1

To check if they are equivalent, look at the hidden part (that is, the vertices and
propagators – everything but external lines) of the diagrams. If they are different
(e.g. the momenta flowing in the propagators are different), then the two diagrams
are not equivalent, and we need to add/subtract them. Here we have a t- and a u-
channel that have p1− p3 and p1− p4, respectively, flowing in the photon propagator
(assuming a downward flow). We can retrieve one from the other by exchanging the
two outgoing electrons so, we put a minus sign between the two amplitudes since
fermions are exchanged. Note that a diagram where the incoming electrons would
be interchanged would be equivalent to the second diagram since the 4-momentum
in the photon propagator would be p2 − p3 = p4 − p1 by 4-momentum conservation
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(the sign of the 4-momentum in the propagator is physically meaningless since the
photon can be seen as going upward or downward).

2. e+ + e− → e+ + e− (Bhabba scattering).
There are two diagrams:

�

(2) e�

(1) e+

e� (4)

e+ (3)

�

(2) e�

(1) e+

e� (4)

e+ (3)

1

An s- and a t-channel. The label (1) and (3) are used for positrons, while (2) and
(4) are for electrons. We transform the first diagram into the second by exchanging
the outgoing electron (4) with the incoming positron (1). As the exchange concerns
fermions, the two amplitudes must be subtracted. Note that the interchange of (3)
and (4) should not be considered since (3) would no longer label a positron but an
electron. When new diagrams are envisaged, the labelling convention used in the
first diagram should always be followed.

3. e− + e+ → γ + γ (pair annihilation).
There are two diagrams:

(2) e+

(1) e�

� (4)

� (3)

(2) e+

(1) e�

� (4)

� (3)

1

A t- and a u-channel. We transform one into the other with the exchange of the two
outgoing photons. Since they are bosons, the amplitudes must be added.

6.7. To show that the absolute amplitude squared (6.93) of the scattering e− +µ− → e− +µ−,

|M|2 =
2e4

t2

[
(s − m2

e − m2
µ)2 + (u − m2

e − m2
µ)2 + 2t(m2

e + m2
µ)
]
,

is equivalent to

|M|2 =
4e4

t2

[
(s − m2

e − m2
µ)(m2

e + m2
µ − u) + t(m2

e + m2
µ) +

t2

2

]
,

it is easier to start from the second formula,

|M|2 =
2e4

t2

[
2(s − m2

e − m2
µ)(m2

e + m2
µ − u) + 2t(m2

e + m2
µ) + t2

]
.
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Given that s + t + u =
∑4

i=1 m2
i = 2m2

e + 2m2
µ, the Mandelstam variable t satisfies

t2 = (2m2
e + 2m2

µ − s − u)2

= (m2
e + m2

µ − s + m2
e + m2

µ − u)2

= (m2
e + m2

µ − s)2 + (m2
e + m2

µ − u)2 + 2(m2
e + m2

µ − s)(m2
e + m2

µ − u)
= (s − m2

e − m2
µ)2 + (u − m2

e − m2
µ)2 − 2(s − m2

e − m2
µ)(m2

e + m2
µ − u).

The insertion of t2 into the second formula leads to the first.
6.8. Eq. (6.98) is a simple consequence of 4-momentum conservation. In the reaction, e− +

µ− → e− + µ−, for an initial muon at rest, 4-momentum conservation imposes{
Ee + mµ = E′e + E′µ,

pe = p′e + pµ.

When the electron mass is neglected, the second equation implies

|pe − p′e|2 = |pµ|2

E2
e + E′2e − 2EeE′e cos θ = E2

µ − m2
µ.

Inserting Eµ from energy conservation yields

E2
e + E′2e − 2EeE′e cos θ = (Ee + mµ − E′e)2 − m2

µ

= E2
e + E′2e − 2EeE′e − 2mµEe − 2mµE′e.

It follows that

E′e =
Eemµ

mµ + Ee(1 − cos θ)
.

6.9. As /p2 = p2 = /p′2 = p′2 = m2 and k2 = 0, A = Tr
(
/p′γµ(2pν + /kγν)/p(2pν + γν/k)γµ

)
reads

A = 4p2Tr
(
/p′γµ/pγµ

)
+ 2Tr

(
/p′γµ/k/p2γµ

)
+ 2Tr

(
/p′γµ/p2/kγµ

)
+ Tr

(
/p′γµ/kγν/pγν/kγµ

)
= 4m2

[
Tr

(
/p′γµ/pγµ

)
+ Tr

(
/p′γµ/kγµ

)]
+ Tr

(
/p′γµ/kγν/pγν/kγµ

)
The identity (G.6) tells us that γµ/pγµ = pνγµγνγµ = −2γνpν = −2/p, γµ/kγµ = −2/k, and
γν/pγν = −2/p. Consequently,

A = 4m2
[
−2Tr

(
/p′γν

)
(pν + kν)

]
− 2pρTr

(
/p′γµ/kγρ/kγµ

)
= −8m2 [

4p′ν(pν + kν)
]
+ 4pρTr

(
/p′/kγρ/k

)
,

where the identity (6.85) and (G.8) have been used. Therefore, with the help of Eq.
(6.89), it follows that

A = −32m2(p′ · p + p′ · k) + 4Tr
(
/p′/k/p/k

)
= −32m2(p′ · p + p′ · k) + 16(p′ · k p · k − p′ · p k2 + p′ · k k · p)
= 32[−m2 p′ · p + p′ · k(p · k − m2)].

Similarly, B = Tr(γµ(2pν + /kγν)(2pν + γν/k)γµ) becomes

B = 4p2Tr(γµγµ) + 2Tr(γµ/p/kγµ) + 2Tr(γµ/k/pγµ) + Tr(γµ/kγνγν/kγµ)
= 16m2Tr(1) + 8p · kTr(1) + 8k · pTr(1) + 4Tr(γµ/k2γµ)
= 64m2 + 64p · k.
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6.10. For Q2 = −q2 � m2,

f (Q2) = 6
∫ 1

0 dz z(1 − z) ln
[
1 +

Q2

m2 z(1 − z)
]

= 6
∫ 1

0 dz z(1 − z) ln
[

Q2

m2 z(1 − z)
(
1 + 1

Q2

m2 z(1−z)

)]
' 6

∫ 1
0 dz z(1 − z) ln

[
Q2

m2 z(1 − z)
]

= 6
∫ 1

0 dz z(1 − z) ln
(

Q2

m2

)
+ 6

∫ 1
0 dz z(1 − z) ln [z(1 − z)]

= 6 × 1
6 ln

(
Q2

m2

)
+ 6

∫ 1
0 dz z(1 − z) ln z + 6

∫ 1
0 dz z(1 − z) ln(z − 1)

= ln
(

Q2

m2

)
+ 6 × −5

36 + 6 × −5
36

= ln
(

Q2

m2

)
− 5

3 .

Therefore,

f (Q2) − f (Q2
0) = ln

(
Q2

m2

)
− ln

Q2
0

m2

 = ln
Q2

Q2
0

 ,
and Eq. (6.115) becomes Eq. (6.116).

6.11. The ultra-relativistic regime of the reaction e−(p) + e+(k)→ µ−(p′) + µ+(k′).

1. In the ultra-relativistic regime, helicity and chirality are the same since masses are
neglected. In Section 6.5, p. 207, for a reaction described by an s-channel diagram
(which is the case, see Fig. 6.6), we listed the allowed configurations in Fig. 6.10.
Only four amplitudes can contribute to the process, i.e.

MLR→LR, MLR→RL, MRL→LR, MRL→RL,

whereMab→cd denotes the amplitude for e− with the helicity (or chirality) a, e+ with
b, µ− with c and µ+ with d.

2. The s-channel amplitude reads

iM = v̄e(k) · (−iqγµ) · ue(p) × −igµν
s+iε × ūmu(p′) · (−iqγν) · vmu(k′)

=
igµν

s ( jµ)e ( jν)mu,
(S6.1)

with s = (p + k)2, ( jµ)e = qv̄e(k)γµue(p), and ( jν)mu = qūmu(p′)γνvmu(k′). Let us use
the centre-of-mass frame and orient the z-axis in the direction of propagation of the
electron. As the initial particles are the same, so is the energy Ee− = Ee+ =

√
s/2.

Similarly the final particles are the same, so Eµ− = Eµ+ =
√

s/2. As a result, all
leptons have the same energy E =

√
s/2. Since we neglect all masses, all leptons

have the momentum |p`| = E.
Let us start with the amplitude MLR→LR. Using the spinor formula (5.96), rotation
invariance allows to set φ = 0. For the electron (θe− , φe− ) = (0, 0) while for the
positron (θe+ , φe+ ) = (π, 0), giving, respectively, for ue(p) and ve(k),

uLe ≈ u− 1
2
≈
√

E


0
1
0
−1

 , vRe ≈ v+ 1
2
≈
√

E


1
0
−1
0

 . (S6.2)
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For the muon, for simplicity, we orient the x-axis in the muon direction of propaga-
tion. Hence, we have (θµ− , φµ− ) = (θ, 0). The anti-muon is emitted back-to-back so
we take (θµ+ , φµ+ ) = (π−θµ− , π+φµ− ) = (π−θ, π). Then, the spinors read, respectively,
for umu(p′) and vmu(k′),

uLmu ≈ u− 1
2
≈
√

E


−s
c
s
−c

 , vRmu ≈ v+ 1
2
≈
√

E


c
s
−c
−s

 , (S6.3)

using s ≡ sin θ
2 and c ≡ cos θ

2 .
To compute the electron current ( jµ)LR

e = q(vR
†
eγ

0γµuLe) for µ = 0 . . . 3, note that
γ0γµ are

(γ0)2 = 1, γ0γi =

(
σi

σi

)
,

namely

γ0γ1 =


1

1
1

1

 , γ0γ2 = i


−1

1
−1

1

 , γ0γ3 =


1
−1

1
−1

 .
This yields ( j0)LR

e = ( j3)LR
e = 0, ( j1)LR

e = −2qE, ( j2)LR
e = 2iqE, i.e.

( jµ)LR
e = q(vR

†
eγ

0γµuLe) = qE


0
−2
2i
0

 = q
√

s


0
−1
i
0

 .
Similarly, we find

( jµ)LR
mu = q(uL

†
muγ

0γµvRmu) = qE


0

−2 cos θ
−2i

2 sin θ

 = q
√

s


0

− cos θ
−i

sin θ

 .
Therefore, given that q = −e, the amplitude is

MLR→LR =
gµν
s

( jµ)LR
e ( jν)LR

mu

=
1
s

(
( j0)LR

e ( j0)LR
mu − ( j1)LR

e ( j1)LR
mu − ( j2)LR

e ( j2)LR
mu − ( j3)LR

e ( j3)LR
mu

)
= −e2(cos θ + 1). (S6.4)

For the three other amplitudes, no need to redo the whole calculation. Since parity
is conserved by QED processes, the amplitude of the parity transformed process
is equal to the original amplitude up to a phase. The parity transformation inverts
helicity. Therefore, we should have

MRL→RL = ηRLMLR→LR, MRL→LR = ηLRMLR→RL,



25 A brief overview of Quantum Electrodynamics

with |ηLR| = |ηRL| = 1. Hence, only MLR→RL needs to be evaluated, imposing to
re-evaluate the muon current for the RL helicities. Following the same approach as
before, one finds

uRmu ≈ u+ 1
2
≈
√

E


c
s
c
s

 , vLmu ≈ v− 1
2
≈
√

E


s
−c
s
−c

 . (S6.5)

This yields

( jµ)RL
mu = q(uR

†
muγ

0γµvLmu) = q
√

s


0

− cos θ
i

sin θ

 ,
and thus

MLR→RL =
gµν
s

( jµ)LR
e ( jν)RL

mu = e2(1 − cos θ). (S6.6)

3. The four processes differ by observable quantities. Therefore, there are no interfer-
ences. We then have

|Mtot|
2 =

1
4

(
|MLR→LR|

2 + |MRL→RL|
2 + |MLR→RL|

2 + |MRL→LR|
2
)

=
e4

2

[
(1 + cos θ)2 + (1 − cos θ)2

]
= e4

(
1 + cos2 θ

)
.

4. Using the Mandelstam variables,

s ≡ (p + k)2 = 4E2 = 4|p|2,
t ≡ (p − p′)2 = − (p− p′)2 = −2|p|2(1 − cos θ),
u ≡ (p − k′)2 = − (p− k′)2 = −2|p|2(1 + cos θ),

it follows that (1 + cos θ)2 = 4u2/s2 and (1 − cos θ)2 = 4t2/s2, and thus

|Mtot|
2 = 2e4 t2 + u2

s2 .

5. Starting from Eq. (S6.1), we have

|M|2 =
e4

s2

[
v̄e(k)γµue(p)ūmu(p′)γµvmu(k′)

]∗ [
v̄e(k)γνue(p)ūmu(p′)γνvmu(k′)

]
.

Therefore, the unpolarised amplitude squared is

|Mtot|
2 =

e4

s2 Lµν(e)Lµν(mu),

with

Lµν(e) = 1
2
∑

r,r′
[
v̄e(k)γµue(p)

]∗ [v̄e(k)γνue(p)
]

= 1
2 Tr

[
/pγµ/kγν

]
,

Lµν(mu) = 1
2
∑

s,s′
[
ūmu(p′)γµvmu(k′)

]∗ [
ūmu(p′)γνvmu(k′)

]
= 1

2 Tr
[
/k′γµ/p′γν

]
,
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where the trace results from Eq. (6.83), when masses are neglected. Now, the trace
of the product of four γ matrices is given by Eq. (6.88). This yields

|Mtot|
2 =

e4

s2 8
[
(p · k′)(k′ · p′) + (p · p′)(k · k′)

]
.

Since t = −2p · p′ = −2k · k′ and u = −2k · p′ = −2k′ · p, it follows that

|Mtot|
2 = 2e4 t2 + u2

s2 .

6.12. The non-relativistic Hamiltonian in the presence of a magnetic field reads

Ĥ =
( p̂ − qA)2

2m
=

p̂2

2m
−

q
m

A · p̂ +
q2A2

2m
'

p̂2

2m
−

q
m

A · p̂

where the term in q2 is neglected. We identify the non-relativistic kinetic energy p̂2/(2m)
and the additional energy given by

EB = −
q
m

A · p̂.

But, B = ∇ × A and A can be chosen satisfying the gauge ∇ · A = 0. Therefore
A = 1

2 B × r and EB become

EB = −
q

2m
(B × r) · p̂ = −

q
2m

(r × p̂) · B = −
q

2m
L̂ · B = −µ̂ · B,

where the circular shift property of the scalar triple product has been applied in the
second step. We finally find the expected expression for the magnetic moment µ̂.

6.13. Starting from the definition of

σµν =
i
2

(γµγν − γνγµ) ,

we have for k, j = 1, 2, 3,

σk j = i
2

[(
0 σk

−σk 0

) (
0 σ j

−σ j 0

)
−

(
0 σ j

−σ j 0

) (
0 σk

−σk 0

)]
= i

2

(
−(σkσ j − σ jσk) 0

0 −(σkσ j − σ jσk)

)
= i

2

(
−2i

∑
l εk jlσ

l 0
0 −2i

∑
l εk jlσ

l

)
=

∑
l εk jl

(
σl 0
0 σl

)
,

where εk jl is the usual antisymmetric tensor appearing in the commutator of the Pauli
matrices (εk jl = 1 for cyclic permutation of 123, = −1 for anti-cyclic permutation, 0
otherwise). Similarly,

σ0 j = i
2

[(
1 0
0 −1

) (
0 σ j

−σ j 0

)
−

(
0 σ j

−σ j 0

) (
1 0
0 −1

)]
= i

(
0 σ j

σ j 0

)
.
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6.14. In Eq. (6.124), given that in the low energy limit the spinor u '
( ua

0
)
, the term u fσ

k jui∂ jAk

is explicitly

u fσ
k jui∂ jAk =

∑
l

εk jl(u†a f
, 0)

(
1 0
0 −1

) (
σl 0
0 σl

) (
uai

0

)
∂ jAk =

∑
l

εk jl u†a f
σluai∂ jAk.

(S6.7)
Let us focus, for example, on the component k = 1 of Ak. It is contracted by

ū fσ
1 jui∂ j = ū fσ

11∂1ui + ū fσ
12∂2ui + ū fσ

13∂3ui,

which according to Eq. (S6.7) is

ū fσ
1 jui∂ j =

∑
l ε11l u†a fσ

l∂1uai +
∑

l ε12l u†a fσ
l∂2uai +

∑
l ε13l u†a fσ

l∂3uai

= u†a f

(∑
l ε11lσ

l∂1 +
∑

l ε12lσ
l∂2 +

∑
l ε13lσ

l∂3

)
uai .

The properties of the antisymmetric tensor ε are such that ε11l = 0, and ε12l and ε13l are
non-zero only for l = 3 and 2, respectively. Therefore,

ū fσ
1 jui∂ j = u†a f

(
σ3∂2 − σ

2∂3

)
uai

= −u†a f [σ × ∂]1 uai .

We would have reach a similar result for the other components. Therefore,

u fσ
k jui∂ jAk = u†a f

∑
l

εk jl σ
l∂ jAk

 uai = −u†a f

(
[σ × ∂]k Ak

)
uai .



7 From hadrons to partons

7.1. Spinless scattering: the Rutherford cross-section of e−(k) + p(p)→ e−(k′) + p(p′).

1. Using the Feynman rules for scalars, the amplitude is given by a t-channel diagram
and reads

iM =
[
−i(−e)(kµ + k′µ)

] −igµν
q2

[
−ie(pν + p′ν)

]
,

with q = k − k′. Consequently,

M = −
e2

q2 (kµ + k′µ)(pµ + p′µ) = −
e2

q2 (k · p + k · p′ + k′ · p + k′ · p′).

For a proton at rest and neglecting its recoil, energy conservation implies E + M =

E′ + M, so E = E′, and then, the 4-momenta are k = (E, k), k′ = (E, k′), p = p′ =

(M, 0). Therefore, the scalar products in the amplitude are all equal to EM. When
the electron mass is neglected, as

q2 = (k − k′)2 ' −2k · k′ = −2(E2 − E2 cos θ) = −4E2 sin2 θ

2
,

with θ the scattering angle of the electrons, the amplitude finally reads

M =
e2

4E2 sin2 θ
2

4EM =
4παM

E sin2 θ
2

.

2. Formula (3.44) is appropriate to express differential cross-sections in the lab frame
since

dσ
dΩ

=
dσ
dt

dt
dΩ

=
1

64πs
|M|2

|p∗|2
dt
dΩ

.

Since particles are considered spinless, |M|2 = |M|2. The quantity p∗ is the momen-
tum evaluated in the centre-of-mass frame and reads, with the help of Eq. (3.34),

|p∗|2 =
(s − M2)(s − M2)

4s
.

As s = (p + k)2 = M2 + 2EM, |p∗|2 = E2M2/s. Moreover, t = q2 = −2E2(1 − cos θ)
implies dt = 2E2 d(cos θ). Given that dΩ = 2π d(cos θ), dt = E2 dΩ/π, it follows
that

dσ
dΩ

=
1

64πs
s

E2M2

 4παM

E sin2 θ
2

2
E2

π
=

α2

4E2 sin4 θ
2

.

This is the well-known Rutherford formula, usually derived using a spinless particle
(historically alpha) in a static Coulomb field.
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7.2. The Mott cross-section with a spinless proton and spin 1/2 electron, e−(k) + p(p) →
e−(k′) + p(p′).

1. The proton current is the same as in Problem 7.1, but this time, the electron current
is the Dirac current. The amplitude reads

iM =
[
ūr′ (k′)(ieγµ)ur(k)

] −igµν
q2

[
−ie(pν + p′ν)

]
,

with, as before, q2 = −4EE′ sin2(θ/2) since the electron mass is neglected. The
unpolarised amplitude squared is now given by

|M|2 =
e4

q4 Lµν(pµ + p′µ)(pν + p′ν),

where

Lµν = 1
2
∑

r,r′
[
ūr′ (k′)γµur(k)

]∗ [ūr′ (k′)γµur(k)
]

= 1
2 Tr

(
/kγµ /k′γν

)
= 2 (kµk′ν − k · k′gµν + kνk′µ) ,

where the formulas (6.83) and (6.88) have been successively used. Inserting Lµν into
|M|2 formula leads to

|M|2 = e4

q4

[
(k · p)(k′ · p) + (k · p)(k′ · p′) + (k · p′)(k′ · p) + (k · p′)(k′ · p′)
− M2(k · k′) − (k · k′)(p · p′)

]
.

Now, the proton recoil is no longer neglected, but the colliding proton is at rest.
Therefore, k = (E, k), k′ = (E′, k′), p = (M, 0) and p′ = k + p − k′ = (E + M −
E′, k − k′). It follows that

k · k′ = 2EE′ sin2 θ
2 , p · p′ = M(E + M − E′), k · p = EM, k′ · p = E′M,

and

k · p′ = −2EE′ sin2 θ
2 + EM, k′ · p′ = 2EE′ sin2 θ

2 + E′M.

Inserting these scalar products in |M|2 formula yields

|M|2 = 8e4

q4 EE′
(
2M2 + EM sin2 θ

2 − E′M sin2 θ
2 − 2EE′ sin4 θ

2 − 2M2 sin2 θ
2

)
= 8e4

q4 EE′
[
2M2 cos2 θ

2 + M sin2 θ
2

(
E − E′ − 2 EE′

M sin2 θ
2

)]
.

However, according to Eq. (7.9),

E − E′ = 2
EE′

M
sin2 θ

2
. (S7.1)

Therefore

|M|2 =
16e4

q4 EE′M2 cos2 θ

2
,

with q4 = 16E2E′2 sin4(θ/2).
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2. To get the differential cross-section, we proceed as in Problem 7.1, i.e.

dσ
dΩ

=
1

64πs
|M|2

|p∗|2
dt
dΩ

.

The momentum |p∗|2 is still given by E2M2/s. However, even if t has the same
expression, the calculation of dt/ dΩ requires some precautions. This time, E′ also
depends on θ [see Eq. (S7.1)], so dt/ dΩ is no longer E2/π. It is easier to calculate
dt/ dΩ using

t = (k − k′)2 = (p′ − p)2 = 2M2 − 2p′ · p = 2M2 − 2(E + M − E′)M,

so that
dt
dΩ

= 2M
dE′

2π d(cos θ)
.

Actually, the calculation is exactly the same as that done on page 199 in the book,
where the role played by the muon is now played by the proton. This leads to the
expression (6.99), which is now

dσ
dΩ

=
1

64π2

|M|2

M2

(
E′

E

)2

.

The insertion of the expression of |M|2 yields the Mott differential cross-section,

dσ
dΩ

=
α2

4E2 sin4 θ
2

E′

E
cos2 θ

2
.

7.3. The general elementary cross-section formula applied to the reaction e−(k) + p(p) →
e−(k′) + p(p′) with the assumptions k = (E, k), k′ = (E′, k′), |k| = E and |k′| = E′,
p = (M, 0) is

dσ =
1

4|p · k|
(2π)4δ(4)(p′ + k′ − p − k)|M|2

d3 p′

(2π)32p′0
d3 k′

(2π)32E′
.

Writing d3 k′ = E′2 dE′ dΩ and p · k = EM yields

dσ
dE′ dΩ

=
1

8M(2π)2 δ
(4)(p′ + k′ − p − k)|M|2

E′

E
d3 p′

2p′0
.

To integrate over d4 p′, we first use Eq. (E.6), i.e.∫ +∞

−∞

d4 p′ δ(p′2 − M2)θ(p′0) =

∫ +∞

−∞

d3 p′

2p′0
,

yielding

dσ
dE′ dΩ

=
∫

d4 p′ δ(p′2 − M2)θ(p′0) 1
8M(2π)2 δ

(4)(p′ + k′ − p − k)|M|2 E′
E

= 1
8M(2π)2 δ((p + q)2 − M2)|M|2 E′

E

= 1
8M(2π)2 δ(q2 + 2p · q)|M|2 E′

E

= 1
8M(2π)2 δ(q2 + 2M(E − E′))|M|2 E′

E .
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Finally, using a property of the δ-function, we conclude

dσ
dE′ dΩ

=
1

16M2(2π)2 δ

(
q2

2M
+ E − E′

)
|M|2

E′

E
. (S7.2)

7.4. With ψp′ (x) = u(p′)e−ip′·x and ψp(x) = u(p)e−ip·x, the expression of the proton current
j µf.s. = ψp′ (x)Γµψp(x) is

j µf.s.(x) = eiq·xū(p′)
[
f1(q2)γµ + f2(q2)(p′ + p)µ + f3(q2)qµ

]
u(p),

with q = p′ − p. According to the Gordon decomposition (7.12),

ū(p′)
(
p′ + p

)µ u(p) = 2M ū(p′)γµu(p) − iū(p′)σµνqνu(p),

where M is the proton mass, the current becomes

j µf.s.(x) = eiq·xū(p′)
[(

f1(q2) + 2M f2(q2)
)
γµ − i f2(q2)σµνqν + f3(q2)qµ

]
u(p),

which, after defining F1 and F2, such as F1(q2) = f1(q2) + 2M f2(q2) and f2(q2) =

− κ
2MF2(q2), reads

j µf.s.(x) = eiq·xū(p′)
[
F1(q2)γµ + i

κ

2M
F2(q2)σµνqν + f3(q2)qµ

]
u(p).

Its conservation ∂µ j µf.s. = 0 implies

qµ ū(p′)
[
F1(q2)γµ + i

κ

2M
F2(q2)σµνqν + f3(q2)qµ

]
u(p) = 0.

Due to the Dirac equation in momentum space, i.e.

(/p − m)u(p) = 0, ū(p′)( /p′ − m) = 0,

the term ū(p′)F1(q2)/qu(p) = 0. Moreover, σµν is an antisymmetric tensor which implies
qµσµνqν = −qµσνµqν = −qνσµνqµ. Therefore, qµσµνqν = 0. As a result, the current
conservation reduces to the constraint

f3(q2)q2ū(p′)u(p) = 0,

for all p, p′ and q = p − p′, imposing f3(q2) = 0. The current is thus

j µf.s.(x) = eiq·xū(p′)
[
F1(q2)γµ + i

κ

2M
F2(q2)σµνqν

]
u(p).

7.5. Estimation of the proton radius from the form factor.

1. For a charge distribution ρ(r) with a spherical symmetry [ρ(r) = ρ(r)], the form
factor reads

G(q) =

∫
ρ(r)eiq.r d3r =

∫
dr ρ(r)r2

∫ π

0
dθ sin θei|q|r cos θ

∫ 2π

0
dϕ

The integral over θ is
[
− ei|q|r cos θ

i|q|r

]π
0

= 2 sin(qr)/(|q|r) while that over ϕ is simply 2π.
Therefore,

G(|q|) =
4π
|q|

∫
rρ(r) sin(|q|r) dr.
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2. The density normalisation requires∫
ρ(r) r2 dr sin θ dθ dϕ = A

∫
e−αr r2 dr sin θ dθ dϕ = 4πA

∫
e−αr r2 dr = 1.

With two successive integrations by part, the integral is 2α3. Therefore, A = α3/(8π).
3. Let us calculate G(|q|):

G(q) =
α3

2|q|

∫ ∞

0
re−αr sin(|q|r) dr =

α3

2|q|
=

(∫ ∞

0
re(−α+i|q|)r dr

)
.

An integration by part eliminates r, yielding

G(q) = −
α3

2|q|
=

(∫ ∞

0

e(−α+i|q|)r

−α + i|q|
dr

)
=

α3

2|q|
=

(
1

(−α + i|q|)2

)
=

α4

(α2 + |q|)2 =
1(

1 +
|q|)2

α2

)2 .

This matches the dipole formula in Eq. (7.24) for α = 0.71 GeV (given Q2 ' |q2|).
The mean value of the proton radius is then obtained from

〈r2〉 =

∫
r2ρ(r) d3r =

α3

2

∫ ∞

0
r4e−αr dr

giving, after multiple integrations by part, 24/α5. Therefore,

rp =
√
〈r2〉 =

√
12
α

=

√
12

0.71
GeV−1 =

√
12

0.71
× 0.197 fm,

giving rp = 0.8 fm.

7.6. We start from

Wµν = −W1gµν +
W2

M2 pµpν +
W3

M2 qµqν +
W4

M2 (pµqν + pνqµ),

and impose qµWµν = 0, i.e.

qµWµν = −W1qν + W2
M2 q · ppν +

W3
M2 q2qν + W4

M2 (q · pqν + q2 pν)
= qν

[
−W1 +

W3
M2 q2 + W4

M2 q · p
]

+ pν
[

W2
M2 q · p + W4

M2 q2
]

= 0.

As it is zero for all q and p, this implies each bracket above is zero. Therefore,

W4 = −
q · p
q2 W2

and

W3 =
M2

q2 W1 −
q · p
q2 W4 =

M2

q2 W1 +

(
q · p
q2

)2

W2.

It follows that

Wµν = −W1gµν + W2
M2 pµpν +

[
M2

q2 W1 +
(

q·p
q2

)2
W2

]
qµqν

M2 −
[

q·p
q2 W2

]
(pµqν+pνqµ)

M2

= W1

(
−gµν +

qµqν

q2

)
+ W2

M2

[
pµpν +

(
q·p
q2

)2
qµqν − q·p

q2 (pµqν + pνqµ)
]

= W1

(
−gµν +

qµqν

q2

)
+ W2

M2

(
pµ − p·q

q2 qµ
) (

pν − p·q
q2 qν

)
.
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7.7. Deep inelastic scattering cross-section of neutrinos on nucleons. According to the text,

Fνp
2 (x) = 2x[d(x) + ū(x)],

where d and ū are the PDFs of the d quark and ū quark (from the sea) in the proton. This
is coming from the charge-current interaction of neutrino where the interaction with νµ
on quarks produces

νµ + d → µ− + u, νµ + ū→ µ− + d̄.

(The contribution of quarks heavier than u and d are neglected here). Note that the
charge-current interaction of νµ + u or νµ + ū is impossible. As neutron also contains d
quarks (and ū from the sea), we expect

Fνp
2 (x) = 2x[dn(x) + ūn(x)],

where dn and ūn are the PDFs of quarks in the neutron. The isospin symmetry tells us
that dn = up ≡ u and ūn = d̄p ≡ d, and thus

Fνn
2 (x) = 2x[u(x) + d̄(x)].

Therefore, the nucleon structure function is

FνN
2 (x) =

1
2

[
Fνp

2 (x) + Fνn
2 (x)

]
= x[u(x) + d(x) + ū(x) + d̄(x)].

Similarly, we saw in Eqs. (7.36) and (7.37) that

Fep
2 (x) = x

[(
2
3

)2
(u(x) + ū(x)) +

(
1
3

)2 (
d(x) + d̄(x)

)]
,

Fen
2 (x) = x

[(
2
3

)2 (
d(x) + d̄(x)

)
+

(
1
3

)2
(u(x) + ū(x))

]
,

such as

FeN
2 (x) =

1
2

[
Fep

2 (x) + Fen
2 (x)

]
=

x
2

(2
3

)2

+

(
1
3

)2 [u(x) + d(x) + ū(x) + ū(x)] .

Therefore,
FeN

2

FνN
2

=
1
2

(2
3

)2

+

(
1
3

)2 =
5

18
,

where 2/3 and 1/3 are coming from the electric charge of quarks. In other words,

FeN
2

FνN
2

=
1
2

[
q2

u + q2
d

]
.

If qu or qd were integers, we would have at least q2
u ≥ 1 or q2

d ≥ 1 since the proton is
electrically charged, implying FeN

2 /FνN
2 ≥ 1/2. As measurements are consistent with

5/18 < 1/2, necessarily, one of the quarks has a fractional charge.



8 Quantum Chromodynamics

8.1. Applications of the isospin symmetry.

1. In the reaction p + p → π+ + d, in terms of isospin representations, the initial state
2 ⊗ 2 forms a total 3 (isospin 1) or 1 (isospin 0) representation. Looking at the third
component of isospin T3, we have T3(pp) = 1/2+1/2 = 1. Therefore, total isospin 0
is excluded, leaving isospin 1 as the only possibility. In the final state, since deuteron
has isospin 0, the pion needs to have isospin 1, as the isospin of the final state must
be 1. Pions are thus members of an isospin triplet.

2. The particles involved in the reactions p + p → π+ + d and n + n → π− + d have
isospin representations (

p
n

)
∼ 2,


π+

π0

π−

 ∼ 3,
(
d
)
∼ 1.

The reaction n + n → π− + d is the isospin conjugated of p + p → π+ + d reaction
(in each representation, we take the particle with opposite T3 : p → n, π+ → π−,
d → d). Since isospin is considered here to be a symmetry of strong interactions,
the cross sections are the same.

3. In terms of isospin states, we have

p =
∣∣∣1/2,+1/2

〉
, n =

∣∣∣1/2,−1/2
〉
, d =

∣∣∣0, 0〉, πε =
∣∣∣1, ε〉 for ε ∈ {±1, 0}.

Therefore, the reactions involve the isospin transitions

p + p→ π+ + d :
∣∣∣1/2,+1/2

〉
⊗

∣∣∣1/2,+1/2
〉
−→

∣∣∣1,+1
〉
⊗

∣∣∣0, 0〉,
n + n→ π− + d :

∣∣∣1/2,−1/2
〉
⊗

∣∣∣1/2,−1/2
〉
−→

∣∣∣1,−1
〉
⊗

∣∣∣0, 0〉,
n + p→ π0 + d :

∣∣∣1/2,−1/2
〉
⊗

∣∣∣1/2,+1/2
〉
−→

∣∣∣1, 0〉 ⊗ ∣∣∣0, 0〉.
Using the Clebsch-Gordan table in Fig. 2.1, p. 72, we have∣∣∣1/2,−1/2

〉
⊗

∣∣∣1/2,+1/2
〉

=
1
√

2

(∣∣∣1, 0〉 +
∣∣∣0, 0〉),

where the right-hand side is written in terms of total isospin. With total isospin, the
reactions are described by

p + p→ π+ + d :
∣∣∣1,+1

〉
−→

∣∣∣1,+1
〉
,

n + n→ π− + d :
∣∣∣1,−1

〉
−→

∣∣∣1,−1
〉
,

n + p→ π0 + d :
1
√

2

(∣∣∣1, 0〉 +
∣∣∣0, 0〉) −→ ∣∣∣1, 0〉.

34
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From the n+ p, state we thus have 50% probability of producing the |1, 0〉 state (π0d)
and 50% probability of producing the |0, 0〉 state (ηd). As a result, we expect

σ(np→ π0d) =
1
2
σ(pp→ π+d).

Note: the formalism from this question can also be used to answer the first two
questions.

8.2. Weight diagrams with 3 ⊗ 3 ⊗ 3. When we start from the fundamental representation
3 (the triangle) and superimpose on each corner another triangle (i.e. we do 3 ⊗ 3), we
obtain the diagram in Fig. 8.6 located on the left-hand side of the equal sign of the first
row. Starting from the highest weight uu and applying the ladder operators I− and V−
(Fig. 8.5 tells us the action of the ladder operators) generates the states corresponding to
the second diagram of the first row (after normalisation). The third diagram is obtained
by requiring its states to be orthogonal to that of the second diagram. For instance, the
state (ud +du)/

√
2 in the second diagram must be orthogonal to a linear combination of

du and ud, which have degeneracy 2 in the first diagram. We obtain (ud−du)/
√

2, i.e. the
state in the third diagram. The diagrams in the second and third rows are obtained using
the same recipe. We end up with the well-known decomposition 3⊗3⊗3 = 10+8+8+1.

Let us determine the missing states in Fig. 8.6. Let us focus on the octet in the second
row in Fig. 8.6. Starting from the state (2uus − usu − suu)/

√
6, we can apply V− to get

the state in the lower-right corner. We find −(2ssu − uss − sus)/
√

6. We then apply I−
to get the state in the lower-left corner, obtaining −(2ssd − dss − sds)/

√
6. Similarly,

for the octet in the last row, starting from (usu − suu)/
√

2, we obtain:

usu − suu
√

2

V−
−−→

uss − sus
√

2

I−
−→

dss − sds
√

2
.

For the decuplet, we start from uuu and apply twice V−, obtaining successively (suu +

usu + uus)/
√

3 and (ssu + sus + uss)/
√

3. Finally, starting from ddd and applying twice
U− yields (sdd + dsd + dds)/

√
3 and (ssd + sds + dss)/

√
3.

8.3. In the context of the spin, let us called the two states ↑ and ↓. The action of the ladder
I± is obviously I− |↑〉 = |↓〉 and I+ |↓〉 = |↑〉. In the weight diagrams, the representations
are represented along the Iz axis, the fundamental representation 2 having its member
in Iz = ±1/2. The construction proceeds as in the previous problem. The result is:

↑↑↓↓ ↑↓

↓↑

↑↑↓↓
↓↑+↑↓√

2

↓↑−↑↓√
2

↑↑↑↑↑↓↓↓↑↓↓↓

↓↑↑+↑↓↑√
2

↓↑↓+↑↓↓√
2

↑↑↑↓↓↓

↓↑↑+↑↓↑+↑↑↓√
3

↓↓↑+↓↑↓+↑↓↓√
3

2↑↑↓−↓↑↑+↑↓↑√
6

− 2↓↓↑−↓↑↓−↑↓↓√
6

↓↑↑−↑↓↑√
2

↓↑↓−↓↑↓√
2

↓↑↑−↑↓↑√
2

↓↑↓−↓↑↓√
2

= ⊕

= ⊕

=

2⊗ 2 3 1

3⊗ 2 4 1

1⊗ 2 2

1
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The first row is straightforward to obtain. The second row starts from the 3 represen-
tation (in grey in the first diagram of the second row), and we superimpose the funda-
mental representation on top of each grey point to obtain the black points of the first
diagram. Then, we apply the ladder operator I− to the highest weight ↑↑↑ (successively
three times), which generates the second diagram of the second row. The third diagram
is obtained by requiring the orthogonality of the states with those of the second dia-
gram. For instance, let’s take the state at Iz = 1/2. According to the first diagram of the
second row, it must be made of a linear combination of ↑↑↓ and ↓↑↑ + ↑↓↑ (those states
located at Iz = 1/2 in the first diagram), i.e. a ↑↑↓ +b(↓↑↑ + ↑↓↑). Moreover, it must be
orthogonal to the state located at Iz = 1/2 in the second diagram of the second row, i.e.〈

a ↑↑↓ +b(↓↑↑ + ↑↓↑)

∣∣∣∣∣∣↓↑↑ + ↑↓↑ + ↑↑↓
√

3

〉
=

1
√

3
(a + 2b) = 0,

implying b = −a/2. Since the state must be normalised, we also have the constraint
a2 + 2b2 = 1, giving a = 2/

√
6 and b = −1/

√
6. The other state in the third diagram at

Iz = −1/2 is obtained by applying the ladder operator I−,

I−
2 ↑↑↓ − ↓↑↑ − ↑↓↑

√
6

= −
2 ↓↓↑ − ↓↑↓ − ↑↓↓

√
6

.

8.4. The ∆ baryons belong to the spin 3/2 decuplet (see Fig. 8.1). Comparing Fig. 8.1 with
Fig. 8.6, the flavour content of the ∆+ baryon is (uud + udu + duu)/

√
3, which for a

spin-up state [see Eq. (8.21)] gives

|∆+, ↑〉 = uud+udu+duu
√

3
⊗
↓↑↑+↑↓↑+↑↑↓

√
3

= 1
3

(
u ↓ u ↑ d ↑ +u ↑ u ↓ d ↑ +u ↑ u ↑ d ↓ +

u ↓ d ↑ u ↑ +u ↑ d ↓ u ↑ +u ↑ d ↑ u ↓ +

d ↓ u ↑ u ↑ +d ↑ u ↓ u ↑ +d ↑ u ↑ u ↓
)
.

Similarly, Λ0 is a member of the baryon spin 1/2 octet located at the centre. There are
two baryons in this location (see Fig. 8.1): Σ0, which belongs to an isospin triplet with
its partner Σ±, and Λ0, which is necessarily a singlet of isospin. Looking at the flavour
contents given in Fig. 8.6, it is easy to check that (usd + sud − dsu − sdu)/2 in 8MS

(the octet in the second row) and [2(uds − dus) + usd − sud − (dsu − sdu)]/
√

12 in
8MA (the octet in the third row) is an isosinglet since the action of I± on these states
yields 0. The symmetric combination under the exchange of the first two quarks in 8MS

must be combined with the symmetric combination under the exchange of the first two
spins, while the anti-symmetric combination in 8MA must be combined with the anti-
symmetric combination of spins. Therefore,

|Λ0, ↑〉 = 1
√

2

(
|8MS 〉 ⊗ |2MS 〉 + |8MA〉 ⊗ |2MA〉

)
= 1
√

2

(
usd+sud−dsu−sdu

2 ⊗
2↑↑↓−↑↓↑−↓↑↑

√
6

+
2(uds−dus)+usd−sud−(dsu−sdu)

√
12

⊗
↑↓↑−↓↑↑
√

2

)
= 1

4
√

3

[
usd(2 ↑↑↓ −2 ↓↑↑) + sud(2 ↑↑↓ −2 ↑↓↑)
−dsu(2 ↑↑↓ −2 ↓↑↑) − sdu(2 ↑↑↓ −2 ↑↓↑)
+2uds(↑↓↑ − ↓↑↑) − 2dus(↑↓↑ − ↓↑↑)

]
.
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8.5. By definition, the magnetic moment of Λ0 is

µΛ ≡ 〈Λ
0 ↑ | µ |Λ0 ↑〉 .

Using the expansion of |Λ0, ↑〉 obtained in the previous problem, only the combinations
of flavour and spin with identical initial and final states can contribute to the calculation.
For instance, the first term in the expansion is(

1
4
√

3

)2
〈usd 2 ↑↑↓ | µ | usd 2 ↑↑↓〉

= 1
48 4 〈usd ↑↑↓ | µq ⊗ 1 ⊗ 1 + 1 ⊗ µq ⊗ 1 + 1 ⊗ 1 ⊗ µq, | usd ↑↑↓〉

= 1
12 (µu + µs − µd).

Therefore, we globally find

µΛ = 1
12

[
(µu + µs − µd) + (−µu + µs + µd) + (µs + µu − µd) + (µs − µu + µd)

+(µd + µs − µu) + (−µd + µs + µu) + (µs + µd − µu) + (µs − µd + µu)
+(µu − µd + µs) + (−µu + µd + µs) + (µd − µu + µs) + (−µd + µu + µs)

]
= µs.

Given that the measured value is µΛ = −0.61µN , we deduce from Eq. (8.23)

ms = −
1
3

M
µs
µN = 0.55M = 513 MeV/c2,

where M = 938 MeV/c2 is the proton mass.
8.6. The reaction e+e− → qq̄

1. In this reaction, the initial state is colourless. As colour conservation is always sat-
isfied, the qq̄ pair has zero colour hypercharge and zero isospin.

2. By construction, the singlet (r̄r + ḡr + b̄b)/
√

3 obtained in the product 3 ⊗ 3̄ = 8 ⊕ 1
has Yc = I3c = 0. The states in the octet satisfying this constraint are (r̄r − ḡg)/

√
2

and (r̄r + ḡg − 2b̄b)/
√

6 [see Eq. (8.52) obtained for gluons].
3. We saw on page 266 that the cross-section of the reaction is given by

σe+e−→qq̄ =
4πα2Q2

3s
C = σ0Q2C,

where C = 3 is a colour factor due to the three possible colour-anti-colour combina-
tions carried by the pair. It can also be interpreted as the number of possible states
satisfying the colour constraint: we have C = Noctet + Nsinglet = 2 + 1 = 3.

4. If the qq̄ pair is produced in a colour octet state, even if Yc = I3c = 0, it carries,
by definition, a non-zero colour since it is not a singlet. Therefore, strictly speaking,
the reaction e+e− → qq̄ cannot occur since the initial state is obviously a singlet of
colour. Hence, other decay products must be present in the final state to form at the
end a singlet. The presence of a gluon is a good candidate. We know that gluons are
members of an octet, and according to the product 8 ⊗ 8 = 27 ⊕ 10 ⊕ 8 ⊕ 1 ⊕ 10 ⊕ 8,
if qq̄ is in 8 and the gluon in 8, there is a possibility of forming a singlet with

e+e− (singlet)→ qq̄ (octet) + g (octet).
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If finally, qq̄ (octet) forms a meson, as mesons are colour singlets, for the same
reason as before, the pair must radiate a gluon, i.e.

qq̄ (octet)→ meson (qq̄ singlet) + g (octet).

Therefore, we would have globally

e+e− (singlet)→ meson (singlet) + g (octet) + g (octet).

The other possibility is the direct production (with no consideration for parity or
charge conjugation conservation)

e+e− (singlet)→ meson (singlet).

8.7. Colour factor for two quarks in 3̄. To calculate the colour factor, let us take a member of
3̄, for instance, (rg − gr)/

√
2 (the two other members lead to the same factor by colour

symmetry). Following the calculations in Section 8.3.3, we obtain

f (t)
rg−gr
√

2
→

rg−gr
√

2

=
1
2

(
f (t)
rg→rg − f (t)

rg→gr − f (t)
gr→rg + f (t)

gr→gr

)
=

1
2

(
−

1
6
−

1
2
−

1
2
−

1
6

)
= −

2
3
,

For a transition between a colour sextet state to a colour anti-triplet state, we take, for
instance, rr as a member of the sextet. The calculation gives

f (t)
rr→ rg−gr

√
2

=
1
√

2

(
f (t)
rr→rg − f (t)

rr→gr

)
By colour conservation, we know that necessarily, f (t)

rr→rg = f (t)
rr→gr = 0. This can be

checked by using Eq. (8.70) since f (t)
rr→rg = C1 2

1 1 and f (t)
rr→gr = C2 1

1 1. There are no Gell-
Mann matrices with (λa)11(λa)21 , 0 [see Eq. (8.34)]

8.8. Fierz identity. As any Hermitian matrix M can be decomposed onto the basis made of
{1, λ1, . . . , λ8}, i.e. M = c01+caλa, and given that the Gell-Mann matrices are traceless,
it follows that Tr(M) = c0Tr(1) = 3c0, implying c0 = Tr(M)/3. Similarly, Tr(λaM) =

caTr(λ2
a) = 2ca according to Eq. (8.35). Therefore, the component Mα′α reads

Mα′α =

{ Tr(M)
3 δα′α +

Tr(λa M)
2 (λa)α′α = 1

3 Mββ′δβ′βδαα′ + 1
2 (λa)β′βMββ′ (λa)α′α

Mββ′δα′βδαβ′

which shows that

Mββ′δα′βδαβ′ =
1
3

Mββ′δβ′βδαα′ +
1
2

(λa)β′βMββ′ (λa)α′α,

or equivalently (making the summation over a explicit),

Mββ′

(
δα′βδαβ′ −

1
3
δβ′βδαα′

)
= Mββ′

1
2

8∑
a=1

(λa)β′β(λa)α′α.

Since this equality must hold for all Hermitian matrices, this implies the Fierz identity.

1
4

8∑
a=1

(λa)α′α (λa)β′β =
1
2

(
δα′βδαβ′ −

1
3
δα′αδβ′β

)
,
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8.9. Alternative proof of Eq. (8.79). The Gell-Mann matrices being Hermitian, it follows
from Eq. (8.70) that

|Cαα′

β β′ |
2 =

1
16

∑
a

(λa)α′α (λa)β′β
∑

b

(λb)∗α′α (λb)∗β′β =
1
16

∑
a,b

(λa)α′α (λa)β′β(λb)αα′ (λb)ββ′ .

Therefore,∑
α,α′,β,β′

|Cαα′

β β′ |
2 =

1
16

∑
a,b

∑
α′,β′

(λaλb)α′α′ (λaλb)β′β′ =
1

16

∑
a,b

(Tr(λaλb))2 .

Given the normalisation of Gell-Mann matrices in Eq. (8.35), p. 268, we conclude∑
α,α′,β,β′

|Cαα′

β β′ |
2 =

1
16

∑
a,b

(2δab)2 =
1
4

∑
a

δaa = 2.

8.10. As fabd = fbda, making explicit the summation over a (that over b remains implicit
below)∑

a

fabd
1
23 Tr (λaλbλc) =

1
22 Tr

∑
a

fbda
λa

2
λbλc

 = −i
1
22 Tr

([
λb

2
,
λd

2

]
λbλc

)
,

where Eq. (8.36) has been used in the last equality. Therefore,∑
a

fabd
1
23 Tr (λaλbλc) =

i
24 [−Tr(λbλdλbλc) + Tr(λdλbλbλc)] . (S8.1)

The trace Tr(λbλdλbλc) is by definition
∑
β(λbλdλb)α′β (λc)βα′ . Now, with the help of the

Fierz identity (8.78),∑
b

1
23 (λbλdλb)α′β =

∑
b
∑
αβ′

1
23 (λb)α′α(λd)αβ′ (λb)β′β

=
∑
α,β′

1
2 (λd)αβ′ 1

4
∑

b(λb)α′α(λb)β′β
=

∑
α,β′

1
2 (λd)αβ′ 1

2

(
δα′βδαβ′ −

1
3δα′αδβ′β

)
=

∑
α

1
4 (λd)ααδα′β − 1

12 (λd)αβδα′α.

As
∑
α(λd)αα = Tr(λd) = 0, we conclude∑

b

1
23 (λbλdλb)α′β = −

1
12

(λd)α′β.

Now, multiplying by 1
2 (λc)βα′ on both sides and summing over βα′ yields∑

b

1
24 Tr(λbλdλbλc) = −

1
12

∑
α′,β

(λd)α′β
1
2

(λc)βα′ = −
1
12

1
2

Tr(λdλc) = −
1

12
δdc.

For the second trace in Eq. (S8.1), we can use Eq. (8.88), i.e.∑
b

1
24 Tr(λdλbλbλc) = 1

22

∑
α,β,δ(λd)αβ 1

22

∑
b(λbλb)βδ(λc)δα

= 1
22

∑
α,β,δ(λd)αβCFδβδ(λc)δα

= CF
22

∑
α,β(λd)αβ(λc)βα

= CF
22 Tr(λdλc)

= CF
2 δdc

= 2
3δdc,
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since CF = 4/3. It follows from the calculation of both traces that∑
a,b

fabd
1
23 Tr(λaλbλc) = i

(
1

12
δdc +

2
3
δdc

)
=

3
4

iδdc,

which is the result given in Eq. (8.97).
8.11. Colour factors for baryons. Let us follow the approach followed for mesons on page 310

in the book. As 3 ⊗ 3 ⊗ 3 = (6 ⊕ 3̄) ⊗ 3, we can re-use the result of the calculation done
in Problem 8.7 for 6 and 3̄. We found for the anti-triplet, f6 = −2/3 < 0. For the sextet,
let us take the state rr, f6 ≡ f (t)

rr→rr = 1/3 > 0, using the result in Eq. (8.75). In QED, the
potential between two particles of the same electric charge is repulsive Vqq(r) ∼ +α/r.
Making the hypothesis of similar potential in QCD, we expect Vqq(r) ∼ +C αs/r, where
C is the colour factor. Therefore, if C > 0, the potential is repulsive and if C < 0, it is
attractive. Two quarks placed in the sextet thus feel a repulsive force while it is attractive
in the anti-triplet. In this naive approach, adding the third quark, we thus expect it will
likely combine with the attractive anti-triplet to form the baryon. It is consistent with
the fact that 3̄ ⊗ 3 = 8 ⊕ 1 generates the singlet used by baryons while 6 ⊗ 3 = 10 ⊕ 8
does not. Note that the colour state in the singlet reads

ψ
baryon
colour = 1

√
6

(rgb − rbg + gbr − grb + brg − bgr)

= 1
√

3

(
rg−gr
√

2
b +

gb−bg
√

2
r + br−rb

√
2

g
)

= 1
√

3

(
b rg−gr
√

2
+ r gb−bg

√
2

+ g br−rb
√

2

)
= 1
√

3

(
gbr−rbg
√

2
+

brg−grb
√

2
+

rgb−bgr
√

2

)
.

The three two-quark states with the
√

2 written with a small font size above are just
those of the anti-triplet. We observe (look at the last three lines) that each pair of quarks
is in the anti-triplet state, i.e. feeling the attractive state.

8.12. Quarks annihilation into gluons.

1. There are three diagrams:

�̄
q

q

g

g

�̄
q

q

g

g

�̄
q

q

g

g

1

α, p1

β, p2

a, p3, η

b, p4, ρ

µ

c

ν

d

α, p1

β, p2

a, p3

b, p4
µ

ν α, p1

β, p2

a, p3

b, p4
µ

ν

1

2. As bosons are exchanged, the amplitude is the sum of the amplitudes associated with
each diagram,M =M1 +M2 +M3.

3. Using the notations q(p1, colour α)+q̄(p2, colour β)→ g(p3, colour a)+g(p4, colour b)
and applying the QCD Feynman rules, one finds

iM1 = v̄(p2)c†β
(
−igsγ

µ λb
2

)
ε∗µ(p4) i /p1− /p3+m

(p1−p3)2−m2

(
−igsγ

ν λa
2

)
ε∗ν (p3)u(p1)cα

= g2
sc†β

λb
2
λa
2 cα

[
iMQED

1 (qq̄→ γγ) 1
e2Q2

q

]
,
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where Qq is the quark electric charge in units of e. Similarly,

iM2 = v̄(p2)c†β
(
−igsγ

µ λa
2

)
ε∗µ(p3) i /p1− /p4+m

(p1−p4)2−m2

(
−igsγ

ν λb
2

)
ε∗ν (p4)u(p1)cα

= g2
sc†β

λa
2
λb
2 cα

[
iMQED

2 (qq̄→ γγ) 1
e2Q2

q

]
.

The third amplitude is specific to QCD (due to its non-Abelian structure). It involves
the three-gluon vertex. This vertex factor is given in the QCD Feynman rules assum-
ing that the 4-momenta point towards the vertex. As p1 + p2 = p3 + p4, we have
(p1 + p2) + (−p3) + (−p4) = 0. So the three momenta entering into the three-gluon
vertex are p1 + p2, −p3 and −p4, leading to the factor (see the diagram above)

−gs f dab
[
gνρ(p1 + p2 + p3)ρ + gηρ(−p3 + p4)ν + gρν(−p4 − p1 − p2)η

]
.

The amplitude thus reads

iM3 = v̄(p2)c†β
(
−igsγ

µ λc
2

)
u(p1)cα

(
−i gµν

(p1+p2)2 δ
cd
)

×
(
−gs f dab

[
gνρ(p1 + p2 + p3)ρ + gηρ(−p3 + p4)ν + gρν(−p4 − p1 − p2)η

])
×εη∗(p3)ερ∗(p4),

with a summation over all repeated indices (including colour indices).
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9.1. Sm∗ → Sm + γ. The excited atom Sm∗ can be considered at rest, and the recoil of Sm
non-relativistic. If E0 denotes the difference in energy level between Sm∗ and Sm (both
have the same mass), the conservation of energy-momentum leads to

E0 = 1
2 mv2 + Eγ

0 = mv − Eγ/c

}
1
2

mv2 + mvc − E0 = 0,

where v is the velocity of the recoiling atom. Therefore,

v =
−mc +

√
m2c2 + 2mE0

m
' −c + c

(
1 +

E0

mc2

)
=

E0

mc
.

It follows that ∆E = E0 − Eγ is

∆E =
1
2

mv2 =
1
2

E2
0

mc2 ' 3.3 eV,

using mc2 = 141.51 GeV and E0 = 963 keV.
9.2. Muon decay µ−(p)→ e−(k) + ν̄e(k′) + νµ(p′).

1. Using the Feynman rules, the amplitude reads

iM = ūνµ (p′)
(
i

gw
√

2
γµ

1 − γ5

2

)
uµ(p)

i−gµν + qµqν/M2
W

q2 − M2
W

 ūe(k)
(
−i

gw
√

2
γν

1 − γ5

2

)
vνe (k

′),

where q = p − p′ = k + k′. Neglecting the mass of the outgoing particles, the Dirac
equation implies /kue(k) = 0 or equivalently ūe(k)/k = 0 and /k′vνe (k

′) = 0. Therefore,

qνūe(k)
(
−i gw√

2
γν 1−γ5

2

)
vνe (k

′) = (k + k′)νūe(k)
(
−i gw√

2
γν 1−γ5

2

)
vνe (k

′)

= −i gw√
2
ūe(k)(/k + /k′) 1−γ5

2 vνe (k
′)

= −i gw√
2

(
ūe(k)/k 1−γ5

2 vνe (k
′) + ūe(k) 1+γ5

2
/k′vνe (k

′)
)

= 0.

Hence, for q2 = (p − p′)2 � M2
W , the amplitude reduces to

M = −
g2

w

8M2
W

[
ūνµ (p′)γµ(1 − γ5)uµ(p)

] [
ūe(k)γµ(1 − γ5)vνe (k

′)
]
.

As GF/
√

2 = g2
w/(8M2

W ), the spin-averaged amplitude squared reads

|M|2 =
G2

F
2

1
2

∑
spins

[
ūνµ (p′)γµ(1 − γ5)uµ(p)

]∗ [
ūνµ (p′)γν(1 − γ5)uµ(p)

]
×∑

spins

[
ūe(k)γµ(1 − γ5)vνe (k

′)
]∗ [

ūe(k)γµ(1 − γ5)vνe (k
′)
]
.
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The sum over the spins is easily performed using Eq. (6.84) with Γ1 = γµ(1 − γ5),
Γ2 = γν(1 − γ5), and neglecting the masses. It yields, given that γ0Γ

†

1γ
0 = γ0[γµ(1 −

γ5)]†γ0 = γµ(1 − γ5),

|M|2 =
G2

F

4
Tr

[
/pγµ(1 − γ5) /p′γν(1 − γ5)

]
Tr

[
/k′γµ(1 − γ5)/kγν(1 − γ5)

]
,

which according to Eqs. (9.8) and (9.9) reads

|M|2 = 64 G2
F (p · k′)(p′ · k).

2. The general formula for the decay width is given in Eq. (3.4), yielding

dΓ = (2π)4 1
2mµ

δ(4)(p′ + k + k′ − p)|M|2
d3 p′

(2π)32p′0
d3 k

(2π)32k0

d3 k′

(2π)32k0 .

We can integrate over p′ using Eq. (E.6), i.e.
∫ d3 p′

2p′0 =
∫

d4 p′ δ(p′2)θ(p′0) (neglecting
the mass of νµ). This yields in the muon rest frame,

dΓ =
8G2

F

(2π)5mµ

δ[(p − k − k′)2]θ(mµ − k0 − k′0)(p · k′)[(p − k − k′) · k]
d3 k
k0

d3 k′

k′0
.

Let us denote θ, the angle between k and k′. We have

p2 = m2
µ, k2 = 0, k′2 = 0,

p · k = mµk0, p · k′ = mµk′0, k′ · k = k′0k0(1 − cos θ),
d3 k = 4π(k0)2 dk0, d3 k′ = 2π(k′0)2 d(cos θ),

where the integration over the angles of the solid angles has been performed in d3 k
and d3 k′ (since the amplitude depends only on the relative angle between k and k′).
Inserting the previous quantities in dΓ yields

dΓ =
2G2

F
π3 δ

[
m2
µ − 2mµk0 − 2mµk′0 + 2k0k′0(1 − cos θ)

]
θ(mµ − k0 − k′0)×

k′0
[
mµk0 − k′0k0(1 − cos θ)

]
k0 dk0k′0 dk′0 d(cos θ)

=
G2

F
π3 δ

[
m2
µ

2k0k′0 −
mµ

k′0 −
mµ

k0 + 1 − cos θ
]
θ(mµ − k0 − k′0)×

k′0
[
mµk0 − k′0k0(1 − cos θ)

]
dk0 dk′0 d(cos θ).

After the integration over cos θ, the value

cos θ = 1 +
m2
µ

2k0k′0
−

mµ

k′0
−

mµ

k0 (S9.1)

is fixed, giving

dΓ
dk0 dk′0 =

G2
F
π3 k0k′0

[
mµ − k′0 + k′0 cos θ

]
θ(mµ − k0 − k′0)

=
G2

F
2π3 k′0mµ

[
mµ − 2k′0

]
θ(mµ − k0 − k′0).

3. The kinematics is constrained by Eq. (S9.1), where necessarily | cos θ| ≤ 1. First,
cos θ ≤ 1 implies

m2
µ

2k0k′0
−

mµ

k′0
−

mµ

k0 ≤ 0⇒ k′0 ≥
mµ

2
− k0.
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Secondly, cos θ ≥ −1 implies

1 +
m2
µ

4k0k′0
−

mµ

2k′0
−

mµ

2k0 ≥ 0⇒
(
k0 −

mµ

2

) (
k′0 −

mµ

2

)
≥ 0.

Therefore, either k0 ≥
mµ

2 and k′0 ≥ mµ

2 or k0 ≤
mµ

2 and k′0 ≤ mµ

2 . The first possibility
would imply k0 + k′0 ≥ mµ, which is ruled out by the presence of θ(mµ − k0 − k′0)
that imposes mµ ≥ k0 + k′0. In conclusion, necessarily,

k0 ≤
mµ

2
,

mµ

2
− k0 ≤ k′0 ≤

mµ

2
.

It follows that

Γ =
G2

F
2π3 mµ

∫ mµ
2

0 dk0
∫ mµ

2
mµ
2 −k0 k′0

[
mµ − 2k′0

]
θ(mµ − k0 − k′0) dk′0

=
G2

F
π3 mµ

∫ mµ
2

0 dk0
∫ mµ

2
mµ
2 −k0 k′0

[mµ

2 − k′0
]

dk′0.

Let us change the integration variable for x =
mµ

2 − k′0. It follows that

Γ =
G2

F
π3 mµ

∫ mµ
2

0 dk0
∫ k0

0

(mµ

2 − x
)

x dx

=
G2

F
π3 mµ

∫ mµ
2

0 dk0
(

mµ(k′0)2

4 −
(k′0)3

3

)
=

G2
F

192π3 m5
µ.

We conclude,

τµ =
1
Γ

=
192π3

G2
Fm5

µ

.

9.3. Eq. (9.37) is equivalent to

δαβ =
∑

k

|Vαk |
2|Vβk |

2 +
∑
k, j

Ak j,

where

Ak j = V∗αkVβkVα jV∗β j.

Note that Ak j is such that A jk = A∗k j. Therefore,∑
k, j

Ak j =
∑
k> j

Ak j +
∑
k< j

Ak j =
∑
k> j

Ak j +
∑
k> j

A jk =
∑
k> j

2<
{
Ak j

}
,

and hence, ∑
k

|Vαk |
2|Vβk |

2 = δαβ −
∑
k> j

2<
{
Ak j

}
.

Moreover, in Eq. (9.39),

<

∑k> j

Ak j exp

−i 2π
L

Losc
k j


 =

∑
k> j

<
{
Ak j

}
cos

−2π
L

Losc
k j

 − = {
Ak j

}
sin

−2π
L

Losc
k j

 .
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Therefore, Eq. (9.39) can be written

Pνα→νβ (L) = δαβ −
∑

k> j 2<
{
Ak j

}
+ 2

∑
k> j<

{
Ak j

}
cos

(
2π L

Losc
k j

)
+ =

{
Ak j

}
sin

(
2π L

Losc
k j

)
= δαβ − 4

∑
k> j sin2

(
2π L

2Losc
k j

)
+ 2

∑
k> j =

{
Ak j

}
sin

(
2π L

Losc
k j

)
,

which is Eq. (9.40).
9.4. We start from Mµ = Ĉ†γ0γµPRĈ in Eq. (9.51), with Ĉ = iγ2 from Eq. (5.84). Given that

(γµ)† = γ0γµγ0, Mµ reads

Mµ = −iγ0γ2γ0γ0γµPRiγ2 = γ0γ2γµPRγ
2.

The calculation of (Mµ)† is easy given that (γ0)2 = 1, P†R = PR and γ2γ0 = −γ0γ2. This
leads to

(Mµ)† = −γ2PRγ
0γµγ2.

Now, (Mµ)ᵀ = (Mµ)†
∗

and since (γ2)∗ = −γ2 and all the other γ matrices are real in the
Dirac representation (including γ5), this yields

(Mµ)ᵀ = −γ2PRγ
0(γµ)∗γ2.

Therefore,

(Mµ=2)ᵀ = −γ2PRγ
0(γ2)∗γ2 = γ2PRγ

0γ2γ2 = −γ2PRγ
0 = −γ2γ0PL = γ0γ2PL,

while

(Mµ,2)ᵀ = −γ2PRγ
0γµγ2 = −γ2PRγ

2γ0γµ = −(γ2)2PLγ
0γµ = PLγ

0γµ = γ0γµPL.

Consequently, for all µ,

(Mµ)ᵀ = γ0γµPL.

Therefore, the charge conjugate transformation of ψiγ
µPRψ j is

Ĉψiγ
µPRψ jĈ

−1 = −ψ†j (Mµ)ᵀψi = −ψ†jγ
0γµPLψi = −ψ jγ

µPLψi,

which is Eq. (9.52).
9.5. With the definition of KL and KS in Eqs. (9.69a) and (9.69b) , we have{

|KL〉 = p |K0〉 − q |K0〉

|KS 〉 = p |K0〉 + q |K0〉
⇒

 |K0〉 =
|KL〉+|KS 〉

2p

|K0〉 =
|KS 〉−|KL〉

2q

Therefore, for |K0(0)〉 = K0,

|K0(t)〉 = 1
2p

[
|KL〉 e−iλLt + |KS 〉 e−iλS t

]
= 1

2p

[
p |K0〉

(
e−iλLt + e−iλS t

)
+ q |K0〉

(
e−iλS t − e−iλLt

)]
= g+(t) |K0〉 −

q
p g−(t)K0,

(S9.2)

where

g±(t) =
e−iλLt ± e−iλS t

2
.
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Similarly, for |K0(0)〉 = |K0〉,

|K0(t)〉 = 1
2q

[
|Ks〉 e−iλst − |KL〉 e−iλLt

]
= g+(t) |K0〉 −

p
q g−(t) |K0〉 .

(S9.3)

The probabilities of finding a given state at t are then

PK0→K0 (t) =
∣∣∣〈K0|K0(t)〉

∣∣∣2 = |g+(t)|2, (S9.4a)

PK0→K0 (t) =
∣∣∣〈K0|K0(t)〉

∣∣∣2 = |g+(t)|2, (S9.4b)

PK0→K0 (t) =
∣∣∣〈K0|K0(t)〉

∣∣∣2 =

∣∣∣∣∣ qp
∣∣∣∣∣2 |g−(t)|2, (S9.4c)

PK0→K0 (t) =
∣∣∣〈K0|K0(t)〉

∣∣∣2 =

∣∣∣∣∣ p
q

∣∣∣∣∣2 |g−(t)|2. (S9.4d)

With λL = mL − iΓL/2 and λS = mS − iΓS /2,

|g±(t)|2 =
1
4

(
e−imLte−

ΓL
2 t ± e−imS te−

ΓS
2 t

) (
eimLte−

ΓL
2 t ± eimS te−

ΓS
2 t

)
=

1
4

[
e−ΓLt + e−ΓS t ± e−(ΓL+ΓS )t/2

(
ei(mL−mS )t + e−i(mL−mS )t

)]
=

1
4

[
e−ΓLt + e−ΓS t ± e−(ΓL+ΓS )t/22 cos ((mL − mS )t)

]
(S9.5a)

=
1
4

e−(ΓL+ΓS )t/2
[
e−(ΓL−ΓS )t/2 + e(ΓL−ΓS )t/2 ± 2 cos ((mL − mS )t)

]
=

1
2

e−(ΓL+ΓS )t/2 [cosh ((ΓL − ΓS )t/2) ± cos ((mL − mS )t)]

=
1
2

e−Γt [cosh (∆Γt/2) ± cos (∆mt)] , (S9.6a)

where Γ = (ΓL + Γs)/2, ∆Γ = ΓL − ΓS , and ∆m = mL − mS > 0. The insertion of Eq.
(S9.5a) into Eqs. (S9.4a)-(S9.4d) leads to the expressions (9.72a)-(9.72c) in the book.

9.6. Transitions AK0→ f = 〈 f |T |K0〉 and AK0→ f = 〈 f |T |K0〉. Using the expressions (S9.2) and
(S9.3) from the previous problem, we deduce

AK0→ f (t) = 〈 f |T |K0(t)〉 = g+(t)AK0→ f −
q
p

g−(t)AK0→ f ,

and hence,∣∣∣AK0→ f (t)
∣∣∣2 =

∣∣∣AK0→ f

∣∣∣2 [
|g+(t)|2 +

∣∣∣∣∣ q
p

AK0→ f

AK0→ f

∣∣∣∣∣2 |g−(t)|2 − 2<
(
g∗+(t)g−(t) q

p
AK0→ f

AK0→ f

)]
=

∣∣∣AK0→ f

∣∣∣2 [
|g+(t)|2 +

∣∣∣λ f

∣∣∣2 |g−(t)|2 − 2<
(
g∗+(t)g−(t)λ f

)]
.

with λ f =
q
p

AK0→ f

AK0→ f
. Similarly,∣∣∣∣AK0→ f (t)
∣∣∣∣2 =

∣∣∣∣ p
q

∣∣∣∣2 ∣∣∣AK0→ f

∣∣∣2 [
|g−(t)|2 +

∣∣∣λ f

∣∣∣2 |g+(t)|2 − 2<
(
g∗−(t)g+(t)λ f

)]
.

The quantity |g±(t)|2 has already been calculated in the previous problem in Eq. (S9.6a).
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A very similar calculation leads to

g∗+(t)g−(t) = 1
4

(
eimLte−

ΓL
2 t + eimS te−

ΓS
2 t

) (
e−imLte−

ΓL
2 t − e−imS te−

ΓS
2 t

)
= 1

4

[
e−ΓLt − e−ΓS t − ei∆mte−Γt + e−i∆mte−Γt

]
= − 1

2 e−Γt [sinh (∆Γt/2) + i sin (∆mt)] ,

Therefore, inserting the expressions of |g±(t)|2 and g∗+(t)g−(t), we deduce∣∣∣AK0→ f (t)
∣∣∣2 =

∣∣∣AK0→ f

∣∣∣2 1
2 e−Γt

[
cosh (∆Γt/2) + cos (∆mt)

+
∣∣∣λ f

∣∣∣2 [cosh (∆Γt/2) − cos (∆mt)]

+2<
(
λ f [sinh (∆Γt/2) + i sin (∆mt)]

) ]
=

∣∣∣AK0→ f

∣∣∣2 1
2 e−Γt

[ (
1 +

∣∣∣λ f

∣∣∣2) cosh (∆Γt/2) +

(
1 −

∣∣∣λ f

∣∣∣2) cos (∆mt)

+2<
(
λ f

)
sinh (∆Γt/2) − 2=

(
λ f

)
sin (∆mt)

]
.

Similarly,∣∣∣∣AK0→ f (t)
∣∣∣∣2 =

∣∣∣∣ p
q

∣∣∣∣2 ∣∣∣AK0→ f

∣∣∣2 1
2 e−Γt

[ (
1 +

∣∣∣λ f

∣∣∣2) cosh (∆Γt/2) +

(
1 −

∣∣∣λ f

∣∣∣2) cos (∆mt)

+2<
(
λ f

)
sinh (∆Γt/2) + 2=

(
λ f

)
sin (∆mt)

]
.

When there are no direct and indirect CP violations, |AK0→ f /AK0→ f |
2 = 1 and |q/p|2 = 1

and thus |λ f |
2 = 1. The previous expressions become∣∣∣AK0→ f (t)

∣∣∣2 =
∣∣∣AK0→ f

∣∣∣2 e−Γt
[
cosh (∆Γt/2) +<

(
λ f

)
sinh (∆Γt/2) − =

(
λ f

)
sin (∆mt)

]
,∣∣∣∣AK0→ f (t)

∣∣∣∣2 =
∣∣∣AK0→ f

∣∣∣2 e−Γt
[
cosh (∆Γt/2) +<

(
λ f

)
sinh (∆Γt/2) + =

(
λ f

)
sin (∆mt)

]
.

Therefore, the asymmetry is

|AK0→ f (t)|
2 − |AK0→ f (t)|2

|AK0→ f (t)|2 + |AK0→ f (t)|2
=

=(λ f ) sin(∆mt)
cosh(∆Γt/2) +<(λ f ) sinh(∆Γt/2)

.

9.7. The vectors AB and AC are defined by

AB =


<(Vi1V∗j1)
=(Vi1V∗j1)

0

 , AC =


<(Vi2V∗j2)
=(Vi2V∗j2)

0

 ,
This ABC area, S i j

12 = |AB × AC|/2, is thus

S i j
12 = 1

2

∣∣∣∣<(Vi1V∗j1)=(Vi2V∗j2) − =(Vi1V∗j1)<(Vi2V∗j2)
∣∣∣∣

= 1
2

∣∣∣∣<(Vi1V∗j1)=(Vi2V∗j2) + =(V∗i1V j1)<(Vi2V∗j2)
∣∣∣∣

= 1
2

∣∣∣∣=(V∗i1V j1Vi2V∗j2)
∣∣∣∣ ,

the last equality coming from the property =(zz′) = <(z)=(z′) + <(z′)=(z) . We can
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generalise this result and define AB and AC by

AB =


<(ViαV∗jα)
=(ViαV∗jα)

0

 , AC =


<(ViβV∗jβ)
=(ViβV∗jβ)

0

 ,
and get the area

S i j
αβ =

1
2

∣∣∣=(V∗iαV jαViβV∗jβ)
∣∣∣ ,

or

AB =


<(VαiV∗α j)
=(VαiV∗α j)

0

 , AC =


<(VβiV∗β j)
=(VβiV∗β j)

0

 ,
with the area

S αβ
i j =

1
2

∣∣∣=(V∗αiVα jVβiV∗β j)
∣∣∣ .

Now, let us multiply the first equation of Eq. (9.78) by V∗i1V j1. This yields∣∣∣Vi1V j1
∣∣∣2 + V∗i1V j1Vi2V∗j2 + V∗i1V j1Vi3V∗j3 = 0.

Taking the imaginary part, it follows that

=
(
V∗i1V j1Vi2V∗j2

)
= −=

(
V∗i1V j1Vi3V∗j3

)
.

Similarly, by multiplying the first equation of Eq. (9.78) by V∗i2V j2 or V∗i3V j3, we would
conclude

=
(
V∗i2V j2Vi1V∗j1

)
= −=

(
V∗i2V j2Vi3V∗j3

)
,

=
(
V∗i3V j3Vi2V∗j2

)
= −=

(
V∗i3V j3Vi1V∗j1

)
.

With the last three equalities, we conclude, given that =(z∗) = −=(z), that

=(V∗i1V j1Vi2V∗j2) =

−=(V∗i1V j1Vi3V∗j3) = −=(V∗i2V j2Vi1V∗j1) = =(V∗i2V j2Vi3V∗j3),
−=(V∗i3V j3Vi2V∗j2) = =(V∗i3V j3Vi1V∗j1).

Therefore, S i j
αβ are all the same regardless of α and β, provided that α , β for a given i

and j. We can proceed similarly with the second equation of Eq. (9.78). It yields

=
(
V∗1iV1 jV2iV∗2 j

)
= −=

(
V∗1iV1 jV3iV∗3 j

)
,

=
(
V∗2iV2 jV1iV∗1 j

)
= −=

(
V∗2iV2 jV3iV∗3 j

)
,

=
(
V∗3iV3 jV2iV∗2 j

)
= −=

(
V∗3iV3 jV1iV∗1 j

)
.

Therefore, all these quantities are equal up to a sign, leading to conclude that S αβ
i j are

all the same regardless of α and β, provided that α , β for a given i and j. What we
found for S i j

αβ and S αβ
i j shows that all (non-trivial) triangles have the same area (α , β,

i , j, otherwise the area is zero).
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9.8. The reactions

1. n→ p + e+ + νe, 2. p + π− → n + π0, 3. p→ n + e+ + νe,

4. π0 → γγ, 5. p→ e+ + νe, 6. π0 → γ.

Only reactions 2 and 4 are possible by strong and QED interactions, respectively. Note
that the parity conservation in reaction 4 implies that necessarily, the two-photon final
state has odd orbital angular momentum (actually, their polarisation vectors are nec-
essarily perpendicular to each other). All reactions involving neutrinos (1, 3, 5) would
have required weak interaction, but none is allowed (charge is not conserved for 1, mass
is too small for proton decay in 3, and baryon number is violated in 5). Finally, reaction
6 is a 1-to-1 decay which would imply pπ0 = pγ, i.e. mπ0 = mγ, which is not the case.

9.9. Electron-neutrino scattering: (1) νµ(k)+e−(p)→ νe(k′)+µ−(p′), (2) ν̄e(k)+e−(p)→
ν̄µ(k′) + µ−(p′).

1. For reaction (1), we have a t-channel diagram with the exchange of a W boson. We
denote q = k − k′, the 4-momentum of the W boson, with t = q2. The amplitude
reads

iM1 = ū(p′) ·
(
−i

gw
√

2
γµ

1 − γ5

2

)
· u(k) × i

−gµν +
qµqν
M2

W

t − M2
W

× ū(k′) ·
(
−i

gw
√

2
γν

1 − γ5

2

)
· u(p)

= −i
GF
√

2
ū(p′) γµ(1 − γ5) u(k) × ū(k′) γµ(1 − γ5) u(p).

Given that we neglect the lepton masses with respect to MW , the term qµqν in the
propagator does not contribute to the amplitude (see the solution of Problem 9.2).
We also replaced above the coupling g2

w/8M2
W by GF/

√
2 and considered t � M2

W .
For reaction (2), we have an s-channel with the exchange of a W boson. With the
same assumptions as for (1), we write the amplitude as

iM2 = −i
GF
√

2
ū(p′) γµ(1 − γ5) v(k′) × v̄(k) γµ(1 − γ5) u(p).

2. We start by

|M1|
2 =

1
2

∑
all spins

M1M
∗
1,

where 1/2 stands for the average over the initial polarisation of the electron. Note that
we use 1/2 instead of 1/4 because neutrinos only have one helicity (left-handed). We
still sum over neutrino polarisations to be able to use the completeness relations∑

spins

ū(p)u(p) = /p + m ' /p,
∑
spins

v̄(p)v(p) = /p − m ' /p.
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The calculation ofM1M
∗
1 is very similar to that of Problem 9.2, giving

M1M
∗
1 =

G2
F

2
ū(p′) γµ(1 − γ5) u(k) × ū(k′) γµ(1 − γ5) u(p)

× ū(k) γν(1 − γ5) u(p′) × ū(p) γν(1 − γ5) u(k′)

=
G2

F

2
ū(p′) γµ(1 − γ5) u(k) × ū(k) γν(1 − γ5) u(p′)

× ū(k′) γµ(1 − γ5) u(p) × ū(p) γν(1 − γ5) u(k′).

Using Eqs. (9.8) and (9.9), the sum over the spins yields

|M1|
2 = 1

2
G2

F
2 Tr

[
/p γµ(1 − γ5) /k′ γν(1 − γ5)

]
Tr

[
/k γµ(1 − γ5) /p′ γν(1 − γ5)

]
=

G2
F

4 256(p · k)(k′ · p′).

Now, as s = (p+k)2 = p2 +k2 +2p ·k ' 2p ·k (since we consider massless fermions)
and s = (p′ + k′)2 ' 2p′ · k′, we conclude that

|M1|
2 =

G2
F

4
× 256

( s
2

)2
= 64G2

F
s2

4
.

The second spin-averaged amplitude squared is obtained by substituting s↔ t since
the crossing properties show that the s-channel of reaction (1) corresponds to the
t-channel of reaction (2). Therefore,

|M1|
2 = 64G2

F
s2

4
and |M2|

2 = 64G2
F

t2

4
.

3. We now need to integrate over the angular variables to determine the cross-sections.
Using the centre-of-mass frame, we have

σ =
1

64πs
|p′∗|
|p∗|

∫
|M|2dΩ.

As fermions masses are neglected, the 4-momenta read p = (E, p∗), k = (E,−p∗)
and k′ = (E, p′∗), p′ = (E,−p′∗), with E = |p∗| = |p′∗| =

√
s/2.

The cross-section ratio can be simply expressed as

σ1

σ2
=

∫
s2dΩ∫
t2dΩ

. (S9.7)

There is no angular dependence in s, so the numerator is simply 4πs2, while for t,

t = (p − k′) = −2p · k′ = −2(E2 − p.k′) = −2E2(1 − cos θ) = −
s
2

(1 − cos θ),

where θ is the angle between p∗ and p′∗ (i.e. between e− and ν̄µ). The integration∫
t2dΩ gives 4πs2/3, so we conclude that

σ(νµ + e− → νe + µ−)
σ(ν̄e + e− → ν̄µ + µ−)

= 3.
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10.1. We start with the sum of Eqs. (10.25) and (10.26) and keep only the term proportional
to Zµ. It reads

j µ = Lγµ
(
gw cos θw

σ3
2 − g sin θw

Y
2

)
L − g sin θw

(
ψRγ

µ Y
2ψR + ψ′Rγ

µ Y
2ψ
′
R

)
= Lγµ (gw cos θwT3 − g sin θw(Q − T3)) L − g sin θw

(
ψRγ

µQψR + ψ′Rγ
µQψ′R

)
,

where Y/2 = Q − T3 and T3ψR = T3ψ
′
R = 0 for singlets. Now, as

LγµQL + ψRγ
µQψR + ψ′Rγ

µQψ′R
= ψLγ

µQψL + ψ′Lγ
µQψ′L + ψRγ

µQψR + ψ′Rγ
µQψ′R

= ψγµQψ + ψ′γµQψ′,

with ψ = ψL + ψR and ψ′ = ψ′L + ψ′R, it follows that

j µ = Lγµ (gw cos θw + g sin θw) T3 L − g sin θw

(
ψγµQψ + ψ′γµQψ′

)
=

gw
cos θw

[
LγµT3 L − sin2 θw

(
ψγµQψ + ψ′γµQψ′

)]
since according to Eq. (10.30), g = gw sin θw/ cos θw. This result is Eq. (10.31).

10.2. The Lagrangian in Eq. (10.52) is

LγZ0W+W− = −egw cos θw

[
2W+

µ W−µZνAν −W+
µ W−νZνAµ −W+

µ W−νAνZµ
]
.

Let us rewrite each product of fields with appropriate labels:

W+
µ W−µZνAν = W+

µ W−µZαAα = gµνgαβW+µW−νZβAα,

W+
µ W−νZνAν = W+µW−νZνAµ = gνβgµαW+µW−νZβAα,

W+
µ W−νAνZµ = W+µW−νAνZµ = gναgµβW+µW−νAαZβ.

Therefore,

LγZ0W+W− = −egw cos θw

[
2gµνgαβ − gνβgµα − gναgµβ

]
W+µW−νZβAα.

The vertex factor is thus simply i times the terms in front of W+µW−νZβAα.
10.3. The Lagrangian in Eq. (10.53) is

LW+W−W+W− =
g2

w

2

[
W+
µ W+µW−ν W−ν −W+

µ W−µW−ν W+ν
]
.

We first change the labels of the first term:

W+
µ W+µW−ν W−ν → W+

µ′W
+µ′W−ν′W

−ν′ = gµ′α′gν′β′W+α′W+µ′W−β
′

W−ν
′

.

In the Feynman diagram, we want the labels to be W+α,W+µ,W−β,W−ν. Four combina-
tions of (α′, µ′) pairs and (ν′, β′) pairs lead to this result. They are:{

(α′, µ′) = (α, µ)

(ν′, β′) = (ν, β)

{
(α′, µ′) = (µ, α)

(ν′, β′) = (ν, β)

{
(α′, µ′) = (µ, α)

(ν′, β′) = (β, ν)

{
(α′, µ′) = (α, µ)

(ν′, β′) = (β, ν)
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Therefore, they contribute to a factor proportional to gαµgνβ+gµαgνβ+gµαgβν+gαµgβν =

4gµαgνβ. Now, the second term in LW+W−W+W− ,

W+
µ W−µW−ν W+ν → W+

µ′W
−µ′W−ν′W

+ν′ = W+µ′W−µ′W
−ν′W+

ν′ = gµ′β′gν′α′W+µ′W−β
′

W−ν
′

W+α′ .

Here again, four combinations match the desired labels,{
(µ′, β′) = (µ, β)

(ν′, α′) = (ν, α)

{
(µ′, β′) = (α, β)

(ν′, α′) = (ν, µ)

{
(µ′, β′) = (α, ν)

(ν′, α′) = (β, µ)

{
(µ′, β′) = (µ, ν)

(ν′, α′) = (β, α)

giving a factor gµβgνα+gαβgνµ+gανgβµ+gµνgβα = 2gµβgαν+2gµνgαβ. Overall, the vertex
factor is thus

i ×
g2

w

2

[
4gµαgνβ − 2gµβgαν − 2gµνgαβ

]
.

10.4. Determination of the number of light neutrinos.

1. The Z boson can decay in f f̄ for all fermions f such that 2m f 6 mZ . It includes
quarks, charged leptons, and invisible particles, i.e. neutrinos in the context of the
Standard Model. Therefore, by definition, we have for the total decay width,

ΓZ =
∑

q

ΓZ→qq̄ +
∑
`

ΓZ→`−`+ + Γinv.

Quarks hadronise, so in the quark sector, we only observe

ΓZ→had ≡
∑

q

ΓZ→qq̄.

The lepton universality hypothesis states that weak couplings are the same for all
lepton families: the amplitudes MZ→`−`+ are then all the same. Neglecting lepton
masses, the integration over the phase space gives also the same results for all gen-
erations so that the partial decay widths ΓZ→`−`+ are also all the same. We finally
deduce

ΓZ = ΓZ→had + 3ΓZ→`−`+ + Γinv.

Using the definition of branching ratios, we conclude

Γinv = Γz[1 − BR(h) − 3BR(`)].

2. Assuming lepton universality and neglecting neutrino masses, we have, as for charged
leptons, an identical value of ΓZ→νν̄ for all neutrinos. Therefore,

Γinv = NνΓZ→νν̄,

where Nν is the number of neutrinos satisfying the constraint mν ≤ MZ/2. The par-
tial decay width ΓZ→νν̄ cannot be measured experimentally, so instead we use the
Standard Model prediction Γth

ν and

Nν =
Γinv

Γth
ν

,
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which should be

Nν =
Γinv

Γ`
×

Γth
`

Γth
ν

if the Standard Model is correct for the charged lepton sector.
3. We wish now to calculate Γth

` and Γth
ν .

1. If q = p1 + p2 denotes the 4-momentum of the Z boson and εµ its polarisation
vector, the amplitude of Z0 → f (p1) f̄ (p2) reads

iM = ū(p1) ·
(
−i

gw

cos θw
γµ

1
2

(
cV − cAγ

5
))
· v(p2) · εµ(q)

= −i
gw

2 cos θw
ū(p1)γµ

(
cV − cAγ

5
)

v(p2) · εµ(q).

2. There are three possible polarisations for the Z boson, so the spin-averaged am-
plitude squared |M|2 reads

|M|2 =
1
3

∑
spins

MM∗

=
g2

w

12 cos2 θw
×

∑
λ

εµ(λ, q)ε∗ν (λ, q)

×
∑
s1,s2

[
ū(p1)γµ(cV − cAγ

5)v(p2)
] [

ū(p1)γν(cV − cAγ
5)v(p2)

]∗
=

g2
w

12 cos2 θw

−gµν +
(p1 + p2)µ(p1 + p2)ν

m2
Z


×

∑
s1,s2

[
ū(p1)γµ(cV − cAγ

5)v(p2)
] [

ū(p1)γν(cV − cAγ
5)v(p2)

]∗
.

3. We use the Dirac equation in spinor space with neglected masses, i.e. /p2v ≈ 0
and ū /p1 ≈ 0. Therefore,

(p1 + p2)µ
[
ū(p1)γµ(cV − cAγ

5)v(p2)
]

= ū(p1) /p1(cV − cAγ
5)v(p2)

+ ū(p1)(cV + cAγ
5) /p2 v(p2)

has both terms vanishing. The spin-averaged amplitude squared simplifies to

|M|2 =
−g2

w gµν
12 cos2 θw

×
∑
s1,s2

[
ū(p1)γµ(cV − cAγ

5)v(p2)
] [

ū(p1)γν(cV − cAγ
5)v(p2)

]∗
=
−g2

w gµν
12 cos2 θw

×
∑
s1,s2

[
ū(p1)γµ(cV − cAγ

5)v(p2)
] [

v̄(p2)γν(cV − cAγ
5)u(p1)

]
=
−g2

w gµν
12 cos2 θw

× Tr
[
/p1γ

µ(cV − cAγ
5) /p2γ

ν(cV − cAγ
5)
]
.

The trace can be rewritten as

Tr
[
/p1γ

µ
/p2γ

ν(cV − cAγ
5)2

]
= (c2

V + c2
A)Tr

[
/p1γ

µ
/p2γ

ν
]
− 2cVcATr

[
/p1γ

µ
/p2γ

νγ5
]
.
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Given that the second term is an antisymmetric tensor under µ ↔ ν (it evaluates
to −4i p1αp2β ε

αµβν) and that the full trace will be contracted with the symmetric
tensor gµν, only the first term has a non-zero contribution. Therefore, we conclude
that

|M|2 =
g2

w

12 cos2 θw

(
−gµν

)
(c2

V + c2
A)Tr

[
γµ /p1γ

ν
/p2

]
.

4. We need first to determine the trace. We have

Tr
[
/p1γ

µ
/p2γ

ν
]

= p1αp2βTr
[
γαγµγβγν

]
= 4

(
pµ1 pν2 + pν1 pµ2 − (p1 · p2)gµν

)
.

Contracted with gµν, this gives −8(p1 · p2). In the Z rest frame, we can write
p1 = (E, p) and p2 = (E,−p) with E = |p| = mZ/2, so that

p1 · p2 = E2 + |p|2 =
m2

Z

2
.

Therefore, the spin-averaged amplitude squared is

|M|2 =
g2

wm2
Z

3 cos2 θw
(c2

V + c2
A),

and the partial decay width is

ΓZ→ f f̄ =
|p|

32π2m2
Z

∫
dΩ |M|2 =

g2
w

48π cos2 θw
mZ(c2

V + c2
A).

However, if f is a quark, one should also take into account the colour degree of
freedom. As the pair qq̄ can be produced in three different colour configurations,
the partial decay width finally reads

ΓZ→ f f̄ =
|p|

32π2m2
Z

∫
dΩ |M|2 =

g2
w

48π cos2 θw
mZ(c2

V + c2
A)Nc( f ), (S10.1)

where Nc( f ) is the colour factor: 3 for quarks and 1 for leptons.

4. Γth
` /Γ

th
ν reduces to the ratio of c2

V + c2
A factors, i.e.

Γth
`

Γth
ν

=
(c2

V + c2
A)`

(c2
V + c2

A)ν
.

According to Table 10.2, for neutrinos cV = cA = 1/2, so c2
V + c2

A = 1/2; for charged
leptons, cV = −1/2 + 2 sin2 θw and cA = −1/2 so

c2
V + c2

A = 1/2 + 4 sin4 θw − 2 sin2 θw ≈ 0.252.

As a result, Γth
` /Γ

th
ν ≈ 0.504. Using the measured values for Γ` = 83.984 MeV and

Γinv = 499.0 MeV given in the text, we compute the number of neutrinos Nν ≈ 2.98.
We thus have three light neutrinos (mν ≤ mZ/2).
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5. Given our computation of the partial decay width ΓZ→ f f̄ , the total decay width reads

ΓZ =
g2

w

48π cos2 θw
mZ ×

∑
f

[
(c f

V )2 + (c f
A)2

]
Nc( f ),

where the sum runs over all fermions such that m f ≤ mZ/2, i.e. all but the top quark.
We have:

• 3 neutrinos with c2
V + c2

A = 1/2;
• 3 charged leptons with c2

V + c2
A = 1/2 + 4 sin4 θw − 2 sin2 θw ≈ 0.252;

• 3 d-type quarks with c2
V + c2

A = 1/2 + 4/9 sin4 θw − 2/3 sin2 θw ≈ 0.370;
• 2 u-type quarks with c2

V + c2
A = 1/2 + 16/9 sin4 θw − 4/3 sin2 θw ≈ 0.287;

so the numerical factor from the sum amounts to ≈ 7.31. Using MZ = 91.19 GeV
and g2

w = 0.426, we finally find

Γth
Z ≈ 2.45 GeV.

It is close to the measured value ΓZ ≈ 2.495 GeV. The Z lifetime is

τZ = ~/ΓZ ≈ 2.67 · 10−25 s.

10.5. The W± decay width of the W boson.
As in the previous problem, we neglect the masses of the decay products. We can re-use
the previous calculations by comparing the coupling of fermions to the W boson with
that to the Z boson. The vertex factors are given in sections 10.4.1 and 10.4.3 of the
book. They are:

W : − i
gw
√

2
γµ

1
2

(1 − γ5), Z : − i
gw

cos θw
γµ

1
2

(cV − cAγ
5).

Therefore, we go from Z to W by taking cV = cA = 1 and changing gw/ cos θw for
gw/
√

2. The W+ boson can decay into f f̄ ′ with f f̄ ′ = ν̄e+, νµµ+, νττ+, ud̄, us̄, ub̄,
cd̄, cs̄ and cb̄. As before, for quarks, we have to take into account the colour factor.
Moreover, the elements of the CKM mixing matrix must also be taken into account in
the quark sector since we use mass eigenstates. Starting from Eq. (S10.1), we deduce

ΓW→ f f̄ ′ =
g2

w

96π
mW ×

[
12 + 12

]
|V f f ′ |

2Nc( f ) =
g2

w

48π
mW |V f f ′ |

2Nc( f ),

with Nc( f ) = 3 for quarks and 1 for leptons, and V is the CKM matrix for quarks and
the identity for leptons. Therefore, the total decay width is

ΓW =
g2

w

48π
mW

∑
f , f ′
|V f f ′ |

2Nc( f ).

Note that for quarks,

∑
f , f ′
|V f f ′ |

2Nc( f ) = 3
∑
f , f ′
|V f f ′ |

2 = 3

|Vud |
2 + |Vus|

2 + |Vub|
2︸                     ︷︷                     ︸

=1

+ |Vcd |
2 + |Vcs|

2 + |Vcb|
2︸                     ︷︷                     ︸

=1

 = 6,
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the factors 1 coming from the unitarity of the CKM matrix. For leptons,∑
( f , f ′)=(νe,e),(νµ,µ),(ντ,τ)

|V f f ′ |
2Nc( f ) =

∑
( f , f ′)

1 = 3.

It follows that

ΓW =
9g2

w

48π
mW .

Using the numerical values, g2
w = 0.426 and MW = 80.38 GeV, one finds ΓW =

2.04 GeV, in good agreement with the experimental value ΓW = 2.08 GeV.



11 Electroweak symmetry breaking

11.1. AsH = ∂L
∂φ̊
φ̊ + φ̊† ∂L

∂φ̊†
− L, with L = φ̊†φ̊ + ∂iφ

† ∂iφ − V(φ), it follows that

H = φ̊†φ̊ + φ̊†φ̊ − (φ̊†φ̊ + ∂iφ
† ∂iφ − V(φ))

= φ̊†φ̊ − ∂iφ
† ∂iφ + V(φ)

= φ̊†φ̊ + ∇φ† · ∇φ + µ2φ†φ + λ(φ†φ)2

= |φ̊|2 + |∇φ|2 + µ2|φ|2 + λ|φ|4.

11.2. Let us insert φ(x) = 1
√

2
[v + h(x)] eiθ(x) into V(φ) = µ2|φ|2 + λ|φ|4. As

φ†(x) =
1
√

2
[v + h(x)] e−iθ(x)

(remember, h and θ are real scalar fields), φ†φ = (v + h)2/2. Therefore, given that
µ2 = −λv2,

V(φ) = (v + h)2
(
µ2

2 + λ
4 (v + h)2

)
= (v + h)2

(
− λv2

2 + λv2

4 + λvh
2 + λh2

4

)
=

(
v2 + 2vh + h2

) (
− λv2

4 + λvh
2 + λh2

4

)
= − λ4 v4 + λv2h2 + λvh3 + λ

4 h4.

The derivatives in the Lagrangian (11.1) read

∂µφ† =
1
√

2

[
(∂µh)e−iθ − i(∂µθ)(v + h)e−iθ

]
, ∂µφ =

1
√

2

[
(∂µh)eiθ + i(∂µθ)(v + h)eiθ

]
,

yielding for the Lagrangian,

L = 1
2∂

µh ∂µh + 1
2 (v + h)2∂µθ ∂µθ + λv4

4 − λv2h2 − λvh3 − λh4

4

= 1
2

(
∂µh∂µh −

[√
2|µ|

]2
h2

)
+ 1

2∂µθ̃ ∂
µθ̃ + λ v4

4 + . . . ,

where −λv2 = µ2 = −|µ|2 and θ̃ = vθ have been used.
11.3. Conditions to ensure that photons stay massless.

1. Checking that (DµΦ)† = ∂µΦ
† − igwΦ† σi

2 W i
µ − i g

2 BµΦ† is straightforward. We just
need to set Y = 1 as Φ has the hypercharge eigenvalue 1 and to remember that Φ

has a doublet structure of isospin so that (σiΦ)† = Φ†σi, the Pauli matrices being
hermitian. Note also that W i

µ, i = 1, 2, 3 are also hermitian, whereas W±µ are not.
2. (DµΦ)†(DµΦ) reads

(DµΦ)†(DµΦ) =

(
∂µΦ

† − igwΦ†
σi

2
W i
µ − i

g
2

BµΦ†
) (
∂µΦ + igw

σi

2
WµiΦ + i

g
2

BµΦ
)
.

We need to find out where the AµAµ terms come from. Because of the mixing due

57
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to the Weinberg angle in Eq. (10.24), W3
µcontributes to a sin θwAµ term and Bµ to

cos θwAµ. As a result, given that after spontaneous symmetry breaking, Φ = 1
√

2

(
0
v

)
implies that Φ†Φ = v2/2, and Φ†σ3Φ = −v2/2, the terms depending on Aµ are

−igwΦ†
σ3
2 W3

µ × igw
σ3
2 W3µΦ −→

g2
w
4 Φ†(σ3)2Φ sin2 θwAµAµ =

g2
wv2

8 sin2 θwAµAµ,

−i g
2 BµΦ† × i g

2 BµΦ −→ g2

4 Φ†Φ cos2 θwAµAµ =
g2v2

8 cos2 θwAµAµ,

−igwΦ†
σ3
2 W3

µ × i g
2 BµΦ −→ gwg

4 Φ†σ3Φ sin θw cos θwAµAµ =

−
gwgv2

8 sin θw cos θwAµAµ,

−i g
2 BµΦ† × igw

σi
2 WµiΦ −→ −

gwgv2

8 sin θw cos θwAµAµ,

so that we obtain globally

v2

8

(
g2 cos2 θw + g2

w sin2 θw − 2gwg sin θw cos θw

)
AµAµ.

The numerical factor in front of AµAµ is interpreted as m2
γ/2. Using the relations

e = g cos θw = gw sin θw we conclude that m2
γ = 0.

3. We have previously set Y = 1, obtaining a term in DµΦ of the form i g
2 BµΦ. But the

generic expression of DµΦ includes a term i g
2 YBµΦ. Therefore, by changing g→ gY ,

we deduce the photon mass

m2
γ =

v2

4

(
g2Y2 cos2 θw + g2

w sin2 θw − 2gwgY sin θw cos θw

)
=

v2e2

4

(
Y2 + 1 − 2Y

)
=

v2e2

4
(Y − 1)2.

The photon is massless if and only if the hypercharge of the Higgs doublet is 1.
Recall that before spontaneous symmetry breaking, Φ writes in full generality

Φ =

(
φ1

φ2

)
,

φ1 and φ2 being two complex scalar fields. The Gell-Mann–Nishijima relation relates
the charge of these fields to the hypercharge of the doublet:

Q(φ1) = (Y + 1)/2 and Q(φ2) = (Y − 1)/2.

With our spontaneous symmetry breaking prescription, the non-zero v.e.v. is carried
by φ2 so that the photon mass writes mγ = ev |Q(φ2)|: the photon is massless if and
only if the vacuum expectation value is carried by the neutral component. Since the
Higgs boson is a radial excitation around the vacuum expectation value, it carries
the same charge as the initial field. Therefore, the photon is massless if and only if
the Higgs is neutral.

11.4. Higgs boson decay H → f (p1) + f̄ (p2).
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1. The diagram corresponds to a simple two-body decay. Using the Feynman rules, the
amplitude reads

iM = −i
(√

2GF

)1/2
m f ū(p1) · v(p2).

2. The squared amplitude reads

|M|2 =
√

2GF m2
f ū(p1)v(p2) v̄(p2)u(p1).

The spin/colour-averaged amplitude squared is then

|M|2 =
∑
pol.H

∑
pol. f , f̄

∑
colors

|M|2

= Nc( f )
∑

pol. f , f̄

√
2GF m2

f ū(p1)v(p2) v̄(p2)u(p1),

given that there is only one polarisation for the Higgs. Of course, the colour factor is
1 for leptons. Concerning quarks, there are three colours and three anti-colours, so
nine combinations. However, only three (rr̄, gḡ and bb̄) are possible since the initial
state is colourless. As a result, Nc(q) = 3. The sum over the fermion polarisations
yields a trace [see Eq. (6.84) with Γ1 = Γ2 = 1],∑

pol. f , f̄ ū(p1)v(p2) v̄(p2)u(p1) = Tr
[(
/p1 + m f

) (
/p2 − m f

)]
= Tr

[
/p1 /p2 + m f

(
/p1 − /p2

)
− m2

f 1
]
.

As Tr(γµγν) = 4gµν and Tr(γµ) = 0, we conclude that

Tr
[
/p1 /p2 + m f

(
/p1 − /p2

)
− m2

f 1
]

= 4p1 · p2 − 4m2
f ,

yielding

|M|2 = 4
√

2m2
f GF(p1 · p2 − m2

f )Nc( f ).

3. In the Higgs rest frame, the two fermions are emitted back-to-back, so the expression
of the momenta are p1 = (E∗, p∗) and p2 = (E∗,−p∗), with E∗ = mH/2 and |p∗|2 =

E∗2 − m2
f = m2

H/4 − m2
f . Therefore, p1 · p2 = m2

H/2 − m2
f and

|M|2 = 4
√

2m2
f GF

m2
H

2
− 2m2

f

 · Nc( f ) = 2
√

2m2
f m

2
HGF

1 − 4m2
f

m2
H

 · Nc( f ).

The decay partial width reads

ΓH→ f f̄ =
|p∗|

32π2s

∫
dΩ |M|2,

which leads to

Γ(H → f f̄ ) =
GF

4π
√

2
MH m2

f

1 − 4m2
f

M2
H


3
2

,

given that s = m2
H and there is no angular dependence in |M|2.



12 The Standard Model and beyond

12.1. Assuming the lepton universality, i.e. Γ`` = Γee = Γµµ and Γττ = Γ``(1 + δτ) to take into
account the difference of phase space due to the large mass of τ’s, the total decay width
is by definition

Γtot = Γee + Γµµ + Γττ + Γhad + Γinv = 3Γ`` + Γ``δτ + Γττ + Γhad,

implying

Γinv

Γ``
=

Γtot

Γ``
−

Γhad

Γ``
− 3 − δτ.

Now, from Eq. (12.12),

Γ2
tot =

12π
m2

Z

ΓeeΓhad

σ0
had

=
12π
m2

Z

Γ``Γhad

σ0
had

,

so that

Γinv

Γνν
=

√
12π

m2
Zσ

0
had

Γhad

Γ``
−

Γhad

Γ``
− 3 − δτ.

12.2. The reaction e−(k) + e+(k′)→ µ−(p) + µ+(p′).

1. The γ or Z0 exchange proceeds via s-channel diagrams. The amplitudes are

iMγ =
[
ū(p) (ieγµ) v(p′)

] (
−i gµν

q2

) [
v̄(k′) (ieγν) u(k)

]
,

iMZ =

[
ū(p)

(
−i gw

cos θw
γµ

cµV−cµAγ
5

2

)
v(p′)

] (
i−gµν+qµqν/m2

Z
q2−m2

z

) [
v̄(k′)

(
−i gw

cos θw
γν

ce
V−ce

Aγ
5

2

)
u(k)

]
,

where q = p + p′. After rearrangement, they read

Mγ = e2

q2

[
ū(p)γµv(p′)

] [
v̄(k′)γµu(k)

]
,

MZ =
g2

w
4 cos2 θw

[
ū(p)γµ(cµV − cµAγ

5)v(p′)
] ( gµν−qµqν/m2

Z

q2−m2
Z+imZΓZ

) [
v̄(k′)γν(ce

V − ce
Aγ

5)u(k)
]
.

2. Since we neglect the lepton masses, the Dirac equation implies ū(p)/p = /p′v(p′) =

/ku(k) = v̄(k′) /k′ = 0. We have already seen in previous problems that this implies that
the term qµqν/m2

Z from the Z0 propagator does not contribute to the amplitude. (See,
for example, Problem 9.2). It follows that

MZ =
g2

w

4 cos2 θw(q2−m2
Z+imZΓZ )

[
ū(p)γµ(cµV − cµAγ

5)v(p′)
] [

v̄(k′)γµ(ce
V − ce

Aγ
5)u(k)

]
.

3. Masses being neglected, the helicity eigenstates match the chirality eigenstates. In
this context, we learned in Chapter 6 that necessarily the helicity of the anti-fermion
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is opposite to that of the fermion. Therefore, introducing α = e2/(4π) and the Man-
delstam variable s = q2,Mγ reads

Mγ = 4πα
s

[
uL(p)γµvR(p′) + uR(p)γµvL(p′)

] [
vL(k′)γµuR(k) + vR(k′)γµuL(k)

]
= 4πα

s (ALL + ALR + ARL + ARR) ,
(S12.1)

with the variables ALL, ALR, ARL, ARR given in the text. Concerning MZ , with the
definition of cR and cL, cV = (cL + cR)/2 and cA = (cL − cR)/2. Therefore,

cV − cAγ
5 = cL

1 − γ5

2
+ cR

1 + γ5

2
= cLPL + cRPR,

where PL and PR are the usual chirality projectors. Moreover, using the definition of
GF and the relation coming from the electroweak unification,

GF√
2

=
g2

w

8m2
W

mZ =
mW

cos θw

⇒ g2
w

cos2 θw
=

8GF
√

2
m2

z ,

it follows that

MZ =

√
2GF m2

Z

s−m2
Z+imZΓZ

[
ū(p)γµ(cµLPL + cµRPR)v(p′)

] [
v̄(k′)γµ(ce

LPL + ce
RPR)u(k)

]
= 4πα

s χ
[
ū(p)γµ(cµLPL + cµRPR)v(p′)

] [
v̄(k′)γµ(ce

LPL + ce
RPR)u(k)

]
,

where χ is the variable defined in the text. Now, as γµPL/R = PR/Lγ
µ, note that

ū(p)γµ(cµLPL + cµRPR)v(p′) = ū(p)γµ(cµLPLPL + cµRPRPR)v(p′)
= cµLū(p)PRγ

µvR(p′) + cµRū(p)PLγ
µvL(p′).

Given that

ū(p)PR = u†(p)γ0PR = u†(p)PLγ
0 = (PLu(p))† γ0 = uL(p)

and similarly, ū(p)PL = uR(p), v̄(k′)PL = vL(k′), v̄(k′)PR = vR(k′), we deduce

ū(p)γµ(cµLPL + cµRPR)v(p′) = cµLuL(p)γµvR(p′) + cµRuR(p)γµvL(p′),
v̄(k′)γµ(ce

LPL + ce
RPR)u(k) = ce

LvR(k′)γµuL(k) + ce
RvL(k′)γµuR(k).

Therefore,

MZ = 4πα
s χ

[
cµLuL(p)γµvR(p′) + cµRuR(p)γµvL(p′)

]
×[

ce
LvR(k′)γµuL(k) + ce

RvL(k′)γµuR(k)
]

= 4πα
s χ

[
ce

LcµL ALL + ce
RcµL ARL + ce

LcµR ALR + ce
RcµR ARR

]
.

(S12.2)

4. Most of the calculation has already been done in Problem 6.11, where we showed in
Eqs. (S6.4) and (S6.6) that

e2

s
[
vRe(k)γµuLe (p)

] [
ūLmu (p′)γµvRmu (k′)

]
= −e2(1 + cos θ),

e2

s
[
vRe(k)γµuLe (p)

] [
ūRmu (p′)γµvLmu (k′)

]
= e2(1 − cos θ).

The momentum labels in Problem 6.11 were e−(p) + e+(k)→ µ−(p′) + µ+(k′) while
in this problem they are e−(k) + e+(k′)→ µ−(p) + µ+(p′). Therefore, we conclude[

vR(k′)γµuL(k)
] [

ūL(p)γµvR(p′)
]

= ALL = −s(1 + cos θ),[
vR(k′)γµuL(k)

] [
ūR(p)γµvL(p′)

]
= ALR = s(1 − cos θ).

(S12.3)
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Problem 6.11 also showed that ARR = ALL and ARL = ALR.
5. Masses being neglected, in the centre-of-mass frame,

dσ
dΩ

=
1

64π2s
|M|2.

As the quantities ALL or ALR do not depend on the azimutal angle,

dσ
d(cos θ)

=
1

32πs
|M|2.

The reaction e−L +e+
R → µ−L +µ+

R involves the term with ALL in Eq. (S12.2). Therefore,

M =Mγ +MZ =
4πα

s
ALL +

4πα
s
χce

LcµLALL =
4πα

s
ALL

(
1 + χce

LcµL
)
,

yielding

dσ
d(cos θ)

(e−Le+
R → µ−Lµ

+
R) =

πα2

2s3 |ALL|
2
∣∣∣1 + χce

LcµL
∣∣∣2 =

πα2

2s
(1 + cos θ)2

∣∣∣1 + χce
LcµL

∣∣∣2 .
For the pure QED process, we can simply set ce

LcµL = 0. Therefore, the ratio of
differential cross-sections is

r ≡
dσ

d(cos θ)
dσQED

d(cos θ)

=
∣∣∣1 + χce

LcµL
∣∣∣2 .

If we neglect ΓZ , χ is real and the constraint r = 2 implies

χ '

√
2GFm2

Z

s − m2
Z

s
4πα

=
±
√

2 − 1
ce

LcµL
.

Table 10.2 tells us that ce
L = cµL = cV + cA ' −0.54, implying χ = 1.43 or χ = −8.36.

Only the latter value leads to a positive Mandelstam constant,

s =
4παm2

Zχ

4παχ −
√

2GFm2
Z

' 7053 GeV2,

leading to E =
√

s = 84 GeV. At this value, the weak interaction (Z exchange) and
the QED interaction (γ exchange) contribute equally to the cross-section.

6. For the reaction e−L + e+
R → µ−R + µ+

L , only the term with ALR in Eq. (S12.2) matters.
As in the previous question, the differential cross-section is then

dσ
d(cos θ)

(e−Le+
R → µ−Rµ

+
L) =

πα2

2s3 |ALR|
2
∣∣∣1 + χce

LcµR
∣∣∣2 =

πα2

2s
(1 − cos θ)2

∣∣∣1 + χce
LcµR

∣∣∣2 .
The cross-section vanishes when θ = 0. In the reaction e−L + e+

R → µ−R + µ+
L , if the z-

axis is along the electron direction, both e− and e+ have a spin projection sz = −1/2,
so a total spin projection sz = −1. On the other hand, at θ = 0, the final state µ−Rµ

+
L

would have sz = +1, which is forbidden by angular momentum conservation.
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7. For the reaction e−L + e+
R → µ− +µ+, the muon can be left or right-handed. Therefore,

both terms with ALL and ALR must be taken into account, such that

|M|2 = |MLL|
2 + |MLR|

2

=
(

4πα
s

)2
[(

ALL + χce
LcµLALL

)2
+

(
ALR + χce

LcµRALR

)2
]
.

This leads to

dσ
d(cos θ)

(e−Le+
R → µ−µ+) =

πα2

2s

[
(1 + cos θ)2

∣∣∣1 + χce
LcµL

∣∣∣2 + (1 − cos θ)2
∣∣∣1 + χce

LcµR
∣∣∣2] .

Similarly,

dσ
d(cos θ)

(e−Re+
L → µ−µ+) =

πα2

2s

[
(1 + cos θ)2

∣∣∣1 + χce
RcµR

∣∣∣2 + (1 − cos θ)2
∣∣∣1 + χce

RcµL
∣∣∣2] .

12.3. In this problem, the amplitude is reduced to Eq. (S12.2) since the photon exchange is
neglected.

This problem uses notations and results from Problem 12.2. We are now interested in
the reaction e− + e+ → µ− + µ+ for

√
s ' mZ . Therefore, the γ exchange contribution

can be safely neglected.

1. The polarised amplitudes squared are thus given by

|MLL|
2 =

(
4πα

s

)2
|χ|2

(
ce

LcµL
)2
|ALL|

2 , |MRR|
2 =

(
4πα

s

)2
|χ|2

(
ce

RcµR
)2
|ARR|

2 ,

|MLR|
2 =

(
4πα

s

)2
|χ|2

(
ce

LcµR
)2
|ALR|

2 , |MRL|
2 =

(
4πα

s

)2
|χ|2

(
ce

RcµL
)2
|ARL|

2 .

The quantities |ALL|
2 = |ARR|

2 = s2(1 + cos θ)2 and |ALR|
2 = |ARL|

2 = s2(1 − cos θ)2

are given in Eq. (S12.3). Now,(
4πα

s

)2

|χ|2 =

(
4πα

s

)2
∣∣∣∣∣∣∣
√

2GFm2
Z

s − m2
Z + imZΓZ

s
4πα

∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣
√

2GFm2
Z

s − m2
Z + imZΓZ

∣∣∣∣∣∣∣
2

= |C|2,

where C is given in Eq. (12.17). Hence, the polarised amplitudes squared correspond
to Eq. (12.16).

2. The muon polarisations being ignored (i.e. summed over), if the initial electron is
left-handed, the corresponding amplitude squared reads

|ML|
2 = |MLL|

2 + |MLR|
2

= s2|C|2
[
(ce

LcµL)2(1 + cos θ)2 + (ce
LcµR)2(1 − cos θ)2

]
= s2|C|2(ce

L)2
[
(cµL)2 + (cµR)2 +

(
(cµL)2 + (cµR)2

)
cos2 θ + 2

(
(cµL)2 − (cµR)2

)
cos θ

]
= s2|C|2(ce

L)2
(
(cµL)2 + (cµR)2

) [
1 + cos2 θ + 2Aµ cos θ

]
,

whereAµ is defined in Eq. (12.19). Similarly, for a right-handed electron,

|MR|
2 = |MRR|

2 + |MRL|
2

= s2|C|2
[
(ce

RcµR)2(1 + cos θ)2 + (ce
RcµL)2(1 − cos θ)2

]
= s2|C|2(ce

R)2
[
(cµL)2 + (cµR)2 +

(
(cµL)2 + (cµR)2

)
cos2 θ − 2

(
(cµL)2 − (cµR)2

)
cos θ

]
= s2|C|2(ce

R)2
(
(cµL)2 + (cµR)2

) [
1 + cos2 θ − 2Aµ cos θ

]
.

The positron is unpolarised. Therefore, we have to average the amplitude squared.
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On the other hand, the electron is polarised, such as Pe = 1 if the electron beam is
100% right-handed and Pe = −1 if it is left-handed. The spin-averaged amplitude
squared for a given polarisation pe of the electron is thus

|M(Pe)|2 =
1
2

(
1 + Pe

2
|MR|

2 +
1 − Pe

2
|ML|

2
)
.

Note that if Pe = 0, the electron beam is not polarised, and we recover the usual
formula |M|2 = 1

2
1
2 (|MR|

2 + |ML|
2). Inserting the expressions of |MR|

2 and |ML|
2

determined above, it follows that

|M(Pe)|2 =
s2 |C|2

4

(
(cµL)2 + (cµR)2

) { [
(ce

L)2 + (ce
R)2 − Pe

(
(ce

L)2 − (ce
R)2

)]
(1 + cos2 θ)

+2
[
(ce

L)2 − (ce
R)2 − Pe

(
(ce

L)2 + (ce
R)2

)]
Aµ cos θ

}
,

i.e.

|M(Pe)|2 =
s2 |C|2

4

(
(cµL)2 + (cµR)2

) (
(ce

L)2 + (ce
R)2

)
×{

(1 − PeAe) (1 + cos2 θ) + 2 (Ae − Pe)Aµ cos θ
}
.

3. The expression of the cross-section is thus

dσ
d(cos θ) = 1

32πs |M(Pe)|2 =
s|C|2

128π

(
(cµL)2 + (cµR)2

) (
(ce

L)2 + (ce
R)2

)
×{

(1 − PeAe) (1 + cos2 θ) + 2 (Ae − Pe)Aµ cos θ
}
.

(S12.4)
By definition,

σtot =
∫ 1
−1 d(cos θ) dσ

d(cos θ)

∣∣∣∣
Pe=0

=
s|C|2

128π

(
(cµL)2 + (cµR)2

) (
(ce

L)2 + (ce
R)2

)
×∫ 1

−1

(
1 + cos2 θ + 2AeAµ cos θ

)
d(cos θ),

where the integral is just
[
x + x3

3 +AeAµx2
]x=1

x=−1
= 8/3. Therefore,

dσ
d cos θ

=
3
8
σtot [(1 − PeAe)(1 + cos2 θ) + 2(Ae − Pe)Aµ cos θ].

12.4. According to Eq. (10.38), the T3 = 1/2 component of the weak isospin doublet satisfies

c f
V/c

f
A = 1 − 4 sin2 θwQ,

while the T3 = −1/2 component satisfies

c f ′

V /c
f ′

A = 1 + 4 sin2 θwQ.

Since for charged fermions, the up component of the isodoublet always has a positive
electric charge and the down component a negative charge, both equalities above can
be summarised as

c f
V/c

f
A = 1 − 4 sin2 θw|Q|,

which implies Eq. (12.20).



65 The Standard Model and beyond

12.5. The reaction e− + e+ → f + f̄ . With the results of the previous problem, we just have
to change µ for f in Eq. (S12.4). Therefore, given the calculation of σtot, checking Eq.
(12.21) for σF and σB is straightforward since

σF =

∫ 1

0
d(cos θ)

dσ
d(cos θ)

∣∣∣∣∣
Pe=0

=
3
8
σtot

[
x +

x3

3
+AeA f x2

]x=1

x=0
=

3
8
σtot

(
4
3

+AeA f

)
and

σB =

∫ 0

−1
d(cos θ)

dσ
d(cos θ)

∣∣∣∣∣
Pe=0

=
3
8
σtot

[
x +

x3

3
+AeA f x2

]x=0

x=−1
=

3
8
σtot

(
4
3
−AeAµ

)
.

Therefore,

A f
FB =

σF − σB

σF + σB
=

3
4
AeAµ.

Concerning, σR and σL, they are defined by σR/L =
∫ 1
−1 d(cos θ) dσ

d(cos θ)

∣∣∣∣
Pe=±1

. Using Eq.
(S12.4), this yields

σR =
∫ 1
−1

3
8σtot

[
(1 −Ae)(1 + cos2 θ) + 2(Ae − 1)A f cos θ

]
d(cos θ)

= 3
8σtot

[
(1 −Ae)(x + x3

3 ) + (Ae − 1)A f x2
]x=1

x=−1
= σtot(1 −Ae).

Similarly,

σL =
∫ 1
−1

3
8σtot

[
(1 +Ae)(1 + cos2 θ) + 2(Ae + 1)A f cos θ

]
d(cos θ)

= 3
8σtot

[
(1 +Ae)(x + x3

3 ) + (Ae + 1)A f x2
]x=1

x=−1
= σtot(1 +Ae).

Consequently,

A f
LR =

σL − σR

σL + σR
= Ae.


