Supplementary material for A Logical Foundation for Potentialist Set
Theory
E Auxiliary Definitions
We adopt the convention that x < y abbreviatesx < yVvx =y.
Definition E.1. < linearly orders the objects which satisfy W

. < is antisymmetric
(V) (Vy)m(x <yAy <Xx)
. < js transitive

VX)) (VYY) (V) (x <y Ay <z->x<2Z)
e <jstotalon W

V)Y W) AW(@) > x<yVy<x)

Definition E.2 (Well-Order). A two-place relation < well-orders the objects which satisfy W
(equivalently (W, <) is a well-order) iff

e <linearly orders the objects which satisfy W

e Least Element Condition: Oy, . [(3x | W (x))P(x) » Qy | W) APy))(Vz | W(z) A
P(2))(y < 2))]

We will also say that < well-orders W just if the above conditions are satisfied when x < y is
replaced withx <y Ax # y.

Note that the Least Element Condition guarantees that if P is a predicate on W (i.e., P(x) —
W (x)) then if P is non-empty it has a < least element.

The following lemma tells us that if V is an initial segment, the relations in V' agree with V
whenever both are defined, every set in V' is available at an ordinal in V' and the ordinals in V'
are downward closed in V.

Lemma E.1 (Initial Segment Lemma). Suppose V is an initial segment and the relations
(set’ord’, €', < ', @") satisfy the following

e (Vo)(ord'(0) — ord(0))
e (Vuolord'(w) Aord (0))(u<'o e u<o)
e (Vu,0lord(0))(u< o - ord(u))

e (Vx)(set'(x) - set(x))



e (Vx,ylset'(x)Aset'(y)(x €'y xey)

o (Vx|set'(x))(Vu | ord"(w)(@'(x,u) & @(x,u))

o (Vx)(set'(x) & (Qu)[ord' (u) A @'(x,u)])

thenV' < V.

Proof. This fact can be shown fairly straightforwardly by checking through definitions. m
Definition E.3. A well-order (W', < ") extends a (W, <), written (W',<") = (W, <) if
* (Vo)(W(o) » W'(0))

e (WoulWOAW@)(o<ue o<'u)

e (VolW()(Vu <'o | W W)W w))

Note that if (W', < ") is a well order and (W', < ") extends (W, <) then (W, <) is also a well
order.

F Set Theoretic Mimicry

| will now describe how to use the familiar formal background of set theory to mimic intended
truth conditions for statements in a language containing the logical possibility operator ¢
alongside usual first order logical vocabulary (where distinct relation symbols R; and R, always
express distinct relations) as follows.

A formula v is true relative to a model M ( M E 3 ) and an assignment p which
takes the free variables in 1 to elements in the domain of M1 just if:

e Y =R ..xx) and M E RE(p(x1), ..., p(x1)).

* Y=x=yandp(x)=py).

e Y = —=¢and ¢ isnot true relative to M, p.

e Y =¢ A andboth ¢ and i are true relative to M, p.
e Y = ¢ Vi andeither ¢ or are true relative to M, p.

e 1 = 3Jxp(x) and there is an assighment p’ which extends p by assigning a value to an
additional variable v not in ¢ and ¢[x/v] is true relative to M, p'2.

1 Specifically: a partial function p from the collection of variables in the language of logical
possibility to objects in M, such that the domain of p is finite and includes (at least) all free
variables in Y

2 As usual (?) ¢[x/v] substitutes v for x everywhere where x occurs free in ¢



* Y = (g, g, ¢ and thereis another model M’ which assigns the same tuples to the
extensions of R; ... R, as M and M’ = ¢.3

Note that this means that L is not true relative to any model M and assignment p.

If we ignore the possibility of sentences which demand something coherent but fail to have set
models because their truth would require the existence of too many objects, we could then
characterize logical possibility as follows:

Set Theoretic Approximation: A sentence in the language of logical possibility is true
(on some interpretation of the quantifier and atomic relation symbols of the language
of logical possibility) iff it is true relative to a set theoretic model whose domain and
extensions for atomic relations captures what objects there are and how these atomic
relations actually apply (according to this interpretation) and the empty assignment
function p.

G Natural Deduction System

Definition G.1 (Natural Deduction For Logical Possibility). A proof in this system consists of
inferences in accordance with the following rules. Note that we will abuse notation and call

(Ass)
@ Ass. [n] can be written down on a line n (in any context). This corresponds to making a new
assumption.

(FOL)
¢ FOL (14, ... 1) [a4, ..., a;] can be written on line i iff all of the following hold

e i>, .0,
o i,l1, ...l are all in the exactly the same ¢ contexts
e @ jsderivable from sentences on lines 14, ... L,, via FOL

o [aq, ..., a]-] is the union of all the line numbers cited as assumptions on lines l4, ... l,,. Note
that if a; is starred on line l; then it appears starred here.

(=1)

¥ —» @(m) - I[ay, ... ai] can be written down on a line n > m in a context C iff line m contains
the sentience @ with assumptions [aq, ... a, A1) and ¥ is the formula on line a; .. This
inference rule corresponds to discharging the assumption (made on line a;,, that ¥

3 As usual, | am taking O to abbreviate —E—



Logical Axioms
@ X can be written down on any line, provided X is the name of a logical axiom schema, and ®
is an instance of this axiom schema.

Logical Axioms 2(shortcut)

¥ X|a4, ..., ay, b3, ..., by, ] can be written down on line i > [ provided X is the name of some
logical axiom schema which @ — W instantiates and @ is the sentence on line l with [a,, ..., a;]
indicated as assumptions.

Inn ¢ 1
One can indent and write down © | ®{L} In I[n*] on any line n iff we have ¢ ; ® on some line

m < n in some context C, such that_any further & contexts entered between lines m and n have
already been exited. (Doing this amounts to beginning a new Inner < and | will say that one is
thereby ‘opening’ and entering a new inner < context C', for which C is the immediate parent).

Importing

One can write down @ (m) Importing n in any line n > m in an Inner ¢ Context C, provided that
@ is content restricted to the relations {L} held fixed by context C, and m is a line in the
immediate parent context to C with the sentence ®..*

Inner ¢ E
¥ mk—1InnOE [ay,...,a,, b], ..., by, ] can be written down on a linen > m, k,Lin the
present context, provided that

e line m is also in the same context and contains a sentence of the form ¢ ®,

e The] lines k — | belong to an inner diamond context opened on line k from the present
context by citing line m. Furthermore, line | must not belong to any further nested ¢
context besides the one opened on line k, i.e., only one <& context can be exited via this
rule.

e linel asserts the sentence ¥ under assumptions [kj, ... k;]. The fact all the k; are starred

ensures that all [k, ... k] are introduced by Importing or the Diamond introduction rule.

e i€{ay,...an}(i" € {by,..bn})just if there is some k; which cites line l as a justification,
i.e., l occurs in parenthesis on line k]’-" and i (i*) is cited as an assumption on line l. Note
that i (i* will always be a line in the current context since the Importing and Inner ¢ | rules
must cite lines in the parent context.

4 Note this isn’t quite the importing rule, but (as we will see below) you can think of it as justified
by the fact that you could have conjoined the phi you want to import with the psi in the
diamond statement which our current diamond context reasons about.



G.1 Correctness For Natural Deduction

To see that the above natural deduction system only permits the creation of proofs allowed by
the official formal system proposed in Chapter 8, we offer the following inductive argument.

Let @; be the sentences appearing on line i of the proof with [li, e lfll., ki*, e kﬁ,’;i] appearing
on line i as well. Let I} be the total collection of assumptions under which @; is asserted, i.e.
I; = {®; | (3p) [j = lnp Vj= kmp]}. We claim that for all lines i in the proof I; + &;. Itis
evident this suffices to prove the desired claim.

By induction, assume the claim holds for all lines i’ < i. It is evident the claim also holds for line
i unless i is an instance of InQE. So suppose i is an instance of In GE. We now show that I;
gathers up all the assumptions of lines citing importing or initiating the inner < context and use
the Proposition B.1 (The Inner Diamond Lemma) to prove the inductive claim.

By the rules for Inn{0E, we are working inside a Diamond context introduced via Inn &l on some
earlier line i;. Let @ = @; . By the rules for Inn &I, there is some prior line i in the parent
context to line i; with @; = ¢, 0 cited as a justification for Inn &l. Let I' = [ , i.e., the set of @;

such that line j is listed in brackets (starred or unstared) on line i;. By inductive hypothesis we
have ' - 0, 0.

By the rules for InnOE @; has the form the form ¢, ¥ and cites some earlier line iy as
justification. Furthermore, the rules for Inn OE guarantees that the numbers in brackets on line
iy are all starred.

LetI" = I;,, — {0}. By the inductive hypothesis I',0 + @.If j is one of the line numbers in
brackets on line iy it is starred and thus either j = i; (and @;, = ) or line j was introduced
into the same context as line iy by the importing rule. Let j be the line cited as a justification
for line j when j # i;. By the rules governing importing j occurs in the same context as line i
(the parent context of line j), @; = @; and @; is content restricted to L. Hence every sentence
in I'" is content restricted to L.

Thus, by the Proposition B.1 (The Inner Diamond Lemma) it follows that I', I + ¢, 6.

By the rule for InnOE, we have I; 2 I' = I; . If Y € I'"then Y = ®; for some j listed in brackets
on line iy. By the rule for Inn OE we have I; 2 I; where @; = @;. By the inductive hypothesis,
I; = @; =Y. Hence, I; + I' UT" and by transitivity it follows that I; + &, 60 = @; as desired.

H Useful Corollaries to Axioms
H.1 More Basic Box Lemmas
Here are more O versions of basic ¢ axioms and lemmas above.

Lemma H.1 (O Ignoring). If 8 is content-restricted to a list of relations L, R which doesn’t
include any relations in list S, then O, s 6 — O, 6.



Proof. Assume the antecedent, i.e., = 05— 8. & lgnoring ( Axiom 8.3) tells us that ¢, =6 —
0rs—0.S0 we caninfer = ¢, —60. m

1 Ops6 [1]

2 Qp sl [1]

3 Op0-— <>£’5—|9 ¢ Ignoring
4 =0 2,3 FOL [1]
5 0,0 [1]

6 [ys0—0,0 1-5 -1

Lemma H.2 (Box Closure). If® - ¥ thenO,® - O, ¥
Proof. Note that by Lemma B.3 (Box Elimination)
o, -y

The conclusion now follows by Lemma B.2 (Box Introduction) m
Lemma H.3 (Box Importing). If @ is content restricted to Lthen® AO, ¥ - O, P AY
Proof. Infer ¥ from O, ¥ via Lemma B.3 (Box Elimination) thus

eANO P H-DAY
The conclusion now follows by Lemma B.2 (Box Introduction) (as @ is content restricted to £). m

Lemma H.4 (Expanded O Elimination ). Suppose R4, ..., R,, are distinct relations not in L and
R';, ..., R are (potentially non-distinct) relations (potentially in L) of the same arity as R4, ..., R,
then

0.0 - O[Ry/R'y ...Ry/R' 1]

Proof. Provided R'4, ..., R',, don’t appear in 0, this claim can be derived simply by using
Relabeling ( Axiom 8.5)to get 7 0, =60 < =0, -0[R,/R'; ...R,/R',] and hence

0,0 [R,/R'y ...R,/R',] then applying Lemma B.3 ( Box Elimination) . We can also use
Relabeling to go from 0,0 toO; O [R;./R'1. ... Ry./R',.] making all of the replacements



R;/R'; for R’; that don’t occur in 6. Thus, to prove the claim, it is enough to prove it on the
assumption that all of R';, ..., R',, do appear in 7.

Suppose this claim fails. In this case we have =0[R,/R'; ...R,,/R',,]. Let R"{, ..., R",, be unused
relations of the same arity as R';, ..., R',,. Now repeatedly enter Inner Diamond contexts and
apply Simple Comprehension ( Axiom 8.4) to infer

0f .0z [MO[Ry/R'y ... Rn/R' 1] A
(VZ)(R"1(z7) © R'1 @) A .. A (VZ,)(R" 1 (Z) © R (Z))]

Entering all these contexts (i.e., applying Proposition B.1 (Inner Diamond) n-times) and applying
Axiom 8.6 (Importing) in each, we may infer that O, @ applies in this context. Now, as
R";,...,R", don’t appear in O, we may apply the version of the lemma already verified above
and then use the equivalence of these relations to the relations Ry, ..., R',, to derive a
contradiction, which we may then export to complete the proof. Note that we omit the formal
proof that if R’; and R”; hold of the same tuples then O[R, /R’y ... R,/R';)] © O[R,/R"{ ...R,/
R",]. Note that in cases where @ includes nested possibility claims, this argument requires
either a complex inductive argument or use of Theorem 1.1 (Isomorphism Lemma) which is
proved (without use of this result) in below (we use Simple Comprehension ( Axiom 8.4) again
to introduce an identity relation Z(x, y) and argue that R'y, ...R",, =, R";, ... R",, and then use
the Theorem I.1 (Isomorphism Lemma) to infer ®[R; /R’y ...R,/R',] < O[R{/R"; ...Ry,/
R";]). w

H.2  Boxand Diamond Simplification Lemmas
Lemma H.5 (Box Simplification). O, (Y » 0, (¢ = 0)) - O, (YA > 0)

Proof. Assume O, (¥ - Og, (¢ — 6)). We now prove P A ¢ — 6 follows from this
assumption.

Assume Y A ¢. By Lemma 4.4 (Box Elimination) we may inferi - 0, (¢ — 6) and thus O,
(¢ — 0). By another application of Box Elimination and modus ponens, we infer 8. Hence, we
have

O (W —-0,,(¢-0)FYpAp—0

But since the sentence on the left is content restricted to £, applying Lemma 4.3 (Box
Introduction) gives us

O, (-0, (¢p-0) O, (YAD—0)
which trivially entails the desired conclusion. m

Or, alternately, we can present the proof as follows.

> Note that no relation can both appear in @ and not appear in 0, allowing us to safely split the
substitution into two pieces even if some of the substituted relations are repeated.



1 U,y = U (@ — 0)) [1]

2 U [£o]

3 b1 NP> [3]

4 Dﬁo(‘lf — D£1(¢ — 0)) 1, import [1]
5 v — U (@ — 60) 40 E[1]

6 e, (@ — 0) 3,5 FOL [1,3]
7 ¢ — 0 6 OO E [1,3]

8 6 3,7 FOL [1,3]
9 P Ay — 0O 3,8 —»I[1]
10 Op(hy A gy — 0) 2-51[1]

Lemma H.6 (Diamond Simplification). If ¥ is content restricted to Ly D L, ® is content
restricted to Ly, and Ly N Ly, © L' then

0L(PAOLDP) > 0 (PAD)
Or, equivalently, O, (Y A¢p - 6) - 0O, (Y > 0O, (P > 6))

Proof. Note that the equivalently statement is merely the contraposative of the above claim
(using the definition of O as — ¢ —) taking @ to be ¢ A =8 and ¥ to be 1. Thus it’s enough to
prove the main claim.

Consider an arbitrary @, ¥, L, L', L4, L, satisfying the assumptions above.
0 (WAO,D)

Enter this {; context. We know that @ and ¢, @. As @ is content restricted to L4, by ¢
Ignoring ( Axiom 8.3) we can add to the subscript of ¢, @ any relations that don’t occur in L.
By our assumption that Ly N L, © L, all relations in Ly but not already in £ don’t occur in
Lg. So we can add these relations to the subscript to get 0.,y @. And as ¥ is content
restricted to Ly, we can use Importing (Axiom 8.6) to infer that ¢, ., (¥ A @). Hence by ¢
Ignoring ( Axiom 8.3)and Ly D L, we have ¢, (¥ A D).

So leaving this ¢ context, (completing our Inner Diamond Proposition B.1 argument) we have
0 (0 (P AD))

Finally, we can apply Axiom 8.2 (Diamond Elimination) to conclude ¢, (¥ A @) as the latter
sentence is content restricted to £).



1 Op(PAOL D) [1]

2 C WAO,D [£] Inner & [1]

3 _‘I’ 2 FOL [1]

4 Oprr @ 2 FOL [1]

5 Crrucy® 3 Ignoring [1]

6 Crrve, PAY 3.5 Importing [1]
7 OCrdAY 9 Reducing[1]

8  OpO0p (DAY 1,2-10 Inn & E [1]
9  Op(PAW) 11 O E[1]

H.3  Multiple Definitions Lemmas

Often we will want to apply several instances of Simple Comprehension ( Axiom 8.4),
Proposition 8.1 (Simplified Choice), Axiom 8.9 (Modal Comprehension) or Axiom 8.12 (Choice) in
sequence to specify the application of a series of relations R;...R,. The multiple definitions
lemma enables us to do this at once, without entering a new ¢ context for each deployment of
one of the above principles.

Lemma H.7 (Multiple Definitions Lemma). Suppose that ¥ holds and that, for each i with 0 <
i <n @ issuchthat Oy g, , P;isthe conclusion got by applying Axiom 8.4 (Simple
Comprehension), Proposition 8.1 (Simplified Choice), Axiom 8.9(Modal Comprehension) or
Axiom 8.12 (Choice) to specify the possible application of some a relation R; (so R; doesn’t
appear in ¥ orin any ®; with j < i)and ¥ A @, A ... ®;_; entails the antecedent of the
respective lemmas. Then ¢, (W A Dy A ... D).

Proof. A trivial induction (letting ¥ in Simple Comprehension ( Axiom 8.4), Proposition 8.1
(Simplified Choice), Axiom 8.9 (Modal Comprehension) or Axiom 8.12 (Choice) be W A @y A ... A
®;_,) lets us conclude that

OL OL,RO <>IZ,RO,...,Rn_1 (lp A ¢0 JAN d)n)

Applying Lemma B.8 (Diamond Collapsing) n times yields the desired result. m

To see how this lemma applies, suppose P is a non-empty two place relation and we wish to
consider the possibility (0p ) that some predicate Q selects a single x such that (3y)P(x, y),
e.g., for a proof by contradiction. In this example Lemma H.7 (Multiple Definitions) lets us pack
together successive applications of: Simple Comprehension (Axiom 8.4) to define O(x) to hold
iff (3y)P(x,y) and then Proposition 8.1 (Simple Choice) to define Q to apply to a unique
element of 0.



E)N[PB,x) = (V2)(P(y,2) = z = x)]

We could now simply say: As (3x)(3y)P(x,y), by the Lemma H.7 (Multiple Definitions)
together with Axiom 8.4 (Simple Comprehension) and Proposition 8.1 (Simplified Choice) we
can (0p) have (3x)(3y)P(x,y), while O applies to all x such that (3y)P(x,y) and Q applies to
a unique x such that (3y)P(x,y). Indeed, when O isn’t itself relevant to further argument, we
will sometimes omit mention of it and just say that: we can (¢ ) have (3x)(3y)P(x,y), remain
true while Q applies to a single object x such that (3y)P(x,y).

H.4  Singleton Lemma

By Possible Powerset (Axiom 8.11), it’s possible to supplement the objects satisfying Ext(L)
with a disjoint collection of objects coding all possible classes of elements from Ext(L).

The following lemma verifies the simple fact that every object x satisfying Ext(£) has a unique
singleton. First, however, we adopt the following notation.

Definition H.1 (Singleton). Let {x}. denote the element satisfying C containing only x. In
particular, let y = {x}. abbreviate the formula x g yA(V2)(z g Yy Z=X)

Lemma H.8 (Singleton Lemma). If C(C, €. ,Ext(L)) then (Vx | Ext(L)(x))(A!y | y = {x}¢)

Or, equivalently, the map from x to {x} is functional (note this doesn’t imply that the map must
be given by some relation).

Proof. The uniqueness claim is immediate from the extensionality clause in the definition of
C(C, € ,Ext(L)). We thus need only prove the existence claim, i.e.

(vx | Ext(L)(x)) Ay | y = {x}¢)
Let L'be LU {C, €, F}.

Suppose the claim fails for some x. By the Multiple Definitions Lemma ( Lemma H.7) (packing
together an application of Simple Comprehension ( Axiom 8.4) and Proposition 8.1 (Simplified
Choice), it is possible (¢, ) for C(C, €., £) to remain true while Q applies to a unique x
witnessing this failure.

Enter this (0, ) context. By the fatness condition in the definition of C (with respect to the
predicate @), we can derive the existence of {x}, giving us this contradiction. Exporting the
contradiction via Axiom 8.2 (Diamond Elimination) yields the desired result. m



/ Isomorphism Theorem

In this section we will prove a generalization of the following, very intuitive, principle. If
(Ry, ... Ry) = (R, ... Rpy; ) and @ is a sentence about (R, ... R,,) then it holds iff
®[R,/R'4, ..., Rpy/R' 1] holds. We formalize this as follows.

Theorem 1.1 (Isomorphism Theorem). Suppose that

* (Ry,...Rm)=f(R{,....Ry")

e ¢ is content restricted to Ry, ..., R,

e Each®R'; is either identical to R; or is distinct from all R; and doesn’t appear in ¢.
e fdoesn’t appearin ¢ and f isn’t identical to any R; or R';

* @' = d[R1/R'1, ... Ry /R ]

(Vay, ..., ay | Ext(Ry, ..., Rpp)(a) A .. Ext(R4, ..., R (ay))
¢(a11 ""an) « ¢,(f(a1)l '"lf(ak))

We will prove this lemma inductively’. The main difficulty in doing this will be showing the truth
of the claim for ¢ 1 statements, given it holds for all formulas with fewer logical possibility
operators than ¢ 1. If we could assume that 1) was content restricted to some list of relations,
the proof would be relatively straightforward. But the fact that ¢, ¢ is content restricted
doesn’t guarantee that ¢ is. For ¢; ¢ can be content restricted to some list of relations R; ... R,
(and hence satisfy the assumptions of the lemma) in cases where the sentence ¢ is not content
restricted to any list of relations, so our inductive hypothesis tells us nothing about it directly.

then

Accordingly, | will first prove the following lemma, which shows that we can associate every
non-content restricted sentence @ with a content restricted version of this sentence @ such
that- 0, P & {, &. Our strategy here will be to define @ to be the result of restricting all
guantifiers appearing at the top level of @ to some new predicate U (plus an additional
technical assumption). We then argue that if ¢ ; @ (or 0, @) it is also possible that @ (®) obtains
and everything satisfies U, allowing us to infer the possibility of @ (&).

Lemma I.1 (Content Restricted Equivalent Lemma). Let @ be a sentence in the language of
logical possibility, L a list of relations, U a predicate not occurring in @ or L, and L4 the set of
relations appearing at the top level in @ (i.e., without being enclosed in any other ¢ operator,
where relations subscripted by top level < operators don’t count as enclosed). Then there is a
sentence @ such that

1. @y is (explicitly) content restricted to Ly, U {U} U L

¢ Furthermore, we implicitly assume that the R; are distinct relations as well as the R';.

7| presented an informal version of this proof in [Berry 2015].



2. (Equivalence) ¢ @U © 0, D is a theorem (in the system used in this book).
3.  (Same Depth) & contains the same number of O operators as @ does.

4. IfR'y,..R';, U’ are distinct relations of the same arity as R4, ..., R;, U not occurring in &
nor equal to any R; or to U then ®y[Ry/R’4, ...R;/R';,U/U'] = (®[R,/R'1, ...R,/R" Du,

Proof. Let
Dy = PU A (Vx | Ext(Le, L) () (U(x)) A Ax)U(x)

where @Y is formed from @ by taking all quantifiers appearing outside of any O or ¢ operator
and restricting them to U, i.e., (Vx)6 becomes (Vx)(U(x) - 6(x)) and (3x)6 becomes
(Ax)(U(x) A B). We leave the formal inductive statement of this operation to the reader.

Note the obvious fact (provable by an induction on formula complexity which we omit) that if
every object satisfies U then restricting quantifiers to U makes no difference to the truth of a
claim, i.e., (Vx)U(x) = (@Y & @).

It is evident by the definition of Content Restriction (Definition 7.2) that 5U is content restricted
to Ly U {U} U L, giving us clause 1 above. Both clauses 3 and 4 are obvious from the
construction of @;,. So we must only demonstrate that 0, & & 0, ®

(=) Suppose ¢, 55u. Enter this {; context. As
(Vx | Ext(Lo, £)(x))(U(x)) A (FX)U(x)

we can apply Axiom 8.8 (Cutback) to infer O, »y (Vx)(U(x)). Enter this 0,  ; context. We
can import @, by the fact, noted above, that it is content restricted to L4, U. This gives us &Y
and as (V)U(x) —» (®V & @) is a theorem we can infer @. Leaving both < contexts lets us
infer 07 0,y ® which, by Diamond Collapsing ( Lemma B.4), gives us 0, ®.

(«). Suppose ¢, @. Enter this ¢, context. As U doesn’t occur in @ or L, by Simple
Comprehension ( Axiom 8.4) we can derive

0, PAVX)(U(x) & x =x)

Entering this 0, context we can infer (Vx | Ext(Ly U £)(x))(U(x)) and as - (V)U(x) —
(@Y & @) we may infer @Y. Lastly, by first order logic we can derive (3x)(x = x) and hence
(3x)(U(x)), giving us all the conjuncts of @;;. Leaving both < contexts/closing both inner ¢
arguments gives us 0, 0, @, . So applying Diamond Collapsing ( Lemma B.8) gives us ¢ @y as
desired. m

We will also need one more lemma, which lets us specify logically possible extensions for new
relations P, ..., B,’, so that an isomorphism between some original structures (R, ... R;) and
(R'4, ...R";) can be extended to an isomorphism between the larger structures

(Ry, ...R, Py, ...,Byand (R'y, ...R",P'y, ..., P"})).



Lemma 1.2 (Isomorphism Extension Lemma). Suppose that (R, ...Rpy) = (R, ...R'p) all R;,
P;,R'; arein L, and g and the P',, ... P',, are ‘fresh’ relations distinct from all L, f and each
OL’f [(R1’ Rm, Pl’ ey Pn> ? (Rll, R,m, Pll, ey P,Tl) /\

(Vx | Ext(R; ... Rp) (%) )(f(x) = g(x))

Proof. Suppose that the conditions of the lemma are satisfied. By the Possible Powerset axiom (
Axiom 8.11) we have

other. Then

05,7 C (C,€ EXX(Ry, e, Ry R'1y o Ry Py Pa))] (1)

Enter this ¢, context.

Recall that y = {x} abbreviates x €. y A (Vz)(z €. y = z = x). And by the Lemma H.8 {x}¢
is functional, 1-1 and defined on all of Ext(Rq, ..., Ry, R'1, ..., R' 1, Py, ... By).

By Axiom 8.4 (Simple Comprehension) and the Lemma H.7 (Multiple Definitions) we can infer
that it is logically possible(0 . f ¢ .. ) to have the interior of (/1), which we know to hold true in
our current context, remain true while defining both g and P’; for 1 < i < m as follows

_(f(x)  ifExt(Rq, ... Rp)(x)
9 = {{x}c otherwilse

P'i(g(x1), -, 9(xx)) © Pi(xq, oo X))

Enter this 0, r ce. context. We know g is 1 — 1 on Ext(Ry, ..., Ry, Py, ... By) by the fact that f
and the singleton relation are 1 — 1 and there are no x, y with {x}. = f(y) as the classes
introduced by C(C, €, F) are disjoint from all the objects satisfying

Ext(Ry, ., Ry R4, oo, Ry Py, . By).

We know g is functional and defined on all of Ext(Ry, ..., Ry, Py, ... B,) by the fact that f is
functional and defined on all of Ext(Ry, ..., R,,), and the ‘singleton relation’ is functional and
defined on all of Ext(Py, ... B,).

All other facts needed for this to be an isomorphism follow immediately from the imported fact
that f is an isomorphism and the P’; are defined to satisfy the definition of isomorphism. m

We now turn to the proof of the theorem.
Theorem I.1. (Isomorphism Theorem) Suppose that
* (Ry,...Rm)=f(R{,....Ry")

e ¢ is content restricted to Ry, ..., Ry,

e Each® R'; is either identical to R; or is distinct from all R; and doesn’t appear in ¢.

8 Furthermore, we implicitly assume that the R; are distinct relations as well as the R';.



e fdoesn’t appearin ¢ and f isn’t identical to any R; or R';

* ¢" = P[R1/R'1, -, Rm/R ;]
(Vay, ..., ay | Ext(Ry, ..., Rpp)(a1) A .. Ext(Ry, ..., R (ay))
¢(a11 LR an) « ¢,(f(a1)l '"lf(ak))

Proof. We first observe that it is enough to prove the implies direction of the claim since as the
reverse direction follows by? application of the forward direction to f 1.

then

We now prove the forward direction by induction on the structure of ¢. We assume that the
claim is true (for all m and relations Ry, ..., R,;,) both for all subformulas of ¢p and for all formula
that contain strictly fewer logical possibility operators than ¢. We now attempt to verify the
claim for ¢.

The base case, where ¢ is an atomic formula is straightforward, as are the cases where ¢ is a
truth-functional combination of other formula.

Now assume that ¢ (a4, ... a) begins with an existential quantification. As ¢(ay, ... ay) is
content restricted to Ry, ..., R,,,, we may assume that if ¢ is of the form?° (3x |

Ext(R;...Rp) (%))W (ay, ... ag, x)). If ¢ holds then for some b satisfying Ext(R;...R,,)(b) we
have Y (ay, ... ax, b). Thus, by the inductive assumption we have Y'(f (a,), ..., f (ax), f (b)). And
as, by the definition isomorphism (Definition 7.4), f bijects Ext(Ry, ..., R;,) with

Ext(R'y, ..., R'};,), we have

¢'(f(a1), - f(ax)) < @x 1 Ext(Ry, ..., Rp) ) W' (f (@1), - f (ar), f(x)))
© Qx| Ext(Ry, .., R ) () @' (f (a1, - f (aie), X))

. The case where ¢ is a universal formula is already handled, as we identify V with =3 —.

Finally, consider the case where ¢ = ¢, @. Suppose that ¢ is true (note that ® must be a
sentence so we need not worry about free variables) and (R, ..., Ryy) Z¢ (R4, ..., R'py). We
need to prove that 0., @', where L' is the result of replacing each R; in L, with R’;. Note that
as ¢ is content restricted to R, ..., R, we must have £, € {Ry, ..., R;;} and, (by renumbering if
necessary) we can assume that L, = {R,, ..., R;}and L'y = {R',, ..., R';}. Note that we have
(Ry, ., R)) =¢ (R'y, ...,R"}).

Our first step will be use the Lemma I.1 (Content Restricted Equivalent) to infer that ¢, Dy
where @, is a version of @ which is content restricted to Ly, L4, U Where L, is the set of

9 Specifically, we can argue that it’s possible to have a relation g = f~! while maintaining all
the other assumptions of the theorem. We may then apply the proof to g to infer the
possibility of the theorem’s conclusion and export it to infer the reverse direction.

10 Note that it is enough to prove the claim for explicitly content restricted formulas and the
result for implicitly content restricted formulas is immediate.



relations appearing at the top level of @ and U is a predicate distinct from all relations hitherto
mentioned.

In particular, by clause 2 of Lemma I.1 we can infer the following from ¢.
0z, By

We wish to import the fact that (R, ..., R;) =¢ (R, ..., R";) and to that end we expand the set
of relations held fixed to £y, £y, f. By assumption, no relation in £L," — L, appears in ¢, nor
does f. Hence,

(({fY U L) = L) N (LU Lo u{UY) =0

Thus, as @U is content restricted to Ly, L4, {U}, by ¢ Ignoring ( Axiom 8.3) we can infer

0ro.Lonf Pu

Enter the 0., r,s context provided by senence above and import the fact that

(Ry, .., R)) =¢ (R, ..., R'}). To apply the inductive hypothesis we need to construct a g
extending f that isomorphicly maps Ly, U to some Ly, U'. Letting Py, ..., B,, U be the relations
(ifany) in Ly, U notin Ly and P'4, ..., P',,, U’ some previously unmentioned relations of the
same arity as Py, ..., PB,, U we invoke the Lemma .2 (Possible Isomorphism Extending) with some
new relation g to infer

0LoU.f Lorle ((Rl, Ry, Py, B Uy = (R, ...R",, P, ..., P, U'))

g

Enter this additional 0., v r 1/,.c, CONtext and import @y (it is content restricted to L4, U). We
are finally in a position to apply the inductive hypothesis. For by clause 3 in Lemma I.1 (Content
Restricted Equivalent), @U has the same number of ¢ operators as @ and thus strictly fewer
than ¢ does. Moreover, as U’, g, P'; were all chosen to be distinct relations thet don’t appear in
®. And, by assumption any R’; which does appear in @ is identical to the corresponding R;. So,
by inductive hypothesis, we can infer

OofLrote PulR1/R'1, . Ri/R',UJU', P /P, ..., By /P"]
By applying Reducing (Lemma B.4) we infer
Oou.frroPu[R1/R', . R /R, UJU P[Py, ..., Py/P'y]

As no P'; appearsin Ly, L'y, U, f we can use Relabeling ( Axiom 8.5) to substitute P; in for P;’
yielding

OcLou.f,cro Pu [R1/R'1, . RI/R'LUJU' P /P, oo, By [P [P'1/Py, oo, Pn /]

Which simplifies to



0ov.f.Lro Pu [R1/R'1, . Ri/R,UJU'

Renumbering if necessary, we may assume that R,’, ..., R}’ don’t appear in L, and that Ry, =
R'y 11 ...R; = R';. As R;/R; a null operation this gives us

Oou.frro Pu[R1/R'1, . R /R, UJU']

Since R';,1 < i < k doesn’t occur in ¢ by clause 4 (replacing) of Lemma I.1(Content Restricted
Equivalent Theorem) we may know that

"ﬁu [Ri/R'1, . Ri/R',U/U'] = (@[Ry/R'y, .. Ri/R" D
Dropping out of the enclosing ¢ contexts gives us

Ocosonf OLouf.ro Pu[Ri/R'1 . Rie/R'k, U/U']

A combination of Reducing (Lemma B.4) and Diamond Collapsing (Lemma B.8) yields.

—

021y (@[R1/R'1, ... Ri/R' kDo

And by clause 2 (equivalence) in Lemma 1.1 (Isomorphism Lemma) this implies (reinstating the
null substitutions of Ry,1/R k41 - R/R"})

021, @ [R1/R', ... Ri/R"]

Since no R’; with i > [ appearin L'y or ®[R,/R’'y, ... R;/R';] and no R; appears in L'; (unless
R'; = R; in which case the substitution below is the null operation) we make invoke Relabeling
(Axiom 8.5) on R';, i > [ to derive

0z1, @ [Ry/R'1, . Ri/R' . R /R ]

But this is just our desired conclusion that ¢, @ " completing our proof. m

J. PA, and Infinite Well Ordering Lemmas

In this appendix | will show that Axiom 8.10 (Infinity) (together with my other inference rules)
implies the Infinite Well-Ordering Theorem ( Theorem J.1) below. While Axiom 8.10 (Infinity)
was chosen to be as simple as possible and only asserts the possibility of a scenario with a
successor function to justify the set theoretic axiom of infinity we must derive the possibility of
an infinite well-order.

As the particular infinite well-ordering whose possibility we establish will be w, this Lemma will
let us quickly prove that ¢ (PA,). That s, it’s logically possible for there to be some objects
which (when considered under some relations) satisfy the categorical description of the natural
numbers structure discussed in Section J.3.

Recall that the Infinity axiom says the following.

Axiom J.1 (Infinity). ¢ ¥ where ¥ is the conjunction of the following claims:



1. The successor of an object is unique (Vx)(Vy) (VYY) [S(x,y) AS(x,y) -y = V']
2. successor is one-to-one (Vx)(Vy)(Vx)(S(x,y) AS(x',y) » x = x')

3. there is a unique object that has a successor and isn’t the successor of anything
@lx: FY)S(x, y) A (Vy)=S(y, %))

4. everything that is a successor has a successor (Vx)[(3y)S(y,x) = (32)S(x, z)]
5. Sis anti-reflexive: (Vx)(Vy)[S(x,y) = =Sy, x)]

So, (speaking informally) Axiom 8.10 (Infinity) says that we could have an infinite collection
objects related by a successor relation S in a successor-like way (remember we often
abbreviate S(x,y) by S(x) = y). We will now derive two useful consequences from this claim.

e  That there could be an infinite well ordering W, <.

e ThatN,S could apply to objects satisfying the (conditional possibility version of) the Peano
Axioms

Theorem J.1 (Infinite Well-Ordering Theorem). It is logically possible for there to be a non-
empty well ordering with no maximal element. And we can further require that every element of
this well ordering has a maximal predecessor. That is, the conjunction of the following claims is
logically possible.

1. (Well-ordered) < well-orders'! the objects satisfying W

2. (Non-Empty) (3x)(W(x))

3. (No Maximal Element) (WVx | W(x))Qy | W(¥)(x < y)

4. (Least Element) There is a unique minimal element, i.e., (3! 2)(Vx)(x « z AW (2)).

5. (Discreteness) (Vb)(b =0V (3a < b)(Vz < b)(z < a) Every non-zero element has a
maximal predecessor.

Given a relation S satisfying the conditions in Axiom 8.10 (Infinity), our approach will be to
define W to apply to the smallest class closed under S containing the 0 element. Note that in
this proof we use 0 to abbreviate the unique element that has a successor but isn’t a successor.
We will demonstrate that this corresponds to the unique minimal element referenced in part 4
(least element) of the theorem. We then define x < y to hold if every successor closed class
containing x contains y.

11 Remember we defined the notion of well-order both for < and < relations.



J1 Constructing the well-ordering

The Axiom 8.10 (infinity) tells us that ¢ £2, where (2 abbreviates the following sentence (which
is content restricted to S).

(VO Y)ISCY) AS(xY) =y =y A
(VO YV (S(xy) ASK,y) = x = x) A
@A'x | @S, Y) A (VY)=S(Y, %) A
(VO[ENS (Y, x) = (32)S(x, 2)] A
(VO[S y) = =Sy, x)]

Note that the first conjunct implies that S if functional. Enter this ¢ context. Using the Possible
Powerset Axiom ( Axiom 8.11) it’s possible ( 05 ) to have a layer of classes over the objects
related by S.

Enter this ¢ context. 2 must remain true, as it is content restricted to S, so we have:

nNAC <C, € ,Ext(S)). Jgn

Next, by using Lemma H.7 (Multiple Definitions) to pack together successive applications of
Axiom 8.4 (Simple Comprehension) it is possible (05 ¢ e.. ) that equation (J1) remains true along
with the conjunction of the following four facts.

D(x) & Ext(S)(x) J2)

(V)[SC(x) & C(x) A(V2)(VZ)(zExAS(z,2) > 2 €x)]  (J3)
(V) [W(x) © D(x) A (Vk | C(k))[0 € kASC(k) » x €K]D]. (4
VO (V) x <y o D) ADY)A(Vk)[x EkASC(k) >y €ek]) (J5)

Informally, the above equations have the following effects.
. (J2) ensures D serves as a shorthand for Ext(S)
. (J3) ensures SC(d) holds just if d is successor closed.

J (J4) ensures The relation x < y holds for elements in D just if y is in every successor
closed class that x is in.

e  (J5) ensures W (x) holds just if x is an element of every successor closed class containing 0
(the unique element that has a successor but isn’t one).

So leaving all ¢ contexts and letting 4 denote the conjunction of the above four equations
yields

005050, lanecc € EXt(S)) A ]



And by Diamond Collapsing (Lemma B.4) this implies

0 (J6)

NAC (C, rE: ,Ext(S)) AN

This completes the construction of W, <, our non-empty well ordering with no maximal
element. We must now check that this logically possible scenario really behaves as advertised.

1.2 Verification

We now enter the ¢ from equation (/6) giving us the following equation.
W:QAC(C,E ,Ext(S))/\A. Jd7n

Before verifying W, < has the required features | will first prove a utility lemma showing that
for appropriate formulas y we can always find a class whose members are exactly those picked
out by y.

Lemma J.1 (Class Comprehension). Suppose that C(C, €. ,Ext(L)) and y(x) is a 0 and O free
formula content restricted to some L' D L U {C, €.} with only x free rendering. Then (39 |

C@N(Vx)(x € g & Ext(L)(x) Ay (x))

Proof. Suppose the assumptions of the lemma hold. By Simple Comprehension (Axiom 8.4) it’s
possible (0, ), while keeping the assumptions of the lemma true, that the following holds

(Vx)(G(x) © y(x))

Enter this 0, context we can unpack C(C, €. ,Ext(L)) giving us
Oceexcr) (3GC(G) A (VD) AG(X)) © x € g)]
By Lemma B.3 (Box Elimination) we can deduce that
APIC(g) A (YX)((D(x) AG(x)) « x € g)]
so by the fact that (Vx)(G(x) © y(x)) we can deduce
(39)[C(g) A (Vx)(x € g & D(x) Ay(x))]

By assumption this sentence is implicitly content restricted to L' we can exit the current ¢,
context and invoke Axiom 8.2 (Diamond Elimination) to conclude

(APIC(g) A (Vx)(x € g & Ext(L)(x) Ay(x))]
holds in our original scenario. m

We now enter the ¢ context from (J6) and assuming 2 A C(C, €. ,Ext(S)) A A prove a series of
lemmas that, together, will satisfy the elements of the Infinite Well-Ordering Theorem (



Theorem J.1). Note that in this situation since D (x) < Ext(S)(x) we can invoke the above
lemma using D (x) in place of Ext(S)(x).

Lemma J.2 (Non-Emptiness). (3x)W(x)

Proof. By equation (J4) W (x) holds iff D(x) A (Vk | C(k))[0 €c k ASC(k) — x € k]). As
Ext(S)(0) by equation (/1) we have D(0). And clearly 0 €. k = 0 €. k. Hence W (0). This
verifies that (W, <) satisfies clause 2 (non-empty) of Theorem J.1 (Isomorphism Theorem). m

Lemma J.3 (Reflexivity). (Vx)(W(x) - x < x)

Proof. By (J4)1f W(x) then D(x).And by (J5) x <y iff D(x) AD(y) A (Vk)[x € k ASC(k) =
yEkDsox<x.m

Lemma J.4 (Transitivity). (Vx,y,z | W) AW AW @) (x < yAy<z-x<2)

Proof. Consider arbitrary x, y and z satisfying W such that x < y Ay < z. Suppose that x € k A
SC(k). Thenasx <y by (J5)wehavey € k ASC(k) and asy < z we can infer z € k. Hence
(Vk)(x e k ASC(k) > z€ k). Thus, by (J5),x <z.m

Lemma J.5 (Totality). (VX)(VY)[W(x)AW(y) > x <yVy < x]
Proof. First, we introduce some abbreviations

CMP(x,y) o x <yVy<x
ALLCMP(x) < (Vy | W (y))CMP(x,y)

By Lemma J.1 (Class Comprehension) above applied to the formula
y(x) & D(x) A ALLCMP(x)
we can infer that there is a unique object g such that C(g) and
(Vx | W(x))[x € g & D(x) AALLCMP(x)]

It is thus enough to show that W (x) = x € g. Now clearly 0 € g since, by equation (J4) every x
satisfying W (x) is in every successor closed class containing 0 which is the requirement
equation (J5) gives for 0 < x. Therefore, by equation (/4), if g is successor closed then g
contains every element satisfying W. Suppose g is not successor closed. That is

(3x) (ALLCMP(x) A —.ALLCMP(S(x))) J8)

Let x witness the truth of the above equation and let y witness the failure of ALLCMP(S(x)),
i.e., y satisfies =CMP(S(x), y). More specifically, note that by using the Lemma H.7 (Multiple
Definitions) to pack together applications of Simple Comprehension (Axiom 8.4) and Proposition
8.1 (Simplified Choice), we can (0w sc,ce.,n,< ) have the predicate Q, apply to a unique x
witnessing the truth of the existential claim in (J8) and @, applying to a unique y which S(x) is
not comparable to.

Enter this OW,SC,C,EC,D,S context.



Now, by assumption ALLCMP(x) hence x < y Vy < x. Suppose y < x. If k is a successor
closed class containing y then by equation (J5) we have x €, k and as k is successor closed
S(x) €¢ k. Hence, by equation (J5)y < S(x) contradicting the fact that =CMP(S(x), y).

Suppose x < y. As =CMP(S(x), y) we can’t have S(x) < y so there must be some successor
closed class k containing S(x) but not y. Now, by the same reasoning as above (using @y, @, to
avoid quantifying into the ¢), possibly (Ow,sc,c,ec,D,s,Qx,Qy ) Qy applies to a single class k
witnessing this fact. Enter this Oy sc.c.e.,p,<,0,.0, CONtext. Now, applying Lemma J.1 (Class
Comprehension) (as Q and Q, apply only to objects satisfying D) there is some class k' = k U
{x}, i.e., a k' such that

(V2)(z € k' & @) (7 € Qu(k) V 0x(2))
Or, equivalently,

(VZ)(Z%k'HZ%kVZ=x)

As k was successor closed and contained S(x), it is trivial to see that k' is successor closed. By
our choice of k we have y &, k, so either y &, k' or y = x. However, sincey £ x y = x is
ruled out by the fact that < is reflexive ( Lemma J.3 Reflexivity). So y &, k'. But then k' is a
successor closed class containing x but not y which, by equation (J5), contradicts the
assumption that x < y. Exporting the contradiction, we can thus conclude that g is successor
closed completing the proof of comparability. m

Lemma J.6 (Maximal Predecessor). (Va)(Vz < S(a))(z=S(a)Vz<a)

Note that as 0 is the unique element without a successor, this suffices prove the claim in c/ause
5 (Discreteness) of the theorem that every non-zero element has a maximal predecessor since if
b # 0 then, for some a, S(a) = b. We also know a < b as every successor closed class
containing a contains S(a) hence this lemma entails

(Vb)(b =0V (3a < b)(Vz < b)(z < a)

Proof. Suppose that the lemma fails. Then, by the same reasoning as above using the the
Multiple Definitions Lemma ( Lemma H.7) to pack together applications of Proposition 8.1, and
Simple Comprehension ( Axiom 8.4) we can (0w sc,c.e.,p,< ) have Q, applying to a single object a
and Q, applying to a single object z such that z < S(a) but not z < a. We enter this
Ow.sc.cecp< context and import any of the assumptions we need.

Since —=(z < a), by equation (J5) there must be some successor-closed class containing z but
not a. By the Multiple Definitions Lemma ( Lemma H.7) it is possible ( Ow sc.c.ecp.<040, ) that
Qx picks out a single class k witnessing this fact. Enter this Oy scc.e.p.<,04,0, CONtEXE.

Now using Qg, Q,, Qx, apply Lemma J.1 (Class Comprehension) to derive the existence of a k'
suchthatx €c k' © x €c k Ax # S(a) (i.e., k' = k —{5(a)}). As k is successor closed and k
doesn’t contain a, and S(a) isn’t the successor of any other object, it follows that k' is
successor closed. By our choice of k we have z €. k. So, as z # a (by Lemma J.3 (Reflexivity)



and our choice of z) we can infer z €, k. Thus k' is a successor closed class which contains z
but not S(a). However, by (J5), this contradicts the fact that z < S(a) and exporting the
contradiction establishes the result. m

O @K@ AW(X) -
Lemma J.7 (Well-Ordering). @A) K) AW () A YD K) AW () = %' < y])]

Proof. Suppose not. Then we have

dwsl GOEE) AW () A
@A KE)AWE) A KO AW () = x' < y])]

By ¢ Ignoring ( Axiom 8.3) we can deduce the corresponding Os¢ ¢ s.e.w,<p Claim. Entering this
Osccsecw,sp context we can import ¥ and deduce (3x) (K(x) AW (x)) and

(Vx YK AW(X) - @K@ AW) Ax" £y]) 5

Now by the Lemma J.1 (Class Comprehension) there is a class k containing just those x in W
such that no y < x satisfies K. That is

x % ko Wx)ANMy < x)(—J((y)) (J10)

Clearly 0 €. k since if not then it would be a < minimal element satisfying K, hence a
counterexample to equation (J9) . We now show that k is successor closed.

Suppose not. Then there is some x €, k with S(x) & k. So by (J10) there must be some z <
S(x) with K(z). However, by Lemma J.6 (Maximal Predecessor), either z < x or z = §(x). But
as x €. k we can’t have z < x so K(S(x)).

By equation (J9) there must be some y < S(x) with K(y). But again, by Lemma J.6 (Maximal
Predecessor), this entails that y < x. Contradiction. Hence k is a successor closed class
containing 0 and by clause (/4) of A4 every member of W must be an element of k. But this
contradicts (3x) (K (x) A W (x)).

Leaving the 0s¢ cse.,w,<p cOntext above we may export this contradiction establishing the
well-ordering property. m

Two more lemmas are needed before we can verify the last remaining property, anti-symmetry.
Lemmal.8. (Vx | W(x))(S(x) £ x)
Note that this implies W lacks a maximal element since every element in W has a successor.

Proof. By Lemma J.1 (Class Comprehension) let k be the class containing just those x such that
D(x) AW (x) AS(x) £ x Itis enough to show that k is successor closed and 0 €. k since W is
contained in every such class.

First, we establish that 0 €. k. Suppose S(0) < 0 and consider the formula x # 0. By
Lemma J.1 (Class Comprehension) there is some k such that x €. k' & x # 0 A D(x). As 0 isn’t



a successor, k is clearly successor closed. And as D(S(0)) and S(0) # 0 we have S(0) €. k.
However, by (/5)if S(0) < 0 then, as k is successor closed, 0 €. k. This is a contradiction.

~

Hence 0 €. k.

As every element in W is either 0 or a successor, to show that k is successor closed it is enough
to show that if S(x) £ x then S(S(x)) £ x. Suppose this fails. As S(x) £ x there is some
successor closed k' containing S(x) but not x. By the same trick used above we invoke the
Multiple Definitions Lemma ( Lemma H.7) to put together applications of Simplified Choice (
Proposition 8.1) and Simple Comprehension ( Axiom 8.4) to infer that possibly (0s¢ ¢ s.e.w.<p)
Q. and Qy, select unique objects x and k' such that k' is a successor closed class and

S(x) €c k' A =x € k'. We now work to transform k' into a class k" witnessing that S(S(c)) £
S(x).

Enter this Osc ¢ se.w<p context. C(C, Ec ,Ext(S)) must remain true in this context. So by
Lemma J.1 (Class Comprehension) there’s a class k" including every element in k' except for
S(x) (i.e., k" = k' — {S(x)}). By our choice of k', k' doesn’t contain x and is successor closed.
So k" must also be successor closed (for in removing S(x) from k' we aren’t removing the
successor of anything in k’). And k" contains S(S(x)), for k' contained S(x) and we know
—S(x) = S(S(x)) by the last clause in £2, so k" does as well. Thus, k" is a successor closed class
containing S(S(x)) but not S(x). But by (/5) combining this with S(S5(x)) < S(x) yields
contradiction, which can be exported from the above logical possibility context.

Thus, k is a successor closed class containing 0, and it follows that all x such that W (x) are
elements of k. Given our characterization of k, this implies that, for every x in W, S(x) £ x, as
desired. m

Finally, we show that the definition of 0 used in this proof (the unique element that has a
successor but isn’t a successor) is equivalent to the definition used in the statement of the
theorem (the unique < minimal element in W). Note that is enough to prove the following
lemma, saying that 0 is < minimal, as the above lemma ensures that no other element in W is
< minimal.

Lemmal9. (Vy)(y<0->y=0)

Proof. Suppose y witnesses the failure of the lemma. Consider the formula x # 0. By the
Lemma J.1 (Class Comprehension) there is some k such that x € k & x # 0 A D(x). As 0 isn’t
a successor k is clearly successor closed, and as y < 0 we have D(y). Soy €. k. However, by
(J5) this contradicts the fact that y < 0 completing the proof. m

Lemma J.10 (Anti-symmetry). (Vx | W(x)(VY)(x S yAy<x->x =)

Proof. By the Lemma J.1 (Class Comprehension) let k be the class containing just those x
satisfying W such that (Vy)(x < y Ay < x = x = y). As above it is enough to show that
0 €c k and k is successor closed.

Note that, by the prior result, if y < 0 then y = 0. Hence, 0 €. k.



We now establish that k is successor closed. Suppose not. Then for some x we have x €, k but
not S(x). Thus, forsomey, y < S(x) and S(x) < y butnoty = S(x). Asx < S(x) and S(x) <
y by transitivity we have x < y. By the Lemma J.6 (Maximal Predecessor) property above, since
y < S(x),we havey < x. As x €. k it follows that y = x. But this contradicts the fact that
S(x) £ x, by Lemma J.8 above. Hence y = S(x). Thus k is successor closed. m

Note that the above lemmas verify every element of the Infinite Well-Ordering Theorem (
Theorem J.1), completing its proof.

/13 Possibly PA,

If follows fairly quickly from the proof above that it’s logically possible that PA,, where PA o
(given below) is the (relational) version of the second order Peano Axioms which replaces the
second order induction principle with an equivalent formulation in terms of conditional logical
possibility.

Definition J.1. PA, is the formula given by the conjunction of the following clauses

1. Therelation S is a function®?.

N

(A'z I N(2))(Vx | N(x))(=S(x) = z AN(2)). As above we will refer to this unique z as 0.

w

(Successor Closed) (Yn)[N(n) - N(S§(n))], i.e., N is closed under successor.

4.  For all natural numbers m and n, if S(m) = S(n) then m = n. That is, S is an injection.

b

(induction) Ty s ([(K(0) A (¥n | N(m)) (K (n) - K(S(m)))] = (vn | N(m)K (1))
Lemma J.11 (Possibly PA,). Suppose N, S don’t appear in L then O, (PA )

That is, it’s logically possible that N, S satisfy the Peano axioms (in the form given above) while
holding fixed L

Proof. We note that the proof of the Infinite Well-Ordering Theorem ( Theorem J.1) can be
modified to hold fixed £ and use N in place of W (renaming the relations introduced in that
proof as necessary to avoid collision with £) and that in doing so all the lemmas proved in the
prior section remain valid. As in the proof above we enter the ¢ (now ¢ ;) context and,
assuming 2 A C(C, € ,Ext(S)) A A derive the desired properties.

12 Formally, this is the assertion that for all n,m, m’, if S(n,m) and S(n,m") thenm' = m. As
usual we will use functional notation for S.

13 Expressed in a relational form this would be Oy ¢ [(K(0) A (Vn)(¥Yn' | N(n"))([K(n) A
S(n,n") - K(n')] - (vn | N(n))K(n))] but as usual we gloss over this trivial difference.



The lemmas proved above in conjunction with £2 immediately entail all but c/ause 3 (Successor
Closed) and clause 5 (Induction) . To prove that N is successor closed we note that if N(x) then
x is in all successor closed k containing 0 and hence so is S(x). Hence, N is successor closed.

To prove the induction claim suppose that
K(0)A (vn | N(n))(K(n) - K(S(n)))
we note that by the Lemma J.1 (Class Comprehension) there is some class k such that

vn) (n € k & Ext(S)(n) AK(n) A N@))

As N is successor closed and contains 0 as is, by assumption, K it immediately follows that
SC(k). Hence, it follows, by the definition of W (now N) that if N(n) then n €, k and hence
K (n). Thus, we can infer

[(K(0) A (Vn I N(n)) (K (n) = K(S(m)))] = (vn | N(n))K(n)

Since we derived this conclusion from 2 A C(C, €. ,Ext(S)) A 4 which is content restricted to
N,S,C, €, D, <via Lemma 4.3 (Box Introduction) we can conclude

Onscens ([KO) A (Y I Nm) (K () > K(SM))] - (Yn I N(m)K(n))
Now by Lemma H.1 (Box Ignoring) we can conclude.
Oy,s ([(K(0) A (vn | N(m))(K(n) = K(S(m)))] = (Vn | N(n))K(n))
Leaving the 0, context completes our proof. m

Note that, while we don’t provide a proof here, it is straightforward to add relations +,* to PA,
and if we do so the above theorem continues to hold but we omit the proof of this claim.

K. Properties of Initial Segments

K1 Isomorphism Agreement Lemmas

Informally, this lemma says that there is only one way to isomorphically map between initial
segments of well-orderings.

Lemma K.1 (Well Ordering Agreement Lemma). Suppose that (W, <), (W', < ") are well orders
and

L4 (Wf, <f)‘ (Vl(g, <g) < (W, <)
e (We<'p), Wy<'gp)sW,<)
© Wn<p) = W <'p)

o (Wp<gp =g Wy <’y



then (V) (Wy () A Wy (x) = £(x) = g(x))

Proof. Suppose the assumptions in the lemma hold but that the conclusion fails and let £ =
We, <p Wo, <g W5, <'p, W'y, <", W, <, W', <, f, g}. We argue that there must be a < least
element at which the claim fails and show that yields contradiction. By Simple Comprehension (
Axiom 8.4) we can infer that it’s logically possible (0 ;) that the assumptions in the lemma hold
but the conclusion fails as well as

(Vo)[B(0) & Wg(x) AWp(x) Af(0) # g(0)]

Enter this ¢ ; context. By the definition of well ordering (Definition E.2), there must be some <
least o satisfying B(0). It is trivial to verify the claim must hold if o is the < least element in W.

So suppose that f(0) # g(0) and o isn’t the least element in W. Without loss of generality we
may assume f(0) < 'g(0). By supposition W', (g (0)) and it follows by the that W’ (f (0)).
Thus, for some u satisfying W, (u) we have g(u) = f(0) < 'g(0). Now it follows that g(u) <
'49(0), hence as (W, <,) =, (W'y, <'y) it follows that u <; 0 and thus u < o.

But as Wy (0), we can infer (from u < o) that W;(u). Hence, u is in the domain of both g and f
and by the minimality of o we must have f(u) = g(u) = f(0), contradicting the injectivity of

f.

Exporting the contradiction from the ¢, context using Axiom 8.2 (Diamond Elimination)
establishes the claim to be proved. m

We now prove a similar result for initial segments.
Lemma K.2 (Hierarchy Agreement Lemma). Suppose
o Vf'Vq <V

. VLV <V

o ViV
« V=gV

then (Vx)(V; (x) AV, (x) = f(x) = g(x))

Proof. Let L = {V;,V,, V', V'y,V,V', f, g} and suppose these relations are as in the statement
of lemma but the lemma fails. tells us the claim must hold on the ordinals of the initial
segments, so it remains only to must it for the sets. Our strategy here will be to prove the claim
by transfinite induction on the ordinal at which x is formed and use the inductive assumption
combined with extensionality to infer the claim holds for x.

By Simple Comprehension ( Axiom 8.4) that it’s possible (0 ) that all the facts above continue
to hold and that



(Vo)[B(o) o (3x | @(x, o))(setf(x) Asety(x) A=f(x) = g(x))]

Enter this 0. By the there must be some < least o satisfying B(0). Let x be a set in both V; and
V; witnessing that o satisfies B, i.e. @(x, 0) and f(x) # g(x).

Now suppose ¥y’ € 'f(x). We argue that u’ € 'g(x)

By assumption set’s(f (x)), and by the definition of Initial Segment Extension ( Definition A.3),
it follows that set’s(y"). Hence by the same definition there must be some y with set¢(y),

f(¥) = y"andy € x. And by the same definition, y € x. As @(x, 0) ensures that there is some
o' < o with @(y, 0").

By assumption set, (x) and by the definition of Initial Segment Extension (Definition A.3), it
follows?? that set, (). Hence y is in the domain of both f and g and if f(y) # g(y) this would
violate the minimality of 0. As g is an isomorphism, it follows that y" € 'y g(x) and by
Definition A.3 it follows that y' € 'g(x). By a similar argument applied in the other direction we
can establish thaty’' € 'f(x) & y' € 'g(x).

Thus, by part it follows that f(x) = g(x). Contradiction?’. Leaving the OV (Vg Vi1 e V1V V1.f g
context by Axiom 8.2 (Diamond Elimination) we can export this contradiction giving us the
desired result. m

Corollary K.1. IfVy < V,V and V = V then (Vx | Vo(x))(f (x) = x)
Proof. This is immediate by taking g to be the identify function, V, V’g both to be Vy, V to be V

’ gl
and V’f to be V and applying lemma K.2 (Hierarchy Agreement Lemma). m

K.2  V Comparability Lemma

We now establish that, given any two initial segments then one extends (an isomorphic image
of) the other.

Lemma K.3 (V Comparability Lemma). IfV, V' are initial segments then Oy , (17 <VA
V%V’)V(V’SV’/\V’%V)

Proof. Our strategy here will (essentially) be to define R(x, y) so that it holds just if V(x) A
V'(y) and it is logically possible to have V, < V, V', < V' and it’s logically possible for g to
isomorphicly map an initial segment of V to an initial segment of V' so that g(x) = y. Our
ultimate isomorphism f will either be defined as f(x) =y & R(x,y) or f(y) = x & R(x,y)
depending on which of VV or V' has the higher height.

1t follows by the fact that x € y and set,;(x) and set,(y) sox €, y.

15 Note this argument applies even if o = 0 in which case x is the empty set.



Suppose V, V' are initial segments. As R(x, y) is defined via a modal notion we must use Axiom
8.9 (Modal Comprehension) to define R(x,y). In particular, Axiom 8.9 allows us to infer that it’s
possible (0y ) that V, V' are initial segments and

o.rl @'xy Q) -
Ax,y 1 QG ¥)IR(x,y) « Ext(V,V)(x) AExt(V, V) (¥) A ¢]]
where

d =0y |VoSVAV SV AV, ? Vio A@Qx,y)(Q(x,y) Ag(x) =y)

Enter this ¢y ;, context. We will now argue that R(x, y) defines the desired isomorphism.

It is evident from the definition of R(x, y) that R takes sets to sets and ordinals to ordinals. We
first verify that for each x there is at most one y such that R(x, y). Suppose not then using the
Multiple Definitions Lemma ( H 17.7) to pack together applications of Axiom 8.4 (Simple
Comprehension) and Proposition 8.1 (Simplified Choice) we can (0gy y,) retain all the above
facts and have Q, applying to a single pair x, y, and a Q4 apply to a single pair x, y; such that
R(x,y0) N R(x,y1). Entering this context and applying Lemma B.3 (Box Elimination) (and
renaming bound first order variables) we may thus infer that both of the following hold.

Ovwrgy VoSV AV SV AV, ; V'o A (3x,50)(Qo(x, ¥0) A go(X) = yo)
Ovwog, ViSVAV SVAVL =V A@x Y1) Q1(6y1) Aga(x) = y1)

g1
Next, we will show that we can paste these two scenarios together. For note that the sentence
inside 0y, o, above is content restricted to V, V', Qo, go, and the sentence inside 0y, o,
above is content restricted to V, V', Q4, g;. So the only overlap in the content of the pair of
scenarios asserted to be possible above concerns relations which both of them are holding
fixed (V,V’). Thus, we can apply ¢ Ignoring ( Axiom 8.3) to get the Oy y, 0,0, Version of both
claims above, and then Lemma B.7 (Pasting) to infer

Vo SVAV SV AV, gE Vo A(3x,y0)(Qo(x,¥0) A go(x) = yo) A
0

Ovweoen ViSVAV SVAY gEl Vi A (3%,y1)(Q1 (5, y1) A g1(x) = ¥1)
Import into this 0y, g,.0, Scenario the fact that (Vo) (Vx1)(Vyo) (Vy1) (Qo (X0, ¥o) A
Q1(x1,¥1) = X9 = X1 A Yo # y1). Thus, the scenario under the 0y v, o, 0, One in which g, and
go isomorphicly map the initial segments V,,V; <V to V', V'; < V'. However, this scenario is
exactly what is ruled out by the Lemma K.2 (Hierarchy Agreement) giving us a contradiction
which can be exported to infer that R(x, y) is injective. The fact that R is an injective function
justifies are use of functional notation (e.g., R(x) = y) for the remainder of the proof. And
since, if go, g1 are isomorphisms so are gy 1, g7 %, the same considerations above imply that if
R(x,y) and R(x',y) then x = x'.

We now argue that if x4, x; are setsin V and both R(x() and R(x;) are defined then x;, € x; <
R(xg) € R(x;). First, assume that there is some x, x; with x, € x; but R(xy) € R(x;). By the
same argument above (building Q, Q1 applying to (xo, R(x)) and (x4, R(x1)) respectively and



then applying Lemma B.7 (Pasting) ), we may assume we are in a context in which we have
isomorphisms go(xy) = R(xy) and g;(x;) = R(x;) and, since x, € x; and thus in the domain
of g1. Applying this the Lemma K.2 (Hierarchy Agreement) in this context we may conclude that
91(x0) = go(xo) from which the conclusion R(x,) € R(x;) follows. This yields the desired
contradiction which we can export to the original context giving us that R(x,) € R(x;) in that
context. A similar argument lets us infer that if R(xy) € R(x;) then x, € x;. This is enough to
show that R respects €. Similar reasoning demonstrates that R respects < and @.

We now argue that the domain and range of R are initial segments of V, V' respectively. We
note that if x is a setin IV and x is in the domain of R then it’s possible (speaking loosely) that x
in the domain (range) of g and g isomorphically maps some V, < V to V', < V then, since x
must be available at some ordinal w in V, (V') it follows that x is available at some ordinal in
the domain (range) of R. Similarly, if o is an ordinal in the domain (range) of R and u < o then
u is in the domain (range) of R. Thus, by Lemma E.1 (Initial Segment) we can infer that the
domain of R is some initial segment V < V and the range is some initial segment V' < V' and
V=7,

Finally, it remains to show that either 7 = V or V' = V' Suppose not. ThenV < Vand V' < V'.
Since V is an initial segment there must be some ordinal 0 in V not in the domain of R. We now
use Axiom 8.4 (Simple Comprehension) via Lemma H.7 (Multiple Definitions) to define B(0) to
hold on just those ordinals in V not in the domain of R and B’ to hold on those ordinals of V'
not in the range of R (by assumption both of which are non-empty).

Again using Simple Comprehension ( Axiom 8.4) (replacing o, 0’ with their definition in terms of
B, B') we infer the possibility of a relation g defined on ordinals u < 0 in V by

R(u) ifu<o
OR i
0 ifu=20
and for sets x in IV with @(x, 0) we define
_ {R(x) if dom(R)(x)
9(x) = y otherwise, wherey' € y & (3x' | x' € x)(y' = R(x))

Note that the existence of such a y is guaranteed by the fact that V' # V' and the fatness
requirement on V'. With this construction in hand we can straightforwardly verify that g is an
isomorphism and, importing the definition of R, conclude that R(0, 0") contradicting the fact
that B(0) and B'(0"). Exporting this contradiction we conclude that either V. =V or V' = V',

We now use Simple Comprehension ( Axiom 8.4) (inside the initial 0} ;;, context) to show that
possibly 0y 7z define f so that, if 7' = V', then f(x) = y & R(x,y) and if ¥ = V then
f(y) = x © R(x,y). As R was already shown to be an isomorphism between the initial
segments IV and V' we may complete the proof by applying Diamond Collapsing ( Lemma
B.4).m



K3 Proper Extension Lemma

Lemma K.4 (Proper Extension Lemma). IfV is an initial segment, then ¢, (V' >
) (30)(ord’'(0) A (Vu)(ord(u) = u < '0))

Proof. Our strategy here will be to invoke the possibility of a layer of classes over the elements
satisfying set. We will then take the set’ to include all the objects satisfying set together with
those of these classes which can’t be identified with existing sets, with membership defined in
the obvious fashion. We will extend the ordinals in VV by adding a single new object (the empty
class) which is an ord’ but not an ord.

More formally, suppose V is an initial segment and use Possible Powerset ( Axiom 8.11) to infer
that 0. C (C, € ,set). As C(C, €. ,set). is content restricted to C, €. ,set we can apply ¢
Ignoring ( Axiom 8.3) to expand the list of relations held fixed to V, i.e., set,ord, @. Additionally
we can use the Multiple Definitions Lemma ( Lemma H.7) to infer the logical possibility (0y ¢ce.)
that each definition in the chain of definitions below holds along with the facts above

(C(C, €. ,set) and V(V)).

(Vx)[set'(x) & (set(x) V [C(x) A (YY) (set(y) = (32)=(2 € y & z € X))]))
(VX)(Vy)[x €'y o set'(x) Aset’' (Y)) A(x EyV x = ]

(V) [ord'(x) « (ord(x) V (C(x¥) A (V) (my € X)))]

(VX)(Vy)[x <y & (ord'(x) Aord (y) A (x < y V (ord(x) A —ord(y))))]
(V) (YY) [@'(x,y) © (set(x)' Aord'(¥) A (@(x,y) V set(x) A —ord(y)))]

From these definitions it is straightforward, if tedious, to verify the claimed result. The only
significant departure from familiar first order reasoning concerns showing that our new V'
obeys part 5 (fatness) from the definition of Initial Segment ( Definition A.2). Suppose, for
contradiction, that fatness fails. Then possibly (¢, ) H applies to some sets in V' all of which are
available before some o satisfying ord’(0) but that no set whose members are equal to H is
available at stage 0. By < Ignoring ( Axiom 8.3) we can infer the Oy y, ¢ ¢ version of this claim.
Enter this 0y ¢ . context. By the facts about content restriction labeled above, we can import
all our sentences characterizing C, €, ,set, € etc. into this context and derive that H applies to
only elements in V (since V' adds only a single new ordinal) and thus there is a class x whose
members are exactly the sets y satisfying H and thus set’(x). If o < @ (the new ordinal in V)
then @(x, 0) and thus @'(x, 0). If o = @, then —ord(0) and thus @'(x, 0). This gives us the
desired contradiction which we can export. m

Lemma K.5 (Interpreted Initial Segment Possibility). Suppose that L doesn’t contain any of
set,ord, €, <, @,N, S,p then O,V (17)

Proof. By Possibly PA, ( Lemma J.11) we may infer that ¢, PA, Enter this {0 context.

We note that by the Multiple Definitions Lemma ( Lemma H.7) and Simple Comprehension (
Axiom 8.4) (letting all relations be empty) we can trivially deduce the possibility of an (empty)



initial segment, i.e., 0 ; PAx AV(V). Enter this ,; context and apply the Proper Extension
Lemma ( Lemma K.4) to infer

Ove (V' =V)APA4 A (Jo)ord (o)

Enter the above ¢y ; context. It is easy to verify (using the ) that there is a unique object
satisfying set’ which has no members. Using Simple Comprehension ( Axiom 8.4) we may define
p(n) for all n satisfying N(n) to be this empty set in V. It is easy to verify that this entails that
V' is an interpreted initial segment (Definition A.4).

Leaving all the above ¢ contexts we may use Diamond Collapsing (Lemma B.8) and Relabeling (
Axiom 8.5) to infer 017(17) as desired. m

Corollary K.2 (Interpreted Extension). Suppose that L contains no relations in V then V A
(@x)(set(x)) = Oy 17(17)

Proof. This is immediate via the proof of Interpreted Initial Segment Possibility (Lemma K.5) by
substituting the assumption that V A (3x)(set(x)) in place of the construction of V' in that
proof. m

Lemma K.6 (Proper Well-Ordering Extension Lemma). If ord, < s an initial segment then .4 <
((ord’, < ") = ord, <))(30)(ord'(0) A (Vu)(ord(u) — u < ‘o)) Moreover, we may assume
that ord’, < " has a maximal element, i.e., 4.4 < ((ord’, < ") = ord, <))(30)(ord’'(0) A
—ord(0) A (Vu | ord’(u))(u < '0))

Proof. By the same reasoning as in the proof of the Proper Extension Lemma ( Lemma K.4)
regarding the ordinals. m

K.4  Hierarchy Extending Lemma

Lemma K.7 (Hierarchy Extending Lemma). If V(V,) AV(V},) then Oy, VT 2V, AVT 2 V)" A
|/ % V,, Moreover, assuming V*,V'y, don’t occur in L we may also infer Qv vyt VE =V, A

V+ > Vb’ A Vb, % Vb A (Vx | EXt(L)(X))(V+(X) e Va(X))

This lemma tells us that it’s logically possible to find a common extension?® for any two initial
segments and, specifically, that we can take it to extend V, The moreover claim ensures that
the new elements in this common extension can be taken not to overlap with those in the
extension of any given list of relations Ext(L).

Proof. We first prove the main claim. By the V Comparability Lemma ( Lemma K.3) we have

Oy, Va 2 VAV 2 V)V (Vy 2V AT 2 V)

16 More precisely, an extension of some isomorphic image.



Enter this 0y, ,, context. We note that it is enough to deduce
Ovr, VI 2V AVE 2V, AV, =V,
in this context as it can be exported to prove the desired conclusion.

If the first disjunct holds (i.e., V, is the taller initial segment), the claim follows almost
immediately by letting V' be V. Specifically, we use Simple Comprehension ( Axiom 8.4) to
establish the possibility (0y_ v, /) that vt=Vv,v', = 7’ while maintaining all relevant
facts!’. Then, entering this < context we may derive that V¥ > 1V, AV* 2 V' AV, =, V. We
can then leave this context giving us

Ovvp o VI 2V AV 2V, AV =V,
By Reducing ( Lemma 4.1) we can infer
Ovv, VI 2V AVE 2V, AV, =V,
which, as we noted above, suffices to prove the lemma.
So we may instead assume

V<V,AV =V, (K1)

=R

In the special case where V, and V,, are disjoint it is easy to see how to proceed. We simply
define V* to supplement V, with all elements in V;, not in V, using f to define €, and <. so
that V't treats elements in V, identically to their isomorphic images in V,,. We can then define f’
to extend f by being the identity on those elements in V't but not V,. More formally, we can
use the the Multiple Definitions Lemma ( Lemma H.7) with Simple Comprehension ( Axiom 8.4)
to show it’s possible (0y, v, r ) that all facts from the current context remain true and

(Vx)(set™(x) & (sety(x) V (sety(x) A =3z | sety(2))(f(2) = x)))
(Vo)(ord™(0) & (ordg(0) V (ordy(0) A =(Fu | ord, (W) (f(w) = 0)))
V)N =y e FE)=yVEx=yA[Vi(x) A1)
VOWNx ey« AN ) =X'Af') =y rx' €y)]
VONx <y o EXNEIF@ =xAf) =y Ax <y)]
(V) (VN[@.(x,y) & ExXNEYIF ) =x'Af'(y) =y A@y(x,y)].  (K2)
Since we’ve explicitly defined V™ to extend V, by copying V,, and f” to extend f by defining it to

be the identify on the part of V,, copied to V* it is straightforward to check that f' is the desired
isomorphism giving us

17 Specifically, we may take the conjunction of all sentences true in the current context and
conjoin them with the definition given by Axiom 8.4 (Simple Comprehension) under Oy ¢, -



OVa'Vb'f'v V+ 2 l/a A V+ 2 Vb’ A Vb, % Vb

which we may again apply Reducing ( Lemma B.4) to infer (sufficient by the remarks above)
OVa'Vb vt > Va AVT = Vb’/\ Vb’ = Vb

In the general case where V, and V;, may overlap, we pursue the same strategy but invoke the
Possible Powerset axiom ( Axiom 8.11) with respect to those objects in either V, or V,, to get
the logical possibility (¢y, v, ) of having a layer of classes over the I, V}, structure, disjoint from
all objects in Ext(V, V},). Then, instead of using elements from V,, to extend V,, we use a
possible I/, whose elements are all the singleton classes of elements from V,,.

Specifically, by Possible Powerset ( Axiom 8.11) we may derive

Oy, r0 C (C, % JExt(Vg, Vp))

Entering this 0y, v, rp, context we import (K1) as well as the assumptions of the lemma and
note that by Lemma H.8 (Singleton) we may assume that there is a unique singleton associated
with every element satisfying Ext(V,, V). Adopting the abbreviation y = {x}, A ¥ for the claim
that @y | COY)[(VX)(x' €c y © x' = x) A¥] and invoking Lemma H.7 (Multiple Definitions)
we can define

(Vx)(set*(x) &  (setq(x) Vx = {y} A (set,(y) A =(3z | setq(2))(f(2) = ¥)))
(Vo)(ord*(0) & (ord,(0) Vo = {u} A (ord,(w) A =3’ | ord,(u))(F (W) = u)))
V)NF @) =y e (fFx)=yV(x={IAVex)AaVD)

repeating the definitions of €, <, and @, just as they are in equation (K2). Note that since the
singletons used in the above definitions are an exact copy of V}, but guaranteed to be disjoint
from V, by Axiom 8.11 (Possible Powerset) we may verify this entails the desired conclusion just
as in the above case.

The moreover claim follows by the same reasoning as above, but using ¢ Ignoring ( Axiom 8.3)
to add £ to the subscript of the conclusion of the the V Comparability Lemma ( K 20.3) and then
propagating it through the remainder of the proof. The only other modification that is
necessary is to invoke Possible Powerset ( Axiom 8.11) with Ext(V,, V,, £) rather than just
Ext(V,,V},) to ensure elements we use to extend V, to V* can’t be in Ext(£). m

K.5  Hierarchy-Combining

We now prove that given any indexed collection of initial segments V,, (for x satisfying I(x)) it is
possible to find a single initial segment V5 which extends (an isomorphic copy of) each V.

Theorem K.1 (Hierarchy-Combining Theorem). Suppose that for each x satisfying I(x) V.. is an
initial segment, i.e.,

Ogy [Alx 1 QO U (x) AY (x)) = V(V))]

where



Y(x) = (Vz)(set.(z) & set(z,x))
(Vz)(ord,(z) & ord(z,x))

(Vz,y) (z § y <€ (z,y, x)) A
(Vo,u) (o <u o< (o,u, x)) A
(Vo,2)(@,(z,0) & @(z,0,x))

Then it is logically possible that some initial segment Vs extends (an isomorphic copy of) each V,,
i.e., Or, more formally

Orwal V(Vy) Arng(f) S Ext(Vy) Av
Oyap (@1x 1 QTG AYC) = Ocgapu, (% 2V AV <V; )]

In the following proof we will replace V, with the suggestive notation of V, for the initial
segment V, on the assumption that ¥'(x) holds, i.e., initial segment formed by slotting into the
final position of the relations in V (aside from N, S). While this is an abuse of notation we
believe the suggestive notation makes the proof easier to understand.

Proof. We give the high-level argument used in this proof leaving the, now familiar, low level
details of entering and leaving ¢ contexts to the reader.

First, we demonstrate that it suffices to prove the claim under the assumption that for x # y
the structures V, and I, are disjoint, i.e., . V(z,x) AV(z,y) = x =y, For, if not, we can borrow
the trick from Lemma K.7 (Hierarchy Extending) of using Possible Powerset ( Axiom 8.11) to
provide us with appropriately related new versions of the structures. In particular, if V doesn’t
satisfy this disjointness criteria we may generate a V' which does by applying Possible Powerset
(Axiom 8.11) 2 times?8 and defining (using (x, y) to abbreviate {{x}, {x, y}} as defined by our
applications of Possible Powerset ( Axiom 8.11).

set'(z,x) o (Ay)(z = (x,y) Aset(y,x))

ord'(z,x) < (Ay)(z = (x,y) Aord(y,x))
<'(20,21,x) © (3y0,¥1) (20 = {(x,¥0) A< (Y0, Y1, %))
€ '(20,21,%) © (3Y0,¥1)(Z0 = (X,¥0) A€ (Yo, Y1, %))
@'(2,21,%)  © (Y0, ¥1)(Z0 = (%, ¥0) A @(¥o,¥1,%))

It is straightforward to check that V,, and V', are isomorphic and the disjointness properties of
Possible Powerset ( Axiom 8.11) guarantee they are pairwise disjoint. Since the conclusion of
the lemma only depends on the isomorphism classes of the structures V,. proving the result for
V' is enough to establish it for V. Thus, we may assume that V, and V, are disjoint for x # y.

18 Here we identify all classes of elements from Ext(V) with the classes introduced by the first
application of Possible Powerset (Axiom 8.11) and any class containing a class from the first
application with the second application of Possible Powerset/



With this assumption in place we now proceed to construct V. Our strategy here will be to
build V5 out of the equivalence classes induced on elements of V (i.e. {y | (3x | I(x))(V(y,x)))
by the relation of isomorphic image. In other words we define y ~ z to hold just if

(VO(YN[z~y o (Ix,x, 1 1(x) Al(x,)) 09,v,ep Ve, y
Vi S Ve, V') SV AV, 2V AR(Z) = )]

Where the use of x,, x,, in the subscript of the 0 indicates that we define ~ using Axiom 8.9%9|

will use this notation without further comment in the rest of the proof.

We observe that ~ forms an equivalence relation. Clearly if Ext(V)(z) then z ~ z (if V(2)
then?’ we let, via Simple Comprehension ( Axiom 8.4), f be the identity and V, =V, = V) so
reflexivity is satisfied. Since, if f is an isomorphism so is f ~1 it is easy to see ~ is symmetric.
Now for transitivity suppose that z ~ y and y ~ w. By Lemma B.7 (Pasting) and Relabeling (
Axiom 8.5) we can establish?! the simultaneous logical possibility of an isomorphism f from
V', SV, to V’xy <V, and an isomorphism g fromV,, <V, toVy <V, .Wenow argue
that we can compose f and g or f "1 and g~ to demonstrate z ~ w. The only difficulty here is
to ensure that this composition has appropriate ranges and domains.

By the V Comparability Lemma ( Lemma K.3) we can also assume that either Vx"‘y extends an
isomorphic image of V’xy or vice versa. By Lemma K.2 applied to this isomorphism and the
identity it follows that either Vx*y < V'xy or V'xy < Vx"‘y In the later case g o f witnesses that

z ~ w and in the former case f 1 o g1 witnesses that w ~ z. This suffices to demonstrate ~ is
an equivalence relation.

To build V5 we need to have a single object corresponding to each equivalence class. We do this
by applying Possible Powerset ( Axiom 8.11) to add a layer of classes and identifying each
equivalence class with the class of its elements. We denote the class consisting of all y such
that x ~ y by [x]. We now use these equivalence classes to define, via application of Simple

19 In particular, modal comprehension guarantees it’s possible that ~ applies so that,
necessarily (holding fixed ~) if Q applies to the unique pair y, z then y ~ z just if the above
formula holds with all mentions of x and y replaced with their definition in terms of Q.

20 To spell this out formally we’d need to invoke Proposition 8.1 (Simplified Choice) and Simple
Comprehension ( Axiom 8.4) to build Q applying to a unique z witnessing failure and then Q' to
a unique x with V,.(z) but we omit these now familiar details.

21 To provide a formal proof we’d need to invoke Proposition 8.1 (Simplified Choice) and Simple
Comprehension ( Axiom 8.4) in the usual manner to generate Q,, Q1 applying to unique pairs
z,y and y, w that witness this failure and use the modal definition of ~ to find initial segments
which witness this failure before invoking pasting.



Comprehension ( Axiom 8.4) V5 (below bold faced variables are taken to range over such
equivalence classes).

sety(z) © (Fz2)(Ax | I(x))(sety(2) ANz = [z])

zey o @@ 110) (@ AGO) Az= [z Ay =[] AzEY)
ords(u) & Fw)@x | I(x))(ord,(w) Au = [u])

ugo o (3u0)Ex () (V(0) AVe(w) Au=[u] Ao = [o] Au < o)
@(z,0) < (3z,0)@x 1 1(x))(Vx(2) AVi(0) Ao =[o] Az = [z] A@,(z,0))

We now observe that the map [-] taking elements to their equivalence classes is an
isomorphism of V. with some Vx < Vs . Itis already apparent that [-] respects

Exr <y, @y, set,, ord,. To see that [-] is injective on V. note that if V,(z) and V,(y) and [z] =
[v] we would need?? V*, V' with V* =, V' where h(z) = y. But by our assumption of
disjointness we have VV*, V' < V, and by the Lemma K.2 h must be the identity so z = .

It remains to show that Vy is an initial segment and if 7, is the image of V, under [-] then 7, <
Vs. To this end we note that for any x, x’ satisfying I we have V, < ¥, or V,, < V.. This follows
since, by the the V Comparability Lemma (Lemma K.3), it’s possible that either V, =, V* < I,
orVy, =¢ V < V.. Without loss of generality assume we are in the former case. Then, by the
definition of ~, it follows that if V. (y) then [y] = [f(y)]. So the image of V, under [-] is equal
to the image of V* under [-]. And as V* < V,,, it follows that V, < 7/,.

Thus, V5 is the ‘union’ of a sequence of compatible initial segments. It is straightforward, if
tedious, to verify that Vs is an initial segment using this observation. For instance, to verify that
Vs satisfies Fatness () we note that for any o satisfying ordy(0) there is an x satisfying I(x) and
an o satisfying ord, (0) with 0 = [0] and we invoke fatness in V, to verify fatness in Vs. Since all
the conditions in the definition of initial segment (Definition A.2) are closure conditions, taking
the union of compatible structures (the initial segments I7x) must also satisfy these conditions.
Once this is verified it is also clear that V, < V5 and that by using f instead of [-] we’ve
established the claim to be proved. Of course, a formal proof requires more careful attention to
the O and ¢ contexts but that manipulation should be familiar by now. m

We can also prove a corollary (which will be crucial for justifying replacement) which says that if
there’s some common V, such that for all of the V,.s we have V, < V,, we may assume V/, < V5.

Corollary 20.3. Suppose that V, is an initial segment and L,V , I satisfy the conditions of
Theorem K.1 with the additional assumption that V,, > V, for each x, i.e.,

Oy, (A1 1 QU ) AY (X)) = V. 2 V)]

22 Again, a full proof of this claim would require defining relations that apply to a unique tuple
witnesses of the failure of the claim and then applying Lemma B.7 (Pasting) to establish the
simultaneous logical possibility of V* and V'.



then we may take V5 to extend V,,, i.e.,
Ocvil VW) AVs = Vo Arng(f) S Ext(Vy) A

Oeyr (AX1QENUC) AY(X)) = 091, pv, (Vo 2 VAV < V)]

Proof. This follows by the same argument used in Theorem K.1 (Hierarchy Combining) excepting
only that we replace the assumption of disjointness with disjointness modulo V;, (and using the
Lemma K.2 on V, to infer injectivity of [-]) and then replace the equivalence class containing an
element x from V, with x itself. We leave the details of this proof to the reader. m

We can also derive a corollary which says that if the ordinals of each V, form an initial segment
of W, < then we can take the ordinals in V5 to be as well.

Corollary 20.4. Suppose that L,1,V are as in the Theorem K.1 (Hierarchy Combining) and that
each for each x satisfying I, (ord,, <,) < (W, <) then the conclusion of Theorem K.1 holds
where?? Vy satisfies (ordy, <5) < (W, <)

Proof. This proof proceeds just as the proof of Corollary K.3 (to Hierarchy Combining) above,
except instead of insisting the initial segments V, are replaced with initial segments extending
V, and are otherwise disjoint here we replace the initial segments V, with initial segments
whose ordinals are all drawn from compatible well-orders. We replace the singleton
equivalence classes forming the ordinals of V5 with their unique element. m

K6  Fleshing Out

Theorem K.2 (Fleshing Out Theorem). If ord, < is a well-order then 0,4 < V(V) where V =
(ord, < ,set, €, @).

Proof. Assume that ord, < is a well-order. We first note that without loss of generality we may
assume that ord, < has a maximal element. For, by Lemma K.6 (Proper Well Ordering
Extendability) we may derive the possibility (0,4 <) of a well-order ord’, < " extending ord, <
with a maximal element. If we can now derive 0,4 <, V(V') then, we may invoke < Ignoring (
Axiom 8.3) to derive Oorqr<rora< V(V') and import the fact that (ord, <) < (ord’, < ") to
derive

<>ord,< <>ord,<,ordl,<l (ord, <) < (Ol’d’, < ,) A\ V(V’)

From here it is easy to take the restriction of IV to just those sets available at stages in ord and
then by Diamond Collapsing ( Lemma B.4) derive

<>ord,< 12 (V)

So assuming that ord, < has a maximal element, define B so that B(u) holds just if it’s possible
to have an initial segment of the sets whose ordinals are an initial segment of W, < and contain
u. Specifically using Axiom 8.9 Modal Comprehension (using Axiom 8.7 Logical Closure and

23 That is we can add this as a conjunct under the 0, , operator.



Axiom 8.5 Relabeling to simplify the result) we infer that it’s possible (¢4 <) for ord, < to be a
well-order with maximal element and

Oorg<p ( (A'x 1 H(X)) = @x | HX))[B(x) <
ord(x) A =1 Oorg < ((ord', <) < (ord, <) A(Fu | Hw) )(ord' (W) A V(V’))]) (K3)

Enter this 044« . By our assumption that ord, < has a maximal element, it is enough to show
that B is empty. For, if B is empty we can apply Simple Comprehension ( Axiom 8.4) to define H
to apply to the unique maximal element of ord, < and then by Lemma B.3 (Box Elimination) we
can infer the possibility of ord’, < ’ equal to ord, < such that V(V'). We then use Simple
Comprehension ( Axiom 8.4) to Oy’ o4 <. define set, €, @ to copy set’, € /, @" and then we may
infer that V(V) and then infer the desired consequent by Diamond Collapsing ( Lemma B.4).

So suppose, for contradiction, that B is non-empty. By the definition of well ordering
Definition E.2 there must be some least 0 in B. We first suppose that there is some maximal o~
satisfying ord(0™) A =B(0™) (or that o is the minimal element satisfying ord) and argue that
we can extend the initial segment V™ of height 0™ (i.e. 0~ is the maximal element satisfying
ord™) guaranteed by the fact that =B (0™) into an initial segment V' of height o where (ord’, <
") < (ord, <). This follows by the same reasoning used in the Proper Extension Lemma (
Lemma K.4) to add a layer of classes to V™. By straightforward, if tedious, application of Simple
Comprehension ( Axiom 8.4), Lemma H.4 (Full Box Elimination) and Diamond Collapsing (
Lemma B.8) this contradicts the assumption that B (o).

So suppose instead that there is no maximal o~ satisfying ord(o™) A =B(07), i.e., 0 is a limit
ordinal. We again, for contradiction, seek to construct a single initial segment V' of height o (i.e.
0 is the maximal element satisfying ord’) such that (ord’, < ") < (ord, <). To this end we seek
to derive the possibility of a single initial segment Vy such that (<y, ordy) < (< ,ord) such that
every u < o satisfies ords(u) from the logical possibility of segments I, for u < o witnessing
the minimality of 0. We may then apply the same reasoning above to extend V5, to V' by adding
the ordinal 0 and applying the reasoning from the the Proper Extension Lemma ( Lemma K.4).

We will do this by essentially the same argument used in the proof of Proposition M.8
(Potentialist Replacement) so we direct the reader to this proof to see the argument in greater
detail.

Specifically, using Axiom 8.4 (Simple Comprehension) and Axiom 8.9 (Modal Comprehension)
we let I apply to just those u less that o, i.e., those u such that =B (u) (by the argument at the
start of the proof =B (u) must apply to some initial segment of ord). Now let @ be the sentence
expressing the claim that V' is an initial segment containing an ordinal satisfying Q and that
(ord’, < ") < (ord, <).

From equation (K3) we can straightforwardly derive the following sentence as it merely
repackages the claim in equation (K3) that whenever H applies to some unique object failing to
satisfy B then it’s logically possible to have an initial segment V' containing an ordinal u with
(ord’, <) < (ord, <).



Oord,<, [ (3% 1 Q(x)) (X)) = Oora<,B1,0 Pl

Hence, we may invoke Axiom 8.13 (Amalgamation) to infer (where Y is the sentence asserting
that V' = V, as in Theorem K.1 (Hierarchy Combining) .

Oorae51 VXYV VY)y 2y A V(6 y) AV (x,y") > xe Ext(W,<,B, D] A

Dorg<.17 [ @12 1 QG U () AY (X)) — @]

After importing all necessary facts to the above context, we apply Diamond Collapsing ( Lemma
B.4) to collapse the contexts we’ve entered into a single ¢4 <

It is tedious, but relatively straightforward, to transform this result into the precondition for
applying Corollary K.4 (from the Hierarchy Combining Lemma). This lets us derive the logical
possibility of a V5 and a function f such that every ¥/, is isomorphic (via f) to an initial segment
of Vy where (ordy, <y5) < (ord, <).

We now argue that for each u < o we have ordz(u). By the assumptions above (eliding the
routine tasks of entering and leaving ¢ contexts) we know that f isomorphicly maps some
(ord’, < ") < (ord, <) such that ord’(u) to (ordy, <y) < (ord, <). By Lemma K.1 (Well
Ordering Agreement Lemma) f must be the identity, vindicating the claim from the start of this
paragraph. By the remark above, it now suffices to extend V5 by a single layer to V' with ord’(0)
to give the contradiction. m

L. Translation Lemmas

A few key lemmas about interpreted initial segments will play a central role in all that proofs
that follow.

L1 Assignment Tweaking Lemma

First, note that potentialist translations tend to make claims about how arbitrary assignments
V, p can be modified and extended, by some V', p’ =,, V, p changing only p’s assignment of a
single variable. Lemma L.1 (Pointwise Tweaking) lets us do this.

Lemma L.1 (Pointwise Interpretation Tweaking). If ® = (3x | set(x))(¢(x)) is a sentence
without any ¢ or O operators and is content restricted to V, p, L and u is a formal variable in our

language of set theory and neither p' nor V' are in L then (17(V, p) A <1§) = 0wp)L
[(V,p’) > (V,p) Ad(p'(u ) Aset(p'(r u 7))] Moreover, (V(V,p) A®) = Oy,
(7,0 2 (V.0) A (0w D) Aset(p' - u D) AV = V]

In the above lemma V' = V is understood to abbreviate the claim that the relations €, < @
apply to exactly the same tuplesas € ', < '@".

Proof. We prove the moreover claim, as the primary claim trivially follows from it.



Suppose (17(V, p) A qb). By Simple Comprehension ( Axiom 8.4) we can {y , ; define P(x) to
hold just if set(x) A ¢(x). Now by another application of Simple Comprehension and
Proposition 8.1 (Simple Choice) we can (v, . p) have Q select a unique object such that P(x).
By multiple applications of Simple Comprehension ( Axiom 8.4) we can (Oy , £ p,o ) have V=V
and p’ = p excepting only that p’(r u ") is chosen to be the unique object satisfying Q and thus
¢(p'(r u 7). By using Lemma H.7 (Multiple Definitions) to coordinate the above applications
of Axiom 8.4 (Simple Comprehension) and Proposition 8.1 (Simple Choice) we can infer the
desired conclusion

OV,p,L [(V’,p’) % V,p) A d)(p'(r u))A set(p’(r u 1)) AV = V]
|

We can also prove the following lemma about how it’s possible (0 ) to transform any non-
empty initial segment V into an interpreted initial segment V.

Lemma L.2 (Interpretation Adding). If @ = (3x | set(x))(¢(x)) is a sentence content restricted
to V', L not containing any ¢ or O operators and u is a formal variable in our language of set
theory and neither p,N, S are inV, L. Then

VW) AP) > 0y . [V(V,0) Ap(p(- u )]

Proof. Trivially (3x)(set(x)) so by Corollary K.2 (Interpreted Extension) we can infer ¢y o 17(]7)
Enter this context and apply Lemma L.1 (Pointwise Tweaking) to derive that

Ovpe (V2= (V,0) AG(p'(-u D) Aset(p'(r u D) AV = V]
Entering this 0y , ; context. It is trivial to infer that
V(V,p) Ap(p'(r 1)
Leaving all ¢ contexts and applying Diamond Collapsing ( Lemma B.4) gives us
OV (V,p) Ap(p'(ru )
The desired conclusion follows easily by Relabeling ( Axiom 8.5). m
L.2  Translation Theorem

Next, we can prove a translation theorem which says that the way V,,, p,, assigns the free
variables in a set theoretic formula 8 completely determine the truth value of t,,(0) (i.e., the
(partial) potentialist translation of the formula 8)?4.

24 Note that Hellman proves something analogous to this lemma in (Geoffrey 1996), assuming
the axiom of inaccessibles (but | make no such assumption)



First, however, we establish a few useful utility lemmas about translations.

Lemma L.3 (Renumbering). Suppose that n + k is the maximal integer such that (any part of)
l7n+k is mentioned in t,,(8), i.e., 6 has quantifiers nested to depth k, then tn(e)[l_/;l /

—

Vm; e Vn+k/Vm+k]

Proof. This follows via a straightforward structural induction on 8 using the . m

Lemma L.4 (Coextensive Hierarchies Lemma). Ifl7n = l7m then (t,(0) < t,,(0)).

Proof. It is enough to prove the — direction as the other direction follows by swapping the

values of n and m. So suppose 17,1 = l7m and t,,(6) we argue, by structural induction on 8, that
tn(0) holds. So suppose the claim holds for all n, m on all subformulas of 6.

The only interesting case is when 8 = (3x)¢(x) since the atomic case is trivial and t,,, t,,
commute with truth-functional operations. In this case

tn(8) = 0, (Vars 2 ¥y A tsa ()

Enter this 017n context and apply Simple Comprehension ( Axiom 8.4) (via the Multiple

Definitions Lemma ( Lemma H.7)) to define I7m+1 = I7n+1 giving us
0‘711 OVn,VnH Vit % Vo AVig1r = Vi A tn+1(¢)

Using the inductive hypothesis inside the 0, 0%, 7,,, context and then applying Diamond
Collapsing ( Lemma B.8) lets us infer

0‘711 I7m+1 % ]—/;l A tm+1(¢) (L]-)

— —

To finish the proof we need only replace the V}, in the above equation with V,,,. Intuitively, this
follows immediately from the assumption that I7m = l_/;l but we verify this formally using the

Theorem I.1 (Isomorphism Lemma).

By Simple Comprehension ( Axiom 8.4) via the Multiple Definitions Lemma ( Lemma H.7) we

—

may define Z be the identity relation on V,, while pulling in equation (L1) and the fact that l_/;l =

Vin- Enter this 0y, context. Since I, =V, we have V,, =, l7m. As equation (L1) is content

restricted to I_/;l we may thus apply the Isomorphism Theorem ( Theorem I.1) to replace 17;1 with
l7m in (L1) letting us infer

tn(8) = 07, Va1 2 Vi A1 ()

The desired conclusion follows by applying Axiom 8.2 (Diamond Elimination) to export t,,,(8)
from the {y; context. m



Theorem L.1 (Translation Theorem). If v; ... vy are the only variables free in a set theoretic
formula 6, then — (t,(0) © t,,(08))

We note that the theorem above, as one would expect??, is indifferent to the particular
relations used for V,, and V},,. So, for instance, the following conclusion also holds (where

((0) S ta(O)[Va/V*] and £/ (8) = 0 (8)[Vin/V'])
> (£5(6) © t'm(6))

Proof. | will prove this claim by induction on formula complexity. So suppose the sentence
specified above is provable for all subformulas of 8 and choices of V,,, V,,,, pn, Pm V1, --- Vi, @s in
the statement of the lemma.

When 6 is an atomic sentence, i.e., one of the form x = y or x € y, the claim clearly holds for 8

since t,(x =y)ispp(rx 1) =pp(ryHand t,(x €y)is p,(r x 1) €, pp (T y 7). Also when 0
is a truth-functional combination of other formulas then the claim holds for 6 since t,, and t,,
commute with truth-functional operators.

The only non-trivial case is when 8 = (3x)¢(x) (as we take Vx to abbreviate —=3x—). Note that
it is enough to show the — direction as the other direction follows by switching the values of n

and m. Our strategy will be to use the Lemma K.7 (Hierarchy Extending) to replace I7n+1 in
t,(0) with a l7m+1 >y I7m extending some V' = l_/)nﬂ (s0 P41 agrees with p'). We will then use

def — —
the Theorem 1.1 (Isomorphism Lemma) to infer t'y1(¢) where t' 4 1(¢) = tneq () [Vorr/V']
and then use the inductive hypothesis to infer t,, 1 (¢).

So suppose that

tn(e) = 0‘711 Vi1 % Vi A tn+1(¢)

By ¢ Ignoring ( Axiom 8.3) we can infer

47

n

s<l

Vn+1 % V;l A tn+1(¢)

Enter this 0y, context and import the assumptions of the theorem, e.g., V, =2 V,, VV,,, =

V, .... We now seek to define I7m+1. Note that without loss of generality we may assume that

25> While we always take the particular relation names mentioned in theorems or lemmas to be
placeholders which can be instantiated with whatever relation names we wish we make specific
mention of it here, due to the confusing interaction of the subscripts (which are part of the
meta-lanaguage and not pure placeholders) and the relation names. So note that the results of
any theorem still hold if we replace V, with V', but we have no such guarantee if we replace V/,,
with V3, since the translations make explicit reference to particular numerical values of these
subscripts.



Vin =V, since if I, = V,,, we could simply set I_/>m+1 to be equal to I7n+1 and directly apply the
inductive step.

Thus, assuming that V,,, = V,,, we apply Lemma K.7 (Hierarchy Extending) to establish the

possibility of a V,,,.1 = V. Letting L be {I_/;l, l7n+1, Vm} and taking the advantage of the
moreover claim from Lemma K.7 (Hierarchy Extending) to ensure disjointness of V,,,,; we have

Oc Vm+1 = Vm A Vm+1 =V'A Vn+1 % VA
(Vx | Ext(L) (X)) Vin41(x) = Viya (X))

Import all necessary facts into this ¢, context and then, exiting both the ¢, context and the

OVn.Vm context we may apply Diamond Collapsing ( Lemma B.8) and then reenter the single

017n.17m context.

Inside the 017n,17m context we now construct p’, p;,+1 SO that V' = I7n+1 and V' <x l_/)mﬂ. To
this end we use the Multiple Definitions Lemma ( Lemma H.7) to pack together various
applications of Simple Comprehension ( Axiom 8.4), we can (0., ., ) define p' to be the image
of pp4+1 under f. Finally, we let p,,, .1 agree with p’ on ‘x’ but p,,, everywhere else?.

Since V' =; V41 and p’ was defined to be the isomorphic image of p,,,; we have 74 =, /A

def — —
Thus, using the Theorem H.1 (Isomorphism Lemma) we can infer t,,'(6) = tns1 (D) Vst /V']
from t,.1(¢).

We now argue that p’ = p,,,41 on all variables free in ¢. By construction p,,, 41 (T x 1) =

p'(r x 1) and any other variable v free in ¢p must also be free in 6. Hence, p,(r v 1) =

Pm (v ) =pni (v ). AsV, <V, .4 and, by assumption, V,, <V, < V,,.; we have I}, <
Vot+1 Vins1- Hence, as Vi g =¢ V' < Vi q, by the Lemma K.2 (Hierarchy Agreement), f must be
the identity on V, and thus p'(r v 1) = f(pp+1(C v ) = prpaC VD) = pp(Cv ) =

Pm+1 (T V7).

Thus, by the inductive hypothesis we can infer t,, 1 (¢) from t', ;1 (). As p,,+1 Was defined to
agree with p,, on all variables but x we have

-

Vm+1 % Wn) A tm+1(¢)

26

More formally, that is

p'lrx) ifz=rxn

(Vz I N(2)pm+1'(2) = {Pm(z) otherwise



Now leaving the above 0y, v, context and applying Reducing ( Lemma B.4) to drop the I_/;l
subscript yields our desired conclusion

tm(0) = OVm Vina1 % Vin A tims1 (@)
|

We now argue that we can generalize the above result by weakening the assumption that
and V},, are compatible.

Corollary L.1 (Generalized Translation Lemma). If v; ... vy are the only variables free in a set
theoretic formula 6 and V,, is a non-empty initial segment then

Vo2 Vo AV 2 Vo AV AV(V) Aseto(pn(m vy 1)) A o Asety(pp(r v 7))
Apn('— (%1 —') = pm('_ 21 —') A ---pn('_ 12’ —') = pm('_ (2% —') - (tn(e) « tm(e))

Note that if 170 is an interpreted initial segment then V, is automatically non-empty. Also, the
same remarks about t’,, and t;;, from the Theorem L.1 (Translation Theorem) apply here

Proof. Again it is enough to show that t,,(8) — t,,(6) under the conditions above since the
other direction follows by switching n and m. So suppose that the conditions of the corollary
are met, the antecedent holds and ¢t,,(8) holds.

By Simple Comprehension ( Axiom 8.4) we can (OVn.Vm) define p, to agree with p,, on all

variables free in 8 and to be the emptyset on all other values. Clearly l_/)o is an interpreted initial
segment. Entering this <>‘7n"7m context we now apply the Theorem L.1(Translation) twice to

infer from t,,(0) to ty(0) to t,,(8). As t,,,(0) is content restricted to I_/;n we may use Axiom 8.2
(Diamond Elimination) to infer it holds outside the ¢y; 3; ~context as desired. m

We also prove that changing the variables in a sentence to be translated doesn’t change the
truth-value of the translation provided the assignment function assigns the same value to both
variables.

Lemma L.5 (Variable Swap Lemma). If l_/)i is an interpreted initial segment with p;(v) = p;(v"),
¢ a set theoretic formula and ¢' is the result of replacing zero or more occurrences of v in ¢
with V', provided that no bound variables are replaced, and all substituted occurrences of v' are

free then t;(¢) < t;(¢")

Proof. We argue by induction on formula complexity. Suppose the assumptions in the lemma
holds and the claim is provable for all subformula of ¢. The claim is trivial if ¢ is atomic as well
as if ¢ is a truthfunctional combination of subformula.

Suppose ¢ is (Fx)Y(x). If either v or v is x, we have ¢ = ¢’ (and the desired result is
immediate). For if v = x then there are no free instances of x in (3x)1(x) to replace, and if
v’ = x then replacing any variable v in ¥ with x in (3x)y(x) result in capture.

So it remains to consider the case where v or v’ are distinct variables from x. Assume that
t;((3x)yY(x)) holds. By the definition of t,, (Definition 6.1 Potentialist Translation) we have



07, [Virs 2 Vi At (D))

Enter this 0y context. Because v, v’ are distinct from x, we can infer ¢’ = [(3x)y'(x)] for

some 1’ where 1’ replaces some instances of v (which are free in 1 because they are free in
(3x)y) with instances of v (which are free in 1’ because they are free in (3x)y’). And because
v, v’ are distinct from x we have p;,,(v) = p;4+1(v"). Thus, by the inductive hypothesis we can
infer t; ;1 (Y'(x)). Exiting the 0y, context yields, by the definition of t,, (Definition 6.1

Potentialist Translation) t;((3x)yY'(x)) = t;(¢"). The same argument lets us derive t;(¢) on
the assumption that t;(¢") completing the proof. m

L3 Bounded Quantifiers Lemma

Definition L.1. Working in the language of set theory we, say that a quantifier is bounded if it
def
(VxENP o (VNEEY > ) & ~(3x € y)d

def
Axey)p o @Ax)(xeyAd)
that a formula ¢ in the language of set theory is bounded if all quantifiers appear in ¢ are
bounded.

has the form (Qx € y) where And we say

Note that all bounded quantifiers can be written in terms of bounded existential quantification,
e.g., (Vx € y)¢p & —(3x € y)—¢ so we may assume that all bounded quantifiers are
existential .

We now argue that bounded formulas can be translated in a particularly simple way.

Definition L.2 (Bounded Translation). If ¢ is a formula of set theory and V an initial segment we
define ¢V to be the result of replacing all occurrences of € in ¢ with €,,. Furthermore, ifl7 is an
interpreted initial segment and x4, ... x,, are the variables free in ¢ we define ¢‘7 =

¢ (p(- x0 1, e, P(" X 7))

Recall the following lemma from Appendix A.

Lemma L.6 (Bounded Quantifiers Lemma). Suppose ¢ is a bounded formula in the language of
set theory and I_/;l is an interpreted initial segment (as per Definition A.4 ) then ¢p'n & t,(¢)

Proof. Assume that x, ... x,, are the only variables free in ¢ we need to show

¢Vn(p('_ Xo "), ___,p(r Xn —')) « tn(¢)

Note that we may assume that no variables appear both free and bound in ¢ since, by
renaming bound variables, any first order logical formula is first order provably equivalent to
one with this property and, by Theorem L.1 (Translation Theorem), this equivalence carries over
to t,, translations.

We now prove the lemma via induction on formula complexity. If ¢ is quantifier-free then by
the definition of t,, ( Definition 1.2) it is apparent that



¢Vn(pn(r X1 —'): ---:pn('— Xn j)) < ¢(pn(r X1 —')' ___’pn(r Xn —'))[E/S] < tn(¢)

Now suppose the lemma holds for all subformulas of ¢ we establish that it holds for ¢ as well.
The only difficult case is where ¢ = (Iy € x;).

In this case, note that ¢"2(p,, (" x¢ ), ..., pn (T X, 7)) is equivalent to

(37 € a2 ) 9¥ (o0 10 Vs 12 0)  (12)

Assuming that the above formula holds we may apply Lemma L.1 (Pointwise Tweaking) and
define I7n+1 sothat p,.1(r y 1) €, po(r x; 1), i.e., we can deduce that

-

07, Vo Z Vo Apraa 0y ) € pac 5 D A
lan(Pn('_ X0 s wes Pn (T Xn ), Prpr (Y )] (L3)

Note that this formula is actually equivalent to (L2) since (working inside the 0‘711 context) we
may derive (L2) and then use Axiom 8.2 (Diamond Elimination) to export this conclusion.

Enter the above ¢;; context. As l7n+1 2y 17;1 using the definition of we can infer that equation
n
(L3) is equivalent to

V)n+1 = ‘7;1 APps1(CY ) € ppp(Cx; DA
y n+1
anH (pn+1(r Xo —')' ---'pn+1('_ Xn 1): pn+1(r y —'))

By the inductive assumption applied to ¥ this is equivalent to

—

Vn+1 % Vn A pn+1(r y j) € pn+1('_ Xi j) A tn+1(lp)
By the this is equivalent to
Vn+1 % Vn A tn+1(y €x; A ll))

So leaving the ¢y, , context we have

P e—

— def
07 [Vnsa % Vi A1 (Y € X AY)] & £ (@)
Since all the steps were equivalences, this suffices to prove the lemma. m

L.4  Translation Simplification Lemmas

The following lemma shows that our official potentialst paraphrases turn out to be logically
equivalent to simpler (and more traditional) potentialist paraphrases as below.

Lemma L.7 (Existential Potentialist Translation). t((3x)¢) <0 [17(171) A tl(gb)]



Proof. (—) Suppose that t((3x)¢) i.e.,
V(%) - 0, (= Vont(@)] (4

By Interpreted Initial Segment Possibility ( Lemma K.5), we have ¢ 17(]70) Entering this ¢
context, by Axiom 8.6 (Importing) we may import (L4) as it is content restricted to the empty
list. The desired conclusion now follows straightforwardly by application of Lemma B.3 (Box
Elimination), modus ponus and Diamond Collapsing ( Lemma B.8).

<. Suppose ¢ [17(]71) Aty (¢(x))]. Note that this assumption is content restricted to the empty
list and thus can be assumed for purposes of Lemma B.2 (Box Introduction). We now seek to

prove. 0y (l_/)l > 170 A t1(¢)) from the assumption 17(]70)
By Relabeling (Axiom 8.5) and ¢ Ignoring ( Axiom 8.3) we can infer (remember
) © n@I7/7)

07, V() ALi(9)  (@5)

Enter this 070 and import the fact that 17(170) By Lemma K.7 ( Hierarchy Extending), we can
infer the possibility 0y, - of an initial segment V; which extends both V and V', where V' is
the isomorphic image of V* (under f). Using < Ignoring ( Axiom 8.3) we may add the subscript
Po, P to this possibility claim giving us

Ovgvipop Vi = Vo AVL =V AV % v*

Enter this 0170,17*,/30,/3* context and import the interior of (L5) . Via the Multiple Definitions

Lemma ( Lemma H.7) and Simple Comprehension ( Axiom 8.4), we can further derive the
possibility ( 0170.17*,f,vr ) that the facts derived in this context remain true while defining p' to be

the image of p* under f and p; is defined to match p, everywhere but onr x 7 where we set
p1(m x 7) = p'(r x 7). This entails both that V' = V*and V, =, V,.

We may now apply the Theorem I.1 (Isomorphism Lemma) to infer t', (¢p) from t;(¢) and the
Theorem L.1 (Translation Lemma) to infer t;(¢). Leaving all the ¢ contexts we are inside and
applying Diamond Collapsing ( Lemma B.8) we infer.

07, Vi = Vo Aty (9)]

Canceling the assumption of17(l70)) and applying Lemma B.2 (Box Introduction) gives us our
desired conclusion of

o[V(V,) - 05, Vi = Vo Aty(9)]



We can establish equivalence between the longer and shorter translations for universal claims

Vxg(x).
Lemma L.8 (Universal Potentialist Translation). t((Vx)¢) < D(17(I71) - t1(p(x))

Proof. Note that by expanding out the left hand side and applying Lemma H.5 (Box
Simplification) it is enough to show

O [17(‘70) N2 % Vo - t1(¢)] © 5[17071) = t1(p(x)]
(«) This follows trivially by Lemma H.2 (Box Closure).
(—) We prove the contrapositive. So suppose that
2= {ARIACIE)
Or, equivalently,

0 [V(V)) A —t1(p(x)]

Enter this ¢ context. By the the Multiple Definitions Lemma ( Lemma H.7) and Simple
Comprehension ( Axiom 8.4) it is possible (<>‘70 ) to ’define’ 170 = Vl. Entering this 0y, context
we may immediately infer

X

Leaving both ¢ contexts we have entered and applying Diamond Collapsing ( Lemma B.8) lets us
infer

0V(V,) AV, > Vo A =ty (¢ (%)
Or, equivalently,
~a[b (V) AV, 2 Vs
as desired. m

M Detailed Justification of ZFC Axioms

M.1  Translation Equivalence Lemma

Lemma M.1 (Translation Equivalence Lemma). If ® = (Vv;) ... (Vv,)¢ is a sentence in the
language of set theory then D[V(lzl) - tn(d))] - t(P)

Proof. We prove this claim by induction on n. If n = 0 then @ is just ¢ and the antecedent is

D[V(V)O) = to (‘P)]



which is just t(¢p) = t(P).

We now suppose the claim holds for n and prove that it holds for n + 1. So suppose that

D[]_}(V)rwl) - tn+1(¢)]

Since l_/)nﬂ Z i1 l_/;l implies 17(I7n+1) by Lemma H.2 (Box Closure) we may infer

D[V(Vn) A Vn+1 vZ Vn - tn+1(¢)]
n+1
As 17(1_/;1) is content restricted to 17,1 and by Lemma H.6 (Diamond Simplification) (the equivalent
formulation in the theorem) to infer

A7) - 0y, [Fan = T = tans ()]

n+1

However, by this is just

a[V(%) = ta((Vns1)9)]
The desired conclusion now follows by the inductive hypothesis. m
M.2  Foundation
Before we prove potentialist foundation we establish the following lemma.

Lemma M.1. IfV is an initial segment and x is a non-empty set in V then there is some y € x
suchthat (Vz |z € x)(z & y).

Proof. Suppose, for contradiction, I/ is an initial segment and the claim fails for some set x in V.
By the the Multiple Definitions Lemma ( Lemma H.7), Simple Comprehension ( Axiom 8.4) and
Proposition 8.1 (Simplified Choice) we can (y ) have Q, apply to a single x witnessing this
failure as well as (by another application of Simple Comprehension ( Axiom 8.4)) have B(0)
apply to exactly those ordinals o such that (3x | Q,(x))(3y € x)@(y, 0). Enter this Oy,
context.

Now by the fact that ord, < is a well ordering by the and Lemma B.3, it follows that there exists

a < least element satisfying B. Let o0 be this object. Then o is the < least object in ord such that

(3y € x)@(y,0). Let y be a witness to this existential. We claim that y satisfies the lemma, i.e.,
witnesses the contradiction with the assumption the lemma fails.

Consider any z € y. By, if z € y and @(y, 0) then there is some 0’ < 0 with @(z,0"). So if z
were in x this would contradict the minimality of 0. Thus, we may exit the ¢ context entered
above and using Axiom 8.2 (Diamond Elimination), export the contradiction to establish the
lemma. m

We now prove Proposition M.2 (Potentialist Foundation).



Proposition M.2 (Potentialist Foundation). t((Vx)[(3a)(a € x) » (Fy)(y € x A=(3z)(z €
yAz€x))

Proof. By Lemma M.1 (Translation Equivalence Lemma) it suffices to prove the following:

n[ﬁ(V{) - t1(¢p)] where
¢=Ea€ex)> 3yex)(Vzex)n(z€y)

Suppose that (V7). The formula ¢ is bounded. So by the Lemma L.6 (Bounded Quantifiers) , to
prove t;(¢) it is enough to prove

#" S (3a el x )~ (I €pEx D)) (V2 € x D E)
1 1 1 1
Assume Ja €, p;(r x 7). As p;( x 1)) is a setin V/; and non-empty by Lemma M.1 (Translation
Equivalence Lemma) ¢¥1(p, (- x 7)) holds, establishing ¢"1.
Thus we’ve shown
V() - t1()
The result now follows by Lemma B.2 (Box Introduction) m
M.3  Extensionality

Proposition M.2 (Extensionality). t((Vx)(Vy)([((VzE€x)(z€y)A(VzEYy)(zEX)] > x =
¥))

Proof. By the Lemma M.1 (Translation Equivalence Lemma) it suffices to prove the following:
o[V(Vz) = t([(Vz € x)(z € y) A (VZ € Y)(z € X)] = x = y)]

So consider, for Lemma B.2 (Box Introduction), an arbitrary scenario where 17(]72), i.e., I72 is an
interpreted initial segment. We need to prove t,([(Vz €Ex)(z€Ey)A(VZzEY)(zEX)] > x =
y). The formula inside t, is bounded, so by the Lemma L.6 (Bounded Quantifiers Lemma) this
holds iff

(V212 € p,(- x )(2 € palc ¥ D A (Y21 2 € p(- ¥ D)2 € po x D)] =
pa(r X D) = po( ¥ ) (M1)

By part 2 of the definition of initial segment ( Definition A.2), any z that is €, a set in V, is a set
in V5. So the truth of (M1) follows by the fact that holds in initial segments. The conclusion
follows by Lemma B.2 (Box Introduction). m

M.4  Union
Proposition M.3 (Potentialist Union). t(Vz3a (Vy € z)(Vx € y)(x € a))

To prove this we first show that Union holds within any initial segment.



Lemma M.3. If Visan interpreted initial segment and z is a variable in the language of set
theory, then there is a set a in V such that (Vy € p(r z 71)))(Vx € y)(x € a)

Proof. Suppose V is as in the statement of the lemma. Applying Axiom 8.4 (Simple
Comprehension) we can derive

0y (VX)[H(x) © @y)(x EyAy Ep(m z )]

Using Proposition B.1 (Inner Diamond) we enter this ¢;; context . By there must be some ordinal
o such that @(p(~ z 1), 0). By it follows that every k satisfying H(k) is available at some ordinal
o' < o. Thus by we can infer that there is some set a whose members are just those who satisfy
H. Thus, we have

(Fa | set(a))(Vy € p(m z D)) (Vx € y)(x € a)

This claim is implicitly content restricted to Vv (as by we may restrict quantifiers bounded by sets
inV to setsin V. So we can leave this 03; context and apply Axiom 8.2 (Diamond Elimination) to
export the conclusion. Thus completing the proof?’. m

Now we prove the translation of union holds

Proof. By the Lemma M.1 (Translation Equivalence Lemma) it suffices to prove
a(V(Vr) = 05;[V2 2 Vi At;((¥y € 2)(¥x € y)(x € ))])

| will argue by Lemma B.2 (Box Introduction). So consider an arbitrary interpreted initial
segment l_/)l. By Lemma M.3 (the above lemma) we have a ‘union set’ for p; (- z 1) in the sense
of 171, i.e.,

(3a | sety(@)) (vy € py(r z ) (vx € 7) (x € a)

By applying Lemma L.1 (Pointwise Tweaking) to the above formula we can infer that possibly
(07, ) we have 172 which assigns p, (m a 1) to this set, i.e.

07, [T 2 VA (vy € pi(cz ) (Yx e y) (x € o a))]

Enter this 0y context. As 172 >a 171 we may replace every €; with €,. Since p;(r z 1) =
p2(r z 1) we may also replace p;(r z 1) with p,(r z 1) giving us

(vy € p2cz ) (vxey)(x€palra))

By the Lemma L.6 (Bounded Quantifiers) we have

27 Note that we can now remove any restrictions we placed on bounded quantifiers to export
the conclusion.



t2((Vy € 2)(Vx € y)(x € a))])

Putting this together with the fact that 7{ >a 7{ and leaving the 0y context we have
07 [Va 2 Vi At ((Yy € 2)(Vx € y)(x € a))])

Discharging the assumption that 17(]71) and applying Lemma 4.3 yields the desired result. m

M.5 Comprehension

Proposition M.4 (Comprehension). If 8 is a formula in the language of set theory with free
variables x, wy, ..., w,. Then:

t(VzVw Vw, ..VYw,dyVx[x Ey & (x €z A 0))

Proof. By Lemma M.1 (Translation Equivalence Lemma) it suffices to prove the following:

Pre3(®) € Pnia(®) © (Pnsa@) € Pnra(2) Atnsz(O)])]

We will argue by Lemma B2 (Box Introduction). So consider an arbitrary scenario where l7n+1, is
an interpreted initial segment.

We must now establish the possibility of a l7n+2 satisfying the above. Note that p,, ., (" y )
plays the role of the set whose existance we are trying to establish.

M.5.1 Construction

To this end we will define a predicate P which applies to just those sets that belong in
Pr+2(T Y 7).

First, we will use Axiom 8.9 (Modal Comprehension) to show that a predicate P could apply to
exactly those objects which we want to be elements of comprehension set p, ., (" y 7). If we

- -

could quantify-in we would define P(x) to hold just if (where t; 3 (Y) is tpi3(W)[Vinez/V *])

—

X € P02 ) Ay, (V72 Viaa AP (2 ) = X A t75(0))

Instead we apply the Axiom 8.9 (Modal Comprehension) with ¥ as 17(I7n+1), RasP, Las l7n+1,
and ¢ as below, giving us the following.

07, V(s ) ATy p[ @x1Q(x) » @x 1 Q))[P() © Vyyy () A D]
where @ =0, ,[(3E'q1Q(@)@ € Prs(CZz DA
(V" 2 Vs A0 x ) = g A b5 (0)) (M2)



Enter this 0y,,, context. To show there’s a set y in V,,,; of all the objects satisfying P, we must
show that all these objects are available at layers below some layer o in V,,, ;.

To this end we argue that

(k) (PG > & € pniac27) (M3)

Suppose the claim failed. Then by Lemma H.7 (Multiple Definitions), Axiom 8.4
(Simple Comprehension) and Proposition 8.1(Simplified Choice) we can (07n+1.P ) have

Q apply to a unique counterexample, i.e.,
@Alx QG (P A=x € pnya(T 2 7))

Enter this OVnH.P context and import the O ..p claim inside equation (M2). Apply

Lemma B.3 (Box Elimination) and modus ponens to infer that @ holds. Applying Axiom
8.2 (Diamond Elimination) to @ lets us infer

@Ata1Q(@)a € puir(Fz7)

as this sentence is content restricted to Q, I7n+1. This contradicts the assumption
above. Exporting this contradiction gives the desired result.

Thus, equation (M3) holds. Since p,,,1 (T z 1) is a set in V1 by there is some ordinal level o0 in
V41 at which p, .1 (F z 1) is available and every x such that P(x) occurs at some ordinal level
o' below o. So, by, it follows that there’s a set y in V,,,., available at level 0, whose elements
are exactly the x such that P(x). So by Lemma L.1 (Pointwise Tweaking) we may set p,,-(" ¥ 1)
to be the set specified by P. That is

—

07, .p [Vn+2 % Vaer A (V) (x <. P2y D) © P(x)) AViyo = Viya|  (M4)

Using Axiom 8.6 (Importing) we may import both equation (V2) and (M3) then apply Diamond
Collapsing (Lemma B.8) leave us in only a single 07n+1 context.

M.5.2 Verification

Enter this 0y  context.

We need to check I7n+2 behaves as desired. That is, we need to show that
Vasz 2 Vg1 A D]_/'n+2 [Viiz = Vigo =
y x
Pn+3(X) € Pniz(¥) © (Pns3(X) € pnis3(2) Atni3(0))]
n+3 n+3

Since we already have I7n+2 >y I_/)nﬂ it is enough to show that (by the definition of t,,)

Oy, [V)n+3 % Viiza D trys(x Ey o x €z A 9))]



By Lemma H.1 (Box Ignoring) (since the sentence inside the Oy, above is content restricted to

l7n+2, 17714,3) it suffices to prove the Oy

' oo Vayy,p VETSON of this claim. We will argue by Lemma B.2

(Box Introduction). Consider an arbitrary scenario in which I7n+3 >y l7n+2 we will prove the
following using only assumptions content restricted to I7n+1, P, l7n+2 (which, as the interior of
equation (M4) is so restricted happens automatically).

thiz(Xx €Y) © thy3(x €EZA0) (M5)

By Axiom 8.4 (Simple Comprehension) it’s possible (()‘7n+1,7n+2,7n+3,}, ) that Q selects exactly
Pn+3(™ x 7). Thatis

(VE)(Q(k) © k = prys(T x 1)

Note that we may pull in all facts in the current context by operation of Axiom 8.4 (Simple
Comprehension). Enter this 07n+1 Voo Vnes,p CONtEXE. We now argue that equation (M5) holds in

this context.

Note that
def
tns3(X €)@ PrisC XD € pras(cy )
By the fact that V},,3 =5 Viyo =y Vipiq and our specification of p, 1, (m y 1), c.f. (M3), we have
Prn+3(™x ) n§3 Pr+3(™y ) © P(pps(™ x M)

Since Q applies uniquely to p,4+3(r x 7)) applying Lemma B.3 (Box Elimination) to equation
(M2) and invoking modus ponens we may infer

P(pnss( x D) © Vopy(prys x D) A . (M6)

where

P =05,,,03'q 1 Q@)W ()

And

def =, = * *
V(@) ©q € pn(CZ2 DAV 2, Vo  Ap™ (Fx 1) = q Atyy3(6)

As the sentence inside 017n+1,Q in @ is content restricted to l_/)nﬂ, I7*, Q by ¢ Ignoring (Axiom 8.3)

P < 0,(3q 1 Q@)W (D)

where £ = {l_/)nﬂ, I7n+2, I7n+3, P, Q}. Hence the right side of equation (V6) holds iff

Vot (Pnes x D) A0 (31q 1 Q) (W(q))



Using Axiom 8.6 (Importing) to import the fact that Q applies uniquely to p,,;3(~ x 1) into the
0 context above (and applying Axiom 8.7 Logical Closure) we may infer that the above formula
is equivalent to (the reverse direction also follows by importing the same fact into the ¢,
context below)

Vos1 (Pnsz@ X D) AOL (P(ppas x D)) (M7)

We further observe that Y (p,,43(m x 7)) implies that p,,.3(F x 7) €441 Pn+1(T Zz 1) and hence
l_/)n+1(pn+3(r x 7). By Axiom 8.2 (Diamond Elimination) it follows that we can derive
Vn+1(pn+3(r x 1)) from ¢, (Y (pnr+3(t x 7))). Hence, the above equation (M7) is equivalent to

02 (Y(pn43(™ x 1))
Thus t,,.3(x € y) is true iff

OL[ pn+3('_ X —') n§1 pn+1(r Z j) A

VE2Vnpa Ap™(F X ) = Pras(T X ) Atny3(0)] (M8)
It only remains to show that (M8) is true iff t,,, 3(x € z A 8) where

tn+3(x EZA 9) « tn+3(x € Z) A tn+3(9)

Suppose that equation (M8) is true. Enter the (¢ ) context for this claim. We can import the
fact that I7n+3 =y l_/)n+2 >y I7n+1 and thus derive that t,,,3(x € z) from the first conjunct of the
interior of equation (M8). We now work to prove t,;3(6) by way of the Corollary L.1
(Generalized Translation Lemma) applied to t,,,3(0). We already know that VV*, V,,, 3 both
extend V1. We now argue that p* and p,, 3 assign each free variable in 8 to the same object
in V44 as follows:

— — — —
e SinceV* >, Vyyqand V3 =4, Vyp1 We have p* = py 1 = pnys forall variables names

other than ‘x’ and ‘y.’

X,y

e  Asp*(rx 1) = pni3( x 1), p* and p,43 both assign X’ to the same object in V1.

e SoV*can only disagree with V,,, 3 on y, and by the assumptions of the theorem to be
proved y isn’t free in 6.

So by the Corollary L.1 (Generalized Translation Lemma) we have t,,5(0) < t,.3(6) and hence

th4+3(0). As t,,3(0) is content restricted to l7n+3 we can export this conclusion from the ¢,
context above.

Conversely, suppose t,,.3(x € z) At,+3(8). By Lemma L.1 (Pointwise Tweaking) applied to

(Vig3, Pre1) and (Ay)(y = pp43(t x 7)) it is possible (¢, ) that v agrees with (V,,13, Pns1)
except in that it assigns X’ to pp43(m x ) i.e,



0L [0 x ) = pussCx VAV 2 Vsd AV = Vi

We now seek to derive equation (M8). Enter this ¢, context. The first conjunct inside the ¢; in
equation (M8) follows from the (importable) fact that t,,,3(x € z) and the first conjunct inside
the 0, above. The second conjunct inside equation (M8) is identical to the second conjunct
inside the above equation and the third conjunct inside equation (V8) is equal to the first
conjunct inside the above equation.

Finally, we use the Corollary L.1 (General Translation Lemma) to infer t; . 5(8). From the above
equation we have V* >V, , 3 and v =y l_/)l. We can import the fact that l7n+3 2y l7n+1. Thus,
(as above) p*and p,,,3 both agree with p, 4 on all other variables except for y (and y isn’t free
inx € z A 6). So, just as above, we can apply Corollary L.1 to get t,,5(6) < t,,.3(8) and hence
derive the third conjunct needed t,,,;(8). Thus we can leave this ¢; context and conclude that
(M8) holds.

Thus, equation (M8) is true iff t,,,3(x EZ A 0)
This completes our verification of equation (M5) on the assumption that I7n+3 =y l7n+2. Hence,

—

Vn+3 = Vn+2 - tn+3(x EyexezA 9))
x

As we proved this from only the assumption that the interior of equation (M4) was true, we
may use Lemma B.2 (Box Introduction) to infer

D]_/'nﬂ,]_/’nﬂ,p [Vn+3 % Vn+2 - tn+3(x EYyeoxezA 9))]
As remarked above we may use Lemma H.1 (Box Ignoring) to conclude

Oy, [V)n+3 % Viiza D trys(x Ey o x €z A 9))]

Dropping out of the 07n+1 context and applying Lemma B.2 (Box Introduction) again we reach
the desired conclusion.

O[V (Vpyy) =

017n+1 (Vntz Vg1 A

L=V

-

Oy ., [ Vaes % Viiz =
Prss(®) € Pras(¥) © (s () € Purs(2) Atars(@)])]
]
M.6  Pairing
Proposition M.1 (Potentialist Pairing). t(VxVy3z(x € zAy € z))

Proof. By the Lemma M.1 (Translation Equivalence Lemma) it suffices to prove the following:



|:|(17(I72) - 0y, [V)3 % l_/)z ANt3(x EzANY E Z)])

Consider an arbitrary interpreted initial segment 172. We will show that it’s logically possible to
extend this segment with another initial segment containing a set z which has both p, (r x 1)
and p,(m y 1) as members and then invoke Lemma B.2 (Box Introduction) to derive the desired
conclusion.

By the Proper Extension Lemma ( Lemma K.4), it’s possible (0172 ) to have 173 properly extend 172.
03, [ Vs = V, A (30) (ord3(0) A (V) (ord(w) — u <o)

Enter this 0y context. | claim 173 contains a set z which has exactly p,(m x 7) and p, (" y 1) as
members, i.e., (Vk)(k €3 z & k = p,(r x 1) Vk = p,(r ¥ 7)). By Simple Comprehension (
Axiom 8.4) it’s possible (072,73 ) to maintain all the facts we have so far and for H to apply to
exactly this pair of objects, i.e.,

(VR)[H(k) © k= p(rx DV =p,(Ty 7]

Enter this 03, context. Note that all x such that H(x) are in Ext(V,). Thus for each such u we

have @(x, u) for some ord, u. But by the fact that V5 properly extends V, and by part there is a
set; k whose elements are exactly p,(x) and p,(y). So we have

(A2)[sets(2) A(VE)(k € z & k = p(rx DV po (" y M)]

We now apply Lemma M.1 to (V3, p,), to get the possibility (072>‘V3‘H) of a p3 such that 173 =y l_/)z
which chooses p;(r z 1) to witness the truth of the above existential claim. This yields:

0zt [V 2 Va(VIO (K € p3(r 27) = K = py(c X DV oy )]

Enter this 0% v, n context. Unpacking definitions (note that V?, >, 72 implies thatp; agrees with
pponr x 7tandr y 1) we can infer:

p3(rx ) Eps(rz)Aps(Ty ) € ps(rz )]
Hence
V2V Ata(x €2AY €2)
So successively exiting all the ¢ contexts we entered yields
0% v, Ymvan b0 [173 % V,At;(x EzZAyE Z)])

Finally, applying Lemma H.6 (Diamond Simplification) yields the desired 0y, claim. This
completes our Lemma B.2 (Box Introduction) argument giving us our desired result.



D(ﬁ(vz)) - 0y [V)3 % l_/)z ANt3(x EzANY E Z)])
[

M.7 Powerset

Proposition M.5 (Potentialist Powerset). t(Vx3yvz[(VW)(W EZ > w EXx) > z E y])

We first prove the trivial fact that the elements of the set l7n+1 assigns to the variable x are all
setsin V1.

Lemma M.4. IfV,,; >V, and V(V,) then (Vb)[set,,1(b) A (Vc € b)(c € pu(rx) -
n n
set,(b)].
Proof. Suppose, for contradiction, that the assumptions of the lemma hold but the lemma fails.
Then there is a counterexample.

(3b) [setn+1(b) A (Elc | c n§1 b) [c n§1 pn(m x -.)] A —|setn(c)]. (M9)

By Lemma H.7 (Multiple Definitions) , using Axiom 8.4 (Simple Comprehension) and Proposition
8.1 (Simple Choice) it is possible (07n+1.7n ) for all our assumptions to remain true while B, K

apply to a unique objects b, ¢ witnessing equation (M9).

Enter this 0y; 3 context. Putting all these conditions above together we can derive

contradiction by straightforwardly applying the definitions of interpreted initial segment (
Definition A.4) and extension (Definition A.3) using the fact that €,,,; agrees with €,, on sets in
V,.m

We now prove the desired result.
Proof. By the Lemma M.1 (Translation Equivalence Lemma) it suffices to prove the following:
o[ V() -~ Op, (V2 % Vi ADOg, [V3 % V, - t:(¢(z,x,¥))])]

where
¢(z,x) abbreviates (Vw € z)(WE Xx) >z €y

We will argue by Lemma B.2 (Box Introduction). So consider an arbitrary situation in which
V().
We seek to show the possibility of an initial segment extending V; containing the powerset of

p1(r x 7). The first three steps of our proof are exactly miror what we said about pairing in the
previous proof.

Just as before, the Lemma K.4 (the Proper Extension Lemma) lets us conclude that possibly (()71 )
we can have V, properly extend V, i.e.,



(M10)

07, [Vz >V, A(3o) (ordz(o) A (Vu) (ordl(u) ->u § o)>

Enter this 0y, context and import the fact that 17(71) We will show that this I/, contains a set a

(our intended powerset) whose elements are exactly those sets b in I/, such that
b c, p;(r x 7). Applying Simple Comprehension ( Axiom 8.4) shows that H could apply (while
maintaining truth of equation (M10) inside the 071 ) to exactly the intended elements of our set

a.Thatis:
07,05, (¥0) (H(b) © seta (0) A (Ve | € € B € py(r )

Enter this 0y |, context. By the fact that 17(]71), we know that p; (- x ) occurs at some level u

in V;. Now consider an arbitrary b in the extension of H. All elements of b are €, p;(r x 7). So
by Lemma M.4 (Powerset Helper), b is available at some level u in V/;.

By the fact that I/, properly extends V,, it contains a level o such that o >, u for all u such that
ord, (u). So all objects in the extension of H occur at levels below 0. So by the fact that V(V/,)
(specifically ) there’s a set, (k) (occurring at 0) coextensive with H. Hence, there’s a set, whose
members are exactly those objects satisfying the right-hand side of the biconditional
characterizing H above.

Applying Lemma L.1 (Pointwise Tweaking) to V,, p; and importing all relevant facts establishes
the possibility (0, ) of a p, such that l_/)z =, (V2, p1) which assigns p, (= y 7) to witness the
truth of the above existential claim.
05, v,m [ V2 % Vin(va)( b < p2(ty ) ©
seta(b) A (Ve | c €b)(c € pa(m x )]

Enter this 0y, p,u context. We have 172 2y 171 immediately. So it just remains to show that Oy,

[17)3 >, l_/)z - t3(¢(z,x,y))], i.e., to prove the potentialistic translation of the claim that
p2 (T y 1) contains all subsets Z of p; (r x ).

By the fact that 172 =y 171 and thus p, (- x 1) = p;(r x 1), we can infer the following (which is
content restricted to 172)

(Vb) (b S p,(y 1) o set,(b) A (VC | c€ b) (c € po(r x —|)>> (M11)

Now, for application of Lemma B.2 (Box Introduction), assume that 17)3 >, l_/)z while holding fixed
the facts about l_/)z. As we wish to infer a Oy, claim we may use equation (M11)in our
derivation. By the definition of >, we can infer

(Vb)(b € p3(ry ™) © setz(b) A (Ve | ¢ € D)(c € ps (T x 7))



Instantiating b with p5(~ z 1) (and noting that clearly setz (p3(r z 1)) lets us deduce ¢)‘73 ,i.e.,
(YweEps(rz YW Eps(Cx ) > p3(rz) Eps(Cy )

Applying the Lemma L.1 lets us infer t3(¢(z, x,y)). This completes our Lemma B.2 (Box
Introduction) argument letting us deduce

Oy, [Vs 2V, = t3(6(2,%,)]

Now exiting all our ¢ contexts yields

07, %%, 09 vom (VZ > Vl A O, [ V3 % t3(¢(z X, )’))

By Diamond Collapsing ( Lemma B.8) it follows that

0y, (v, % V, A Oy, [V, % > t3(d(z,%,))])

And, as we have proved this from only the assumption that our original context satisfies V(Vl),
the theorem follows by a final application of Lemma B.2 (Box Introduction).

ol V) = 05, (V, 2 Vi A0y, [V 2V, = ts($(2, 2, )]

n
M.8 Choice

Definition M.2 (Choice Function). We first adopt the following standard notation from set
theory.

Definition M.1 (Ordered Pair). (y,z) denotes the unique set {{y},{y,z}} and w = (y,z)

denotes the (bounded) formula

(Fa ,bew)(Vgew)([gq=aVvqg=b]A
vyeEaNyeEbAzEbDAN(Vo€Ea)(o=y)A(Vo€EDb)(o=2zVo=a)

CH(f, x) abbreviates the set theoretic sentence which claims that set f is a choice function for

set x. That is f associates to each element y of x a unique element of y, i.e., CH(f, x) (Vy |
yex)(f(y) €y)

Note that f(y) € y iff Qw € f)(3z € y)(w = (y,2)) so CH(f, x) is a bounded formula.

Proposition M.6 (Potentialist Choice). t(Vx[@ & x —» (3f)CH(f,x)])



Before we prove this result, we first note the following lemmas.

Lemma M.5. I[fV" > V' = V (where = indicates a proper extension) and y, z are sets in V then
there is some set w in V" equal to (y, z).

Proof. The reasoning in the proof of Proposition M.5 (Potentialist Pairing) implies that {y, z} is a
setin IV’ and a similar argument implies that {y} is as well. Applying that reasoning again
implies that {{y},{y,z}}isasetin V"' m

Lemma M.6. Suppose that R*(x,y) is a function (i.e. relation taking each x to a unique y)
taking setsinV tosetsinV and V" = V" 2 V' 2 V (where > indicates a proper extension) then
there is a set f in V" which represents the set theoretic function defined by R*(x,y), i.e.,
(Va)(vb)[(a,b) € "f & R*(a, b)]

Proof. This follows straightforwardly from Lemma M.5 (Ordered Pair Existence) by using Simple
Comprehension (Axiom 8.4), the as well as the fact that V" properly extends V" and then
exporting the conclusion. m

Our strategy to prove Proposition M.6 (Potentialist Choice) is as follows. Given some

interpreted initial segment l_/)l our strategy will be to define I to apply to the elements of
p1 (™ x 1) and define R to relate R(y, z) just when y € p;(r x 1) and z € y. We will then use
Axiom 8.12 (Choice) to infer the possibility of a choice relation R*. We will then use the above
lemmas to derive the possibility of V, containing a set f of ordered pairs coding the function
given by R*. This set f will satisfy CH(f, x) allowing us to invoke the Lemma L.1 (Bounded
Quantifiers) to establish the desired translation.

Proof. By the Lemma M.1 (Translation Equivalence Lemma) it suffices to prove the following:
OV At (D € x) = 0y, (V2 = Vi Aty (CH(f, x))]

To prove this by Lemma B.2 (Box Introduction) suppose that V(Vl) At1(® & x). We now prove

0y, (Vo = Vi At (CH(f,m x ).

Note that by the Lemma L.6 (Bounded Quantifiers) it suffices to show

07, (V2 2 Vi A [CH(p2( f 9,2 x D)]")

By the Multiple Definitions Lemma ( Lemma H.7) it’s possible (0‘71) for our assumption V(I—/;) A
t1(@ € x) to remain true while defining I, R via Simple Comprehension (Axiom 8.4) so that

(vV2)(I(2) ©z€pi(Fx )
VVYIIRGY) ©yepiCx DAY EY]

Enter this (0‘71) context. We now show that the antecedent of Axiom 8.12 (Choice) is satisfied,
i.e., YY)[I(y) = (32)R(y, z)]. To this end note that t; (@ & x) abbreviates t; ((Vy)(y € x =



(32)(z € y)) and apply the Lemma L.6 (Bounded Quantifiers) to infer that [(Vy)(y €
p1(rx ) > 32)(z €y, ie,

(N Epr(cx) > (32)(z € Y))

Combining this with the biconditionals specifying extensions for [ and R above yields the
desired result that (Vy)[/(y) = (32)R(y, 2)]

So by Axiom 8.12 (Choice), it’s possible (0171,1,12 ) (while retaining all our previous facts) that R*

codes a choice function for R, I, i.e., that R*. is a function with domain I and R*(y, z) implies
R(y, z). Note that by applying the definitions of R and I we can easily deduce that R*
associates to each y €; x some z €; y. We will use R* to define a corresponding choice
function in the sense of set theory, i.e., an f such that

(va)(vb)[{a,b) € f © R*(a, b)]

Specifically, we apply the Proper Extension Lemma (Lemma K.4) three times followed by an
application of Lemma B.8 (Diamond Collapsing) to establish the possibility (0‘71‘R‘,’R* ) of 1/,

properly extending V", properly extending V' in turn properly extending ;. Now by Lemma M.6
(Set Coding a Function) and Lemma L.1 (Pointwise Tweaking) we can (()171,,2,,'1?*,‘,2 ) have 172 = 171
such that p, (= f 1) is a set k with the property that

(va)(vb)[{a, b) € po (- f ) « R*(a, D)]

Enter this 0y, g gy, contextand infer [CH(p,(" f 1), p2 (" x 7))]"2. Finally, leave the

intervening contexts and apply Lemma B.8 (Diamond Collapsing) to yield the desired
conclusion. m

M.9  Potentialist Infinity
Proposition M.7 (Potentialist Infinity). t((3x)[® € x A (Vy € x)(S(¥) € x)])
where S(y) isy U {y}?®

Before we prove this result, we first prove the following lemma which establishes the possibility
of an interpreted initial segment containing a successor closed set. Our strategy here will be to
use the Theorem K.2 (Fleshing Out) on the well-ordering from the Infinite Well-Ordering
Theorem ( Theorem J.1) to argue for the possibility of a V/,,. We then use the Proper Extension
Lemma (Lemma K.4) to construct the powerset of V/,, and argue that this set has the desired
property.

LemmaM.7. 0 [V(V)A@x)(@ € x A (Vy € x)(S(Y) € x))]

28 That is, S(y, z) abbreviates (Vw € z2)[w EyVw =y|Ay € zA (Yw E y)[w € Z]



Proof. By the Infinite Well-Ordering Theorem ( Theorem J.1) we may conclude it’s logically
possible (¢) that ord,,, <, form an infinite well-ordering with no maximal element as well as
the other conclusions of the Infinite Well-Ordering Theorem ( Theorem J.1). Enter this ¢
context.

By the Theorem K.2 (Fleshing Out) it is further possible (0orq, <, ) for V,, to be an initial segment
with ordinals ord,,, <. Enter this ¢4 < context and import all facts established so far. By
the the Proper Extension Lemma ( Lemma K.4) it is possible (O, ) that V is an initial segment
properly extending this V,,. Enter this &y, - context and import all facts established so far.

By the fact that V properly extends V,,, we know that there’s an ord(u) such that u > o forall o
such that ord,, (0). Every set x in V,, occurs at some such level o, by the fact that V > V,,. So by
condition (fatness) applied to the property set,,, there’s a set(y) in V (available at level u)
whose elements are exactly the sets in . It is now enough to show that set,, contains @ and is
successor closed.

@ clearly satisfies set,,. To show that set,, is successor closed suppose that it’s not and, by the
usual trick using Simple Comprehension ( Axiom 8.4) and Proposition 8.1 (Simplified Choice) (via
the the Multiple Definitions Lemma ( Lemma H.7)), we may infer the possibility of Q applying
uniquely to some x satisfying set,, such that S(x) doesn’t satisfying set,,. Via the Multiple
Definitions Lemma (Lemma H.7) we may also suppose that P applies to those z such that z = x
orz € x,i.e., Q(z) vV (3x)(Q(x) Az € x). By Definition A.2 (Initial Segment) it follows that x
and every z € x occurs at some ordinal o satisfying ord,, (0). As ord,,, <,, has no maximal
element there are ordinals o', 0" in V,, such that o <, 0’ <, 0". Clearly {x} is availible at 0" and
thus by the fatness condition (condition 5) in Definition A.2 (Initial Segment) applied to the
property P it follows that S(x) is available at 0" and thus satisfies set,, giving the desired
contradiction.

So we have
VWV)A@xX)(D e xA(Vy € x)(S(y) € x))

The theorem follows by leaving all ¢ contexts entered and applying Lemma B.8 (Diamond
Collapsing). m

With this fact in hand, we can now prove Proposition M.7 (Potential Infinity) as follows.

Proof. As noted above, our strategy will be to establish the possibility of a V; containing a set x
which is successor closed and then argue that if p; (- x 1) = x then t;(8), where 6 asserts that
x is successor closed, is also true.

To set this up, we need to get the claim x is successor closed into a proper form for applying
the bounded quantifiers lemma. So note that by Theorem 9.1 (Logical Closure of Translation) it
suffices to prove the translation of the logically equivalent claim.



t(@x)p(x))

where
def
px) o [@eExA(Vy Ex)TY € X)(SH) =y)]
S) =y’(<j—>Efy EYANzZEY)zEY)AN(VZEY)zZ=YyVZEY)

Note that when the definition of @ is expanded out we see that all quantifiers in ¢ are
bounded?.

So, for Lemma B.2 (Box Introduction), consider an arbitrary interpreted initial segment 170.

By Lemma M.7 we can have (¢) V with a successor closed w. And by <& Ignoring ( Axiom 8.3)
we can infer the corresponding 0‘70 claimi.e.,

07, [V(V) A @x 1 set(x)p(x)]

Enter this 070 context. By Lemma K.7 (Hierarchy Extending) we can have (OVO,V) Vi =V, such
that f isomorphicly maps V to an initial segment of _ < V;. Enter this Oy, v context and

importing all relevant facts. By the Theorem 1.1 (Isomorphism Lemma) we can infer (3x |
set_(x))p[€/€_](x). Via the Theorem L.1 (Translation Lemma) we can infer (3x | set;(x))¢p[€E
/€1](x). That s,

V(Vo) AVy 2 Vo A (3x | sety (1) $[€/€](x)

By Lemma L.1 (Pointwise Tweaking) it is possible (()170‘7’1,1 )) that I71 > I70 with p;(r x ") is a
successor closed set, i.e., using the notation from Lemma L.6 (Bounded Quantifiers)

0]70,17“,1 l_/)l % l_/)o A ¢V1
Enter this OVO,V,Vl context. By the Lemma L.6 (Bounded Quantifiers) it follows that
v % Vo Aty (9)
Leaving all ¢ contexts and applying Diamond Collapsing (Lemma B.8 ) we derive
07, vy = Vo Aty ()

But this is just to((3x)¢). Hence, we have + t,((3x)¢) Applying Lemma B.2 (Box Introduction)
we infer

aV(Vs) = to(3x))

This completes the proof as this is just the desired conclusion

29 Note that @ € x abbreviates (3z € x)—= (3w € z)).



t(@x)¢)

M.10 Replacement

The axiom schema of replacement asserts that the image of a set under any definable function
will also fall inside a set.

Proposition M.8 (Potentialist Replacement). Let 8 be any formula in the language of ZFC whose
free variables are x,y, a,wy, ..., Wy, so that, in particular, b is not free in 6. Then

t(Vavw,Vw, ...Vw,[Vx(x €Ea - 3!y 0) - IbVx(x €a - Ty(y E b ABO))])
By Theorem 9.1 (Logical Closure of Translation) it’s enough to prove that
t(Vavw Vw, ...Vw, [Vx(x €a —» 3y 0) - IbVx(x € a = Fy(y € bAO))])

So speaking loosely (in terms of quantifying in), we want to show that following. Given an initial
segment V and asetainV, if for every x € a it’s logically possible that there is some initial
segment I, extending V and a set y, in V, making the potentialist translation of 6(x, y,) true
then it’s logically possible to have a single set b in some V;,, = V that containing all those
witnesses. By the Corollary L.1 (General Translation) potentialistic truth is absolute (i.e., all
extensions of V, agree on the truth value of the potentialist translation of 8(x, y,)), unlike the
notion of truth in a model. So it is enough to ensure that for each x € a that V}, extends some
V. containing a y, € b satisfying t(6(x, yy)).

Proof. By Theorem 9.1 (Logical Closure of Translation), it’s enough to prove an equivalent (over
the remaining axioms of ZF) version of replacement that relaxes the requirement that 8 be
functional.

Ft(Vavw,Vw, ...VYw,[Vx(x € a - Ty O(x,y)) = IbVx(x Ea - Ay(y E b AO(x,¥)))])
Using Lemma B.8 (Diamond Collapsing) and this claim can be simplified to:
O[V(Vns1) = [tnsr (V) (x € @ > 3y8(x,¥))) = tys1(IbVx(x € a > Iy(y € b AO(x,¥))))

So for Lemma B.2 (Box Introduction) we will consider an arbitrary situation in which
17(]7,”1) Atyiq ((Vx)(x € a - IyH(x, y))) (M12)
And we will try to show that t,,,,(3bVx(x € a = Ty (y € b A 8)) holds in this situation.,i.e.,

07, (Vnsz % Vi1 Atpi2(Vx(x € a > 3y(y € b AG)))

As noted in Chapter 9, our strategy will be to use Axiom 8.13 (Amalgamation) to establish the
possibility of a 7 which specifies, for each x in p,.+1(r a 7), a way, IZC*, of assigning ‘x’ to this x
and ‘y’ to some y which makes the potentialist translation of (6) true. We will then use the
Theorem K.1 (Hierarchy Combining) to build Vy which contains (isomorphic images of) all these



choices for ‘y,” and add one layer to it to get V5,1 = V,,4» containing a set which has exactly
these isomorphic images of choices for ‘y’ as elements.

In our initial assumption (M12), i.e., 17(]7,14,1) A tni1((Vx)(x € a - 3y0(x,y))), writing out
the second conjunct formally yields:

-

Oy Vw2 Z Vo APria %) € pnia @) = 0g, [Vaos 2 Vniz Atnas(0))) - (M13)

That is: however l7n+2 >y I7n+1 assigns ‘x’ to a set belonging to p,.,(r a 1) = ppe (a7 itis
possible (<>7n+2 ) that l7n+3 =, Vn42 Which assigns y in a way to make t,,,5(6(x,y)) true.

M.1  Deploying Amalgamation

| will use Axiom 8.13 (Amalgamation) to show that there could (<>‘7n+1 ) be a V which puts
together witnesses to the above extendability claim (M13) .

Specifically there could be a V which codes up®, for each object/position x €41 Pns+1(r @ ),
an initial segment l_/,)c* which:
e assigns ‘X tox

e  satisfies 17;5* Zyy I7n+1 and hence doesn’t tamper with the assignment of any parameters in
0, (i.e., any variables wy...w,, other than x and y which are free in 6)

— —

o satisfies t;,,5(0) (i.e. t,43(0)[Vnez/V *]).

To satisfy the conditions of Axiom 8.13 (Amalgamation), we start by using Axiom 8.4 (Simple
Comprehension) to establish the possibility that I applies to the x €,,1 pp41(T @ ), i.e,,

7, (YOUK) ok € prya(ta))  (M14)

Enter this 07n+1 context. To apply Axiom 8.13 (Amalgamation) we must establish that, however

Q selects a unique object from this index collection I, we can have a corresponding V" with the
properties listed above. That is:

07,00 LA 1QENU) = 05, 0 @]

where @ expresses the property (in terms of the unique x satisfying Q) that we each V. should
satisfy. In this case that is

®= V* z Vo1 AQ(*(r x 1) Athy3(6)

30 That is, it takes x as an extra parameter and for each x the remaining places satisfy the
definition of an initial segment.



We will prove this by Lemma B.2 (Box Introduction). So, consider an arbitrary scenario (holding
fixed V,,,1, I facts) in which (3! x | Q(x))(I(x)). As we are holding fixed V,,,; we may assume

that I_/)nﬂ is an interpreted initial segment. So by Lemma L.1 (Pointwise Tweaking) we can have
Pn+2 assign ‘y’ to an object satisfying Q. That is:

<>‘7n+1,Q.I [ Vnsz % Vg1 A Q(Pns2(T x )]

Enter this 0y, ,, o, context. By (3!x | Q(x))(I(x)) and our characterization of the index

property I (the sentence inside equation (M14), we can derive that p,,;, (" x ) is
X €py1 Pne1(™ @ 7). So we have the antecedent of the conditional inside equation (V13)
namely:

— —

Vitz 2 Vap1 Appy2(tx 1) € ppia(ta)
X n+2

So importing and applying Lemma B.3 (Box Elimination) to (M13) lets us derive its consequent.
Then applying ¢ Ignoring ( Axiom 8.3) to add Q, I to the subscript (as the sentence inside the ¢

above is CR: Vn+2r V)n+3) gives us
<>‘7n+1:‘7n+2,Q,1 (Vn+3 % Va2 Atpas(t 0 —')>

Entering this context and importing the fact that I7n+2 >y I7n+1 and Q(pn+2(r x 1)) and using
Axiom 8.7 (Logical Closure) we can derive:

0Vn+1rVn+2rQ,I Vs x?y Vis1 A QP43 (T x 1) Atyi3(60)

Now dropping out of the two enclosing ¢ contexts and applying Lemma B.8 (Diamond
Collapsing) and Lemma B.4 (Diamond Reducing) yields

Orn0 Vnes Z Ve A Qo3 (X D) Aty (6)]

Applying Axiom 8.5 (Relabeling) to replace I7n+3 with V* completes our derivation of 0y, . o @
from the assumption that (3! x | Q(x))(I(x)).

Thus we have
V(Vai1), 05,,, (VRYUUD) © k € pryr(Ca D) k@21 QENUIC)) = Oy, 0@

As both the assumptions used above are content restricted to Oy, we may use Lemma B.2
(Box Introduction) to infer

Op, L@ 1 Q))U (X)) = 03, 0 P]

This completes our proof of the antecedent of Axiom 8.13 (Amalgamation). So by applying
Axiom 8.13 (Amalgamation) we can infer



017n+1.1( (Vy)(Vx)(Vx’)[(—'x =x'An(y,x)An(y,x) > yE€E Ext(]_/nﬂ)] A
oy, 7 [ X1QEUI AV » @) (M15)

where 1(y, x) asserts that y appears in some tuple ending with x satisfying some €, <, @ or p(
i.e., informally (y, x) < Ext(€ (-, x),< (-, x), @(-, x), p(, x))(¥)) and ¥ (x) asserts that l7,’{+3
is equal to V/,..
Yx)= (Vz,y) (Z n§3 y <€ (z,y, x)) A
(Vo,u) (o n§3 u << (o,u, x)) A
(V0,2)(@}45(2,0) © @(z,0,%)) A
(Vz,n)(pp43(n) =z & p(n,x) = 2)

Intuitively, this tells us that it’s logically possible to have a V which provides a parameterized
witness to the property @. Note that the first line of equation (M15) asserts that the overlap of

V. and V,, (where these are given by substituting x into the last place of the relations in l_/)) for

x # x' is contained in I7n+1 while the second line tells us that for any choice of x satisfying I if
ni3 = Vy then @ is satisfied by the pair V,;, ; and x.

M.2  Constructing V15 and pp42
M.2.1 Strategy
Now we ultimately need to show that
the1(AbVYX(x €Ea = Jy(y € b AB)))
or, equivalently,
07y, (Virz 2 Vs Mg (Vx(x € a > 3y(y € b AO(x, 1))
So we want to construct a I7n+2 >p l7n+1 which assigns ‘b’, so as to make t,,,,(Vx(x € a =

Ay(y € b AOB(x,y))) true.

My strategy will be to use Theorem K.1 (Hierarchy Combining) to put together the initial
segments I/, into a single V5 > V,, .1 which extends (isomorphic copies of) each V, and thus
contains an image y, for each x in a under 8. Then by applying Lemma K.7 (Hierarchy
Extending) we will extend V5 to a V5,1 containing a set b, collecting together all the witnesses

—

V- Vo Will then be the structure Vs, paired with an assignment of - b to this set b.
M.2.2 Using the Hierarchy Combining Lemma to get Vs

Applying the Theorem K.1 (Hierarchy Combining) requires we demonstrate that

Op7,,, (3% 1 QU (X) AY (%)) > V()]



where

Y(x)= (Vz,9) (Z € y <€ (z,v, x)) A
(Vo,u) (o <u o (o,u, x)) A
(Vo,2)(@*(z,0) & @(z,0,x))
This is very close to the O claim we already have in equation (M15). And @ clearly implies

17(V*), so entering the ()17n+1’1 from equation (M15) and then applying Lemma H.2 (Box Closure)
yields:

Op 7 [@x 1 QU () AP () - e

It remains to handle the wrinkle that ¥ differs from Y in also requiring that p* applies as per
DPn+3 , SO the antecedent of the conditional we have is slightly stronger than the antecedent of
the conditional we want.

So suppose for Lemma B.2 (Box Introduction) that (3! x | Q(x))(I(x) AY (x)) (while holding

fixed the 7, I, I7n+1 facts). Then by Axiom 8.4 (Simple Comprehension):

O iiiow- (3% 1QENUE AY() A (V2 (has(m) = 2 = px) =2)  (M16)
Entering this OVMLI,‘?,Q,V*
(M16) . Applying Lemma B.3 (Box Elimination) to (M 16), we deduce V(V*). And as V(V*) is

content restricted to V", so by Axiom 8.2 (Diamond Elimination) we can export it from this
context.

context we can infer (3!'x | Q(x))(I(x) AY(x)) and import equation

0‘7n+1:1,‘7'Q'V*

Thus we’ve proved

@'x 1 Q))U(x) AP (x) » V()

using only the assumption that equation (M16), which is content restricted to V/, I, I7n+1 so we
may infer equation (M15) using Lemma B.2 (Box Introduction). Applying the Theorem K.1
(Hierarchy Combining) to equation (M15) lets us infer

07, o[ V= Vna Aumng(f) c Ext(Vy) AvA

0015 (A% 1 QENUE AY () = 0g,70, (V' 2V AV < V] M)

This asserts the possibility of an initial segment V5 which, as discussed above, extends an
isomorphic copy of V, (represented here by V*) for any x satisfying I.
M.2.3 Forming Vi, 12, Pns2(D)

Enter the ¢, = context from equation (M17).
Vn41 VoI



Now by the Proper Extension Lemma Lemma K.4 we can infer the possibility of V,,,., which
adds (at least) one layer of sets to V5. And applying ¢ Ignoring ( Axiom 8.3) to add subscripts we
can conclude

05 Favey Varz 2 Vo A @D)(0dn 2 () A (V) (0rdz () > ¥ < %)

Entering the above ¢ context and applying Simple Comprehension ( Axiom 8.4) we can infer
that H could apply to exactly the sets we want to be elements of p,,;, (" b 1), i.e.,

0 5 (VY)HG) © @EOENU) ADE Y X) =Y AFB) =)

Note that the biconditional above says H(y") iff there is some x such that I(x) and y’ is the
image of the px (- y 7)) selected by l_/,)c*

Now we need to show that V,,,, contains a set whose elements are exactly those y’ such that
H(y"). By the fact that rng(f) < Ext(Vy) using equation (M17) it follows that there is a set b in
V,+2 Whose elements are exactly the y’ satisfying H(y"). Applying the characterization of I

inside equation (M14) we can translate the definition of b in terms of I into one in terms of the
set a. In particular, we can deduce that b must satisfy

(VyOD' € b o @)@V € prCaDAPCy 1 x) =y Af() =)
Finally applying Lemma L.1 (Pointwise Tweaking) to this existential claim and V5, pn+1
(importing the fact that V,,,, = Vy = V,,,4) lets us conclude that
Vasz 2 Vasa (W)Y € pusa b ) ©
E)@EV)* _E P2 aDAPC Yy v x) =y Af() =y)

We now apply Lemma H.6 (Diamond Simplification) to collapse the ¢ contexts we entered in
the last two subsections and importing the interior of equation (M14) to conclude

O 7 (VRUE) ok € ppis(tam)
(YN VX)[(=x = ' ATy, 0) AT(y,x) > ¥ € Ext(Vnsr)] A
Oy, 7 [E 1QENUG) AP (X)) - @)
[ Vy=Vn Avmng(f) € Ext(Vy) Av (M17)

Voiz 2 Vot A(YYDY € praa( b ) © @x)@Y)(X € ppia(ra)A
b n+2 n+1

pry v x)=yAf(y)=y)A
05 v, (A 1QENU) AY (X)) = 0,15, (V =V AV < V)]

M.3  Verification for I7n+2

It remains only to show that the I7n+2 we have constructed has the properties claimed by the
(translation of) the consequent of the replacement axiom schema. Entering the 017n+1 context

above we need to show



Vosa > Voi1 A tnio(Vx(x € a > 3y(y € b A6))

—

We already know l7n+2 >p V.41, and expanding out the second conjunct yields the following.

07 .’ [ Vhss % Visz A pras(Cx ) n§3 Pr+3(Ca) -

M18
00y Vs > Vass AprisC Y ) €, prraC b ) Atnaa(®)] MO

We first note that, as the sentence inside the Oy ., in equation (M18) is content restricted to
Va3, Vnaa- By Lemma H.1 (Box Ignoring) it’s sufficient to prove (where £ =
V2o Vot Vi, Voo LV, f}

Oc[ Vass % Vatz APz x 1) n§3 Pn+3(Ca) -

000, Vs 2 Vass ApusaC ¥ D € Praalc b ) Atass(®)]  (M19)

We will prove this claim by Lemma B.2 (Box Introduction). As the interior of equation (M16) is

content restricted to l7n+2, l_/)nﬂ, Vs, I7n+2, I, I7,f we may consider an arbitrary scenario in which
this holds as well as

Vits 2 Visa APrys(tx ) € ppis(tan). (M20)
X n+3
and derive that

07,5 [Vnsa 2 Viss APnia(Cy ) € Pria(r b ) Atyis(0)]
n y n+4

M.4  Constructing I7n+4

We proceed by building a v equal to l_/;c where x = p,,.3(r x 7). We will then infer that
th+3(6) holds with respect to this V*. We will then define p~ to be the isomorphic image of p*

under f and use the isomorphism lemma to infer that t,;,5(6) = th+3(@)[V*/V ] holds with

respect to V- where V™ < Vs < Vyi3. We will then define V,,, 4 to be equal to V,,, 3 and use
Lemma L.1 (Pointwise Tweaking) to let p,, .4 be equal to p,,, 3 excepting only p,, 4 (r y 1) which
we instead define to be p™ (r y 7). Then using Theorem L.1 (Translation) we infer t,,4(6) Note

that in what follows we ensure that every ¢ context we enter we subscript £, I7n+3 allowing us
to import the interior of equation (M16) in each context we enter.

As indicated, we start by invoking Simple Comprehension (Axiom 8.4) (via Lemma H.7 (Multiple

Definitions)) to define V* to be equal to l_/,)c (i.e., to make ¥(x) hold from equation (M15)) and
to define Q to hold of the unique value p, ,3(r x 7). More formally, we deduce the logical
possibility (OL.Vms ) of

(VE)(QK) © k = prys(c x D) AP (pns(-x 1)) (M21)

and



(V2 (7 € v & (3x1 Q) € (2,y,0) A

(Vo,u) (o n%3 ue @Ax1Q0M) < (ou, x)) A (M22)

(V0,2)(@}45(2,0) © (3x | Q(x)@(z,0,x)) A
(Vz,n)(pre3(m) =z & Qx| Q(x))P(n,x) = z)

Enter this 0,z . context. We note for latter use that prry ) =pC Yy 1, Pps3(™ x 7))

By assumption we have p,,,3(r x 1) €,43 pPry3(t a 1) and as l7n+3 > l7n+2 =p l7n+1 we can
infer pp43(r x 1) €,41 Pns1(t @ 7). Using the charachterization of I we can conclude
I(pn43(™ x 7). Hence, (as ¥ (x) is implied by equation (M22)) we can infer (3! x |
Q(x))U(x) AN¥(x)). Now using equation (M15) (as included in equation (M16)) we have

0, L sl@Ax1QE))UE) AY(x)) » P)]
n+1.1,
Applying Lemma B.3 (Box Elimination) lets us deduce

@ =V 2V A Q(p"C 2 D) A5 (0G0 1)).  (M23)

We now move to transfer the fact that t;,, 5(6(x, y) holds to infer that t,,,3(6(x, y) holds for
some V™ < V5. We do this by applying the last conjunct in equation (M16). That is

O7,1v5s (A1 QENUE) AY (X)) = vz, (VIS VTAVT < Vp))

Applying Lemma B.3 (Box Elimination) and ¢ Ignoring (Axiom 8.3) we can infer

007, (VI ZVIAVT SV (M24)

Enter this 0,z . context and import all the facts we’ve established so far. Now we specify p~

so that V* = V= so we can apply the Theorem 1.1 (Isomorphism Lemma). By Axiom 8.4 (Simple
Comprehension) we infer

0L inss0iprar- (YON[p~ () =y oy =f(p"(x))]  (M25)

Entering this context and importing all necessary facts we can derive that v = V= from
equation (M24) and equation (M25) . Thus, from t,,,3(0) we can apply the Theorem I.1

(Isomorphism Lemma) to deduce t,,3(8) (where t,;,3(0) & trhe3 (@) [Vnas/V7]).

We now use Simple Comprehension ( Axiom 8.4) ( via Lemma H.7 (Multiple Definitions Lemma))
to define V,,, 4 to be equal to V,,, 3 and, entering this context, use Lemma L.1 (Pointwise
Tweaking) to let p,, 44 be equal to p,,, 3 excepting only p,,,,(r v 7) which we instead define to
be p~(r y 7). Using ¢ Ignoring ( Axiom 8.3) we can expand the subscript of the < introduced by
Lemma L.1 (Pointwise Tweaking) to be L, I7n+3, Q, I7n+4, V™ and enter this context importing all
the (suitably content restricted) facts derived so far.



We now argue that
V)n+4 % V)n+3 Appia(ty ) n§4 Prra(t b D) Atnia(8). (M26)

We already have that Vn+4 =, V we3 and by (M20) we have p,,3(r Vv 7) €43 Pns3(™ b 1) and

thus as Vn+4 =y Vn+3 we have Pn+a(T YV ) €nys Prya(t b 1) so we now work to show that
tn+4(0). To this end we establish that p~ and p,, .4 agree on all variables free in 8 so that we
may apply the Theorem L.1 (Translation) to go from t,;,3(6) to ppi4 and p* t,44(6).

To this end we note that p,,,4 and p* agree with p,,.1, and hence each other, on all variables
other than x,y and b since

Vs = Vinga = Vigp 2 Vg
y x b

and

V" > Vyyq

x,y
And by equation (M21) and equation (M23) we can conclude that p,,, 3 (and hence p,4) and
p* agree on x as well. Furthermore, by equation (M20) we know that
Prra(T X 1) Epss Praa(C @) andas prya(t @) = ppyq (- @ ) it follows that p* (- x 1) is in
Vye1 as well. Since V,, q < V*and V1 <V~ by Lemma K.1 and K.2 (Isomorphism Agreement
Lemmas) it follows that f is the identity on V,,,; and thus p™ agrees with p* and hence p;, ;4
on all variables other than y and b.

But by assumption b isn’t free in 8 and our application of the Lemma L.1 (Pointwise Tweaking)
defined p,,+4(r y 1) to be and p~(r y 1) so we may apply Theorem L.1 (Translation) (see notes
after the theorem regarding substituting V* for V,,,3) to infer t,,, 4(0) from t,,5(6). This
completes our proof that equation (M26). Leaving the most recent ¢ context and applying
Lemma H.6 (Diamond Simplification) yields

OV +3 (Vn+4 = Vn+3 A pn+4('_ y —') € pn+4(b) A tn+4(0))
n y n+4

As this fact is content restricted to l7n+3 we can pull it out of all intermediate ¢ contexts

(because they all subscript I7n+3) to establish that (M26) as desired. Since our proof of (M26)
relied only on the assumption of the antecedent

Vitsz 2 Vo Appys(Cx 1) € ppis(ta)
X n+3

and facts content restricted to £ we can apply Lemma B.2 (Box Introduction) to infer equation
(M.19) which, by the discussion at the top of subsection M.10.2 suffices to complete the
proof. m
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