
Supplementary material for A Logical Foundation for Potentialist Set 
Theory 

E  Auxiliary Definitions 

We adopt the convention that 𝑥𝑥 ≤ 𝑦𝑦 abbreviates 𝑥𝑥 < 𝑦𝑦 ∨ 𝑥𝑥 = 𝑦𝑦. 

Definition E.1.  < linearly orders the objects which satisfy 𝑊𝑊 

• < is antisymmetric 

  (∀𝑥𝑥)(∀𝑦𝑦)¬(𝑥𝑥 < 𝑦𝑦 ∧ 𝑦𝑦 < 𝑥𝑥) 

• < is transitive 

  (∀𝑥𝑥)(∀𝑦𝑦)(∀𝑧𝑧)(𝑥𝑥 < 𝑦𝑦 ∧ 𝑦𝑦 < 𝑧𝑧 → 𝑥𝑥 < 𝑧𝑧) 

• < is total on W 

  (∀𝑥𝑥)(∀𝑦𝑦)(𝑊𝑊(𝑥𝑥) ∧𝑊𝑊(𝑦𝑦) → 𝑥𝑥 < 𝑦𝑦 ∨ 𝑦𝑦 < 𝑥𝑥) 

Definition E.2 (Well-Order).  A two-place relation < well-orders the objects which satisfy 𝑊𝑊 
(equivalently (𝑊𝑊, <) is a well-order) iff 

• < linearly orders the objects which satisfy 𝑊𝑊 

• Least Element Condition: □ [(∃𝑥𝑥 ∣ 𝑊𝑊(𝑥𝑥))𝑃𝑃(𝑥𝑥) → (∃𝑦𝑦 ∣ 𝑊𝑊(𝑦𝑦) ∧ 𝑃𝑃(𝑦𝑦))(∀𝑧𝑧 ∣ 𝑊𝑊(𝑧𝑧) ∧𝑊𝑊,<
𝑃𝑃(𝑧𝑧))(𝑦𝑦 ≤ 𝑧𝑧))] 

We will also say that ≤ well-orders 𝑊𝑊 just if the above conditions are satisfied when 𝑥𝑥 < 𝑦𝑦 is 
replaced with 𝑥𝑥 < 𝑦𝑦 ∧ 𝑥𝑥 ≠ 𝑦𝑦. 

Note that the Least Element Condition guarantees that if 𝑃𝑃 is a predicate on 𝑊𝑊 (i.e., 𝑃𝑃(𝑥𝑥) →
𝑊𝑊(𝑥𝑥)) then if 𝑃𝑃 is non-empty it has a < least element. 

The following lemma tells us that if 𝑉𝑉 is an initial segment, the relations in 𝑉𝑉′ agree with 𝑉𝑉 
whenever both are defined, every set in 𝑉𝑉′ is available at an ordinal in 𝑉𝑉′ and the ordinals in 𝑉𝑉′ 
are downward closed in 𝑉𝑉. 

Lemma E.1 (Initial Segment Lemma).  Suppose 𝑉𝑉 is an initial segment and the relations 
(set′,ord′,∈ ′, < ′,@′) satisfy the following 

• (∀𝑜𝑜)(ord′(𝑜𝑜) → ord(𝑜𝑜)) 

• (∀𝑢𝑢, 𝑜𝑜 ∣ ord′(𝑢𝑢) ∧ ord′(𝑜𝑜))(𝑢𝑢 < ′𝑜𝑜 ↔ 𝑢𝑢 < 𝑜𝑜) 

• (∀𝑢𝑢, 𝑜𝑜 ∣ ord′(𝑜𝑜))(𝑢𝑢 < 𝑜𝑜 → ord′(𝑢𝑢)) 

• (∀𝑥𝑥)(set′(𝑥𝑥) → set(𝑥𝑥)) 



• (∀𝑥𝑥,𝑦𝑦 ∣ set′(𝑥𝑥) ∧ set′(𝑦𝑦))(𝑥𝑥 ∈ ′𝑦𝑦 ↔ 𝑥𝑥 ∈ 𝑦𝑦) 

• (∀𝑥𝑥 ∣ set′(𝑥𝑥))(∀𝑢𝑢 ∣ ord′(𝑢𝑢))(@′(𝑥𝑥,𝑢𝑢) ↔ @(𝑥𝑥,𝑢𝑢)) 

• (∀𝑥𝑥)(set′(𝑥𝑥) ↔ (∃𝑢𝑢)[ord′(𝑢𝑢) ∧ @′(𝑥𝑥,𝑢𝑢)]) 

then 𝑉𝑉′ ≤ 𝑉𝑉. 

Proof. This fact can be shown fairly straightforwardly by checking through definitions. ■ 

Definition E.3.  A well-order (𝑊𝑊′, < ′) extends a (𝑊𝑊, <), written (𝑊𝑊′, < ′) ≥ (𝑊𝑊, <) if 

• (∀𝑜𝑜)(𝑊𝑊(𝑜𝑜) → 𝑊𝑊′(𝑜𝑜)) 

• (∀𝑜𝑜,𝑢𝑢 ∣ 𝑊𝑊(𝑜𝑜) ∧𝑊𝑊(𝑢𝑢))(𝑜𝑜 < 𝑢𝑢 ↔ 𝑜𝑜 < ′𝑢𝑢) 

• (∀𝑜𝑜 ∣ 𝑊𝑊(𝑜𝑜))(∀𝑢𝑢 < ′𝑜𝑜 ∣ 𝑊𝑊′(𝑢𝑢))(𝑊𝑊(𝑢𝑢)) 

Note that if (𝑊𝑊′, < ′) is a well order and (𝑊𝑊′, < ′) extends (𝑊𝑊, <) then (𝑊𝑊, <) is also a well 
order. 

F  Set Theoretic Mimicry 

I will now describe how to use the familiar formal background of set theory to mimic intended 
truth conditions for statements in a language containing the logical possibility operator ◊ 
alongside usual first order logical vocabulary (where distinct relation symbols 𝑅𝑅1 and 𝑅𝑅2 always 
express distinct relations) as follows. 

A formula 𝜓𝜓 is true relative to a model ℳ ( ℳ ⊨ 𝜓𝜓 ) and an assignment 𝜌𝜌 which 
takes the free variables in 𝜓𝜓 to elements in the domain of ℳ0F

1 just if: 

• 𝜓𝜓 = 𝑅𝑅𝑛𝑛𝑘𝑘(𝑥𝑥1 … 𝑥𝑥𝑘𝑘) and ℳ ⊨ 𝑅𝑅𝑛𝑛𝑘𝑘(𝜌𝜌(𝑥𝑥1), … ,𝜌𝜌(𝑥𝑥𝑘𝑘)). 

• 𝜓𝜓 = 𝑥𝑥 = 𝑦𝑦 and 𝜌𝜌(𝑥𝑥) = 𝜌𝜌(𝑦𝑦). 

• 𝜓𝜓 = ¬𝜙𝜙 and 𝜙𝜙 is not true relative to ℳ, 𝜌𝜌. 

• 𝜓𝜓 = 𝜙𝜙 ∧ 𝜓𝜓 and both 𝜙𝜙 and 𝜓𝜓 are true relative to ℳ,𝜌𝜌. 

• 𝜓𝜓 = 𝜙𝜙 ∨ 𝜓𝜓 and either 𝜙𝜙 or 𝜓𝜓 are true relative to ℳ,𝜌𝜌. 

• 𝜓𝜓 = ∃𝑥𝑥𝜙𝜙(𝑥𝑥) and there is an assignment 𝜌𝜌′ which extends 𝜌𝜌 by assigning a value to an 
additional variable 𝑣𝑣 not in 𝜙𝜙 and 𝜙𝜙[𝑥𝑥/𝑣𝑣] is true relative to ℳ,𝜌𝜌′1F

2. 

                                                      
1 Specifically: a partial function 𝜌𝜌 from the collection of variables in the language of logical 
possibility to objects in ℳ, such that the domain of 𝜌𝜌 is finite and includes (at least) all free 
variables in 𝜓𝜓 

2 As usual (?) 𝜙𝜙[𝑥𝑥/𝑣𝑣] substitutes v for x everywhere where x occurs free in 𝜙𝜙 



• 𝜓𝜓 = ◊ 𝜙𝜙𝑅𝑅1…𝑅𝑅𝑛𝑛  and there is another model ℳ′ which assigns the same tuples to the 
extensions of 𝑅𝑅1 …𝑅𝑅𝑛𝑛 as ℳ and ℳ′ ⊨ 𝜙𝜙.3 

Note that this means that ⊥ is not true relative to any model ℳ and assignment 𝜌𝜌. 

If we ignore the possibility of sentences which demand something coherent but fail to have set 
models because their truth would require the existence of too many objects, we could then 
characterize logical possibility as follows: 

Set Theoretic Approximation: A sentence in the language of logical possibility is true 
(on some interpretation of the quantifier and atomic relation symbols of the language 
of logical possibility) iff it is true relative to a set theoretic model whose domain and 
extensions for atomic relations captures what objects there are and how these atomic 
relations actually apply (according to this interpretation) and the empty assignment 
function 𝜌𝜌. 

G  Natural Deduction System 

Definition G.1 (Natural Deduction For Logical Possibility).  A proof in this system consists of 
inferences in accordance with the following rules. Note that we will abuse notation and call 

(Ass) 
𝛷𝛷 Ass. [n] can be written down on a line n (in any context). This corresponds to making a new 
assumption. 

(FOL) 
𝜙𝜙 FOL (11, … 𝑙𝑙𝑛𝑛) [𝑎𝑎1, … ,𝑎𝑎𝑗𝑗] can be written on line 𝑖𝑖 iff all of the following hold 

• 𝑖𝑖 > 𝑙𝑙1, … 𝑙𝑙𝑛𝑛, 

• 𝑖𝑖, 𝑙𝑙1, … 𝑙𝑙𝑛𝑛 are all in the exactly the same ◊ contexts 

• 𝛷𝛷 is derivable from sentences on lines 11, … 𝑙𝑙𝑛𝑛 via FOL 

• [𝑎𝑎1, … ,𝑎𝑎𝑗𝑗] is the union of all the line numbers cited as assumptions on lines 𝑙𝑙1, … 𝑙𝑙𝑛𝑛. Note 
that if 𝑎𝑎𝑖𝑖 is starred on line 𝑙𝑙𝑗𝑗 then it appears starred here. 

(→I) 
𝛹𝛹 → 𝛷𝛷(𝑚𝑚) → 𝐼𝐼[𝑎𝑎1, … 𝑎𝑎𝑘𝑘] can be written down on a line 𝑛𝑛 > 𝑚𝑚 in a context 𝐶𝐶 iff line 𝑚𝑚 contains 
the sentience 𝛷𝛷 with assumptions [𝑎𝑎1, … 𝑎𝑎𝑘𝑘,𝑎𝑎𝑘𝑘+1] and 𝛹𝛹 is the formula on line 𝑎𝑎𝑘𝑘+1. This 
inference rule corresponds to discharging the assumption (made on line 𝑎𝑎𝑘𝑘+1 that 𝛹𝛹 

                                                      
3 As usual, I am taking □ to abbreviate ¬�¬ 



Logical Axioms 
𝛷𝛷 X can be written down on any line, provided 𝑋𝑋 is the name of a logical axiom schema, and 𝛷𝛷 
is an instance of this axiom schema. 

Logical Axioms 2(shortcut) 
𝛹𝛹 X [𝑎𝑎1, … ,𝑎𝑎𝑛𝑛, 𝑏𝑏1∗, … , 𝑏𝑏𝑚𝑚∗ ] can be written down on line 𝑖𝑖 > 𝑙𝑙 provided 𝑋𝑋 is the name of some 
logical axiom schema which 𝛷𝛷 → 𝛹𝛹 instantiates and 𝛷𝛷 is the sentence on line 𝑙𝑙 with [𝑎𝑎1, … , 𝑎𝑎𝑗𝑗] 
indicated as assumptions. 

Inn ◊ I 
One can indent and write down ◇ ∣ 𝛷𝛷

_
{𝐿𝐿} In ◇𝐼𝐼[𝑛𝑛∗] on any line 𝑛𝑛 iff we have ◊ 𝛷𝛷ℒ  on some line 

𝑚𝑚 < 𝑛𝑛 in some context C, such that any further ◇ contexts entered between lines m and n have 
already been exited. (Doing this amounts to beginning a new Inner ◇ and I will say that one is 
thereby ‘opening’ and entering a new inner ◇ context 𝐶𝐶′, for which 𝐶𝐶 is the immediate parent). 

Importing 
One can write down 𝛷𝛷(𝑚𝑚) Importing 𝑛𝑛 in any line 𝑛𝑛 > 𝑚𝑚 in an Inner ◊ Context 𝐶𝐶, provided that 
𝛷𝛷 is content restricted to the relations {ℒ} held fixed by context 𝐶𝐶, and 𝑚𝑚 is a line in the 
immediate parent context to 𝐶𝐶 with the sentence 𝛷𝛷..4 

Inner ◊ E 
: ◊ℒ 𝛹𝛹 𝑚𝑚,𝑘𝑘 − 𝑙𝑙 Inn◇𝐸𝐸 [𝑎𝑎1, … ,𝑎𝑎𝑛𝑛, 𝑏𝑏1∗, … , 𝑏𝑏𝑚𝑚∗ ] can be written down on a line 𝑛𝑛 > 𝑚𝑚,𝑘𝑘, 𝑙𝑙 in  the 
present context, provided that 

• line 𝑚𝑚 is also in the same context and contains a sentence of the form ◊ 𝛷𝛷ℒ , 

• The] lines 𝑘𝑘 − 𝑙𝑙 belong to an inner diamond context opened on line 𝑘𝑘 from the present 
context by citing line 𝑚𝑚. Furthermore, line 𝑙𝑙 must not belong to any further nested ◊ 
context besides the one opened on line 𝑘𝑘, i.e., only one ◇ context can be exited via this 
rule. 

• line 𝑙𝑙 asserts the sentence 𝛹𝛹 under assumptions [𝑘𝑘1∗, …𝑘𝑘𝑗𝑗∗]. The fact all the 𝑘𝑘𝑖𝑖∗ are starred 
ensures that all [𝑘𝑘1∗, … 𝑘𝑘𝑗𝑗∗] are introduced by Importing or the Diamond introduction rule. 

• 𝑖𝑖 ∈ {𝑎𝑎1, … 𝑎𝑎𝑛𝑛} (𝑖𝑖∗ ∈ {𝑏𝑏1∗, … 𝑏𝑏𝑚𝑚∗ }) just if there is some 𝑘𝑘𝑗𝑗∗ which cites line 𝑙𝑙 as a justification, 
i.e., 𝑙𝑙 occurs in parenthesis on line 𝑘𝑘𝑗𝑗∗ and 𝑖𝑖 (𝑖𝑖∗) is cited as an assumption on line 𝑙𝑙. Note 
that 𝑖𝑖 (𝑖𝑖∗ will always be a line in the current context since the Importing and Inner ◊ I rules 
must cite lines in the parent context. 

                                                      
4 Note this isn’t quite the importing rule, but (as we will see below) you can think of it as justified 
by the fact that you could have conjoined the phi you want to import with the psi in the 
diamond statement which our current diamond context reasons about. 



G.1 Correctness For Natural Deduction 

To see that the above natural deduction system only permits the creation of proofs allowed by 
the official formal system proposed in Chapter 8, we offer the following inductive argument. 

Let 𝛷𝛷𝑖𝑖 be the sentences appearing on line 𝑖𝑖 of the proof with [𝑙𝑙1𝑖𝑖 , … , 𝑙𝑙𝑛𝑛𝑖𝑖
𝑖𝑖 ,𝑘𝑘1𝑖𝑖∗, … ,𝑘𝑘𝑚𝑚𝑖𝑖

𝑖𝑖∗ ] appearing 
on line 𝑖𝑖 as well. Let 𝛤𝛤𝑖𝑖 be the total collection of assumptions under which 𝛷𝛷𝑖𝑖 is asserted, i.e. 
𝛤𝛤𝑖𝑖 = {𝛷𝛷𝑗𝑗 ∣ (∃𝑝𝑝) �𝑗𝑗 = 𝑙𝑙𝑛𝑛𝑝𝑝 ∨ 𝑗𝑗 = 𝑘𝑘𝑚𝑚𝑝𝑝�}. We claim that for all lines 𝑖𝑖 in the proof 𝛤𝛤𝑖𝑖 ⊢ 𝛷𝛷𝑖𝑖. It is 
evident this suffices to prove the desired claim. 

By induction, assume the claim holds for all lines 𝑖𝑖′ < 𝑖𝑖. It is evident the claim also holds for line 
𝑖𝑖 unless 𝑖𝑖 is an instance of In◊E. So suppose 𝑖𝑖 is an instance of In◇E. We now show that 𝛤𝛤𝑖𝑖 
gathers up all the assumptions of lines citing importing or initiating the inner ◇ context and use 
the Proposition B.1 (The Inner Diamond Lemma) to prove the inductive claim. 

By the rules for Inn◊E, we are working inside a Diamond context introduced via Inn◇I on some 
earlier line 𝑖𝑖1. Let 𝛩𝛩 = 𝛷𝛷𝑖𝑖1. By the rules for Inn◇I, there is some prior line 𝑖𝑖0 in the parent 
context to line 𝑖𝑖1 with 𝛷𝛷𝑖𝑖0 = ◊ 𝛩𝛩ℒ  cited as a justification for Inn◇I. Let 𝛤𝛤 = 𝛤𝛤𝑖𝑖0, i.e., the set of 𝛷𝛷𝑗𝑗 
such that line 𝑗𝑗 is listed in brackets (starred or unstared) on line 𝑖𝑖0. By inductive hypothesis we 
have 𝛤𝛤 ⊢ ◊ 𝛩𝛩ℒ . 

By the rules for Inn◊E 𝛷𝛷𝑖𝑖 has the form the form ◊ 𝛹𝛹ℒ  and cites some earlier line 𝑖𝑖𝛹𝛹 as 
justification. Furthermore, the rules for Inn◇E guarantees that the numbers in brackets on line 
𝑖𝑖𝛹𝛹 are all starred. 

Let 𝛤𝛤′ = 𝛤𝛤𝑖𝑖𝛹𝛹 − {𝛩𝛩}. By the inductive hypothesis 𝛤𝛤′,𝛩𝛩 ⊢ 𝛷𝛷. If 𝑗𝑗 is one of the line numbers in 
brackets on line 𝑖𝑖𝛹𝛹 it is starred and thus either 𝑗𝑗 = 𝑖𝑖1 (and 𝛷𝛷𝑖𝑖1 = 𝛩𝛩) or line 𝑗𝑗 was introduced 
into the same context as line 𝑖𝑖𝛹𝛹 by the importing rule. Let 𝚥𝚥̂ be the line cited as a justification 
for line 𝑗𝑗 when 𝑗𝑗 ≠ 𝑖𝑖1. By the rules governing importing 𝚥𝚥̂ occurs in the same context as line 𝑖𝑖 
(the parent context of line 𝑗𝑗), 𝛷𝛷�̂�𝚥 = 𝛷𝛷𝑗𝑗 and 𝛷𝛷𝑗𝑗 is content restricted to ℒ. Hence every sentence 
in 𝛤𝛤′ is content restricted to ℒ. 

Thus, by the Proposition B.1 (The Inner Diamond Lemma)  it follows that 𝛤𝛤,𝛤𝛤′ ⊢ ◊ 𝛩𝛩ℒ . 

By the rule for Inn◊E, we have 𝛤𝛤𝑖𝑖 ⊇ 𝛤𝛤 = 𝛤𝛤𝑖𝑖0. If 𝛶𝛶 ∈ 𝛤𝛤′ then 𝛶𝛶 = 𝛷𝛷𝑗𝑗 for some 𝑗𝑗 listed in brackets 
on line 𝑖𝑖𝛹𝛹. By the rule for Inn◇E we have 𝛤𝛤𝑖𝑖 ⊇ 𝛤𝛤�̂�𝚥 where 𝛷𝛷𝑗𝑗 = 𝛷𝛷�̂�𝚥. By the inductive hypothesis, 
𝛤𝛤�̂�𝚥 ⊢ 𝛷𝛷�̂�𝚥 = 𝛶𝛶. Hence, 𝛤𝛤𝑖𝑖 ⊢ 𝛤𝛤 ∪ 𝛤𝛤′ and by transitivity it follows that 𝛤𝛤𝑖𝑖 ⊢ � 𝛩𝛩ℒ = 𝛷𝛷𝑖𝑖 as desired. 

H   Useful Corollaries to Axioms 

H.1 More Basic Box Lemmas 

Here are more □ versions of basic ◊ axioms and lemmas above. 

Lemma H.1 (□ Ignoring).  If 𝜃𝜃 is content-restricted to a list of relations ℒ,ℛ which doesn’t 
include any relations in list 𝒮𝒮, then □ 𝜃𝜃ℒ,𝒮𝒮 → □ 𝜃𝜃ℒ . 



Proof. Assume the antecedent, i.e., ¬ ◊ ¬ℒ,𝒮𝒮 𝜃𝜃. ◇ Ignoring ( Axiom 8.3) tells us that ◊ ¬𝜃𝜃ℒ →
 ◊ ¬𝜃𝜃ℒ,𝒮𝒮 . So we can infer ¬ ◊ ¬𝜃𝜃ℒ . ■ 

 

Lemma H.2 (Box Closure).  If 𝛷𝛷 ⊢ 𝛹𝛹 then □ 𝛷𝛷ℒ → □ 𝛹𝛹ℒ  

Proof. Note that by Lemma B.3 (Box Elimination) 

□ 𝛷𝛷ℒ ⊢ 𝛹𝛹 

The conclusion now follows by Lemma B.2 (Box Introduction) ■ 

Lemma H.3 (Box Importing).  If 𝛷𝛷 is content restricted to ℒ then 𝛷𝛷 ∧ □ 𝛹𝛹ℒ → □ 𝛷𝛷ℒ ∧ 𝛹𝛹 

Proof. Infer 𝛹𝛹 from □ 𝛹𝛹ℒ  via Lemma B.3 (Box Elimination) thus 

𝛷𝛷 ∧ □ 𝛹𝛹ℒ ⊢ 𝛷𝛷 ∧ 𝛹𝛹 

The conclusion now follows by Lemma B.2 (Box Introduction) (as 𝛷𝛷 is content restricted to ℒ). ■ 

Lemma H.4 (Expanded □ Elimination ).  Suppose 𝑅𝑅1, … ,𝑅𝑅𝑛𝑛 are distinct relations not in ℒ and 
𝑅𝑅′1, … ,𝑅𝑅′ are (potentially non-distinct) relations (potentially in ℒ) of the same arity as 𝑅𝑅1, … ,𝑅𝑅𝑛𝑛 
then 

□ 𝛩𝛩ℒ → 𝛩𝛩[𝑅𝑅1/𝑅𝑅′1 …𝑅𝑅𝑛𝑛/𝑅𝑅′𝑛𝑛] 

Proof. Provided 𝑅𝑅′1, … ,𝑅𝑅′𝑛𝑛 don’t appear in 𝛩𝛩, this claim can be derived simply by using 
Relabeling ( Axiom 8.5) to get ¬ ◊ ¬𝛩𝛩 ↔ ¬ ◊ ¬𝛩𝛩[𝑅𝑅1/𝑅𝑅′1 …𝑅𝑅𝑛𝑛/𝑅𝑅′𝑛𝑛] ℒ  ℒ and hence 
□ 𝛩𝛩ℒ [𝑅𝑅1/𝑅𝑅′1 …𝑅𝑅𝑛𝑛/𝑅𝑅′𝑛𝑛]  then applying Lemma B.3 ( Box Elimination) . We can also use 
Relabeling to go from □ 𝛩𝛩ℒ   to □ 𝛩𝛩ℒ [𝑅𝑅1∗/𝑅𝑅′1∗ …𝑅𝑅𝑛𝑛∗/𝑅𝑅′𝑛𝑛∗]  making all of the replacements 



𝑅𝑅𝑖𝑖/𝑅𝑅′𝑖𝑖 for  𝑅𝑅′𝑖𝑖  that don’t occur in 𝛩𝛩. Thus, to prove the claim, it is enough to prove it on the 
assumption that all of 𝑅𝑅′1, … ,𝑅𝑅′𝑛𝑛 do appear in 𝛩𝛩4F

5. 

Suppose this claim fails. In this case we have ¬𝛩𝛩[𝑅𝑅1/𝑅𝑅′1 …𝑅𝑅𝑛𝑛/𝑅𝑅′𝑛𝑛]. Let 𝑅𝑅″1, … ,𝑅𝑅″𝑛𝑛 be unused 
relations of the same arity as 𝑅𝑅′1, … ,𝑅𝑅′𝑛𝑛. Now repeatedly enter Inner Diamond contexts and 
apply Simple Comprehension ( Axiom 8.4) to infer 

◊ …ℒ ◊ℒ [¬𝛩𝛩[𝑅𝑅1/𝑅𝑅′1 …𝑅𝑅𝑛𝑛/𝑅𝑅′𝑛𝑛] ∧
(∀𝑧𝑧1���⃗ )(𝑅𝑅″1(𝑧𝑧1���⃗ ) ↔ 𝑅𝑅′1(𝑧𝑧1���⃗ )) ∧ …∧ (∀𝑧𝑧𝑛𝑛����⃗ )(𝑅𝑅″𝑛𝑛(𝑧𝑧𝑛𝑛����⃗ ) ↔ 𝑅𝑅′𝑛𝑛(𝑧𝑧𝑛𝑛����⃗ ))] 

Entering all these contexts (i.e., applying Proposition B.1 (Inner Diamond) 𝑛𝑛-times) and applying 
Axiom 8.6 (Importing) in each, we may infer that □ 𝛩𝛩ℒ  applies in this context. Now, as 
𝑅𝑅″1, … ,𝑅𝑅″𝑛𝑛 don’t appear in 𝛩𝛩, we may apply the version of the lemma already verified above 
and then use the equivalence of these relations to the relations 𝑅𝑅′1, … ,𝑅𝑅′𝑛𝑛 to derive a 
contradiction, which we may then export to complete the proof. Note that we omit the formal 
proof that if 𝑅𝑅′𝑖𝑖 and 𝑅𝑅″𝑖𝑖 hold of the same tuples then 𝛩𝛩[𝑅𝑅1/𝑅𝑅′1 …𝑅𝑅𝑛𝑛/𝑅𝑅′𝑛𝑛] ↔ 𝛩𝛩[𝑅𝑅1/𝑅𝑅″1 …𝑅𝑅𝑛𝑛/
𝑅𝑅″𝑛𝑛]. Note that in cases where 𝛩𝛩 includes nested possibility claims, this argument requires 
either a complex inductive argument or use of Theorem I.1 (Isomorphism Lemma) which is 
proved (without use of this result) in below (we use Simple Comprehension ( Axiom 8.4) again 
to introduce an identity relation 𝑍𝑍(𝑥𝑥,𝑦𝑦) and argue that 𝑅𝑅′1, …𝑅𝑅′𝑛𝑛 ≅𝑍𝑍 𝑅𝑅″1, …𝑅𝑅″𝑛𝑛 and then use 
the Theorem I.1 (Isomorphism Lemma) to infer 𝛩𝛩[𝑅𝑅1/𝑅𝑅′1 …𝑅𝑅𝑛𝑛/𝑅𝑅′𝑛𝑛] ↔ 𝛩𝛩[𝑅𝑅1/𝑅𝑅″1 …𝑅𝑅𝑛𝑛/
𝑅𝑅″𝑛𝑛]). ■ 

H.2 Box and Diamond Simplification Lemmas 

Lemma H.5 (Box Simplification).  □ (ℒ0 𝜓𝜓 → □ (ℒ1 𝜙𝜙 → 𝜃𝜃)) → □ (ℒ0 𝜓𝜓 ∧ 𝜙𝜙 → 𝜃𝜃) 

Proof. Assume □ (ℒ0 𝜓𝜓 → □ (ℒ1 𝜙𝜙 → 𝜃𝜃)). We now prove 𝜓𝜓 ∧ 𝜙𝜙 → 𝜃𝜃 follows from this 
assumption. 

Assume 𝜓𝜓 ∧ 𝜙𝜙. By Lemma 4.4 (Box Elimination) we may infer 𝜓𝜓 → □ (ℒ1 𝜙𝜙 → 𝜃𝜃) and thus □ℒ1
(𝜙𝜙 → 𝜃𝜃). By another application of Box Elimination and modus ponens, we infer 𝜃𝜃. Hence, we 
have 

□ (ℒ0 𝜓𝜓 → □ (ℒ1 𝜙𝜙 → 𝜃𝜃)) ⊢ 𝜓𝜓 ∧ 𝜙𝜙 → 𝜃𝜃 

But since the sentence on the left is content restricted to ℒ0 applying Lemma 4.3 (Box 
Introduction) gives us 

□ (ℒ0 𝜓𝜓 → □ (ℒ1 𝜙𝜙 → 𝜃𝜃)) ⊢ □ (ℒ0 𝜓𝜓 ∧ 𝜙𝜙 → 𝜃𝜃) 

which trivially entails the desired conclusion. ■ 

Or, alternately, we can present the proof as follows. 

                                                      
5 Note that no relation can both appear in 𝛩𝛩 and not appear in 𝛩𝛩, allowing us to safely split the 
substitution into two pieces even if some of the substituted relations are repeated. 



 

Lemma H.6 (Diamond Simplification).  If 𝛹𝛹 is content restricted to ℒ𝛹𝛹 ⊃ ℒ, 𝛷𝛷 is content 
restricted to ℒ𝛷𝛷 and ℒ𝛹𝛹 ∩ ℒ𝛷𝛷 ⊂ ℒ′ then 

◊ (𝛹𝛹 ∧ ◊ 𝛷𝛷ℒ′ )ℒ → ◊ (ℒ 𝛹𝛹 ∧ 𝛷𝛷) 

Or, equivalently, □ (ℒ0 𝜓𝜓 ∧ 𝜙𝜙 → 𝜃𝜃) → □ (ℒ0 𝜓𝜓 → □ (ℒ1 𝜙𝜙 → 𝜃𝜃)) 

Proof. Note that the equivalently statement is merely the contraposative of the above claim 
(using the definition of □ as ¬ ◊ ¬) taking 𝛷𝛷 to be 𝜙𝜙 ∧ ¬𝜃𝜃 and 𝛹𝛹 to be 𝜓𝜓. Thus it’s enough to 
prove the main claim. 

Consider an arbitrary 𝛷𝛷,𝛹𝛹,ℒ,ℒ′,ℒ𝛷𝛷,ℒ𝛷𝛷  satisfying the assumptions above. 

◊ (𝛹𝛹 ∧ ◊ 𝛷𝛷ℒ′ )ℒ  

Enter this ◊ℒ  context. We know that 𝛷𝛷  and ◊ 𝛷𝛷ℒ′ . As 𝛷𝛷 is content restricted to ℒ𝛷𝛷, by ◇ 
Ignoring ( Axiom 8.3) we can add to the subscript of ◊ 𝛷𝛷ℒ′  any relations that don’t occur in ℒ𝛷𝛷. 
By our assumption that ℒ𝛹𝛹 ∩ ℒ𝛷𝛷 ⊂ ℒ′, all relations in ℒ𝛹𝛹 but not already in ℒ′ don’t occur in 
ℒ𝛷𝛷. So we can add these relations to the subscript to get ◊ 𝛷𝛷ℒ𝛹𝛹∪ℒ′ . And as 𝛹𝛹 is content 
restricted to ℒ𝛹𝛹, we can use Importing (Axiom 8.6) to infer that ◊ (ℒ1∪ℒ𝛹𝛹 𝛹𝛹 ∧ 𝛷𝛷). Hence by ◊ 
Ignoring ( Axiom 8.3) and ℒ𝛹𝛹 ⊃ ℒ, we have ◊ (ℒ 𝛹𝛹 ∧ 𝛷𝛷). 

So leaving this ◊ℒ  context, (completing our Inner Diamond Proposition B.1 argument) we have 

◊ (ℒ ◊ (ℒ 𝛹𝛹 ∧ 𝛷𝛷)) 

Finally, we can apply Axiom 8.2 (Diamond Elimination) to conclude ◊ (ℒ 𝛹𝛹 ∧ 𝛷𝛷) as the latter 
sentence is content restricted to ℒ). 



 ■ 

H.3 Multiple Definitions Lemmas 

Often we will want to apply several instances of Simple Comprehension ( Axiom 8.4), 
Proposition 8.1 (Simplified Choice), Axiom 8.9 (Modal Comprehension) or Axiom 8.12 (Choice) in 
sequence to specify the application of a series of relations 𝑅𝑅1. . .𝑅𝑅𝑛𝑛. The multiple definitions 
lemma enables us to do this at once, without entering a new ◊ context for each deployment of 
one of the above principles. 

Lemma H.7 (Multiple Definitions Lemma).  Suppose that 𝛹𝛹 holds and that, for each 𝑖𝑖 with 0 ≤
𝑖𝑖 ≤ 𝑛𝑛, 𝛷𝛷𝑖𝑖 is such that ◊ 𝛷𝛷𝑖𝑖ℒ,𝑅𝑅0,…,𝑅𝑅𝑖𝑖−1  is the conclusion got by applying  Axiom 8.4 (Simple 
Comprehension), Proposition 8.1 (Simplified Choice), Axiom 8.9(Modal Comprehension) or 
Axiom 8.12 (Choice) to specify the possible application of some a relation 𝑅𝑅𝑖𝑖 (so 𝑅𝑅𝑖𝑖 doesn’t 
appear in 𝛹𝛹 or in any 𝛷𝛷𝑗𝑗 with 𝑗𝑗 < 𝑖𝑖) and 𝛹𝛹 ∧ 𝛷𝛷0 ∧ …𝛷𝛷𝑖𝑖−1 entails the antecedent of the 
respective lemmas. Then ◊ (𝛹𝛹ℒ ∧ 𝛷𝛷0 ∧ …𝛷𝛷𝑛𝑛). 

Proof. A trivial induction (letting 𝛹𝛹 in Simple Comprehension ( Axiom 8.4), Proposition 8.1 
(Simplified Choice), Axiom 8.9 (Modal Comprehension) or Axiom 8.12 (Choice) be 𝛹𝛹 ∧ 𝛷𝛷0 ∧ …∧
𝛷𝛷𝑖𝑖−1) lets us conclude that 

◊ℒ ◊ …ℒ,𝑅𝑅0 ◊ (𝛹𝛹 ∧ 𝛷𝛷0 ∧ …𝛷𝛷𝑛𝑛)ℒ,𝑅𝑅0,…,𝑅𝑅𝑛𝑛−1  

 

Applying Lemma B.8 (Diamond Collapsing)  𝑛𝑛 times yields the desired result. ■ 

To see how this lemma applies, suppose 𝑃𝑃 is a non-empty two place relation and we wish to 
consider the possibility (◊𝑃𝑃 ) that some predicate 𝑄𝑄 selects a single 𝑥𝑥 such that (∃𝑦𝑦)𝑃𝑃(𝑥𝑥, 𝑦𝑦), 
e.g., for a proof by contradiction. In this example Lemma H.7 (Multiple Definitions) lets us pack 
together successive applications of: Simple Comprehension (Axiom 8.4) to define 𝑂𝑂(𝑥𝑥) to hold 
iff (∃𝑦𝑦)𝑃𝑃(𝑥𝑥,𝑦𝑦) and then  Proposition 8.1 (Simple Choice) to define 𝑄𝑄 to apply to a unique 
element of 𝑂𝑂. 



(∃𝑥𝑥)(∀𝑦𝑦)[𝑃𝑃(𝑦𝑦, 𝑥𝑥) → (∀𝑧𝑧)(𝑃𝑃(𝑦𝑦, 𝑧𝑧) → 𝑧𝑧 = 𝑥𝑥)] 

We could now simply say: As (∃𝑥𝑥)(∃𝑦𝑦)𝑃𝑃(𝑥𝑥, 𝑦𝑦), by the Lemma H.7 (Multiple Definitions) 
together with Axiom 8.4 (Simple Comprehension) and  Proposition 8.1 (Simplified Choice)  we 
can (◊𝑃𝑃 ) have (∃𝑥𝑥)(∃𝑦𝑦)𝑃𝑃(𝑥𝑥,𝑦𝑦),  while 𝑂𝑂 applies to all 𝑥𝑥 such that (∃𝑦𝑦)𝑃𝑃(𝑥𝑥,𝑦𝑦) and 𝑄𝑄 applies to 
a unique 𝑥𝑥 such that (∃𝑦𝑦)𝑃𝑃(𝑥𝑥,𝑦𝑦).  Indeed, when 𝑂𝑂 isn’t itself relevant to further argument, we 
will sometimes omit mention of it and just say that: we can (◊𝑃𝑃 ) have (∃𝑥𝑥)(∃𝑦𝑦)𝑃𝑃(𝑥𝑥,𝑦𝑦),  remain 
true while 𝑄𝑄 applies to a single object 𝑥𝑥 such that (∃𝑦𝑦)𝑃𝑃(𝑥𝑥,𝑦𝑦). 

 

 

H.4 Singleton Lemma 

By  Possible Powerset (Axiom 8.11), it’s possible to supplement the objects satisfying Ext(ℒ) 
with a disjoint collection of objects coding all possible classes of elements from Ext(ℒ). 

The following lemma verifies the simple fact that every object 𝑥𝑥 satisfying Ext(ℒ) has a unique 
singleton. First, however, we adopt the following notation. 

Definition H.1 (Singleton).  Let {𝑥𝑥}𝐶𝐶  denote the element satisfying 𝐶𝐶 containing only 𝑥𝑥. In 
particular, let 𝑦𝑦 = {𝑥𝑥}𝐶𝐶  abbreviate the formula 𝑥𝑥 ∈

𝐶𝐶
𝑦𝑦 ∧ (∀𝑧𝑧)(𝑧𝑧 ∈

𝐶𝐶
𝑦𝑦 → 𝑧𝑧 = 𝑥𝑥) 

Lemma H.8 (Singleton Lemma).  If 𝒞𝒞(𝐶𝐶,∈𝐶𝐶 ,Ext(ℒ)) then (∀𝑥𝑥 ∣ Ext(ℒ)(𝑥𝑥))(∃!𝑦𝑦 ∣ 𝑦𝑦 = {𝑥𝑥}𝐶𝐶) 

Or, equivalently, the map from 𝑥𝑥 to {𝑥𝑥} is functional (note this doesn’t imply that the map must 
be given by some relation). 

Proof. The uniqueness claim is immediate from the extensionality clause in the definition of 
𝒞𝒞(𝐶𝐶,∈𝐶𝐶 ,Ext(ℒ)). We thus need only prove the existence claim, i.e. 

(∀𝑥𝑥 ∣ Ext(ℒ)(𝑥𝑥))(∃𝑦𝑦 ∣ 𝑦𝑦 = {𝑥𝑥}𝐶𝐶) 

Let ℒ′ be ℒ ∪ {𝐶𝐶,∈𝐶𝐶 ,𝐹𝐹}. 

Suppose the claim fails for some 𝑥𝑥. By the Multiple Definitions Lemma ( Lemma H.7) (packing 
together an application of Simple Comprehension ( Axiom 8.4) and Proposition 8.1 (Simplified 
Choice), it is possible (◊ℒ′ ) for 𝒞𝒞(𝐶𝐶,∈𝐶𝐶 ,ℒ) to remain true while 𝑄𝑄 applies to a unique 𝑥𝑥 
witnessing this failure. 

Enter this (◊ℒ′ ) context. By the fatness condition in the definition of 𝒞𝒞 (with respect to the 
predicate 𝑄𝑄), we can derive the existence of {𝑥𝑥}𝑄𝑄 giving us this contradiction. Exporting the 
contradiction via Axiom 8.2 (Diamond Elimination) yields the desired result. ■ 



  I Isomorphism Theorem 

In this section we will prove a generalization of the following, very intuitive, principle. If 
⟨𝑅𝑅1, …𝑅𝑅𝑚𝑚⟩ ≅ ⟨𝑅𝑅1′, …𝑅𝑅𝑚𝑚; ⟩ and 𝛷𝛷 is a sentence about ⟨𝑅𝑅1, …𝑅𝑅𝑚𝑚⟩ then it holds iff 
𝛷𝛷[𝑅𝑅1/𝑅𝑅′1, … ,𝑅𝑅𝑚𝑚/𝑅𝑅′𝑚𝑚] holds. We formalize this as follows. 

Theorem I.1 (Isomorphism Theorem).  Suppose that 

• ⟨𝑅𝑅1, … ,𝑅𝑅𝑚𝑚⟩ ≅𝑓𝑓 ⟨𝑅𝑅1′, … ,𝑅𝑅𝑚𝑚′⟩ 

• 𝜙𝜙 is content restricted to 𝑅𝑅1, … ,𝑅𝑅𝑚𝑚 

• Each6 𝑅𝑅′𝑖𝑖 is either identical to 𝑅𝑅𝑖𝑖 or is distinct from all 𝑅𝑅𝑖𝑖 and doesn’t appear in 𝜙𝜙. 

• 𝑓𝑓 doesn’t appear in 𝜙𝜙 and 𝑓𝑓 isn’t identical to any 𝑅𝑅𝑖𝑖 or 𝑅𝑅′𝑖𝑖  

• 𝜙𝜙′ = 𝜙𝜙[𝑅𝑅1/𝑅𝑅′1, … ,𝑅𝑅𝑚𝑚/𝑅𝑅′𝑚𝑚] 

then 
(∀𝑎𝑎1, … ,𝑎𝑎𝑛𝑛 ∣ Ext(𝑅𝑅1, … ,𝑅𝑅𝑚𝑚)(𝑎𝑎1) ∧ … Ext(𝑅𝑅1, … ,𝑅𝑅𝑚𝑚)(𝑎𝑎𝑛𝑛))

𝜙𝜙(𝑎𝑎1, … ,𝑎𝑎𝑛𝑛) ↔ 𝜙𝜙′(𝑓𝑓(𝑎𝑎1), … ,𝑓𝑓(𝑎𝑎𝑘𝑘))  

We will prove this lemma inductively7. The main difficulty in doing this will be showing the truth 
of the claim for ◊ 𝜓𝜓𝐿𝐿  statements, given it holds for all formulas with fewer logical possibility 
operators than ◊ 𝜓𝜓𝐿𝐿 . If we could assume that 𝜓𝜓 was content restricted to some list of relations, 
the proof would be relatively straightforward. But the fact that ◊ 𝜓𝜓𝐿𝐿  is content restricted 
doesn’t guarantee that 𝜓𝜓 is. For ◊ 𝜙𝜙𝐿𝐿  can be content restricted to some list of relations 𝑅𝑅1 …𝑅𝑅𝑛𝑛 
(and hence satisfy the assumptions of the lemma) in cases where the sentence 𝜙𝜙 is not content 
restricted to any list of relations, so our inductive hypothesis tells us nothing about it directly. 

Accordingly, I will first prove the following lemma, which shows that we can associate every 
non-content restricted sentence 𝛷𝛷 with a content restricted version of this sentence 𝛷𝛷� such 
that ⊢ ◊ 𝛷𝛷ℒ ↔ ◊ 𝛷𝛷�ℒ . Our strategy here will be to define 𝛷𝛷� to be the result of restricting all 
quantifiers appearing at the top level of 𝛷𝛷 to some new predicate 𝑈𝑈 (plus an additional 
technical assumption). We then argue that if ◊ 𝛷𝛷ℒ  (or ◊ 𝛷𝛷�ℒ ) it is also possible that 𝛷𝛷 (𝛷𝛷�) obtains 
and everything satisfies 𝑈𝑈, allowing us to infer the possibility of 𝛷𝛷� (𝛷𝛷). 

Lemma I.1 (Content Restricted Equivalent Lemma).  Let 𝛷𝛷 be a sentence in the language of 
logical possibility, ℒ a list of relations, 𝑈𝑈 a predicate not occurring in 𝛷𝛷 or ℒ, and ℒ𝛷𝛷 the set of 
relations appearing at the top level in 𝛷𝛷 (i.e., without being enclosed in any other ◊ operator, 
where relations subscripted by top level ◇ operators don’t count as enclosed). Then there is a 
sentence 𝛷𝛷�𝑈𝑈 such that 

1. 𝛷𝛷�𝑈𝑈 is (explicitly) content restricted to ℒ𝛷𝛷 ∪ {𝑈𝑈} ∪ ℒ 

                                                      
6 Furthermore, we implicitly assume that the 𝑅𝑅𝑖𝑖 are distinct relations as well as the 𝑅𝑅′𝑖𝑖. 

7 I presented an informal version of this proof in [Berry 2015]. 



2.  (Equivalence) ◊ 𝛷𝛷�𝑈𝑈ℒ ↔ ◊ 𝛷𝛷ℒ  is a theorem (in the system used in this book). 

3. (Same Depth) 𝛷𝛷�𝑈𝑈 contains the same number of ◊ operators as 𝛷𝛷 does.  

4.  If 𝑅𝑅′1, …𝑅𝑅′𝑙𝑙,𝑈𝑈′ are distinct relations of the same arity as 𝑅𝑅1, … ,𝑅𝑅𝑙𝑙,𝑈𝑈 not occurring in 𝛷𝛷 
nor equal to any 𝑅𝑅𝑖𝑖 or to 𝑈𝑈 then 𝛷𝛷�𝑈𝑈[𝑅𝑅1/𝑅𝑅′1, …𝑅𝑅𝑙𝑙/𝑅𝑅′𝑙𝑙,𝑈𝑈/𝑈𝑈′] = (𝛷𝛷[𝑅𝑅1/𝑅𝑅′1, …𝑅𝑅𝑙𝑙/𝑅𝑅′𝑙𝑙])�

𝑈𝑈′ 

Proof. Let 

𝛷𝛷�𝑈𝑈 = 𝛷𝛷𝑈𝑈 ∧ (∀𝑥𝑥 ∣ Ext(ℒ𝛷𝛷,ℒ)(𝑥𝑥))(𝑈𝑈(𝑥𝑥)) ∧ (∃𝑥𝑥)𝑈𝑈(𝑥𝑥) 

where 𝛷𝛷𝑈𝑈 is formed from 𝛷𝛷 by taking all quantifiers appearing outside of any □ or ◊ operator 
and restricting them to 𝑈𝑈, i.e., (∀𝑥𝑥)𝜃𝜃 becomes (∀𝑥𝑥)(𝑈𝑈(𝑥𝑥) → 𝜃𝜃(𝑥𝑥)) and (∃𝑥𝑥)𝜃𝜃 becomes 
(∃𝑥𝑥)(𝑈𝑈(𝑥𝑥) ∧ 𝜃𝜃). We leave the formal inductive statement of this operation to the reader. 

Note the obvious fact (provable by an induction on formula complexity which we omit) that if 
every object satisfies 𝑈𝑈 then restricting quantifiers to 𝑈𝑈 makes no difference to the truth of a 
claim, i.e., (∀𝑥𝑥)𝑈𝑈(𝑥𝑥) → (𝛷𝛷𝑈𝑈 ↔ 𝛷𝛷). 

It is evident by the definition of Content Restriction (Definition 7.2) that 𝛷𝛷�𝑈𝑈 is content restricted 
to ℒ𝛷𝛷 ∪ {𝑈𝑈} ∪ ℒ, giving us clause 1 above. Both clauses 3 and 4 are obvious from the 
construction of 𝛷𝛷�𝑈𝑈. So we must only demonstrate that ◊ 𝛷𝛷�𝑈𝑈ℒ ↔  ◊ 𝛷𝛷ℒ  

(→) Suppose ◊ 𝛷𝛷�𝑈𝑈ℒ . Enter this ◊ℒ  context. As 

(∀𝑥𝑥 ∣ Ext(ℒ𝛷𝛷,ℒ)(𝑥𝑥))(𝑈𝑈(𝑥𝑥)) ∧ (∃𝑥𝑥)𝑈𝑈(𝑥𝑥) 

we can apply Axiom 8.8 (Cutback) to infer ◊ (ℒ𝛷𝛷,ℒ,𝑈𝑈 ∀𝑥𝑥)(𝑈𝑈(𝑥𝑥)). Enter this ◊  ℒ𝛷𝛷,ℒ,𝑈𝑈 context. We 
can import 𝛷𝛷�𝑈𝑈, by the fact, noted above, that it is content restricted to ℒ𝛷𝛷,𝑈𝑈. This gives us 𝛷𝛷𝑈𝑈 
and as (∀)𝑈𝑈(𝑥𝑥) → (𝛷𝛷𝑈𝑈 ↔ 𝛷𝛷) is a theorem we can infer 𝛷𝛷. Leaving both ◇ contexts lets us 
infer ◊ ◊ 𝛷𝛷 ℒ𝛷𝛷,ℒ,𝑈𝑈ℒ  which, by Diamond Collapsing ( Lemma B.4), gives us ◊ 𝛷𝛷ℒ . 

(←). Suppose ◊ 𝛷𝛷ℒ . Enter this ◊ℒ  context. As 𝑈𝑈 doesn’t occur in 𝛷𝛷 or ℒ, by Simple 
Comprehension ( Axiom 8.4) we can derive 

◊ 𝛷𝛷ℒ ∧ (∀𝑥𝑥)(𝑈𝑈(𝑥𝑥) ↔ 𝑥𝑥 = 𝑥𝑥) 

Entering this ◊ℒ  context we can infer (∀𝑥𝑥 ∣ Ext(ℒ𝛷𝛷 ∪ ℒ)(𝑥𝑥))(𝑈𝑈(𝑥𝑥)) and as ⊢ (∀)𝑈𝑈(𝑥𝑥) →
(𝛷𝛷𝑈𝑈 ↔ 𝛷𝛷) we may infer 𝛷𝛷𝑈𝑈. Lastly, by first order logic we can derive (∃𝑥𝑥)(𝑥𝑥 = 𝑥𝑥) and hence 
(∃𝑥𝑥)(𝑈𝑈(𝑥𝑥)), giving us all the conjuncts of 𝛷𝛷�𝑈𝑈. Leaving both ◇ contexts/closing both inner ◇ 
arguments gives us ◊ℒ ◊ℒ 𝛷𝛷�𝑈𝑈. So applying Diamond Collapsing ( Lemma B.8) gives us ◊ 𝛷𝛷�𝑈𝑈ℒ  as 
desired. ■ 

We will also need one more lemma, which lets us specify logically possible extensions for new 
relations 𝑃𝑃1′, … ,𝑃𝑃𝑛𝑛′, so that an isomorphism between some original structures ⟨𝑅𝑅1, …𝑅𝑅𝑙𝑙⟩ and 
⟨𝑅𝑅′1, …𝑅𝑅′𝑙𝑙⟩ can be extended to an isomorphism between the larger structures 
⟨𝑅𝑅1, …𝑅𝑅𝑙𝑙,𝑃𝑃1, … ,𝑃𝑃𝑛𝑛⟩ and ⟨𝑅𝑅′1, …𝑅𝑅′𝑙𝑙,𝑃𝑃′1, … ,𝑃𝑃′𝑛𝑛⟩. 



Lemma I.2 (Isomorphism Extension Lemma).  Suppose that ⟨𝑅𝑅1, …𝑅𝑅𝑚𝑚⟩ ≅𝑓𝑓 ⟨𝑅𝑅′1, …𝑅𝑅′𝑚𝑚⟩ all 𝑅𝑅𝑖𝑖, 
𝑃𝑃𝑖𝑖 ,𝑅𝑅′𝑖𝑖  are in ℒ, and 𝑔𝑔 and the 𝑃𝑃′1, …𝑃𝑃′𝑛𝑛 are ‘fresh’ relations distinct from all ℒ, 𝑓𝑓 and each 

other. Then 
◊ [ℒ,𝑓𝑓 ⟨𝑅𝑅1, …𝑅𝑅𝑚𝑚,𝑃𝑃1, … ,𝑃𝑃𝑛𝑛⟩ ≅𝑔𝑔 ⟨𝑅𝑅′1, …𝑅𝑅′𝑚𝑚,𝑃𝑃′1, … ,𝑃𝑃′𝑛𝑛⟩ ∧

�∀𝑥𝑥 ∣∣ 𝐸𝐸𝑥𝑥𝐸𝐸(𝑅𝑅1 …𝑅𝑅𝑚𝑚)(𝑥𝑥) ��𝑓𝑓(𝑥𝑥) = 𝑔𝑔(𝑥𝑥)�
 

Proof. Suppose that the conditions of the lemma are satisfied. By the Possible Powerset axiom ( 
Axiom 8.11) we have 

◊ 𝒞𝒞ℒ,𝑓𝑓 (𝐶𝐶,∈
𝐶𝐶

,Ext(𝑅𝑅1, … ,𝑅𝑅𝑚𝑚,𝑅𝑅′1, … ,𝑅𝑅′𝑚𝑚,𝑃𝑃1, …𝑃𝑃𝑛𝑛))]            (𝐼𝐼1) 

Enter this ◊ℒ,𝑓𝑓  context. 

Recall that 𝑦𝑦 = {𝑥𝑥}𝐶𝐶  abbreviates 𝑥𝑥 ∈𝐶𝐶 𝑦𝑦 ∧ (∀𝑧𝑧)(𝑧𝑧 ∈𝑐𝑐 𝑦𝑦 → 𝑧𝑧 = 𝑥𝑥). And by the Lemma H.8 {𝑥𝑥}𝐶𝐶  
is functional, 1-1 and defined on all of Ext(𝑅𝑅1, … ,𝑅𝑅𝑚𝑚,𝑅𝑅′1, … ,𝑅𝑅′𝑚𝑚,𝑃𝑃1, …𝑃𝑃𝑛𝑛). 

By Axiom 8.4 (Simple Comprehension) and the Lemma H.7 (Multiple Definitions) we can infer 
that it is logically possible(◊ℒ,𝑓𝑓,𝐶𝐶,∈𝐶𝐶 ) to have the interior of (I1), which we know to hold true in 
our current context, remain true while defining both 𝑔𝑔 and 𝑃𝑃′𝑖𝑖 for 1 ≤ 𝑖𝑖 ≤ 𝑚𝑚 as follows 

𝑔𝑔(𝑥𝑥) = �
𝑓𝑓(𝑥𝑥)  if Ext(𝑅𝑅1, …𝑅𝑅𝑚𝑚)(𝑥𝑥)
{𝑥𝑥}𝐶𝐶  otherwise 

𝑃𝑃′𝑖𝑖(𝑔𝑔(𝑥𝑥1), … ,𝑔𝑔(𝑥𝑥𝑘𝑘𝑖𝑖)) ↔ 𝑃𝑃𝑖𝑖(𝑥𝑥1, … 𝑥𝑥𝑘𝑘𝑖𝑖)
 

Enter this ◊ℒ,𝑓𝑓,𝐶𝐶,∈𝐶𝐶  context. We know 𝑔𝑔 is 1 − 1 on Ext(𝑅𝑅1, … ,𝑅𝑅𝑚𝑚,𝑃𝑃1, …𝑃𝑃𝑛𝑛) by the fact that 𝑓𝑓 
and the singleton relation are 1 − 1 and there are no 𝑥𝑥,𝑦𝑦 with {𝑥𝑥}𝐶𝐶 = 𝑓𝑓(𝑦𝑦) as the classes 
introduced by 𝒞𝒞(𝐶𝐶,∈𝐶𝐶 ,𝐹𝐹) are disjoint from all the objects satisfying 
Ext(𝑅𝑅1, … ,𝑅𝑅𝑚𝑚,𝑅𝑅′1, … ,𝑅𝑅′𝑚𝑚,𝑃𝑃1, …𝑃𝑃𝑛𝑛). 

We know 𝑔𝑔 is functional and defined on all of Ext(𝑅𝑅1, … ,𝑅𝑅𝑚𝑚,𝑃𝑃1, …𝑃𝑃𝑛𝑛) by the fact that 𝑓𝑓 is 
functional and defined on all of Ext(𝑅𝑅1, … ,𝑅𝑅𝑚𝑚), and the ‘singleton relation’ is functional and 
defined on all of Ext(𝑃𝑃1, …𝑃𝑃𝑛𝑛). 

All other facts needed for this to be an isomorphism follow immediately from the imported fact 
that 𝑓𝑓 is an isomorphism and the 𝑃𝑃′𝑖𝑖 are defined to satisfy the definition of isomorphism. ■ 

We now turn to the proof of the theorem. 

Theorem I.1. (Isomorphism Theorem)  Suppose that 

• ⟨𝑅𝑅1, … ,𝑅𝑅𝑚𝑚⟩ ≅𝑓𝑓 ⟨𝑅𝑅1′, … ,𝑅𝑅𝑚𝑚′⟩ 

• 𝜙𝜙 is content restricted to 𝑅𝑅1, … ,𝑅𝑅𝑚𝑚 

• Each8 𝑅𝑅′𝑖𝑖 is either identical to 𝑅𝑅𝑖𝑖 or is distinct from all 𝑅𝑅𝑖𝑖 and doesn’t appear in 𝜙𝜙. 

                                                      
8 Furthermore, we implicitly assume that the 𝑅𝑅𝑖𝑖 are distinct relations as well as the 𝑅𝑅′𝑖𝑖. 



• 𝑓𝑓 doesn’t appear in 𝜙𝜙 and 𝑓𝑓 isn’t identical to any 𝑅𝑅𝑖𝑖 or 𝑅𝑅′𝑖𝑖  

• 𝜙𝜙′ = 𝜙𝜙[𝑅𝑅1/𝑅𝑅′1, … ,𝑅𝑅𝑚𝑚/𝑅𝑅′𝑚𝑚] 

then 
(∀𝑎𝑎1, … ,𝑎𝑎𝑛𝑛 ∣ Ext(𝑅𝑅1, … ,𝑅𝑅𝑚𝑚)(𝑎𝑎1) ∧ … Ext(𝑅𝑅1, … ,𝑅𝑅𝑚𝑚)(𝑎𝑎𝑛𝑛))

𝜙𝜙(𝑎𝑎1, … ,𝑎𝑎𝑛𝑛) ↔ 𝜙𝜙′(𝑓𝑓(𝑎𝑎1), … ,𝑓𝑓(𝑎𝑎𝑘𝑘))  

Proof. We first observe that it is enough to prove the implies direction of the claim since as the 
reverse direction follows by9 application of the forward direction to 𝑓𝑓−1. 

We now prove the forward direction by induction on the structure of 𝜙𝜙. We assume that the 
claim is true (for all 𝑚𝑚 and relations 𝑅𝑅1, … ,𝑅𝑅𝑚𝑚) both for all subformulas of 𝜙𝜙 and for all formula 
that contain strictly fewer logical possibility operators than 𝜙𝜙. We now attempt to verify the 
claim for 𝜙𝜙. 

The base case, where 𝜙𝜙 is an atomic formula is straightforward, as are the cases where 𝜙𝜙 is a 
truth-functional combination of other formula. 

Now assume that 𝜙𝜙(𝑎𝑎1, … 𝑎𝑎𝑘𝑘) begins with an existential quantification. As 𝜙𝜙(𝑎𝑎1, … 𝑎𝑎𝑘𝑘) is 
content restricted to 𝑅𝑅1, … ,𝑅𝑅𝑚𝑚, we may assume that if 𝜙𝜙 is of the form10 (∃𝑥𝑥 ∣
Ext(𝑅𝑅1. . .𝑅𝑅𝑚𝑚)(𝑥𝑥))(𝜓𝜓(𝑎𝑎1, … 𝑎𝑎𝑘𝑘, 𝑥𝑥)). If 𝜙𝜙 holds then for some 𝑏𝑏 satisfying Ext(𝑅𝑅1. . .𝑅𝑅𝑚𝑚)(𝑏𝑏) we 
have 𝜓𝜓(𝑎𝑎1, … 𝑎𝑎𝑘𝑘, 𝑏𝑏). Thus, by the inductive assumption we have 𝜓𝜓′(𝑓𝑓(𝑎𝑎1), … ,𝑓𝑓(𝑎𝑎𝑘𝑘),𝑓𝑓(𝑏𝑏)). And 
as, by the definition  isomorphism (Definition 7.4), 𝑓𝑓 bijects Ext(𝑅𝑅1, … ,𝑅𝑅𝑚𝑚) with 
Ext(𝑅𝑅′1, … ,𝑅𝑅′𝑚𝑚), we have 

𝜙𝜙′(𝑓𝑓(𝑎𝑎1), …𝑓𝑓(𝑎𝑎𝑘𝑘)) ↔ (∃𝑥𝑥 ∣ Ext(𝑅𝑅1, … ,𝑅𝑅𝑚𝑚)(𝑥𝑥))(𝜓𝜓′(𝑓𝑓(𝑎𝑎1), … 𝑓𝑓(𝑎𝑎𝑘𝑘),𝑓𝑓(𝑥𝑥)))
↔ (∃𝑥𝑥 ∣ Ext(𝑅𝑅1′, … ,𝑅𝑅𝑚𝑚′)(𝑥𝑥))(𝜓𝜓′(𝑓𝑓(𝑎𝑎1), … 𝑓𝑓(𝑎𝑎𝑘𝑘),𝑥𝑥))  

. The case where 𝜙𝜙 is a universal formula is already handled, as we identify ∀ with ¬∃¬. 

Finally, consider the case where 𝜙𝜙 = ◊ 𝛷𝛷ℒ0 . Suppose that 𝜙𝜙 is true (note that 𝛷𝛷 must be a 
sentence so we need not worry about free variables) and ⟨𝑅𝑅1, … ,𝑅𝑅𝑚𝑚⟩ ≅𝑓𝑓 ⟨𝑅𝑅′1, … ,𝑅𝑅′𝑚𝑚⟩. We 
need to prove that ◊ 𝛷𝛷ℒ′0 ’,  where ℒ′0 is the result of replacing each 𝑅𝑅𝑖𝑖 in ℒ0 with 𝑅𝑅′𝑖𝑖. Note that 
as 𝜙𝜙 is content restricted to 𝑅𝑅1, … ,𝑅𝑅𝑚𝑚 we must have ℒ0 ⊂ {𝑅𝑅1, … ,𝑅𝑅𝑚𝑚} and, (by renumbering if 
necessary) we can assume that ℒ0 = {𝑅𝑅1, … ,𝑅𝑅𝑙𝑙} and ℒ′0 = {𝑅𝑅′1, … ,𝑅𝑅′𝑙𝑙}. Note that we have 
⟨𝑅𝑅1, … ,𝑅𝑅𝑙𝑙⟩ ≅𝑓𝑓 ⟨𝑅𝑅′1, … ,𝑅𝑅′𝑙𝑙⟩. 

Our first step will be use the Lemma I.1 (Content Restricted Equivalent) to infer that ◊ 𝛷𝛷�𝑈𝑈ℒ0  
where 𝛷𝛷�𝑈𝑈 is a version of 𝛷𝛷 which is content restricted to ℒ0,ℒ𝛷𝛷,𝑈𝑈 where ℒ𝛷𝛷 is the set of 

                                                      
9 Specifically, we can argue that it’s possible to have a relation 𝑔𝑔 = 𝑓𝑓−1 while maintaining all 
the other assumptions of the theorem. We may then apply the proof to 𝑔𝑔 to infer the 
possibility of the theorem’s conclusion and export it to infer the reverse direction. 

10 Note that it is enough to prove the claim for explicitly content restricted formulas and the 
result for implicitly content restricted formulas is immediate. 



relations appearing at the top level of 𝛷𝛷 and 𝑈𝑈 is a predicate distinct from all relations hitherto 
mentioned. 

In particular, by clause 2 of Lemma I.1 we can infer the following from 𝜙𝜙. 

◊ 𝛷𝛷�𝑈𝑈ℒ0  

We wish to import the fact that ⟨𝑅𝑅1, … ,𝑅𝑅𝑙𝑙⟩ ≅𝑓𝑓 ⟨𝑅𝑅′1, … ,𝑅𝑅′𝑙𝑙⟩ and to that end we expand the set 
of relations held fixed to ℒ0,ℒ0′,𝑓𝑓. By assumption, no relation in ℒ0′ − ℒ0 appears in 𝜙𝜙, nor 
does 𝑓𝑓. Hence, 

�({𝑓𝑓}  ∪  ℒ0′ ) − ℒ0� ∩ (ℒ0 ∪  ℒ𝛷𝛷 ∪ {𝑈𝑈}) = ∅ 

 

Thus, as 𝛷𝛷�𝑈𝑈 is content restricted to ℒ0,ℒ𝛷𝛷, {𝑈𝑈}, by ◊ Ignoring ( Axiom 8.3) we can infer 

◊ 𝛷𝛷�𝑈𝑈ℒ0,ℒ0′,𝑓𝑓  

Enter the ◊ℒ0,ℒ0′,𝑓𝑓  context provided by senence above and import the fact that 
⟨𝑅𝑅1, … ,𝑅𝑅𝑙𝑙⟩ ≅𝑓𝑓 ⟨𝑅𝑅′1, … ,𝑅𝑅′𝑙𝑙⟩. To apply the inductive hypothesis we need to construct a 𝑔𝑔 
extending 𝑓𝑓 that isomorphicly maps ℒ𝛷𝛷,𝑈𝑈 to some ℒ𝛷𝛷′,𝑈𝑈′. Letting 𝑃𝑃1, … ,𝑃𝑃𝑛𝑛,𝑈𝑈 be the relations 
(if any) in ℒ𝛷𝛷,𝑈𝑈 not in ℒ0 and 𝑃𝑃′1, … ,𝑃𝑃′𝑛𝑛,𝑈𝑈′ some previously unmentioned relations of the 
same arity as 𝑃𝑃1, … ,𝑃𝑃𝑛𝑛,𝑈𝑈 we invoke the Lemma I.2 (Possible Isomorphism Extending) with some 
new relation 𝑔𝑔 to infer 

◊ �⟨𝑅𝑅1, …𝑅𝑅𝑙𝑙 ,𝑃𝑃1, … ,𝑃𝑃𝑛𝑛,𝑈𝑈⟩ ≅
𝑔𝑔
⟨𝑅𝑅′1, …𝑅𝑅′𝑙𝑙 ,𝑃𝑃′1, … ,𝑃𝑃′𝑛𝑛,𝑈𝑈′⟩�ℒ0,𝑈𝑈,𝑓𝑓,ℒ0′,ℒ𝛷𝛷  

Enter this additional ◊ℒ0,𝑈𝑈,𝑓𝑓,ℒ′0,ℒ𝛷𝛷  context and import 𝛷𝛷�𝑈𝑈 (it is content restricted to ℒ𝛷𝛷,𝑈𝑈). We 
are finally in a position to apply the inductive hypothesis. For by clause 3 in Lemma I.1 (Content 
Restricted Equivalent), 𝛷𝛷�𝑈𝑈 has the same number of ◊ operators as 𝛷𝛷 and thus strictly fewer 
than 𝜙𝜙 does. Moreover, as 𝑈𝑈′,𝑔𝑔,𝑃𝑃′𝑖𝑖  were all chosen to be distinct relations thet don’t appear in 
𝛷𝛷. And, by assumption any 𝑅𝑅′𝑖𝑖  which does appear in 𝛷𝛷 is identical to the corresponding 𝑅𝑅𝑖𝑖. So, 
by inductive hypothesis, we can infer 

◊ 𝛷𝛷�𝑈𝑈ℒ0,𝑈𝑈,𝑓𝑓,ℒ′0,ℒ𝛷𝛷 [𝑅𝑅1/𝑅𝑅′1, …𝑅𝑅𝑙𝑙/𝑅𝑅′𝑙𝑙 ,𝑈𝑈/𝑈𝑈′,𝑃𝑃1/𝑃𝑃′1, … ,𝑃𝑃𝑛𝑛/𝑃𝑃′𝑛𝑛] 

By applying Reducing (Lemma B.4) we infer 

◊ 𝛷𝛷�𝑈𝑈ℒ0,𝑈𝑈,𝑓𝑓,ℒ′0 [𝑅𝑅1/𝑅𝑅′1, …𝑅𝑅𝑙𝑙/𝑅𝑅′𝑙𝑙 ,𝑈𝑈/𝑈𝑈′,𝑃𝑃1/𝑃𝑃′1, … ,𝑃𝑃𝑛𝑛/𝑃𝑃′𝑛𝑛] 

As no 𝑃𝑃′𝑖𝑖 appears in ℒ0,ℒ′0,𝑈𝑈,𝑓𝑓 we can use Relabeling ( Axiom 8.5) to substitute 𝑃𝑃𝑖𝑖  in for 𝑃𝑃𝑖𝑖′ 
yielding 

◊ 𝛷𝛷�𝑈𝑈ℒ0,𝑈𝑈,𝑓𝑓,ℒ′0 [𝑅𝑅1/𝑅𝑅′1, …𝑅𝑅𝑙𝑙/𝑅𝑅′𝑙𝑙,𝑈𝑈/𝑈𝑈′,𝑃𝑃1/𝑃𝑃′1, … ,𝑃𝑃𝑛𝑛/𝑃𝑃′𝑛𝑛][𝑃𝑃′1/𝑃𝑃1, … ,𝑃𝑃′𝑛𝑛/𝑃𝑃𝑛𝑛] 

Which simplifies to 



◊ 𝛷𝛷�𝑈𝑈ℒ0,𝑈𝑈,𝑓𝑓,ℒ′0 [𝑅𝑅1/𝑅𝑅′1, …𝑅𝑅𝑙𝑙/𝑅𝑅′𝑙𝑙 ,𝑈𝑈/𝑈𝑈′] 

Renumbering if necessary, we may assume that 𝑅𝑅1′, … ,𝑅𝑅𝑘𝑘′ don’t appear in ℒ0 and that 𝑅𝑅𝑘𝑘+1 =
𝑅𝑅′𝑘𝑘+1 …𝑅𝑅𝑙𝑙 = 𝑅𝑅′𝑙𝑙. As 𝑅𝑅𝑖𝑖/𝑅𝑅𝑖𝑖  a null operation this gives us 

◊ 𝛷𝛷�𝑈𝑈ℒ0,𝑈𝑈,𝑓𝑓,ℒ′0 [𝑅𝑅1/𝑅𝑅′1, …𝑅𝑅𝑘𝑘/𝑅𝑅′𝑘𝑘,𝑈𝑈/𝑈𝑈′] 

Since 𝑅𝑅′𝑖𝑖, 1 ≤ 𝑖𝑖 ≤ 𝑘𝑘 doesn’t occur in 𝜙𝜙 by clause 4 (replacing) of  Lemma I.1(Content Restricted 
Equivalent Theorem) we may know that 

𝛷𝛷�𝑈𝑈[𝑅𝑅1/𝑅𝑅′1, …𝑅𝑅𝑙𝑙/𝑅𝑅′𝑙𝑙,𝑈𝑈/𝑈𝑈′] = (𝛷𝛷[𝑅𝑅1/𝑅𝑅′1, …𝑅𝑅𝑙𝑙/𝑅𝑅′𝑙𝑙])�
𝑈𝑈′ 

Dropping out of the enclosing ◊ contexts gives us 

◊ ◊ 𝛷𝛷�𝑈𝑈ℒ0,𝑈𝑈,𝑓𝑓,ℒ′0ℒ0,ℒ0′,𝑓𝑓 [𝑅𝑅1/𝑅𝑅′1, …𝑅𝑅𝑘𝑘/𝑅𝑅′𝑘𝑘,𝑈𝑈/𝑈𝑈′] 

A combination of Reducing (Lemma B.4) and Diamond Collapsing (Lemma B.8) yields. 

◊ (𝛷𝛷[𝑅𝑅1/𝑅𝑅′1, …𝑅𝑅𝑘𝑘/𝑅𝑅′𝑘𝑘])�
𝑈𝑈′ℒ′0  

And by clause 2 (equivalence) in Lemma I.1 (Isomorphism Lemma) this implies (reinstating the 
null substitutions of 𝑅𝑅𝑘𝑘+1/𝑅𝑅′𝑘𝑘+1 …𝑅𝑅𝑙𝑙/𝑅𝑅′𝑙𝑙) 

◊ 𝛷𝛷ℒ′0 [𝑅𝑅1/𝑅𝑅′1, …𝑅𝑅𝑙𝑙/𝑅𝑅′𝑙𝑙] 

Since no 𝑅𝑅′𝑖𝑖 with 𝑖𝑖 > 𝑙𝑙 appear in ℒ′0 or 𝛷𝛷[𝑅𝑅1/𝑅𝑅′1, …𝑅𝑅𝑙𝑙/𝑅𝑅′𝑙𝑙] and no 𝑅𝑅𝑖𝑖 appears in ℒ′0 (unless 
𝑅𝑅′𝑖𝑖 = 𝑅𝑅𝑖𝑖  in which case the substitution below is the null operation) we make invoke Relabeling 
( Axiom 8.5) on 𝑅𝑅′𝑖𝑖, 𝑖𝑖 > 𝑙𝑙 to derive 

◊ 𝛷𝛷ℒ′0 [𝑅𝑅1/𝑅𝑅′1, …𝑅𝑅𝑙𝑙/𝑅𝑅′𝑙𝑙 , …𝑅𝑅𝑚𝑚/𝑅𝑅′𝑚𝑚] 

But this is just our desired conclusion that ◊ 𝛷𝛷ℒ′0 ′ completing our proof. ■ 

J.   𝑷𝑷𝑨𝑨◊ and Infinite Well Ordering Lemmas 

In this appendix I will show that Axiom 8.10 (Infinity) (together with my other inference rules) 
implies the Infinite Well-Ordering Theorem ( Theorem J.1) below. While Axiom 8.10 (Infinity) 
was chosen to be as simple as possible and only asserts the possibility of a scenario with a 
successor function to justify the set theoretic axiom of infinity we must derive the possibility of 
an infinite well-order. 

As the particular infinite well-ordering whose possibility we establish will be 𝜔𝜔, this Lemma will 
let us quickly prove that ◊ (𝑃𝑃𝐴𝐴◇). That is, it’s logically possible for there to be some objects 
which (when considered under some relations) satisfy the categorical description of the natural 
numbers structure discussed in Section J.3. 

Recall that the Infinity axiom says the following. 

Axiom J.1 (Infinity).  ◊ 𝛹𝛹 where 𝛹𝛹 is the conjunction of the following claims: 



1. The successor of an object is unique (∀𝑥𝑥)(∀𝑦𝑦)(∀𝑦𝑦′)[𝑆𝑆(𝑥𝑥,𝑦𝑦) ∧ 𝑆𝑆(𝑥𝑥,𝑦𝑦′) → 𝑦𝑦 = 𝑦𝑦′] 

2. successor is one-to-one (∀𝑥𝑥)(∀𝑦𝑦)(∀𝑥𝑥′)(𝑆𝑆(𝑥𝑥,𝑦𝑦) ∧ 𝑆𝑆(𝑥𝑥′,𝑦𝑦) → 𝑥𝑥 = 𝑥𝑥′) 

3. there is a unique object that has a successor and isn’t the successor of anything 
(∃!𝑥𝑥: (∃𝑦𝑦)𝑆𝑆(𝑥𝑥,𝑦𝑦) ∧ (∀𝑦𝑦)¬𝑆𝑆(𝑦𝑦, 𝑥𝑥)) 

4. everything that is a successor has a successor (∀𝑥𝑥)[(∃𝑦𝑦)𝑆𝑆(𝑦𝑦, 𝑥𝑥) → (∃𝑧𝑧)𝑆𝑆(𝑥𝑥, 𝑧𝑧)] 

5. 𝑆𝑆 is anti-reflexive: (∀𝑥𝑥)(∀𝑦𝑦)[𝑆𝑆(𝑥𝑥, 𝑦𝑦) → ¬𝑆𝑆(𝑦𝑦, 𝑥𝑥)] 

So, (speaking informally) Axiom 8.10 (Infinity)  says that we could have an infinite collection 
objects related by a successor relation 𝑆𝑆 in a successor-like way (remember we often 
abbreviate 𝑆𝑆(𝑥𝑥,𝑦𝑦) by 𝑆𝑆(𝑥𝑥) = 𝑦𝑦). We will now derive two useful consequences from this claim. 

• That there could be an infinite well ordering 𝑊𝑊,≤. 

• That ℕ, 𝑆𝑆 could apply to objects satisfying the (conditional possibility version of) the Peano 
Axioms 

Theorem J.1 (Infinite Well-Ordering Theorem).  It is logically possible for there to be a non-
empty well ordering with no maximal element. And we can further require that every element of 
this well ordering has a maximal predecessor. That is, the conjunction of the following claims is 
logically possible. 

1. (Well-ordered) ≤ well-orders11 the objects satisfying 𝑊𝑊 

2. (Non-Empty) (∃𝑥𝑥)(𝑊𝑊(𝑥𝑥)) 

3. (No Maximal Element) (∀𝑥𝑥 ∣ 𝑊𝑊(𝑥𝑥))(∃𝑦𝑦 ∣ 𝑊𝑊(𝑦𝑦))(𝑥𝑥 < 𝑦𝑦) 

4. (Least Element)  There is a unique minimal element, i.e., (∃! 𝑧𝑧)(∀𝑥𝑥)(𝑥𝑥 ≮ 𝑧𝑧 ∧𝑊𝑊(𝑧𝑧)). 

5. (Discreteness) (∀𝑏𝑏)(𝑏𝑏 = 0 ∨ (∃𝑎𝑎 < 𝑏𝑏)(∀𝑧𝑧 < 𝑏𝑏)(𝑧𝑧 ≤ 𝑎𝑎) Every non-zero element has a 
maximal predecessor. 

Given a relation 𝑆𝑆 satisfying the conditions in Axiom 8.10 (Infinity), our approach will be to 
define 𝑊𝑊 to apply to the smallest class closed under 𝑆𝑆 containing the 0 element. Note that in 
this proof we use 0 to abbreviate the unique element that has a successor but isn’t a successor. 
We will demonstrate that this corresponds to the unique minimal element referenced in part 4 
(least element) of the theorem. We then define 𝑥𝑥 ≤ 𝑦𝑦 to hold if every successor closed class 
containing 𝑥𝑥 contains 𝑦𝑦. 

                                                      
11 Remember we defined the notion of well-order both for < and ≤ relations. 



J.1 Constructing the well-ordering 

The Axiom 8.10 (infinity)  tells us that ◊ 𝛺𝛺, where 𝛺𝛺 abbreviates the following sentence (which 
is content restricted to 𝑆𝑆). 

(∀𝑥𝑥)(∀𝑦𝑦)(∀𝑦𝑦′)[𝑆𝑆(𝑥𝑥,𝑦𝑦) ∧ 𝑆𝑆(𝑥𝑥, 𝑦𝑦′) → 𝑦𝑦 = 𝑦𝑦′] ∧
(∀𝑥𝑥)(∀𝑦𝑦)(∀𝑥𝑥′)(𝑆𝑆(𝑥𝑥,𝑦𝑦) ∧ 𝑆𝑆(𝑥𝑥′,𝑦𝑦) → 𝑥𝑥 = 𝑥𝑥′) ∧
(∃!𝑥𝑥 ∣ (∃𝑦𝑦)𝑆𝑆(𝑥𝑥,𝑦𝑦) ∧ (∀𝑦𝑦)¬𝑆𝑆(𝑦𝑦, 𝑥𝑥)) ∧
(∀𝑥𝑥)[(∃𝑦𝑦)𝑆𝑆(𝑦𝑦, 𝑥𝑥) → (∃𝑧𝑧)𝑆𝑆(𝑥𝑥, 𝑧𝑧)] ∧
(∀𝑥𝑥)(∀𝑦𝑦)[𝑆𝑆(𝑥𝑥,𝑦𝑦) → ¬𝑆𝑆(𝑦𝑦, 𝑥𝑥)]

 

Note that the first conjunct implies that 𝑆𝑆 if functional. Enter this ◊ context. Using the Possible 
Powerset Axiom ( Axiom 8.11) it’s possible ( ◊S ) to have a layer of classes over the objects 
related by 𝑆𝑆. 

Enter this ◊𝑆𝑆  context. 𝛺𝛺 must remain true, as it is content restricted to 𝑆𝑆, so we have: 

𝛺𝛺 ∧ 𝒞𝒞 �𝐶𝐶,∈
𝐶𝐶

,Ext(𝑆𝑆)� .      (𝐽𝐽1) 

 

Next, by using Lemma H.7 (Multiple Definitions) to pack together successive applications of  
Axiom 8.4 (Simple Comprehension) it is possible (◊𝑆𝑆,𝐶𝐶,∈𝐶𝐶 ) that equation (J1) remains true along 
with the conjunction of the following four facts. 

𝐷𝐷(𝑥𝑥) ↔ Ext(𝑆𝑆)(𝑥𝑥)               (𝐽𝐽2)
(∀𝑥𝑥)[𝑆𝑆𝐶𝐶(𝑥𝑥) ↔ 𝐶𝐶(𝑥𝑥) ∧ (∀𝑧𝑧)(∀𝑧𝑧′)(𝑧𝑧 ∈ 𝑥𝑥 ∧ 𝑆𝑆(𝑧𝑧, 𝑧𝑧′) → 𝑧𝑧′ ∈ 𝑥𝑥)]         (𝐽𝐽3)
(∀𝑥𝑥)[𝑊𝑊(𝑥𝑥) ↔ 𝐷𝐷(𝑥𝑥) ∧ (∀𝑘𝑘 ∣ 𝐶𝐶(𝑘𝑘))[0 ∈ 𝑘𝑘 ∧ 𝑆𝑆𝐶𝐶(𝑘𝑘) → 𝑥𝑥 ∈ 𝑘𝑘])].         (𝐽𝐽4)
(∀𝑥𝑥)(∀𝑦𝑦)(𝑥𝑥 ≤ 𝑦𝑦 ↔ 𝐷𝐷(𝑥𝑥) ∧ 𝐷𝐷(𝑦𝑦) ∧ (∀𝑘𝑘)[𝑥𝑥 ∈ 𝑘𝑘 ∧ 𝑆𝑆𝐶𝐶(𝑘𝑘) → 𝑦𝑦 ∈ 𝑘𝑘])     ( 𝐽𝐽5)

 

Informally, the above equations have the following effects. 

•  (J2) ensures 𝐷𝐷 serves as a shorthand for Ext(𝑆𝑆) 

•  (J3) ensures 𝑆𝑆𝐶𝐶(𝑑𝑑) holds just if 𝑑𝑑 is successor closed. 

•  (J4) ensures The relation 𝑥𝑥 ≤ 𝑦𝑦 holds for elements in 𝐷𝐷 just if 𝑦𝑦 is in every successor 
closed class that 𝑥𝑥 is in. 

• (J5) ensures 𝑊𝑊(𝑥𝑥) holds just if 𝑥𝑥 is an element of every successor closed class containing 0 
(the unique element that has a successor but isn’t one). 

So leaving all ◊ contexts and letting 𝛥𝛥 denote the conjunction of the above four equations 
yields 

◊◊𝑆𝑆◊𝑆𝑆,𝐶𝐶,∈
𝐶𝐶
�𝛺𝛺 ∧ 𝒞𝒞(𝐶𝐶,∈

𝐶𝐶
,Ext(𝑆𝑆)) ∧ 𝛥𝛥� 



And by Diamond Collapsing (Lemma B.4) this implies 

◊ �𝛺𝛺 ∧ 𝒞𝒞 �𝐶𝐶,∈
𝐶𝐶

,Ext(𝑆𝑆)� ∧ 𝛥𝛥�                  (𝐽𝐽6) 

This completes the construction of 𝑊𝑊,≤, our non-empty well ordering with no maximal 
element. We must now check that this logically possible scenario really behaves as advertised. 

J.2 Verification 

We now enter the ◊ from equation (J6) giving us the following equation. 

𝛹𝛹:𝛺𝛺 ∧ 𝒞𝒞 �𝐶𝐶,∈
𝐶𝐶

,Ext(𝑆𝑆)� ∧ 𝛥𝛥.           (𝐽𝐽7) 

Before verifying 𝑊𝑊,≤ has the required features I will first prove a utility lemma showing that 
for appropriate formulas 𝛾𝛾 we can always find a class whose members are exactly those picked 
out by 𝛾𝛾. 

Lemma J.1 (Class Comprehension).  Suppose that 𝒞𝒞(𝐶𝐶,∈𝐶𝐶 ,Ext(ℒ)) and 𝛾𝛾(𝑥𝑥) is a ◊ and □ free 
formula content restricted to some ℒ′ ⊃ ℒ ∪ {𝐶𝐶,∈𝐶𝐶} with only 𝑥𝑥 free rendering. Then (∃𝑔𝑔 ∣
𝐶𝐶(𝑔𝑔))(∀𝑥𝑥)(𝑥𝑥 ∈

𝐶𝐶
𝑔𝑔 ↔ Ext(ℒ)(𝑥𝑥) ∧ 𝛾𝛾(𝑥𝑥)) 

Proof. Suppose the assumptions of the lemma hold. By Simple Comprehension (Axiom 8.4) it’s 
possible (◊ℒ′ ), while keeping the assumptions of the lemma true, that the following holds 

(∀𝑥𝑥)(𝐺𝐺(𝑥𝑥) ↔ 𝛾𝛾(𝑥𝑥)) 

Enter this ◊ℒ′  context we can unpack 𝒞𝒞(𝐶𝐶,∈𝐶𝐶 ,Ext(ℒ)) giving us 

□ (𝐶𝐶,∈
𝐶𝐶

,Ext(ℒ) ∃𝑔𝑔)[𝐶𝐶(𝑔𝑔) ∧ (∀𝑥𝑥)((𝐷𝐷(𝑥𝑥) ∧ 𝐺𝐺(𝑥𝑥)) ↔ 𝑥𝑥 ∈ 𝑔𝑔)] 

By Lemma B.3 (Box Elimination)  we can deduce that 

(∃𝑔𝑔)[𝐶𝐶(𝑔𝑔) ∧ (∀𝑥𝑥)((𝐷𝐷(𝑥𝑥) ∧ 𝐺𝐺(𝑥𝑥)) ↔ 𝑥𝑥 ∈ 𝑔𝑔)] 

so by the fact that (∀𝑥𝑥)(𝐺𝐺(𝑥𝑥) ↔ 𝛾𝛾(𝑥𝑥)) we can deduce 

(∃𝑔𝑔)[𝐶𝐶(𝑔𝑔) ∧ (∀𝑥𝑥)(𝑥𝑥 ∈ 𝑔𝑔 ↔ 𝐷𝐷(𝑥𝑥) ∧ 𝛾𝛾(𝑥𝑥))] 

By assumption this sentence is implicitly content restricted to ℒ′ we can exit the current ◊ℒ′  
context and invoke Axiom 8.2 (Diamond Elimination) to conclude 

(∃𝑔𝑔)[𝐶𝐶(𝑔𝑔) ∧ (∀𝑥𝑥)(𝑥𝑥 ∈ 𝑔𝑔 ↔ Ext(ℒ)(𝑥𝑥) ∧ 𝛾𝛾(𝑥𝑥))] 

holds in our original scenario. ■ 

We now enter the ◊ context from (J6)  and assuming 𝛺𝛺 ∧ 𝒞𝒞(𝐶𝐶,∈𝐶𝐶 ,Ext(𝑆𝑆)) ∧ 𝛥𝛥 prove a series of 
lemmas that, together, will satisfy the elements of the Infinite Well-Ordering Theorem ( 



Theorem J.1). Note that in this situation since 𝐷𝐷(𝑥𝑥) ↔ Ext(𝑆𝑆)(𝑥𝑥) we can invoke the above 
lemma using 𝐷𝐷(𝑥𝑥) in place of Ext(𝑆𝑆)(𝑥𝑥). 

Lemma J.2 (Non-Emptiness).  (∃𝑥𝑥)𝑊𝑊(𝑥𝑥) 

Proof. By equation (J4) 𝑊𝑊(𝑥𝑥) holds iff 𝐷𝐷(𝑥𝑥) ∧ (∀𝑘𝑘 ∣ 𝐶𝐶(𝑘𝑘))[0 ∈𝐶𝐶 𝑘𝑘 ∧ 𝑆𝑆𝐶𝐶(𝑘𝑘) → 𝑥𝑥 ∈𝐶𝐶 𝑘𝑘]). As 
Ext(𝑆𝑆)(0) by equation (J1) we have 𝐷𝐷(0). And clearly 0 ∈𝐶𝐶 𝑘𝑘 → 0 ∈𝐶𝐶 𝑘𝑘. Hence 𝑊𝑊(0). This 
verifies that (𝑊𝑊,≤) satisfies clause 2 (non-empty) of Theorem J.1 (Isomorphism Theorem). ■ 

Lemma J.3 (Reflexivity).  (∀𝑥𝑥)(𝑊𝑊(𝑥𝑥) → 𝑥𝑥 ≤ 𝑥𝑥) 

Proof. By  (J4) If 𝑊𝑊(𝑥𝑥) then 𝐷𝐷(𝑥𝑥). And by (J5)  𝑥𝑥 ≤ 𝑦𝑦 iff 𝐷𝐷(𝑥𝑥) ∧ 𝐷𝐷(𝑦𝑦) ∧ (∀𝑘𝑘)[𝑥𝑥 ∈ 𝑘𝑘 ∧ 𝑆𝑆𝐶𝐶(𝑘𝑘) →
𝑦𝑦 ∈ 𝑘𝑘]) so 𝑥𝑥 ≤ 𝑥𝑥. ■ 

Lemma J.4 (Transitivity).  (∀𝑥𝑥,𝑦𝑦, 𝑧𝑧 ∣ 𝑊𝑊(𝑥𝑥) ∧𝑊𝑊(𝑦𝑦) ∧𝑊𝑊(𝑧𝑧))(𝑥𝑥 ≤ 𝑦𝑦 ∧ 𝑦𝑦 ≤ 𝑧𝑧 → 𝑥𝑥 ≤ 𝑧𝑧) 

Proof. Consider arbitrary 𝑥𝑥,𝑦𝑦 and 𝑧𝑧 satisfying 𝑊𝑊 such that 𝑥𝑥 ≤ 𝑦𝑦 ∧ 𝑦𝑦 ≤ 𝑧𝑧. Suppose that 𝑥𝑥 ∈ 𝑘𝑘 ∧
𝑆𝑆𝐶𝐶(𝑘𝑘). Then as 𝑥𝑥 ≤ 𝑦𝑦 by  (J5) we have 𝑦𝑦 ∈ 𝑘𝑘 ∧ 𝑆𝑆𝐶𝐶(𝑘𝑘) and as 𝑦𝑦 ≤ 𝑧𝑧 we can infer 𝑧𝑧 ∈ 𝑘𝑘. Hence 
(∀𝑘𝑘)(𝑥𝑥 ∈ 𝑘𝑘 ∧ 𝑆𝑆𝐶𝐶(𝑘𝑘) → 𝑧𝑧 ∈ 𝑘𝑘). Thus, by  (J5), 𝑥𝑥 ≤ 𝑧𝑧. ■ 

Lemma J.5 (Totality).  (∀𝑥𝑥)(∀𝑦𝑦)[𝑊𝑊(𝑥𝑥) ∧𝑊𝑊(𝑦𝑦) → 𝑥𝑥 ≤ 𝑦𝑦 ∨ 𝑦𝑦 ≤ 𝑥𝑥] 

Proof. First, we introduce some abbreviations 

CMP(𝑥𝑥,𝑦𝑦) ↔ 𝑥𝑥 ≤ 𝑦𝑦 ∨ 𝑦𝑦 ≤ 𝑥𝑥
ALLCMP(𝑥𝑥) ↔ (∀𝑦𝑦 ∣ 𝑊𝑊(𝑦𝑦))CMP(𝑥𝑥,𝑦𝑦) 

By Lemma J.1 (Class Comprehension) above applied to the formula 

𝛾𝛾(𝑥𝑥) ↔ 𝐷𝐷(𝑥𝑥) ∧ ALLCMP(𝑥𝑥) 

we can infer that there is a unique object 𝑔𝑔 such that 𝐶𝐶(𝑔𝑔) and 

(∀𝑥𝑥 ∣ 𝑊𝑊(𝑥𝑥))[𝑥𝑥 ∈ 𝑔𝑔 ↔ 𝐷𝐷(𝑥𝑥) ∧ ALLCMP(𝑥𝑥)] 

It is thus enough to show that 𝑊𝑊(𝑥𝑥) → 𝑥𝑥 ∈ 𝑔𝑔. Now clearly 0 ∈ 𝑔𝑔 since, by equation (J4) every 𝑥𝑥 
satisfying 𝑊𝑊(𝑥𝑥) is in every successor closed class containing 0 which is the requirement 
equation  (J5) gives for 0 ≤ 𝑥𝑥. Therefore, by equation (J4), if 𝑔𝑔 is successor closed then 𝑔𝑔 
contains every element satisfying 𝑊𝑊. Suppose 𝑔𝑔 is not successor closed. That is 

(∃𝑥𝑥) �ALLCMP(𝑥𝑥) ∧ ¬ALLCMP�𝑆𝑆(𝑥𝑥)��                     (𝐽𝐽8) 

Let 𝑥𝑥 witness the truth of the above equation and let 𝑦𝑦 witness the failure of ALLCMP(𝑆𝑆(𝑥𝑥)), 
i.e., 𝑦𝑦 satisfies ¬CMP(𝑆𝑆(𝑥𝑥),𝑦𝑦). More specifically, note that by using the Lemma H.7 (Multiple 
Definitions) to pack together applications of Simple Comprehension (Axiom 8.4) and Proposition 
8.1 (Simplified Choice), we can (◊𝑊𝑊,𝑆𝑆𝐶𝐶,𝐶𝐶,∈𝐶𝐶,𝐷𝐷,≤ ) have the predicate 𝑄𝑄𝑥𝑥 apply to a unique 𝑥𝑥 
witnessing the truth of the existential claim in (J8) and 𝑄𝑄𝑦𝑦 applying to a unique 𝑦𝑦 which 𝑆𝑆(𝑥𝑥) is 
not comparable to. 

Enter this ◊𝑊𝑊,𝑆𝑆𝐶𝐶,𝐶𝐶,∈𝐶𝐶,𝐷𝐷,≤  context. 



Now, by assumption ALLCMP(𝑥𝑥) hence 𝑥𝑥 ≤ 𝑦𝑦 ∨ 𝑦𝑦 ≤ 𝑥𝑥. Suppose 𝑦𝑦 ≤ 𝑥𝑥. If 𝑘𝑘 is a successor 
closed class containing 𝑦𝑦 then by equation  (J5) we have 𝑥𝑥 ∈𝐶𝐶 𝑘𝑘 and as 𝑘𝑘 is successor closed 
𝑆𝑆(𝑥𝑥) ∈𝐶𝐶 𝑘𝑘. Hence, by equation  (J5) 𝑦𝑦 ≤ 𝑆𝑆(𝑥𝑥) contradicting the fact that ¬CMP(𝑆𝑆(𝑥𝑥),𝑦𝑦). 

Suppose 𝑥𝑥 ≤ 𝑦𝑦. As ¬CMP(𝑆𝑆(𝑥𝑥),𝑦𝑦) we can’t have 𝑆𝑆(𝑥𝑥) ≤ 𝑦𝑦 so there must be some successor 
closed class 𝑘𝑘 containing 𝑆𝑆(𝑥𝑥) but not 𝑦𝑦. Now, by the same reasoning as above (using 𝑄𝑄𝑥𝑥,𝑄𝑄𝑦𝑦 to 
avoid quantifying into the ◊), possibly (◊𝑊𝑊,𝑆𝑆𝐶𝐶,𝐶𝐶,∈𝐶𝐶,𝐷𝐷,≤,𝑄𝑄𝑥𝑥,𝑄𝑄𝑦𝑦  ) 𝑄𝑄𝑘𝑘 applies to a single class 𝑘𝑘 
witnessing this fact. Enter this ◊𝑊𝑊,𝑆𝑆𝐶𝐶,𝐶𝐶,∈𝐶𝐶,𝐷𝐷,≤,𝑄𝑄𝑥𝑥,𝑄𝑄𝑦𝑦  context. Now, applying Lemma J.1 (Class 
Comprehension) (as 𝑄𝑄𝑘𝑘 and 𝑄𝑄𝑥𝑥 apply only to objects satisfying 𝐷𝐷) there is some class 𝑘𝑘′ = 𝑘𝑘 ∪
{𝑥𝑥}, i.e., a 𝑘𝑘′ such that 

(∀𝑧𝑧)(𝑧𝑧 ∈
𝐶𝐶
𝑘𝑘′ ↔ (∃𝑘𝑘)(𝑧𝑧 ∈

𝐶𝐶
𝑄𝑄𝑘𝑘(𝑘𝑘) ∨ 𝑄𝑄𝑥𝑥(𝑧𝑧)) 

Or, equivalently, 

(∀𝑧𝑧)(𝑧𝑧 ∈
𝐶𝐶
𝑘𝑘′ ↔ 𝑧𝑧 ∈

𝐶𝐶
𝑘𝑘 ∨ 𝑧𝑧 = 𝑥𝑥) 

As 𝑘𝑘 was successor closed and contained 𝑆𝑆(𝑥𝑥), it is trivial to see that 𝑘𝑘′ is successor closed. By 
our choice of 𝑘𝑘 we have 𝑦𝑦 ∉𝐶𝐶 𝑘𝑘, so either 𝑦𝑦 ∉𝐶𝐶 𝑘𝑘′ or 𝑦𝑦 = 𝑥𝑥. However, since 𝑦𝑦 ≰ 𝑥𝑥 𝑦𝑦 = 𝑥𝑥 is 
ruled out by the fact that ≤ is reflexive ( Lemma J.3 Reflexivity). So 𝑦𝑦 ∉𝐶𝐶 𝑘𝑘′. But then 𝑘𝑘′ is a 
successor closed class containing 𝑥𝑥 but not 𝑦𝑦 which, by equation  (J5), contradicts the 
assumption that 𝑥𝑥 ≤ 𝑦𝑦. Exporting the contradiction, we can thus conclude that 𝑔𝑔 is successor 
closed completing the proof of comparability. ■ 

Lemma J.6 (Maximal Predecessor).  (∀𝑎𝑎)(∀𝑧𝑧 ≤ 𝑆𝑆(𝑎𝑎))(𝑧𝑧 = 𝑆𝑆(𝑎𝑎) ∨ 𝑧𝑧 ≤ 𝑎𝑎) 

Note that as 0 is the unique element without a successor, this suffices prove the claim in clause 
5 (Discreteness) of the theorem that every non-zero element has a maximal predecessor since if 
𝑏𝑏 ≠ 0 then, for some 𝑎𝑎, 𝑆𝑆(𝑎𝑎) = 𝑏𝑏. We also know 𝑎𝑎 ≤ 𝑏𝑏 as every successor closed class 
containing 𝑎𝑎 contains 𝑆𝑆(𝑎𝑎) hence this lemma entails 

(∀𝑏𝑏)(𝑏𝑏 = 0 ∨ (∃𝑎𝑎 < 𝑏𝑏)(∀𝑧𝑧 < 𝑏𝑏)(𝑧𝑧 ≤ 𝑎𝑎) 

Proof. Suppose that the lemma fails. Then, by the same reasoning as above using the the 
Multiple Definitions Lemma ( Lemma H.7) to pack together applications of Proposition 8.1, and 
Simple Comprehension ( Axiom 8.4) we can (◊𝑊𝑊,𝑆𝑆𝐶𝐶,𝐶𝐶,∈𝐶𝐶,𝐷𝐷,≤ ) have 𝑄𝑄𝑎𝑎 applying to a single object 𝑎𝑎 
and 𝑄𝑄𝑧𝑧 applying to a single object 𝑧𝑧 such that 𝑧𝑧 < 𝑆𝑆(𝑎𝑎) but not 𝑧𝑧 ≤ 𝑎𝑎. We enter this 
◊𝑊𝑊,𝑆𝑆𝐶𝐶,𝐶𝐶,∈𝐶𝐶,𝐷𝐷,≤  context and import any of the assumptions we need. 

Since ¬(𝑧𝑧 ≤ 𝑎𝑎), by equation  (J5) there must be some successor-closed class containing 𝑧𝑧 but 
not 𝑎𝑎. By the Multiple Definitions Lemma ( Lemma H.7) it is possible ( ◊𝑊𝑊,𝑆𝑆𝐶𝐶,𝐶𝐶,∈𝐶𝐶,𝐷𝐷,≤,𝑄𝑄𝑎𝑎,𝑄𝑄𝑧𝑧  ) that 
𝑄𝑄𝑘𝑘 picks out a single class 𝑘𝑘 witnessing this fact. Enter this ◊𝑊𝑊,𝑆𝑆𝐶𝐶,𝐶𝐶,∈𝐶𝐶,𝐷𝐷,≤,𝑄𝑄𝑎𝑎,𝑄𝑄𝑧𝑧  context. 

Now using 𝑄𝑄𝑎𝑎,𝑄𝑄𝑧𝑧,𝑄𝑄𝑘𝑘, apply  Lemma J.1 (Class Comprehension)  to derive the existence of a 𝑘𝑘′ 
such that 𝑥𝑥 ∈𝐶𝐶 𝑘𝑘′ ↔ 𝑥𝑥 ∈𝐶𝐶 𝑘𝑘 ∧ 𝑥𝑥 ≠ 𝑆𝑆(𝑎𝑎) (i.e., 𝑘𝑘′ = 𝑘𝑘 − {𝑆𝑆(𝑎𝑎)}). As 𝑘𝑘 is successor closed and 𝑘𝑘 
doesn’t contain 𝑎𝑎, and 𝑆𝑆(𝑎𝑎) isn’t the successor of any other object, it follows that 𝑘𝑘′ is 
successor closed. By our choice of 𝑘𝑘 we have 𝑧𝑧 ∈𝐶𝐶 𝑘𝑘. So, as 𝑧𝑧 ≠ 𝑎𝑎 (by Lemma J.3 (Reflexivity) 



and our choice of 𝑧𝑧) we can infer 𝑧𝑧 ∈𝐶𝐶 𝑘𝑘′. Thus 𝑘𝑘′ is a successor closed class which contains z 
but not 𝑆𝑆(𝑎𝑎). However, by  (J5), this contradicts the fact that 𝑧𝑧 ≤ 𝑆𝑆(𝑎𝑎) and exporting the 
contradiction establishes the result. ■ 

Lemma J.7 (Well-Ordering).  
□ [𝑊𝑊,≤ (∃𝑥𝑥)(𝐾𝐾(𝑥𝑥) ∧𝑊𝑊(𝑥𝑥)) →

(∃𝑥𝑥′)(𝐾𝐾(𝑥𝑥′) ∧𝑊𝑊(𝑥𝑥′) ∧ (∀𝑦𝑦)[𝐾𝐾(𝑦𝑦) ∧𝑊𝑊(𝑦𝑦) → 𝑥𝑥′ ≤ 𝑦𝑦])] 

Proof. Suppose not. Then we have 

◊ [𝑊𝑊,≤ (∃𝑥𝑥)(𝐾𝐾(𝑥𝑥) ∧𝑊𝑊(𝑥𝑥)) ∧
¬(∃𝑥𝑥′)(𝐾𝐾(𝑥𝑥′) ∧𝑊𝑊(𝑥𝑥′) ∧ (∀𝑦𝑦)[𝐾𝐾(𝑦𝑦) ∧𝑊𝑊(𝑦𝑦) → 𝑥𝑥′ ≤ 𝑦𝑦])] 

By ◊ Ignoring ( Axiom 8.3) we can deduce the corresponding ◊𝑆𝑆𝐶𝐶,𝐶𝐶,𝑆𝑆,∈𝐶𝐶,𝑊𝑊,≤,𝐷𝐷 claim. Entering this 
◊𝑆𝑆𝐶𝐶,𝐶𝐶,𝑆𝑆,∈𝐶𝐶,𝑊𝑊,≤,𝐷𝐷  context we can import 𝛹𝛹 and deduce (∃𝑥𝑥)(𝐾𝐾(𝑥𝑥) ∧𝑊𝑊(𝑥𝑥)) and 

(∀𝑥𝑥′)(𝐾𝐾(𝑥𝑥′) ∧𝑊𝑊(𝑥𝑥′) → (∃𝑦𝑦)[𝐾𝐾(𝑦𝑦) ∧𝑊𝑊(𝑦𝑦) ∧ 𝑥𝑥′ ≰ 𝑦𝑦])                 (𝐽𝐽9) 

Now by the Lemma J.1 (Class Comprehension)  there is a class 𝑘𝑘 containing just those 𝑥𝑥 in 𝑊𝑊 
such that no 𝑦𝑦 ≤ 𝑥𝑥 satisfies 𝐾𝐾. That is 

𝑥𝑥 ∈
𝐶𝐶
𝑘𝑘 ↔ 𝑊𝑊(𝑥𝑥) ∧ (∀𝑦𝑦 ≤ 𝑥𝑥)�¬𝐾𝐾(𝑦𝑦)�                      (𝐽𝐽10) 

Clearly 0 ∈𝐶𝐶 𝑘𝑘 since if not then it would be a ≤ minimal element satisfying 𝐾𝐾, hence a 
counterexample to equation (J9) . We now show that 𝑘𝑘 is successor closed. 

Suppose not. Then there is some 𝑥𝑥 ∈𝐶𝐶 𝑘𝑘 with 𝑆𝑆(𝑥𝑥) ∉ 𝑘𝑘. So by (J10)  there must be some 𝑧𝑧 ≤
𝑆𝑆(𝑥𝑥) with 𝐾𝐾(𝑧𝑧). However, by Lemma J.6 (Maximal Predecessor), either 𝑧𝑧 ≤ 𝑥𝑥 or 𝑧𝑧 = 𝑆𝑆(𝑥𝑥). But 
as 𝑥𝑥 ∈𝐶𝐶 𝑘𝑘 we can’t have 𝑧𝑧 ≤ 𝑥𝑥 so 𝐾𝐾(𝑆𝑆(𝑥𝑥)). 

By equation (J9)  there must be some 𝑦𝑦 < 𝑆𝑆(𝑥𝑥) with 𝐾𝐾(𝑦𝑦). But again, by Lemma J.6 (Maximal 
Predecessor), this entails that 𝑦𝑦 ≤ 𝑥𝑥. Contradiction. Hence 𝑘𝑘 is a successor closed class 
containing 0 and by clause  (J4)  of 𝛥𝛥 every member of 𝑊𝑊 must be an element of 𝑘𝑘. But this 
contradicts (∃𝑥𝑥)(𝐾𝐾(𝑥𝑥) ∧𝑊𝑊(𝑥𝑥)). 

Leaving the ◊𝑆𝑆𝐶𝐶,𝐶𝐶,𝑆𝑆,∈𝐶𝐶,𝑊𝑊,≤,𝐷𝐷  context above we may export this contradiction establishing the 
well-ordering property. ■ 

Two more lemmas are needed before we can verify the last remaining property, anti-symmetry. 

Lemma J.8.  (∀𝑥𝑥 ∣ 𝑊𝑊(𝑥𝑥))(𝑆𝑆(𝑥𝑥) ≰ 𝑥𝑥) 

Note that this implies 𝑊𝑊 lacks a maximal element since every element in 𝑊𝑊 has a successor. 

Proof. By  Lemma J.1 (Class Comprehension)  let 𝑘𝑘 be the class containing just those 𝑥𝑥 such that 
𝐷𝐷(𝑥𝑥) ∧𝑊𝑊(𝑥𝑥) ∧ 𝑆𝑆(𝑥𝑥) ≰ 𝑥𝑥 It is enough to show that 𝑘𝑘 is successor closed and 0 ∈𝐶𝐶 𝑘𝑘 since 𝑊𝑊 is 
contained in every such class. 

First, we establish that 0 ∈𝐶𝐶 𝑘𝑘. Suppose 𝑆𝑆(0) ≤ 0 and consider the formula 𝑥𝑥 ≠ 0. By 
Lemma J.1 (Class Comprehension)  there is some 𝑘𝑘�  such that 𝑥𝑥 ∈𝐶𝐶 𝑘𝑘′ ↔ 𝑥𝑥 ≠ 0 ∧ 𝐷𝐷(𝑥𝑥). As 0 isn’t 



a successor, 𝑘𝑘�  is clearly successor closed. And as 𝐷𝐷(𝑆𝑆(0)) and 𝑆𝑆(0) ≠ 0 we have 𝑆𝑆(0) ∈𝐶𝐶 𝑘𝑘�. 
However, by  (J5) if 𝑆𝑆(0) ≤ 0 then, as 𝑘𝑘�  is successor closed, 0 ∈𝐶𝐶 𝑘𝑘�. This is a contradiction. 
Hence 0 ∈𝐶𝐶 𝑘𝑘�. 

As every element in 𝑊𝑊 is either 0 or a successor, to show that 𝑘𝑘 is successor closed it is enough 
to show that if 𝑆𝑆(𝑥𝑥) ≰ 𝑥𝑥 then 𝑆𝑆(𝑆𝑆(𝑥𝑥)) ≰ 𝑥𝑥. Suppose this fails. As 𝑆𝑆(𝑥𝑥) ≰ 𝑥𝑥 there is some 
successor closed 𝑘𝑘′ containing 𝑆𝑆(𝑥𝑥) but not 𝑥𝑥. By the same trick used above we invoke the 
Multiple Definitions Lemma ( Lemma H.7) to put together applications of Simplified Choice ( 
Proposition 8.1) and Simple Comprehension ( Axiom 8.4) to infer that possibly (◊𝑆𝑆𝐶𝐶,𝐶𝐶,𝑆𝑆,∈𝐶𝐶,𝑊𝑊,≤,𝐷𝐷 ) 
𝑄𝑄𝑥𝑥 and 𝑄𝑄𝑘𝑘′ select unique objects 𝑥𝑥 and 𝑘𝑘′ such that 𝑘𝑘′ is a successor closed class and 
𝑆𝑆(𝑥𝑥) ∈𝐶𝐶 𝑘𝑘′ ∧ ¬𝑥𝑥 ∈𝐶𝐶 𝑘𝑘′. We now work to transform 𝑘𝑘′ into a class 𝑘𝑘″ witnessing that 𝑆𝑆(𝑆𝑆(𝑐𝑐)) ≰
𝑆𝑆(𝑥𝑥). 

Enter this ◊𝑆𝑆𝐶𝐶,𝐶𝐶,𝑆𝑆,∈𝐶𝐶,𝑊𝑊,≤,𝐷𝐷  context. 𝒞𝒞(𝐶𝐶,∈𝐶𝐶 ,Ext(𝑆𝑆)) must remain true in this context. So by 
Lemma J.1 (Class Comprehension) there’s a class 𝑘𝑘″ including every element in 𝑘𝑘′ except for 
𝑆𝑆(𝑥𝑥) (i.e., 𝑘𝑘″ = 𝑘𝑘′ − {𝑆𝑆(𝑥𝑥)}). By our choice of 𝑘𝑘′, 𝑘𝑘′ doesn’t contain 𝑥𝑥 and is successor closed. 
So 𝑘𝑘″ must also be successor closed (for in removing 𝑆𝑆(𝑥𝑥) from 𝑘𝑘′ we aren’t removing the 
successor of anything in 𝑘𝑘′). And 𝑘𝑘″ contains 𝑆𝑆(𝑆𝑆(𝑥𝑥)), for 𝑘𝑘′ contained 𝑆𝑆(𝑥𝑥) and we know 
¬𝑆𝑆(𝑥𝑥) = 𝑆𝑆(𝑆𝑆(𝑥𝑥)) by the last clause in 𝛺𝛺, so 𝑘𝑘″ does as well. Thus, 𝑘𝑘″ is a successor closed class 
containing 𝑆𝑆(𝑆𝑆(𝑥𝑥)) but not 𝑆𝑆(𝑥𝑥). But by  (J5) combining this with 𝑆𝑆(𝑆𝑆(𝑥𝑥)) ≤ 𝑆𝑆(𝑥𝑥) yields 
contradiction, which can be exported from the above logical possibility context. 

Thus, 𝑘𝑘 is a successor closed class containing 0, and it follows that all x such that 𝑊𝑊(𝑥𝑥) are 
elements of 𝑘𝑘. Given our characterization of 𝑘𝑘, this implies that, for every 𝑥𝑥 in 𝑊𝑊, 𝑆𝑆(𝑥𝑥) ≰ 𝑥𝑥, as 
desired. ■ 

Finally, we show that the definition of 0 used in this proof (the unique element that has a 
successor but isn’t a successor) is equivalent to the definition used in the statement of the 
theorem (the unique ≤ minimal element in 𝑊𝑊). Note that is enough to prove the following 
lemma, saying that 0 is ≤ minimal, as the above lemma ensures that no other element in 𝑊𝑊 is 
≤ minimal. 

Lemma J.9.  (∀𝑦𝑦)(𝑦𝑦 ≤ 0 → 𝑦𝑦 = 0) 

Proof. Suppose 𝑦𝑦 witnesses the failure of the lemma. Consider the formula 𝑥𝑥 ≠ 0. By the 
Lemma J.1 (Class Comprehension)  there is some 𝑘𝑘 such that 𝑥𝑥 ∈𝐶𝐶 𝑘𝑘 ↔ 𝑥𝑥 ≠ 0 ∧ 𝐷𝐷(𝑥𝑥). As 0 isn’t 
a successor 𝑘𝑘 is clearly successor closed, and as 𝑦𝑦 ≤ 0 we have 𝐷𝐷(𝑦𝑦). So 𝑦𝑦 ∈𝐶𝐶 𝑘𝑘. However, by  
(J5) this contradicts the fact that 𝑦𝑦 ≤ 0 completing the proof. ■ 

Lemma J.10 (Anti-symmetry).  (∀𝑥𝑥 ∣ 𝑊𝑊(𝑥𝑥))(∀𝑦𝑦)(𝑥𝑥 ≤ 𝑦𝑦 ∧ 𝑦𝑦 ≤ 𝑥𝑥 → 𝑥𝑥 = 𝑦𝑦) 

Proof. By the Lemma J.1 (Class Comprehension)  let 𝑘𝑘 be the class containing just those 𝑥𝑥 
satisfying 𝑊𝑊 such that (∀𝑦𝑦)(𝑥𝑥 ≤ 𝑦𝑦 ∧ 𝑦𝑦 ≤ 𝑥𝑥 → 𝑥𝑥 = 𝑦𝑦). As above it is enough to show that 
0 ∈𝐶𝐶 𝑘𝑘 and 𝑘𝑘 is successor closed. 

Note that, by the prior result, if 𝑦𝑦 ≤ 0 then 𝑦𝑦 = 0. Hence, 0 ∈𝐶𝐶 𝑘𝑘. 



We now establish that 𝑘𝑘 is successor closed. Suppose not. Then for some 𝑥𝑥 we have 𝑥𝑥 ∈𝐶𝐶 𝑘𝑘 but 
not 𝑆𝑆(𝑥𝑥). Thus, for some 𝑦𝑦, 𝑦𝑦 ≤ 𝑆𝑆(𝑥𝑥) and 𝑆𝑆(𝑥𝑥) ≤ 𝑦𝑦 but not 𝑦𝑦 = 𝑆𝑆(𝑥𝑥). As 𝑥𝑥 ≤ 𝑆𝑆(𝑥𝑥) and 𝑆𝑆(𝑥𝑥) ≤
𝑦𝑦 by transitivity we have 𝑥𝑥 ≤ 𝑦𝑦. By the Lemma J.6 (Maximal Predecessor) property above, since 
𝑦𝑦 < 𝑆𝑆(𝑥𝑥), we have 𝑦𝑦 ≤ 𝑥𝑥. As 𝑥𝑥 ∈𝐶𝐶 𝑘𝑘 it follows that 𝑦𝑦 = 𝑥𝑥. But this contradicts the fact that 
𝑆𝑆(𝑥𝑥) ≰ 𝑥𝑥, by Lemma J.8 above. Hence 𝑦𝑦 = 𝑆𝑆(𝑥𝑥). Thus 𝑘𝑘 is successor closed. ■ 

Note that the above lemmas verify every element of the Infinite Well-Ordering Theorem ( 
Theorem J.1), completing its proof. 

J.3 Possibly 𝑷𝑷𝑨𝑨◊ 

If follows fairly quickly from the proof above that it’s logically possible that 𝑃𝑃𝐴𝐴◊, where 𝑃𝑃𝐴𝐴◇ 
(given below) is the (relational) version of the second order Peano Axioms which replaces the 
second order induction principle with an equivalent formulation in terms of conditional logical 
possibility. 

Definition J.1.  PA◊ is the formula given by the conjunction of the following clauses 

1. The relation 𝑆𝑆 is a function12. 

2.  (∃! 𝑧𝑧 ∣ ℕ(𝑧𝑧))(∀𝑥𝑥 ∣ ℕ(𝑥𝑥))(¬𝑆𝑆(𝑥𝑥) = 𝑧𝑧 ∧ ℕ(𝑧𝑧)). As above we will refer to this unique 𝑧𝑧 as 0. 

3. (Successor Closed) (∀𝑛𝑛)[ℕ(𝑛𝑛) → ℕ(𝑆𝑆(𝑛𝑛))], i.e., ℕ is closed under successor. 

4. For all natural numbers 𝑚𝑚 and 𝑛𝑛, if 𝑆𝑆(𝑚𝑚) = 𝑆𝑆(𝑛𝑛) then 𝑚𝑚 = 𝑛𝑛. That is, 𝑆𝑆 is an injection. 

5. (Induction) 13 □ ([(𝐾𝐾(0) ∧ (∀𝑛𝑛 ∣ ℕ(𝑛𝑛))(𝐾𝐾(𝑛𝑛) → 𝐾𝐾(𝑆𝑆(𝑛𝑛)))] → (∀𝑛𝑛 ∣ ℕ(𝑛𝑛))𝐾𝐾(𝑛𝑛))ℕ,𝑆𝑆  

Lemma J.11 (Possibly 𝑃𝑃𝐴𝐴◊).  Suppose ℕ, 𝑆𝑆 don’t appear in ℒ then ◊ (ℒ 𝑃𝑃𝐴𝐴◇) 

That is, it’s logically possible that ℕ, 𝑆𝑆 satisfy the Peano axioms (in the form given above) while 
holding fixed ℒ 

Proof. We note that the proof of the Infinite Well-Ordering Theorem ( Theorem J.1) can be 
modified to hold fixed ℒ and use ℕ in place of 𝑊𝑊 (renaming the relations introduced in that 
proof as necessary to avoid collision with ℒ) and that in doing so all the lemmas proved in the 
prior section remain valid. As in the proof above we enter the ◊ (now ◊ )  ℒ context and, 
assuming 𝛺𝛺 ∧ 𝒞𝒞(𝐶𝐶,∈𝐶𝐶 ,Ext(𝑆𝑆)) ∧ 𝛥𝛥 derive the desired properties. 

                                                      
12 Formally, this is the assertion that for all 𝑛𝑛,𝑚𝑚,𝑚𝑚′, if 𝑆𝑆(𝑛𝑛,𝑚𝑚) and 𝑆𝑆(𝑛𝑛,𝑚𝑚′) then 𝑚𝑚′ = 𝑚𝑚. As 
usual we will use functional notation for 𝑆𝑆. 

13 Expressed in a relational form this would be □ [(𝐾𝐾(0) ∧ (∀𝑛𝑛)(∀𝑛𝑛′ ∣ ℕ(𝑛𝑛′))([𝐾𝐾(𝑛𝑛) ∧ℕ,𝑆𝑆
𝑆𝑆(𝑛𝑛, 𝑛𝑛′) → 𝐾𝐾(𝑛𝑛′)] → (∀𝑛𝑛 ∣ ℕ(𝑛𝑛))𝐾𝐾(𝑛𝑛))] but as usual we gloss over this trivial difference. 



The lemmas proved above in conjunction with 𝛺𝛺 immediately entail all but clause 3 (Successor 
Closed)  and clause 5 (Induction) . To prove that ℕ is successor closed we note that if ℕ(𝑥𝑥) then 
𝑥𝑥 is in all successor closed 𝑘𝑘 containing 0 and hence so is 𝑆𝑆(𝑥𝑥). Hence, ℕ is successor closed. 

To prove the induction claim suppose that 

𝐾𝐾(0) ∧ (∀𝑛𝑛 ∣ ℕ(𝑛𝑛))(𝐾𝐾(𝑛𝑛) → 𝐾𝐾(𝑆𝑆(𝑛𝑛))) 

we note that by the Lemma J.1 (Class Comprehension)  there is some class 𝑘𝑘 such that 

(∀𝑛𝑛) �𝑛𝑛 ∈
𝐶𝐶
𝑘𝑘 ↔ Ext(𝑆𝑆)(𝑛𝑛) ∧ 𝐾𝐾(𝑛𝑛) ∧ ℕ(𝑥𝑥)� 

As ℕ is successor closed and contains 0 as is, by assumption, 𝐾𝐾 it immediately follows that 
𝑆𝑆𝐶𝐶(𝑘𝑘). Hence, it follows, by the definition of 𝑊𝑊 (now ℕ) that if ℕ(𝑛𝑛) then 𝑛𝑛 ∈𝐶𝐶 𝑘𝑘 and hence 
𝐾𝐾(𝑛𝑛). Thus, we can infer 

[(𝐾𝐾(0) ∧ (∀𝑛𝑛 ∣ ℕ(𝑛𝑛))(𝐾𝐾(𝑛𝑛) → 𝐾𝐾(𝑆𝑆(𝑛𝑛)))] → (∀𝑛𝑛 ∣ ℕ(𝑛𝑛))𝐾𝐾(𝑛𝑛) 

Since we derived this conclusion from 𝛺𝛺 ∧ 𝒞𝒞(𝐶𝐶,∈𝐶𝐶 ,Ext(𝑆𝑆)) ∧ 𝛥𝛥 which is content restricted to 
ℕ, 𝑆𝑆,𝐶𝐶,∈𝐶𝐶 ,𝐷𝐷,≤ via Lemma 4.3 (Box Introduction) we can conclude 

□ ([(𝐾𝐾(0) ∧ (∀𝑛𝑛 ∣ ℕ(𝑛𝑛))(𝐾𝐾(𝑛𝑛) → 𝐾𝐾(𝑆𝑆(𝑛𝑛)))] → (∀𝑛𝑛 ∣ ℕ(𝑛𝑛))𝐾𝐾(𝑛𝑛))ℕ,𝑆𝑆,𝐶𝐶,∈
𝐶𝐶

,𝐷𝐷,≤  

Now by Lemma H.1 (Box Ignoring) we can conclude. 

□ ([(𝐾𝐾(0) ∧ (∀𝑛𝑛 ∣ ℕ(𝑛𝑛))(𝐾𝐾(𝑛𝑛) → 𝐾𝐾(𝑆𝑆(𝑛𝑛)))] → (∀𝑛𝑛 ∣ ℕ(𝑛𝑛))𝐾𝐾(𝑛𝑛))ℕ,𝑆𝑆  

Leaving the ◊ℒ  context completes our proof. ■ 

Note that, while we don’t provide a proof here, it is straightforward to add relations +,∗ to PA◊ 
and if we do so the above theorem continues to hold but we omit the proof of this claim. 

K.  Properties of Initial Segments 

K.1 Isomorphism Agreement Lemmas 

Informally, this lemma says that there is only one way to isomorphically map between initial 
segments of well-orderings. 

Lemma K.1 (Well Ordering Agreement Lemma).  Suppose that (𝑊𝑊, <), (𝑊𝑊′, < ′) are well orders 
and 

• (𝑊𝑊𝑓𝑓 , <𝑓𝑓), (𝑊𝑊𝑔𝑔, <𝑔𝑔) ≤ (𝑊𝑊, <) 

• (𝑊𝑊′𝑓𝑓 , < ′𝑓𝑓), (𝑊𝑊′𝑔𝑔, < ′𝑔𝑔) ≤ (𝑊𝑊′, < ′) 

• (𝑊𝑊𝑓𝑓 , <𝑓𝑓) ≅𝑓𝑓 (𝑊𝑊′𝑓𝑓 , < ′𝑓𝑓) 

• (𝑊𝑊𝑔𝑔, <𝑔𝑔) ≅𝑔𝑔 (𝑊𝑊′𝑔𝑔, < ′𝑔𝑔) 



then (∀𝑥𝑥)�𝑊𝑊𝑓𝑓(𝑥𝑥) ∧𝑊𝑊𝑔𝑔(𝑥𝑥) → 𝑓𝑓(𝑥𝑥) = 𝑔𝑔(𝑥𝑥)� 

Proof. Suppose the assumptions in the lemma hold but that the conclusion fails and let ℒ =
{𝑊𝑊𝑓𝑓 , <𝑓𝑓 ,𝑊𝑊𝑔𝑔, <𝑔𝑔,𝑊𝑊′𝑓𝑓 , < ′𝑓𝑓 ,𝑊𝑊′𝑔𝑔, < ′𝑔𝑔,𝑊𝑊, <,𝑊𝑊′, < ′,𝑓𝑓,𝑔𝑔}. We argue that there must be a < least 
element at which the claim fails and show that yields contradiction. By Simple Comprehension ( 
Axiom 8.4) we can infer that it’s logically possible (◊ℒ ) that the assumptions in the lemma hold 
but the conclusion fails as well as 

(∀𝑜𝑜)[𝐵𝐵(𝑜𝑜) ↔  𝑊𝑊𝑓𝑓(𝑥𝑥)  ∧𝑊𝑊𝑓𝑓(𝑥𝑥)  ∧ 𝑓𝑓(𝑜𝑜) ≠ 𝑔𝑔(𝑜𝑜)] 

 

Enter this ◊ℒ  context. By the definition of well ordering (Definition E.2), there must be some < 
least 𝑜𝑜 satisfying 𝐵𝐵(𝑜𝑜). It is trivial to verify the claim must hold if 𝑜𝑜 is the < least element in 𝑊𝑊. 

So suppose that 𝑓𝑓(𝑜𝑜) ≠ 𝑔𝑔(𝑜𝑜) and 𝑜𝑜 isn’t the least element in 𝑊𝑊. Without loss of generality we 
may assume 𝑓𝑓(𝑜𝑜) < ′𝑔𝑔(𝑜𝑜). By supposition 𝑊𝑊′𝑔𝑔(𝑔𝑔(𝑜𝑜)) and it follows by the that 𝑊𝑊′𝑔𝑔(𝑓𝑓(𝑜𝑜)). 
Thus, for some 𝑢𝑢 satisfying 𝑊𝑊𝑔𝑔(𝑢𝑢) we have 𝑔𝑔(𝑢𝑢) = 𝑓𝑓(𝑜𝑜) < ′𝑔𝑔(𝑜𝑜). Now it follows that 𝑔𝑔(𝑢𝑢) <
′𝑔𝑔𝑔𝑔(𝑜𝑜), hence as (𝑊𝑊𝑔𝑔, <𝑔𝑔) ≅𝑔𝑔 (𝑊𝑊′𝑔𝑔, < ′𝑔𝑔) it follows that 𝑢𝑢 <𝑔𝑔 𝑜𝑜 and thus 𝑢𝑢 < 𝑜𝑜. 

But as 𝑊𝑊𝑓𝑓(𝑜𝑜), we can infer (from 𝑢𝑢 < 𝑜𝑜) that 𝑊𝑊𝑓𝑓(𝑢𝑢). Hence, 𝑢𝑢 is in the domain of both 𝑔𝑔 and 𝑓𝑓 
and by the minimality of 𝑜𝑜 we must have 𝑓𝑓(𝑢𝑢) = 𝑔𝑔(𝑢𝑢) = 𝑓𝑓(𝑜𝑜), contradicting the injectivity of 
𝑓𝑓. 

Exporting the contradiction from the ◊ℒ  context using Axiom 8.2 (Diamond Elimination) 
establishes the claim to be proved. ■ 

We now prove a similar result for initial segments. 

Lemma K.2 (Hierarchy Agreement Lemma).  Suppose 

• 𝑉𝑉𝑓𝑓 ,𝑉𝑉𝑔𝑔 ≤ 𝑉𝑉 

• 𝑉𝑉′𝑓𝑓 ,𝑉𝑉′𝑔𝑔 ≤ 𝑉𝑉′ 

• 𝑉𝑉𝑓𝑓 ≅𝑓𝑓 𝑉𝑉′𝑓𝑓 

• 𝑉𝑉𝑔𝑔 ≅𝑔𝑔 𝑉𝑉′𝑔𝑔 

then (∀𝑥𝑥)�𝑉𝑉𝑓𝑓(𝑥𝑥) ∧ 𝑉𝑉𝑔𝑔(𝑥𝑥) → 𝑓𝑓(𝑥𝑥) = 𝑔𝑔(𝑥𝑥)� 

Proof. Let ℒ = {𝑉𝑉𝑓𝑓 ,𝑉𝑉𝑔𝑔,𝑉𝑉′𝑓𝑓 ,𝑉𝑉′𝑔𝑔,𝑉𝑉,𝑉𝑉′,𝑓𝑓,𝑔𝑔} and suppose these relations are as in the statement 
of lemma but the lemma fails. tells us the claim must hold on the ordinals of the initial 
segments, so it remains only to must it for the sets. Our strategy here will be to prove the claim 
by transfinite induction on the ordinal at which 𝑥𝑥 is formed and use the inductive assumption 
combined with extensionality to infer the claim holds for 𝑥𝑥. 

By Simple Comprehension ( Axiom 8.4) that it’s possible (◊ℒ ) that all the facts above continue 
to hold and that 



(∀𝑜𝑜)�𝐵𝐵(𝑜𝑜) ↔ (∃𝑥𝑥 ∣ @(𝑥𝑥, 𝑜𝑜))�𝑠𝑠𝑠𝑠𝐸𝐸𝑓𝑓(𝑥𝑥) ∧ 𝑠𝑠𝑠𝑠𝐸𝐸𝑔𝑔(𝑥𝑥) ∧ ¬𝑓𝑓(𝑥𝑥) = 𝑔𝑔(𝑥𝑥)�� 

Enter this ◊ℒ . By the there must be some < least 𝑜𝑜 satisfying 𝐵𝐵(𝑜𝑜). Let 𝑥𝑥 be a set in both 𝑉𝑉𝑓𝑓 and 
𝑉𝑉𝑔𝑔 witnessing that 𝑜𝑜 satisfies 𝐵𝐵, i.e. @(𝑥𝑥, 𝑜𝑜) and 𝑓𝑓(𝑥𝑥) ≠ 𝑔𝑔(𝑥𝑥). 

Now suppose 𝑦𝑦′ ∈ ′𝑓𝑓(𝑥𝑥). We argue that 𝑢𝑢′ ∈ ′𝑔𝑔(𝑥𝑥) 

By assumption set′𝑓𝑓(𝑓𝑓(𝑥𝑥)), and by the definition of Initial Segment Extension ( Definition A.3 ), 
it follows that set′𝑓𝑓(𝑦𝑦′). Hence by the same definition there must be some 𝑦𝑦 with set𝑓𝑓(𝑦𝑦), 
𝑓𝑓(𝑦𝑦) = 𝑦𝑦′ and 𝑦𝑦 ∈𝑓𝑓 𝑥𝑥. And by the same definition, 𝑦𝑦 ∈ 𝑥𝑥. As @(𝑥𝑥, 𝑜𝑜) ensures that there is some 
𝑜𝑜′ < 𝑜𝑜 with @(𝑦𝑦, 𝑜𝑜′). 

By assumption set𝑔𝑔(𝑥𝑥) and by the definition of Initial Segment Extension (Definition A.3 ), it 
follows14 that set𝑔𝑔(𝑦𝑦). Hence 𝑦𝑦 is in the domain of both 𝑓𝑓 and 𝑔𝑔 and if 𝑓𝑓(𝑦𝑦) ≠ 𝑔𝑔(𝑦𝑦) this would 
violate the minimality of 𝑜𝑜. As 𝑔𝑔 is an isomorphism, it follows that 𝑦𝑦′ ∈ ′𝑔𝑔𝑔𝑔(𝑥𝑥) and by 
Definition A.3 it follows that 𝑦𝑦′ ∈ ′𝑔𝑔(𝑥𝑥). By a similar argument applied in the other direction we 
can establish that 𝑦𝑦′ ∈ ′𝑓𝑓(𝑥𝑥) ↔ 𝑦𝑦′ ∈ ′𝑔𝑔(𝑥𝑥). 

Thus, by part it follows that 𝑓𝑓(𝑥𝑥) = 𝑔𝑔(𝑥𝑥). Contradiction15. Leaving the ◊𝑉𝑉𝑓𝑓,𝑉𝑉𝑔𝑔,𝑉𝑉′𝑓𝑓,𝑉𝑉′𝑔𝑔,𝑉𝑉,𝑉𝑉′,𝑓𝑓,𝑔𝑔  
context by Axiom 8.2 (Diamond Elimination) we can export this contradiction giving us the 
desired result. ■ 

Corollary K.1.  If 𝑉𝑉0 ≤ 𝑉𝑉,𝑉𝑉�  and 𝑉𝑉 ≅𝑓𝑓 𝑉𝑉�  then (∀𝑥𝑥 ∣ 𝑉𝑉0(𝑥𝑥))(𝑓𝑓(𝑥𝑥) = 𝑥𝑥) 

Proof. This is immediate by taking 𝑔𝑔 to be the identify function, 𝑉𝑉𝑔𝑔,𝑉𝑉′𝑔𝑔 both to be 𝑉𝑉0, 𝑉𝑉𝑓𝑓 to be 𝑉𝑉 
and 𝑉𝑉′𝑓𝑓 to be 𝑉𝑉�  and applying  lemma K.2 (Hierarchy Agreement Lemma). ■ 

K.2 V Comparability Lemma 

We now establish that, given any two initial segments then one extends (an isomorphic image 
of) the other. 

Lemma K.3 (V Comparability Lemma).  If 𝑉𝑉, 𝑉𝑉′ are initial segments then ◊ (𝑉𝑉,𝑉𝑉′ 𝑉𝑉� ≤ 𝑉𝑉 ∧
𝑉𝑉� ≅

𝑓𝑓
𝑉𝑉′) ∨ (𝑉𝑉�′ ≤ 𝑉𝑉′ ∧ 𝑉𝑉�′ ≅

𝑓𝑓
𝑉𝑉) 

Proof. Our strategy here will (essentially) be to define 𝑅𝑅(𝑥𝑥,𝑦𝑦) so that it holds just if 𝑉𝑉(𝑥𝑥) ∧
𝑉𝑉′(𝑦𝑦) and it is logically possible to have 𝑉𝑉0 ≤ 𝑉𝑉,𝑉𝑉′0 ≤ 𝑉𝑉′ and it’s logically possible for 𝑔𝑔 to 
isomorphicly map an initial segment of 𝑉𝑉 to an initial segment of 𝑉𝑉′ so that 𝑔𝑔(𝑥𝑥) = 𝑦𝑦. Our 
ultimate isomorphism 𝑓𝑓 will either be defined as 𝑓𝑓(𝑥𝑥) = 𝑦𝑦 ↔ 𝑅𝑅(𝑥𝑥,𝑦𝑦) or 𝑓𝑓(𝑦𝑦) = 𝑥𝑥 ↔ 𝑅𝑅(𝑥𝑥,𝑦𝑦) 
depending on which of 𝑉𝑉 or 𝑉𝑉′ has the higher height. 

                                                      
14 It follows by the fact that 𝑥𝑥 ∈ 𝑦𝑦 and 𝑠𝑠𝑠𝑠𝐸𝐸𝑔𝑔(𝑥𝑥) and 𝑠𝑠𝑠𝑠𝐸𝐸𝑔𝑔(𝑦𝑦) so 𝑥𝑥 ∈𝑔𝑔 𝑦𝑦. 

15 Note this argument applies even if 𝑜𝑜 = 0 in which case 𝑥𝑥 is the empty set. 



Suppose 𝑉𝑉,𝑉𝑉′ are initial segments. As 𝑅𝑅(𝑥𝑥,𝑦𝑦) is defined via a modal notion we must use Axiom 
8.9 (Modal Comprehension) to define 𝑅𝑅(𝑥𝑥,𝑦𝑦). In particular, Axiom 8.9 allows us to infer that it’s 
possible (◊𝑉𝑉,𝑉𝑉′ ) that 𝑉𝑉,𝑉𝑉′ are initial segments and 

□ [ℒ,𝑅𝑅 (∃! 𝑥𝑥,𝑦𝑦 ∣ 𝑄𝑄(𝑥𝑥,𝑦𝑦)) →
(∃𝑥𝑥,𝑦𝑦 ∣ 𝑄𝑄(𝑥𝑥,𝑦𝑦))[𝑅𝑅(𝑥𝑥,𝑦𝑦) ↔ Ext(𝑉𝑉,𝑉𝑉′)(𝑥𝑥) ∧ Ext(𝑉𝑉,𝑉𝑉′)(𝑦𝑦) ∧ 𝜙𝜙]]
 where 

𝜙𝜙 = ◊ �𝑉𝑉0 ≤ 𝑉𝑉 ∧ 𝑉𝑉′0 ≤ 𝑉𝑉′ ∧ 𝑉𝑉0 ≅𝑔𝑔 𝑉𝑉′0 ∧ (∃𝑥𝑥,𝑦𝑦)(𝑄𝑄(𝑥𝑥,𝑦𝑦) ∧ 𝑔𝑔(𝑥𝑥) = 𝑦𝑦)�𝑉𝑉,𝑉𝑉′,𝑄𝑄

 

Enter this ◊𝑉𝑉,𝑉𝑉′  context. We will now argue that 𝑅𝑅(𝑥𝑥,𝑦𝑦) defines the desired isomorphism. 

It is evident from the definition of 𝑅𝑅(𝑥𝑥,𝑦𝑦) that 𝑅𝑅 takes sets to sets and ordinals to ordinals. We 
first verify that for each 𝑥𝑥 there is at most one 𝑦𝑦 such that 𝑅𝑅(𝑥𝑥, 𝑦𝑦). Suppose not then using the 
Multiple Definitions Lemma ( H 17.7) to pack together applications of Axiom 8.4 (Simple 
Comprehension)  and Proposition 8.1 (Simplified Choice) we can  (◊𝑅𝑅,𝑉𝑉,𝑉𝑉′ ) retain all the above 
facts and have 𝑄𝑄0 applying to a single pair 𝑥𝑥, 𝑦𝑦0 and a 𝑄𝑄1 apply to a single pair 𝑥𝑥,𝑦𝑦1 such that 
𝑅𝑅(𝑥𝑥, 𝑦𝑦0) ∧ 𝑅𝑅(𝑥𝑥,𝑦𝑦1). Entering this context and applying Lemma B.3 (Box Elimination) (and 
renaming bound first order variables) we may thus infer that both of the following hold. 

◊𝑉𝑉,𝑉𝑉′,𝑄𝑄0 𝑉𝑉0 ≤ 𝑉𝑉 ∧ 𝑉𝑉′0 ≤ 𝑉𝑉′ ∧ 𝑉𝑉0 ≅𝑔𝑔0
𝑉𝑉′0 ∧ (∃𝑥𝑥,𝑦𝑦0)(𝑄𝑄0(𝑥𝑥,𝑦𝑦0) ∧ 𝑔𝑔0(𝑥𝑥) = 𝑦𝑦0)

◊𝑉𝑉,𝑉𝑉′,𝑄𝑄1 𝑉𝑉1 ≤ 𝑉𝑉 ∧ 𝑉𝑉′1 ≤ 𝑉𝑉′ ∧ 𝑉𝑉1 ≅𝑔𝑔1
𝑉𝑉′1 ∧ (∃𝑥𝑥,𝑦𝑦1)(𝑄𝑄1(𝑥𝑥,𝑦𝑦1) ∧ 𝑔𝑔1(𝑥𝑥) = 𝑦𝑦1)  

Next, we will show that we can paste these two scenarios together. For note that the sentence 
inside ◊𝑉𝑉,𝑉𝑉′,𝑄𝑄0  above is content restricted to 𝑉𝑉,𝑉𝑉′,𝑄𝑄0,𝑔𝑔0, and the sentence inside ◊𝑉𝑉,𝑉𝑉′,𝑄𝑄1    
above is content restricted to 𝑉𝑉,𝑉𝑉′,𝑄𝑄1,𝑔𝑔1. So the only overlap in the content of the pair of 
scenarios asserted to be possible above concerns relations which both of them are holding 
fixed (𝑉𝑉,𝑉𝑉′). Thus, we can apply ◊ Ignoring ( Axiom 8.3) to get the  ◊𝑉𝑉,𝑉𝑉′,𝑄𝑄0,𝑄𝑄1  version of both 
claims above, and then Lemma B.7 (Pasting) to infer 

◊ �
𝑉𝑉0 ≤ 𝑉𝑉 ∧ 𝑉𝑉′0 ≤ 𝑉𝑉′ ∧ 𝑉𝑉0 ≅𝑔𝑔0

𝑉𝑉′0 ∧ (∃𝑥𝑥, 𝑦𝑦0)(𝑄𝑄0(𝑥𝑥,𝑦𝑦0) ∧ 𝑔𝑔0(𝑥𝑥) = 𝑦𝑦0) ∧

𝑉𝑉1 ≤ 𝑉𝑉 ∧ 𝑉𝑉′1 ≤ 𝑉𝑉′ ∧ 𝑉𝑉1 ≅𝑔𝑔1
𝑉𝑉′1 ∧ (∃𝑥𝑥,𝑦𝑦1)(𝑄𝑄1(𝑥𝑥,𝑦𝑦1) ∧ 𝑔𝑔1(𝑥𝑥) = 𝑦𝑦1) �𝑉𝑉,𝑉𝑉′,𝑄𝑄0,𝑄𝑄1  

Import into this ◊𝑉𝑉,𝑉𝑉′,𝑄𝑄0,𝑄𝑄1  scenario the fact that (∀𝑥𝑥0)(∀𝑥𝑥1)(∀𝑦𝑦0)(∀𝑦𝑦1)(𝑄𝑄0(𝑥𝑥0,𝑦𝑦0) ∧
𝑄𝑄1(𝑥𝑥1,𝑦𝑦1) → 𝑥𝑥0 = 𝑥𝑥1 ∧ 𝑦𝑦0 ≠ 𝑦𝑦1). Thus, the scenario under the ◊𝑉𝑉,𝑉𝑉′,𝑄𝑄0,𝑄𝑄1  one in which 𝑔𝑔1 and 
𝑔𝑔0 isomorphicly map the initial segments 𝑉𝑉0,𝑉𝑉1 ≤ 𝑉𝑉 to 𝑉𝑉′0,𝑉𝑉′1 ≤ 𝑉𝑉′. However, this scenario is 
exactly what is ruled out by the Lemma K.2 (Hierarchy Agreement) giving us a contradiction 
which can be exported to infer that 𝑅𝑅(𝑥𝑥,𝑦𝑦) is injective. The fact that 𝑅𝑅 is an injective function 
justifies are use of functional notation (e.g., 𝑅𝑅(𝑥𝑥) = 𝑦𝑦) for the remainder of the proof. And 
since, if 𝑔𝑔0,𝑔𝑔1 are isomorphisms so are 𝑔𝑔0−1,𝑔𝑔1−1, the same considerations above imply that if 
𝑅𝑅(𝑥𝑥, 𝑦𝑦) and 𝑅𝑅(𝑥𝑥′,𝑦𝑦) then 𝑥𝑥 = 𝑥𝑥′. 

We now argue that if 𝑥𝑥0, 𝑥𝑥1 are sets in 𝑉𝑉 and both 𝑅𝑅(𝑥𝑥0) and 𝑅𝑅(𝑥𝑥1) are defined then 𝑥𝑥0 ∈ 𝑥𝑥1 ↔
𝑅𝑅(𝑥𝑥0) ∈ 𝑅𝑅(𝑥𝑥1). First, assume that there is some 𝑥𝑥0, 𝑥𝑥1 with 𝑥𝑥0 ∈ 𝑥𝑥1 but 𝑅𝑅(𝑥𝑥0) ∉ 𝑅𝑅(𝑥𝑥1). By the 
same argument above (building 𝑄𝑄0,𝑄𝑄1 applying to (𝑥𝑥0,𝑅𝑅(𝑥𝑥0)) and (𝑥𝑥1,𝑅𝑅(𝑥𝑥1)) respectively and 



then applying Lemma B.7 (Pasting)  ), we may assume we are in a context in which we have 
isomorphisms 𝑔𝑔0(𝑥𝑥0) = 𝑅𝑅(𝑥𝑥0) and 𝑔𝑔1(𝑥𝑥1) = 𝑅𝑅(𝑥𝑥1) and, since 𝑥𝑥0 ∈ 𝑥𝑥1 and thus in the domain 
of 𝑔𝑔1. Applying this the Lemma K.2 (Hierarchy Agreement)  in this context we may conclude that 
𝑔𝑔1(𝑥𝑥0) = 𝑔𝑔0(𝑥𝑥0) from which the conclusion 𝑅𝑅(𝑥𝑥0) ∈ 𝑅𝑅(𝑥𝑥1) follows. This yields the desired 
contradiction which we can export to the original context giving us that 𝑅𝑅(𝑥𝑥0) ∈ 𝑅𝑅(𝑥𝑥1) in that 
context. A similar argument lets us infer that if 𝑅𝑅(𝑥𝑥0) ∈ 𝑅𝑅(𝑥𝑥1) then 𝑥𝑥0 ∈ 𝑥𝑥1. This is enough to 
show that 𝑅𝑅 respects ∈. Similar reasoning demonstrates that 𝑅𝑅 respects < and @. 

We now argue that the domain and range of 𝑅𝑅 are initial segments of 𝑉𝑉,𝑉𝑉′ respectively. We 
note that if 𝑥𝑥 is a set in 𝑉𝑉 and 𝑥𝑥 is in the domain of 𝑅𝑅 then it’s possible (speaking loosely) that 𝑥𝑥 
in the domain (range) of 𝑔𝑔 and 𝑔𝑔 isomorphically maps some 𝑉𝑉0 ≤ 𝑉𝑉 to 𝑉𝑉′0 ≤ 𝑉𝑉 then, since 𝑥𝑥 
must be available at some ordinal 𝑢𝑢 in 𝑉𝑉0 (𝑉𝑉′0) it follows that 𝑥𝑥 is available at some ordinal in 
the domain (range) of 𝑅𝑅. Similarly, if 𝑜𝑜 is an ordinal in the domain (range) of 𝑅𝑅 and 𝑢𝑢 < 𝑜𝑜 then 
𝑢𝑢 is in the domain (range) of 𝑅𝑅. Thus, by Lemma E.1 (Initial Segment) we can infer that the 
domain of 𝑅𝑅 is some initial segment 𝑉𝑉� ≤ 𝑉𝑉 and the range is some initial segment 𝑉𝑉�′ ≤ 𝑉𝑉′ and 
𝑉𝑉� ≅𝑅𝑅 𝑉𝑉�′. 

Finally, it remains to show that either 𝑉𝑉� = 𝑉𝑉 or 𝑉𝑉�′ = 𝑉𝑉′ Suppose not. Then 𝑉𝑉� < 𝑉𝑉 and 𝑉𝑉�′ < 𝑉𝑉′. 
Since 𝑉𝑉�  is an initial segment there must be some ordinal 𝑜𝑜 in 𝑉𝑉 not in the domain of 𝑅𝑅. We now 
use Axiom 8.4 (Simple Comprehension) via Lemma H.7 (Multiple Definitions) to define 𝐵𝐵(𝑜𝑜) to 
hold on just those ordinals in 𝑉𝑉 not in the domain of 𝑅𝑅 and 𝐵𝐵′ to hold on those ordinals of 𝑉𝑉′ 
not in the range of 𝑅𝑅 (by assumption both of which are non-empty). 

Again using Simple Comprehension ( Axiom 8.4) (replacing 𝑜𝑜, 𝑜𝑜′ with their definition in terms of 
𝐵𝐵,𝐵𝐵′) we infer the possibility of a relation 𝑔𝑔 defined on ordinals 𝑢𝑢 ≤ 𝑜𝑜 in 𝑉𝑉 by 

𝑔𝑔(𝑢𝑢) = �𝑅𝑅(𝑢𝑢)  if 𝑢𝑢 < 𝑜𝑜
𝑜𝑜′  if 𝑢𝑢 = 0

 

and for sets 𝑥𝑥 in 𝑉𝑉 with @(𝑥𝑥, 𝑜𝑜) we define 

𝑔𝑔(𝑥𝑥) = �
𝑅𝑅(𝑥𝑥)  if dom(𝑅𝑅)(𝑥𝑥)
𝑦𝑦  otherwise, where 𝑦𝑦′ ∈ 𝑦𝑦 ↔ (∃𝑥𝑥′ ∣ 𝑥𝑥′ ∈ 𝑥𝑥)(𝑦𝑦′ = 𝑅𝑅(𝑥𝑥)) 

Note that the existence of such a 𝑦𝑦 is guaranteed by the fact that 𝑉𝑉�′ ≠ 𝑉𝑉′ and the fatness 
requirement on 𝑉𝑉′. With this construction in hand we can straightforwardly verify that 𝑔𝑔 is an 
isomorphism and, importing the definition of 𝑅𝑅, conclude that 𝑅𝑅(𝑜𝑜, 𝑜𝑜′) contradicting the fact 
that 𝐵𝐵(𝑜𝑜) and 𝐵𝐵′(𝑜𝑜′). Exporting this contradiction we conclude that either 𝑉𝑉� = 𝑉𝑉 or 𝑉𝑉�′ = 𝑉𝑉′. 

We now use Simple Comprehension ( Axiom 8.4) (inside the initial ◊𝑉𝑉,𝑉𝑉′  context) to show that 
possibly ◊𝑉𝑉,𝑉𝑉′,𝑅𝑅   define 𝑓𝑓 so that, if 𝑉𝑉�′ = 𝑉𝑉′, then 𝑓𝑓(𝑥𝑥) = 𝑦𝑦 ↔ 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and if 𝑉𝑉� = 𝑉𝑉 then 
𝑓𝑓(𝑦𝑦) = 𝑥𝑥 ↔ 𝑅𝑅(𝑥𝑥,𝑦𝑦). As 𝑅𝑅 was already shown to be an isomorphism between the initial 
segments 𝑉𝑉�  and 𝑉𝑉�′ we may complete the proof by applying Diamond Collapsing ( Lemma 
B.4). ■ 



K.3 Proper Extension Lemma 

Lemma K.4 (Proper Extension Lemma).  If 𝑉𝑉 is an initial segment, then ◊ (𝑉𝑉 𝑉𝑉′ ≥
𝑉𝑉)(∃𝑜𝑜)(ord′(𝑜𝑜) ∧ (∀𝑢𝑢)(ord(𝑢𝑢) → 𝑢𝑢 < ′𝑜𝑜)) 

Proof. Our strategy here will be to invoke the possibility of a layer of classes over the elements 
satisfying set. We will then take the set′ to include all the objects satisfying 𝑠𝑠𝑠𝑠𝐸𝐸 together with 
those of these classes which can’t be identified with existing 𝑠𝑠𝑠𝑠𝐸𝐸s, with membership defined in 
the obvious fashion. We will extend the ordinals in 𝑉𝑉 by adding a single new object (the empty 
class) which is an 𝑜𝑜𝑜𝑜𝑑𝑑′ but not an 𝑜𝑜𝑜𝑜𝑑𝑑. 

More formally, suppose 𝑉𝑉 is an initial segment and use Possible Powerset ( Axiom 8.11) to infer 
that ◊ 𝒞𝒞set (𝐶𝐶,∈𝐶𝐶 ,set). As 𝒞𝒞(𝐶𝐶,∈𝐶𝐶 ,set). is content restricted to 𝐶𝐶,∈𝑐𝑐 ,set we can apply ◊ 
Ignoring ( Axiom 8.3) to expand the list of relations held fixed to 𝑉𝑉, i.e., set,ord, @. Additionally 
we can use the Multiple Definitions Lemma ( Lemma H.7) to infer the logical possibility (◊𝑉𝑉,𝐶𝐶,∈𝐶𝐶 ) 
that each definition in the chain of definitions below holds along with the facts above 
(𝒞𝒞(𝐶𝐶,∈𝐶𝐶 ,set) and 𝒱𝒱(𝑉𝑉)). 

(∀𝑥𝑥)[set′(𝑥𝑥) ↔ (set(𝑥𝑥) ∨ [𝐶𝐶(𝑥𝑥) ∧ (∀𝑦𝑦)(set(𝑦𝑦) → (∃𝑧𝑧)¬(𝑧𝑧 ∈ 𝑦𝑦 ↔ 𝑧𝑧 ∈
𝐶𝐶
𝑥𝑥))])) 

(∀𝑥𝑥)(∀𝑦𝑦)[𝑥𝑥 ∈ ′𝑦𝑦 ↔ set′(𝑥𝑥) ∧ set′(𝑦𝑦) ∧ (𝑥𝑥 ∈ 𝑦𝑦 ∨ 𝑥𝑥 ∈
𝐶𝐶
𝑦𝑦)]

(∀𝑥𝑥)[ord′(𝑥𝑥) ↔ (ord(𝑥𝑥) ∨ (𝐶𝐶(𝑥𝑥) ∧ (∀𝑦𝑦)(¬𝑦𝑦 ∈
𝐶𝐶
𝑥𝑥)))]

(∀𝑥𝑥)(∀𝑦𝑦)[𝑥𝑥 ≤ ′𝑦𝑦 ↔ (ord′(𝑥𝑥) ∧ ord′(𝑦𝑦) ∧ (𝑥𝑥 < 𝑦𝑦 ∨ (ord(𝑥𝑥) ∧ ¬ord(𝑦𝑦))))]
(∀𝑥𝑥)(∀𝑦𝑦)[@′(𝑥𝑥,𝑦𝑦) ↔ (set(𝑥𝑥)′ ∧ ord′(𝑦𝑦) ∧ (@(𝑥𝑥,𝑦𝑦) ∨ set(𝑥𝑥) ∧ ¬ord(𝑦𝑦)))]

 

From these definitions it is straightforward, if tedious, to verify the claimed result. The only 
significant departure from familiar first order reasoning concerns showing that our new 𝑉𝑉′ 
obeys part 5 (fatness) from the definition of Initial Segment ( Definition A.2). Suppose, for 
contradiction, that fatness fails. Then possibly (◊𝑉𝑉′ ) 𝐻𝐻 applies to some sets in 𝑉𝑉′ all of which are 
available before some 𝑜𝑜 satisfying ord′(𝑜𝑜) but that no set whose members are equal to 𝐻𝐻 is 
available at stage 𝑜𝑜. By ◇ Ignoring ( Axiom 8.3) we can infer the ◊𝑉𝑉,𝑉𝑉′,𝐶𝐶,∈𝐶𝐶  version of this claim. 
Enter this ◊𝑉𝑉,𝐶𝐶,∈𝐶𝐶  context. By the facts about content restriction labeled above, we can import 
all our sentences characterizing 𝐶𝐶,∈𝑐𝑐 ,set,∈ etc. into this context and derive that 𝐻𝐻 applies to 
only elements in 𝑉𝑉 (since 𝑉𝑉′ adds only a single new ordinal) and thus there is a class 𝑥𝑥 whose 
members are exactly the sets 𝑦𝑦 satisfying 𝐻𝐻 and thus set′(𝑥𝑥). If 𝑜𝑜 < ∅𝐶𝐶  (the new ordinal in 𝑉𝑉′) 
then @(𝑥𝑥, 𝑜𝑜) and thus @′(𝑥𝑥, 𝑜𝑜). If 𝑜𝑜 = ∅𝐶𝐶  then ¬ord(𝑜𝑜) and thus @′(𝑥𝑥, 𝑜𝑜). This gives us the 
desired contradiction which we can export. ■ 

Lemma K.5 (Interpreted Initial Segment Possibility).  Suppose that ℒ doesn’t contain any of 
set,ord,∈, <, @,ℕ, 𝑆𝑆, 𝜌𝜌 then ◊ 𝒱𝒱ℒ (𝑉𝑉�⃗ ) 

Proof. By Possibly 𝑃𝑃𝐴𝐴◊ ( Lemma J.11) we may infer that ◊ PA◇ ℒ   Enter this ◊  ℒ context. 

We note that by the Multiple Definitions Lemma ( Lemma H.7) and Simple Comprehension ( 
Axiom 8.4) (letting all relations be empty) we can trivially deduce the possibility of an (empty) 



initial segment, i.e., ◊ PA◇ℒ ∧ 𝒱𝒱(𝑉𝑉). Enter this ◊  ℒ  context and apply the Proper Extension 
Lemma ( Lemma K.4) to infer 

◊  V,ℒ (𝑉𝑉′ ≥ 𝑉𝑉) ∧ PA◇ ∧ (∃𝑜𝑜)ord′(𝑜𝑜) 

Enter the above ◊𝑉𝑉,ℒ  context. It is easy to verify (using the ) that there is a unique object 
satisfying set′ which has no members. Using Simple Comprehension ( Axiom 8.4) we may define 
𝜌𝜌(𝑛𝑛) for all 𝑛𝑛 satisfying ℕ(𝑛𝑛) to be this empty set in 𝑉𝑉′. It is easy to verify that this entails that 
𝑉𝑉′ is an interpreted initial segment (Definition A.4). 

Leaving all the above ◊ contexts we may use Diamond Collapsing (Lemma B.8) and Relabeling ( 
Axiom 8.5) to infer ◇𝒱𝒱�⃗ �𝑉𝑉�⃗ � as desired. ■ 

Corollary K.2 (Interpreted Extension).  Suppose that ℒ contains no relations in 𝑉𝑉�⃗  then 𝒱𝒱 ∧
(∃𝑥𝑥)(set(𝑥𝑥)) → ◊ 𝒱𝒱�⃗ �𝑉𝑉�⃗ �𝑉𝑉,ℒ  

Proof. This is immediate via the proof of Interpreted Initial Segment Possibility (Lemma K.5) by 
substituting the assumption that 𝒱𝒱 ∧ (∃𝑥𝑥)(set(𝑥𝑥)) in place of the construction of 𝑉𝑉′ in that 
proof. ■ 

Lemma K.6 (Proper Well-Ordering Extension Lemma).  If ord, < is an initial segment then ◊ord,<
( (ord′, < ′) ≥ ord, <))(∃𝑜𝑜)(ord′(𝑜𝑜) ∧ (∀𝑢𝑢)(ord(𝑢𝑢) → 𝑢𝑢 < ′𝑜𝑜)) Moreover, we may assume 
that ord′, < ′ has a maximal element, i.e., ◊ (ord,< (ord′, < ′) ≥ ord, <))(∃𝑜𝑜)(ord′(𝑜𝑜) ∧
¬ord(𝑜𝑜) ∧ (∀𝑢𝑢 ∣ ord′(𝑢𝑢))(𝑢𝑢 ≤ ′𝑜𝑜)) 

Proof. By the same reasoning as in the proof of the Proper Extension Lemma ( Lemma K.4) 
regarding the ordinals. ■ 

K.4 Hierarchy Extending Lemma 

Lemma K.7 (Hierarchy Extending Lemma).  If 𝒱𝒱(𝑉𝑉𝑎𝑎) ∧ 𝒱𝒱(𝑉𝑉𝑏𝑏) then ◊ 𝑉𝑉+𝑉𝑉𝑎𝑎,𝑉𝑉𝑏𝑏 ≥ 𝑉𝑉𝑎𝑎 ∧ 𝑉𝑉+ ≥ 𝑉𝑉𝑏𝑏′ ∧
𝑉𝑉𝑏𝑏′ ≅𝑓𝑓 𝑉𝑉𝑏𝑏 Moreover, assuming 𝑉𝑉+,𝑉𝑉′𝑏𝑏 don’t occur in ℒ we may also infer ◊ 𝑉𝑉+𝑉𝑉𝑎𝑎,𝑉𝑉𝑏𝑏,ℒ ≥ 𝑉𝑉𝑎𝑎 ∧

𝑉𝑉+ ≥ 𝑉𝑉𝑏𝑏′ ∧ 𝑉𝑉𝑏𝑏′ ≅𝑓𝑓 𝑉𝑉𝑏𝑏 ∧ (∀𝑥𝑥 ∣ Ext(ℒ)(𝑥𝑥))(𝑉𝑉+(𝑥𝑥) → 𝑉𝑉𝑎𝑎(𝑥𝑥)) 

This lemma tells us that it’s logically possible to find a common extension16 for any two initial 
segments and, specifically, that we can take it to extend 𝑉𝑉𝑎𝑎 The moreover claim ensures that 
the new elements in this common extension can be taken not to overlap with those in the 
extension of any given list of relations Ext(ℒ). 

Proof. We first prove the main claim. By the V Comparability Lemma ( Lemma K.3) we have 

◊ (𝑉𝑉𝑎𝑎,𝑉𝑉𝑏𝑏 𝑉𝑉𝑎𝑎 ≥ 𝑉𝑉�′ ∧ 𝑉𝑉�′ ≅
𝑓𝑓
𝑉𝑉𝑏𝑏) ∨ (𝑉𝑉𝑏𝑏 ≥ 𝑉𝑉� ∧ 𝑉𝑉� ≅

𝑓𝑓
𝑉𝑉𝑎𝑎) 

                                                      
16 More precisely, an extension of some isomorphic image. 



Enter this ◊𝑉𝑉𝑎𝑎,𝑉𝑉𝑏𝑏  context. We note that it is enough to deduce 

◊ 𝑉𝑉+𝑉𝑉𝑎𝑎,𝑉𝑉𝑏𝑏 ≥ 𝑉𝑉𝑎𝑎 ∧ 𝑉𝑉+ ≥ 𝑉𝑉𝑏𝑏′ ∧ 𝑉𝑉𝑏𝑏′ ≅ 𝑉𝑉𝑏𝑏 

in this context as it can be exported to prove the desired conclusion. 

If the first disjunct holds (i.e., 𝑉𝑉𝑎𝑎 is the taller initial segment), the claim follows almost 
immediately by letting 𝑉𝑉+ be 𝑉𝑉𝑎𝑎. Specifically, we use Simple Comprehension ( Axiom 8.4) to 
establish the possibility (◊𝑉𝑉𝑎𝑎,𝑉𝑉𝑏𝑏,𝑓𝑓,𝑉𝑉�′ ) that 𝑉𝑉+ = 𝑉𝑉𝑎𝑎,𝑉𝑉′𝑏𝑏 = 𝑉𝑉�′ while maintaining all relevant 
facts17. Then, entering this ◇ context we may derive that 𝑉𝑉+ ≥ 𝑉𝑉𝑎𝑎 ∧ 𝑉𝑉+ ≥ 𝑉𝑉𝑏𝑏′ ∧ 𝑉𝑉𝑏𝑏′ ≅𝑓𝑓 𝑉𝑉𝑏𝑏. We 
can then leave this context giving us 

◊ 𝑉𝑉+𝑉𝑉𝑎𝑎,𝑉𝑉𝑏𝑏,𝑓𝑓,𝑉𝑉�′ ≥ 𝑉𝑉𝑎𝑎 ∧ 𝑉𝑉+ ≥ 𝑉𝑉𝑏𝑏′ ∧ 𝑉𝑉𝑏𝑏′ ≅ 𝑉𝑉𝑏𝑏 

By Reducing ( Lemma 4.1) we can infer 

◊ 𝑉𝑉+𝑉𝑉𝑎𝑎,𝑉𝑉𝑏𝑏 ≥ 𝑉𝑉𝑎𝑎 ∧ 𝑉𝑉+ ≥ 𝑉𝑉𝑏𝑏′ ∧ 𝑉𝑉𝑏𝑏′ ≅ 𝑉𝑉𝑏𝑏 

which, as we noted above, suffices to prove the lemma. 

So we may instead assume 

𝑉𝑉� ≤ 𝑉𝑉𝑏𝑏 ∧ 𝑉𝑉� ≅𝑓𝑓 𝑉𝑉𝑎𝑎              (𝐾𝐾1) 

In the special case where 𝑉𝑉𝑎𝑎 and 𝑉𝑉𝑏𝑏 are disjoint it is easy to see how to proceed. We simply 
define 𝑉𝑉+ to supplement 𝑉𝑉𝑎𝑎 with all elements in 𝑉𝑉𝑏𝑏 not in 𝑉𝑉𝑎𝑎 using 𝑓𝑓 to define ∈+ and <+ so 
that 𝑉𝑉+ treats elements in 𝑉𝑉𝑎𝑎 identically to their isomorphic images in 𝑉𝑉𝑏𝑏. We can then define 𝑓𝑓′ 
to extend 𝑓𝑓 by being the identity on those elements in 𝑉𝑉+ but not 𝑉𝑉𝑎𝑎. More formally, we can 
use the the Multiple Definitions Lemma ( Lemma H.7) with Simple Comprehension ( Axiom 8.4) 
to show it’s possible (◊𝑉𝑉𝑎𝑎,𝑉𝑉𝑏𝑏,𝑓𝑓,𝑉𝑉� ) that all facts from the current context remain true and 

(∀𝑥𝑥)(set+(𝑥𝑥) ↔ (set𝑎𝑎(𝑥𝑥) ∨ (set𝑏𝑏(𝑥𝑥) ∧ ¬(∃𝑧𝑧 ∣ set𝑎𝑎(𝑧𝑧))(𝑓𝑓(𝑧𝑧) = 𝑥𝑥)))
(∀𝑜𝑜)(ord+(𝑜𝑜) ↔ (ord𝑎𝑎(𝑜𝑜) ∨ (ord𝑏𝑏(𝑜𝑜) ∧ ¬(∃𝑢𝑢 ∣ ord𝑎𝑎(𝑢𝑢))(𝑓𝑓(𝑢𝑢) = 𝑜𝑜)))

(∀𝑥𝑥)(∀𝑦𝑦)(𝑓𝑓′(𝑥𝑥) = 𝑦𝑦 ↔ (𝑓𝑓(𝑥𝑥) = 𝑦𝑦 ∨ (𝑥𝑥 = 𝑦𝑦 ∧ [𝑉𝑉+(𝑥𝑥) ∧ ¬𝑉𝑉𝑎𝑎(𝑥𝑥)]))
(∀𝑥𝑥)(∀𝑦𝑦)[𝑥𝑥 ∈

+
𝑦𝑦 ↔ (∃𝑥𝑥′)(∃𝑦𝑦′)(𝑓𝑓′(𝑥𝑥) = 𝑥𝑥′ ∧ 𝑓𝑓′(𝑦𝑦) = 𝑦𝑦′ ∧ 𝑥𝑥′ ∈

𝑏𝑏
𝑦𝑦′)]

(∀𝑥𝑥)(∀𝑦𝑦)[𝑥𝑥 <
+
𝑦𝑦 ↔ (∃𝑥𝑥′)(∃𝑦𝑦′)(𝑓𝑓′(𝑥𝑥) = 𝑥𝑥′ ∧ 𝑓𝑓′(𝑦𝑦) = 𝑦𝑦′ ∧ 𝑥𝑥′ <

𝑏𝑏
𝑦𝑦′)]

(∀𝑥𝑥)(∀𝑦𝑦)[@+(𝑥𝑥,𝑦𝑦) ↔ (∃𝑥𝑥′)(∃𝑦𝑦′)(𝑓𝑓′(𝑥𝑥) = 𝑥𝑥′ ∧ 𝑓𝑓′(𝑦𝑦) = 𝑦𝑦′ ∧ @𝑏𝑏(𝑥𝑥′,𝑦𝑦′))].         (𝐾𝐾2)

 

Since we’ve explicitly defined 𝑉𝑉+ to extend 𝑉𝑉𝑎𝑎 by copying 𝑉𝑉𝑏𝑏 and 𝑓𝑓′ to extend 𝑓𝑓 by defining it to 
be the identify on the part of 𝑉𝑉𝑏𝑏 copied to 𝑉𝑉+ it is straightforward to check that 𝑓𝑓′ is the desired 
isomorphism giving us 

                                                      
17 Specifically, we may take the conjunction of all sentences true in the current context and 
conjoin them with the definition given by Axiom 8.4 (Simple Comprehension) under ◊𝑉𝑉𝑎𝑎,𝑉𝑉𝑏𝑏,𝑓𝑓,𝑉𝑉�′  . 



◊ 𝑉𝑉+𝑉𝑉𝑎𝑎,𝑉𝑉𝑏𝑏,𝑓𝑓,𝑉𝑉� ≥ 𝑉𝑉𝑎𝑎 ∧ 𝑉𝑉+ ≥ 𝑉𝑉𝑏𝑏′ ∧ 𝑉𝑉𝑏𝑏′ ≅𝑓𝑓 𝑉𝑉𝑏𝑏 

which we may again apply Reducing ( Lemma B.4) to infer (sufficient by the remarks above) 

◊ 𝑉𝑉+𝑉𝑉𝑎𝑎,𝑉𝑉𝑏𝑏 ≥ 𝑉𝑉𝑎𝑎 ∧ 𝑉𝑉+ ≥ 𝑉𝑉𝑏𝑏′ ∧ 𝑉𝑉𝑏𝑏′ ≅ 𝑉𝑉𝑏𝑏 

In the general case where 𝑉𝑉𝑎𝑎 and 𝑉𝑉𝑏𝑏 may overlap, we pursue the same strategy but invoke the 
Possible Powerset axiom ( Axiom 8.11) with respect to those objects in either 𝑉𝑉𝑎𝑎 or 𝑉𝑉𝑏𝑏, to get 
the logical possibility (◊𝑉𝑉𝑎𝑎,𝑉𝑉𝑏𝑏 ) of having a layer of classes over the 𝑉𝑉𝑎𝑎,𝑉𝑉𝑏𝑏 structure, disjoint from 
all objects in Ext(𝑉𝑉𝑎𝑎,𝑉𝑉𝑏𝑏). Then, instead of using elements from 𝑉𝑉𝑏𝑏 to extend 𝑉𝑉𝑎𝑎, we use a 
possible 𝑉𝑉𝑏𝑏′ whose elements are all the singleton classes of elements from 𝑉𝑉𝑏𝑏. 

Specifically, by  Possible Powerset ( Axiom 8.11) we may derive 

◊ 𝒞𝒞𝑉𝑉𝑎𝑎,𝑉𝑉𝑏𝑏,𝑓𝑓,𝑉𝑉� (𝐶𝐶,∈
𝐶𝐶

,Ext(𝑉𝑉𝑎𝑎,𝑉𝑉𝑏𝑏)) 

Entering this ◊𝑉𝑉𝑎𝑎,𝑉𝑉𝑏𝑏,𝑓𝑓,𝑉𝑉�′  context we import (K1) as well as the assumptions of the lemma and 
note that by Lemma H.8 (Singleton) we may assume that there is a unique singleton associated 
with every element satisfying Ext(𝑉𝑉𝑎𝑎,𝑉𝑉𝑏𝑏). Adopting the abbreviation 𝑦𝑦 = {𝑥𝑥}𝐶𝐶 ∧ 𝛹𝛹 for the claim 
that (∃𝑦𝑦 ∣ 𝐶𝐶(𝑦𝑦))[(∀𝑥𝑥′)(𝑥𝑥′ ∈𝐶𝐶 𝑦𝑦 ↔ 𝑥𝑥′ = 𝑥𝑥) ∧ 𝛹𝛹] and invoking Lemma H.7 (Multiple Definitions) 
we can define 

(∀𝑥𝑥)(set+(𝑥𝑥) ↔ (set𝑎𝑎(𝑥𝑥) ∨ 𝑥𝑥 = {𝑦𝑦} ∧ (set𝑏𝑏(𝑦𝑦) ∧ ¬(∃𝑧𝑧 ∣ set𝑎𝑎(𝑧𝑧))(𝑓𝑓(𝑧𝑧) = 𝑦𝑦)))
(∀𝑜𝑜)(ord+(𝑜𝑜) ↔ (ord𝑎𝑎(𝑜𝑜) ∨ 𝑜𝑜 = {𝑢𝑢} ∧ (ord𝑏𝑏(𝑢𝑢) ∧ ¬(∃𝑢𝑢′ ∣ ord𝑎𝑎(𝑢𝑢′))(𝑓𝑓(𝑢𝑢′) = 𝑢𝑢)))

(∀𝑥𝑥)(∀𝑦𝑦)(𝑓𝑓′(𝑥𝑥) = 𝑦𝑦 ↔ (𝑓𝑓(𝑥𝑥) = 𝑦𝑦 ∨ (𝑥𝑥 = {𝑦𝑦} ∧ [𝑉𝑉+(𝑥𝑥) ∧ ¬𝑉𝑉𝑎𝑎(𝑥𝑥)]))
 

repeating the definitions of ∈+, <+ and @+ just as they are in equation (K2). Note that since the 
singletons used in the above definitions are an exact copy of 𝑉𝑉𝑏𝑏 but guaranteed to be disjoint 
from 𝑉𝑉𝑎𝑎 by Axiom 8.11 (Possible Powerset) we may verify this entails the desired conclusion just 
as in the above case. 

The moreover claim follows by the same reasoning as above, but using ◊ Ignoring ( Axiom 8.3) 
to add ℒ to the subscript of the conclusion of the the V Comparability Lemma ( K 20.3) and then 
propagating it through the remainder of the proof. The only other modification that is 
necessary is to invoke Possible Powerset ( Axiom 8.11) with Ext(𝑉𝑉𝑎𝑎,𝑉𝑉𝑏𝑏,ℒ) rather than just 
Ext(𝑉𝑉𝑎𝑎,𝑉𝑉𝑏𝑏) to ensure elements we use to extend 𝑉𝑉𝑎𝑎 to 𝑉𝑉+ can’t be in Ext(ℒ). ■ 

K.5 Hierarchy-Combining 

We now prove that given any indexed collection of initial segments 𝑉𝑉𝑥𝑥 (for 𝑥𝑥 satisfying 𝐼𝐼(𝑥𝑥)) it is 
possible to find a single initial segment 𝑉𝑉𝛴𝛴 which extends (an isomorphic copy of) each 𝑉𝑉𝑥𝑥. 

Theorem K.1 (Hierarchy-Combining Theorem).  Suppose that for each 𝑥𝑥 satisfying 𝐼𝐼(𝑥𝑥) 𝑉𝑉𝑥𝑥 is an 
initial segment, i.e., 

□ [(∃! 𝑥𝑥 ∣ 𝑄𝑄(𝑥𝑥))(𝐼𝐼(𝑥𝑥) ∧ 𝛶𝛶(𝑥𝑥)) → 𝒱𝒱(𝑉𝑉∗))]ℒ,𝐼𝐼,𝑉𝑉  

where 



𝛶𝛶(𝑥𝑥) = (∀𝑧𝑧)(set∗(𝑧𝑧) ↔ set(𝑧𝑧, 𝑥𝑥))
(∀𝑧𝑧)(ord∗(𝑧𝑧) ↔ ord(𝑧𝑧, 𝑥𝑥))

(∀𝑧𝑧,𝑦𝑦) �𝑧𝑧 ∈
∗
𝑦𝑦 ↔∈ (𝑧𝑧,𝑦𝑦, 𝑥𝑥)� ∧

(∀𝑜𝑜,𝑢𝑢) �𝑜𝑜 <
∗
𝑢𝑢 ↔< (𝑜𝑜,𝑢𝑢, 𝑥𝑥)� ∧

(∀𝑜𝑜, 𝑧𝑧)(@∗(𝑧𝑧, 𝑜𝑜) ↔ @(𝑧𝑧, 𝑜𝑜, 𝑥𝑥))

 

Then it is logically possible that some initial segment 𝑉𝑉𝛴𝛴 extends (an isomorphic copy of) each 𝑉𝑉𝑥𝑥, 
i.e., Or, more formally 

◊ [ℒ,𝑉𝑉,𝐼𝐼 𝒱𝒱�⃗ (𝑉𝑉𝛴𝛴) ∧ rng(𝑓𝑓) ⊆ Ext(𝑉𝑉𝛴𝛴) ∧ 𝑣𝑣

□ (ℒ,𝑉𝑉,𝐼𝐼,𝑓𝑓 (∃!𝑥𝑥 ∣ 𝑄𝑄(𝑥𝑥))(𝐼𝐼(𝑥𝑥) ∧ 𝛶𝛶(𝑥𝑥)) → ◊ �𝑉𝑉∗ ≅𝑓𝑓 𝑉𝑉
− ∧ 𝑉𝑉− ≤ 𝑉𝑉𝛴𝛴�ℒ,𝑉𝑉�,𝐼𝐼,𝑓𝑓,𝑉𝑉∗ )]

 

In the following proof we will replace 𝑉𝑉∗ with the suggestive notation of 𝑉𝑉𝑥𝑥 for the initial 
segment 𝑉𝑉∗ on the assumption that 𝛶𝛶(𝑥𝑥) holds, i.e., initial segment formed by slotting into the 
final position of the relations in 𝑉𝑉 (aside from ℕ, 𝑆𝑆). While this is an abuse of notation we 
believe the suggestive notation makes the proof easier to understand. 

Proof. We give the high-level argument used in this proof leaving the, now familiar, low level 
details of entering and leaving ◊ contexts to the reader. 

First, we demonstrate that it suffices to prove the claim under the assumption that for 𝑥𝑥 ≠ 𝑦𝑦 
the structures 𝑉𝑉𝑥𝑥 and 𝑉𝑉𝑦𝑦 are disjoint, i.e., . 𝑉𝑉(𝑧𝑧, 𝑥𝑥) ∧ 𝑉𝑉(𝑧𝑧,𝑦𝑦) → 𝑥𝑥 = 𝑦𝑦, For, if not, we can borrow 
the trick from Lemma K.7 (Hierarchy Extending) of using Possible Powerset ( Axiom 8.11) to 
provide us with appropriately related new versions of the structures. In particular, if 𝑉𝑉 doesn’t 
satisfy this disjointness criteria we may generate a 𝑉𝑉′ which does by applying Possible Powerset 
( Axiom 8.11) 2 times18 and defining (using (𝑥𝑥,𝑦𝑦) to abbreviate {{𝑥𝑥}, {𝑥𝑥,𝑦𝑦}} as defined by our 
applications of Possible Powerset ( Axiom 8.11). 

set′(𝑧𝑧, 𝑥𝑥) ↔ (∃𝑦𝑦)(𝑧𝑧 = (𝑥𝑥,𝑦𝑦) ∧ set(𝑦𝑦, 𝑥𝑥))
ord′(𝑧𝑧, 𝑥𝑥) ↔ (∃𝑦𝑦)(𝑧𝑧 = (𝑥𝑥,𝑦𝑦) ∧ ord(𝑦𝑦, 𝑥𝑥))

< ′(𝑧𝑧0, 𝑧𝑧1, 𝑥𝑥) ↔ (∃𝑦𝑦0,𝑦𝑦1)(𝑧𝑧0 = {(𝑥𝑥,𝑦𝑦0) ∧< (𝑦𝑦0,𝑦𝑦1, 𝑥𝑥))
∈ ′(𝑧𝑧0, 𝑧𝑧1, 𝑥𝑥) ↔ (∃𝑦𝑦0,𝑦𝑦1)(𝑧𝑧0 = (𝑥𝑥, 𝑦𝑦0) ∧∈ (𝑦𝑦0,𝑦𝑦1, 𝑥𝑥))
@′(𝑧𝑧0, 𝑧𝑧1, 𝑥𝑥) ↔ (∃𝑦𝑦0,𝑦𝑦1)(𝑧𝑧0 = (𝑥𝑥, 𝑦𝑦0) ∧ @(𝑦𝑦0,𝑦𝑦1, 𝑥𝑥))

 

It is straightforward to check that 𝑉𝑉𝑥𝑥 and 𝑉𝑉′𝑥𝑥 are isomorphic and the disjointness properties of 
Possible Powerset ( Axiom 8.11) guarantee they are pairwise disjoint. Since the conclusion of 
the lemma only depends on the isomorphism classes of the structures 𝑉𝑉𝑥𝑥 proving the result for 
𝑉𝑉′ is enough to establish it for 𝑉𝑉. Thus, we may assume that 𝑉𝑉𝑥𝑥 and 𝑉𝑉𝑦𝑦 are disjoint for 𝑥𝑥 ≠ 𝑦𝑦. 

                                                      
18 Here we identify all classes of elements from Ext(𝑉𝑉) with the classes introduced by the first 
application of Possible Powerset (Axiom 8.11) and any class containing a class from the first 
application with the second application of Possible Powerset/ 



With this assumption in place we now proceed to construct 𝑉𝑉𝛴𝛴. Our strategy here will be to 
build 𝑉𝑉𝛴𝛴 out of the equivalence classes induced on elements of 𝑉𝑉 (i.e. {𝑦𝑦 ∣ (∃𝑥𝑥 ∣ 𝐼𝐼(𝑥𝑥))(𝑉𝑉(𝑦𝑦, 𝑥𝑥))) 
by the relation of isomorphic image. In other words we define 𝑦𝑦 ∼ 𝑧𝑧 to hold just if 

(∀𝑧𝑧)(∀𝑦𝑦)[𝑧𝑧 ∼ 𝑦𝑦 ↔ �∃𝑥𝑥𝑧𝑧 ,𝑥𝑥𝑦𝑦 ∣ 𝐼𝐼(𝑥𝑥𝑧𝑧) ∧ 𝐼𝐼(𝑥𝑥𝑦𝑦)� ◊ (𝑉𝑉�,𝑉𝑉𝑥𝑥𝑧𝑧 ,𝑉𝑉𝑥𝑥𝑦𝑦 ,𝑧𝑧,𝑦𝑦

𝑉𝑉′𝑥𝑥𝑧𝑧 ≤ 𝑉𝑉𝑥𝑥𝑧𝑧 ∧ 𝑉𝑉′𝑥𝑥𝑦𝑦 ≤ 𝑉𝑉𝑥𝑥𝑦𝑦 ∧ 𝑉𝑉′𝑥𝑥𝑧𝑧 ≅ℎ 𝑉𝑉′𝑥𝑥𝑦𝑦 ∧ ℎ(𝑧𝑧) = 𝑦𝑦)]
 

Where the use of 𝑥𝑥𝑧𝑧 ,𝑥𝑥𝑦𝑦  in the subscript of the ◊ indicates that we define ∼ using Axiom 8.919 I 
will use this notation without further comment in the rest of the proof. 

We observe that ∼ forms an equivalence relation. Clearly if Ext(𝑉𝑉)(𝑧𝑧) then 𝑧𝑧 ∼ 𝑧𝑧 (if 𝑉𝑉𝑥𝑥(𝑧𝑧) 
then20 we let, via Simple Comprehension ( Axiom 8.4), 𝑓𝑓 be the identity and 𝑉𝑉𝑥𝑥𝑧𝑧 = 𝑉𝑉𝑥𝑥𝑧𝑧 = 𝑉𝑉𝑥𝑥) so 
reflexivity is satisfied. Since, if 𝑓𝑓 is an isomorphism so is 𝑓𝑓−1 it is easy to see ∼ is symmetric. 
Now for transitivity suppose that 𝑧𝑧 ∼ 𝑦𝑦 and 𝑦𝑦 ∼ 𝑤𝑤. By Lemma B.7 (Pasting) and Relabeling ( 
Axiom 8.5) we can establish21 the simultaneous logical possibility of an isomorphism 𝑓𝑓 from 
𝑉𝑉′𝑥𝑥𝑧𝑧 ≤ 𝑉𝑉𝑥𝑥𝑧𝑧 to 𝑉𝑉′𝑥𝑥𝑦𝑦 ≤ 𝑉𝑉𝑥𝑥𝑦𝑦 and an isomorphism 𝑔𝑔 from 𝑉𝑉𝑥𝑥𝑦𝑦

∗ ≤ 𝑉𝑉𝑥𝑥𝑦𝑦 to 𝑉𝑉𝑥𝑥𝑤𝑤
∗ ≤ 𝑉𝑉𝑥𝑥𝑤𝑤. We now argue 

that we can compose 𝑓𝑓 and 𝑔𝑔 or 𝑓𝑓−1 and 𝑔𝑔−1 to demonstrate 𝑧𝑧 ∼ 𝑤𝑤. The only difficulty here is 
to ensure that this composition has appropriate ranges and domains. 

By the V Comparability Lemma ( Lemma K.3) we can also assume that either 𝑉𝑉𝑥𝑥𝑦𝑦
∗  extends an 

isomorphic image of 𝑉𝑉′𝑥𝑥𝑦𝑦  or vice versa. By Lemma K.2 applied to this isomorphism and the 
identity it follows that either 𝑉𝑉𝑥𝑥𝑦𝑦

∗ ≤ 𝑉𝑉′𝑥𝑥𝑦𝑦  or 𝑉𝑉′𝑥𝑥𝑦𝑦 ≤ 𝑉𝑉𝑥𝑥𝑦𝑦
∗ . In the later case 𝑔𝑔 ∘ 𝑓𝑓 witnesses that 

𝑧𝑧 ∼ 𝑤𝑤 and in the former case 𝑓𝑓−1 ∘ 𝑔𝑔−1 witnesses that 𝑤𝑤 ∼ 𝑧𝑧. This suffices to demonstrate ∼ is 
an equivalence relation. 

To build 𝑉𝑉𝛴𝛴 we need to have a single object corresponding to each equivalence class. We do this 
by applying Possible Powerset ( Axiom 8.11) to add a layer of classes and identifying each 
equivalence class with the class of its elements. We denote the class consisting of all 𝑦𝑦 such 
that 𝑥𝑥 ∼ 𝑦𝑦 by [𝑥𝑥]. We now use these equivalence classes to define, via application of Simple 

                                                      
19 In particular, modal comprehension guarantees it’s possible that ∼ applies so that, 
necessarily (holding fixed ∼) if 𝑄𝑄 applies to the unique pair 𝑦𝑦, 𝑧𝑧 then 𝑦𝑦 ∼ 𝑧𝑧 just if the above 
formula holds with all mentions of 𝑥𝑥 and 𝑦𝑦 replaced with their definition in terms of 𝑄𝑄. 

20 To spell this out formally we’d need to invoke Proposition 8.1 (Simplified Choice) and Simple 
Comprehension ( Axiom 8.4) to build 𝑄𝑄 applying to a unique 𝑧𝑧 witnessing failure and then 𝑄𝑄′ to 
a unique 𝑥𝑥 with 𝑉𝑉𝑥𝑥(𝑧𝑧) but we omit these now familiar details. 

21 To provide a formal proof we’d need to invoke Proposition 8.1 (Simplified Choice) and Simple 
Comprehension ( Axiom 8.4) in the usual manner to generate 𝑄𝑄0,𝑄𝑄1 applying to unique pairs 
𝑧𝑧,𝑦𝑦 and 𝑦𝑦,𝑤𝑤 that witness this failure and use the modal definition of ∼ to find initial segments 
which witness this failure before invoking pasting. 



Comprehension ( Axiom 8.4) 𝑉𝑉𝛴𝛴 (below bold faced variables are taken to range over such 
equivalence classes). 

set𝛴𝛴(𝐳𝐳) ↔ (∃𝑧𝑧)(∃𝑥𝑥 ∣ 𝐼𝐼(𝑥𝑥))(set𝑥𝑥(𝑧𝑧) ∧ 𝐳𝐳 = [𝑧𝑧])

𝐳𝐳 ∈
𝛴𝛴
𝐲𝐲 ↔ (∃𝑧𝑧,𝑦𝑦)(∃𝑥𝑥 ∣ 𝐼𝐼(𝑥𝑥)) �𝑉𝑉𝑥𝑥(𝑧𝑧) ∧ 𝑉𝑉𝑥𝑥(𝑦𝑦) ∧ 𝐳𝐳 = [𝑧𝑧] ∧ 𝐲𝐲 = [𝑦𝑦] ∧ 𝑧𝑧 ∈

𝑥𝑥
𝑦𝑦�

ord𝛴𝛴(𝐮𝐮) ↔ (∃𝑢𝑢)(∃𝑥𝑥 ∣ 𝐼𝐼(𝑥𝑥))(ord𝑥𝑥(𝑢𝑢) ∧ 𝐮𝐮 = [𝑢𝑢])

𝐮𝐮 <
𝛴𝛴
𝐨𝐨 ↔ (∃𝑢𝑢, 𝑜𝑜)(∃𝑥𝑥 ∣ 𝐼𝐼(𝑥𝑥)) �𝑉𝑉𝑥𝑥(𝑜𝑜) ∧ 𝑉𝑉𝑥𝑥(𝑢𝑢) ∧ 𝐮𝐮 = [𝑢𝑢] ∧ 𝐨𝐨 = [𝑜𝑜] ∧ 𝑢𝑢 <

𝑥𝑥
𝑜𝑜�

@(𝐳𝐳,𝐨𝐨) ↔ (∃𝑧𝑧, 𝑜𝑜)(∃𝑥𝑥 ∣ 𝐼𝐼(𝑥𝑥))(𝑉𝑉𝑥𝑥(𝑧𝑧) ∧ 𝑉𝑉𝑥𝑥(𝑜𝑜) ∧ 𝐨𝐨 = [𝑜𝑜] ∧ 𝐳𝐳 = [𝑧𝑧] ∧ @𝑥𝑥(𝑧𝑧, 𝑜𝑜))

 

We now observe that the map [⋅] taking elements to their equivalence classes is an 
isomorphism of 𝑉𝑉𝑥𝑥 with some 𝑉𝑉�𝑥𝑥 ≤ 𝑉𝑉𝛴𝛴 . It is already apparent that [⋅] respects 
∈𝑥𝑥, <𝑥𝑥, @𝑥𝑥, set𝑥𝑥, ord𝑥𝑥. To see that [⋅] is injective on 𝑉𝑉𝑥𝑥 note that if 𝑉𝑉𝑥𝑥(𝑧𝑧) and 𝑉𝑉𝑥𝑥(𝑦𝑦) and [𝑧𝑧] =
[𝑦𝑦] we would need22 𝑉𝑉∗,𝑉𝑉′ with 𝑉𝑉∗ ≅ℎ 𝑉𝑉′ where ℎ(𝑧𝑧) = 𝑦𝑦. But by our assumption of 
disjointness we have 𝑉𝑉∗,𝑉𝑉′ ≤ 𝑉𝑉𝑥𝑥 and by the Lemma K.2 ℎ must be the identity so 𝑧𝑧 = 𝑦𝑦. 

It remains to show that 𝑉𝑉𝛴𝛴 is an initial segment and if 𝑉𝑉�𝑥𝑥 is the image of 𝑉𝑉𝑥𝑥 under [⋅] then 𝑉𝑉�𝑥𝑥 ≤
𝑉𝑉𝛴𝛴. To this end we note that for any 𝑥𝑥, 𝑥𝑥′ satisfying 𝐼𝐼 we have 𝑉𝑉�𝑥𝑥 ≤ 𝑉𝑉�𝑥𝑥′ or 𝑉𝑉�𝑥𝑥′ ≤ 𝑉𝑉�𝑥𝑥. This follows 
since, by the the V Comparability Lemma (Lemma K.3), it’s possible that either 𝑉𝑉𝑥𝑥 ≅𝑓𝑓 𝑉𝑉∗ ≤ 𝑉𝑉𝑥𝑥′ 
or 𝑉𝑉𝑥𝑥′ ≅𝑓𝑓 𝑉𝑉 ≤ 𝑉𝑉𝑥𝑥. Without loss of generality assume we are in the former case. Then, by the 
definition of ∼, it follows that if 𝑉𝑉𝑥𝑥(𝑦𝑦) then [𝑦𝑦] = [𝑓𝑓(𝑦𝑦)]. So the image of 𝑉𝑉𝑥𝑥 under [⋅] is equal 
to the image of 𝑉𝑉∗ under [⋅]. And as 𝑉𝑉∗ ≤ 𝑉𝑉𝑥𝑥′, it follows that 𝑉𝑉�𝑥𝑥 ≤ 𝑉𝑉�𝑥𝑥′. 

Thus, 𝑉𝑉𝛴𝛴 is the ‘union’ of a sequence of compatible initial segments. It is straightforward, if 
tedious, to verify that 𝑉𝑉𝛴𝛴 is an initial segment using this observation. For instance, to verify that 
𝑉𝑉𝛴𝛴 satisfies Fatness () we note that for any 𝐨𝐨 satisfying ord𝛴𝛴(𝐨𝐨) there is an 𝑥𝑥 satisfying 𝐼𝐼(𝑥𝑥) and 
an 𝑜𝑜 satisfying ord𝑥𝑥(𝑜𝑜) with 𝐨𝐨 = [𝑜𝑜] and we invoke fatness in 𝑉𝑉𝑥𝑥 to verify fatness in 𝑉𝑉𝛴𝛴. Since all 
the conditions in the definition of initial segment (Definition A.2) are closure conditions, taking 
the union of compatible structures (the initial segments 𝑉𝑉�𝑥𝑥) must also satisfy these conditions. 
Once this is verified it is also clear that 𝑉𝑉�𝑥𝑥 ≤ 𝑉𝑉𝛴𝛴 and that by using 𝑓𝑓 instead of [⋅] we’ve 
established the claim to be proved. Of course, a formal proof requires more careful attention to 
the □ and ◊ contexts but that manipulation should be familiar by now. ■ 

We can also prove a corollary (which will be crucial for justifying replacement) which says that if 
there’s some common 𝑉𝑉0 such that for all of the 𝑉𝑉𝑥𝑥s we have 𝑉𝑉0 ≤ 𝑉𝑉𝑥𝑥, we may assume 𝑉𝑉0 ≤ 𝑉𝑉𝛴𝛴. 

Corollary 20.3.  Suppose that 𝑉𝑉0 is an initial segment and ℒ,𝑉𝑉, 𝐼𝐼 satisfy the conditions of 
Theorem K.1 with the additional assumption that 𝑉𝑉𝑥𝑥 ≥ 𝑉𝑉0 for each 𝑥𝑥, i.e., 
□ [(∃!𝑥𝑥 ∣ 𝑄𝑄(𝑥𝑥))(𝐼𝐼(𝑥𝑥) ∧ 𝛶𝛶(𝑥𝑥)) → 𝑉𝑉∗ ≥ 𝑉𝑉0)]ℒ,𝐼𝐼,𝑉𝑉,𝑉𝑉0  

                                                      
22 Again, a full proof of this claim would require defining relations that apply to a unique tuple 
witnesses of the failure of the claim and then applying Lemma B.7 (Pasting) to establish the 
simultaneous logical possibility of 𝑉𝑉∗ and 𝑉𝑉′. 



then we may take 𝑉𝑉𝛴𝛴 to extend 𝑉𝑉0, i.e., 
◊ [ℒ,𝑉𝑉,𝐼𝐼 𝒱𝒱(𝑉𝑉𝛴𝛴) ∧ 𝑉𝑉𝛴𝛴 ≥ 𝑉𝑉0 ∧ rng(𝑓𝑓) ⊆ Ext(𝑉𝑉𝛴𝛴) ∧

□ (ℒ,𝑉𝑉,𝐼𝐼,𝑓𝑓 ∃! 𝑥𝑥 ∣ 𝑄𝑄(𝑥𝑥))(𝐼𝐼(𝑥𝑥) ∧ 𝛶𝛶(𝑥𝑥)) → ◊ (ℒ,𝑉𝑉�,𝐼𝐼,𝑓𝑓,𝑉𝑉∗ 𝑉𝑉∗ ≅𝑓𝑓 𝑉𝑉− ∧ 𝑉𝑉− ≤ 𝑉𝑉𝛴𝛴)] 

Proof. This follows by the same argument used in Theorem K.1 (Hierarchy Combining) excepting 
only that we replace the assumption of disjointness with disjointness modulo 𝑉𝑉0 (and using the 
Lemma K.2 on 𝑉𝑉0 to infer injectivity of [⋅]) and then replace the equivalence class containing an 
element 𝑥𝑥 from 𝑉𝑉0 with 𝑥𝑥 itself. We leave the details of this proof to the reader. ■ 

We can also derive a corollary which says that if the ordinals of each 𝑉𝑉𝑥𝑥 form an initial segment 
of 𝑊𝑊, < then we can take the ordinals in 𝑉𝑉𝛴𝛴 to be as well. 

Corollary 20.4.  Suppose that ℒ, 𝐼𝐼,𝑉𝑉 are as in the Theorem K.1 (Hierarchy Combining) and that 
each for each 𝑥𝑥 satisfying 𝐼𝐼, (ord𝑥𝑥, <𝑥𝑥) ≤ (𝑊𝑊, <) then the conclusion of  Theorem K.1 holds 
where23 𝑉𝑉𝛴𝛴 satisfies (ord𝛴𝛴, <𝛴𝛴) ≤ (𝑊𝑊, <) 

Proof. This proof proceeds just as the proof of Corollary K.3 (to Hierarchy Combining) above, 
except instead of insisting the initial segments 𝑉𝑉𝑥𝑥 are replaced with initial segments extending 
𝑉𝑉0 and are otherwise disjoint here we replace the initial segments 𝑉𝑉𝑥𝑥 with initial segments 
whose ordinals are all drawn from compatible well-orders. We replace the singleton 
equivalence classes forming the ordinals of 𝑉𝑉𝛴𝛴 with their unique element. ■ 

K.6 Fleshing Out 

Theorem K.2 (Fleshing Out Theorem).  If ord, < is a well-order then ◊ 𝒱𝒱(𝑉𝑉)ord,<  where 𝑉𝑉 =
(ord, < ,set,∈, @). 

Proof. Assume that ord, < is a well-order. We first note that without loss of generality we may 
assume that ord, < has a maximal element. For, by Lemma K.6 (Proper Well Ordering 
Extendability) we may derive the possibility (◊ord,< ) of a well-order ord′, < ′ extending ord, < 
with a maximal element. If we can now derive ◊ord',<′ 𝒱𝒱(𝑉𝑉′)   then, we may invoke ◇ Ignoring ( 
Axiom 8.3) to derive  ◊ord′,<′,ord,<  𝒱𝒱(𝑉𝑉′)  and import the fact that (ord, <) ≤ (ord′,≤ ′) to 
derive 

◊ ◊ord,<,ord′,<′ (ord,< ord, <) ≤ (ord′, < ′) ∧ 𝒱𝒱(𝑉𝑉′) 

From here it is easy to take the restriction of 𝑉𝑉 to just those sets available at stages in ord and 
then by Diamond Collapsing ( Lemma B.4) derive 

◊ 𝒱𝒱(𝑉𝑉)ord,<  

So assuming that ord, < has a maximal element, define 𝐵𝐵 so that 𝐵𝐵(𝑢𝑢) holds just if it’s possible 
to have an initial segment of the sets whose ordinals are an initial segment of 𝑊𝑊, < and contain 
𝑢𝑢. Specifically using Axiom 8.9 Modal Comprehension (using Axiom 8.7 Logical Closure and  

                                                      
23 That is we can add this as a conjunct under the ◊𝐼𝐼,𝑉𝑉,ℒ  operator. 



Axiom 8.5 Relabeling to simplify the result) we infer that it’s possible (◊ord,< ) for ord, < to be a 
well-order with maximal element and 

□ (ord,<,𝐵𝐵 (∃! 𝑥𝑥 ∣ 𝐻𝐻(𝑥𝑥)) → (∃𝑥𝑥 ∣ 𝐻𝐻(𝑥𝑥))[𝐵𝐵(𝑥𝑥) ↔

ord(𝑥𝑥) ∧ ¬ ◊ �(ord′, <′) ≤ (ord, <) ∧ � ∃𝑢𝑢 ∣∣ 𝐻𝐻(𝑢𝑢) ��ord′(𝑢𝑢)� ∧ 𝒱𝒱(𝑉𝑉′)�ord,<,𝐻𝐻 ])      (𝐾𝐾3)     

Enter this ◊ord,< . By our assumption that ord, < has a maximal element, it is enough to show 
that 𝐵𝐵 is empty. For, if 𝐵𝐵 is empty we can apply Simple Comprehension ( Axiom 8.4) to define 𝐻𝐻 
to apply to the unique maximal element of ord, < and then by Lemma B.3 (Box Elimination) we 
can infer the possibility of ord′, < ′ equal to ord, < such that 𝒱𝒱(𝑉𝑉′). We then use Simple 
Comprehension ( Axiom 8.4) to ◊𝑉𝑉′,ord,< .  define set,∈, @ to copy set′,∈ ′,@′ and then we may 
infer that 𝒱𝒱(𝑉𝑉) and then infer the desired consequent by Diamond Collapsing ( Lemma B.4). 

So suppose, for contradiction, that 𝐵𝐵 is non-empty. By the definition of well ordering 
Definition E.2 there must be some least 𝑜𝑜 in 𝐵𝐵. We first suppose that there is some maximal 𝑜𝑜− 
satisfying ord(𝑜𝑜−) ∧ ¬𝐵𝐵(𝑜𝑜−) (or that 𝑜𝑜 is the minimal element satisfying ord) and argue that 
we can extend the initial segment 𝑉𝑉− of height 𝑜𝑜− (i.e. 𝑜𝑜− is the maximal element satisfying 
ord−) guaranteed by the fact that ¬𝐵𝐵(𝑜𝑜−) into an initial segment 𝑉𝑉′ of height 𝑜𝑜 where (ord′, <
′) ≤ (ord, <). This follows by the same reasoning used in the Proper Extension Lemma ( 
Lemma K.4) to add a layer of classes to 𝑉𝑉−. By straightforward, if tedious, application of Simple 
Comprehension ( Axiom 8.4), Lemma H.4 (Full Box Elimination) and Diamond Collapsing ( 
Lemma B.8) this contradicts the assumption that 𝐵𝐵(𝑜𝑜). 

So suppose instead that there is no maximal 𝑜𝑜− satisfying ord(𝑜𝑜−) ∧ ¬𝐵𝐵(𝑜𝑜−), i.e., 𝑜𝑜 is a limit 
ordinal. We again, for contradiction, seek to construct a single initial segment 𝑉𝑉′ of height 𝑜𝑜 (i.e. 
𝑜𝑜 is the maximal element satisfying ord′) such that (ord′, < ′) ≤ (ord, <). To this end we seek 
to derive the possibility of a single initial segment 𝑉𝑉𝛴𝛴 such that (<𝛴𝛴 , ord𝛴𝛴) ≤ (< ,ord) such that 
every 𝑢𝑢 < 𝑜𝑜 satisfies ord𝛴𝛴(𝑢𝑢) from the logical possibility of segments 𝑉𝑉𝑢𝑢 for 𝑢𝑢 < 𝑜𝑜 witnessing 
the minimality of 𝑜𝑜. We may then apply the same reasoning above to extend 𝑉𝑉𝛴𝛴 to 𝑉𝑉′ by adding 
the ordinal 𝑜𝑜 and applying the reasoning from the the Proper Extension Lemma ( Lemma K.4). 

We will do this by essentially the same argument used in the proof of Proposition M.8 
(Potentialist Replacement)  so we direct the reader to this proof to see the argument in greater 
detail. 

Specifically, using Axiom 8.4 (Simple Comprehension)  and Axiom 8.9 (Modal Comprehension) 
we let 𝐼𝐼 apply to just those 𝑢𝑢 less that 𝑜𝑜, i.e., those 𝑢𝑢 such that ¬𝐵𝐵(𝑢𝑢) (by the argument at the 
start of the proof ¬𝐵𝐵(𝑢𝑢) must apply to some initial segment of ord). Now let 𝛷𝛷 be the sentence 
expressing the claim that 𝑉𝑉′ is an initial segment containing an ordinal satisfying 𝑄𝑄 and that 
(ord′, < ′) ≤ (ord, <). 

From equation (K3) we can straightforwardly derive the following sentence as it merely 
repackages the claim in equation (K3) that whenever 𝐻𝐻 applies to some unique object failing to 
satisfy 𝐵𝐵 then it’s logically possible to have an initial segment 𝑉𝑉′ containing an ordinal 𝑢𝑢 with 
(ord′, < ′) ≤ (ord, <). 



□ [ord,<,𝐵𝐵,𝐼𝐼 (∃!𝑥𝑥 ∣ 𝑄𝑄(𝑥𝑥))(𝐼𝐼(𝑥𝑥)) → ◊ 𝛷𝛷ord,<,𝐵𝐵,𝐼𝐼,𝑄𝑄 ] 

Hence, we may invoke Axiom 8.13 (Amalgamation)  to infer (where 𝛶𝛶 is the sentence asserting 
that 𝑉𝑉′ = 𝑉𝑉�𝑥𝑥 as in Theorem K.1 (Hierarchy Combining) . 

◊ (∀𝑥𝑥)(∀𝑦𝑦)(∀𝑦𝑦′)�y ≠ y′ ∧  𝑉𝑉�(𝑥𝑥,𝑦𝑦) ∧ 𝑉𝑉�(𝑥𝑥,𝑦𝑦′) → 𝑥𝑥𝑥𝑥 𝐸𝐸𝑥𝑥𝐸𝐸(𝑊𝑊, <,𝐵𝐵, 𝐼𝐼)� ∧ord,<,𝐵𝐵,𝐼𝐼   

□ [ord,<,𝐵𝐵,𝐼𝐼,𝑉𝑉� (∃!𝑥𝑥 ∣ 𝑄𝑄(𝑥𝑥))(𝐼𝐼(𝑥𝑥) ∧ 𝛶𝛶(𝑥𝑥)) → 𝛷𝛷] 

 

After importing all necessary facts to the above context, we apply Diamond Collapsing ( Lemma 
B.4) to collapse the contexts we’ve entered into a single ◊ord,< . 

It is tedious, but relatively straightforward, to transform this result into the precondition for 
applying Corollary K.4 (from the Hierarchy Combining Lemma). This lets us derive the logical 
possibility of a 𝑉𝑉𝛴𝛴 and a function 𝑓𝑓 such that every 𝑉𝑉�𝑢𝑢 is isomorphic (via 𝑓𝑓) to an initial segment 
of 𝑉𝑉𝛴𝛴 where (ord𝛴𝛴, <𝛴𝛴) ≤ (ord, <). 

We now argue that for each 𝑢𝑢 < 𝑜𝑜 we have ord𝛴𝛴(𝑢𝑢). By the assumptions above (eliding the 
routine tasks of entering and leaving ◊ contexts) we know that 𝑓𝑓 isomorphicly maps some 
(ord′, < ′) ≤ (ord, <) such that ord′(𝑢𝑢) to (ord𝛴𝛴, <𝛴𝛴) ≤ (ord, <). By  Lemma K.1 (Well 
Ordering Agreement Lemma) 𝑓𝑓 must be the identity, vindicating the claim from the start of this 
paragraph. By the remark above, it now suffices to extend 𝑉𝑉𝛴𝛴 by a single layer to 𝑉𝑉′ with ord′(𝑜𝑜) 
to give the contradiction. ■ 

L.   Translation Lemmas 

A few key lemmas about interpreted initial segments will play a central role in all that proofs 
that follow. 

L.1 Assignment Tweaking Lemma 

First, note that potentialist translations tend to make claims about how arbitrary assignments 
𝑉𝑉,𝜌𝜌 can be modified and extended, by some 𝑉𝑉′,𝜌𝜌′ ≥𝑢𝑢 𝑉𝑉,𝜌𝜌 changing only 𝜌𝜌’s assignment of a 
single variable.  Lemma L.1 (Pointwise Tweaking)  lets us do this. 

Lemma L.1 (Pointwise Interpretation Tweaking).  If 𝛷𝛷 = (∃𝑥𝑥 ∣ set(𝑥𝑥))(𝜙𝜙(𝑥𝑥)) is a sentence 
without any ◊ or □ operators and is content restricted to 𝑉𝑉,𝜌𝜌,ℒ and 𝑢𝑢 is a formal variable in our 
language of set theory and neither 𝜌𝜌′ nor 𝑉𝑉′ are in ℒ then �𝒱𝒱�⃗ (𝑉𝑉,𝜌𝜌) ∧ 𝛷𝛷� → ◊(𝑉𝑉,𝜌𝜌),ℒ

�(𝑉𝑉,𝜌𝜌′) ≥
𝑢𝑢

(𝑉𝑉, 𝜌𝜌) ∧ 𝜙𝜙(𝜌𝜌′(⌜𝑢𝑢⌝)) ∧ set(𝜌𝜌′(⌜𝑢𝑢⌝))� Moreover, �𝒱𝒱�⃗ (𝑉𝑉,𝜌𝜌) ∧ 𝛷𝛷� → ◊𝑉𝑉,𝜌𝜌,ℒ

�(𝑉𝑉′,𝜌𝜌′) ≥
𝑢𝑢

(𝑉𝑉,𝜌𝜌) ∧ 𝜙𝜙(𝜌𝜌′(⌜𝑢𝑢⌝)) ∧ set(𝜌𝜌′(⌜𝑢𝑢⌝)) ∧ 𝑉𝑉′ = 𝑉𝑉� 

In the above lemma 𝑉𝑉′ = 𝑉𝑉 is understood to abbreviate the claim that the relations ∈, < @ 
apply to exactly the same tuples as ∈ ′, < ′@′. 

Proof. We prove the moreover claim, as the primary claim trivially follows from it. 



Suppose �𝒱𝒱�⃗ (𝑉𝑉,𝜌𝜌) ∧ 𝛷𝛷�. By Simple Comprehension ( Axiom 8.4) we can ◊𝑉𝑉,𝜌𝜌,ℒ  define 𝑃𝑃(𝑥𝑥) to 
hold just if set(𝑥𝑥) ∧ 𝜙𝜙(𝑥𝑥). Now by another application of Simple Comprehension and 
Proposition 8.1 (Simple Choice) we can (◊𝑉𝑉,𝜌𝜌,ℒ,𝑃𝑃 ) have 𝑄𝑄 select a unique object such that 𝑃𝑃(𝑥𝑥). 
By multiple applications of Simple Comprehension ( Axiom 8.4) we can (◊𝑉𝑉,𝜌𝜌,ℒ,𝑃𝑃,𝑄𝑄 ) have 𝑉𝑉′ = 𝑉𝑉 
and 𝜌𝜌′ = 𝜌𝜌 excepting only that 𝜌𝜌′(⌜𝑢𝑢⌝) is chosen to be the unique object satisfying 𝑄𝑄 and thus 
𝜙𝜙(𝜌𝜌′(⌜𝑢𝑢⌝)). By using  Lemma H.7 (Multiple Definitions) to coordinate the above applications 
of Axiom 8.4 (Simple Comprehension)  and Proposition 8.1 (Simple Choice) we can infer the 
desired conclusion 

◊ �(𝑉𝑉′,𝜌𝜌′) ≥
𝑢𝑢

(𝑉𝑉,𝜌𝜌) ∧ 𝜙𝜙(𝜌𝜌′(⌜𝑢𝑢⌝)) ∧ set(𝜌𝜌′(⌜𝑢𝑢⌝)) ∧ 𝑉𝑉′ = 𝑉𝑉�𝑉𝑉,𝜌𝜌,ℒ  

 ■ 

We can also prove the following lemma about how it’s possible (◊ℒ,𝑉𝑉 ) to transform any non-
empty initial segment 𝑉𝑉 into an interpreted initial segment 𝑉𝑉�⃗ . 

Lemma L.2 (Interpretation Adding).  If 𝛷𝛷 = (∃𝑥𝑥 ∣ set(𝑥𝑥))(𝜙𝜙(𝑥𝑥)) is a sentence content restricted 
to 𝑉𝑉′,ℒ not containing any ◊ or □ operators and 𝑢𝑢 is a formal variable in our language of set 
theory and neither 𝜌𝜌,ℕ, 𝑆𝑆 are in 𝑉𝑉,ℒ. Then 

(𝒱𝒱(𝑉𝑉) ∧ 𝛷𝛷) → ◊ �𝒱𝒱�⃗ (𝑉𝑉, 𝜌𝜌) ∧ 𝜙𝜙(𝜌𝜌(⌜𝑢𝑢⌝))�𝑉𝑉,ℒ  

Proof. Trivially (∃𝑥𝑥)(set(𝑥𝑥)) so by Corollary K.2 (Interpreted Extension) we can infer ◊ 𝒱𝒱�⃗ �𝑉𝑉�⃗ �𝑉𝑉,ℒ . 
Enter this context and apply Lemma L.1 (Pointwise Tweaking) to derive that 

◊   𝑉𝑉,𝜌𝜌,ℒ  �(𝑉𝑉′,𝜌𝜌′) ≥
𝑢𝑢

(𝑉𝑉,𝜌𝜌) ∧ 𝜙𝜙(𝜌𝜌′(⌜𝑢𝑢⌝)) ∧ set(𝜌𝜌′(⌜𝑢𝑢⌝)) ∧ 𝑉𝑉′ = 𝑉𝑉�  

Entering this ◊𝑉𝑉,𝜌𝜌,ℒ  context. It is trivial to infer that 

𝒱𝒱�⃗ (𝑉𝑉,𝜌𝜌′) ∧ 𝜙𝜙(𝜌𝜌′(⌜𝑢𝑢⌝)) 

Leaving all ◊ contexts and applying Diamond Collapsing ( Lemma B.4) gives us 

◊ 𝒱𝒱𝑉𝑉,ℒ (𝑉𝑉,𝜌𝜌′) ∧ 𝜙𝜙(𝜌𝜌′(⌜𝑢𝑢⌝)) 

The desired conclusion follows easily by Relabeling ( Axiom 8.5). ■ 

L.2 Translation Theorem 

Next, we can prove a translation theorem which says that the way 𝑉𝑉𝑛𝑛,𝜌𝜌𝑛𝑛  assigns the free 
variables in a set theoretic formula 𝜃𝜃 completely determine the truth value of 𝐸𝐸𝑛𝑛(𝜃𝜃) (i.e., the 
(partial) potentialist translation of the formula 𝜃𝜃)24. 

                                                      
24 Note that Hellman proves something analogous to this lemma in (Geoffrey 1996), assuming 
the axiom of inaccessibles (but I make no such assumption) 



First, however, we establish a few useful utility lemmas about translations. 

Lemma L.3 (Renumbering).  Suppose that 𝑛𝑛 + 𝑘𝑘 is the maximal integer such that (any part of) 
𝑉𝑉�⃗ 𝑛𝑛+𝑘𝑘 is mentioned in 𝐸𝐸𝑛𝑛(𝜃𝜃), i.e., 𝜃𝜃 has quantifiers nested to depth 𝑘𝑘, then 𝐸𝐸𝑛𝑛(𝜃𝜃)[𝑉𝑉�⃗𝑛𝑛/
𝑉𝑉�⃗𝑚𝑚, … ,𝑉𝑉�⃗ 𝑛𝑛+𝑘𝑘/𝑉𝑉�⃗𝑚𝑚+𝑘𝑘] 

Proof. This follows via a straightforward structural induction on 𝜃𝜃 using the . ■ 

Lemma L.4 (Coextensive Hierarchies Lemma).  If 𝑉𝑉�⃗𝑛𝑛 = 𝑉𝑉�⃗𝑚𝑚 then (𝐸𝐸𝑛𝑛(𝜃𝜃) ↔ 𝐸𝐸𝑚𝑚(𝜃𝜃)). 

Proof. It is enough to prove the → direction as the other direction follows by swapping the 
values of 𝑛𝑛 and 𝑚𝑚. So suppose 𝑉𝑉�⃗𝑛𝑛 = 𝑉𝑉�⃗𝑚𝑚 and 𝐸𝐸𝑛𝑛(𝜃𝜃) we argue, by structural induction on 𝜃𝜃, that 
𝐸𝐸𝑚𝑚(𝜃𝜃) holds. So suppose the claim holds for all 𝑛𝑛,𝑚𝑚 on all subformulas of 𝜃𝜃. 

The only interesting case is when 𝜃𝜃 = (∃𝑥𝑥)𝜙𝜙(𝑥𝑥) since the atomic case is trivial and 𝐸𝐸𝑛𝑛, 𝐸𝐸𝑚𝑚 
commute with truth-functional operations. In this case 

𝐸𝐸𝑛𝑛(𝜃𝜃) = ◊ �𝑉𝑉�⃗ 𝑛𝑛+1 ≥𝑥𝑥 𝑉𝑉
�⃗𝑛𝑛 ∧ 𝐸𝐸𝑛𝑛+1(𝜙𝜙)�𝑉𝑉��⃗𝑛𝑛  

Enter this ◊𝑉𝑉��⃗𝑛𝑛  context and apply Simple Comprehension ( Axiom 8.4) (via the Multiple 
Definitions Lemma ( Lemma H.7)) to define 𝑉𝑉�⃗𝑚𝑚+1 = 𝑉𝑉�⃗ 𝑛𝑛+1 giving us 

◊  ◊ 𝑉𝑉�⃗ 𝑛𝑛+1𝑉𝑉��⃗𝑛𝑛,𝑉𝑉��⃗𝑛𝑛+1   𝑉𝑉��⃗𝑛𝑛 ≥
𝑥𝑥
𝑉𝑉�⃗𝑛𝑛 ∧ 𝑉𝑉�⃗ 𝑛𝑛+1 = 𝑉𝑉�⃗𝑚𝑚+1 ∧ 𝐸𝐸𝑛𝑛+1(𝜙𝜙) 

Using the inductive hypothesis inside the ◊ ◊𝑉𝑉��⃗𝑛𝑛,𝑉𝑉��⃗𝑛𝑛+1𝑉𝑉��⃗𝑛𝑛  context and then applying Diamond 
Collapsing ( Lemma B.8) lets us infer 

◊ 𝑉𝑉�⃗𝑚𝑚+1𝑉𝑉��⃗𝑛𝑛 ≥
𝑥𝑥
𝑉𝑉�⃗𝑛𝑛 ∧ 𝐸𝐸𝑚𝑚+1(𝜙𝜙)       (𝐿𝐿1) 

To finish the proof we need only replace the 𝑉𝑉�⃗𝑛𝑛 in the above equation with 𝑉𝑉�⃗𝑚𝑚. Intuitively, this 
follows immediately from the assumption that 𝑉𝑉�⃗𝑚𝑚 = 𝑉𝑉�⃗𝑛𝑛 but we verify this formally using the 
Theorem I.1 (Isomorphism Lemma). 

By Simple Comprehension ( Axiom 8.4) via the Multiple Definitions Lemma ( Lemma H.7) we 
may define 𝑍𝑍 be the identity relation on 𝑉𝑉�⃗𝑛𝑛 while pulling in equation (L1) and the fact that 𝑉𝑉�⃗𝑛𝑛 =
𝑉𝑉�⃗𝑚𝑚. Enter this ◊𝑉𝑉��⃗𝑛𝑛  context. Since 𝑉𝑉�⃗𝑛𝑛 = 𝑉𝑉�⃗𝑚𝑚 we have 𝑉𝑉�⃗𝑛𝑛 ≅𝑍𝑍 𝑉𝑉�⃗𝑚𝑚. As equation   (L1)  is content 
restricted to 𝑉𝑉�⃗𝑛𝑛 we may thus apply the Isomorphism Theorem ( Theorem I.1) to replace 𝑉𝑉�⃗𝑛𝑛 with 
𝑉𝑉�⃗𝑚𝑚 in  (L1) letting us infer 

𝐸𝐸𝑚𝑚(𝜃𝜃) = ◊ 𝑉𝑉�⃗𝑚𝑚+1𝑉𝑉��⃗𝑚𝑚 ≥
𝑥𝑥
𝑉𝑉�⃗𝑛𝑛 ∧ 𝐸𝐸𝑚𝑚+1(𝜙𝜙) 

The desired conclusion follows by applying Axiom 8.2 (Diamond Elimination) to export 𝐸𝐸𝑚𝑚(𝜃𝜃) 
from the ◊𝑉𝑉��⃗𝑛𝑛  context. ■ 



Theorem L.1 (Translation Theorem).  If 𝑣𝑣1 … 𝑣𝑣𝑘𝑘 are the only variables free in a set theoretic 
formula 𝜃𝜃, then → (𝐸𝐸𝑛𝑛(𝜃𝜃) ↔ 𝐸𝐸𝑚𝑚(𝜃𝜃)) 

We note that the theorem above, as one would expect25, is indifferent to the particular 
relations used for 𝑉𝑉𝑛𝑛 and 𝑉𝑉𝑚𝑚. So, for instance, the following conclusion also holds (where 
(𝐸𝐸𝑛𝑛∗(𝜃𝜃) =

def
𝐸𝐸𝑛𝑛(𝜃𝜃)[𝑉𝑉�⃗𝑛𝑛/𝑉𝑉�⃗ ∗] and 𝐸𝐸′𝑚𝑚(𝜃𝜃) =

def
𝐸𝐸𝑚𝑚(𝜃𝜃)[𝑉𝑉�⃗𝑚𝑚/𝑉𝑉�⃗ ′]) 

→ (𝐸𝐸𝑛𝑛∗(𝜃𝜃) ↔ 𝐸𝐸′𝑚𝑚(𝜃𝜃)) 

Proof. I will prove this claim by induction on formula complexity. So suppose the sentence 
specified above is provable for all subformulas of 𝜃𝜃 and choices of 𝑉𝑉𝑛𝑛,𝑉𝑉𝑚𝑚,𝜌𝜌𝑛𝑛,𝜌𝜌𝑚𝑚𝑣𝑣1, … 𝑣𝑣𝑘𝑘 , as in 
the statement of the lemma. 

When 𝜃𝜃 is an atomic sentence, i.e., one of the form 𝑥𝑥 = 𝑦𝑦 or 𝑥𝑥 ∈ 𝑦𝑦, the claim clearly holds for 𝜃𝜃 
since 𝐸𝐸𝑛𝑛(𝑥𝑥 = 𝑦𝑦) is 𝜌𝜌𝑛𝑛(⌜𝑥𝑥⌝) = 𝜌𝜌𝑛𝑛(⌜𝑦𝑦⌝) and 𝐸𝐸𝑛𝑛(𝑥𝑥 ∈ 𝑦𝑦) is 𝜌𝜌𝑛𝑛(⌜𝑥𝑥⌝) ∈𝑛𝑛 𝜌𝜌𝑛𝑛(⌜𝑦𝑦⌝). Also when 𝜃𝜃 
is a truth-functional combination of other formulas then the claim holds for 𝜃𝜃 since 𝐸𝐸𝑛𝑛 and 𝐸𝐸𝑚𝑚 
commute with truth-functional operators. 

The only non-trivial case is when 𝜃𝜃 = (∃𝑥𝑥)𝜙𝜙(𝑥𝑥) (as we take ∀𝑥𝑥 to abbreviate ¬∃𝑥𝑥¬). Note that 
it is enough to show the → direction as the other direction follows by switching the values of 𝑛𝑛 
and 𝑚𝑚. Our strategy will be to use the Lemma K.7 (Hierarchy Extending) to replace 𝑉𝑉�⃗ 𝑛𝑛+1 in 
𝐸𝐸𝑛𝑛(𝜃𝜃) with a 𝑉𝑉�⃗𝑚𝑚+1 ≥𝑥𝑥 𝑉𝑉�⃗𝑚𝑚 extending some 𝑉𝑉�⃗ ′ ≅ 𝑉𝑉�⃗ 𝑛𝑛+1 (so 𝜌𝜌𝑚𝑚+1 agrees with 𝜌𝜌′). We will then use 
the Theorem I.1 (Isomorphism Lemma) to infer 𝐸𝐸′𝑛𝑛+1(𝜙𝜙) where 𝐸𝐸′𝑛𝑛+1(𝜙𝜙) =

def
𝐸𝐸𝑛𝑛+1(𝜙𝜙)[𝑉𝑉�⃗𝑛𝑛+1/𝑉𝑉�⃗ ′] 

and then use the inductive hypothesis to infer 𝐸𝐸𝑚𝑚+1(𝜙𝜙). 

So suppose that 

𝐸𝐸𝑛𝑛(𝜃𝜃) = ◊ 𝑉𝑉�⃗ 𝑛𝑛+1𝑉𝑉��⃗𝑛𝑛 ≥
𝑥𝑥
𝑉𝑉�⃗𝑛𝑛 ∧ 𝐸𝐸𝑛𝑛+1(𝜙𝜙) 

. 

By ◊ Ignoring ( Axiom 8.3) we can infer 

◊ 𝑉𝑉�⃗ 𝑛𝑛+1𝑉𝑉��⃗𝑛𝑛,𝑉𝑉��⃗𝑚𝑚 ≥
𝑥𝑥
𝑉𝑉�⃗𝑛𝑛 ∧ 𝐸𝐸𝑛𝑛+1(𝜙𝜙) 

Enter this ◊𝑉𝑉��⃗𝑛𝑛,𝑉𝑉��⃗𝑚𝑚  context and import the assumptions of the theorem, e.g., 𝑉𝑉𝑛𝑛 ≥ 𝑉𝑉𝑚𝑚 ∨ 𝑉𝑉𝑚𝑚 ≥
𝑉𝑉𝑛𝑛 …. We now seek to define 𝑉𝑉�⃗𝑚𝑚+1. Note that without loss of generality we may assume that 

                                                      
25 While we always take the particular relation names mentioned in theorems or lemmas to be 
placeholders which can be instantiated with whatever relation names we wish we make specific 
mention of it here, due to the confusing interaction of the subscripts (which are part of the 
meta-lanaguage and not pure placeholders) and the relation names. So note that the results of 
any theorem still hold if we replace 𝑉𝑉4 with 𝑉𝑉′4 but we have no such guarantee if we replace 𝑉𝑉4 
with 𝑉𝑉3, since the translations make explicit reference to particular numerical values of these 
subscripts. 



𝑉𝑉𝑚𝑚 ≥ 𝑉𝑉𝑛𝑛 since if 𝑉𝑉𝑛𝑛 ≥ 𝑉𝑉𝑚𝑚 we could simply set 𝑉𝑉�⃗𝑚𝑚+1 to be equal to 𝑉𝑉�⃗ 𝑛𝑛+1 and directly apply the 
inductive step. 

Thus, assuming that 𝑉𝑉𝑚𝑚 ≥ 𝑉𝑉𝑛𝑛, we apply Lemma K.7 (Hierarchy Extending) to establish the 
possibility of a 𝑉𝑉𝑚𝑚+1 ≥ 𝑉𝑉𝑚𝑚. Letting ℒ be {𝑉𝑉�⃗𝑛𝑛,𝑉𝑉�⃗ 𝑛𝑛+1,𝑉𝑉�⃗𝑚𝑚} and taking the advantage of the 
moreover claim from Lemma K.7 (Hierarchy Extending) to ensure disjointness of 𝑉𝑉𝑚𝑚+1 we have 

◊ 𝑉𝑉𝑚𝑚+1ℒ ≥ 𝑉𝑉𝑚𝑚 ∧ 𝑉𝑉𝑚𝑚+1 ≥ 𝑉𝑉′ ∧ 𝑉𝑉𝑛𝑛+1 ≅𝑓𝑓 𝑉𝑉′ ∧

(∀𝑥𝑥 ∣ Ext(ℒ)(𝑥𝑥))(𝑉𝑉𝑚𝑚+1(𝑥𝑥) → 𝑉𝑉𝑛𝑛+1(𝑥𝑥))
 

Import all necessary facts into this ◊ℒ  context and then, exiting both the ◊ℒ  context and the 
◊𝑉𝑉��⃗𝑛𝑛,𝑉𝑉��⃗𝑚𝑚  context we may apply Diamond Collapsing ( Lemma B.8) and then reenter the single 

◊𝑉𝑉��⃗𝑛𝑛,𝑉𝑉��⃗𝑚𝑚 context. 

Inside the ◊𝑉𝑉��⃗𝑛𝑛,𝑉𝑉��⃗𝑚𝑚  context we now construct 𝜌𝜌′,𝜌𝜌𝑚𝑚+1 so that 𝑉𝑉�⃗ ′ ≅𝑓𝑓 𝑉𝑉�⃗ 𝑛𝑛+1 and 𝑉𝑉�⃗ ′ ≤𝑥𝑥 𝑉𝑉�⃗𝑚𝑚+1. To 
this end we use the Multiple Definitions Lemma ( Lemma H.7) to pack together various 
applications of Simple Comprehension ( Axiom 8.4), we can (◊ℒ,𝑉𝑉𝑚𝑚+1 ) define 𝜌𝜌′ to be the image 
of 𝜌𝜌𝑛𝑛+1 under 𝑓𝑓. Finally, we let 𝜌𝜌𝑚𝑚+1 agree with 𝜌𝜌′ on ‘x’ but 𝜌𝜌𝑚𝑚 everywhere else26. 

Since 𝑉𝑉′ ≅𝑓𝑓 𝑉𝑉𝑛𝑛+1 and 𝜌𝜌′ was defined to be the isomorphic image of 𝜌𝜌𝑛𝑛+1 we have 𝑉𝑉�⃗ ′ ≅𝑓𝑓 𝑉𝑉�⃗ 𝑛𝑛+1. 

Thus, using the Theorem H.1 (Isomorphism Lemma)  we can infer 𝐸𝐸𝑛𝑛+1′(𝜃𝜃) =
def
𝐸𝐸𝑛𝑛+1(𝜙𝜙)[𝑉𝑉�⃗ 𝑛𝑛+1/𝑉𝑉�⃗ ′] 

from 𝐸𝐸𝑛𝑛+1(𝜙𝜙). 

We now argue that 𝜌𝜌′ = 𝜌𝜌𝑚𝑚+1 on all variables free in 𝜙𝜙. By construction 𝜌𝜌𝑚𝑚+1(⌜𝑥𝑥⌝) =
𝜌𝜌′(⌜𝑥𝑥⌝) and any other variable 𝑣𝑣 free in 𝜙𝜙 must also be free in 𝜃𝜃. Hence, 𝜌𝜌𝑛𝑛(⌜𝑣𝑣⌝) =
𝜌𝜌𝑚𝑚(⌜𝑣𝑣⌝) = 𝜌𝜌𝑚𝑚+1(⌜𝑣𝑣⌝). As 𝑉𝑉𝑛𝑛 ≤ 𝑉𝑉𝑛𝑛+1 and, by assumption, 𝑉𝑉𝑛𝑛 ≤ 𝑉𝑉𝑚𝑚 ≤ 𝑉𝑉𝑚𝑚+1 we have 𝑉𝑉𝑛𝑛 ≤
𝑉𝑉𝑛𝑛+1,𝑉𝑉𝑚𝑚+1. Hence, as 𝑉𝑉𝑛𝑛+1 ≅𝑓𝑓 𝑉𝑉′ ≤ 𝑉𝑉𝑚𝑚+1, by the Lemma K.2 (Hierarchy Agreement), 𝑓𝑓 must be 
the identity on 𝑉𝑉𝑛𝑛 and thus 𝜌𝜌′(⌜𝑣𝑣⌝) = 𝑓𝑓(𝜌𝜌𝑛𝑛+1(⌜𝑣𝑣⌝)) = 𝜌𝜌𝑛𝑛+1(⌜𝑣𝑣⌝) = 𝜌𝜌𝑛𝑛(⌜𝑣𝑣⌝) =
𝜌𝜌𝑚𝑚+1(⌜𝑣𝑣⌝). 

Thus, by the inductive hypothesis we can infer 𝐸𝐸𝑚𝑚+1(𝜙𝜙) from 𝐸𝐸′𝑛𝑛+1(𝜙𝜙). As 𝜌𝜌𝑚𝑚+1 was defined to 
agree with 𝜌𝜌𝑚𝑚 on all variables but 𝑥𝑥 we have 

𝑉𝑉�⃗𝑚𝑚+1 ≥𝑥𝑥 𝑉𝑉𝑚𝑚
����⃗ ∧ 𝐸𝐸𝑚𝑚+1(𝜙𝜙) 

                                                      
26 

More formally, that is 

(∀𝑧𝑧 ∣ ℕ(𝑧𝑧))𝜌𝜌𝑚𝑚+1′(𝑧𝑧) = �𝜌𝜌′(⌜𝑥𝑥⌝)  if 𝑧𝑧 = ⌜𝑥𝑥⌝
𝜌𝜌𝑚𝑚(𝑧𝑧)  otherwise  



Now leaving the above ◊𝑉𝑉��⃗𝑛𝑛,𝑉𝑉��⃗𝑚𝑚  context and applying Reducing ( Lemma B.4) to drop the 𝑉𝑉�⃗𝑛𝑛 
subscript yields our desired conclusion 

𝐸𝐸𝑚𝑚(𝜃𝜃) = ◊ 𝑉𝑉𝑚𝑚+1𝑉𝑉𝑚𝑚 ≥
𝑥𝑥
𝑉𝑉𝑚𝑚 ∧ 𝐸𝐸𝑚𝑚+1(𝜙𝜙) 

 ■ 

We now argue that we can generalize the above result by weakening the assumption that 𝑉𝑉𝑛𝑛 
and 𝑉𝑉𝑚𝑚 are compatible. 

Corollary L.1 (Generalized Translation Lemma).  If 𝑣𝑣1 … 𝑣𝑣𝑘𝑘 are the only variables free in a set 
theoretic formula 𝜃𝜃 and 𝑉𝑉0 is a non-empty initial segment then 
𝑉𝑉𝑛𝑛 ≥ 𝑉𝑉0 ∧ 𝑉𝑉𝑚𝑚 ≥ 𝑉𝑉0 ∧ 𝒱𝒱�⃗ (𝑉𝑉𝑛𝑛) ∧ 𝒱𝒱�⃗ (𝑉𝑉𝑚𝑚)  ∧ set0(𝜌𝜌𝑛𝑛(⌜𝑣𝑣1⌝)) ∧ …∧ set0(𝜌𝜌𝑛𝑛(⌜𝑣𝑣𝑘𝑘⌝))

∧ 𝜌𝜌𝑛𝑛(⌜𝑣𝑣1⌝) = 𝜌𝜌𝑚𝑚(⌜𝑣𝑣1⌝) ∧ …𝜌𝜌𝑛𝑛(⌜𝑣𝑣𝑘𝑘⌝) = 𝜌𝜌𝑚𝑚(⌜𝑣𝑣𝑘𝑘⌝) → (𝐸𝐸𝑛𝑛(𝜃𝜃) ↔ 𝐸𝐸𝑚𝑚(𝜃𝜃))
 

Note that if 𝑉𝑉�⃗ 0 is an interpreted initial segment then 𝑉𝑉0 is automatically non-empty. Also, the 
same remarks about 𝐸𝐸′𝑛𝑛 and 𝐸𝐸𝑚𝑚∗  from the Theorem L.1 (Translation Theorem) apply here 

Proof. Again it is enough to show that 𝐸𝐸𝑛𝑛(𝜃𝜃) → 𝐸𝐸𝑚𝑚(𝜃𝜃) under the conditions above since the 
other direction follows by switching 𝑛𝑛 and 𝑚𝑚. So suppose that the conditions of the corollary 
are met, the antecedent holds and 𝐸𝐸𝑛𝑛(𝜃𝜃) holds. 

By Simple Comprehension ( Axiom 8.4) we can (◊𝑉𝑉��⃗𝑛𝑛,𝑉𝑉��⃗𝑚𝑚 ) define 𝜌𝜌0 to agree with 𝜌𝜌𝑛𝑛 on all 
variables free in 𝜃𝜃 and to be the emptyset on all other values. Clearly 𝑉𝑉�⃗ 0 is an interpreted initial 
segment. Entering this �𝑉𝑉��⃗𝑛𝑛,𝑉𝑉��⃗𝑚𝑚  context we now apply the Theorem L.1(Translation) twice to 
infer from 𝐸𝐸𝑛𝑛(𝜃𝜃) to 𝐸𝐸0(𝜃𝜃) to 𝐸𝐸𝑚𝑚(𝜃𝜃). As 𝐸𝐸𝑚𝑚(𝜃𝜃) is content restricted to 𝑉𝑉�⃗𝑚𝑚 we may use Axiom 8.2 
(Diamond Elimination) to infer it holds outside the ◊𝑉𝑉��⃗𝑛𝑛,𝑉𝑉��⃗𝑚𝑚  context as desired. ■ 

We also prove that changing the variables in a sentence to be translated doesn’t change the 
truth-value of the translation provided the assignment function assigns the same value to both 
variables. 

Lemma L.5 (Variable Swap Lemma).  If 𝑉𝑉�⃗ 𝑖𝑖 is an interpreted initial segment with 𝜌𝜌𝑖𝑖(𝑣𝑣) = 𝜌𝜌𝑖𝑖(𝑣𝑣′), 
𝜙𝜙 a set theoretic formula and 𝜙𝜙′ is the result of replacing zero or more occurrences of 𝑣𝑣 in 𝜙𝜙 
with 𝑣𝑣′, provided that no bound variables are replaced, and all substituted occurrences of 𝑣𝑣′ are 
free then 𝐸𝐸𝑖𝑖(𝜙𝜙) ↔ 𝐸𝐸𝑖𝑖(𝜙𝜙′) 

Proof. We argue by induction on formula complexity. Suppose the assumptions in the lemma 
holds and the claim is provable for all subformula of 𝜙𝜙. The claim is trivial if 𝜙𝜙 is atomic as well 
as if 𝜙𝜙 is a truthfunctional combination of subformula. 

Suppose 𝜙𝜙 is (∃𝑥𝑥)𝜓𝜓(𝑥𝑥). If either 𝑣𝑣 or 𝑣𝑣′ is 𝑥𝑥, we have 𝜙𝜙 = 𝜙𝜙′ (and the desired result is 
immediate). For if 𝑣𝑣 = 𝑥𝑥 then there are no free instances of 𝑥𝑥 in (∃𝑥𝑥)𝜓𝜓(𝑥𝑥) to replace, and if 
𝑣𝑣′ = 𝑥𝑥 then replacing any variable 𝑣𝑣 in 𝜓𝜓 with 𝑥𝑥 in (∃𝑥𝑥)𝜓𝜓(𝑥𝑥) result in capture. 

So it remains to consider the case where 𝑣𝑣 or 𝑣𝑣′ are distinct variables from 𝑥𝑥. Assume that 
𝐸𝐸𝑖𝑖((∃𝑥𝑥)𝜓𝜓(𝑥𝑥)) holds. By the definition of 𝐸𝐸𝑛𝑛  (Definition 6.1 Potentialist Translation) we have 



◊ [𝑉𝑉��⃗ 𝑖𝑖 𝑉𝑉�⃗ 𝑖𝑖+1 ≥𝑥𝑥 𝑉𝑉
�⃗ 𝑖𝑖 ∧ 𝐸𝐸𝑖𝑖+1(𝜓𝜓(𝑥𝑥))] 

Enter this ◊𝑉𝑉��⃗𝑛𝑛  context. Because 𝑣𝑣, 𝑣𝑣′ are distinct from 𝑥𝑥, we can infer 𝜙𝜙′ = [(∃𝑥𝑥)𝜓𝜓′(𝑥𝑥)] for 
some 𝜓𝜓′ where 𝜓𝜓′ replaces some instances of 𝑣𝑣 (which are free in 𝜓𝜓 because they are free in 
(∃𝑥𝑥)𝜓𝜓) with instances of 𝑣𝑣′ (which are free in 𝜓𝜓′ because they are free in (∃𝑥𝑥)𝜓𝜓′). And because 
𝑣𝑣, 𝑣𝑣′ are distinct from 𝑥𝑥 we have 𝜌𝜌𝑖𝑖+1(𝑣𝑣) = 𝜌𝜌𝑖𝑖+1(𝑣𝑣′). Thus, by the inductive hypothesis we can 
infer 𝐸𝐸𝑖𝑖+1(𝜓𝜓′(𝑥𝑥)). Exiting the ◊𝑉𝑉��⃗𝑛𝑛   context yields, by the definition of 𝐸𝐸𝑛𝑛 (Definition 6.1 
Potentialist Translation) 𝐸𝐸𝑖𝑖((∃𝑥𝑥)𝜓𝜓′(𝑥𝑥)) = 𝐸𝐸𝑖𝑖(𝜙𝜙′). The same argument lets us derive 𝐸𝐸𝑖𝑖(𝜙𝜙) on 
the assumption that 𝐸𝐸𝑖𝑖(𝜙𝜙′) completing the proof. ■ 

L.3 Bounded Quantifiers Lemma 

Definition L.1.  Working in the language of set theory we, say that a quantifier is bounded if it 

has the form (𝑄𝑄𝑥𝑥 ∈ 𝑦𝑦) where 
(∀𝑥𝑥 ∈ 𝑦𝑦)𝜙𝜙 ↔

def
(∀𝑥𝑥)(𝑥𝑥 ∈ 𝑦𝑦 → 𝜙𝜙) ↔ ¬(∃𝑥𝑥 ∈ 𝑦𝑦)¬𝜙𝜙

(∃𝑥𝑥 ∈ 𝑦𝑦)𝜙𝜙 ↔
def

(∃𝑥𝑥)(𝑥𝑥 ∈ 𝑦𝑦 ∧ 𝜙𝜙)
 And we say 

that a formula 𝜙𝜙 in the language of set theory is bounded if all quantifiers appear in 𝜙𝜙 are 
bounded. 

Note that all bounded quantifiers can be written in terms of bounded existential quantification, 
e.g., (∀𝑥𝑥 ∈ 𝑦𝑦)𝜙𝜙 ↔ ¬(∃𝑥𝑥 ∈ 𝑦𝑦)¬𝜙𝜙 so we may assume that all bounded quantifiers are 
existential . 

We now argue that bounded formulas can be translated in a particularly simple way. 

Definition L.2 (Bounded Translation).  If 𝜙𝜙 is a formula of set theory and 𝑉𝑉 an initial segment we 
define 𝜙𝜙𝑉𝑉 to be the result of replacing all occurrences of ∈ in 𝜙𝜙 with ∈𝑛𝑛. Furthermore, if 𝑉𝑉�⃗  is an 
interpreted initial segment and 𝑥𝑥1, … 𝑥𝑥𝑛𝑛 are the variables free in 𝜙𝜙 we define 𝜙𝜙𝑉𝑉��⃗ =
𝜙𝜙𝑉𝑉(𝜌𝜌(⌜𝑥𝑥0⌝), … ,𝜌𝜌(⌜𝑥𝑥𝑛𝑛⌝)) 

Recall the following lemma from Appendix A. 

Lemma L.6 (Bounded Quantifiers Lemma).  Suppose 𝜙𝜙 is a bounded formula in the language of 
set theory and 𝑉𝑉�⃗𝑛𝑛 is an interpreted initial segment (as per Definition A.4 ) then 𝜙𝜙𝑉𝑉��⃗𝑛𝑛 ↔ 𝐸𝐸𝑛𝑛(𝜙𝜙) 

Proof. Assume that 𝑥𝑥0, … 𝑥𝑥𝑛𝑛 are the only variables free in 𝜙𝜙 we need to show 

𝜙𝜙𝑉𝑉𝑛𝑛(𝜌𝜌(⌜𝑥𝑥0⌝), … , 𝜌𝜌(⌜𝑥𝑥𝑛𝑛⌝)) ↔ 𝐸𝐸𝑛𝑛(𝜙𝜙) 

Note that we may assume that no variables appear both free and bound in 𝜙𝜙 since, by 
renaming bound variables, any first order logical formula is first order provably equivalent to 
one with this property and, by Theorem L.1 (Translation Theorem), this equivalence carries over 
to 𝐸𝐸𝑛𝑛 translations. 

We now prove the lemma via induction on formula complexity. If 𝜙𝜙 is quantifier-free then by 
the definition of 𝐸𝐸𝑛𝑛 ( Definition 1.2) it is apparent that 



𝜙𝜙𝑉𝑉𝑛𝑛(𝜌𝜌𝑛𝑛(⌜𝑥𝑥1⌝), … ,𝜌𝜌𝑛𝑛(⌜𝑥𝑥𝑛𝑛⌝)) ↔ 𝜙𝜙(𝜌𝜌𝑛𝑛(⌜𝑥𝑥1⌝), … ,𝜌𝜌𝑛𝑛(⌜𝑥𝑥𝑛𝑛⌝))[∈/∈
𝑛𝑛

] ↔ 𝐸𝐸𝑛𝑛(𝜙𝜙) 

Now suppose the lemma holds for all subformulas of 𝜙𝜙 we establish that it holds for 𝜙𝜙 as well. 
The only difficult case is where 𝜙𝜙 = (∃𝑦𝑦 ∈ 𝑥𝑥𝑖𝑖)𝜓𝜓. 

In this case, note that 𝜙𝜙𝑉𝑉𝑛𝑛(𝜌𝜌𝑛𝑛(⌜𝑥𝑥0⌝), … ,𝜌𝜌𝑛𝑛(⌜𝑥𝑥𝑛𝑛⌝)) is equivalent to 

�∃𝑦𝑦 ∈
𝑛𝑛
𝜌𝜌𝑛𝑛(⌜𝑥𝑥𝑖𝑖⌝)�𝜓𝜓𝑉𝑉𝑛𝑛�𝜌𝜌𝑛𝑛(⌜𝑥𝑥0⌝), … ,𝜌𝜌𝑛𝑛(⌜𝑥𝑥𝑛𝑛⌝,𝑦𝑦)�      (𝐿𝐿2) 

. 

Assuming that the above formula holds we may apply Lemma L.1 (Pointwise Tweaking) and 
define 𝑉𝑉�⃗ 𝑛𝑛+1 so that 𝜌𝜌𝑛𝑛+1(⌜𝑦𝑦⌝) ∈𝑛𝑛 𝜌𝜌𝑛𝑛(⌜𝑥𝑥𝑖𝑖⌝), i.e., we can deduce that 

◊ [𝑉𝑉��⃗𝑛𝑛 𝑉𝑉�⃗ 𝑛𝑛+1 ≥𝑦𝑦 𝑉𝑉
�⃗𝑛𝑛 ∧ 𝜌𝜌𝑛𝑛+1(⌜𝑦𝑦⌝) ∈

𝑛𝑛
𝜌𝜌𝑛𝑛(⌜𝑥𝑥𝑖𝑖⌝) ∧

𝜓𝜓𝑉𝑉𝑛𝑛(𝜌𝜌𝑛𝑛(⌜𝑥𝑥0⌝), … ,𝜌𝜌𝑛𝑛(⌜𝑥𝑥𝑛𝑛⌝),𝜌𝜌𝑛𝑛+1(⌜𝑦𝑦⌝))]         (𝐿𝐿3)
 

Note that this formula is actually equivalent to (L2) since (working inside the ◊𝑉𝑉��⃗𝑛𝑛  context) we 
may derive (L2) and then use Axiom 8.2 (Diamond Elimination) to export this conclusion. 

Enter the above ◊𝑉𝑉��⃗𝑛𝑛  context. As 𝑉𝑉�⃗ 𝑛𝑛+1 ≥𝑦𝑦 𝑉𝑉�⃗𝑛𝑛 using the definition of we can infer that equation 
(L3) is equivalent to 

𝑉𝑉�⃗ 𝑛𝑛+1 ≥𝑦𝑦 𝑉𝑉�⃗𝑛𝑛 ∧ 𝜌𝜌𝑛𝑛+1(⌜𝑦𝑦⌝) ∈
𝑛𝑛+1

𝜌𝜌𝑛𝑛+1(⌜𝑥𝑥𝑖𝑖⌝) ∧

𝜓𝜓𝑉𝑉𝑛𝑛+1(𝜌𝜌𝑛𝑛+1(⌜𝑥𝑥0⌝), … ,𝜌𝜌𝑛𝑛+1(⌜𝑥𝑥𝑛𝑛⌝),𝜌𝜌𝑛𝑛+1(⌜𝑦𝑦⌝))
 

By the inductive assumption applied to 𝜓𝜓 this is equivalent to 

𝑉𝑉�⃗ 𝑛𝑛+1 ≥𝑦𝑦 𝑉𝑉�⃗𝑛𝑛 ∧ 𝜌𝜌𝑛𝑛+1(⌜𝑦𝑦⌝) ∈ 𝜌𝜌𝑛𝑛+1(⌜𝑥𝑥𝑖𝑖⌝) ∧ 𝐸𝐸𝑛𝑛+1(𝜓𝜓) 

By the this is equivalent to 

𝑉𝑉�⃗ 𝑛𝑛+1 ≥𝑦𝑦 𝑉𝑉
�⃗𝑛𝑛 ∧ 𝐸𝐸𝑛𝑛+1(𝑦𝑦 ∈ 𝑥𝑥𝑖𝑖 ∧ 𝜓𝜓) 

So leaving the ◊𝑉𝑉,𝜌𝜌  context we have 

◊ [𝑉𝑉𝑛𝑛����⃗ 𝑉𝑉𝑛𝑛+1��������⃗ ≥
𝑦𝑦
𝑉𝑉𝑛𝑛���⃗ ∧ 𝐸𝐸𝑛𝑛+1(𝑦𝑦 ∈ 𝑥𝑥𝑖𝑖 ∧ 𝜓𝜓)] ↔

def
𝐸𝐸𝑛𝑛(𝜙𝜙) 

Since all the steps were equivalences, this suffices to prove the lemma. ■ 

L.4 Translation Simplification Lemmas 

The following lemma shows that our official potentialst paraphrases turn out to be logically 
equivalent to simpler (and more traditional) potentialist paraphrases as below. 

Lemma L.7 (Existential Potentialist Translation).  𝐸𝐸((∃𝑥𝑥)𝜙𝜙) ↔◊ �𝒱𝒱�⃗ �𝑉𝑉�⃗1� ∧ 𝐸𝐸1(𝜙𝜙)� 



Proof. (→) Suppose that 𝐸𝐸((∃𝑥𝑥)𝜙𝜙) i.e., 

�𝒱𝒱�⃗ �𝑉𝑉�⃗ 0� → ◊ �𝑉𝑉�⃗1 ≥ 𝑉𝑉�⃗ 0 ∧ 𝐸𝐸1(𝜙𝜙)�𝑉𝑉��⃗0 �        (𝐿𝐿4) 

By Interpreted Initial Segment Possibility ( Lemma K.5), we have ◊ 𝒱𝒱�⃗ �𝑉𝑉�⃗ 0� Entering this ◇ 
context, by Axiom 8.6 (Importing) we may import (L4) as it is content restricted to the empty 
list. The desired conclusion now follows straightforwardly by application of Lemma B.3 (Box 
Elimination), modus ponus and Diamond Collapsing ( Lemma B.8). 

←. Suppose ◊ �𝒱𝒱�⃗ �𝑉𝑉�⃗1� ∧ 𝐸𝐸1(𝜙𝜙(𝑥𝑥))�. Note that this assumption is content restricted to the empty 
list and thus can be assumed for purposes of Lemma B.2 (Box Introduction). We now seek to 
prove.  ◊ �𝑉𝑉�⃗1 ≥ 𝑉𝑉�⃗ 0 ∧ 𝐸𝐸1(𝜙𝜙)�𝑉𝑉��⃗𝑛𝑛   from the assumption 𝒱𝒱�⃗ �𝑉𝑉�⃗ 0�. 

By Relabeling (Axiom 8.5) and ◊ Ignoring ( Axiom 8.3) we can infer (remember 

𝐸𝐸1∗(𝜙𝜙) ↔
def
𝐸𝐸1(𝜙𝜙)[𝑉𝑉�⃗1/𝑉𝑉�⃗ ∗]) 

◊ (𝑉𝑉��⃗0 𝒱𝒱�⃗ �𝑉𝑉�⃗ ∗� ∧ 𝐸𝐸1∗(𝜙𝜙))          (𝐿𝐿5) 

Enter this ◊𝑉𝑉��⃗0  and import the fact that 𝒱𝒱�⃗ �𝑉𝑉�⃗ 0�. By  Lemma K.7 ( Hierarchy Extending), we can 
infer the possibility  ◊𝑉𝑉0,𝑉𝑉∗  of an initial segment 𝑉𝑉1 which extends both 𝑉𝑉0 and 𝑉𝑉′, where 𝑉𝑉′ is 
the isomorphic image of 𝑉𝑉∗ (under 𝑓𝑓). Using ◇ Ignoring ( Axiom 8.3) we may add the subscript 
𝜌𝜌0, 𝜌𝜌∗ to this possibility claim giving us 

◊ 𝑉𝑉1𝑉𝑉0,𝑉𝑉∗,𝜌𝜌0,𝜌𝜌∗ ≥ 𝑉𝑉0 ∧ 𝑉𝑉1 ≥ 𝑉𝑉′ ∧ 𝑉𝑉′ ≅
𝑓𝑓
𝑉𝑉∗ 

Enter this ◊𝑉𝑉��⃗0,𝑉𝑉��⃗ ∗,𝜌𝜌0,𝜌𝜌∗  context and import the interior of (L5) . Via the Multiple Definitions 
Lemma ( Lemma H.7) and Simple Comprehension ( Axiom 8.4), we can further derive the 
possibility  ( ◊𝑉𝑉��⃗0,𝑉𝑉��⃗ ∗,𝑓𝑓,𝑉𝑉′  ) that the facts derived in this context remain true while defining 𝜌𝜌′ to be 
the image of 𝜌𝜌∗ under 𝑓𝑓 and 𝜌𝜌1 is defined to match 𝜌𝜌0 everywhere but on ⌜𝑥𝑥⌝ where we set 
𝜌𝜌1(⌜𝑥𝑥⌝) = 𝜌𝜌′(⌜𝑥𝑥⌝). This entails both that 𝑉𝑉�⃗ ′ ≅𝑓𝑓 𝑉𝑉�⃗ ∗ and 𝑉𝑉�⃗1 ≥𝑥𝑥 𝑉𝑉�⃗ 0. 

We may now apply the Theorem I.1 (Isomorphism Lemma) to infer 𝐸𝐸′1(𝜙𝜙) from 𝐸𝐸1∗(𝜙𝜙) and the 
Theorem L.1 (Translation Lemma) to infer 𝐸𝐸1(𝜙𝜙). Leaving all the ◊ contexts we are inside and 
applying Diamond Collapsing ( Lemma B.8) we infer. 

◊ 𝑉𝑉�⃗1𝑉𝑉��⃗0 ≥ 𝑉𝑉�⃗ 0 ∧ 𝐸𝐸1(𝜙𝜙)] 

Canceling the assumption of 𝒱𝒱�⃗ �𝑉𝑉�⃗ 0)� and applying Lemma B.2 (Box Introduction) gives us our 
desired conclusion of 

□[𝒱𝒱�⃗ �𝑉𝑉�⃗ 0� → ◊ 𝑉𝑉�⃗1𝑉𝑉��⃗0 ≥ 𝑉𝑉�⃗ 0 ∧ 𝐸𝐸1(𝜙𝜙)] 

 ■ 



We can establish equivalence between the longer and shorter translations for universal claims 
∀𝑥𝑥𝜙𝜙(𝑥𝑥). 

Lemma L.8 (Universal Potentialist Translation).  𝐸𝐸((∀𝑥𝑥)𝜙𝜙) ↔ □(𝒱𝒱�⃗ �𝑉𝑉�⃗1� → 𝐸𝐸1(𝜙𝜙(𝑥𝑥)) 

Proof. Note that by expanding out the left hand side and applying Lemma H.5 (Box 
Simplification) it is enough to show 

□ �𝒱𝒱�⃗ �𝑉𝑉�⃗ 0� ∧ 𝑉𝑉�⃗1 ≥𝑥𝑥 𝑉𝑉
�⃗ 0 → 𝐸𝐸1(𝜙𝜙)� ↔ □�𝒱𝒱�⃗ �𝑉𝑉�⃗1� → 𝐸𝐸1(𝜙𝜙(𝑥𝑥)� 

(←) This follows trivially by Lemma H.2 (Box Closure). 

(→) We prove the contrapositive. So suppose that 

¬□�𝒱𝒱�⃗ �𝑉𝑉�⃗1� → 𝐸𝐸1(𝜙𝜙(𝑥𝑥)� 

Or, equivalently, 

◊ �𝒱𝒱�⃗ �𝑉𝑉�⃗1� ∧ ¬𝐸𝐸1(𝜙𝜙(𝑥𝑥)� 

Enter this ◊ context. By the the Multiple Definitions Lemma ( Lemma H.7) and Simple 
Comprehension ( Axiom 8.4) it is possible (◊𝑉𝑉��⃗0 ) to ’define’ 𝑉𝑉�⃗ 0 = 𝑉𝑉�⃗1. Entering this ◊𝑉𝑉��⃗0   context 
we may immediately infer 

𝒱𝒱�⃗ �𝑉𝑉�⃗1� ∧ 𝑉𝑉�⃗1 ≥𝑥𝑥 𝑉𝑉
�⃗ 0 ∧ ¬𝐸𝐸1(𝜙𝜙(𝑥𝑥) 

Leaving both ◊ contexts we have entered and applying Diamond Collapsing ( Lemma B.8) lets us 
infer 

◊ 𝒱𝒱�⃗ �𝑉𝑉�⃗1� ∧ 𝑉𝑉�⃗1 ≥𝑥𝑥 𝑉𝑉
�⃗ 0 ∧ ¬𝐸𝐸1(𝜙𝜙(𝑥𝑥) 

Or, equivalently, 

¬□[𝒱𝒱�⃗ �𝑉𝑉�⃗ 0� ∧ 𝑉𝑉�⃗1 ≥𝑥𝑥 𝑉𝑉
�⃗ 0 

as desired. ■ 

M Detailed Justification of ZFC Axioms 

M.1 Translation Equivalence Lemma 

Lemma M.1 (Translation Equivalence Lemma).  If 𝛷𝛷 = (∀𝑣𝑣1) … (∀𝑣𝑣𝑛𝑛)𝜙𝜙 is a sentence in the 
language of set theory then □�𝒱𝒱�⃗ �𝑉𝑉�⃗𝑛𝑛� → 𝐸𝐸𝑛𝑛(𝜙𝜙)� → 𝐸𝐸(𝛷𝛷) 

Proof. We prove this claim by induction on 𝑛𝑛. If 𝑛𝑛 = 0 then 𝛷𝛷 is just 𝜙𝜙 and the antecedent is 

□�𝒱𝒱�⃗ �𝑉𝑉�⃗ 0� → 𝐸𝐸0(𝜙𝜙)� 



which is just 𝐸𝐸(𝜙𝜙) = 𝐸𝐸(𝛷𝛷). 

We now suppose the claim holds for 𝑛𝑛 and prove that it holds for 𝑛𝑛 + 1. So suppose that 

□�𝒱𝒱�⃗ �𝑉𝑉�⃗ 𝑛𝑛+1� → 𝐸𝐸𝑛𝑛+1(𝜙𝜙)� 

Since 𝑉𝑉�⃗ 𝑛𝑛+1 ≥𝑣𝑣𝑛𝑛+1 𝑉𝑉�⃗𝑛𝑛 implies 𝒱𝒱�⃗ �𝑉𝑉�⃗ 𝑛𝑛+1� by Lemma H.2 (Box Closure) we may infer 

□[𝒱𝒱�⃗ �𝑉𝑉�⃗𝑛𝑛� ∧ 𝑉𝑉�⃗ 𝑛𝑛+1 ≥
𝑣𝑣𝑛𝑛+1

𝑉𝑉�⃗𝑛𝑛 → 𝐸𝐸𝑛𝑛+1(𝜙𝜙)] 

As 𝒱𝒱�⃗ �𝑉𝑉�⃗𝑛𝑛� is content restricted to 𝑉𝑉�⃗𝑛𝑛 and by Lemma H.6 (Diamond Simplification) (the equivalent 
formulation in the theorem) to infer 

□[𝒱𝒱�⃗ �𝑉𝑉�⃗𝑛𝑛� → □ �𝑉𝑉�⃗ 𝑛𝑛+1 ≥
𝑣𝑣𝑛𝑛+1

𝑉𝑉�⃗𝑛𝑛 → 𝐸𝐸𝑛𝑛+1(𝜙𝜙)�𝑉𝑉��⃗𝑛𝑛  

However, by this is just 

□�𝒱𝒱�⃗ �𝑉𝑉�⃗𝑛𝑛� → 𝐸𝐸𝑛𝑛((∀𝑣𝑣𝑛𝑛+1)𝜙𝜙)� 

The desired conclusion now follows by the inductive hypothesis. ■ 

M.2 Foundation 

Before we prove potentialist foundation we establish the following lemma. 

Lemma M.1.  If 𝑉𝑉 is an initial segment and 𝑥𝑥 is a non-empty set in 𝑉𝑉 then there is some 𝑦𝑦 ∈ 𝑥𝑥 
such that (∀𝑧𝑧 ∣ 𝑧𝑧 ∈ 𝑥𝑥)(𝑧𝑧 ∉ 𝑦𝑦). 

Proof. Suppose, for contradiction, 𝑉𝑉 is an initial segment and the claim fails for some set 𝑥𝑥 in 𝑉𝑉. 
By the the Multiple Definitions Lemma ( Lemma H.7), Simple Comprehension ( Axiom 8.4) and 
Proposition 8.1 (Simplified Choice) we can (◊𝑉𝑉 ) have 𝑄𝑄𝑥𝑥 apply to a single 𝑥𝑥 witnessing this 
failure as well as (by another application of Simple Comprehension ( Axiom 8.4)) have 𝐵𝐵(𝑜𝑜) 
apply to exactly those ordinals 𝑜𝑜 such that (∃𝑥𝑥 ∣ 𝑄𝑄𝑥𝑥(𝑥𝑥))(∃𝑦𝑦 ∈ 𝑥𝑥)@(𝑦𝑦, 𝑜𝑜). Enter this ◊𝑉𝑉  
context. 

Now by the fact that ord, < is a well ordering by the and Lemma B.3, it follows that there exists 
a < least element satisfying 𝐵𝐵. Let 𝑜𝑜 be this object. Then 𝑜𝑜 is the < least object in ord such that 
(∃𝑦𝑦 ∈ 𝑥𝑥)@(𝑦𝑦, 𝑜𝑜). Let 𝑦𝑦 be a witness to this existential. We claim that 𝑦𝑦 satisfies the lemma, i.e., 
witnesses the contradiction with the assumption the lemma fails. 

Consider any 𝑧𝑧 ∈ 𝑦𝑦. By , if 𝑧𝑧 ∈ 𝑦𝑦 and @(𝑦𝑦, 𝑜𝑜) then there is some 𝑜𝑜′ < 𝑜𝑜 with @(𝑧𝑧, 𝑜𝑜′). So if 𝑧𝑧 
were in 𝑥𝑥 this would contradict the minimality of 𝑜𝑜. Thus, we may exit the ◊𝑉𝑉  context entered 
above and using Axiom 8.2 (Diamond Elimination), export the contradiction to establish the 
lemma. ■ 

We now prove Proposition M.2 (Potentialist Foundation). 



Proposition M.2 (Potentialist Foundation).  𝐸𝐸((∀𝑥𝑥)[(∃𝑎𝑎)(𝑎𝑎 ∈ 𝑥𝑥) → (∃𝑦𝑦)(𝑦𝑦 ∈ 𝑥𝑥 ∧ ¬(∃𝑧𝑧)(𝑧𝑧 ∈
𝑦𝑦 ∧ 𝑧𝑧 ∈ 𝑥𝑥))]) 

Proof. By  Lemma M.1 (Translation Equivalence Lemma) it suffices to prove the following: 

□[𝒱𝒱�⃗ �𝑉𝑉1���⃗ � → 𝐸𝐸1(𝜙𝜙)] where 
𝜙𝜙 = (∃𝑎𝑎 ∈ 𝑥𝑥) → (∃𝑦𝑦 ∈ 𝑥𝑥)(∀𝑧𝑧 ∈ 𝑥𝑥)¬(𝑧𝑧 ∈ 𝑦𝑦)

 

Suppose that 𝒱𝒱�⃗ �𝑉𝑉1���⃗ �. The formula 𝜙𝜙 is bounded. So by the Lemma L.6 (Bounded Quantifiers) , to 
prove 𝐸𝐸1(𝜙𝜙) it is enough to prove 

𝜙𝜙𝑉𝑉��⃗1 ↔
def
�∃𝑎𝑎 ∈

1
𝜌𝜌1(⌜𝑥𝑥⌝)� → �∃𝑦𝑦 ∈

1
𝜌𝜌1(⌜𝑥𝑥⌝)� (∀𝑧𝑧 ∈

1
𝜌𝜌1(⌜𝑥𝑥⌝))¬(𝑧𝑧 ∈

1
𝑦𝑦) 

Assume ∃𝑎𝑎 ∈1 𝜌𝜌1(⌜𝑥𝑥⌝). As 𝜌𝜌1(⌜𝑥𝑥⌝)) is a set in 𝑉𝑉1 and non-empty by Lemma M.1 (Translation 
Equivalence Lemma) 𝜙𝜙𝑉𝑉1(𝜌𝜌1(⌜𝑥𝑥⌝)) holds, establishing 𝜙𝜙𝑉𝑉��⃗1. 

Thus we’ve shown 

𝒱𝒱�⃗ �𝑉𝑉1���⃗ � → 𝐸𝐸1(𝜙𝜙) 

The result now follows by Lemma B.2 (Box Introduction) ■ 

M.3 Extensionality 

Proposition M.2 (Extensionality).  𝐸𝐸((∀𝑥𝑥)(∀𝑦𝑦)([(∀𝑧𝑧 ∈ 𝑥𝑥)(𝑧𝑧 ∈ 𝑦𝑦) ∧ (∀𝑧𝑧 ∈ 𝑦𝑦)(𝑧𝑧 ∈ 𝑥𝑥)] → 𝑥𝑥 =
𝑦𝑦)) 

Proof. By the Lemma M.1 (Translation Equivalence Lemma) it suffices to prove the following: 

□[𝒱𝒱�⃗ �𝑉𝑉�⃗ 2� → 𝐸𝐸2([(∀𝑧𝑧 ∈ 𝑥𝑥)(𝑧𝑧 ∈ 𝑦𝑦) ∧ (∀𝑧𝑧 ∈ 𝑦𝑦)(𝑧𝑧 ∈ 𝑥𝑥)] → 𝑥𝑥 = 𝑦𝑦)] 

So consider, for Lemma B.2 (Box Introduction), an arbitrary scenario where 𝒱𝒱�⃗ �𝑉𝑉�⃗ 2�, i.e., 𝑉𝑉�⃗ 2 is an 
interpreted initial segment. We need to prove 𝐸𝐸2([(∀𝑧𝑧 ∈ 𝑥𝑥)(𝑧𝑧 ∈ 𝑦𝑦) ∧ (∀𝑧𝑧 ∈ 𝑦𝑦)(𝑧𝑧 ∈ 𝑥𝑥)] → 𝑥𝑥 =
𝑦𝑦). The formula inside 𝐸𝐸2 is bounded, so by the Lemma L.6 (Bounded Quantifiers Lemma) this 
holds iff 

[(∀𝑧𝑧 ∣ 𝑧𝑧 ∈
2
𝜌𝜌2(⌜𝑥𝑥⌝)(𝑧𝑧 ∈

2
𝜌𝜌2(⌜𝑦𝑦⌝)) ∧ (∀𝑧𝑧 ∣ 𝑧𝑧 ∈

2
𝜌𝜌2(⌜𝑦𝑦⌝))(𝑧𝑧 ∈

2
𝜌𝜌2(⌜𝑥𝑥⌝))] →

𝜌𝜌2(⌜𝑥𝑥⌝)) = 𝜌𝜌2(⌜𝑦𝑦⌝))                  (𝑀𝑀1)
 

By part 2 of the definition of initial segment ( Definition A.2), any 𝑧𝑧 that is ∈2 a set in 𝑉𝑉2 is a set 
in 𝑉𝑉2. So the truth of (M1) follows by the fact that holds in initial segments. The conclusion 
follows by Lemma B.2 (Box Introduction). ■ 

M.4 Union 

Proposition M.3 (Potentialist Union).  𝐸𝐸(∀𝑧𝑧 ∃𝑎𝑎 (∀𝑦𝑦 ∈ 𝑧𝑧)(∀𝑥𝑥 ∈ 𝑦𝑦)(𝑥𝑥 ∈ 𝑎𝑎)) 

To prove this we first show that Union holds within any initial segment. 



Lemma M.3.  If 𝑉𝑉�⃗  is an interpreted initial segment and 𝑧𝑧 is a variable in the language of set 
theory, then there is a set 𝑎𝑎 in 𝑉𝑉 such that (∀𝑦𝑦 ∈ 𝜌𝜌(⌜𝑧𝑧⌝)))(∀𝑥𝑥 ∈ 𝑦𝑦)(𝑥𝑥 ∈ 𝑎𝑎) 

Proof. Suppose 𝑉𝑉�⃗  is as in the statement of the lemma. Applying Axiom 8.4 (Simple 
Comprehension) we can derive 

◊ (𝑉𝑉��⃗ ∀𝑥𝑥)[𝐻𝐻(𝑥𝑥) ↔ (∃𝑦𝑦)(𝑥𝑥 ∈ 𝑦𝑦 ∧ 𝑦𝑦 ∈ 𝜌𝜌(⌜𝑧𝑧⌝))] 

Using Proposition B.1 (Inner Diamond) we enter this ◊𝑉𝑉��⃗  context . By there must be some ordinal 
𝑜𝑜 such that @(𝜌𝜌(⌜𝑧𝑧⌝),𝑜𝑜). By it follows that every 𝑘𝑘 satisfying 𝐻𝐻(𝑘𝑘) is available at some ordinal 
𝑜𝑜′ < 𝑜𝑜. Thus by we can infer that there is some set 𝑎𝑎 whose members are just those who satisfy 
𝐻𝐻. Thus, we have 

(∃𝑎𝑎 ∣ set(𝑎𝑎))(∀𝑦𝑦 ∈ 𝜌𝜌(⌜𝑧𝑧⌝)))(∀𝑥𝑥 ∈ 𝑦𝑦)(𝑥𝑥 ∈ 𝑎𝑎) 

This claim is implicitly content restricted to 𝑉𝑉�⃗  (as by we may restrict quantifiers bounded by sets 
in 𝑉𝑉 to sets in 𝑉𝑉. So we can leave this ◊𝑉𝑉��⃗  context and apply Axiom 8.2 (Diamond Elimination) to 
export the conclusion. Thus completing the proof27. ■ 

Now we prove the translation of union holds 

Proof. By the Lemma M.1 (Translation Equivalence Lemma) it suffices to prove 

□(𝒱𝒱�⃗ �𝑉𝑉1���⃗ � → ◊ [𝑉𝑉1����⃗ 𝑉𝑉2���⃗ ≥
a
𝑉𝑉1���⃗ ∧ 𝐸𝐸2((∀𝑦𝑦 ∈ 𝑧𝑧)(∀𝑥𝑥 ∈ 𝑦𝑦)(𝑥𝑥 ∈ 𝑎𝑎))]) 

I will argue by Lemma B.2 (Box Introduction). So consider an arbitrary interpreted initial 
segment 𝑉𝑉�⃗1. By Lemma M.3 (the above lemma) we have a ‘union set’ for 𝜌𝜌1(⌜𝑧𝑧⌝) in the sense 
of 𝑉𝑉�⃗1, i.e., 

(∃𝑎𝑎 ∣ set1(𝑎𝑎)) �∀𝑦𝑦 ∈
1
𝜌𝜌1(⌜𝑧𝑧⌝))� �∀𝑥𝑥 ∈

1
𝑦𝑦� �𝑥𝑥 ∈

1
𝑎𝑎� 

By applying Lemma L.1 (Pointwise Tweaking)  to the above formula we can infer that possibly 
(◊𝑉𝑉��⃗1 ) we have 𝑉𝑉�⃗ 2 which assigns 𝜌𝜌2(⌜𝑎𝑎⌝) to this set, i.e. 

◊ �𝑉𝑉�⃗ 2 ≥𝑎𝑎 𝑉𝑉�⃗1 ∧ �∀𝑦𝑦 ∈1 𝜌𝜌1(⌜𝑧𝑧⌝))� �∀𝑥𝑥 ∈
1
𝑦𝑦� �𝑥𝑥 ∈

1
𝜌𝜌2(⌜𝑎𝑎⌝)��𝑉𝑉��⃗1  

Enter this ◊𝑉𝑉��⃗1  context. As 𝑉𝑉�⃗ 2 ≥𝑎𝑎 𝑉𝑉�⃗1 we may replace every ∈1 with ∈2. Since 𝜌𝜌1(⌜𝑧𝑧⌝) =
𝜌𝜌2(⌜𝑧𝑧⌝) we may also replace 𝜌𝜌1(⌜𝑧𝑧⌝) with 𝜌𝜌2(⌜𝑧𝑧⌝) giving us 

�∀𝑦𝑦 ∈
2
𝜌𝜌2(⌜𝑧𝑧⌝))� �∀𝑥𝑥 ∈

2
𝑦𝑦� �𝑥𝑥 ∈

2
𝜌𝜌2(⌜𝑎𝑎⌝)� 

By the Lemma L.6 (Bounded Quantifiers) we have 

                                                      
27 Note that we can now remove any restrictions we placed on bounded quantifiers to export 
the conclusion. 



𝐸𝐸2((∀𝑦𝑦 ∈ 𝑧𝑧)(∀𝑥𝑥 ∈ 𝑦𝑦)(𝑥𝑥 ∈ 𝑎𝑎))]) 

Putting this together with the fact that 𝑉𝑉2���⃗ ≥𝑎𝑎 𝑉𝑉1���⃗  and leaving the ◊𝑉𝑉��⃗1  context we have 

◊ [𝑉𝑉1����⃗ 𝑉𝑉2���⃗ ≥𝑎𝑎 𝑉𝑉1���⃗ ∧ 𝐸𝐸2((∀𝑦𝑦 ∈ 𝑧𝑧)(∀𝑥𝑥 ∈ 𝑦𝑦)(𝑥𝑥 ∈ 𝑎𝑎))]) 

Discharging the assumption that 𝒱𝒱�⃗ �𝑉𝑉�⃗1� and applying Lemma 4.3 yields the desired result. ■ 

 M.5 Comprehension 

Proposition M.4 (Comprehension).  If 𝜃𝜃 is a formula in the language of set theory with free 
variables 𝑥𝑥,𝑤𝑤1, … ,𝑤𝑤𝑛𝑛. Then: 

𝐸𝐸(∀𝑧𝑧∀𝑤𝑤1∀𝑤𝑤2 …∀𝑤𝑤𝑛𝑛∃𝑦𝑦∀𝑥𝑥[𝑥𝑥 ∈ 𝑦𝑦 ⇔ (𝑥𝑥 ∈ 𝑧𝑧 ∧ 𝜃𝜃)) 

Proof. By Lemma M.1 (Translation Equivalence Lemma)  it suffices to prove the following: 

□[𝒱𝒱(𝑉𝑉�⃗𝑛𝑛+1) →
◊ (𝑉𝑉��⃗𝑛𝑛+1 𝑉𝑉�⃗ 𝑛𝑛+2 ≥

𝑦𝑦
𝑉𝑉�⃗ 𝑛𝑛+1 ∧

□ [𝑉𝑉��⃗𝑛𝑛+2 𝑉𝑉�⃗ 𝑛𝑛+3 ≥𝑥𝑥 𝑉𝑉
�⃗ 𝑛𝑛+2 →

𝜌𝜌𝑛𝑛+3(𝑥𝑥) ∈
𝑛𝑛+3

𝜌𝜌𝑛𝑛+3(𝑦𝑦) ↔ (𝜌𝜌𝑛𝑛+3(𝑥𝑥) ∈
𝑛𝑛+3

𝜌𝜌𝑛𝑛+3(𝑧𝑧) ∧ 𝐸𝐸𝑛𝑛+3(𝜃𝜃))])]

 

We will argue by Lemma B2 (Box Introduction). So consider an arbitrary scenario where 𝑉𝑉�⃗ 𝑛𝑛+1, is 
an interpreted initial segment. 

We must now establish the possibility of a 𝑉𝑉�⃗ 𝑛𝑛+2 satisfying the above. Note that 𝜌𝜌𝑛𝑛+2(⌜𝑦𝑦⌝) 
plays the role of the set whose existance we are trying to establish. 

M.5.1 Construction 

To this end we will define a predicate 𝑃𝑃 which applies to just those sets that belong in 
𝜌𝜌𝑛𝑛+2(⌜𝑦𝑦⌝). 

First, we will use Axiom 8.9 (Modal Comprehension) to show that a predicate 𝑃𝑃 could apply to 
exactly those objects which we want to be elements of comprehension set 𝜌𝜌𝑛𝑛+2(⌜𝑦𝑦⌝). If we 
could quantify-in we would define 𝑃𝑃(𝑥𝑥) to hold just if (where 𝐸𝐸𝑛𝑛+3∗ (𝜓𝜓) is 𝐸𝐸𝑛𝑛+3(𝜓𝜓)[𝑉𝑉�⃗ 𝑛𝑛+3/𝑉𝑉�⃗ ∗] ) 

𝑥𝑥 ∈
𝑛𝑛+1

𝜌𝜌𝑛𝑛+1(⌜𝑧𝑧⌝) ∧ ◊ (𝑉𝑉𝑛𝑛+1 𝑉𝑉�⃗ ∗ ≥
𝑥𝑥
𝑉𝑉�⃗ 𝑛𝑛+1 ∧ 𝜌𝜌∗(⌜𝑥𝑥⌝) = 𝑥𝑥 ∧ 𝐸𝐸𝑛𝑛+3∗ (𝜃𝜃)) 

Instead we apply the Axiom 8.9 (Modal Comprehension) with 𝛹𝛹 as 𝒱𝒱�⃗ �𝑉𝑉�⃗ 𝑛𝑛+1�, 𝑅𝑅 as 𝑃𝑃, ℒ as 𝑉𝑉�⃗ 𝑛𝑛+1, 
and 𝜙𝜙 as below, giving us the following. 

◊ 𝒱𝒱�⃗ �𝑉𝑉�⃗ 𝑛𝑛+1�𝑉𝑉��⃗𝑛𝑛+1 ∧ □ [𝑉𝑉��⃗𝑛𝑛+1,𝑃𝑃 (∃! 𝑥𝑥 ∣ 𝑄𝑄(𝑥𝑥)) → (∃𝑥𝑥 ∣ 𝑄𝑄(𝑥𝑥))[𝑃𝑃(𝑥𝑥) ↔ 𝑉𝑉�⃗𝑛𝑛+1(𝑥𝑥) ∧ 𝛷𝛷])]
 where 𝛷𝛷 = ◊ [𝑉𝑉��⃗𝑛𝑛+1,𝑄𝑄 (∃! 𝑞𝑞 ∣ 𝑄𝑄(𝑞𝑞))(𝑞𝑞 ∈

𝑛𝑛+1
𝜌𝜌𝑛𝑛+1(⌜𝑧𝑧⌝) ∧

�𝑉𝑉�⃗ ∗ ≥
𝑥𝑥
𝑉𝑉�⃗ 𝑛𝑛+1 ∧ 𝜌𝜌∗(⌜𝑥𝑥⌝) = 𝑞𝑞 ∧ 𝐸𝐸𝑛𝑛+3∗ (𝜃𝜃)�                    (𝑀𝑀2)

 



Enter this ◊𝑉𝑉��⃗𝑛𝑛+1  context. To show there’s a set 𝑦𝑦 in 𝑉𝑉𝑛𝑛+1 of all the objects satisfying 𝑃𝑃, we must 
show that all these objects are available at layers below some layer 𝑜𝑜 in 𝑉𝑉𝑛𝑛+1. 

To this end we argue that 

(∀𝑘𝑘) �𝑃𝑃(𝑘𝑘) → 𝑘𝑘 ∈
𝑛𝑛+1

𝜌𝜌𝑛𝑛+1(⌜𝑧𝑧⌝)�                (𝑀𝑀3) 

Suppose the claim failed. Then by Lemma H.7 (Multiple Definitions),  Axiom 8.4 
(Simple Comprehension)  and Proposition 8.1(Simplified Choice) we can (◊𝑉𝑉��⃗𝑛𝑛+1,𝑃𝑃  ) have 
𝑄𝑄 apply to a unique counterexample, i.e., 

(∃! 𝑥𝑥 ∣ 𝑄𝑄(𝑥𝑥))(𝑃𝑃(𝑥𝑥) ∧ ¬𝑥𝑥 ∈
𝑛𝑛+1

𝜌𝜌𝑛𝑛+1(⌜𝑧𝑧⌝)) 

Enter this ◊𝑉𝑉��⃗𝑛𝑛+1,𝑃𝑃  context and import the □𝑉𝑉��⃗𝑛𝑛+1,𝑃𝑃  claim inside equation (M2). Apply 
Lemma B.3 (Box Elimination) and modus ponens to infer that 𝛷𝛷 holds. Applying Axiom 
8.2 (Diamond Elimination) to 𝛷𝛷 lets us infer 

(∃!𝑞𝑞 ∣ 𝑄𝑄(𝑞𝑞))(𝑞𝑞 ∈
𝑛𝑛+1

𝜌𝜌𝑛𝑛+1(⌜𝑧𝑧⌝) 

as this sentence is content restricted to 𝑄𝑄,𝑉𝑉�⃗ 𝑛𝑛+1. This contradicts the assumption 
above. Exporting this contradiction gives the desired result. 

Thus, equation (M3) holds. Since 𝜌𝜌𝑛𝑛+1(⌜𝑧𝑧⌝) is a set in 𝑉𝑉𝑛𝑛+1 by there is some ordinal level 𝑜𝑜 in 
𝑉𝑉𝑛𝑛+1 at which 𝜌𝜌𝑛𝑛+1(⌜𝑧𝑧⌝) is available and every 𝑥𝑥 such that 𝑃𝑃(𝑥𝑥) occurs at some ordinal level 
𝑜𝑜′ below 𝑜𝑜. So, by , it follows that there’s a set 𝑦𝑦 in 𝑉𝑉𝑛𝑛+1 available at level 𝑜𝑜, whose elements 
are exactly the 𝑥𝑥 such that 𝑃𝑃(𝑥𝑥). So by Lemma L.1 (Pointwise Tweaking) we may set 𝜌𝜌𝑛𝑛+2(⌜𝑦𝑦⌝) 
to be the set specified by 𝑃𝑃. That is 

◊ �𝑉𝑉�⃗ 𝑛𝑛+2 ≥𝑦𝑦 𝑉𝑉
�⃗ 𝑛𝑛+1 ∧ (∀𝑥𝑥)(𝑥𝑥 ∈

𝑛𝑛+1
𝜌𝜌𝑛𝑛+2(⌜𝑦𝑦⌝) ↔ 𝑃𝑃(𝑥𝑥)) ∧ 𝑉𝑉𝑛𝑛+2 = 𝑉𝑉𝑛𝑛+1�     (𝑀𝑀4)𝑉𝑉��⃗𝑛𝑛+1,𝑃𝑃  

Using Axiom 8.6 (Importing) we may import both equation (M2) and (M3) then apply Diamond 
Collapsing (Lemma B.8) leave us in only a single ◊𝑉𝑉��⃗𝑛𝑛+1  context. 

M.5.2 Verification 

Enter this ◊𝑉𝑉��⃗𝑛𝑛+1  context. 

We need to check 𝑉𝑉�⃗ 𝑛𝑛+2 behaves as desired. That is, we need to show that 

𝑉𝑉�⃗ 𝑛𝑛+2 ≥𝑦𝑦 𝑉𝑉�⃗ 𝑛𝑛+1 ∧ □ [𝑉𝑉��⃗𝑛𝑛+2 𝑉𝑉�⃗ 𝑛𝑛+3 ≥𝑥𝑥 𝑉𝑉
�⃗ 𝑛𝑛+2 →

𝜌𝜌𝑛𝑛+3(𝑥𝑥) ∈
𝑛𝑛+3

𝜌𝜌𝑛𝑛+3(𝑦𝑦) ↔ (𝜌𝜌𝑛𝑛+3(𝑥𝑥) ∈
𝑛𝑛+3

𝜌𝜌𝑛𝑛+3(𝑧𝑧) ∧ 𝐸𝐸𝑛𝑛+3(𝜃𝜃))] 
 

Since we already have 𝑉𝑉�⃗ 𝑛𝑛+2 ≥𝑦𝑦 𝑉𝑉�⃗ 𝑛𝑛+1 it is enough to show that (by the definition of 𝐸𝐸𝑛𝑛) 

□ �𝑉𝑉�⃗ 𝑛𝑛+3 ≥𝑥𝑥 𝑉𝑉𝑛𝑛+2
��������⃗ → 𝐸𝐸𝑛𝑛+3(𝑥𝑥 ∈ 𝑦𝑦 ↔ 𝑥𝑥 ∈ 𝑧𝑧 ∧ 𝜃𝜃))�𝑉𝑉��⃗𝑛𝑛+2  



By Lemma H.1 (Box Ignoring) (since the sentence inside the □𝑉𝑉��⃗𝑛𝑛+2  above is content restricted to 

𝑉𝑉�⃗ 𝑛𝑛+2,𝑉𝑉�⃗ 𝑛𝑛+3) it suffices to prove the □𝑉𝑉��⃗𝑛𝑛+2,𝑉𝑉��⃗𝑛𝑛+1,𝑃𝑃  verson of this claim. We will argue by Lemma B.2 
(Box Introduction). Consider an arbitrary scenario in which 𝑉𝑉�⃗ 𝑛𝑛+3 ≥x 𝑉𝑉�⃗ 𝑛𝑛+2 we will prove the 
following using only assumptions content restricted to 𝑉𝑉�⃗ 𝑛𝑛+1,𝑃𝑃,𝑉𝑉�⃗ 𝑛𝑛+2 (which, as the interior of 
equation (M4) is so restricted happens automatically). 

𝐸𝐸𝑛𝑛+3(𝑥𝑥 ∈ 𝑦𝑦) ↔ 𝐸𝐸𝑛𝑛+3(𝑥𝑥 ∈ 𝑧𝑧 ∧ 𝜃𝜃)           (𝑀𝑀5) 

By Axiom 8.4 (Simple Comprehension) it’s possible (◊𝑉𝑉��⃗𝑛𝑛+1,𝑉𝑉��⃗𝑛𝑛+2,𝑉𝑉��⃗𝑛𝑛+3,𝑃𝑃 ) that 𝑄𝑄 selects exactly 
𝜌𝜌𝑛𝑛+3(⌜𝑥𝑥⌝)). That is 

(∀𝑘𝑘)(𝑄𝑄(𝑘𝑘) ↔ 𝑘𝑘 = 𝜌𝜌𝑛𝑛+3(⌜𝑥𝑥⌝)) 

Note that we may pull in all facts in the current context by operation of Axiom 8.4 (Simple 
Comprehension). Enter this ◊𝑉𝑉��⃗𝑛𝑛+1,𝑉𝑉��⃗𝑛𝑛+2,𝑉𝑉��⃗𝑛𝑛+3,𝑃𝑃  context. We now argue that equation (M5) holds in 
this context. 

Note that 

𝐸𝐸𝑛𝑛+3(𝑥𝑥 ∈ 𝑦𝑦) ↔
def
𝜌𝜌𝑛𝑛+3(⌜𝑥𝑥⌝) ∈

𝑛𝑛+3
𝜌𝜌𝑛𝑛+3(⌜𝑦𝑦⌝) 

By the fact that 𝑉𝑉𝑛𝑛+3 ≥𝑥𝑥 𝑉𝑉𝑛𝑛+2 ≥𝑦𝑦 𝑉𝑉𝑛𝑛+1 and our specification of 𝜌𝜌𝑛𝑛+2(⌜𝑦𝑦⌝), c.f. (M3), we have 

𝜌𝜌𝑛𝑛+3(⌜𝑥𝑥⌝) ∈
𝑛𝑛+3

𝜌𝜌𝑛𝑛+3(⌜𝑦𝑦⌝) ↔ 𝑃𝑃(𝜌𝜌𝑛𝑛+3(⌜𝑥𝑥⌝)) 

Since 𝑄𝑄 applies uniquely to 𝜌𝜌𝑛𝑛+3(⌜𝑥𝑥⌝)) applying Lemma B.3 (Box Elimination) to equation 
(M2)  and invoking modus ponens we may infer 

𝑃𝑃�𝜌𝜌𝑛𝑛+3(⌜𝑥𝑥⌝)� ↔ 𝑉𝑉�⃗𝑛𝑛+1�𝜌𝜌𝑛𝑛+3(⌜𝑥𝑥⌝)� ∧ 𝛷𝛷.                (𝑀𝑀6) 

where 

𝛷𝛷 = ◊ (𝑉𝑉��⃗𝑛𝑛+1,𝑄𝑄 ∃! 𝑞𝑞 ∣ 𝑄𝑄(𝑞𝑞))(𝜓𝜓(𝑞𝑞)) 

And 

ψ(𝑞𝑞) ↔
def

q ∈
𝑛𝑛+1

𝜌𝜌𝑛𝑛+1(⌜𝑧𝑧⌝) ∧ 𝑉𝑉�⃗ ∗ ≥x 𝑉𝑉�⃗ 𝑛𝑛+1 ∧ 𝜌𝜌∗ (⌜𝑥𝑥⌝) = 𝑞𝑞 ∧ 𝐸𝐸𝑛𝑛+3∗ (𝜃𝜃) 

 

As the sentence inside ◊𝑉𝑉��⃗𝑛𝑛+1,𝑄𝑄  in 𝛷𝛷 is content restricted to 𝑉𝑉�⃗ 𝑛𝑛+1,𝑉𝑉�⃗ ∗,𝑄𝑄 by ◊ Ignoring (Axiom 8.3) 

𝛷𝛷 ↔ ◊ (ℒ ∃! 𝑞𝑞 ∣ 𝑄𝑄(𝑞𝑞))(𝜓𝜓(𝑞𝑞)) 

where ℒ = {𝑉𝑉�⃗ 𝑛𝑛+1,𝑉𝑉�⃗ 𝑛𝑛+2,𝑉𝑉�⃗ 𝑛𝑛+3,𝑃𝑃,𝑄𝑄}. Hence the right side of equation (M6) holds iff 

𝑉𝑉�⃗ 𝑛𝑛+1(𝜌𝜌𝑛𝑛+3(⌜𝑥𝑥⌝)) ∧ ◊ (ℒ ∃! 𝑞𝑞 ∣ 𝑄𝑄(𝑞𝑞))(𝜓𝜓(𝑞𝑞)) 



Using Axiom 8.6 (Importing) to import the fact that 𝑄𝑄 applies uniquely to 𝜌𝜌𝑛𝑛+3(⌜𝑥𝑥⌝) into the 
◊ℒ  context above (and applying Axiom 8.7 Logical Closure) we may infer that the above formula 
is equivalent to (the reverse direction also follows by importing the same fact into the �ℒ  
context below) 

𝑉𝑉�⃗ 𝑛𝑛+1(𝜌𝜌𝑛𝑛+3(⌜𝑥𝑥⌝)) ∧ ◊ (ℒ 𝜓𝜓(𝜌𝜌𝑛𝑛+3(⌜𝑥𝑥⌝)))          (𝑀𝑀7) 

We further observe that 𝜓𝜓(𝜌𝜌𝑛𝑛+3(⌜𝑥𝑥⌝)) implies that 𝜌𝜌𝑛𝑛+3(⌜𝑥𝑥⌝) ∈𝑛𝑛+1 𝜌𝜌𝑛𝑛+1(⌜𝑧𝑧⌝) and hence 
𝑉𝑉�⃗ 𝑛𝑛+1(𝜌𝜌𝑛𝑛+3(⌜𝑥𝑥⌝)). By Axiom 8.2 (Diamond Elimination) it follows that we can derive 
𝑉𝑉�⃗ 𝑛𝑛+1(𝜌𝜌𝑛𝑛+3(⌜𝑥𝑥⌝)) from ◊ (ℒ 𝜓𝜓(𝜌𝜌𝑛𝑛+3(⌜𝑥𝑥⌝))). Hence, the above equation (M7) is equivalent to 

◊ (ℒ 𝜓𝜓(𝜌𝜌𝑛𝑛+3(⌜𝑥𝑥⌝))) 

Thus 𝐸𝐸𝑛𝑛+3(𝑥𝑥 ∈ 𝑦𝑦) is true iff 

◊ [ℒ 𝜌𝜌𝑛𝑛+3(⌜𝑥𝑥⌝) ∈
𝑛𝑛+1

𝜌𝜌𝑛𝑛+1(⌜𝑧𝑧⌝) ∧

𝑉𝑉�⃗ ∗ ≥
𝑥𝑥
𝑉𝑉�⃗ 𝑛𝑛+1 ∧ 𝜌𝜌∗(⌜𝑥𝑥⌝) = 𝜌𝜌𝑛𝑛+3(⌜𝑥𝑥⌝) ∧ 𝐸𝐸𝑛𝑛+3∗ (𝜃𝜃)]          (𝑀𝑀8)

 

It only remains to show that (M8) is true iff 𝐸𝐸𝑛𝑛+3(𝑥𝑥 ∈ 𝑧𝑧 ∧ 𝜃𝜃) where 

𝐸𝐸𝑛𝑛+3(𝑥𝑥 ∈ 𝑧𝑧 ∧ 𝜃𝜃) ↔ 𝐸𝐸𝑛𝑛+3(𝑥𝑥 ∈ 𝑧𝑧) ∧ 𝐸𝐸𝑛𝑛+3(𝜃𝜃) 

. 

Suppose that equation (M8) is true. Enter the (◊ℒ ) context for this claim. We can import the 
fact that 𝑉𝑉�⃗ 𝑛𝑛+3 ≥𝑥𝑥 𝑉𝑉�⃗ 𝑛𝑛+2 ≥𝑦𝑦 𝑉𝑉�⃗ 𝑛𝑛+1 and thus derive that 𝐸𝐸𝑛𝑛+3(𝑥𝑥 ∈ 𝑧𝑧) from the first conjunct of the 
interior of equation (M8). We now work to prove 𝐸𝐸𝑛𝑛+3(𝜃𝜃) by way of the Corollary L.1 
(Generalized Translation Lemma) applied to 𝐸𝐸𝑛𝑛+3∗ (𝜃𝜃). We already know that 𝑉𝑉∗,𝑉𝑉𝑛𝑛+3 both 
extend 𝑉𝑉𝑛𝑛+1. We now argue that 𝜌𝜌∗ and 𝜌𝜌𝑛𝑛+3 assign each free variable in 𝜃𝜃 to the same object 
in 𝑉𝑉𝑛𝑛+1 as follows: 

• Since 𝑉𝑉�⃗ ∗ ≥𝑥𝑥 𝑉𝑉�⃗ 𝑛𝑛+1 and 𝑉𝑉�⃗ 𝑛𝑛+3 ≥𝑥𝑥,𝑦𝑦 𝑉𝑉�⃗ 𝑛𝑛+1 we have 𝜌𝜌∗ = 𝜌𝜌𝑛𝑛+1 = 𝜌𝜌𝑛𝑛+3 for all variables names 
other than ‘x’ and ‘y.’ 

• As 𝜌𝜌∗(⌜𝑥𝑥⌝) = 𝜌𝜌𝑛𝑛+3(⌜𝑥𝑥⌝), 𝜌𝜌∗ and 𝜌𝜌𝑛𝑛+3 both assign ‘x’ to the same object in 𝑉𝑉𝑛𝑛+1. 

• So 𝑉𝑉�⃗ ∗ can only disagree with 𝑉𝑉𝑛𝑛+3 on 𝑦𝑦, and by the assumptions of the theorem to be 
proved 𝑦𝑦 isn’t free in 𝜃𝜃. 

So by the Corollary L.1 (Generalized Translation Lemma) we have 𝐸𝐸𝑛𝑛+3∗ (𝜃𝜃) ↔ 𝐸𝐸𝑛𝑛+3(𝜃𝜃) and hence 
𝐸𝐸𝑛𝑛+3(𝜃𝜃). As 𝐸𝐸𝑛𝑛+3(𝜃𝜃) is content restricted to 𝑉𝑉�⃗ 𝑛𝑛+3 we can export this conclusion from the ◊ℒ  
context above. 

Conversely, suppose 𝐸𝐸𝑛𝑛+3(𝑥𝑥 ∈ 𝑧𝑧) ∧ 𝐸𝐸𝑛𝑛+3(𝜃𝜃). By Lemma L.1 (Pointwise Tweaking) applied to 
(𝑉𝑉𝑛𝑛+3,𝜌𝜌𝑛𝑛+1) and (∃𝑦𝑦)(𝑦𝑦 = 𝜌𝜌𝑛𝑛+3(⌜𝑥𝑥⌝)) it is possible (◊ℒ ) that 𝑉𝑉�⃗ ∗ agrees with (𝑉𝑉𝑛𝑛+3,𝜌𝜌𝑛𝑛+1) 
except in that it assigns ‘x’ to 𝜌𝜌𝑛𝑛+3(⌜𝑥𝑥⌝) i.e, 



◊ �𝜌𝜌∗(⌜𝑥𝑥⌝) = 𝜌𝜌𝑛𝑛+3(⌜𝑥𝑥⌝) ∧ 𝑉𝑉�⃗ ∗ ≥
𝑥𝑥
𝑉𝑉�⃗ 𝑛𝑛+1 ∧ 𝑉𝑉∗ = 𝑉𝑉𝑛𝑛+3�ℒ  

We now seek to derive equation (M8). Enter this ◊ℒ  context. The first conjunct inside the ◊𝐿𝐿  in 
equation (M8) follows from the (importable) fact that 𝐸𝐸𝑛𝑛+3(𝑥𝑥 ∈ 𝑧𝑧) and the first conjunct inside 
the ◊ℒ  above. The second conjunct inside equation (M8) is identical to the second conjunct 
inside the above equation and the third conjunct inside equation (M8) is equal to the first 
conjunct inside the above equation. 

Finally, we use the Corollary L.1 (General Translation Lemma) to infer 𝐸𝐸𝑛𝑛+3∗ (𝜃𝜃). From the above 
equation we have 𝑉𝑉∗ ≥ 𝑉𝑉𝑛𝑛+3 and 𝑉𝑉�⃗ ∗ ≥𝑥𝑥 𝑉𝑉�⃗1. We can import the fact that 𝑉𝑉�⃗ 𝑛𝑛+3 ≥𝑥𝑥,𝑦𝑦 𝑉𝑉�⃗ 𝑛𝑛+1. Thus, 
(as above) 𝜌𝜌∗and 𝜌𝜌𝑛𝑛+3 both agree with 𝜌𝜌𝑛𝑛+1 on all other variables except for 𝑦𝑦 (and 𝑦𝑦 isn’t free 
in 𝑥𝑥 ∈ 𝑧𝑧 ∧ 𝜃𝜃). So, just as above, we can apply Corollary L.1 to get 𝐸𝐸𝑛𝑛+3∗ (𝜃𝜃) ↔ 𝐸𝐸𝑛𝑛+3(𝜃𝜃) and hence 
derive the third conjunct needed 𝐸𝐸𝑛𝑛+3∗ (𝜃𝜃). Thus we can leave this ◊𝐿𝐿  context and conclude that 
(M8)  holds. 

Thus, equation (M8) is true iff 𝐸𝐸𝑛𝑛+3(𝑥𝑥 ∈ 𝑧𝑧 ∧ 𝜃𝜃) 

This completes our verification of equation (M5) on the assumption that 𝑉𝑉�⃗ 𝑛𝑛+3 ≥𝑥𝑥 𝑉𝑉�⃗ 𝑛𝑛+2. Hence, 

𝑉𝑉�⃗ 𝑛𝑛+3 ≥𝑥𝑥 𝑉𝑉𝑛𝑛+2
��������⃗ → 𝐸𝐸𝑛𝑛+3(𝑥𝑥 ∈ 𝑦𝑦 ↔ 𝑥𝑥 ∈ 𝑧𝑧 ∧ 𝜃𝜃)) 

As we proved this from only the assumption that the interior of equation (M4) was true, we 
may use Lemma B.2 (Box Introduction) to infer 

□ �𝑉𝑉�⃗ 𝑛𝑛+3 ≥𝑥𝑥 𝑉𝑉𝑛𝑛+2
��������⃗ → 𝐸𝐸𝑛𝑛+3(𝑥𝑥 ∈ 𝑦𝑦 ↔ 𝑥𝑥 ∈ 𝑧𝑧 ∧ 𝜃𝜃))�𝑉𝑉��⃗𝑛𝑛+2,𝑉𝑉��⃗𝑛𝑛+1,𝑃𝑃  

As remarked above we may use Lemma H.1 (Box Ignoring) to conclude 

□ �𝑉𝑉�⃗ 𝑛𝑛+3 ≥𝑥𝑥 𝑉𝑉𝑛𝑛+2
��������⃗ → 𝐸𝐸𝑛𝑛+3(𝑥𝑥 ∈ 𝑦𝑦 ↔ 𝑥𝑥 ∈ 𝑧𝑧 ∧ 𝜃𝜃))�𝑉𝑉��⃗𝑛𝑛+2  

Dropping out of the ◊𝑉𝑉��⃗𝑛𝑛+1  context and applying Lemma B.2 (Box Introduction) again we reach 
the desired conclusion. 

□[𝒱𝒱(𝑉𝑉�⃗𝑛𝑛+1) →
◊ (𝑉𝑉��⃗𝑛𝑛+1 𝑉𝑉�⃗ 𝑛𝑛+2 ≥

𝑦𝑦
𝑉𝑉�⃗ 𝑛𝑛+1 ∧

□ [𝑉𝑉��⃗𝑛𝑛+2 𝑉𝑉�⃗ 𝑛𝑛+3 ≥𝑥𝑥 𝑉𝑉
�⃗ 𝑛𝑛+2 →

𝜌𝜌𝑛𝑛+3(𝑥𝑥) ∈
𝑛𝑛+3

𝜌𝜌𝑛𝑛+3(𝑦𝑦) ↔ (𝜌𝜌𝑛𝑛+3(𝑥𝑥) ∈
𝑛𝑛+3

𝜌𝜌𝑛𝑛+3(𝑧𝑧) ∧ 𝐸𝐸𝑛𝑛+3(𝜃𝜃))])]

 

 ■ 

M.6 Pairing 

Proposition M.1 (Potentialist Pairing).  𝐸𝐸(∀𝑥𝑥∀𝑦𝑦∃𝑧𝑧(𝑥𝑥 ∈ 𝑧𝑧 ∧ 𝑦𝑦 ∈ 𝑧𝑧)) 

Proof. By the Lemma M.1 (Translation Equivalence Lemma) it suffices to prove the following: 



□(𝒱𝒱�⃗ �𝑉𝑉�⃗ 2� → ◊ �𝑉𝑉�⃗ 3 ≥𝑧𝑧 𝑉𝑉
�⃗ 2 ∧ 𝐸𝐸3(𝑥𝑥 ∈ 𝑧𝑧 ∧ 𝑦𝑦 ∈ 𝑧𝑧)�𝑉𝑉��⃗2 ) 

Consider an arbitrary interpreted initial segment 𝑉𝑉�⃗ 2. We will show that it’s logically possible to 
extend this segment with another initial segment containing a set 𝑧𝑧 which has both 𝜌𝜌2(⌜𝑥𝑥⌝) 
and 𝜌𝜌2(⌜𝑦𝑦⌝) as members and then invoke Lemma B.2 (Box Introduction) to derive the desired 
conclusion. 

By the  Proper Extension Lemma ( Lemma K.4), it’s possible (◊𝑉𝑉��⃗2 ) to have 𝑉𝑉�⃗ 3 properly extend 𝑉𝑉�⃗ 2. 

◊ [𝑉𝑉��⃗2 𝑉𝑉�⃗ 3 ≥ 𝑉𝑉�⃗ 2 ∧ (∃𝑜𝑜)(ord3(𝑜𝑜) ∧ (∀𝑢𝑢)(ord2(𝑢𝑢) → 𝑢𝑢 <
3
𝑜𝑜)] 

Enter this ◊𝑉𝑉��⃗2  context. I claim 𝑉𝑉�⃗ 3 contains a set 𝑧𝑧 which has exactly 𝜌𝜌2(⌜𝑥𝑥⌝) and 𝜌𝜌2(⌜𝑦𝑦⌝) as 
members, i.e., (∀𝑘𝑘)(𝑘𝑘 ∈3 𝑧𝑧 ↔ 𝑘𝑘 = 𝜌𝜌2(⌜𝑥𝑥⌝) ∨ 𝑘𝑘 = 𝜌𝜌2(⌜𝑦𝑦⌝)). By Simple Comprehension ( 
Axiom 8.4) it’s possible (�𝑉𝑉2����⃗ ,𝑉𝑉��⃗3 ) to maintain all the facts we have so far and for 𝐻𝐻 to apply to 
exactly this pair of objects, i.e., 

(∀𝑘𝑘)[𝐻𝐻(𝑘𝑘) ↔ 𝑘𝑘 = 𝜌𝜌2(⌜𝑥𝑥⌝) ∨ 𝑘𝑘 = 𝜌𝜌2(⌜𝑦𝑦⌝)] 

Enter this ◊𝑉𝑉2����⃗ ,𝑉𝑉3  context. Note that all 𝑥𝑥 such that 𝐻𝐻(𝑥𝑥) are in 𝐸𝐸𝑥𝑥𝐸𝐸(𝑉𝑉2). Thus for each such 𝑢𝑢 we 
have @(𝑥𝑥,𝑢𝑢) for some ord2 𝑢𝑢. But by the fact that 𝑉𝑉3 properly extends 𝑉𝑉2 and by part there is a 
𝑠𝑠𝑠𝑠𝐸𝐸3 𝑘𝑘 whose elements are exactly 𝜌𝜌2(𝑥𝑥) and 𝜌𝜌2(𝑦𝑦). So we have 

(∃𝑧𝑧)[𝑠𝑠𝑠𝑠𝐸𝐸3(𝑧𝑧) ∧ (∀𝑘𝑘)(𝑘𝑘 ∈
3
𝑧𝑧 ↔ 𝑘𝑘 = 𝜌𝜌2(⌜𝑥𝑥⌝) ∨ 𝜌𝜌2(⌜𝑦𝑦⌝))] 

We now apply Lemma M.1 to (𝑉𝑉3,𝜌𝜌2), to get the possibility (◊𝑉𝑉2����⃗ ,𝑉𝑉3,𝐻𝐻 ) of a 𝜌𝜌3 such that 𝑉𝑉�⃗ 3 ≥𝑥𝑥 𝑉𝑉�⃗ 2 
which chooses 𝜌𝜌3(⌜𝑧𝑧⌝) to witness the truth of the above existential claim. This yields: 

◊ �𝑉𝑉3���⃗ ≥𝑧𝑧 𝑉𝑉2
���⃗ (∀𝑘𝑘)(𝑘𝑘 ∈

3
𝜌𝜌3(⌜𝑧𝑧⌝) ↔ 𝑘𝑘 = 𝜌𝜌2(⌜𝑥𝑥⌝) ∨ 𝜌𝜌2(⌜𝑦𝑦⌝)�𝑉𝑉2����⃗ ,𝑉𝑉3,𝐻𝐻  

Enter this ◊𝑉𝑉2����⃗ ,𝑉𝑉3,𝐻𝐻  context. Unpacking definitions (note that 𝑉𝑉3���⃗ ≥𝑧𝑧 𝑉𝑉2���⃗  implies that𝜌𝜌3 agrees with 
𝜌𝜌2 on ⌜𝑥𝑥⌝ and ⌜𝑦𝑦⌝ ) we can infer: 

𝜌𝜌3(⌜𝑥𝑥⌝) ∈
3
𝜌𝜌3(⌜𝑧𝑧⌝) ∧ 𝜌𝜌3(⌜𝑦𝑦⌝) ∈

3
𝜌𝜌3(⌜𝑧𝑧⌝)] 

Hence 

𝑉𝑉3���⃗ ≥𝑧𝑧 𝑉𝑉2
���⃗ ∧ 𝐸𝐸3(𝑥𝑥 ∈

3
𝑧𝑧 ∧ 𝑦𝑦 ∈

3
𝑧𝑧) 

So successively exiting all the ◊ contexts we entered yields 

◊ ◊ ◊ ◊ �𝑉𝑉�⃗ 3 ≥𝑧𝑧 𝑉𝑉
�⃗ 2 ∧ 𝐸𝐸3(𝑥𝑥 ∈ 𝑧𝑧 ∧ 𝑦𝑦 ∈ 𝑧𝑧)�𝑉𝑉2����⃗ ,𝑉𝑉3,𝐻𝐻,𝜌𝜌3𝑉𝑉2����⃗ ,𝑉𝑉3,𝐻𝐻𝑉𝑉2����⃗ ,𝑉𝑉3𝑉𝑉2����⃗ ) 

Finally, applying Lemma H.6 (Diamond Simplification) yields the desired ◊𝑉𝑉��⃗2  claim. This 
completes our Lemma B.2 (Box Introduction) argument giving us our desired result. 



□(𝒱𝒱�⃗ �𝑉𝑉2���⃗ � → ◊ �𝑉𝑉�⃗ 3 ≥𝑧𝑧 𝑉𝑉
�⃗ 2 ∧ 𝐸𝐸3(𝑥𝑥 ∈ 𝑧𝑧 ∧ 𝑦𝑦 ∈ 𝑧𝑧)�𝑉𝑉2����⃗ ) 

 ■ 

M.7 Powerset 

Proposition M.5 (Potentialist Powerset).  𝐸𝐸(∀𝑥𝑥∃𝑦𝑦∀𝑧𝑧[(∀𝑤𝑤)(𝑤𝑤 ∈ 𝑧𝑧 → 𝑤𝑤 ∈ 𝑥𝑥) → 𝑧𝑧 ∈ 𝑦𝑦]) 

We first prove the trivial fact that the elements of the set 𝑉𝑉�⃗ 𝑛𝑛+1 assigns to the variable 𝑥𝑥 are all 
sets in 𝑉𝑉𝑛𝑛+1. 

Lemma M.4.  If 𝑉𝑉𝑛𝑛+1 ≥ 𝑉𝑉𝑛𝑛 and 𝒱𝒱�⃗ �𝑉𝑉�⃗𝑛𝑛� then (∀𝑏𝑏)[set𝑛𝑛+1(𝑏𝑏) ∧ (∀𝑐𝑐 ∈
𝑛𝑛+1

𝑏𝑏)(𝑐𝑐 ∈
𝑛𝑛+1

𝜌𝜌𝑛𝑛(⌜𝑥𝑥⌝)) →
set𝑛𝑛(𝑏𝑏)]. 

Proof. Suppose, for contradiction, that the assumptions of the lemma hold but the lemma fails. 
Then there is a counterexample. 

(∃𝑏𝑏) �set𝑛𝑛+1(𝑏𝑏) ∧ �∃𝑐𝑐 ∣∣
∣ 𝑐𝑐 ∈

𝑛𝑛+1
𝑏𝑏 � �𝑐𝑐 ∈

𝑛𝑛+1
𝜌𝜌𝑛𝑛(⌜𝑥𝑥⌝)� ∧ ¬set𝑛𝑛(𝑐𝑐)� .          (𝑀𝑀9) 

By Lemma H.7 (Multiple Definitions) , using Axiom 8.4 (Simple Comprehension) and Proposition 
8.1 (Simple Choice)  it is possible (◊𝑉𝑉��⃗𝑛𝑛+1,𝑉𝑉��⃗𝑛𝑛 ) for all our assumptions to remain true while 𝐵𝐵, 𝐾𝐾 
apply to a unique objects 𝑏𝑏, 𝑐𝑐 witnessing equation (M9). 

Enter this ◊𝑉𝑉��⃗𝑛𝑛+1,𝑉𝑉��⃗𝑛𝑛  context. Putting all these conditions above together we can derive 
contradiction by straightforwardly applying the definitions of interpreted initial segment ( 
Definition A.4) and extension (Definition A.3) using the fact that ∈𝑛𝑛+1 agrees with ∈𝑛𝑛 on sets in 
𝑉𝑉𝑛𝑛. ■ 

We now prove the desired result. 

Proof. By the Lemma M.1 (Translation Equivalence Lemma) it suffices to prove the following: 

□[ 𝒱𝒱�⃗ �𝑉𝑉�⃗1� → ◊ (𝑉𝑉��⃗1 𝑉𝑉�⃗ 2 ≥𝑦𝑦 𝑉𝑉�⃗1 ∧ □ [𝑉𝑉��⃗2 𝑉𝑉�⃗ 3 ≥𝑧𝑧 𝑉𝑉
�⃗ 2 → 𝐸𝐸3(𝜙𝜙(𝑧𝑧, 𝑥𝑥,𝑦𝑦))])]

where 
𝜙𝜙(𝑧𝑧, 𝑥𝑥) abbreviates (∀𝑤𝑤 ∈ 𝑧𝑧)(𝑤𝑤 ∈ 𝑥𝑥) → 𝑧𝑧 ∈ 𝑦𝑦

 

We will argue by Lemma B.2 (Box Introduction). So consider an arbitrary situation in which 
𝒱𝒱�⃗ �𝑉𝑉1���⃗ �. 

We seek to show the possibility of an initial segment extending 𝑉𝑉1 containing the powerset of 
𝜌𝜌1(⌜𝑥𝑥⌝). The first three steps of our proof are exactly miror what we said about pairing in the 
previous proof. 

Just as before, the Lemma K.4 (the Proper Extension Lemma) lets us conclude that possibly (◊𝑉𝑉��⃗1 ) 
we can have 𝑉𝑉2 properly extend 𝑉𝑉1, i.e., 



◊ �𝑉𝑉2 ≥ 𝑉𝑉1 ∧ (∃𝑜𝑜)�ord2(𝑜𝑜) ∧ (∀𝑢𝑢) �ord1(𝑢𝑢) → 𝑢𝑢 <
2
𝑜𝑜���          𝑉𝑉��⃗1 (𝑀𝑀10) 

Enter this ◊𝑉𝑉��⃗1  context and import the fact that 𝒱𝒱�⃗ �𝑉𝑉1���⃗ �. We will show that this 𝑉𝑉2 contains a set 𝑎𝑎 
(our intended powerset) whose elements are exactly those sets 𝑏𝑏 in 𝑉𝑉2 such that 
𝑏𝑏 ⊂2 𝜌𝜌1(⌜𝑥𝑥⌝). Applying Simple Comprehension ( Axiom 8.4) shows that 𝐻𝐻 could apply (while 
maintaining truth of equation (M10) inside the ◊𝑉𝑉��⃗1 ) to exactly the intended elements of our set 
𝑎𝑎. That is : 

◊ (𝑉𝑉��⃗1,𝑉𝑉2 ∀𝑏𝑏) �𝐻𝐻(𝑏𝑏) ↔ set2(𝑏𝑏) ∧ (∀𝑐𝑐 ∣ 𝑐𝑐 ∈
2
𝑏𝑏)(𝑐𝑐 ∈

2
𝜌𝜌1(⌜𝑥𝑥⌝))� 

Enter this ◊𝑉𝑉��⃗1,𝑉𝑉2  context. By the fact that 𝒱𝒱�⃗ �𝑉𝑉�⃗1�, we know that 𝜌𝜌1(⌜𝑥𝑥⌝) occurs at some level 𝑢𝑢 
in 𝑉𝑉1. Now consider an arbitrary 𝑏𝑏 in the extension of 𝐻𝐻. All elements of 𝑏𝑏 are ∈2 𝜌𝜌1(⌜𝑥𝑥⌝). So 
by Lemma M.4 (Powerset Helper), 𝑏𝑏 is available at some level 𝑢𝑢 in 𝑉𝑉1. 

By the fact that 𝑉𝑉2 properly extends 𝑉𝑉1, it contains a level 𝑜𝑜 such that 𝑜𝑜 >2 𝑢𝑢 for all 𝑢𝑢 such that 
ord1(𝑢𝑢). So all objects in the extension of 𝐻𝐻 occur at levels below 𝑜𝑜. So by the fact that 𝒱𝒱(𝑉𝑉2) 
(specifically ) there’s a set2(𝑘𝑘) (occurring at 𝑜𝑜) coextensive with 𝐻𝐻. Hence, there’s a set2 whose 
members are exactly those objects satisfying the right-hand side of the biconditional 
characterizing 𝐻𝐻 above. 

Applying Lemma L.1 (Pointwise Tweaking)  to 𝑉𝑉2,𝜌𝜌1 and importing all relevant facts establishes 
the possibility (◊𝑉𝑉1����⃗ ,𝑉𝑉2 ) of a 𝜌𝜌2 such that 𝑉𝑉�⃗ 2 ≥𝑦𝑦 (𝑉𝑉2,𝜌𝜌1) which assigns 𝜌𝜌2(⌜𝑦𝑦⌝) to witness the 
truth of the above existential claim. 

◊ [𝑉𝑉��⃗1,𝑉𝑉2,𝐻𝐻 𝑉𝑉�⃗ 2 ≥𝑦𝑦 𝑉𝑉
�⃗1 ∧ (∀𝑎𝑎)( 𝑏𝑏 ∈

2
𝜌𝜌2(⌜𝑦𝑦⌝) ↔

set2(𝑏𝑏) ∧ (∀𝑐𝑐 ∣ 𝑐𝑐 ∈
2
𝑏𝑏)(𝑐𝑐 ∈

2
𝜌𝜌1(⌜𝑥𝑥⌝))]

 

Enter this ◊𝑉𝑉��⃗1,𝑉𝑉��⃗2,𝐻𝐻  context. We have 𝑉𝑉�⃗ 2 ≥𝑦𝑦 𝑉𝑉�⃗1 immediately. So it just remains to show that □𝑉𝑉2
[𝑉𝑉�⃗ 3 ≥𝑧𝑧 𝑉𝑉�⃗ 2 → 𝐸𝐸3(𝜙𝜙(𝑧𝑧, 𝑥𝑥,𝑦𝑦))], i.e., to prove the potentialistic translation of the claim that 
𝜌𝜌2(⌜𝑦𝑦⌝) contains all subsets 𝑍𝑍 of 𝜌𝜌1(⌜𝑥𝑥⌝). 

By the fact that 𝑉𝑉�⃗ 2 ≥𝑦𝑦 𝑉𝑉�⃗1 and thus 𝜌𝜌2(⌜𝑥𝑥⌝) = 𝜌𝜌1(⌜𝑥𝑥⌝), we can infer the following (which is 
content restricted to 𝑉𝑉�⃗ 2) 

(∀𝑏𝑏)�𝑏𝑏 ∈
2
𝜌𝜌2(⌜𝑦𝑦⌝) ↔ set2(𝑏𝑏) ∧ �∀𝑐𝑐 ∣∣

∣ 𝑐𝑐 ∈
2
𝑏𝑏 � �𝑐𝑐 ∈

2
𝜌𝜌2(⌜𝑥𝑥⌝)��         (𝑀𝑀11) 

Now, for application of Lemma B.2 (Box Introduction), assume that 𝑉𝑉�⃗ 3 ≥𝑧𝑧 𝑉𝑉�⃗ 2 while holding fixed 
the facts about 𝑉𝑉�⃗ 2. As we wish to infer a □𝑉𝑉��⃗2  claim we may use equation (M11) in our 
derivation. By the definition of ≥𝑧𝑧 we can infer 

(∀𝑏𝑏)(𝑏𝑏 ∈
3
𝜌𝜌3(⌜𝑦𝑦⌝) ↔ set3(𝑏𝑏) ∧ (∀𝑐𝑐 ∣ 𝑐𝑐 ∈

3
𝑏𝑏)(𝑐𝑐 ∈

3
𝜌𝜌3(⌜𝑥𝑥⌝))) 



Instantiating 𝑏𝑏 with 𝜌𝜌3(⌜𝑧𝑧⌝) (and noting that clearly set3(𝜌𝜌3(⌜𝑧𝑧⌝)) lets us deduce 𝜙𝜙𝑉𝑉��⃗3 , i.e., 

(∀𝑤𝑤 ∈
3
𝜌𝜌3(⌜𝑧𝑧⌝)(𝑤𝑤 ∈

3
𝜌𝜌3(⌜𝑥𝑥⌝)) → 𝜌𝜌3(⌜𝑧𝑧⌝) ∈

3
𝜌𝜌3(⌜𝑦𝑦⌝) 

Applying the Lemma L.1 lets us infer 𝐸𝐸3(𝜙𝜙(𝑧𝑧, 𝑥𝑥,𝑦𝑦)). This completes our Lemma B.2 (Box 
Introduction) argument letting us deduce 

□ [𝑉𝑉��⃗2 𝑉𝑉�⃗ 3 ≥𝑧𝑧 𝑉𝑉
�⃗ 2 → 𝐸𝐸3(𝜙𝜙(𝑧𝑧, 𝑥𝑥,𝑦𝑦))] 

. 

Now exiting all our ◊ contexts yields 

◊𝑉𝑉��⃗1 ◊𝑉𝑉��⃗1,𝑉𝑉2 ◊ (𝑉𝑉��⃗1,𝑉𝑉2,𝐻𝐻 𝑉𝑉�⃗ 2 ≥𝑦𝑦 𝑉𝑉
�⃗1 ∧  □ [𝑉𝑉��⃗2 𝑉𝑉�⃗ 3 ≥𝑧𝑧 𝑉𝑉

�⃗ 2 → 𝐸𝐸3�𝜙𝜙(𝑧𝑧, 𝑥𝑥,𝑦𝑦)�])
 

 

 

By Diamond Collapsing ( Lemma B.8) it follows that 

◊𝑉𝑉��⃗1 (𝑉𝑉�⃗ 2 ≥𝑦𝑦 𝑉𝑉�⃗1 ∧  □ [𝑉𝑉��⃗2 𝑉𝑉�⃗ 3 ≥𝑧𝑧 𝑉𝑉
�⃗ 2 → 𝐸𝐸3�𝜙𝜙(𝑧𝑧, 𝑥𝑥, 𝑦𝑦)�]) 

And, as we have proved this from only the assumption that our original context satisfies 𝒱𝒱(𝑉𝑉�⃗1), 
the theorem follows by a final application of Lemma B.2 (Box Introduction). 

□[ 𝒱𝒱�⃗ (𝑉𝑉1) → ◊ (𝑉𝑉��⃗1 𝑉𝑉�⃗ 2 ≥𝑦𝑦 𝑉𝑉
�⃗1 ∧ □ [𝑉𝑉��⃗2 𝑉𝑉�⃗ 3 ≥𝑧𝑧 𝑉𝑉

�⃗ 2 → 𝐸𝐸3(𝜙𝜙(𝑧𝑧, 𝑥𝑥,𝑦𝑦))])] 

 ■ 

M.8 Choice 

Definition M.2 (Choice Function).  We first adopt the following standard notation from set 
theory. 

Definition M.1 (Ordered Pair).  (𝑦𝑦, 𝑧𝑧) denotes the unique set {{𝑦𝑦}, {𝑦𝑦, 𝑧𝑧}} and 𝑤𝑤 = (𝑦𝑦, 𝑧𝑧) 
denotes the (bounded) formula 
(∃𝑎𝑎 , 𝑏𝑏 ∈ 𝑤𝑤)(∀𝑞𝑞 ∈ 𝑤𝑤)([𝑞𝑞 = 𝑎𝑎 ∨ 𝑞𝑞 = 𝑏𝑏] ∧

𝑦𝑦 ∈ 𝑎𝑎 ∧ 𝑦𝑦 ∈ 𝑏𝑏 ∧ 𝑧𝑧 ∈ 𝑏𝑏 ∧ (∀𝑜𝑜 ∈ 𝑎𝑎)(𝑜𝑜 = 𝑦𝑦) ∧ (∀𝑜𝑜 ∈ 𝑏𝑏)(𝑜𝑜 = 𝑧𝑧 ∨ 𝑜𝑜 = 𝑎𝑎) 

CH(𝑓𝑓, 𝑥𝑥) abbreviates the set theoretic sentence which claims that set 𝑓𝑓 is a choice function for 

set 𝑥𝑥. That is 𝑓𝑓 associates to each element 𝑦𝑦 of 𝑥𝑥 a unique element of 𝑦𝑦, i.e., CH(𝑓𝑓, 𝑥𝑥) ↔
def

(∀𝑦𝑦 ∣
𝑦𝑦 ∈ 𝑥𝑥)(𝑓𝑓(𝑦𝑦) ∈ 𝑦𝑦) 

Note that 𝑓𝑓(𝑦𝑦) ∈ 𝑦𝑦 iff (∃𝑤𝑤 ∈ 𝑓𝑓)(∃𝑧𝑧 ∈ 𝑦𝑦)(𝑤𝑤 = (𝑦𝑦, 𝑧𝑧)) so CH(𝑓𝑓, 𝑥𝑥) is a bounded formula. 

Proposition M.6 (Potentialist Choice).  𝐸𝐸(∀𝑥𝑥[∅ ∉ 𝑥𝑥 → (∃𝑓𝑓)CH(𝑓𝑓, 𝑥𝑥)]) 



Before we prove this result, we first note the following lemmas. 

Lemma M.5.  If 𝑉𝑉″ ⪈ 𝑉𝑉′ ⪈ 𝑉𝑉 (where ⪈ indicates a proper extension) and 𝑦𝑦, 𝑧𝑧 are sets in 𝑉𝑉 then 
there is some set 𝑤𝑤 in 𝑉𝑉″ equal to (𝑦𝑦, 𝑧𝑧). 

Proof. The reasoning in the proof of Proposition M.5 (Potentialist Pairing) implies that {𝑦𝑦, 𝑧𝑧} is a 
set in 𝑉𝑉′ and a similar argument implies that {𝑦𝑦} is as well. Applying that reasoning again 
implies that {{𝑦𝑦}, {𝑦𝑦, 𝑧𝑧}} is a set in 𝑉𝑉″ ■ 

Lemma M.6.  Suppose that 𝑅𝑅∗(𝑥𝑥,𝑦𝑦) is a function (i.e. relation taking each 𝑥𝑥 to a unique 𝑦𝑦) 
taking sets in 𝑉𝑉 to sets in 𝑉𝑉 and 𝑉𝑉‴ ⪈ 𝑉𝑉″ ⪈ 𝑉𝑉′ ⪈ 𝑉𝑉 (where ⪈ indicates a proper extension) then 
there is a set 𝑓𝑓 in 𝑉𝑉‴ which represents the set theoretic function defined by 𝑅𝑅∗(𝑥𝑥,𝑦𝑦) , i.e., 
(∀𝑎𝑎)(∀𝑏𝑏)[(𝑎𝑎, 𝑏𝑏) ∈ ‴𝑓𝑓 ↔ 𝑅𝑅∗(𝑎𝑎, 𝑏𝑏)] 

Proof. This follows straightforwardly from Lemma M.5 (Ordered Pair Existence) by using Simple 
Comprehension (Axiom 8.4), the as well as the fact that 𝑉𝑉‴ properly extends 𝑉𝑉″ and then 
exporting the conclusion. ■ 

Our strategy to prove Proposition M.6 (Potentialist Choice) is as follows. Given some 
interpreted initial segment 𝑉𝑉�⃗1 our strategy will be to define 𝐼𝐼 to apply to the elements of 
𝜌𝜌1(⌜𝑥𝑥⌝) and define 𝑅𝑅 to relate 𝑅𝑅(𝑦𝑦, 𝑧𝑧) just when 𝑦𝑦 ∈ 𝜌𝜌1(⌜𝑥𝑥⌝) and 𝑧𝑧 ∈ 𝑦𝑦. We will then use 
Axiom 8.12 (Choice) to infer the possibility of a choice relation 𝑅𝑅∗. We will then use the above 
lemmas to derive the possibility of 𝑉𝑉2 containing a set 𝑓𝑓 of ordered pairs coding the function 
given by 𝑅𝑅∗. This set 𝑓𝑓 will satisfy CH(𝑓𝑓, 𝑥𝑥) allowing us to invoke the Lemma L.1 (Bounded 
Quantifiers) to establish the desired translation. 

Proof. By the Lemma M.1 (Translation Equivalence Lemma) it suffices to prove the following: 

□[𝒱𝒱(𝑉𝑉�⃗1) ∧ 𝐸𝐸1(∅ ∉ 𝑥𝑥) → ◊ (𝑉𝑉��⃗1 𝑉𝑉�⃗ 2 ≥𝑓𝑓 𝑉𝑉
�⃗1 ∧ 𝐸𝐸2(CH(𝑓𝑓, 𝑥𝑥))] 

To prove this by Lemma B.2 (Box Introduction) suppose that 𝒱𝒱(𝑉𝑉�⃗1) ∧ 𝐸𝐸1(∅ ∉ 𝑥𝑥). We now prove 
◊ (𝑉𝑉��⃗1 𝑉𝑉�⃗ 2 ≥𝑓𝑓 𝑉𝑉�⃗1 ∧ 𝐸𝐸2(CH(𝑓𝑓,⌜𝑥𝑥⌝)). 

Note that by the Lemma L.6 (Bounded Quantifiers) it suffices to show 

◊ (𝑉𝑉��⃗1 𝑉𝑉�⃗ 2 ≥𝑓𝑓 𝑉𝑉1 ∧ [CH(𝜌𝜌2(⌜𝑓𝑓⌝),𝜌𝜌2(⌜𝑥𝑥⌝))]𝑉𝑉2) 

By the Multiple Definitions Lemma ( Lemma H.7) it’s possible (◊𝑉𝑉1����⃗ ) for our assumption 𝒱𝒱(𝑉𝑉�⃗1) ∧
𝐸𝐸1(∅ ∉ 𝑥𝑥) to remain true while defining 𝐼𝐼,𝑅𝑅 via Simple Comprehension (Axiom 8.4) so that 

(∀𝑧𝑧)(𝐼𝐼(𝑧𝑧) ↔ 𝑧𝑧 ∈
1
𝜌𝜌1(⌜𝑥𝑥⌝))

(∀𝑦𝑦)(∀𝑦𝑦′)[𝑅𝑅(𝑦𝑦,𝑦𝑦′) ↔ 𝑦𝑦 ∈
1
𝜌𝜌1(⌜𝑥𝑥⌝) ∧ 𝑦𝑦′ ∈ 𝑦𝑦] 

Enter this (◊𝑉𝑉1����⃗ ) context. We now show that the antecedent of Axiom 8.12 (Choice)  is satisfied, 
i.e., (∀𝑦𝑦)[𝐼𝐼(𝑦𝑦) → (∃𝑧𝑧)𝑅𝑅(𝑦𝑦, 𝑧𝑧)]. To this end note that 𝐸𝐸1(∅ ∉ 𝑥𝑥) abbreviates 𝐸𝐸1((∀𝑦𝑦)(𝑦𝑦 ∈ 𝑥𝑥 →



(∃𝑧𝑧)(𝑧𝑧 ∈ 𝑦𝑦)) and apply the Lemma L.6 (Bounded Quantifiers) to infer that [(∀𝑦𝑦)(𝑦𝑦 ∈
𝜌𝜌1(⌜𝑥𝑥⌝) → (∃𝑧𝑧)(𝑧𝑧 ∈ 𝑦𝑦))]𝑉𝑉1, i.e., 

(∀𝑦𝑦)(𝑦𝑦 ∈
1
𝜌𝜌1(⌜𝑥𝑥⌝) → (∃𝑧𝑧)(𝑧𝑧 ∈

1
𝑦𝑦)) 

Combining this with the biconditionals specifying extensions for 𝐼𝐼 and 𝑅𝑅 above yields the 
desired result that (∀𝑦𝑦)[𝐼𝐼(𝑦𝑦) → (∃𝑧𝑧)𝑅𝑅(𝑦𝑦, 𝑧𝑧)] 

So by Axiom 8.12 (Choice), it’s possible (◊𝑉𝑉��⃗1,𝐼𝐼,𝑅𝑅 ) (while retaining all our previous facts) that 𝑅𝑅∗ 
codes a choice function for 𝑅𝑅, 𝐼𝐼, i.e., that 𝑅𝑅∗. is a function with domain 𝐼𝐼 and 𝑅𝑅∗(𝑦𝑦, 𝑧𝑧) implies 
𝑅𝑅(𝑦𝑦, 𝑧𝑧). Note that by applying the definitions of 𝑅𝑅 and 𝐼𝐼 we can easily deduce that 𝑅𝑅∗ 
associates to each 𝑦𝑦 ∈1 𝑥𝑥 some 𝑧𝑧 ∈1 𝑦𝑦. We will use 𝑅𝑅∗ to define a corresponding choice 
function in the sense of set theory, i.e., an 𝑓𝑓 such that 

(∀𝑎𝑎)(∀𝑏𝑏)[⟨𝑎𝑎, 𝑏𝑏⟩ ∈
2
𝑓𝑓 ↔ 𝑅𝑅∗(𝑎𝑎, 𝑏𝑏)] 

Specifically, we apply the Proper Extension Lemma (Lemma K.4) three times followed by an 
application of Lemma B.8 (Diamond Collapsing)  to establish the possibility (◊𝑉𝑉��⃗1,𝑅𝑅,𝐼𝐼,𝑅𝑅∗ ) of 𝑉𝑉2 
properly extending 𝑉𝑉″, properly extending 𝑉𝑉′ in turn properly extending 𝑉𝑉1. Now by Lemma M.6 
(Set Coding a Function) and Lemma L.1 (Pointwise Tweaking) we can (◊𝑉𝑉��⃗1,𝑅𝑅,𝐼𝐼,𝑅𝑅∗,𝑉𝑉2 ) have 𝑉𝑉�⃗ 2 ≥𝑓𝑓 𝑉𝑉�⃗1 
such that 𝜌𝜌2(⌜𝑓𝑓⌝) is a set 𝑘𝑘 with the property that 

(∀𝑎𝑎)(∀𝑏𝑏)[⟨𝑎𝑎, 𝑏𝑏⟩ ∈
2
𝜌𝜌2(⌜𝑓𝑓⌝) ↔ 𝑅𝑅∗(𝑎𝑎, 𝑏𝑏)] 

Enter this ◊𝑉𝑉��⃗1,𝑅𝑅,𝐼𝐼,𝑅𝑅∗,𝑉𝑉2  context and infer [CH(𝜌𝜌2(⌜𝑓𝑓⌝),𝜌𝜌2(⌜𝑥𝑥⌝))]𝑉𝑉2. Finally, leave the 
intervening contexts and apply  Lemma B.8 (Diamond Collapsing) to yield the desired 
conclusion. ■ 

M.9 Potentialist Infinity 

Proposition M.7 (Potentialist Infinity).  𝐸𝐸((∃𝑥𝑥)[∅ ∈ 𝑥𝑥 ∧ (∀𝑦𝑦 ∈ 𝑥𝑥)(𝑆𝑆(𝑦𝑦) ∈ 𝑥𝑥)]) 

where 𝑆𝑆(𝑦𝑦) is 𝑦𝑦 ∪ {𝑦𝑦}27F

28 

Before we prove this result, we first prove the following lemma which establishes the possibility 
of an interpreted initial segment containing a successor closed set. Our strategy here will be to 
use the Theorem K.2 (Fleshing Out) on the well-ordering from the Infinite Well-Ordering 
Theorem ( Theorem J.1) to argue for the possibility of a 𝑉𝑉𝜔𝜔. We then use the Proper Extension 
Lemma (Lemma K.4) to construct the powerset of 𝑉𝑉𝜔𝜔 and argue that this set has the desired 
property. 

Lemma M.7.  ◊ [𝒱𝒱(𝑉𝑉) ∧ (∃𝑥𝑥)(∅ ∈ 𝑥𝑥 ∧ (∀𝑦𝑦 ∈ 𝑥𝑥)(𝑆𝑆(𝑦𝑦) ∈ 𝑥𝑥))] 

                                                      
28 That is, 𝑆𝑆(𝑦𝑦, 𝑧𝑧) abbreviates (∀𝑤𝑤 ∈ 𝑧𝑧)[𝑤𝑤 ∈ 𝑦𝑦 ∨ 𝑤𝑤 = 𝑦𝑦] ∧ 𝑦𝑦 ∈ 𝑧𝑧 ∧ (∀𝑤𝑤 ∈ 𝑦𝑦)[𝑤𝑤 ∈ 𝑧𝑧] 



Proof. By the Infinite Well-Ordering Theorem ( Theorem J.1) we may conclude it’s logically 
possible (◊) that ord𝜔𝜔 , <𝜔𝜔 form an infinite well-ordering with no maximal element as well as 
the other conclusions of the Infinite Well-Ordering Theorem ( Theorem J.1). Enter this ◇ 
context. 

By the Theorem K.2 (Fleshing Out) it is further possible (◊ord𝜔𝜔,≤𝜔𝜔 ) for 𝑉𝑉𝜔𝜔 to be an initial segment 
with ordinals ord𝜔𝜔,≤𝜔𝜔. Enter this �ord𝜔𝜔,≤𝜔𝜔  context and import all facts established so far. By 
the the Proper Extension Lemma ( Lemma K.4) it is possible (�𝑉𝑉𝜔𝜔 ) that 𝑉𝑉 is an initial segment 
properly extending this 𝑉𝑉𝜔𝜔. Enter this �𝑉𝑉𝜔𝜔  context and import all facts established so far. 

By the fact that 𝑉𝑉 properly extends 𝑉𝑉𝜔𝜔, we know that there’s an ord(𝑢𝑢) such that 𝑢𝑢 > 𝑜𝑜 for all 𝑜𝑜 
such that ord𝜔𝜔(𝑜𝑜). Every set 𝑥𝑥 in 𝑉𝑉𝜔𝜔 occurs at some such level 𝑜𝑜, by the fact that 𝑉𝑉 ≥ 𝑉𝑉𝜔𝜔. So by 
condition (fatness) applied to the property set𝜔𝜔, there’s a set(𝑦𝑦) in 𝑉𝑉 (available at level 𝑢𝑢) 
whose elements are exactly the sets in 𝑉𝑉𝜔𝜔. It is now enough to show that set𝜔𝜔 contains ∅ and is 
successor closed. 

∅ clearly satisfies set𝜔𝜔. To show that set𝜔𝜔 is successor closed suppose that it’s not and, by the 
usual trick using Simple Comprehension ( Axiom 8.4) and Proposition 8.1 (Simplified Choice) (via 
the the Multiple Definitions Lemma ( Lemma H.7)), we may infer the possibility of 𝑄𝑄 applying 
uniquely to some 𝑥𝑥 satisfying set𝜔𝜔 such that 𝑆𝑆(𝑥𝑥) doesn’t satisfying set𝜔𝜔. Via the Multiple 
Definitions Lemma (Lemma H.7) we may also suppose that 𝑃𝑃 applies to those 𝑧𝑧 such that 𝑧𝑧 = 𝑥𝑥 
or 𝑧𝑧 ∈ 𝑥𝑥, i.e., 𝑄𝑄(𝑧𝑧) ∨ (∃𝑥𝑥)(𝑄𝑄(𝑥𝑥) ∧ 𝑧𝑧 ∈ 𝑥𝑥). By Definition A.2 (Initial Segment) it follows that 𝑥𝑥 
and every 𝑧𝑧 ∈ 𝑥𝑥 occurs at some ordinal 𝑜𝑜 satisfying ord𝜔𝜔(𝑜𝑜). As ord𝜔𝜔, <𝜔𝜔 has no maximal 
element there are ordinals 𝑜𝑜′, 𝑜𝑜″ in 𝑉𝑉𝜔𝜔 such that 𝑜𝑜 <𝜔𝜔 𝑜𝑜′ <𝜔𝜔 𝑜𝑜″. Clearly {𝑥𝑥} is availible at 𝑜𝑜′ and 
thus by the fatness condition (condition 5) in Definition A.2 (Initial Segment) applied to the 
property 𝑃𝑃 it follows that 𝑆𝑆(𝑥𝑥) is available at 𝑜𝑜″ and thus satisfies set𝜔𝜔 giving the desired 
contradiction. 

So we have 

𝒱𝒱(𝑉𝑉) ∧ (∃𝑥𝑥)(∅ ∈ 𝑥𝑥 ∧ (∀𝑦𝑦 ∈ 𝑥𝑥)(𝑆𝑆(𝑦𝑦) ∈ 𝑥𝑥)) 

The theorem follows by leaving all ◊ contexts entered and applying Lemma B.8 (Diamond 
Collapsing). ■ 

With this fact in hand, we can now prove Proposition M.7 (Potential Infinity) as follows. 

Proof. As noted above, our strategy will be to establish the possibility of a 𝑉𝑉1 containing a set 𝑥𝑥 
which is successor closed and then argue that if 𝜌𝜌1(⌜𝑥𝑥⌝) = 𝑥𝑥 then 𝐸𝐸1(𝜃𝜃), where 𝜃𝜃 asserts that 
𝑥𝑥 is successor closed, is also true. 

To set this up, we need to get the claim 𝑥𝑥 is successor closed into a proper form for applying 
the bounded quantifiers lemma. So note that by Theorem 9.1 (Logical Closure of Translation) it 
suffices to prove the translation of the logically equivalent claim. 



𝐸𝐸((∃𝑥𝑥)𝜙𝜙(𝑥𝑥))
where
𝜙𝜙(𝑥𝑥) ↔

def
[∅ ∈ 𝑥𝑥 ∧ (∀𝑦𝑦 ∈ 𝑥𝑥)(∃𝑦𝑦′ ∈ 𝑥𝑥)(𝑆𝑆(𝑦𝑦) = 𝑦𝑦′)]

𝑆𝑆(𝑦𝑦) = 𝑦𝑦′ ↔
def
𝑦𝑦 ∈ 𝑦𝑦′ ∧ (∀𝑧𝑧 ∈ 𝑦𝑦)(𝑧𝑧 ∈ 𝑦𝑦′) ∧ (∀𝑧𝑧 ∈ 𝑦𝑦′)(𝑧𝑧 = 𝑦𝑦 ∨ 𝑧𝑧 ∈ 𝑦𝑦)

 

Note that when the definition of ∅ is expanded out we see that all quantifiers in 𝜙𝜙 are 
bounded29. 

So, for Lemma B.2 (Box Introduction), consider an arbitrary interpreted initial segment 𝑉𝑉�⃗ 0. 

By  Lemma M.7 we can have (◊) 𝑉𝑉�⃗  with a successor closed 𝑤𝑤. And by ◇ Ignoring ( Axiom 8.3) 
we can infer the corresponding ◊𝑉𝑉��⃗0  claim i.e., 

◊ �𝒱𝒱�⃗ (𝑉𝑉) ∧ (∃𝑥𝑥 ∣ set(𝑥𝑥))𝜙𝜙(𝑥𝑥)�𝑉𝑉��⃗0  

Enter this ◊𝑉𝑉��⃗0  context. By Lemma K.7 (Hierarchy Extending) we can have (◊𝑉𝑉��⃗0,𝑉𝑉��⃗ ) 𝑉𝑉1 ≥ 𝑉𝑉0 such 
that 𝑓𝑓 isomorphicly maps 𝑉𝑉 to an initial segment of 𝑉𝑉− ≤ 𝑉𝑉1. Enter this �𝑉𝑉��⃗0,𝑉𝑉��⃗  context and 
importing all relevant facts. By the Theorem I.1 (Isomorphism Lemma) we can infer (∃𝑥𝑥 ∣
set−(𝑥𝑥))𝜙𝜙[∈/∈−](𝑥𝑥). Via the Theorem L.1 (Translation Lemma) we can infer (∃𝑥𝑥 ∣ set1(𝑥𝑥))𝜙𝜙[∈
/∈1](𝑥𝑥). That is, 

𝒱𝒱�⃗ (𝑉𝑉0) ∧ 𝑉𝑉1 ≥ 𝑉𝑉0 ∧ (∃𝑥𝑥 ∣ set1(𝑥𝑥))𝜙𝜙[∈/∈
1

](𝑥𝑥) 

By Lemma L.1 (Pointwise Tweaking) it is possible (◊𝑉𝑉��⃗0,𝑉𝑉��⃗ ,𝑉𝑉1 )) that 𝑉𝑉�⃗1 ≥𝑥𝑥 𝑉𝑉�⃗ 0 with 𝜌𝜌1(⌜𝑥𝑥⌝) is a 
successor closed set, i.e., using the notation from Lemma L.6 (Bounded Quantifiers)  

◊ 𝑉𝑉�⃗1𝑉𝑉��⃗0,𝑉𝑉��⃗ ,𝑉𝑉1 ≥
𝑥𝑥
𝑉𝑉�⃗ 0 ∧ 𝜙𝜙𝑉𝑉��⃗1 

Enter this ◊𝑉𝑉��⃗0,𝑉𝑉��⃗ ,𝑉𝑉1  context. By the Lemma L.6 (Bounded Quantifiers) it follows that 

𝑉𝑉�⃗1 ≥𝑥𝑥 𝑉𝑉
�⃗ 0 ∧ 𝐸𝐸1(𝜙𝜙) 

Leaving all ◊ contexts and applying Diamond Collapsing (Lemma B.8 ) we derive 

◊ 𝑉𝑉�⃗1𝑉𝑉��⃗0 ≥
𝑥𝑥
𝑉𝑉�⃗ 0 ∧ 𝐸𝐸1(𝜙𝜙) 

But this is just 𝐸𝐸0((∃𝑥𝑥)𝜙𝜙). Hence, we have ⊢ 𝐸𝐸0((∃𝑥𝑥)𝜙𝜙) Applying Lemma B.2 (Box Introduction) 
we infer 

□𝒱𝒱�⃗ �𝑉𝑉0���⃗ � → 𝐸𝐸0(∃𝑥𝑥)𝜙𝜙) 

This completes the proof as this is just the desired conclusion 

                                                      
29 Note that ∅ ∈ 𝑥𝑥 abbreviates (∃𝑧𝑧 ∈ 𝑥𝑥)¬(∃𝑤𝑤 ∈ 𝑧𝑧)). 



𝐸𝐸((∃𝑥𝑥)𝜙𝜙) 

 ■ 

M.10 Replacement 

The axiom schema of replacement asserts that the image of a set under any definable function 
will also fall inside a set. 

Proposition M.8 (Potentialist Replacement).  Let 𝜃𝜃 be any formula in the language of ZFC whose 
free variables are 𝑥𝑥, 𝑦𝑦, 𝑎𝑎,𝑤𝑤1, … ,𝑤𝑤𝑛𝑛, so that, in particular, 𝑏𝑏 is not free in 𝜃𝜃. Then 

𝐸𝐸(∀𝑎𝑎∀𝑤𝑤1∀𝑤𝑤2 …∀𝑤𝑤𝑛𝑛[∀𝑥𝑥(𝑥𝑥 ∈ 𝑎𝑎 → ∃!𝑦𝑦 𝜃𝜃) → ∃𝑏𝑏∀𝑥𝑥(𝑥𝑥 ∈ 𝑎𝑎 → ∃𝑦𝑦(𝑦𝑦 ∈ 𝑏𝑏 ∧ 𝜃𝜃))]) 

By Theorem 9.1 (Logical Closure of Translation)  it’s enough to prove that 

𝐸𝐸(∀𝑎𝑎∀𝑤𝑤1∀𝑤𝑤2 …∀𝑤𝑤𝑛𝑛[∀𝑥𝑥(𝑥𝑥 ∈ 𝑎𝑎 → ∃𝑦𝑦 𝜃𝜃) → ∃𝑏𝑏∀𝑥𝑥(𝑥𝑥 ∈ 𝑎𝑎 → ∃𝑦𝑦(𝑦𝑦 ∈ 𝑏𝑏 ∧ 𝜃𝜃))]) 

So speaking loosely (in terms of quantifying in), we want to show that following. Given an initial 
segment 𝑉𝑉 and a set 𝑎𝑎 in 𝑉𝑉, if for every 𝑥𝑥 ∈ 𝑎𝑎 it’s logically possible that there is some initial 
segment 𝑉𝑉𝑥𝑥 extending 𝑉𝑉 and a set 𝑦𝑦𝑥𝑥 in 𝑉𝑉𝑥𝑥 making the potentialist translation of 𝜃𝜃(𝑥𝑥, 𝑦𝑦𝑥𝑥) true 
then it’s logically possible to have a single set 𝑏𝑏 in some 𝑉𝑉𝑏𝑏 ≥ 𝑉𝑉 that containing all those 
witnesses. By the Corollary L.1 (General Translation) potentialistic truth is absolute (i.e., all 
extensions of 𝑉𝑉𝑥𝑥 agree on the truth value of the potentialist translation of 𝜃𝜃(𝑥𝑥,𝑦𝑦𝑥𝑥)), unlike the 
notion of truth in a model. So it is enough to ensure that for each 𝑥𝑥 ∈ 𝑎𝑎 that 𝑉𝑉𝑏𝑏 extends some 
𝑉𝑉𝑥𝑥�  containing a 𝑦𝑦𝑥𝑥 ∈ 𝑏𝑏 satisfying 𝐸𝐸(𝜃𝜃(𝑥𝑥,𝑦𝑦𝑥𝑥)). 

Proof. By Theorem 9.1 (Logical Closure of Translation), it’s enough to prove an equivalent (over 
the remaining axioms of ZF) version of replacement that relaxes the requirement that 𝜃𝜃 be 
functional. 

⊢ 𝐸𝐸(∀𝑎𝑎∀𝑤𝑤1∀𝑤𝑤2 …∀𝑤𝑤𝑛𝑛[∀𝑥𝑥(𝑥𝑥 ∈ 𝑎𝑎 → ∃𝑦𝑦 𝜃𝜃(𝑥𝑥,𝑦𝑦)) → ∃𝑏𝑏∀𝑥𝑥(𝑥𝑥 ∈ 𝑎𝑎 → ∃𝑦𝑦(𝑦𝑦 ∈ 𝑏𝑏 ∧ 𝜃𝜃(𝑥𝑥,𝑦𝑦)))]) 

Using Lemma B.8 (Diamond Collapsing) and this claim can be simplified to: 

□[𝒱𝒱�⃗ �𝑉𝑉�⃗ 𝑛𝑛+1� → [𝐸𝐸𝑛𝑛+1�(∀𝑥𝑥)(𝑥𝑥 ∈ 𝑎𝑎 → ∃𝑦𝑦𝜃𝜃(𝑥𝑥,𝑦𝑦))� → 𝐸𝐸𝑛𝑛+1(∃𝑏𝑏∀𝑥𝑥(𝑥𝑥 ∈ 𝑎𝑎 → ∃𝑦𝑦(𝑦𝑦 ∈ 𝑏𝑏 ∧ 𝜃𝜃(𝑥𝑥,𝑦𝑦)))) 

So for Lemma B.2 (Box Introduction) we will consider an arbitrary situation in which 

𝒱𝒱�⃗ �𝑉𝑉�⃗ 𝑛𝑛+1� ∧ 𝐸𝐸𝑛𝑛+1 �(∀𝑥𝑥)�𝑥𝑥 ∈ 𝑎𝑎 → ∃𝑦𝑦𝜃𝜃(𝑥𝑥,𝑦𝑦)��              (𝑀𝑀12) 

And we will try to show that 𝐸𝐸𝑛𝑛+1(∃𝑏𝑏∀𝑥𝑥(𝑥𝑥 ∈ 𝑎𝑎 → ∃𝑦𝑦(𝑦𝑦 ∈ 𝑏𝑏 ∧ 𝜃𝜃)) holds in this situation.,i.e., 

◊ (𝑉𝑉��⃗𝑛𝑛+1 𝑉𝑉𝑛𝑛+2 ≥𝑏𝑏 𝑉𝑉𝑛𝑛+1 ∧ 𝐸𝐸𝑛𝑛+2(∀𝑥𝑥(𝑥𝑥 ∈ 𝑎𝑎 → ∃𝑦𝑦(𝑦𝑦 ∈ 𝑏𝑏 ∧ 𝜃𝜃))) 

As noted in Chapter 9, our strategy will be to use Axiom 8.13 (Amalgamation) to establish the 
possibility of a 𝑉𝑉�  which specifies, for each 𝑥𝑥 in 𝜌𝜌𝑛𝑛+1(⌜𝑎𝑎⌝), a way, 𝑉𝑉�⃗𝑥𝑥∗, of assigning ‘x’ to this 𝑥𝑥 
and ‘y’ to some 𝑦𝑦 which makes the potentialist translation of (𝜃𝜃) true. We will then use the 
Theorem K.1 (Hierarchy Combining) to build 𝑉𝑉𝛴𝛴 which contains (isomorphic images of) all these 



choices for ‘y,’ and add one layer to it to get 𝑉𝑉𝛴𝛴+1 = 𝑉𝑉𝑛𝑛+2 containing a set which has exactly 
these isomorphic images of choices for ‘y’ as elements. 

In our initial assumption (M12), i.e., 𝒱𝒱�⃗ �𝑉𝑉�⃗ 𝑛𝑛+1� ∧ 𝐸𝐸𝑛𝑛+1�(∀𝑥𝑥)(𝑥𝑥 ∈ 𝑎𝑎 → ∃𝑦𝑦𝜃𝜃(𝑥𝑥,𝑦𝑦))�, writing out 
the second conjunct formally yields: 

□ (𝑉𝑉��⃗𝑛𝑛+1 𝑉𝑉�⃗ 𝑛𝑛+2 ≥𝑥𝑥 𝑉𝑉
�⃗ 𝑛𝑛+1 ∧ 𝜌𝜌𝑛𝑛+2(⌜𝑥𝑥⌝) ∈

𝑛𝑛+2
𝜌𝜌𝑛𝑛+2(⌜𝑎𝑎⌝) → ◊ [𝑉𝑉��⃗𝑛𝑛+2 𝑉𝑉�⃗ 𝑛𝑛+3 ≥

y
𝑉𝑉�⃗ 𝑛𝑛+2 ∧ t𝑛𝑛+3(𝜃𝜃)])    (𝑀𝑀13) 

That is: however 𝑉𝑉�⃗ 𝑛𝑛+2 ≥𝑥𝑥 𝑉𝑉�⃗ 𝑛𝑛+1 assigns ‘x’ to a set belonging to 𝜌𝜌𝑛𝑛+2(⌜𝑎𝑎⌝) = 𝜌𝜌𝑛𝑛+1(⌜𝑎𝑎⌝) it is 
possible (◊𝑉𝑉��⃗𝑛𝑛+2 ) that 𝑉𝑉�⃗ 𝑛𝑛+3 ≥y 𝑉𝑉𝑛𝑛+2 which assigns 𝑦𝑦 in a way to make 𝐸𝐸𝑛𝑛+3(𝜃𝜃(𝑥𝑥,𝑦𝑦)) true. 

M.1 Deploying Amalgamation 

I will use Axiom 8.13 (Amalgamation)  to show that there could (◊𝑉𝑉��⃗𝑛𝑛+1 ) be a 𝑉𝑉�  which puts 
together witnesses to the above extendability claim (M13) .  

Specifically there could be a 𝑉𝑉�⃗�  which codes up30, for each object/position 𝑥𝑥 ∈𝑛𝑛+1 𝜌𝜌𝑛𝑛+1(⌜𝑎𝑎⌝), 
an initial segment 𝑉𝑉�⃗𝑥𝑥∗ which: 

• assigns ‘x’ to 𝑥𝑥 

• satisfies 𝑉𝑉�⃗𝑥𝑥∗ ≥x,y 𝑉𝑉�⃗ 𝑛𝑛+1 and hence doesn’t tamper with the assignment of any parameters in 
𝜃𝜃, (i.e., any variables 𝑤𝑤1. . .𝑤𝑤𝑚𝑚 other than 𝑥𝑥 and 𝑦𝑦 which are free in 𝜃𝜃) 

• satisfies t𝑛𝑛+3∗ (𝜃𝜃) (i.e. 𝐸𝐸𝑛𝑛+3(𝜃𝜃)[𝑉𝑉�⃗ 𝑛𝑛+3/𝑉𝑉�⃗ ∗]). 

To satisfy the conditions of Axiom 8.13 (Amalgamation), we start by using Axiom 8.4 (Simple 
Comprehension) to establish the possibility that 𝐼𝐼 applies to the 𝑥𝑥 ∈𝑛𝑛+1 𝜌𝜌𝑛𝑛+1(⌜𝑎𝑎⌝), i.e., 

◊ (𝑉𝑉��⃗𝑛𝑛+1 ∀𝑘𝑘)(𝐼𝐼(𝑘𝑘) ↔ 𝑘𝑘 ∈
𝑛𝑛+1

𝜌𝜌𝑛𝑛+1(⌜𝑎𝑎⌝))          (𝑀𝑀14) 

Enter this ◊𝑉𝑉��⃗𝑛𝑛+1  context. To apply Axiom 8.13 (Amalgamation)  we must establish that, however 
𝑄𝑄 selects a unique object from this index collection 𝐼𝐼, we can have a corresponding 𝑉𝑉𝑥𝑥∗ with the 
properties listed above. That is: 

□ [𝑉𝑉��⃗𝑛𝑛+1,𝐼𝐼 (∃! 𝑥𝑥 ∣ 𝑄𝑄(𝑥𝑥))(𝐼𝐼(𝑥𝑥)) → ◊ 𝛷𝛷𝑉𝑉��⃗𝑛𝑛+1,𝑄𝑄 ] 

where 𝛷𝛷 expresses the property (in terms of the unique 𝑥𝑥 satisfying 𝑄𝑄) that we each 𝑉𝑉𝑥𝑥 should 
satisfy. In this case that is 

𝛷𝛷 = 𝑉𝑉�⃗ ∗ ≥
𝑥𝑥,𝑦𝑦

𝑉𝑉�⃗ 𝑛𝑛+1 ∧ 𝑄𝑄(𝜌𝜌∗(⌜𝑥𝑥⌝)) ∧ t𝑛𝑛+3∗ (𝜃𝜃) 

                                                      
30 That is, it takes 𝑥𝑥 as an extra parameter and for each 𝑥𝑥 the remaining places satisfy the 
definition of an initial segment. 



We will prove this by Lemma B.2 (Box Introduction). So, consider an arbitrary scenario (holding 
fixed 𝑉𝑉�⃗ 𝑛𝑛+1, 𝐼𝐼 facts) in which (∃! 𝑥𝑥 ∣ 𝑄𝑄(𝑥𝑥))(𝐼𝐼(𝑥𝑥)). As we are holding fixed 𝑉𝑉�⃗ 𝑛𝑛+1 we may assume 
that 𝑉𝑉�⃗ 𝑛𝑛+1 is an interpreted initial segment. So by Lemma L.1 (Pointwise Tweaking) we can have 
𝜌𝜌𝑛𝑛+2 assign ‘𝑦𝑦’ to an object satisfying 𝑄𝑄. That is: 

◊ [𝑉𝑉��⃗𝑛𝑛+1,𝑄𝑄,𝐼𝐼 𝑉𝑉�⃗ 𝑛𝑛+2 ≥𝑥𝑥 𝑉𝑉
�⃗ 𝑛𝑛+1 ∧ 𝑄𝑄(𝜌𝜌𝑛𝑛+2(⌜𝑥𝑥⌝))] 

Enter this ◊𝑉𝑉𝑛𝑛+1,𝑄𝑄,𝐼𝐼  context. By (∃!𝑥𝑥 ∣ 𝑄𝑄(𝑥𝑥))(𝐼𝐼(𝑥𝑥)) and our characterization of the index 
property 𝐼𝐼 (the sentence inside equation (M14), we can derive that 𝜌𝜌𝑛𝑛+2(⌜𝑥𝑥⌝) is 
𝑥𝑥 ∈𝑛𝑛+1 𝜌𝜌𝑛𝑛+1(⌜𝑎𝑎⌝). So we have the antecedent of the conditional inside equation (M13) 
namely: 

𝑉𝑉�⃗ 𝑛𝑛+2 ≥𝑥𝑥 𝑉𝑉
�⃗ 𝑛𝑛+1 ∧ 𝜌𝜌𝑛𝑛+2(⌜𝑥𝑥⌝) ∈

𝑛𝑛+2
𝜌𝜌𝑛𝑛+2(⌜𝑎𝑎⌝) 

So importing and applying Lemma B.3 (Box Elimination) to (M13) lets us derive its consequent. 
Then applying ◊ Ignoring ( Axiom 8.3) to add 𝑄𝑄, 𝐼𝐼 to the subscript (as the sentence inside the ◇ 
above is CR: 𝑉𝑉�⃗ 𝑛𝑛+2,𝑉𝑉�⃗ 𝑛𝑛+3) gives us 

◊ �𝑉𝑉�⃗ 𝑛𝑛+3 ≥
y
𝑉𝑉�⃗ 𝑛𝑛+2 ∧ t𝑛𝑛+3(⌜𝜃𝜃⌝)�𝑉𝑉��⃗𝑛𝑛+1,𝑉𝑉��⃗𝑛𝑛+2,𝑄𝑄,𝐼𝐼  

Entering this context and importing the fact that 𝑉𝑉�⃗ 𝑛𝑛+2 ≥𝑥𝑥 𝑉𝑉�⃗ 𝑛𝑛+1 and 𝑄𝑄(𝜌𝜌𝑛𝑛+2(⌜𝑥𝑥⌝)) and using 
Axiom 8.7 (Logical Closure) we can derive: 

◊ 𝑉𝑉�⃗ 𝑛𝑛+3𝑉𝑉��⃗𝑛𝑛+1,𝑉𝑉��⃗𝑛𝑛+2,𝑄𝑄,𝐼𝐼 ≥
𝑥𝑥,𝑦𝑦

𝑉𝑉�⃗ 𝑛𝑛+1 ∧ 𝑄𝑄(𝜌𝜌𝑛𝑛+3(⌜𝑥𝑥⌝)) ∧ t𝑛𝑛+3(𝜃𝜃) 

Now dropping out of the two enclosing ◊ contexts and applying Lemma B.8 (Diamond 
Collapsing) and Lemma B.4 (Diamond Reducing) yields 

◊ [𝑉𝑉�⃗ 𝑛𝑛+3𝑉𝑉��⃗𝑛𝑛+1,𝑄𝑄 ≥
𝑥𝑥,𝑦𝑦

𝑉𝑉�⃗ 𝑛𝑛+1 ∧ 𝑄𝑄(𝜌𝜌𝑛𝑛+3(⌜𝑥𝑥⌝)) ∧ t𝑛𝑛+3(𝜃𝜃)] 

Applying Axiom 8.5 (Relabeling)  to replace 𝑉𝑉�⃗ 𝑛𝑛+3 with 𝑉𝑉�⃗ ∗ completes our derivation of ◊ 𝛷𝛷𝑉𝑉𝑛𝑛+1,𝑄𝑄  
from the assumption that (∃! 𝑥𝑥 ∣ 𝑄𝑄(𝑥𝑥))(𝐼𝐼(𝑥𝑥)). 

Thus we have 

𝒱𝒱�⃗ �𝑉𝑉𝑛𝑛+1��������⃗ �, ◊ (𝑉𝑉��⃗𝑛𝑛+1 ∀𝑘𝑘)(𝐼𝐼(𝑘𝑘) ↔ 𝑘𝑘 ∈
𝑛𝑛+1

𝜌𝜌𝑛𝑛+1(⌜𝑎𝑎⌝)) ⊢ (∃! 𝑥𝑥 ∣ 𝑄𝑄(𝑥𝑥))(𝐼𝐼(𝑥𝑥)) → ◊ 𝛷𝛷𝑉𝑉𝑛𝑛+1,𝑄𝑄  

As both the assumptions used above are content restricted to □𝑉𝑉��⃗𝑛𝑛+1,𝐼𝐼  we may use Lemma B.2 
(Box Introduction) to infer 

□ [𝑉𝑉��⃗𝑛𝑛+1,𝐼𝐼 (∃! 𝑥𝑥 ∣ 𝑄𝑄(𝑥𝑥))(𝐼𝐼(𝑥𝑥)) → ◊ 𝛷𝛷𝑉𝑉��⃗𝑛𝑛+1,𝑄𝑄 ] 

This completes our proof of the antecedent of Axiom 8.13 (Amalgamation). So by applying 
Axiom 8.13 (Amalgamation)  we can infer 



◊ (𝑉𝑉��⃗𝑛𝑛+1,𝐼𝐼 (∀𝑦𝑦)(∀𝑥𝑥)(∀𝑥𝑥′)�(¬𝑥𝑥 = 𝑥𝑥′ ∧ 𝜋𝜋(𝑦𝑦, 𝑥𝑥) ∧ 𝜋𝜋(𝑦𝑦, 𝑥𝑥′) → 𝑦𝑦 ∈ Ext(𝑉𝑉�⃗ 𝑛𝑛+1)� ∧
□ [𝑉𝑉��⃗𝑛𝑛+1,𝐼𝐼,𝑉𝑉��⃗� (∃!𝑥𝑥 ∣ 𝑄𝑄(𝑥𝑥))(𝐼𝐼(𝑥𝑥) ∧ 𝛹𝛹(𝑥𝑥)) → 𝛷𝛷))               (𝑀𝑀15) 

 

where 𝜋𝜋(𝑦𝑦, 𝑥𝑥) asserts that 𝑦𝑦 appears in some tuple ending with 𝑥𝑥 satisfying some ∈�, <� , @�  or 𝜌𝜌� ( 
i.e., informally 𝜋𝜋(𝑦𝑦, 𝑥𝑥) ↔ Ext(∈� (⋅, 𝑥𝑥), <� (⋅, 𝑥𝑥), @� (⋅,𝑥𝑥),𝜌𝜌�(⋅, 𝑥𝑥))(𝑦𝑦)) and 𝛹𝛹(𝑥𝑥) asserts that 𝑉𝑉�⃗ 𝑛𝑛+3∗  
is equal to 𝑉𝑉𝑥𝑥. 

𝛹𝛹(𝑥𝑥) = (∀𝑧𝑧,𝑦𝑦) �𝑧𝑧 ∈
∗

𝑛𝑛+3
𝑦𝑦 ↔∈� (𝑧𝑧, 𝑦𝑦, 𝑥𝑥)� ∧

(∀𝑜𝑜, 𝑢𝑢) �𝑜𝑜 <
∗

𝑛𝑛+3
𝑢𝑢 ↔<� (𝑜𝑜,𝑢𝑢, 𝑥𝑥)� ∧

(∀𝑜𝑜, 𝑧𝑧)�@𝑛𝑛+3
∗ (𝑧𝑧, 𝑜𝑜) ↔ @� (𝑧𝑧, 𝑜𝑜, 𝑥𝑥)� ∧

(∀𝑧𝑧,𝑛𝑛)(𝜌𝜌𝑛𝑛+3∗ (𝑛𝑛) = 𝑧𝑧 ↔ 𝜌𝜌�(𝑛𝑛, 𝑥𝑥) = 𝑧𝑧)

  

Intuitively, this tells us that it’s logically possible to have a 𝑉𝑉�⃗�  which provides a parameterized 
witness to the property 𝛷𝛷. Note that the first line of equation (M15) asserts that the overlap of 

𝑉𝑉𝑥𝑥 and 𝑉𝑉𝑥𝑥′ (where these are given by substituting 𝑥𝑥 into the last place of the relations in 𝑉𝑉�⃗� ) for 
𝑥𝑥 ≠ 𝑥𝑥′ is contained in 𝑉𝑉�⃗ 𝑛𝑛+1 while the second line tells us that for any choice of 𝑥𝑥 satisfying 𝐼𝐼 if 
𝑉𝑉𝑛𝑛+3∗ = 𝑉𝑉𝑥𝑥 then 𝛷𝛷 is satisfied by the pair 𝑉𝑉𝑛𝑛+3∗  and 𝑥𝑥. 

M.2 Constructing 𝑉𝑉𝑛𝑛+2 and 𝜌𝜌𝑛𝑛+2 

M.2.1 Strategy 

Now we ultimately need to show that 

𝐸𝐸𝑛𝑛+1(∃𝑏𝑏∀𝑥𝑥(𝑥𝑥 ∈ 𝑎𝑎 → ∃𝑦𝑦(𝑦𝑦 ∈ 𝑏𝑏 ∧ 𝜃𝜃))) 

or, equivalently, 

◊ (𝑉𝑉��⃗𝑛𝑛+1 𝑉𝑉�⃗ 𝑛𝑛+2 ≥𝑏𝑏 𝑉𝑉
�⃗ 𝑛𝑛+1 ∧ 𝐸𝐸𝑛𝑛+2(∀𝑥𝑥(𝑥𝑥 ∈ 𝑎𝑎 → ∃𝑦𝑦(𝑦𝑦 ∈ 𝑏𝑏 ∧ 𝜃𝜃(𝑥𝑥,𝑦𝑦)))) 

So we want to construct a 𝑉𝑉�⃗ 𝑛𝑛+2 ≥𝑏𝑏 𝑉𝑉�⃗ 𝑛𝑛+1 which assigns ‘b’, so as to make 𝐸𝐸𝑛𝑛+2(∀𝑥𝑥(𝑥𝑥 ∈ 𝑎𝑎 →
∃𝑦𝑦(𝑦𝑦 ∈ 𝑏𝑏 ∧ 𝜃𝜃(𝑥𝑥,𝑦𝑦))) true. 

My strategy will be to use Theorem K.1 (Hierarchy Combining) to put together the initial 
segments 𝑉𝑉𝑥𝑥 into a single 𝑉𝑉𝛴𝛴 ≥ 𝑉𝑉𝑛𝑛+1 which extends (isomorphic copies of) each 𝑉𝑉𝑥𝑥 and thus 
contains an image 𝑦𝑦𝑥𝑥 for each 𝑥𝑥 in 𝑎𝑎 under 𝜃𝜃. Then by applying Lemma K.7 (Hierarchy 
Extending) we will extend 𝑉𝑉𝛴𝛴 to a 𝑉𝑉𝛴𝛴+1 containing a set 𝑏𝑏, collecting together all the witnesses 
𝑦𝑦𝑥𝑥. 𝑉𝑉�⃗ 𝑛𝑛+2 will then be the structure 𝑉𝑉𝛴𝛴+1 paired with an assignment of ⌜𝑏𝑏⌝ to this set 𝑏𝑏. 

M.2.2 Using the Hierarchy Combining Lemma to get 𝑉𝑉𝛴𝛴 

Applying the Theorem K.1 (Hierarchy Combining) requires we demonstrate that 

□ (𝑉𝑉�,𝐼𝐼,𝑉𝑉��⃗𝑛𝑛+1 ∃!𝑥𝑥 ∣ 𝑄𝑄(𝑥𝑥))(𝐼𝐼(𝑥𝑥) ∧ 𝛶𝛶(𝑥𝑥)) → 𝒱𝒱�⃗ (𝑉𝑉∗)] 



where 

𝛶𝛶(𝑥𝑥) = (∀𝑧𝑧,𝑦𝑦) �𝑧𝑧 ∈
∗
𝑦𝑦 ↔∈� (𝑧𝑧,𝑦𝑦, 𝑥𝑥)� ∧

(∀𝑜𝑜,𝑢𝑢) �𝑜𝑜 <
∗
𝑢𝑢 ↔<� (𝑜𝑜,𝑢𝑢, 𝑥𝑥)� ∧

(∀𝑜𝑜, 𝑧𝑧)�@∗(𝑧𝑧, 𝑜𝑜) ↔ @� (𝑧𝑧, 𝑜𝑜, 𝑥𝑥)�

 

This is very close to the □ claim we already have in equation (M15). And 𝛷𝛷 clearly implies 
𝒱𝒱�⃗ (𝑉𝑉∗), so entering the ◊𝑉𝑉��⃗𝑛𝑛+1,𝐼𝐼  from equation (M15) and then applying Lemma H.2 (Box Closure) 
yields: 

□ �(∃! 𝑥𝑥 ∣ 𝑄𝑄(𝑥𝑥))(𝐼𝐼(𝑥𝑥) ∧ 𝛹𝛹(𝑥𝑥)) → 𝒱𝒱�⃗ (𝑉𝑉∗))�𝑉𝑉��⃗𝑛𝑛+1,𝐼𝐼,𝑉𝑉�  

It remains to handle the wrinkle that 𝛹𝛹 differs from 𝛶𝛶 in also requiring that 𝜌𝜌∗ applies as per 
𝜌𝜌�𝑛𝑛+3 , so the antecedent of the conditional we have is slightly stronger than the antecedent of 
the conditional we want. 

So suppose for Lemma B.2 (Box Introduction) that (∃! 𝑥𝑥 ∣ 𝑄𝑄(𝑥𝑥))(𝐼𝐼(𝑥𝑥) ∧ 𝛶𝛶(𝑥𝑥)) (while holding 

fixed the 𝑉𝑉��⃗ , 𝐼𝐼,𝑉𝑉�⃗ 𝑛𝑛+1 facts). Then by Axiom 8.4 (Simple Comprehension): 

◊ (𝑉𝑉��⃗𝑛𝑛+1,𝐼𝐼,𝑉𝑉��⃗�,𝑄𝑄,𝑉𝑉∗ ∃! 𝑥𝑥 ∣ 𝑄𝑄(𝑥𝑥))(𝐼𝐼(𝑥𝑥) ∧ 𝛶𝛶(𝑥𝑥)) ∧ (∀𝑧𝑧,𝑛𝑛)(𝜌𝜌𝑛𝑛+3∗ (𝑛𝑛) = 𝑧𝑧 ↔ 𝜌𝜌�(𝑛𝑛, 𝑥𝑥) = 𝑧𝑧)        (𝑀𝑀16) 

Entering this ◊𝑉𝑉��⃗𝑛𝑛+1,𝐼𝐼,𝑉𝑉��⃗�,𝑄𝑄,𝑉𝑉∗  context we can infer (∃!𝑥𝑥 ∣ 𝑄𝑄(𝑥𝑥))(𝐼𝐼(𝑥𝑥) ∧ 𝛶𝛶(𝑥𝑥)) and import equation 

(M16) . Applying Lemma B.3 (Box Elimination) to (M16), we deduce 𝒱𝒱�⃗ (𝑉𝑉∗). And as 𝒱𝒱�⃗ (𝑉𝑉∗) is 
content restricted to 𝑉𝑉∗, so by Axiom 8.2 (Diamond Elimination) we can export it from this 
◊𝑉𝑉��⃗𝑛𝑛+1,𝐼𝐼,𝑉𝑉��⃗�,𝑄𝑄,𝑉𝑉∗  context. 

Thus we’ve proved 

(∃!𝑥𝑥 ∣ 𝑄𝑄(𝑥𝑥))(𝐼𝐼(𝑥𝑥) ∧ 𝛹𝛹(𝑥𝑥)) → 𝒱𝒱�⃗ (𝑉𝑉∗)) 

using only the assumption that equation (M16), which is content restricted to 𝑉𝑉� , 𝐼𝐼,𝑉𝑉�⃗ 𝑛𝑛+1 so we 
may infer equation (M15) using Lemma B.2 (Box Introduction). Applying the Theorem K.1 
(Hierarchy Combining) to equation (M15) lets us infer 

◊ [𝑉𝑉��⃗𝑛𝑛+1,𝑉𝑉�,𝐼𝐼 𝑉𝑉𝛴𝛴 ≥ 𝑉𝑉𝑛𝑛+1 ∧ 𝑣𝑣rng(𝑓𝑓) ⊂ Ext(𝑉𝑉𝛴𝛴) ∧ 𝑣𝑣 ∧
□ (𝑉𝑉�,𝐼𝐼,𝑉𝑉𝛴𝛴,𝑓𝑓 (∃! 𝑥𝑥 ∣ 𝑄𝑄(𝑥𝑥))(𝐼𝐼(𝑥𝑥) ∧ 𝛶𝛶(𝑥𝑥)) → ◊ (𝑉𝑉�,𝐼𝐼,𝑓𝑓,𝑉𝑉𝛴𝛴 𝑉𝑉∗ ≅

𝑓𝑓
𝑉𝑉− ∧ 𝑉𝑉− ≤ 𝑉𝑉𝛴𝛴))]      (M17) 

This asserts the possibility of an initial segment 𝑉𝑉𝛴𝛴 which, as discussed above, extends an 
isomorphic copy of 𝑉𝑉𝑥𝑥 (represented here by 𝑉𝑉∗) for any 𝑥𝑥 satisfying 𝐼𝐼. 

M.2.3 Forming 𝑉𝑉𝑛𝑛+2,𝜌𝜌𝑛𝑛+2(𝑏𝑏) 

Enter the ◊𝑉𝑉��⃗𝑛𝑛+1,𝑉𝑉��⃗�,𝐼𝐼  context from equation (M17) . 



Now by the Proper Extension Lemma  Lemma K.4 we can infer the possibility of 𝑉𝑉𝑛𝑛+2 which 
adds (at least) one layer of sets to 𝑉𝑉𝛴𝛴. And applying ◊ Ignoring ( Axiom 8.3) to add subscripts we 
can conclude 

◊ 𝑉𝑉𝑛𝑛+2𝑉𝑉��⃗𝑛𝑛+1,𝑉𝑉��⃗�,𝐼𝐼,𝑉𝑉𝛴𝛴,𝑓𝑓 ≥ 𝑉𝑉𝛴𝛴 ∧ (∃𝑥𝑥)(ord𝑛𝑛+2(𝑥𝑥) ∧ (∀𝑦𝑦)(ord𝛴𝛴(𝑦𝑦) → 𝑦𝑦 <
𝑛𝑛+2

𝑥𝑥)) 

Entering the above ◊ context and applying Simple Comprehension ( Axiom 8.4) we can infer 
that 𝐻𝐻 could apply to exactly the sets we want to be elements of 𝜌𝜌𝑛𝑛+2(⌜𝑏𝑏⌝), i.e., 

◊ (𝑉𝑉��⃗𝑛𝑛+1,𝑉𝑉��⃗�,𝐼𝐼,𝑉𝑉𝛴𝛴,𝑓𝑓,𝑉𝑉𝑛𝑛+2
∀𝑦𝑦′)(𝐻𝐻(𝑦𝑦′) ↔ (∃𝑥𝑥)(∃𝑦𝑦)(𝐼𝐼(𝑥𝑥) ∧ 𝜌𝜌�(⌜𝑦𝑦⌝, 𝑥𝑥) = 𝑦𝑦 ∧ 𝑓𝑓(𝑦𝑦) = 𝑦𝑦′)) 

Note that the biconditional above says 𝐻𝐻(𝑦𝑦′) iff there is some 𝑥𝑥 such that 𝐼𝐼(𝑥𝑥) and 𝑦𝑦′ is the 
image of the 𝜌𝜌𝑥𝑥∗(⌜𝑦𝑦⌝)) selected by 𝑉𝑉�⃗𝑥𝑥∗. 

Now we need to show that 𝑉𝑉𝑛𝑛+2 contains a set whose elements are exactly those 𝑦𝑦′ such that 
𝐻𝐻(𝑦𝑦′). By the fact that rng(𝑓𝑓) ⊂ Ext(𝑉𝑉𝛴𝛴) using equation (M17) it follows that there is a set 𝑏𝑏 in 
𝑉𝑉𝑛𝑛+2 whose elements are exactly the 𝑦𝑦′ satisfying 𝐻𝐻(𝑦𝑦′). Applying the characterization of 𝐼𝐼 
inside equation (M14) we can translate the definition of 𝑏𝑏 in terms of 𝐼𝐼 into one in terms of the 
set 𝑎𝑎. In particular, we can deduce that 𝑏𝑏 must satisfy 

(∀𝑦𝑦′)[𝑦𝑦′ ∈
𝑛𝑛+2

𝑏𝑏 ↔ (∃𝑥𝑥)(∃𝑦𝑦)(𝑥𝑥 ∈
𝑛𝑛+1

𝜌𝜌𝑛𝑛+1(⌜𝑎𝑎⌝) ∧ 𝜌𝜌�(⌜𝑦𝑦⌝,𝑥𝑥) = 𝑦𝑦 ∧ 𝑓𝑓(𝑦𝑦) = 𝑦𝑦′) 

Finally applying Lemma L.1 (Pointwise Tweaking) to this existential claim and 𝑉𝑉𝑛𝑛+2,𝜌𝜌𝑛𝑛+1 
(importing the fact that 𝑉𝑉𝑛𝑛+2 ≥ 𝑉𝑉𝛴𝛴 ≥ 𝑉𝑉𝑛𝑛+1) lets us conclude that 

𝑉𝑉�⃗ 𝑛𝑛+2 ≥𝑏𝑏 𝑉𝑉
�⃗ 𝑛𝑛+1(∀𝑦𝑦′)[𝑦𝑦′ ∈

𝑛𝑛+2
𝜌𝜌𝑛𝑛+2(⌜𝑏𝑏⌝) ↔

(∃𝑥𝑥)(∃𝑦𝑦)(𝑥𝑥 ∈
𝑛𝑛+1

𝜌𝜌𝑛𝑛+2(⌜𝑎𝑎⌝) ∧ 𝜌𝜌�(⌜𝑦𝑦⌝,𝑥𝑥) = 𝑦𝑦 ∧ 𝑓𝑓(𝑦𝑦) = 𝑦𝑦′)
 

We now apply Lemma H.6 (Diamond Simplification) to collapse the ◊ contexts we entered in 
the last two subsections and importing the interior of equation (M14) to conclude 

◊𝑉𝑉��⃗𝑛𝑛+1,𝑉𝑉��⃗�,𝐼𝐼 (∀𝑘𝑘)(𝐼𝐼(𝑘𝑘) ↔ 𝑘𝑘 ∈
𝑛𝑛+1

𝜌𝜌𝑛𝑛+1(⌜𝑎𝑎⌝))

(∀𝑦𝑦)(∀𝑥𝑥)(∀𝑥𝑥′)�(¬𝑥𝑥 = 𝑥𝑥′ ∧ 𝜋𝜋(𝑦𝑦, 𝑥𝑥) ∧ 𝜋𝜋(𝑦𝑦, 𝑥𝑥′) → 𝑦𝑦 ∈ Ext(𝑉𝑉�⃗ 𝑛𝑛+1)� ∧
□ [𝑉𝑉��⃗𝑛𝑛+1,𝐼𝐼,𝑉𝑉��⃗� (∃!𝑥𝑥 ∣ 𝑄𝑄(𝑥𝑥))(𝐼𝐼(𝑥𝑥) ∧ 𝛹𝛹(𝑥𝑥)) → 𝛷𝛷)

[ 𝑉𝑉𝛴𝛴 ≥ 𝑉𝑉𝑛𝑛+1 ∧ 𝑣𝑣rng(𝑓𝑓) ⊂ Ext(𝑉𝑉𝛴𝛴) ∧ 𝑣𝑣
𝑉𝑉�⃗ 𝑛𝑛+2 ≥𝑏𝑏 𝑉𝑉

�⃗ 𝑛𝑛+1 ∧ (∀𝑦𝑦′)[𝑦𝑦′ ∈
𝑛𝑛+2

𝜌𝜌𝑛𝑛+2(⌜𝑏𝑏⌝) ↔ (∃𝑥𝑥)(∃𝑦𝑦)(𝑥𝑥 ∈
𝑛𝑛+1

𝜌𝜌𝑛𝑛+2(⌜𝑎𝑎⌝) ∧

𝜌𝜌�(⌜𝑦𝑦⌝,𝑥𝑥) = 𝑦𝑦 ∧ 𝑓𝑓(𝑦𝑦) = 𝑦𝑦′) ∧
□ (𝑉𝑉��⃗�,𝐼𝐼,𝑉𝑉𝛴𝛴,𝑓𝑓 (∃!𝑥𝑥 ∣ 𝑄𝑄(𝑥𝑥))(𝐼𝐼(𝑥𝑥) ∧ 𝛶𝛶(𝑥𝑥)) → ◊ (𝑉𝑉�,𝐼𝐼,𝑓𝑓,𝑉𝑉𝛴𝛴 𝑉𝑉∗ ≅

𝑓𝑓
𝑉𝑉− ∧ 𝑉𝑉− ≤ 𝑉𝑉𝛴𝛴))]

       (𝑀𝑀17) 

M.3 Verification for 𝑉𝑉�⃗ 𝑛𝑛+2 

It remains only to show that the 𝑉𝑉�⃗ 𝑛𝑛+2 we have constructed has the properties claimed by the 
(translation of) the consequent of the replacement axiom schema. Entering the ◊𝑉𝑉��⃗𝑛𝑛+1  context 
above we need to show 



𝑉𝑉�⃗ 𝑛𝑛+2 ≥𝑏𝑏 𝑉𝑉
�⃗ 𝑛𝑛+1 ∧ 𝐸𝐸𝑛𝑛+2(∀𝑥𝑥(𝑥𝑥 ∈ 𝑎𝑎 → ∃𝑦𝑦(𝑦𝑦 ∈ 𝑏𝑏 ∧ 𝜃𝜃)) 

We already know 𝑉𝑉�⃗ 𝑛𝑛+2 ≥𝑏𝑏 𝑉𝑉�⃗ 𝑛𝑛+1, and expanding out the second conjunct yields the following. 

□ [𝑉𝑉��⃗𝑛𝑛+2 𝑉𝑉𝑛𝑛+3 ≥𝑥𝑥 𝑉𝑉𝑛𝑛+2 ∧ 𝜌𝜌𝑛𝑛+3(⌜𝑥𝑥⌝) ∈
𝑛𝑛+3

𝜌𝜌𝑛𝑛+3(⌜𝑎𝑎⌝) →

◊ [𝑉𝑉��⃗𝑛𝑛+3 𝑉𝑉𝑛𝑛+4 ≥
y
𝑉𝑉𝑛𝑛+3 ∧ 𝜌𝜌𝑛𝑛+4(⌜𝑦𝑦⌝) ∈

𝑛𝑛+4
𝜌𝜌𝑛𝑛+4(⌜𝑏𝑏⌝) ∧ 𝐸𝐸𝑛𝑛+4(𝜃𝜃)]      (𝑀𝑀18) 

We first note that, as the sentence inside the □𝑉𝑉��⃗𝑛𝑛+2  in equation (M18) is content restricted to 

𝑉𝑉�⃗ 𝑛𝑛+3,𝑉𝑉�⃗ 𝑛𝑛+2. By Lemma H.1 (Box Ignoring) it’s sufficient to prove (where ℒ =
{𝑉𝑉�⃗ 𝑛𝑛+2,𝑉𝑉�⃗ 𝑛𝑛+1,𝑉𝑉𝛴𝛴,𝑉𝑉�⃗ 𝑛𝑛+2, 𝐼𝐼,𝑉𝑉�⃗� ,𝑓𝑓} 

□ [ℒ 𝑉𝑉𝑛𝑛+3 ≥𝑥𝑥 𝑉𝑉𝑛𝑛+2 ∧ 𝜌𝜌𝑛𝑛+3(⌜𝑥𝑥⌝) ∈
𝑛𝑛+3

𝜌𝜌𝑛𝑛+3(⌜𝑎𝑎⌝) →

◊ [𝑉𝑉��⃗𝑛𝑛+3 𝑉𝑉𝑛𝑛+4 ≥
y
𝑉𝑉𝑛𝑛+3 ∧ 𝜌𝜌𝑛𝑛+4(⌜𝑦𝑦⌝) ∈

𝑛𝑛+4
𝜌𝜌𝑛𝑛+4(⌜𝑏𝑏⌝) ∧ 𝐸𝐸𝑛𝑛+4(𝜃𝜃)]         (𝑀𝑀19) 

We will prove this claim by Lemma B.2 (Box Introduction). As the interior of equation (M16) is 

content restricted to 𝑉𝑉�⃗ 𝑛𝑛+2,𝑉𝑉�⃗ 𝑛𝑛+1,𝑉𝑉𝛴𝛴,𝑉𝑉�⃗ 𝑛𝑛+2, 𝐼𝐼,𝑉𝑉�⃗� ,𝑓𝑓 we may consider an arbitrary scenario in which 
this holds as well as 

𝑉𝑉𝑛𝑛+3 ≥𝑥𝑥 𝑉𝑉𝑛𝑛+2 ∧ 𝜌𝜌𝑛𝑛+3
(⌜𝑥𝑥⌝) ∈

𝑛𝑛+3
𝜌𝜌𝑛𝑛+3(⌜𝑎𝑎⌝).           (𝑀𝑀20) 

and derive that 

◊ [𝑉𝑉��⃗𝑛𝑛+3 𝑉𝑉𝑛𝑛+4 ≥
y
𝑉𝑉𝑛𝑛+3 ∧ 𝜌𝜌𝑛𝑛+4(⌜𝑦𝑦⌝) ∈

𝑛𝑛+4
𝜌𝜌𝑛𝑛+4(⌜𝑏𝑏⌝) ∧ 𝐸𝐸𝑛𝑛+4(𝜃𝜃)]        

M.4 Constructing 𝑉𝑉�⃗ 𝑛𝑛+4 

We proceed by building a 𝑉𝑉�⃗ ∗ equal to 𝑉𝑉�⃗𝑥𝑥 where 𝑥𝑥 = 𝜌𝜌𝑛𝑛+3(⌜𝑥𝑥⌝). We will then infer that 
𝐸𝐸𝑛𝑛+3∗ (𝜃𝜃) holds with respect to this 𝑉𝑉�⃗ ∗. We will then define 𝜌𝜌− to be the isomorphic image of 𝜌𝜌∗ 
under 𝑓𝑓 and use the isomorphism lemma to infer that 𝐸𝐸𝑛𝑛+3− (𝜃𝜃) =

def
𝐸𝐸𝑛𝑛+3− (𝜃𝜃)[𝑉𝑉∗/𝑉𝑉−] holds with 

respect to 𝑉𝑉−�����⃗  where 𝑉𝑉− ≤ 𝑉𝑉𝛴𝛴 ≤ 𝑉𝑉𝑛𝑛+3. We will then define 𝑉𝑉𝑛𝑛+4 to be equal to 𝑉𝑉𝑛𝑛+3 and use 
Lemma L.1 (Pointwise Tweaking) to let 𝜌𝜌𝑛𝑛+4 be equal to 𝜌𝜌𝑛𝑛+3 excepting only 𝜌𝜌𝑛𝑛+4(⌜𝑦𝑦⌝) which 
we instead define to be 𝜌𝜌−(⌜𝑦𝑦⌝). Then using Theorem L.1 (Translation) we infer 𝐸𝐸𝑛𝑛+4(𝜃𝜃) Note 
that in what follows we ensure that every ◊ context we enter we subscript ℒ,𝑉𝑉�⃗ 𝑛𝑛+3 allowing us 
to import the interior of equation (M16) in each context we enter. 

As indicated, we start by invoking Simple Comprehension (Axiom 8.4) (via Lemma H.7 (Multiple 
Definitions)) to define 𝑉𝑉�⃗ ∗ to be equal to 𝑉𝑉�⃗𝑥𝑥 (i.e., to make 𝛹𝛹(𝑥𝑥) hold from equation (M15)) and 
to define 𝑄𝑄 to hold of the unique value 𝜌𝜌𝑛𝑛+3(⌜𝑥𝑥⌝). More formally, we deduce the logical 
possibility (◊ℒ,𝑉𝑉��⃗𝑛𝑛+3 ) of 

(∀𝑘𝑘)�𝑄𝑄(𝑘𝑘) ↔ 𝑘𝑘 = 𝜌𝜌𝑛𝑛+3(⌜𝑥𝑥⌝)� ∧ 𝛹𝛹�𝜌𝜌𝑛𝑛+3(⌜𝑥𝑥⌝)�       (𝑀𝑀21) 

and 



(∀𝑧𝑧,𝑦𝑦) �𝑧𝑧 ∈
∗

𝑛𝑛+3
𝑦𝑦 ↔ (∃𝑥𝑥 ∣ 𝑄𝑄(𝑥𝑥)) ∈� (𝑧𝑧, 𝑦𝑦, 𝑥𝑥)� ∧

(∀𝑜𝑜,𝑢𝑢) �𝑜𝑜 <
∗

𝑛𝑛+3
𝑢𝑢 ↔ (∃𝑥𝑥 ∣ 𝑄𝑄(𝑥𝑥)) <� (𝑜𝑜,𝑢𝑢, 𝑥𝑥)� ∧

(∀𝑜𝑜, 𝑧𝑧)�@𝑛𝑛+3
∗ (𝑧𝑧, 𝑜𝑜) ↔ (∃𝑥𝑥 ∣ 𝑄𝑄(𝑥𝑥))@� (𝑧𝑧, 𝑜𝑜, 𝑥𝑥)� ∧

(∀𝑧𝑧,𝑛𝑛)(𝜌𝜌𝑛𝑛+3∗ (𝑛𝑛) = 𝑧𝑧 ↔ (∃𝑥𝑥 ∣ 𝑄𝑄(𝑥𝑥))𝜌𝜌�(𝑛𝑛, 𝑥𝑥) = 𝑧𝑧)

    (𝑀𝑀22) 

Enter this ◊ℒ,𝑉𝑉��⃗𝑛𝑛+3  context. We note for latter use that 𝜌𝜌∗(⌜𝑦𝑦⌝) = 𝜌𝜌�(⌜𝑦𝑦⌝,𝜌𝜌𝑛𝑛+3(⌜𝑥𝑥⌝)) 

By assumption we have 𝜌𝜌𝑛𝑛+3(⌜𝑥𝑥⌝) ∈𝑛𝑛+3 𝜌𝜌𝑛𝑛+3(⌜𝑎𝑎⌝) and as 𝑉𝑉�⃗ 𝑛𝑛+3 ≥𝑥𝑥 𝑉𝑉�⃗ 𝑛𝑛+2 ≥𝑏𝑏 𝑉𝑉�⃗ 𝑛𝑛+1 we can 
infer 𝜌𝜌𝑛𝑛+3(⌜𝑥𝑥⌝) ∈𝑛𝑛+1 𝜌𝜌𝑛𝑛+1(⌜𝑎𝑎⌝). Using the charachterization of 𝐼𝐼 we can conclude 
𝐼𝐼(𝜌𝜌𝑛𝑛+3(⌜𝑥𝑥⌝)). Hence, (as 𝛹𝛹(𝑥𝑥) is implied by equation (M22) ) we can infer (∃!𝑥𝑥 ∣
𝑄𝑄(𝑥𝑥))(𝐼𝐼(𝑥𝑥) ∧ 𝛹𝛹(𝑥𝑥)). Now using equation (M15)  (as included in equation (M16)) we have 

□ [(∃! 𝑥𝑥 ∣ 𝑄𝑄(𝑥𝑥))(𝐼𝐼(𝑥𝑥) ∧ 𝛹𝛹(𝑥𝑥)) → 𝛷𝛷)]
𝑉𝑉��⃗𝑛𝑛+1,𝐼𝐼,𝑉𝑉��⃗�  

Applying Lemma B.3 (Box Elimination) lets us deduce 

𝛷𝛷 = 𝑉𝑉�⃗ ∗ ≥
𝑥𝑥,𝑦𝑦

𝑉𝑉�⃗ 𝑛𝑛+1 ∧ 𝑄𝑄�𝜌𝜌∗(⌜𝑥𝑥⌝)� ∧ t𝑛𝑛+3∗ �𝜃𝜃(𝑥𝑥,𝑦𝑦)�.      (𝑀𝑀23) 

We now move to transfer the fact that t𝑛𝑛+3∗ (𝜃𝜃(𝑥𝑥, 𝑦𝑦) holds to infer that t𝑛𝑛+3− (𝜃𝜃(𝑥𝑥,𝑦𝑦) holds for 
some 𝑉𝑉− ≤ 𝑉𝑉𝛴𝛴. We do this by applying the last conjunct in equation (M16). That is 

□ (𝑉𝑉�,𝐼𝐼,𝑉𝑉𝛴𝛴,𝑓𝑓 (∃!𝑥𝑥 ∣ 𝑄𝑄(𝑥𝑥))(𝐼𝐼(𝑥𝑥) ∧ 𝛶𝛶(𝑥𝑥)) → ◊ (𝑉𝑉�,𝐼𝐼,𝑓𝑓,𝑉𝑉𝛴𝛴 𝑉𝑉∗ ≅
𝑓𝑓
𝑉𝑉− ∧ 𝑉𝑉− ≤ 𝑉𝑉𝛴𝛴)) 

Applying Lemma B.3 (Box Elimination) and ◊ Ignoring (Axiom 8.3) we can infer 

◊ (ℒ,𝑉𝑉��⃗𝑛𝑛+3 𝑉𝑉∗ ≅
𝑓𝑓
𝑉𝑉− ∧ 𝑉𝑉− ≤ 𝑉𝑉𝛴𝛴)        (𝑀𝑀24) 

Enter this ◊ℒ,𝑉𝑉��⃗𝑛𝑛+3  context and import all the facts we’ve established so far. Now we specify 𝜌𝜌− 
so that 𝑉𝑉�⃗ ∗ ≅𝑓𝑓 𝑉𝑉�⃗ − so we can apply the Theorem I.1 (Isomorphism Lemma). By Axiom 8.4 (Simple 
Comprehension) we infer 

◊ (ℒ,𝑉𝑉��⃗𝑛𝑛+3,𝑄𝑄,𝑉𝑉��⃗𝑛𝑛+4,𝑉𝑉− ∀𝑥𝑥)(∀𝑦𝑦)[𝜌𝜌−(𝑥𝑥) = 𝑦𝑦 ↔ 𝑦𝑦 = 𝑓𝑓(𝜌𝜌∗(𝑥𝑥))]         (𝑀𝑀25) 

Entering this context and importing all necessary facts we can derive that 𝑉𝑉�⃗ ∗ ≅𝑓𝑓 𝑉𝑉�⃗ − from 
equation (M24) and equation (M25) . Thus, from 𝐸𝐸𝑛𝑛+3∗ (𝜃𝜃) we can apply the Theorem I.1 
(Isomorphism Lemma) to deduce 𝐸𝐸𝑛𝑛+3− (𝜃𝜃) (where 𝐸𝐸𝑛𝑛+3− (𝜃𝜃) =

def
𝐸𝐸𝑛𝑛+3− (𝜃𝜃)[𝑉𝑉𝑛𝑛+3/𝑉𝑉−]). 

We now use Simple Comprehension ( Axiom 8.4) ( via Lemma H.7 (Multiple Definitions Lemma)) 
to define 𝑉𝑉𝑛𝑛+4 to be equal to 𝑉𝑉𝑛𝑛+3 and, entering this context, use Lemma L.1 (Pointwise 
Tweaking) to let 𝜌𝜌𝑛𝑛+4 be equal to 𝜌𝜌𝑛𝑛+3 excepting only 𝜌𝜌𝑛𝑛+4(⌜𝑦𝑦⌝) which we instead define to 
be 𝜌𝜌−(⌜𝑦𝑦⌝). Using ◊ Ignoring ( Axiom 8.3) we can expand the subscript of the ◇ introduced by 
Lemma L.1 (Pointwise Tweaking) to be ℒ,𝑉𝑉�⃗ 𝑛𝑛+3,𝑄𝑄,𝑉𝑉�⃗ 𝑛𝑛+4,𝑉𝑉− and enter this context importing all 
the (suitably content restricted) facts derived so far. 



We now argue that 

𝑉𝑉�⃗ 𝑛𝑛+4 ≥
y
𝑉𝑉�⃗ 𝑛𝑛+3 ∧ 𝜌𝜌𝑛𝑛+4(⌜𝑦𝑦⌝) ∈

𝑛𝑛+4
𝜌𝜌𝑛𝑛+4(⌜𝑏𝑏⌝) ∧ 𝐸𝐸𝑛𝑛+4(𝜃𝜃).     (𝑀𝑀26) 

We already have that 𝑉𝑉�⃗ 𝑛𝑛+4 ≥y 𝑉𝑉�⃗ 𝑛𝑛+3 and by (M20) we have 𝜌𝜌𝑛𝑛+3(⌜𝑦𝑦⌝) ∈𝑛𝑛+3 𝜌𝜌𝑛𝑛+3(⌜𝑏𝑏⌝) and 
thus as 𝑉𝑉�⃗ 𝑛𝑛+4 ≥y 𝑉𝑉�⃗ 𝑛𝑛+3 we have 𝜌𝜌𝑛𝑛+4(⌜𝑦𝑦⌝) ∈𝑛𝑛+4 𝜌𝜌𝑛𝑛+4(⌜𝑏𝑏⌝) so we now work to show that 
𝐸𝐸𝑛𝑛+4(𝜃𝜃). To this end we establish that 𝜌𝜌− and 𝜌𝜌𝑛𝑛+4 agree on all variables free in 𝜃𝜃 so that we 
may apply the Theorem L.1 (Translation)  to go from 𝐸𝐸𝑛𝑛+3− (𝜃𝜃) to 𝜌𝜌𝑛𝑛+4 and 𝜌𝜌∗ 𝐸𝐸𝑛𝑛+4(𝜃𝜃). 

To this end we note that 𝜌𝜌𝑛𝑛+4 and 𝜌𝜌∗ agree with 𝜌𝜌𝑛𝑛+1, and hence each other, on all variables 
other than 𝑥𝑥,𝑦𝑦 and 𝑏𝑏 since 

𝑉𝑉�⃗ 𝑛𝑛+4 ≥𝑦𝑦 𝑉𝑉�⃗ 𝑛𝑛+3 ≥𝑥𝑥 𝑉𝑉
�⃗ 𝑛𝑛+2 ≥𝑏𝑏 𝑉𝑉

�⃗ 𝑛𝑛+1 

and 

𝑉𝑉�⃗ ∗ ≥
𝑥𝑥,𝑦𝑦

𝑉𝑉�⃗ 𝑛𝑛+1 

And by equation (M21) and equation (M23) we can conclude that 𝜌𝜌𝑛𝑛+3 (and hence 𝜌𝜌𝑛𝑛+4) and 
𝜌𝜌∗ agree on 𝑥𝑥 as well. Furthermore, by equation (M20)  we know that 
𝜌𝜌𝑛𝑛+3(⌜𝑥𝑥⌝) ∈𝑛𝑛+3 𝜌𝜌𝑛𝑛+3(⌜𝑎𝑎⌝) and as 𝜌𝜌𝑛𝑛+3(⌜𝑎𝑎⌝) = 𝜌𝜌𝑛𝑛+1(⌜𝑎𝑎⌝) it follows that 𝜌𝜌∗(⌜𝑥𝑥⌝) is in 
𝑉𝑉𝑛𝑛+1 as well. Since 𝑉𝑉𝑛𝑛+1 ≤ 𝑉𝑉∗ and 𝑉𝑉𝑛𝑛+1 ≤ 𝑉𝑉− by Lemma K.1 and K.2 (Isomorphism Agreement 
Lemmas)   it follows that 𝑓𝑓 is the identity on 𝑉𝑉𝑛𝑛+1 and thus 𝜌𝜌− agrees with 𝜌𝜌∗ and hence 𝜌𝜌𝑛𝑛+4 
on all variables other than 𝑦𝑦 and 𝑏𝑏. 

But by assumption 𝑏𝑏 isn’t free in 𝜃𝜃 and our application of the Lemma L.1 (Pointwise Tweaking)  
defined 𝜌𝜌𝑛𝑛+4(⌜𝑦𝑦⌝) to be and 𝜌𝜌−(⌜𝑦𝑦⌝) so we may apply Theorem L.1 (Translation) (see notes 
after the theorem regarding substituting 𝑉𝑉∗ for 𝑉𝑉𝑛𝑛+3) to infer 𝐸𝐸𝑛𝑛+4(𝜃𝜃) from 𝐸𝐸𝑛𝑛+3− (𝜃𝜃). This 
completes our proof that equation (M26). Leaving the most recent ◊ context and applying 
Lemma H.6 (Diamond Simplification) yields 

◊ (𝑉𝑉𝑛𝑛+4��������⃗
𝑉𝑉��⃗𝑛𝑛+3 ≥

y
𝑉𝑉𝑛𝑛+3��������⃗ ∧ 𝜌𝜌𝑛𝑛+4(⌜𝑦𝑦⌝) ∈

𝑛𝑛+4
𝜌𝜌𝑛𝑛+4(𝑏𝑏) ∧ 𝐸𝐸𝑛𝑛+4(𝜃𝜃)) 

As this fact is content restricted to 𝑉𝑉�⃗ 𝑛𝑛+3 we can pull it out of all intermediate ◊ contexts 
(because they all subscript 𝑉𝑉�⃗ 𝑛𝑛+3) to establish that (M26) as desired. Since our proof of (M26) 
relied only on the assumption of the antecedent 

𝑉𝑉𝑛𝑛+3 ≥𝑥𝑥 𝑉𝑉𝑛𝑛+2 ∧ 𝜌𝜌𝑛𝑛+3(⌜𝑥𝑥⌝) ∈
𝑛𝑛+3

𝜌𝜌𝑛𝑛+3(⌜𝑎𝑎⌝) 

and facts content restricted to ℒ we can apply Lemma B.2 (Box Introduction) to infer equation 
(M.19) which, by the discussion at the top of subsection M.10.2 suffices to complete the 
proof. ■ 
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