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Chapter 1

For a circular orbit of radius r the centrifugal acceleration, w?r must
balance the gravitational acceleration Ci_—év[,
9 GM N GM
wr = —— w=\—
r2 P30
and v = wr, so

GM
v=1/—.
r

Non-relativistically the escape velocity can be determined by setting
the total energy, the sum of the kinetic and potential energy, to zero.
If the total energy is negative the orbit is bounded, if it is positive
the orbit is unbounded. Zero energy is the watershed value between
these two cases. For a test mass m at the surface of a planet of mass
M and radius R, moving vertically upward with speed v, the total
energy is

1 GM
e
The escape velocity is determined by setting E = 0, so
5 2GM
v = —.

R

When R = zf—QM we have v = c.

The fact that the non-relativistic Newtonian escape velocity is
equal to ¢ when R is the Schwarzschild radius is just a co-incidence, it
uses the non-relativistic kinetic energy which is incorrect when v = c.
It is an incorrect calculation which gets the correct answer using an

erroneous argument, but it can be useful as a mnemonic.
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3) a) Since [ is constant it can be evaluated for any P. When P = A
the length [ of the string must be twice the distance from O to A,
which is A+ a, so [ = 2(A + a).

b) In Cartesian co-ordinates x = rcosf, y = rsinf, relative to the
origin O, the distance r from O to a point P on the ellipse is r =
/2% + y2. If 7 is the distance from O to P then, by construction,

r+7+2A=1=2(A+a) = r+7=2a.

¢) 1) The distance from A to B is 2a but this is also the sum of the
distance from O to A plus the distance from O to B, which
is
To To - 27‘0
1—e+1+e_ 1—e2’

hence
T0
a=—-:.
1—e2

ii) A is the distance O’B minus the distance OB, or

To To To Tro€

A: — = — == .
“ l1+e 1—€2 14+e 1—¢€2

iii) When P is directly above O’, r = ¥ we have r = a, from ,
and OPO is an isosceles triangle, half of which is a right-
angled triangle with height b, base A and hypotenuse a, so
a’® = b% + A? from Pythagoras’ theorem. Hence

B2 — a2 — A2 — o _ rge? _ o
-y 0-e¢ (-

o
VI—e?
iv) from questions [3a)), B(c)i) and B(c)il)

l:2r0(e—|—1): 2r¢
1-¢8) (-o

= b=

d) From
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with 2/ =7/ cos@’ and y' = r'sin@’, [3(c)i) and [3(c)iii]) give

12

% (1 —e€?*)?cos? 0 + (1 —e?)sin®¢') =1
To
r?(1—€*)(1—e’cos® ') =g
N it (1.1)
r'e = . .
(1 —€2)(1—e?cos?0)
e) Again using
/2 2
Y
@t =l
but now with
.’I,‘/:x—FA:TCOSH—f—%’ y’:y:rgih@
we have
1— e®)rcosf +re)” (1 — e2)2 1—e?
(( ) 0) ( ;) +r2sin2€( 23):1
(1—e2)? g g
= ((1—62)7"0059—1—7“06)24—(1—eQ)TQSiHQG—rg =0
= r2(1 — €2 cos® 0) + 2rrpe cos O = 2

—2rgecos f £ \/4rge? cos? O + 4rg(1 — €2 cos? §)
T =
2(1 — e2 cos? 0)
ro(l F ecosf) 70

1—e2cos2 ~ (1+ecosh)’

We take the positive root to ensure that r is positive,
7o

"= (14 ecosb)

as required.

f) From [b), B(c)i) and

. 21 70
r=2a—r

T 1-e 1+ecosd
{2(1 + ecosh) — (1 —€?)}
(1 —e2)(1+ecosh)

(1 + 2ecosf + e?)rg
(1—e2)(1+ecosh)’

:7‘0

g) Relative to the origin O the area of a thin triangular wedge asso-
ciated with an infinitesimal variation §6 of 0 is %r259, so the area
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of the whole ellipse is

1 [ 9 r2 [ do Trd

- 0)do = -2 = 5575 = mab.

2/0 @) 2 /0 (1+ecosh)? (1—e2)3/2 e
The integral can be evaluated using the calculus of residues, by
writing cosf = %(z + 27 1), with z = €, and integrating around
the closed contour z = 1, on which df = —i%. Then

°r do . dz

/o (1+€COSG)2__Z]{Z(1+§(2+Z1))2
41 zdz
e? (22—}—%24—1)2

41 zdz
- ‘sz{ (2 — 24)2(z — 2)?

with z4 = 17@:92—1 and z;2- =1. For 0 <e <1, 2z, is inside
the unit circle and z_ is outside it. There is one pole inside the
contour, at z = z,, of order 2. Laurent expanding the integrand

about zy, with z = 24 + ¢,

z _ 24 1. 24 1 2 1 n
(z =212z =202 (24 —2)er (24 —2-)2 \2y  2z4—2-)) € 7
and the residue is

Zy 12 N () e?
2 (r—2)) (e —20)P 41—
The calculus of residues then gives

/2”d9 = 2mi _4 a (z)—727r
o (L+ecosh)? i e2 ) TV (1 —e2)3/2°

4) The lunar tides are due to the difference in the gravitational force
between the Moon and the Earth on opposite sides of the Earth. Let
M be the mas of the Earth, m be the mass of the Moon, D the Earth-
Moon distance (between their centres) and R the radius of the Earth.
Then the gravitational attraction between the Earth and the Moon
is Gg# and acceleration of the Earth is %—Zl =3.3 x 107°m/s?. In

terms of the dimensionless ratios

B e

_ R -2 _m -2
n=5=166x10"%  p=1r=123x10

this acceleration is a = gun? where g = ng is the acceleration due

to gravity at the surface of the Earth. The acceleration a does not
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Figure 1.1 Tidal forces due to the change in the Moon’s gravitational at-
traction over the Earth’s diameter. This diagram is drawn from above the
Moon’s orbital plane, looking down on the Earth’s equatorial plane.

cause D to decrease however as the Earth and the Moon are rotating
about their common centre of gravity and, in this rotating reference
frame, there is a compensating centrifugal force that keeps them in
orbit around the barycentre.

The calculation of the height of the tides is greatly simplified by the
fact that 7 is small, so we can expand in 7. To estimate the magnitude
of the lunar tides we compare the magnitude of the gravitational
forces exerted by the Moon on a unit mass of water at perilune (the
point P in figure and at apolune (the point A in figure [1.1)) to
the lunar force at the centre of the Earth (for a unit mass this the
same as calculating an acceleration).

The differences are

Gm Gm 2GmR 2GM _
DR D2 ~ o + I wn® = £2gun® = +£1.1x10 6m/sQ.

The acceleration due to gravity affecting a mass of water at the two
points A and P is the combination of that of the Earth and that of
the Moon,

ag = (1+2€)g

where € = un® = 5.6 x 1078, This should be compared to the vertical
acceleration due to gravity at the two points @ (for ‘quadrature’) and
@', 90° from perilune and apolune in figure which is simply g.
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The lunar tidal forces in a4 will support a height h of water where

agg= M _GM( 2h N (-l
9T R+ h2 R R -9 R R

(1.2)

so, to lowest order,
h = +eR = +un*R = +0.36m, (1.3)

compared to a point at 90° to perilune and apolune at which h = 0.
Repeating the calculation using the figures for the Sun, p = 33.5 x
10% and n = 4.2 x 1072, gives

h = +0.16m,

the tidal influence the Sun is about half that of the Moon. Although
the Sun is much farther away it is also much more massive than the
Moon and that latter property almost compensates for the greater
distance. From now on we shall forget about the Sun and just discuss
lunar tides, but the same analysis can be applied to solar tides.

This above argument is not the whole story of course, if it were
the height of the sea on the side of the Earth farthest away from
the Moon would be lowered by 36cm at the same time as the height
closest to the Moon is raised by 36cm, and this is not what happens,
high tides occur at the same time on opposite sides of the Earth.
This is because Earth and the Moon rotate about their common
centre of gravity, which results in a significant centrifugal force, and
this pushes the water away from the Moon, so that centrifugal force
might be expected to lower the ocean surface on the side closest to
the Moon and raised it on the other side. The effect is to make the
situation symmetric on opposite sides making high tide one half of
36¢cm, about 18cm on opposite sides of the Earth, though, as we shall
see, this is a slight underestimate.

In fact the centre of gravity of the Earth-Moon system lies inside
the Earth, under its surface, so one might worry that centrifugal force
would raise the tide on the surface closest to the Moon, rather than
lowering it, so we now give a more careful analysis.

The Moon raises tides due to the fact that the Earth is a rigid
body and the Moon’s gravitational field is not uniform. As the Earth
and the Moon orbit around their common centre of gravity (their
barycentre) the centre of the Earth is in free fall, but because the
Earth is a solid body the point on the Earth’s surface nearest the
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Moon (perilune) is not in free fall, it is moving sightly too slowly to
be, and neither is the point on the opposite side of the Earth farthest
from the Moon (apolune) in free fall, it is moving slightly too fast to
be. If the Earth were made entirely of water, every drop of which was
in a stable orbit around the barycentre the water would get stretched
and distorted, points at perilune forging ahead of the centre of the
FEarth and points at apolune lagging behind it in its orbit around the
barycentre.

As the earth rotates on its axis the perilune will perform one revolu-
tion about the equator every 24 hours, as does apolune (we are ignor-
ing the tilt of the Earth’s axis here). This rotation does not affect the
tides however: in the reference frame of the rotating Earth it gives rise
to a centrifugal acceleration ag = Q2R = 0.034m/s? = 3.4 x 1073g
on the equator, which is far greater than the tidal forces calculated
above and makes the ocean at the equator bulge out by some 22km
relative to the poles. But it is completely symmetric, all points at
the same latitude experience exactly the same height rise due to this
centrifugal force and there is no change as the Earth rotates, there
is no tidal variation due to this centrifugal force (we are ignoring the
tilt of the Earth’s axis relative to the plane of the Moon’s orbit here).

The estimate above gives the height of the lunar tide as 36cm at
perilune, above zero height at @, but it looks like a low tide of -36cm
and apolune, with a total tidal range of 72cm. But this is not correct:
high tide at perilune does not coincide with low tide at apolune. The
angular velocity of the rotation of the Earth-Moon system is given
by w? = w about the barycentre and results in a centrifugal
acceleration in the rotating frame of the Earth-Moon system that
modifies the above conclusion. The above calculation ignores the ro-
tation of the Earth about the barycentre. When this is included the
exact numbers change slightly, but the order of magnitude, un?, is
still correct.

Assuming the Earth-Moon system rotates about the centre of the
Earth (which is not quite true), the centrifugal acceleration of a point
on the Earth’s surface would be a, = w?R = 4.5 x 1075 m/s?, which,
according to the above logic, would generate an extra height of

2 2
ho B (“’R> Rn” _ 15m, (1.4)
2 g 2

nearly two orders of magnitude greater than that calculated above,
but this affects the point @ equally as much as A and P, and this
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Earth

Figure 1.2 Looking down on the Earth-Moon system from above the north
pole (ignoring the tilt of the Earth’s axis), the diagram shows the Earth’s
equatorial plane. The dashed circle, radius R, represents the solid surface of
the Earth. The ellipse represents the height of the sea level at the equator
when tides and rotation and are included (exaggerated for clarity). D is the
distance between the centre of the Moon and the centre of the Earth and B
is the barycentre. H represents the point on the equator on the Greenwich
meridian and 6 is the longitude of the perilunal point.

constant shift does not produce tides. To fully understand the tides
we need to calculate how the extra height difference generated by
this centrifugal acceleration varies for points across the globe from
perilune to apolune. This can be done by balancing the forces but a
simpler way is to observe that, in equilibrium, the surface of the sea
will be an equipotential surface and calculating the potential energy.

For simplicity consider what would happen if the Earth were to
rotate in the same plane as the Moon’s orbit, as in figure [I.2] below.
Of course this is not really the case, the Earth’s axis is tilted by 23%o
relative to the ecliptic and the Moon’s orbital plane is tilted by 5°
relative to the ecliptic, but in a first approximation we shall ignore
these complications and assume that 2 and w are parallel, as in figure
.2

Consider the Earth to be a perfect sphere, covered with water to a
depth of a few kilometers, with the dashed circle in the figure, of ra-
dius R = 6, 370km, representing the solid surface, assumed spherical,
(the figure is not to scale!). The solid ellipse represents the height of
the sea level at the equator, with r(§) = R+ h(@)ﬂ D is the distance

1 The excess volume comes from water flowing down from higher latitudes, water
is incompressible so the total volume of seawater is constant.
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between the centre of the Moon and the centre of the Earth and B,
the barycentre, is a distance [ from the centre of the Earth and a dis-
tance L from the centre of the Moon, so D = L + [. If H represents
the point on the equator on the Greenwich meridian (somewhere just
south of Ghana in Africa) then 6 is the longitude of the point at
perilune.

B is defined by
m
Ml=mL = l=—1L
" M

andl+ L =D so

1 L

BRI (1+M)D

For the Earth-Moon system [ = 0.74R and the barycentre actually
lies inside the Earth’s surface, about 3/4 of the way from the centre.

(1.5)

The rotation the Earth about the common centre of gravity of the
Earth-Moon system results in a centrifugal force w?b (in the reference
frame of the Earth) on fluid elements of unit mass a distance b from
the barycentre. w is obtained from Kepler’s third law

Gm
2
W=

where [ is given by (1.5)), so
. GM(l+p) GM
W= D3 T R3
and %’r = 27 days, the sidereal period of the Moon’s orbit. The cen-
trifugal acceleration (force per unit mass of water) at a point a dis-

n*(1+ p)

tance b away from B is w?b and the potential energy per unit mass
that generates this is
1
Vw = —§w2b2.
Let e = % < 1, then R+h = R(1+¢€) and, from elementary trigonom-
etry,

b2 =12 +1%2 — 2rlcosf

2
= (1_’_11)2772{#2 —2np(1 + ) (1 + €) cos O + (1 + p)?(1 4 €)%}
- (1+RW{H2 —2nu(1 + p) cos§ + n*(1 + p)* + O(e)},
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. _ Dy _ R
since | = 50 = (Hﬁ)n' So
1GM
V= M {1 = 2np(1 + ) cos @ + % (1 + p)?} + O(en).

2 R (1+pu) (L6)

The potential energy of a unit mass at the point H due to the
Moon’s gravitational attraction is

Gm _ _GMp
d d

and, again from elementary trigonometry,

Vi = —

R2
d>=r*>+ D* - 2rDcosf = ?(1 —2n(1+¢€)cosb +n*(1+¢€)?)

R2
= ?(1 —2ncosf +n° + O(e)).

So
GM B

R \/1—2ncosf + n?

Lastly, the potential energy of a unit mass at the point H due to
the Earth’s gravitational attraction is

GM GM 1 GM
Vit T R (1+¢) R (1-e+0()

Vin = — + O(en) (L.7)

Equipotential surfaces are therefore obtained from

V=Vy+V,+V,=const

ZGJW(—l—l—e— il

R V1 —2ncosf + n?

U
(1+n)

1
-5 {p? = 2npu(1 + p) cos O 4+ (1 + p)*} + O(en, €2)

Expanding in n < 1

n” 3
—1—|—e—/m(1+77c050—2+2772cos29)

1 7

2(1+p)

{u? = 2nu(1 + p) cos 0} + O(n?, en, €2) = const.

= e- g/m?’ cos® 0 4+ O(n*, e, €%) = const. (1.8)
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To a very good approximation equipotential surfaces are described
by

3 .
€(0) = i;md cos? 0 + const.
Sea level is at

Referring to the equation for an ellipse centered at O’ given in
equation (1.1]), and dropping the primes,

= 10 = 10 (1 + 6200829+O(€4))
V(1 —e2)(1—e2cos?0) (1—e2?) 2

and, to a very good approximation, the sea level at the equator forms
an ellipse with eccentricity

e=+/3un® =4.1x10"%

The full tidal range is

3R
7;”73 = 0.54m

and high tide is %,un?’ = 0.27m above mean sea level, simultane-
ously at perilune and apolune (P and A respectively), low tide is
0.27m below mean sea level, at § = 7/2 and 37/2 (Q and it’s anti-
podal point). These values are lower at higher latitudes away from
the equator.

Note that the average value of V,, in is

1o 1GM ¢ (1 + p)
— Vodd = —=—— I P 2
o J, 2 R (1+u)(“ T )
o 1GM 5 P g
—y g Wnm T )

and this corresponds to a uniform increase of sea level hy at the
equator given by hg = Reg where

M M M Ap2n — P+ A
G oM, - @ (1_(,“7 U n)>

R(1+€) TR 8

SO

R42 43_2
ho = (M77+877 nu):19.8m7

somewhat larger than the estimate (|1.4)), the difference being due to
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the fact that the barycentre is displaced from O. This is in addition
to the 22km due the Earth’s daily rotation about O, and does not
affect the tides.

The above calculation only assumed that n < 1 and € < 1, it did
not assume that p is small, equation works just as well for the
Sun as for the Moon, giving a solar tidal range of 0.24m, with ellipse
eccentricity e = 2.8 x 1074,

The calculation presented above is very simplistic, assuming that
the Earth can be treated as a perfect sphere covered by a film of
water, of uniform depth at the equator in the absence of tides. The full
story is of course much more complicated than that given above. The
Earth is not uniformly covered with an ocean of constant depth, the
depth varies and there are continents and indented coastlines which
impede the flow of water. This hugely complicates the issue and tidal
surges and resonances can lead to differing heights at different places
and even more than two tides a day. The highest tidal range on the
Earth is actually 16m, in the Bay of Fundy off Novia Scotia.
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1) In polar coordinates z = pcos ¢, y = psin ¢, with p? = 22 +y2. When
¢=m/2,x=0and y = p=>b(1+ cos(z/a)) so, rotating around the
z-axis, for a general value of ¢

y = bsin (1 + cos(z/a)), x =bceos (1 + cos(z/a)).

and
p=b(1+cos(z/a)).
Infinitesimally
b . b b
dp = ——sin(z/a)dz = —=+/1 — cos?(z/a)dz = ——~/1 — (p/b — 1)2dz
a a a
and
v (2p p?
2 _ 2
N 22— a® dp? B a®  dp?
T2 (2 _ 2\ p(26—p)
(Tp _ %) p (2b—p)
giving

ds® = da® 4+ dy? + d2° = dp? + p*d¢* + d2*
a® dp?
:dp2+p2d¢2+7
p (2b—p)
N (p(% —p) +a’
p(2b—p)

) dp* + p*d¢*.

14



Chapter 2 15

0NN SSasss

Wi

1
U

WNHFORNW
[

%

(|

Figure 2.1 Surface with cusps.

The metric is

P(QZE;bP)JF)GQ 0
- (4585 0)
gpp diverges as p — 0 (2 — £ma) while g4, vanishes there. The latter
is just the usual harmless coordinate singularity in 2-dimensional
polar coordinates, ¢ is not a good coordinate on the z-axis, but what
about the divergence in g,,?

The surface, for a = b =1 is sketched in figure [2.1

The shape is that of an old-fashioned wooden top, with sharp cusps
at z = +ma. The surface is not differentiable at these sharp points,
the curvature is singular there, these are real singularities in the ge-
ometry. You can check this by calculating the Ricci scalar, it diverges

at these two points.
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ct ct’

Figure 2.2 Space-like separated events, P and Q.

For simplicity set y = z = 0. Under a Lorentz transformation from
Cartesian coordinates (ct, z) in an inertial reference frame S to coor-
dinates (ct’,2’) in an inertial frame S’,

where y(v) = \/117772 Using this formula we can draw the ¢t and

2
z' axes in the ct-z plane, by plotting the lines 2’ = 0 and c¢t’ = 0
respectively, as in the figure below, where v > 0,

For the two events marked P and (Q, P happens before ) in the ct-x
coordinates system but after @ in the ct’-z’ system. This reversal of
temporal order is only possible if P and ) have space-like separation
(the dotted lines at 45° represent light-like directions).

We have
1 1
:c:i(vfu), ct:§(v+u),
SO

1 1
dz? = Z(dv2 —2dudv + du?), cdt? = Z(dUQ + 2dudv + du?)
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ct

Figure 2.3 Light-like coordinates,

and

1 0 -1\ (du
23,2 2 _ _ 2t
codt® + dx du dv 2(clu dv) (_1 0>(dv)'
Lines of constant u are at 45° to the x-axis and lines of constant v
are at —45°, or 135°, as in the figure below
These are light-like lines, hence the name light-like coordinates.
Fix X, then

T T
22 — 2% = X2 <cosh2 <CL) — sinh? <CL>) —X2>0

is a parabola in the ct-x plane, different values of X give different

parabolas.
Fix T then
cT
T cosh (T) — coth <cT>
: T
ct  sinh (<) L

is a straight line with ¢t = tanh (<) z, —1 < tanh (-) < 1, and
different values of T' give different slopes.
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ot ;

N
w

Figure 2.4
5) Fixing
PP =t =172 (2.1)
= 2pdp — 2c%tdt = 0
N i = At2dt? _ A2 dt?
0> 212 + L2
2t2

= dp2+p2dq52—czdt2=p2d¢2+( C

2 1,2
poroany i 1) codt

L2
(T2 242) 72 2 112
= (L* + c“t*)dg —(62t2+L2>cdt.

(2.2)

a hyperboloid of revolution and the metric (2.2)) has one time-like and
space-time.

The surface ¢?t? = x2+y?—L? is sketched in figure[s] for L = 1. Tt is
one space-like direction at every point, it is a curved 2-dimensional
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Figure 2.5 2-dimensional de Sitter space-time embedded in 3-dimensional
Minkowski space-time. The vertical axis is ¢t and the surface is the hyper-
bola 22 + y? = c?t?2 4+ L? (with L = 1). The light-cone 2 + y? = c?t? sits
inside the hyperboloid.

Now
cT
t = Lsinh | —
c sin (L)
T
= cdt = cosh (CL> cdT
T
=  Adt* = cosh? (CL) A2dT?
and
T T
A2+ L? = L2 ( sinh? bl +1) = L?cosh? ¢
L L
T
= ds® = L? cosh? (CL> d¢? — 2dT?

= a(T) = Lcosh (f) .
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This is a 2-dimensional Robertson-Walker space-time, corresponding
to an expanding universe when 7T is positive.

The only place on Earth that this could possibly happen is at the
south pole, so the bird must be a penguin!

The point is that polar co-ordinates, (latitude and longitude) are
not good co-ordinates at the south (or north) pole. Exactly at the
poles longitude is simply not defined, every degree of longitude cor-
responds to exactly the same point. This has no relevance to the
photographer of course, she just follows a perfectly regular isosceles
triangle which, to all intents and purposes, is on a flat plane. Note
that continuing in an easterly direction when you are 10km from the
south pole means you travel in a circle of radius 10km — it is not
a straight line (in navigation this is called a rhumb line), this has
nothing to do with curvature of the Earth, it is simply a consequence
of using polar co-ordinates around the origin.

Probably an emperor penguin, as these are the only birds that nest deep into the
interior of Antarctica, though in reality even an emperor probably wouldn’t get
as far in as the south pole itself, unless it was very lost!
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1) The equations of motion for & and y are

T = Qpt + Q%% 4 2Qyt (3.1)
y = —Qat + Q%% — 2Qzi

and the first integral for ¢ is

- ke + Qi — gi)
= wE e (3.3)

Combining equations (3.1) and (3.2))

iy — gz = —QiH — 2Qizt — QPP — 2044t

d, . o d
= = (@ - g2) = == (" + 5°)f)
= Fj-gi+ Q@ +5°)i=A (a constant)
Ay di
— —g— +Q t=A 4
= (49 - 0w+ ) i- 4 (3.4

Iy T
where we have used = ¢t and y = Z¥¢.

Non-relativistically (¢ — oo in (3.3)) ¢ = k and

- A

ay  .ax ~2 oy A
T ydt+Q(x +9°) ’

dj  _d¥

so, in the question, [ = % = A=Ilk.

21
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Now from equation ([3.3))

= t=

and putting this in (3.4), with A = [k, gives

- - 2 _02(72 1 2\ _ O(sdi _ ~di
<~dy~d:z:+9(j2+gz))<c (P +9?) -Q@E -3 t>>l

Tt~ Vat 2
_dy  _dx o . 9 l
= — —y—+Q = —Q".
<xdt ydt+ (= +9°) 15 9)
2) The Schwarzschild radius is
2GM
rs = 62
with G = 6.67 x 107 "'kg"'m?3s~2 and ¢ = 3 x 10%ms™!. Using the
4wrg

naive volume for a sphere of radius rg, , the density is

3

p=

3M  3M [ &2\’ 3¢
B 471'7’% CArm

9GM ) ~ 32xG2M?°

a) With M=6 x 10**kg, r, = 9mm and p = 2 x 103kg m~3, this is
an unimaginably high density — equivalent to packing the Sun
into a metre cubed box..

b) With M=2 x 103°kg, r, = 3km and p = 1.8 x 101%kg m~3, slightly
higher than the density of nuclear matter (the density of an atomic
nucleus).

c) With M=2 x 103kg, r, = 3 x 10°km and p = 1.8 x 10"kg m~3,
or about 18kg per cc. For a supermassive black hole with a mass
of 4 billion solar masses, p = 1.1kg m~2 = 1.1 x 1073g/cc, about
the density of air.

d) With M=10%3kg, rs = 1.5 x 10%km and p = 7.3 x 107 2"kg m 3.
This is about twice the average density of matter in the Universe.

3) For a black hole we use the Schwarzschild metric. When 6 and ¢ are

constant
2G'M dr?
2 _ 2 7,2
ds ——(1— 2 )cdt +7(1_2TGC¥>.
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With U* = (ct,r,0,0), the Lagrangian is

SGMY i 72
£:_<1—7102>Ct+ 2GM

(1-22)

The equation of motion for ¢(7) is

df 29Ny e
dr rc? - _(1—2GM)'

rc?

If 7 is the proper-time then £ = —c? and
22
272 r
1- 2 >Ct + (1 — 2610

rc?

= 2= —c <12G]2\4) + k2 = 2 (k21+2G]2\/I>
re re

The clock is dropped from rest implies that 7 = % = 0 when r = rg,

so the constant k is given by

k2:1—2GM

roc?

and

The proper time on the falling clock is

Tld
TC:/dT:/ —T
To r

1 ro 1 3/2 1
Te = r dr = "o / \/g dy
V2GM Jo., 11— = V2GM Jo V1—y
0

which is

The integral can be done exactly

/ \/ﬁiydy =sin" ' (v¥y) — Vy(l — ),

but if we only want rg > r; then

3/2
s o _ o [To
“ T ov2GM 2¢ \ s
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For an observer fixed at r = ry the proper time on their clock is
dro = /1 — 262 4¢. Using

roc?

dr 2GM dr
dt == W - — ]. - p)
dt roc (1-— 2680y o ( )
rc T0
the time their clock measures for the falling clock to fall from ry down
to rq is
_ 2GM 5
QGM / roc? ) \/T1 rzdr
V roc? V2GM  Jy, (1 _ L)1/2 (r _ QGZJVI)
T0 (&
2GM
_ 3 (1-3) o yidy
-0 r 1/2 r
26M o -y (y - 2)
B 7‘3/2 <1 2GM)/ y2dy
VRGM " o) e (1 (y— 5
o / Ly y2dy
V2GM Jo (y— %6) (1- y)l/2
where y = =, € = :—; and again the approximation is for rg > r; >
rg = QGM . Since - i > 1 we see that 79 > 7.. When r; goes all

the way down to the event horizon, 7 = rg, and the integral

/ Yy yidy
€ (y—ﬁ) (1—y>1/2
diverges logarithmically: while the falling clock takes a finite time to

reach the event horizon, according to itself, to a stationary observer
outside the event horizon it never reaches the event horizon.

4) In the text we took a short cut and used £ = —c? when 7 is the
proper time, here we shall derive equation [3.31] directly. The radial

equation [3.25] is

. GM K GMY , (| 26GM)
=702 (1_2GM) (1_2GM) 2y2 2y | 3

c2r c2r
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Dividing by 1 — ngrw and multiplying by 7 leads to a first integral

8 (GM)__GM K2 27
() @) T gyt
. d(fQ):d(M_F)
dr 1725214 dr 172271” 72
7'.2 C2I€2 l2
= [ _2GM ~ |_2GM 72:‘47

c2r c2r
where A is a constant.

Now let v = *£ and use conservation of angular momentum,

2 2

_ 20 TS 4 _Wwd gr__1du
I=re=00 T mTEd T @ rsdd
to get

Lp e e
(1—u)ry \do l—u 7%
du\? Ak*ry %A
= (d(b) +u?(l —u) = ZQS+ZST(1_U)'

k can now be eliminated by differentiating with respect to ¢

2 2
2du (du) Qudﬁ — SUQCLU — (TSA> dﬁ

do \ dg? dé dé 2 ) do
d*u 3, r3 A
= — — -yt =2
a2 T 202
Choosing A = —¢? is equivalent to requiring that 7 is the proper time,

though this is not forced on us, it is a choice of parameterisation.
5) Write the equation as

1
with
Ve rs 2 l2r5
V““)—z(‘ﬁcarz‘czrs)
and
E= é(kQ —1)
)

and view V(r) as the potential energy for a particle on unit mass
moving in one dimension with energy F.
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Extrema occur when 2% = 0,

dr
dl B é rs 212 3%rg —0
2 \r2  e2p3 0 e2p4 ) T

dr

There are extrema as r — 0o, where V' — 0, and at

Three cases to consider are

i) i—z > 3r2: there are two extrema at finite r, 7, is a minimum
and r_ a maximum; there is a circular orbit at 74 which is stable
and one at r_ which is unstable. If V(ry) < E < min{V(r_), 0}
there are bound elliptical orbits to the right of the peak, with
E = V(r;) being circular. If E > min{V(r_),0} there are no
bound orbits.

ii) «lTZ = 3r2: there is an inflexion point at r = 3rg where there is a
marginally stable circular orbit when E = V(3rg) = fg. Any
other value of E is either unbounded or unstable: for £ > 0 the
orbit is unbounded, for ' < 0 the orbit is inexorably sucked into
r = 0.

iii) i—z < 3r2: if the angular momentum is too low for a bound orbit,
all orbits are either unbounded or unstable, again E > 0 orbits
are unbounded and E < 0 orbits are eventually pulled toward
r = 0.

The smallest stable circular orbit occurs for [? = 3rc? and r =
3rg, so the speed is

. l l c
b=r(3) =i

Figure is a plot of 2% as a function of %: the closest approach

(&

of any stable orbit is when F = 0 and [ = 4r%¢?, at r = 2rg. So the

speed is
: l l
’]“(b =T (T2> = ; = 07

an upper limit to the speed of any massive particle.
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A . :
2 Unstable circular orbit
0.1
) ., Locus of extrema
I >4r; ¢ —
2 , Stable circular orbit
l =4r5c
‘T ~ ] ¢ §F
41.>17>3r2c? . t/rg
T~
,0'1_
-0.24
Marginally stable
circular orbit
-0.3-

Figure 3.1 Plot of the potential V as a function of % for various values of
the angular momentum [.

6) Since dr’ = 1_dTLs the Schwarzschild line element is

2 _ (1 _TS\ 2,2 _rs N2 20102 | o2 2
ds® = (1 T)cdt—i—(l T)(dr)—i—r(d@ + sin® 0d¢?)
- (1 - ’“75) (—c2d2 + (dr')?) + r2(d6? + sin? 0dg?).
Now u = ct — v’ and v = ct + r' implies that
dudv = (cdt — dr')(cdt 4 dr') = cdt® — (dr')?

hence

ds? = — (1 - 7"75) dudv + r*(d6? + sin® 0d?) (3.5)

and
v—1u

2

—rg
rs

=7 =r+rgln

)
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which implicitly defines r and ¢ as functions of u and v,

r(u,v) +rsln r(u,v) = rs =27 ct(u,v):v+u.
rs 2 2
Now let
( )
v =exp u =—exp|——
2rg 2rg
v , U du
= v—exp —_— ) —, du' =exp| —— | =—
rs T 2TS 2TS
= dv'du’ = —2 > dv du
rg
and
(v - u) r—rg ( r )
exp = exp | —
2rg rs rs
= dudvy = 4rke"/"s 5 ady.
r—rTrs

So now (|3.5) can be written as
473
ds? = TS e~r/ms qu/dv’ + 12(d6? + sin® §d¢?)
= :FF (o, ") du'dv' + 12 (d6* + sin? Odp?)
where F? = 4?—;6*7’/“5 and r(u/,v") defined through

u'v' = —exp (v—u) =—
2’[‘5

(the F sign is for r > rg and r < rg respectively).
No component of the metric is singular at » = rg, everything is

r—rs
er/rs

rs

perfectly regular. There is no singularity in the geometry at the event
horizon, the apparent singularity in the Schwarzschild line element is
just due to the fact that r is not a good coordinate at rg.
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1) Starting from the definition of the Christoffel symbols

1
Fllfp = 79/1)\(91/)\,;7 + Gror — gup,)\)

2
use
ox™ 0z v Oz oY
= e — g d A e

G = Gan oy IT¢ a g a9z 0z ?
SO
N

l/'p’ = 5 gl/'>\/ / +g>\/p v — g,//p/7)\/)
1 dxt oz PP 0x™ Ozt Lo, oz 0x¢ P 0x™ dx¢
~ 2\ 9z 9z ? 7\ 9z o I dzN e ¢ N\ B 9z 97

—_

\}

1 (o 81’\' o ox™ dx° 5 N ox™ 0z¢ 5 (927 9aC 5
N oz 0z oz oz~ ) 9P IT¢ oz~ oz ) 7 IT¢ oz oxr’ ) NIT¢

o (DTSN (0T SN (007 0a
p' axy/ 8$A/ gTC v’ 6a:>‘/ axp/ gTC Y axu/ 833/)/ gTC .

(4.1)

29
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Break this into two parts and consider them separately: the first three
terms on the right hand side are

1 oxH oz o ox™ 0z 5 N 9™ Ozl 5
2 axn B‘WU 9 8%”' ax)\’ p'97¢ ax,\/ a.’L'p, v' gr¢

07 0x¢ B,
a9z’ ) TN IT¢

1 ozt oz no | o
2\ 9an 92’
dx™ Ozt Ox¥ P n 0x™ 0z¢ Ox¥ 9
axl/l awA/ awp/ ngC afL’A/ afL'p, a,’L'V, ngC
_ Oz™ 0z¢ ox¥ P
Oz dzr’ azN ) FwIT¢
1 [ 0z 9z 9z ox” ox¥
-5 ’ 7 - ) 9" wYr¢
2 \ Oz" Ox° Oz ox¥ oxr
1 (02" 0xN 927\ [ 0af ([ 0z vy
2\ 9zn dx° dx oxr’ oz )9 GwIr¢
1 (02 9z Da ox™ 9zt L, 5
2\ 0z 9x° Oz ozv’ o’ )9 Gwdrc
' oz Oz®
no T no
8) (55) (5 ) o (5ot (35) (55 ) oo
1 {0zt ox™ ox¢
- w no
2 O (So—) <8x”/> <8ij/> g 8ng<
o 1 a.’IJH/ ox™ oxY o N 1 81‘}/ 6.’BC o o
= 5 B ax,/ 3:17’" g wlro 2 oz &rp' Gx”/ g wYol
_ 1 ozt ox™ 0z¢ no g
2 33:’7 axl,/ 65Cp/ g ag'rC

1 83:#’%% v +1 ax”l%@ﬂ .
= B oxn axl/ 8xp/ g wlro 2 oz axp/ 8m”’ g wloT

1 {0z 0x™ Oz® o
D) 81‘77 8:5’/ al’pl g cOrw

1 dxt dx™ dx
2

(5

dzn dxv’ axp'> 9" (Dagro + 1920 = Dzgra)

= ax”, Ox” Ox® T -
ozn Oxv' Oxr’ wt?
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the second three terms on the right hand side of (4.1f) are

1 o dxN (g ox™ 9z¢ P ox™ Oz _ 9 0x™ Oz
2\ 927 9279 P\ 0zv" 0z~ v\ 0z 9z’ A\ 9z Oz’

1 fox 0xN | 0?2 9z 027 9%*x O%x™ 0z
“ 2\ 0 9z Y ox?' Oz’ Oz ~ Oz Ozr' 0z = Ozv' OxN Oz
dxr™  9%aC B 2xm  9xC - dxr™  9%aC
9zN 07 0zF  0zN 0z 0xF Oz dxN oz ) I

dxr o™ 0%z™ 0z Ozm 0% -
/ ’ ’ + 7 7 ’ gn gTC
ox" Ox° Oz*' Ozv' Oz Oz Oxr Oz
ozH oz 9%x™ 9z o

P 917 0z oz~ ) I¢

oz 0%z oz 0%z

Cal9¢g » = n
333’7 > (6xp/axy/ ) 509 gTC ( 6xn ) (axp/axl// ) 67’
B oz 9%z
T\ 9z OxP' Oxv' )~

Putting these together

" 0x°

! !’
po Oxk dxT dav ozt 92"
Al T
v'p Oxn Oxv' Oxr' = “T  Oxn OxP Ozv’

(4.2)

as claimed.

From [E.7] the non-zero components of the Riemann tensor for a
general Robertson-Walker metric with cosmological scale a(t) are

1 .. 1 . I S
Roaos = — 2 0ags; Rapys = g(az + Kc*)a* (GaryGss — G598k »

all other components vanish. Setting a = ¢t and K = —1, @ = 0 and
@ + K = 0 hence

ROaOB = Raﬁwé = 07

the Riemann tensor vanishes identically so the space-time is neces-
sarily flat and is Minkowski space-time.

With

7 = (cos ¢sin b, sin ¢ sin 8, cos 6)

)&
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we have

et = (cos ¢ cos 0, sin ¢ cos 0, — sin )
0pT = (—sin¢sin b, cos ¢sin b, 0).

g

0

g

¢

These vectors are tangent to the sphere with constant radius r, since
Ug.M = Ugy.1 = 0.
The second derivatives
Optg = Optly = (—sinpcos b, cos pcos,0) = cot Oty
are also tangent to the sphere, but

Optlg = —(cos ¢sin B, sin psin b, cos ) = —n

Dgtiy = —(cos ¢psin @, sin ¢psin 6, 0) = — sin? O 71 — sin 6 cos O g

are not. But if we now project these vectors back on to the sphere
we get
Ogptlg — 0,
Ogtiy — —sinfcosfug
Optly — cotBOuy,
—

8¢ﬁ9 cot 9ﬁ¢.

4) Hopefully there are enough pointers given in the appendix for the
student to fill in the gaps.

5) a) From the definition

1
Flljp = 59”0(90,)7” + Guop — gl/p,o)
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SO

1 o 1 o 1 o 1 o
0Ly, = 509" (Gopw + Gvap = Jup.a) + 59" (090p)w +59" (09v0) 0 = 59" (0gup) o

2

1 1
= _7.9”/\ (69/\7)970(901),1/ + Guo,p — gup,a') + 7gua((§gap>;u + Fi\g(ég)\p) + Fl)/\p((sg)\a'))

2
+

2
1

[\)

1
= —g"*(092)T7, + 59" ((090p)sw + Tog(3grp) + T2, (0950))

2

2

1
9" ((09us):p + U5, (0920) + T (93)) = 59" ((09vp)i + T3, (3920) + T3, (990,))

1 1
+ 59" ((09v0):p + T3, (0930) + Ty (0930)) = 59" (80 )i + T3, (3920) + T, (5920))

1 g 1 Lo 1 Lo L g
= 59“ (6gop);u + 791 (691/0);1) - 791 (6gup);(r - gl )\((Sg/\o)ryp

2 2

2 2 2

1 1
= 59" 15, (89x0) = 59”775, (39x0)

| 1 1
+ 59" T0,(0950) + 59" T2,(3950) + 59T, (09r0)

1
+ 59" T, (0gx)

(underlined terms cancel)

= 59# (590/));1/ + 59" (59ua);p - 9" (591//));0 - gﬂ)\ (59/\0)Fup

2 2

1 o 1 o
+ 59" 0, (0930) + 59”717, (3957)

2 2

+ 9", (69r0)

1
= 59”0((590;7);1/ + (09vo);p — ((sgVP)?U)‘

b) From the definition

RY Yoo = 0,10, — &,Fﬁp + FZAF)\VO' - FgAF)\Vp

1 1 1
= 7guo(6gop);u + 7guo(6gl/0');p - 59”0(6gl/p);0 - gMU (590A)F1>/\p
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we have

SR ypo = 0p(0T%, ) — 05(6T%,) + (6T, L7, + T, (6T5,) — (6T ,)T5, — T, (6T5,)

= (6T, )i — T4, (0T7,) + 17, (aT%,) + T3, (3T%,)
= (OT%,)i0 + T4, (8T5,) = T3, (0T%,)) = T, (6T},
+ (51—‘,!;)\)1—‘150 + FZ)\ (5FI)I\O') - ((srgk)rz)jp - Fﬁ)\ (61_‘1)/\;))

= (0%, — (6T%, )0 + 17, (6TR,)
+ T4, (0T3,) = I3, (9T%,) + (ST4)TS, — (ST4)T, — T, (6T3,)

= (6F50)§P - (51—";;7);0 + Fia(dl—‘ip) - Fl;)\((srl)/\p)

= (61_‘50);17 - (51—‘5;7);0'

¢) The first line is immediate from with u = p and then sending

v — p, 0 — v. Then frorn

1
(51121,);)\ - (5F;);>\);y = 59)\0((59w);u + (59/w);u - (59;11/);0)%

1
- QQM(@QUA);M + (69po)ixn — (59u>\);0);v

1
= ngo((égw);u;k + (09u0)wix — (09w )ioin — (0902 )spsw
- (5gMU)§)\;V + (6gp«k);0;u>

1
igAU((égau);u;A + (09uc)wir = (09 )ion = (0902 )sw)
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d)
OR = 0(g"" Ryw) = (69" ) Ryw + g"" (6 Ryu)
= *g“A((sgAa)gwR;w + 9" (6Ru)
— (6gr0) R + QgW 9 ((690w)iun + (090 )ivin — (09 )ioin — (390 )iusnr)

—(6gx0) RN + g g )\0((59011);#* = (69pu)i0; /\)
_(69)\0' R)\U + {guy A ((6901/) 59#1/ )} A
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1) From the definition of the Einstein tensorﬂ

1
GHugp =Ry — iR;V
1
=R" o — gRupﬂp;v

1 1 1 .
= §R“pl’p;u - iRMpvu;p - gRupup;v (since RM,,, = =R, = =Ry p)
1 1 1 .
= _§Ruppvm - §Rupw;p - §Rupup;v (since RMP, = —RI'p,)
1
= _§Rup[pu;u]

0,

from the second Bianchi identity.

2)

> with(Physics)
> Setup(mathematicalnotation = true)

> Setup(coordinatesystems = cartesian)

>ds2:= ((dx)"2 + (dy)"2 + (dz)"2) /(1 + 2*Phi(x,y,z)/c*2) - (¢"2 + 2*Phi(x,y,z))*(dt) "2

> Setup(metric = ds2)

> CompactDisplay()

> G_ 44 := simplify(Einstein
> G_11 := simplify(Einstein
> G_ 22 := simplify(Einstein
> G_ 33 := simplify(Einstein
> G_ 14 := simplify(Einstein
> G_ 24 := simplify(Einstein
> G_ 34 := simplify(Einstein
> G_ 23 := simplify(Einstein
> G_ 13 := simplify(Einstein
> G_ 23 := simplify(Einstein

3

W 0o Lo R GO N
oo TS

4
1
2
3
1
2
3
2
1
2

i) A Maple™ script that achieves this (with Maple v2020.2) is:

1 For a scalar, such as the Ricci scalar, a co-variant derivative is just a partial
derivative (there are no connection terms), so a semi-colon just means a partial
derivative on R.

36
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though note that G44 is Gy and not Gog, with 2° = ct, so G4 =
CQGO().
ii) A Mathematica™ script (with Mathematica 12.1.1.0) is

In[1] Mathematica/EinsteinTensor.m

In[2]:= X = {t,x,y,z}
(* Cartesian coordinates: *)

In[3]:= (metric = DiagonalMatrix[{-(c"2+2*Phi[x,y,z]), 1/(1+2*Phi[x,y,z|/c"2),
1/(142*Phi[x,y,z]/c*2), 1/(1+2*Phi[x,y,z]/c"2)}] ) //MatrixForm
(* The line element: *)

In[4]:= (Einstein = Simplify|[EinsteinTensor[metric,X]])

(*Calculate the Einstein tensor.*)

3) For a relativistic fluid with
P
T = p+c—2 UHU” 4 g"v P, (5.1)
and UF = (v)(c, 0", 0%, %),
T% = 7*(v)pc® + (9% +~%(v)) P,
T = ~2(v)pev® + (9“0 + 72(11)1}6) p

B
T = 7% (v)po*o” + <go‘ﬂ +92(0) 5 ) P

C
1.0 0 0
. 0 1.0 0
With g = pi = d
= o 01 0o/™
0 00 1
1 102 v
v(v) = . 02:1+202++0<4>,
2

a large c expansion is
1
T% = 2 (v)pc® + (v*(v) — 1) P = poc® + §p0v2 +--

v v* (1
T = 7*(v)pev™ + 72(”)?]3 = pocv® + o <2POU2 + P> +-

vevP
T = 2 (v)pv*o” + (5aﬁ + 72(7))02) P

2

a,B
_ aB a,fB vuv
—(P5 + pov-v )+ c <2

1

pov2+P> +
where pg = v(v)p. In T, poc? is the rest energy per unit volume
associated with mass density pg, while %pon is the non-relativistic
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kinetic energy per unit volume. In 7%, pyv® is the momentum per
unit volume associated with mass density pg moving with velocity.
In 77, P§*P is the usual isotropic pressure of a fluid while pov®v?
is the extra contribution to the pressure due to the movement of the
fluid.

The enthalpy density h is

U
h=pt+ .
Ty

Identifying U/V with the energy density at rest, the mass density
times c2, pc?, the enthalpy density is

h = pc? + P.
So if the enthalpy is zero then P = —pc?. This in turn implies, from
(5.1) above, that

TH = Pghv,

even when the fluid is in motion. Einstein’s equations are then

GMV — 8:4Gpg,uu — 7Ag/w

and a cosmological constant is equivalent to a fluid with vanishing

_ Act
enthalpy and P = —£=.
From
T = + P uru” + g"v P
- p C2 g
we have, since g, U*UY = -2,
T", = guT" = —(pc* + P) + 4P = —(pc* — 3P).
For photons the radiation pressure is P = % and T", = 0 is trace-

less.
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The Einstein tensor, indeed the whole Riemann tensor, vanishes. This
can be verified explicitly but quicker is to observe that changing the
azimuthal co-ordinate from ¢ to ¢/ = ¢ — wt renders the line element
in the form

ds? = —dt® + dr® + (d6? + sin® 0d¢'?)

which is just flat space-time in spherical polar co-ordinates. This is
just a co-ordinate transformation of the Minkowski space-time line
element.

Even if w(t) is a function of time ¢’ = ¢ — ft w(t)dt is a perfectly
good co-ordinate (provided the integral is not singular) and the space-
time is still flat.

With the metric
Juv = Nuw + Ny
and h,, <1,
g = — o + O(R) = 0 — W + O(4?).

The Christoffel symbols are

Fﬁp = 7gHT(g‘rp,u + Gurp — gyp,‘r)

— N =

- §nMT(h7p,V + hw,p - th,T) + O(hQ)

39
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and the Riemann tensor

RMype = 0,4, — 0,T  + O(h?)

1, 1,
- inu (h‘ra,u,p + hu'r,a,p - hVo’,T,p) - inu (h'rp,l/,a + hu'r,p,a - hup,'r,o) + O(h2)

1
= 577“7— (h‘ra,u,p - hua,T,p - th,l/,J + hup,'r,a) + O(h2),

since hyr,op = hurpo (partial derivatives commute).

Using the gravitational wave form, the real part of [6.12], the Rie-
mann tensor is

RM, o = %n“TRe{((iky)(ikp)Pw — (ik:)(ik,) Pyo — (iky)(iko ) Prp + (ik:)(iko ) Pyp)e™ ™}
+ O(h?)

1
= Ryuvps = 5(=kvkpPuo + by Pug + kuko Pup — kuko Pyp) cos(k.x) + O(h?).

For example, with k* = (%,k,0,0),w = ck and P, =

o O O O

o O O O
o
o

1
Retys. = 5l<:2PX cos(k(z — ct)).
This is non-zero if Py and k are non-zero, so the space-time is not
flat, though R,, = 0.

3) From appendix @ of the text

Roror = fg (g/) ) (61)

rff rff .

Rogoo = Lj? Rogoy = féf sin” 0, (6.2)
) g

ra ra )
Rrara = i, Rr¢7‘¢ = i SlIl2 0, (6.3)

g g

2
-1

R9¢9¢ = (g )7‘2 Sin2 0. (6.4)

92
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Setting g = % these are

(1

GM

rc?

41

(6.5)

(6.7)

(6.8)

2GM
5 ) sin? 0,
re

2GM\ !
<1— f@) sin” 6,

1
Roror = §(f2)//a
1 1 )
Rogos = §Tf2(f2)'7 Rogop = §Tf2(f2)'51n2 0, (6.6)
rf rf’ 5
Rygro = — =, Ry prp = ——sin“ 6,
f e
Rogop = (1— f2)7”2 sin? 0.
Furthermore f(r) =4/1— ZTGCJQW gives
2GM
ROT‘OT‘ = _Wv
GM 2GM GM
R, =— 11— R, = —
0000 = —3 ( o2 ) ; 0606 = ~ 5
GM 2GM\
Rygro = —— (1 - . Rego =
oro rc2 ( rc? ) éré
2GM
Ropop = 3 " sin? 6.
c

With this form for the Riemann tensor the off-diagonal components
of the Ricci tensor vanish identically, because the metric is diagonal,

and we only need check the diagonal components:

Roo = ¢"" Roror + 9% Rogoo + 9°? Rogos

= -(1-230) 38+ (5 -8 )+ ool (53 (-3

re re re r2sin2 0 \ rc

207

R, = gOORO’I‘O’I‘ + geeRréré + g¢¢Rr¢r¢>

= (1227 (28 (- 2) 0 22)

re roc [d re re
07

Roo = ¢""Rogoo + 9" Rroro + 9°° Rooy

= —(1-225) 7N (9) (12 )+ (122 ) (- ) (122 T

re Te

Ry = ¢ Ropos + 9" Rrgre + 9°° Rosos

= —(1-228) " (2) (128 ) s 04 (12584 (- 24

rc rc ’!‘C2 Tc TC

=0.

2GM

1
r2 sin2 6

)(1-

rc

2GM

2

> )sin2 2

1 (QG]VIT) 202
I 111
r2 sin2 6 c s 0

-1, .
) sin? 9+%(L12W) sin2 0
r ¢
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4) One needs access to either Maple™ or Mathematica™ to do this prob-
lem.

5) a) From (6.1)-(6.4) above the Ricci tensor is

Roo = 9" Roror + 9% Rogoo + 9%? Rogo
1 AT (rff’) 1 (rff’ L )
=S lra(%) )+ + 0
g° (fg ( g ) ) r2 \ ¢? r2sin?6 \ g2 S
AN ’
2
LY
g \yg rg
R, = gOOROTOr + geaRTGTG + g¢¢RT¢T¢
1 ' 1 rg’) 1 (rg’) .5
) )5 () + 19 ) sin20
f? (fg(9)> 7"2(9 252\ g )

_ g (fY %9
B f<g>+rg’

Roo = 9° Rogoo + 9" Rrore + 9°* Rogos
1 ! 1 ! 1 21
L (rfg” ) el <T9) P <9 . )rzsm%)
f g g g 72 sin” g
rf’ rg 21
= 7% + % + <g 2 >
fe*> g g
Ros = 9" Ropos + 9" Rrgre + 9" Rosos

1 / 1 ! 1 (g?—1
= _ﬁrng sin29+g7 <ng> sin20+772 (g 7 )7’2811129

rf  rg <921>} .
=4 — + = + sin“ 6.
{ fg* g g*

The Ricci scalar is

R=g"Roo+ g"" Ry + 9" Roo + g*° Ry
1 f(f’)' 2ff 1 g(f’)’ 29'
=——3Li(=) + == (=) + =
f2{g 9 rg? | f\y rg

2 rf’  rg g2 -1
+7‘2{_f92+g3jL 2 )
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The Einstein tensor, G, = R, — %gWR, then works out to be

f*(9° —g+2rg)

Goo = 2y ;
_f-fe 2 1-g*  2f
Grp = 7 = o (6.9)
Gop — "9S 19l —rf'g — Jg) _ r(a(r]) — (rf)'d)
fg? fg® ’

G¢¢ = G99 Sin2 0

(note 2% = ct here, G4y = c*Gp). Then Einstein’s equations re-
quire

&G g 81G , glrf) —(rf)g _ 8rGP
Goo = — 90079 = — - 1°P R ==
(6.10)

and Gy gives the same equation.
With the form of T*, specified in the question, T},, = g.c17, the
00 component of Einstein’s equations is

_ e g+ 2g) _ smpf

Goo 24 =5 (6.11)
With g = 71721&”“)
(Gm o Gm/)
;L r2c2 rc?
- 2Gm\3/2
(1 - rc;n)

9> —g+2rg  2Gm/
243 T2

=
Equation (6.11|is satisfied if

m(r) =4m /T p(r)ridr = P

m/

drr?’

¢) A differential equation for f can be obtained from ,

8rG 8rG 8nGP
Grp= =g T", = =227, = 0
a R (e
(1—g¢*)  2f &GP
A Y =y
1! 1 Gm  4nGrP
= = . (6.12
= -z (e T (6.12)
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d) Equation (6.10) gives another relation between f and P but a sim-
pler equation for fT follows from conservation of energy-momentum

V. T*, = d,T", + T8 T¢, —T% TH, =0

with v = r (via Einstein’s equations this follows from the second
Bianchi identity). Since T*, is diagonal this is

arr, .
ar + 1,1 =1, T, =0,
= P +TW.P-T§.(-pc®) — (I, + T, +T% )P =0,
= P+ T4, (pc* + P) =0,
and we only need
1 L(f?)
1“8,« = 5900 (goo,r + gor,0 — gOr,O) =35 72

to evaluate the left-hand side and the radial component of the
energy-momentum conservation equation is

1 (f2)/ f/ P/
P 4= 241 P)=0 = (6.13
by et P =0 s Lo )
Combining this with (6.12))
P’ B 1 Gm n 47rGP
(p2+P) (1 2p) \r2¢? ct
G (p—|— %) 4r3 P
/ C
= P= 2y (m+ 3 ) (6.14)

e) i) For constant p = pg, m(r) = 4?”,007“3 and

_4xrG  (poc® + P)
N =y

P = (p002 + SP) .

3c?

2GM _ 87GpoR®

The total mass of the star is M = 4%pOR?’ andrg = =3
SO

rsr?\ dP 4G
(15 ) o =S 1) (s 20).

. . . = 2
Define the dimensionless ratios e = 45, P = and z = 57,

P
poc?
so x = 1 is the surface of the star, then this is

dpP wmGpoR? . ~ . = € o~ -
l—ex)— = — =0 (14 P)(143P) = —— (14+P)(1+3P).
(1-ez)—— 32 LHP)(1+3P) = =2 (1+P)(1+3P)
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With y = In(1 — ex), dy = —e7%% and

dP 1

=-(14+P)1+3P

a 11+ P)(L+3P)
L Ay dP 3 dP 1 dP
4 (14+P)(143P) 2(1+3P) 2(1+P)

which integrates to

1+3P
1n(1—ea:):21n< + >+const

1+P

With P = 0 at the surface z = 1, the integration constant is
In(1 — €) and

1n<1_6x>:2ln 1+3f
1—e 1+ P
1+3P  [1—ex
1+P l—e¢
P V1—ex—+1—c¢
73\/1—6—\/1—6.13
rzrs /
= P = poc?
3./1— —4/1

as claimed. The pressure at the centre is

P, = poc? (1— v1-% )

=

31— —1

R

which is positive only if R > 7’3 IfR < 77“5 the pressure

diverges at r? = R? (9 — %) and the model is not valid all
the way down to r = 0 when R < %rs
ii) Firstly

1

9(r) = \/ 267:212(7”) \/1 87er07‘2 \/
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Next, from ((6.13]),

const

lnf - — ln(POC2 + P) + const. = = m

The constant of integration can be determined by demanding
that the metric must be Schwarzschild just above and at the
surface of the star, where P = 0, so

2GM rs

20py 1 1.5
SR =1 Rc? =1 R

- rs PoCQ ?

= Fo=0-%) <W>
2
22(1—%) {3,/1—7;—,/1—’;23} .

You should convince yourself that is also satisfied by this so-
lution. This is not a co-incidence, Einstein’s equations give 3 inde-
pendent equations, , and conservation of energy-momentum,
which is equivalent to the second Bianchi identity when Einstein’s
equations are satisfied, is not an independent equation, it is a con-
sequence of the original 3 equations.

6) We can use the Riemann tensor in equations —. with

f2=(1—2GM r2>

rc2 L2

The result is

2GM 1
Roror = _W T2
GM r? 2GM  7r?
fowo =\ 2 )\! " e " 2)
GM r? 2GM  7r? 9
Fogos = ( L) (1 e L> sin”6,
GM | r? 2GM 12\
Hroro = < v * 2) <1 et L2> ’
G r? 2GM 2\,
RT¢T¢ = <_T62 + LQ> ( - o2 LQ> sin“ 0,
2GM 2 .
Rogog = ( 2 + 7"2) rsin? 0
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The Ricci tensor is

Roo = ¢"" Roror + 9% Rogoo + 9°° Rogos

47

L, 26M N (2GM 1\ 1 (GM N\ ([ 26M 2
o rc? L? r3c2 L2 r2 \ rc? L? rc2 L2
1 GM  r? 2GM 12\ . 9
o\ )\ Ta o )sind
r2sin” @ \ rc L rc L
_ 3 (, 26M
L? rc2 L2 )’
Rrr - gOOROrOr + ggeR'rerG + g¢¢Rr¢r¢
__(,_26M N\ 2GM 1 LU (GM PN () 2GM 2 !
- rc2 L2 r3c2 L2 r2 rc? L2 rc2 L2
1 GM 12 ocM 2\ ! .9
) - B} ) 1-— — 5 T 73 sin“ @
72 sin” rc L rec L
_ 3 (,_20M r\T
L2 rc? L2 ’
Roo = ¢""Rogoo + 9" Rroro + 9°* Rogoe
__(,_20M GM ? L 26M
- rc2 L? rc? L2 rc? L2
,_2GM GM )\ (,_2GM _r*\" L (26M PN 5oy
tUrme ) )\ Te ) Teame\ e )
3r2
-
Ros = 9" Rogos + 9" Rrowe + 97 Rogos
1 20GM 2\ ' /GM 12 1 2GM 2\ . 2
=—(1-— - — —_— = - — — — ]sin
rc? L2 rc? L2 rc? L2 °
2GM  r? GM  r? 2GM 2\ 9 1 (2GM 72\ 5 . 5
+<1_ rc? _L2> <_ rc? +LQ> <1_ rc? _LQ) S 0+7“2< rc? L2>r sin” 0
3 2
= % sin® 6.

This can be neatly summarised as

3

Ry, = ﬁng
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48
so the Ricci scalar is
and the Einstein tensor
G = —%gw.

This corresponds to Einstein’s equations with a cosmological constant

A:%andTMU:O.
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1) This is a matter of working through the details of equations [E.2]-
[E.6] using the definitions

1
Fﬁp = gglh\(gu)\,p + Irxp,v — gup,)\)a

Ry = OHF’;\V — 8VF§H + FgHFKV — FgVF‘/{M,
Ry =R ypv,
R=R",
and
1
GHV = R,U,l/ — §Rg/'“"

It is convenient to decompose 4-dimensional indices p, v, . . . into time
0, with 2° = ct, and space «, 83, . ... The Einstein tensor is

3 /a\? 1
Goo = — () , Gaog = —C—Q(Qda + a2)5a5

c2 \a

and Einstein’s equations are

3 (a\> 8rG 87Gp
Goofc*2 o) = To=—5"
1 2p
Gap = —— (24 +a*)dap = 87T4GTaﬁ = SWGS da s
C C C
LN 2
N (a) _ 877pr
a 3
2 <a>2 8TGP
— 4+ (- — 5
a a C

49
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2) The Robertson line element for K =0 , with 6 and ¢ constant,
is

ds? = —c*dt* + a®(t)dr?

from which the Lagrangian governing geodesic motion can immedi-
ately be written down

L(t,rt,7) = =2 + a®(t)r? (7.1)

and the equations of motion are

and a7 = A is constant. We can now use this in (7.2) to write

. da A? a A?
27 —
S Qii= -l
a

(2 2
L e (1)
a2

2 dr 2 dr

with B a constant. Note that the left-hand side of this equation is
minus the Lagrangian so B = 0 is a light-like trajectory, along
which ds? = 0, while for a time-like trajectory choosing B = ¢? makes
7 the proper time. The solution with A = 0, B = c? is a geodesic
with constant r.

3) The Robertson line element for general K, with 6 and ¢ constant, is

a?(t)dr?

2 242
ds® = —c°dt +1—K7°2

from which the Lagrangian governing geodesic motion can immedi-
ately be written down

a®(t)r?

L(t,r;i,7) = = + T K2

(7.5)
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and the equations of motion are

. da 72
2y @a [
ct = a— (1—Kr2) (7.6)
d (_a \_ _Kari2 (7.7)
dr \1— Kr? (1-Kr2)?

Tackling equation (7.7)) first

1 d . 2K a?ri? Ka?rr?
——— (a®F) + =
(1-Kr2)dr (1 - Kr2)? (1 — Kr2)?

1 d  , Ka?ri?

= B ————r & B ————— O
G- myar ) ke

d ( a’r )
= — [ ——=) =0,
dr \Vv1—- Kr?
SO
a’r A
Vv1—Kr?
is a constant and
2 A?

72 = g(l — Kr?).

With this expression for 7 the ¢t equation of motion is the same as

7.4), so
- = =B (7.8)

with B constant. For A = 0, r = const is a solution, with ¢ linear in
T, for any a(t).

When A # 0 let B = ¢?, then 7 is the proper time and we can
interpret ¢ as the Lorentz ~-factor for speed v, ¢ = v(v). Then
i
1

A2

2

V) — =1

7*(v) 203
2 2

= A 12—1: %22
R
U2 A2 a2,,‘,2

:> —_— = = .
2 A%2+a%2 a2+ 21— Kr?)

In chapter 2.6, equation [2.23], we took v = a‘(ij—f for K = 0, but we see here that

this is only valid non-relativistically, at large ¢
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When A # 0, v(7) is a function of 7 and

c for K=1,r—1,;
v —
0 for K=-1, r = oc.

4) Write

dr?

2 2 742 2
dS = —C dt +a (t) (]-_W

+ 72(df* + sin® 0d¢2)> ,
2
=a*(t) (— aQC(t) dt> + (1 — Kr*)~*dr? + r?(d6? + sin® 9d¢2))

and define t' as
[
) at)
then

ds* = a®(t(t')) (—c?dt”? + (1 — Kr®)~tdr® + r?(d6? + sin® 0d¢?)) .

5) First check that the definitions satisfy the constraint

2,2 .2 .2 .2 2
—z5+ 2] +25+25+2; =L"

a) This is automatic since
22—22 = L2—(sinh(ct/L)—i—cosh(ct/L))eCt/L(ﬂc%—l—x%—l—xg) = [2—e2t/L (22 +a2422)
while
B4 = eQCt/L(x% + 2 + 22).

Now evaluate the 5-dimensional Minkowski line element with this
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constraint:

1
dzo = cosh(ct/L)cdt + ﬁGCt/L(ﬁ + x5 + a3)edt

1
+ Ze“”‘(mld:ﬂl + xodxs + x3dry),

1
dz4 = sinh(ct/L)cdt — med/ D@2 4 22 + 22)cdt

1
— EeCt/L (x1dxy + x2drs + T3das),

1
dzy = ZeCt/ancdt + ez,
= —dzf +dzi = —c*dt?

1 2
— cosh(ct/L)cdt {meCt/L(mf + 23 + 23)cdt — zeCt/L(xldxl + xodzo + xgd:cg)}

1
+ ﬁeQCt/L(z% + 22 4 22)cdt (v dxy + Todrs + x3dr3)

1 2
— sinh(ct/L)cdt {LQeCt/L(x% + 22 + 23)cdt + ZeCt/L(mldxl + zodxo + acgdmg)}

1
— ﬁeQCt/L (23 + 23 + 23)cdt(z1dzy + vodry + 23d23)
1 2
= —c2dt* — ﬁBQCt/L(@":{ + 23 + 23)Adt? — ZGQCt/LCdt($1dIE1 + zodxo + x3drs)

and
dz} +dz3 + dzi = %e%t/L(x% + 22 + 22)Pdt? + >V (da? + dad + da?)
+ %eQCt/Lcdt(xldxl + xodxs + x3dry),
hence
—dz2 +d2? +d22 4 d22 4 d2? = —Adt? + 2V (da? 4 dxd + da),

as required.
b) In this case

—zg+zf:a2—r2

and

2 2 2 2
zy+z3+zi=r

SO
2 2 2 2 2 2
*Zo+21 +2«'2+23+Z4:L

is immediate.
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Now
inh(ct' /L VI? —r?
dzy = _sinh(ct'/ )rdr + ! cosh(ct’/L)cdt’,
12 — 2 L
h(ct' /L VL2 — 2
dz = _ cosh(et'/ )’I‘d’l" + ! sinh(ct’/L)cdt’,
12 — 2 L
r2dr? (L% —1?)
= —dzy +dz} = T 7 A(dt')?,
while
dz2 + dz3 + dz2 = dr? + r*(d6? + sin? 0d¢?),
SO
2d 2 L2 2
d52 _ L{]; _TTQ o ( LQT )CQ(dtl)Q + dT2 +’I”2(d92 +Sin2 0d¢2)
r? L2dr? .
= — (1 — B) Cz(dt/)z + m + d’l"2 + 7”2(d92 + Sln2 9d¢2),

which is what was to be proven. This puts the de Sitter metric
into the Schwarzschild form

dr?

2 200 2042
ds® = —f*(r)cdt +f2(r)

+ 7r2(d6? + sin® 0d¢?)

with f2(r) =1— 2—2, for r < L.

This is the same line element as question [6] of chapter [ with
M =0.

6) With M = 0, the line element is

2
ds? = — (1 - ;) Adt? + + r2(d6?* + sin® 0dp?).

dr?
(1-2)

Using the Lagrangian

2 . 72 . .
L=— (1 - [/2> C2t2 + @ + 7"2(02 + Sin2 9¢2)

L2
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the equations of motion are

2\ .
(ILQ)tkconst.,

; ) ) 272
d (T ) = (6% 4 sin? 04?) + ret

E r2 L2 i

L2
d o9 . P2
7 (r 9) = sin 0 cos ¢*,
-

% (1"2 sin? 0¢) = = const.

We can set § = 7/2 to be constant in the equatorial plane, so rzgﬁ =1.
Rather than tackle the r equation directly it is simpler to choose 7

to be the proper time (for a massive particle) and set £ = —c?,
P
- 1-5
2 2 (1 - '2)
2 _ 2;2 2 r L
7 =ck®—c <1 - LQ> - >
2.2 2 2
9.9 cr l l
—C(k—].)-i- 72 ﬁ+L2
2 c2rz 2
= T:i\/c2(k'2—1)+l/2+l/2 er
dr ( - %) \/ el I
i 2(k2 — 1)+ — 4+ 2
dt K WD Et T e
Since ¢ is a constant, [ = 0 and
v ldr 1 r2 r2
Y (S R DY) - BT
c cdt k ( LQ) i
When r > L, goo = — (1 — L—i) > 0 and ¢ is no longer a time-like
coordinate, it makes no sense to think of % as a velocity.

Taking the plus sign, v(r) has a maximum at r = 7”)5%2, where

23
373’

which is the largest value v(r) can take.
7) With

Ac?

— =0T
3H2

Qa
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and
B3HE o -3 :
G 107°kg m™°, (equation [7.16] of the text)
T

the cosmological constant generates a negative pressure

Act 3HZQA c* 3H?
P=— _ _ 0 =_0 2 0 ~1 791{ —-1_-2
e ( c? > (87TG> A€ (87TG> 0 kgm s

that is 1079 Pa, or 10~ atmospheres.

Creating a 4™ —p ™ pair requires an energy of 212 MeV, corresponding
to a temperature of 2 x 10'° K. From this corresponds to a time
1
= 2002
or 25 us after the Big Bang.

t =25x%x""s,
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