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Chapter 1

1) For a circular orbit of radius r the centrifugal acceleration, ω2r must
balance the gravitational acceleration GM

r2 ,

ω2r =
GM

r2
⇒ ω =

√
GM

r3
,

and v = ωr, so

v =

√
GM

r
.

2) Non-relativistically the escape velocity can be determined by setting
the total energy, the sum of the kinetic and potential energy, to zero.
If the total energy is negative the orbit is bounded, if it is positive
the orbit is unbounded. Zero energy is the watershed value between
these two cases. For a test mass m at the surface of a planet of mass
M and radius R, moving vertically upward with speed v, the total
energy is

E =
1

2
mv2 − GMm

R
.

The escape velocity is determined by setting E = 0, so

v2 =
2GM

R
.

When R = 2GM
c2 we have v = c.

The fact that the non-relativistic Newtonian escape velocity is
equal to c when R is the Schwarzschild radius is just a co-incidence, it
uses the non-relativistic kinetic energy which is incorrect when v = c.
It is an incorrect calculation which gets the correct answer using an
erroneous argument, but it can be useful as a mnemonic.
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Chapter 1 3

3) a) Since l is constant it can be evaluated for any P . When P = A

the length l of the string must be twice the distance from O to A,
which is ∆ + a, so l = 2(∆ + a).

b) In Cartesian co-ordinates x = r cos θ, y = r sin θ, relative to the
origin O, the distance r from O to a point P on the ellipse is r =√
x2 + y2. If r̃ is the distance from Õ to P then, by construction,

r + r̃ + 2∆ = l = 2(∆ + a) ⇒ r + r̃ = 2a.

c) i) The distance from A to B is 2a but this is also the sum of the
distance from O to A plus the distance from O to B, which
is

r0

1− e
+

r0

1 + e
=

2r0

1− e2
,

hence

a =
r0

1− e2
.

ii) ∆ is the distance O′B minus the distance OB, or

∆ = a− r0

1 + e
=

r0

1− e2
− r0

1 + e
=

r0e

1− e2
.

iii) When P is directly above O′, r = r̃ we have r = a, from (3b),
and OPÕ is an isosceles triangle, half of which is a right-
angled triangle with height b, base ∆ and hypotenuse a, so
a2 = b2 + ∆2 from Pythagoras’ theorem. Hence

b2 = a2 −∆2 =
r2
0

(1− e2)2
− r2

0e
2

(1− e2)2
=

r2
0

(1− e2)

⇒ b =
r0√

1− e2
.

iv) from questions 3a), 3(c)i) and 3(c)ii)

l =
2r0(e+ 1)

(1− e2)
=

2r0

(1− e)
.

d) From

x′2

a2
+
y′2

b2
= 1
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with x′ = r′ cos θ′ and y′ = r′ sin θ′, 3(c)i) and 3(c)iii) give

r′2

r2
0

(
(1− e2)2 cos2 θ′ + (1− e2) sin2 θ′

)
= 1

⇒ r′2(1− e2)
(
1− e2 cos2 θ′

)
= r2

0

⇒ r′2 =
r2
0

(1− e2)
(
1− e2 cos2 θ′

) . (1.1)

e) Again using
x′2

a2
+
y′2

b2
= 1

but now with

x′ = x+ ∆ = r cos θ +
r0e

1− e2
, y′ = y = r sin θ

we have(
(1− e2)r cos θ + r0e

)2
(1− e2)2

(1− e2)2

r2
0

+ r2 sin2 θ
(1− e2)

r2
0

= 1

⇒
(
(1− e2)r cos θ + r0e

)2
+ (1− e2)r2 sin2 θ − r2

0 = 0

⇒ r2(1− e2 cos2 θ) + 2rr0e cos θ = r2
0

⇒ r =
−2r0e cos θ ±

√
4r2

0e
2 cos2 θ + 4r2

0(1− e2 cos2 θ)

2(1− e2 cos2 θ)

r = ±r0(1∓ e cos θ)

1− e2 cos2 θ
= ± r0

(1± e cos θ)
.

We take the positive root to ensure that r is positive,

r =
r0

(1 + e cos θ)

as required.
f) From 3b), 3(c)i) and 3e)

r̃ = 2a− r =
2r0

1− e2
− r0

1 + e cos θ

= r0

{
2(1 + e cos θ)− (1− e2)

}
(1− e2)(1 + e cos θ)

=
(1 + 2e cos θ + e2)r0

(1− e2)(1 + e cos θ)
.

g) Relative to the origin O the area of a thin triangular wedge asso-
ciated with an infinitesimal variation δθ of θ is 1

2r
2δθ, so the area
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of the whole ellipse is

1

2

∫ 2π

0

r2(θ)dθ =
r2
0

2

∫ 2π

0

dθ

(1 + e cos θ)2
=

πr2
0

(1− e2)3/2
= πab.

The integral can be evaluated using the calculus of residues, by
writing cos θ = 1

2 (z + z−1), with z = eiθ, and integrating around
the closed contour z = 1, on which dθ = −idzz . Then∫ 2π

0

dθ

(1 + e cos θ)2
= −i

∮
dz

z
(
1 + e

2

(
z + z−1

))2
= − 4i

e2

∮
zdz(

z2 + 2
ez + 1

)2
= − 4i

e2

∮
zdz

(z − z+)2(z − z−)2

with z± = ±
√

1−e2−1
e and z+z− = 1. For 0 ≤ e ≤ 1 , z+ is inside

the unit circle and z− is outside it. There is one pole inside the
contour, at z = z+, of order 2. Laurent expanding the integrand
about z+, with z = z+ + ε,

z

(z − z+)2(z − z−)2
=

z+

(z+ − z−)

1

ε2
+

z+

(z+ − z−)2

(
1

z+
− 2

z+ − z−)

)
1

ε
+ . . . ,

and the residue is

a−1(z+) =
z+

(z+ − z−)2

(
1

z+
− 2

(z+ − z−)

)
= − (z+ + z−)

(z+ − z−)3
=

e2

4(1− e2)3/2
.

The calculus of residues then gives∫ 2π

0

dθ

(1 + e cos θ)2
= 2πi

(
− 4i

e2

)
a−1(z+) =

2π

(1− e2)3/2
.

4) The lunar tides are due to the difference in the gravitational force
between the Moon and the Earth on opposite sides of the Earth. Let
M be the mas of the Earth,m be the mass of the Moon, D the Earth-
Moon distance (between their centres) and R the radius of the Earth.
Then the gravitational attraction between the Earth and the Moon
is GMm

D2 and acceleration of the Earth is Gm
D2 = 3.3× 10−5m/s2. In

terms of the dimensionless ratios

η =
R

D
= 1.66× 10−2, µ =

m

M
= 1.23× 10−2

this acceleration is a = gµη2 where g = GM
R2 is the acceleration due

to gravity at the surface of the Earth. The acceleration a does not
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D
D−R

Figure 1.1 Tidal forces due to the change in the Moon’s gravitational at-
traction over the Earth’s diameter. This diagram is drawn from above the
Moon’s orbital plane, looking down on the Earth’s equatorial plane.

cause D to decrease however as the Earth and the Moon are rotating
about their common centre of gravity and, in this rotating reference
frame, there is a compensating centrifugal force that keeps them in
orbit around the barycentre.

The calculation of the height of the tides is greatly simplified by the
fact that η is small, so we can expand in η. To estimate the magnitude
of the lunar tides we compare the magnitude of the gravitational
forces exerted by the Moon on a unit mass of water at perilune (the
point P in figure 1.1) and at apolune (the point A in figure 1.1) to
the lunar force at the centre of the Earth (for a unit mass this the
same as calculating an acceleration).

The differences are

Gm

(D ∓R)2
−Gm
D2
≈ ±2GmR

D3
= ±2GM

R2
µη3 = ±2gµη3 = ±1.1×10−6m/s2.

The acceleration due to gravity affecting a mass of water at the two
points A and P is the combination of that of the Earth and that of
the Moon,

ag = (1± 2ε)g

where ε = µη3 = 5.6×10−8. This should be compared to the vertical
acceleration due to gravity at the two points Q (for ‘quadrature’) and
Q′, 90◦ from perilune and apolune in figure 1.1, which is simply g.
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The lunar tidal forces in ag will support a height h of water where

ag =
GM

(R+ h)2
=
GM

R2

(
1− 2h

R
+ · · ·

)
= g

(
1− 2h

R
+O

(
h

R

))
(1.2)

so, to lowest order,

h = ±εR = ±µη3R = ±0.36m, (1.3)

compared to a point at 90◦ to perilune and apolune at which h = 0.
Repeating the calculation using the figures for the Sun, µ = 33.5×

104 and η = 4.2× 10−5, gives

h = ±0.16m,

the tidal influence the Sun is about half that of the Moon. Although
the Sun is much farther away it is also much more massive than the
Moon and that latter property almost compensates for the greater
distance. From now on we shall forget about the Sun and just discuss
lunar tides, but the same analysis can be applied to solar tides.

This above argument is not the whole story of course, if it were
the height of the sea on the side of the Earth farthest away from
the Moon would be lowered by 36cm at the same time as the height
closest to the Moon is raised by 36cm, and this is not what happens,
high tides occur at the same time on opposite sides of the Earth.
This is because Earth and the Moon rotate about their common
centre of gravity, which results in a significant centrifugal force, and
this pushes the water away from the Moon, so that centrifugal force
might be expected to lower the ocean surface on the side closest to
the Moon and raised it on the other side. The effect is to make the
situation symmetric on opposite sides making high tide one half of
36cm, about 18cm on opposite sides of the Earth, though, as we shall
see, this is a slight underestimate.

In fact the centre of gravity of the Earth-Moon system lies inside
the Earth, under its surface, so one might worry that centrifugal force
would raise the tide on the surface closest to the Moon, rather than
lowering it, so we now give a more careful analysis.

The Moon raises tides due to the fact that the Earth is a rigid
body and the Moon’s gravitational field is not uniform. As the Earth
and the Moon orbit around their common centre of gravity (their
barycentre) the centre of the Earth is in free fall, but because the
Earth is a solid body the point on the Earth’s surface nearest the
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Moon (perilune) is not in free fall, it is moving sightly too slowly to
be, and neither is the point on the opposite side of the Earth farthest
from the Moon (apolune) in free fall, it is moving slightly too fast to
be. If the Earth were made entirely of water, every drop of which was
in a stable orbit around the barycentre the water would get stretched
and distorted, points at perilune forging ahead of the centre of the
Earth and points at apolune lagging behind it in its orbit around the
barycentre.

As the earth rotates on its axis the perilune will perform one revolu-
tion about the equator every 24 hours, as does apolune (we are ignor-
ing the tilt of the Earth’s axis here). This rotation does not affect the
tides however: in the reference frame of the rotating Earth it gives rise
to a centrifugal acceleration aΩ = Ω2R = 0.034m/s2 = 3.4 × 10−3g

on the equator, which is far greater than the tidal forces calculated
above and makes the ocean at the equator bulge out by some 22km
relative to the poles. But it is completely symmetric, all points at
the same latitude experience exactly the same height rise due to this
centrifugal force and there is no change as the Earth rotates, there
is no tidal variation due to this centrifugal force (we are ignoring the
tilt of the Earth’s axis relative to the plane of the Moon’s orbit here).

The estimate above gives the height of the lunar tide as 36cm at
perilune, above zero height at Q, but it looks like a low tide of -36cm
and apolune, with a total tidal range of 72cm. But this is not correct:
high tide at perilune does not coincide with low tide at apolune. The
angular velocity of the rotation of the Earth-Moon system is given
by ω2 = G(M+m)

D3 about the barycentre and results in a centrifugal
acceleration in the rotating frame of the Earth-Moon system that
modifies the above conclusion. The above calculation ignores the ro-
tation of the Earth about the barycentre. When this is included the
exact numbers change slightly, but the order of magnitude, µη3, is
still correct.

Assuming the Earth-Moon system rotates about the centre of the
Earth (which is not quite true), the centrifugal acceleration of a point
on the Earth’s surface would be aω = ω2R = 4.5×10−5 m/s2, which,
according to the above logic, would generate an extra height of

h =
R

2

(
ω2R

g

)
Rη2

2
= 15m, (1.4)

nearly two orders of magnitude greater than that calculated above,
but this affects the point Q equally as much as A and P , and this
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Figure 1.2 Looking down on the Earth-Moon system from above the north
pole (ignoring the tilt of the Earth’s axis), the diagram shows the Earth’s
equatorial plane. The dashed circle, radius R, represents the solid surface of
the Earth. The ellipse represents the height of the sea level at the equator
when tides and rotation and are included (exaggerated for clarity). D is the
distance between the centre of the Moon and the centre of the Earth and B
is the barycentre. H represents the point on the equator on the Greenwich
meridian and θ is the longitude of the perilunal point.

constant shift does not produce tides. To fully understand the tides
we need to calculate how the extra height difference generated by
this centrifugal acceleration varies for points across the globe from
perilune to apolune. This can be done by balancing the forces but a
simpler way is to observe that, in equilibrium, the surface of the sea
will be an equipotential surface and calculating the potential energy.

For simplicity consider what would happen if the Earth were to
rotate in the same plane as the Moon’s orbit, as in figure 1.2 below.
Of course this is not really the case, the Earth’s axis is tilted by 23 1

2

◦

relative to the ecliptic and the Moon’s orbital plane is tilted by 5◦

relative to the ecliptic, but in a first approximation we shall ignore
these complications and assume that Ω and ω are parallel, as in figure
1.2.

Consider the Earth to be a perfect sphere, covered with water to a
depth of a few kilometers, with the dashed circle in the figure, of ra-
dius R = 6, 370km, representing the solid surface, assumed spherical,
(the figure is not to scale!). The solid ellipse represents the height of
the sea level at the equator, with r(θ) = R+h(θ).1 D is the distance

1 The excess volume comes from water flowing down from higher latitudes, water
is incompressible so the total volume of seawater is constant.
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between the centre of the Moon and the centre of the Earth and B,
the barycentre, is a distance l from the centre of the Earth and a dis-
tance L from the centre of the Moon, so D = L+ l. If H represents
the point on the equator on the Greenwich meridian (somewhere just
south of Ghana in Africa) then θ is the longitude of the point at
perilune.
B is defined by

Ml = mL ⇒ l =
m

M
L

and l + L = D so

L =
1

(1 + µ)
D, ⇒ l =

µ

(1 + µ)
D. (1.5)

For the Earth-Moon system l = 0.74R and the barycentre actually
lies inside the Earth’s surface, about 3/4 of the way from the centre.

The rotation the Earth about the common centre of gravity of the
Earth-Moon system results in a centrifugal force ω2b (in the reference
frame of the Earth) on fluid elements of unit mass a distance b from
the barycentre. ω is obtained from Kepler’s third law

ω2l =
Gm

D2
,

where l is given by (1.5), so

ω2 =
GM(1 + µ)

D3
=
GM

R3
η3(1 + µ)

and 2π
ω = 27 days, the sidereal period of the Moon’s orbit. The cen-

trifugal acceleration (force per unit mass of water) at a point a dis-
tance b away from B is ω2b and the potential energy per unit mass
that generates this is

Vω = −1

2
ω2b2.

Let ε = h
R � 1, then R+h = R(1+ε) and, from elementary trigonom-

etry,

b2 = r2 + l2 − 2rl cos θ

=
R2

(1 + µ)2η2
{µ2 − 2ηµ(1 + µ)(1 + ε) cos θ + η2(1 + µ)2(1 + ε)2}

=
R2

(1 + µ)2η2
{µ2 − 2ηµ(1 + µ) cos θ + η2(1 + µ)2 +O(ε)},



Chapter 1 11

since l = Dµ
1+µ = Rµ

(1+µ)η . So

Vω = −1

2

GM

R

η

(1 + µ)
{µ2 − 2ηµ(1 + µ) cos θ + η2(1 + µ)2}+O(εη).

(1.6)
The potential energy of a unit mass at the point H due to the

Moon’s gravitational attraction is

Vm = −Gm
d

= −GMµ

d

and, again from elementary trigonometry,

d2 = r2 +D2 − 2rD cos θ =
R2

η2

(
1− 2η(1 + ε) cos θ + η2(1 + ε)2

)
=
R2

η2

(
1− 2η cos θ + η2 +O(ε)

)
.

So

Vm = −GM
R

µη√
1− 2η cos θ + η2

+O(εη) (1.7)

Lastly, the potential energy of a unit mass at the point H due to
the Earth’s gravitational attraction is

VM = −GM
r

= −GM
R

1

(1 + ε)
= −GM

R

(
1− ε+O(ε2)

)
Equipotential surfaces are therefore obtained from

V = VM + Vm + Vω = const

=
GM

R

(
−1 + ε− µη√

1− 2η cos θ + η2

−1

2

η

(1 + µ)
{µ2 − 2ηµ(1 + µ) cos θ + η2(1 + µ)2}+O(εη, ε2)


Expanding in η � 1

− 1 + ε− µη
(

1 + η cos θ − η2

2
+

3

2
η2 cos2 θ

)
− 1

2

η

(1 + µ)
{µ2 − 2ηµ(1 + µ) cos θ}+O(η3, εη, ε2) = const.

⇒ ε− 3

2
µη3 cos2 θ +O(η3, εη, ε2) = const. (1.8)
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To a very good approximation equipotential surfaces are described
by

ε(θ) =
3

2
µη3 cos2 θ + const.

Sea level is at

r(θ) = R+ h(θ) = R(1 + ε(θ)) = R

(
1 +

3

2
µη3 cos2 θ + · · ·

)
Referring to the equation for an ellipse centered at O′ given in

equation (1.1), and dropping the primes,

r =
r0√

(1− e2)(1− e2 cos2 θ)
=

r0√
(1− e2)

(
1 +

e2

2
cos2 θ +O(e4)

)
and, to a very good approximation, the sea level at the equator forms
an ellipse with eccentricity

e =
√

3µη3 = 4.1× 10−4.

The full tidal range is

3R

2
µη3 = 0.54m

and high tide is 3R
4 µη

3 = 0.27m above mean sea level, simultane-
ously at perilune and apolune (P and A respectively), low tide is
0.27m below mean sea level, at θ = π/2 and 3π/2 (Q and it’s anti-
podal point). These values are lower at higher latitudes away from
the equator.

Note that the average value of Vω in (1.6) is

1

2π

∫ 2π

0

Vωdθ = −1

2

GM

R

η

(1 + µ)

(
µ2 − η2µ(1 + µ)

4
+ η2(1 + µ)2

)
≈ −1

2

GM

R

(
µ2η − η2µ

4
+ η3

)
and this corresponds to a uniform increase of sea level h0 at the
equator given by h0 = Rε0 where

− GM

R(1 + ε0)
≈ −GM

R
(1− ε0) = −GM

R

(
1−

(
4µ2η − η2µ+ 4η3

)
8

)
so

h0 =
R(4µ2η + 4η3 − η2µ)

8
= 19.8m,

somewhat larger than the estimate (1.4), the difference being due to
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the fact that the barycentre is displaced from O. This is in addition
to the 22km due the Earth’s daily rotation about O, and does not
affect the tides.

The above calculation only assumed that η � 1 and ε� 1, it did
not assume that µ is small, equation (1.8) works just as well for the
Sun as for the Moon, giving a solar tidal range of 0.24m, with ellipse
eccentricity e = 2.8× 10−4.

The calculation presented above is very simplistic, assuming that
the Earth can be treated as a perfect sphere covered by a film of
water, of uniform depth at the equator in the absence of tides. The full
story is of course much more complicated than that given above. The
Earth is not uniformly covered with an ocean of constant depth, the
depth varies and there are continents and indented coastlines which
impede the flow of water. This hugely complicates the issue and tidal
surges and resonances can lead to differing heights at different places
and even more than two tides a day. The highest tidal range on the
Earth is actually 16m, in the Bay of Fundy off Novia Scotia.



2

Chapter 2

1) In polar coordinates x = ρ cosφ, y = ρ sinφ, with ρ2 = x2 +y2. When
φ = π/2, x = 0 and y = ρ = b

(
1 + cos(z/a)

)
so, rotating around the

z-axis, for a general value of φ

y = b sinφ
(
1 + cos(z/a)

)
, x = b cosφ

(
1 + cos(z/a)

)
.

and

ρ = b
(
1 + cos(z/a)

)
.

Infinitesimally

dρ = − b
a

sin(z/a)dz = − b
a

√
1− cos2(z/a)dz = − b

a

√
1− (ρ/b− 1)2dz

and

dρ2 =
b2

a2

(
2ρ

b
− ρ2

b2

)
dz2

⇒ dz2 =
a2

b2
dρ2(

2ρ
b −

ρ2

b2

) =
a2

ρ

dρ2

(2b− ρ)
,

giving

ds2 = dx2 + dy2 + dz2 = dρ2 + ρ2dφ2 + dz2

= dρ2 + ρ2dφ2 +
a2

ρ

dρ2

(2b− ρ)

=

(
ρ(2b− ρ) + a2

ρ(2b− ρ)

)
dρ2 + ρ2dφ2.

14
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Figure 2.1 Surface with cusps.

The metric is

gαβ =

(
ρ(2b−ρ)+a2
ρ(2b−ρ) 0

0 ρ2

)
.

gρρ diverges as ρ→ 0 (z → ±πa) while gφφ vanishes there. The latter
is just the usual harmless coordinate singularity in 2-dimensional
polar coordinates, φ is not a good coordinate on the z-axis, but what
about the divergence in gρρ?

The surface, for a = b = 1 is sketched in figure 2.1:
The shape is that of an old-fashioned wooden top, with sharp cusps

at z = ±πa. The surface is not differentiable at these sharp points,
the curvature is singular there, these are real singularities in the ge-
ometry. You can check this by calculating the Ricci scalar, it diverges
at these two points.
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Q
P

x

ct
ct’

x’

Figure 2.2 Space-like separated events, P and Q.

2) For simplicity set y = z = 0. Under a Lorentz transformation from
Cartesian coordinates (ct, x) in an inertial reference frame S to coor-
dinates (ct′, x′) in an inertial frame S′,

ct′ = γ(v)
(
ct− vx

c

)
x′ = γ(v)(x− vt)

where γ(v) = 1√
1− v2

c2

. Using this formula we can draw the ct′ and

x′ axes in the ct-x plane, by plotting the lines x′ = 0 and ct′ = 0

respectively, as in the figure below, where v > 0,

For the two events marked P and Q, P happens before Q in the ct-x
coordinates system but after Q in the ct′-x′ system. This reversal of
temporal order is only possible if P and Q have space-like separation
(the dotted lines at 45◦ represent light-like directions).

3) We have

x =
1

2
(v − u), ct =

1

2
(v + u),

so

dx2 =
1

4
(dv2 − 2 du dv + du2), cdt2 =

1

4
(dv2 + 2 du dv + du2)
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v
=
c
o
n
st
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c
o
n
st

x

ct

Figure 2.3 Light-like coordinates,

and

−c2dt2 + dx2 = −du dv =
1

2

(
du dv

)( 0 −1

−1 0

)(
du

dv

)
.

Lines of constant u are at 45◦ to the x-axis and lines of constant v
are at −45◦, or 135◦, as in the figure below

These are light-like lines, hence the name light-like coordinates.
4) Fix X, then

x2 − c2t2 = X2

(
cosh2

(
cT

L

)
− sinh2

(
cT

L

))
= X2 > 0

is a parabola in the ct-x plane, different values of X give different
parabolas.

Fix T then
x

ct
=

cosh
(
cT
L

)
sinh

(
cT
L

) = coth

(
cT

L

)
is a straight line with ct = tanh

(
cT
L

)
x, −1 ≤ tanh

(
cT
L

)
≤ 1, and

different values of T give different slopes.



18 Chapter 2

Figure 2.4

5) Fixing

ρ2 − c2t2 = L2 (2.1)

⇒ 2ρdρ− 2c2tdt = 0

⇒ dρ2 =
c4t2dt2

ρ2
=

c4t2dt2

c2t2 + L2

⇒ dρ2 + ρ2dφ2 − c2dt2 = ρ2dφ2 +

(
c2t2

c2t2 + L2
− 1

)
c2dt2

= (L2 + c2t2)dφ2 −
(

L2

c2t2 + L2

)
c2dt2.

(2.2)

The surface c2t2 = x2+y2−L2 is sketched in figure 5, for L = 1. It is
a hyperboloid of revolution and the metric (2.2) has one time-like and
one space-like direction at every point, it is a curved 2-dimensional
space-time.
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Figure 2.5 2-dimensional de Sitter space-time embedded in 3-dimensional
Minkowski space-time. The vertical axis is ct and the surface is the hyper-
bola x2 + y2 = c2t2 + L2 (with L = 1). The light-cone x2 + y2 = c2t2 sits
inside the hyperboloid.

Now

ct = L sinh

(
cT

L

)
⇒ cdt = cosh

(
cT

L

)
cdT

⇒ c2dt2 = cosh2

(
cT

L

)
c2dT 2

and

c2t2 + L2 = L2

(
sinh2

(
cT

L

)
+ 1

)
= L2 cosh2

(
cT

L

)
⇒ ds2 = L2 cosh2

(
cT

L

)
dφ2 − c2dT 2

⇒ a(T ) = L cosh

(
cT

L

)
.
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This is a 2-dimensional Robertson-Walker space-time, corresponding
to an expanding universe when T is positive.

6) The only place on Earth that this could possibly happen is at the
south pole, so the bird must be a penguin! 1

The point is that polar co-ordinates, (latitude and longitude) are
not good co-ordinates at the south (or north) pole. Exactly at the
poles longitude is simply not defined, every degree of longitude cor-
responds to exactly the same point. This has no relevance to the
photographer of course, she just follows a perfectly regular isosceles
triangle which, to all intents and purposes, is on a flat plane. Note
that continuing in an easterly direction when you are 10km from the
south pole means you travel in a circle of radius 10km — it is not
a straight line (in navigation this is called a rhumb line), this has
nothing to do with curvature of the Earth, it is simply a consequence
of using polar co-ordinates around the origin.

1 Probably an emperor penguin, as these are the only birds that nest deep into the
interior of Antarctica, though in reality even an emperor probably wouldn’t get
as far in as the south pole itself, unless it was very lost!
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1) The equations of motion for ẋ and ẏ are

¨̃x = Ωỹẗ+ Ω2x̃ṫ2 + 2Ω ˙̃yṫ (3.1)
¨̃y = −Ωx̃ẗ+ Ω2ỹṫ2 − 2Ω ˙̃xṫ (3.2)

and the first integral for t is

ṫ =
kc2 + Ω

(
x̃ ˙̃y − ỹ ˙̃x

)
c2 − Ω2

(
x̃2 + ỹ2

) . (3.3)

Combining equations (3.1) and (3.2)

x̃¨̃y − ỹ ¨̃x = −Ωx̃2ẗ− 2Ωx̃ ˙̃xṫ− Ωỹ2ẗ− 2Ωỹ ˙̃yṫ

⇒ d

dt

(
x̃ ˙̃y − ỹ ˙̃x

)
= − d

dt

(
Ω(x̃2 + ỹ2)ṫ

)
⇒ x̃ ˙̃y − ỹ ˙̃x+ Ω(x̃2 + ỹ2)ṫ = A (a constant)

⇒
(
x̃
dỹ

dt
− ỹ dx̃

dt
+ Ω(x̃2 + ỹ2)

)
ṫ = A, (3.4)

where we have used ˙̃x = dx̃
dt ṫ and ˙̃y = dỹ

dt ṫ.

Non-relativistically (c→∞ in (3.3)) ṫ = k and

x̃
dỹ

dt
− ỹ dx̃

dt
+ Ω(x̃2 + ỹ2) =

A

k

so, in the question, l = A
k ⇒ A = lk .

21
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Now from equation (3.3)

ṫ =
kc2 + Ω

(
x̃dỹdt − ỹ

dx̃
dt

)
ṫ

c2 − Ω2
(
x̃2 + ỹ2

)
⇒ ṫ =

kc2

c2 − Ω2
(
x̃2 + ỹ2

)
− Ω

(
x̃dỹdt − ỹ

dx̃
dt

)
and putting this in (3.4), with A = lk, gives(

x̃
dỹ

dt
− ỹ dx̃

dt
+ Ω(x̃2 + ỹ2)

)
=

(
c2 − Ω2

(
x̃2 + ỹ2

)
− Ω

(
x̃dỹdt − ỹ

dx̃
dt

)
c2

)
l

⇒
(
x̃
dỹ

dt
− ỹ dx̃

dt
+ Ω(x̃2 + ỹ2)

)
=

l(
1 + lΩ

c2

) .
2) The Schwarzschild radius is

rS =
2GM

c2

with G = 6.67 × 10−11kg−1m3s−2 and c = 3 × 108ms−1. Using the
naïve volume for a sphere of radius rS ,

4πr3S
3 , the density is

ρ =
3M

4πr3
S

=
3M

4π

(
c2

2GM

)3

=
3c6

32πG2M2
.

a) With M=6 × 1024kg, rs = 9mm and ρ = 2 × 1030kg m−3, this is
an unimaginably high density — equivalent to packing the Sun
into a metre cubed box..

b) With M=2×1030kg, rs = 3km and ρ = 1.8×1019kg m−3, slightly
higher than the density of nuclear matter (the density of an atomic
nucleus).

c) With M=2 × 1036kg, rs = 3 × 106km and ρ = 1.8 × 107kg m−3,
or about 18kg per cc. For a supermassive black hole with a mass
of 4 billion solar masses, ρ = 1.1 kg m−3 = 1.1× 10−3g/cc, about
the density of air.

d) With M=1053kg, rs = 1.5× 1026km and ρ = 7.3× 10−27kg m−3.
This is about twice the average density of matter in the Universe.

3) For a black hole we use the Schwarzschild metric. When θ and φ are
constant

ds2 = −
(

1− 2GM

rc2

)
c2dt2 +

dr2(
1− 2GM

rc2

) .
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With Uµ = (cṫ, ṙ, 0, 0), the Lagrangian is

L = −
(

1− 2GM

rc2

)
c2ṫ2 +

ṙ2(
1− 2GM

rc2

) .
The equation of motion for t(τ) is

d

dτ

{(
1− 2GM

rc2

)
ṫ

}
= 0 ⇒ ṫ =

k(
1− 2GM

rc2

) .
If τ is the proper-time then L = −c2 and

−c2 = −
(

1− 2GM

rc2

)
c2ṫ2 +

ṙ2(
1− 2GM

rc2

)
⇒ ṙ2 = −c2

(
1− 2GM

rc2

)
+ c2k2 = c2

(
k2 − 1 +

2GM

rc2

)
The clock is dropped from rest implies that ṙ = dr

dτ = 0 when r = r0,
so the constant k is given by

k2 = 1− 2GM

r0c2

and

ṙ = −

√
2GM

(
1

r
− 1

r0

)
.

dr

dt
=
ṙ

ṫ
= −

(
1− 2GM

rc2

)√√√√2GM
(

1
r −

1
r0

)
1− 2GM

r0c2

.

The proper time on the falling clock is

τc =

∫
dτ =

∫ r1

r0

dr

ṙ

which is

τc =
1√

2GM

∫ r0

r1

r
1
2√

1− r
r0

dr =
r

3/2
0√

2GM

∫ 1

r1
r0

√
y

√
1− y

dy.

The integral can be done exactly∫ √
y

√
1− y

dy = sin−1(
√
y)−

√
y(1− y),

but if we only want r0 � r1 then

τc ≈
πr

3/2
0

2
√

2GM
=
πr0

2c

√
r0

rS
.
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For an observer fixed at r = r0 the proper time on their clock is
dτ0 =

√
1− 2GM

r0c2
dt. Using

dt =
dr
dr
dt

= −
√

1− 2GM

r0c2
dr(

1− 2GM
rc2

)√
2GM

(
1
r −

1
r0

)
the time their clock measures for the falling clock to fall from r0 down
to r1 is

τ0 =

√
1− 2GM

r0c2

∫ t

0

dt = −

(
1− 2GM

r0c2

)
√

2GM

∫ r1

r0

r
3
2 dr(

1− r
r0

)1/2 (
r − 2GM

c2

)
= r

3/2
0

(
1− 2GM

r0c2

)
√

2GM

∫ 1

r1
r0

y
3
2 dy

(1− y)
1/2
(
y − rS

r0

)
=

r
3/2
0√

2GM

(
1− 2GM

r0c2

)∫ 1

ε

y
3
2 dy

(1− y)
1/2
(
y − rS

r1
ε
)

≈ r
3/2
0√

2GM

∫ 1

ε

y(
y − rS

r1
ε
) y

1
2 dy

(1− y)
1/2

where y = r
r0
, ε = r1

r0
and again the approximation is for r0 � r1 >

rS = 2GM
c2 . Since y

y− rSr1 ε
> 1 we see that τ0 > τc. When r1 goes all

the way down to the event horizon, r1 = rS , and the integral∫ 1

ε

y(
y − ε

) y
1
2 dy

(1− y)
1/2

diverges logarithmically: while the falling clock takes a finite time to
reach the event horizon, according to itself, to a stationary observer
outside the event horizon it never reaches the event horizon.

4) In the text we took a short cut and used L = −c2 when τ is the
proper time, here we shall derive equation [3.31] directly. The radial
equation [3.25] is

r̈ = −GM
r2

k2(
1− 2GM

c2r

) +
ṙ2(

1− 2GM
c2r

) (GM
c2r2

)
+

(
1− 2GM

c2r

)
l2

r3
.
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Dividing by 1− 2GM
c2r and multiplying by ṙ leads to a first integral

ṙr̈(
1− 2GM

c2r

) − ṙ3(
1− 2GM

c2r

)2 (GMc2r2

)
= −GM

r2

k2ṙ(
1− 2GM

c2r

)2 +
l2ṙ

r3

⇒ d

dτ

(
ṙ2

1− 2GM
c2r

)
=

d

dτ

(
c2k2

1− 2GM
c2r

− l2

r2

)

⇒ ṙ2

1− 2GM
c2r

− c2k2

1− 2GM
c2r

+
l2

r2
= A,

where A is a constant.
Now let u = rS

r and use conservation of angular momentum,

l = r2φ̇ =
r2
S

u2
φ̇ ⇒ d

dτ
=
lu2

r2
S

d

dφ
⇒ dr

dτ
= − l

rS

du

dφ

to get

1

(1− u)

l2

r2
S

(
du

dφ

)2

− c2k2

1− u
+
l2u2

r2
S

= A

⇒
(
du

dφ

)2

+ u2(1− u) =
c2k2r2

S

l2
+
r2
SA

l2
(1− u).

k can now be eliminated by differentiating with respect to φ

2
du

dφ

(
d2u

dφ2

)
+ 2u

du

dφ
− 3u2 du

dφ
= −

(
r2
SA

l2

)
du

dφ

⇒ d2u

dφ2
+ u− 3

2
u2 = −r

2
SA

2l2
.

Choosing A = −c2 is equivalent to requiring that τ is the proper time,
though this is not forced on us, it is a choice of parameterisation.

5) Write the equation as

1

2
ṙ2 + V (r) = E

with

V (r) =
c2

2

(
−rS
r

+
l2

c2r2
− l2rS
c2r3

)
and

E =
c2

2
(k2 − 1)

and view V (r) as the potential energy for a particle on unit mass
moving in one dimension with energy E.
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Extrema occur when dV
dr = 0,

dV

dr
=
c2

2

(
rS
r2
− 2l2

c2r3
+

3l2rS
c2r4

)
= 0.

There are extrema as r →∞, where V → 0, and at

r = r± =
l2

rSc2
±

√
l4

r2
Sc

4
− 3l2

c2
.

Three cases to consider are

i) l2

c2 > 3r2s : there are two extrema at finite r, r+ is a minimum
and r− a maximum; there is a circular orbit at r+ which is stable
and one at r− which is unstable. If V (r+) < E < min{V (r−), 0}
there are bound elliptical orbits to the right of the peak, with
E = V (r+) being circular. If E > min{V (r−), 0} there are no
bound orbits.

ii) l2

c2 = 3r2s : there is an inflexion point at r = 3rS where there is a
marginally stable circular orbit when E = V (3rS) = − c

2

9 . Any
other value of E is either unbounded or unstable: for E > 0 the
orbit is unbounded, for E < 0 the orbit is inexorably sucked into
r = 0.

iii) l2

c2 < 3r2s : if the angular momentum is too low for a bound orbit,
all orbits are either unbounded or unstable, again E > 0 orbits
are unbounded and E < 0 orbits are eventually pulled toward
r = 0.

The smallest stable circular orbit occurs for l2 = 3r2
Sc

2 and r =

3rS , so the speed is

rφ̇ = r

(
l

r2

)
=
l

r
=

c√
3
.

Figure 3.1 is a plot of 2V
c2 as a function of r

rS
: the closest approach

of any stable orbit is when E = 0 and l2 = 4r2
Sc

2, at r = 2rS . So the
speed is

rφ̇ = r

(
l

r2

)
=
l

r
= c,

an upper limit to the speed of any massive particle.
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2 2 2

Sl  > 4 r   c
Locus of extrema

2 2 2

Sl  < 3 r   c

2 2 2

Sl  = 3 r   c

2 2 2

Sl  = 4 r   c

4 r  c > l  > 3 r   c
2

S

2 2 2

S

2

r/r
S

2 V
2c

Stable circular orbit

Unstable circular orbit

Marginally stable

circular orbit

Figure 3.1 Plot of the potential V as a function of r
rS

for various values of
the angular momentum l.

6) Since dr′ = dr
1− rSr

the Schwarzschild line element is

ds2 = −
(

1− rS
r

)
c2dt2 +

(
1− rS

r

)
(dr′)2 + r2(dθ2 + sin2 θdφ2)

=
(

1− rS
r

) (
−c2dt2 + (dr′)2

)
+ r2(dθ2 + sin2 θdφ2).

Now u = ct− r′ and v = ct+ r′ implies that

du dv = (cdt− dr′)(cdt+ dr′) = cdt2 − (dr′)2

hence

ds2 = −
(

1− rS
r

)
du dv + r2(dθ2 + sin2 θdφ2) (3.5)

and
v − u

2
= r′ = r + rS ln

∣∣∣∣r − rSrS

∣∣∣∣ ,
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which implicitly defines r and t as functions of u and v,

r(u, v) + rS ln

∣∣∣∣r(u, v)− rS
rS

∣∣∣∣ =
v − u

2
, ct(u, v) =

v + u

2
.

Now let

v′ = exp

(
v

2rS

)
, u′ = − exp

(
− u

2rS

)
⇒ dv′ = exp

(
v

2rS

)
dv

2rS
, du′ = exp

(
− u

2rS

)
du

2rS

⇒ dv′du′ =
1

4r2
S

exp

(
v − u
2rS

)
dv du

and

exp

(
v − u
2rS

)
=

∣∣∣∣r − rSrS

∣∣∣∣ exp

(
r

rS

)
⇒ du dv = 4r2

Se
−r/rS

∣∣∣∣ rS
r − rS

∣∣∣∣ du′dv′.
So now (3.5) can be written as

ds2 = ∓4r3
S

r
e−r/rSdu′dv′ + r2(dθ2 + sin2 θdφ2)

= ∓F 2(u′, v′)du′dv′ + r2(dθ2 + sin2 θdφ2)

where F 2 =
4r3S
r e−r/rS and r(u′, v′) defined through

u′v′ = − exp

(
v − u
2rS

)
= −

∣∣∣∣r − rSrS

∣∣∣∣ er/rS
(the ∓ sign is for r > rS and r < rS respectively).

No component of the metric is singular at r = rS , everything is
perfectly regular. There is no singularity in the geometry at the event
horizon, the apparent singularity in the Schwarzschild line element is
just due to the fact that r is not a good coordinate at rS .
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Chapter 4

1) Starting from the definition of the Christoffel symbols

Γµνρ =
1

2
gµλ(gνλ,ρ + gλρ,ν − gνρ,λ)

use

gµ′λ′ =
∂xτ

∂xµ′
∂xζ

∂xλ′
gτζ and gµ

′λ′ =
∂xµ

′

∂xη
∂xλ

′

∂xσ
gησ,

so

Γµ
′

ν′ρ′ =
1

2
gµ
′λ′(gν′λ′,ρ′ + gλ′ρ′,ν′ − gν′ρ′,λ′)

=
1

2

(
∂xµ

′

∂xη
∂xλ

′

∂xσ
gησ

){
∂ρ′

(
∂xτ

∂xν′
∂xζ

∂xλ′
gτζ

)
+ ∂ν′

(
∂xτ

∂xλ′
∂xζ

∂xρ′
gτζ

)
− ∂λ′

(
∂xτ

∂xν′
∂xζ

∂xρ′
gτζ

)}

=
1

2

(
∂xµ

′

∂xη
∂xλ

′

∂xσ
gησ

){(
∂xτ

∂xν′
∂xζ

∂xλ′

)
∂ρ′gτζ +

(
∂xτ

∂xλ′
∂xζ

∂xρ′

)
∂ν′gτζ −

(
∂xτ

∂xν′
∂xζ

∂xρ′

)
∂λ′gτζ

+∂ρ′

(
∂xτ

∂xν′
∂xζ

∂xλ′

)
gτζ + ∂ν′

(
∂xτ

∂xλ′
∂xζ

∂xρ′

)
gτζ − ∂λ′

(
∂xτ

∂xν′
∂xζ

∂xρ′

)
gτζ

}
.

(4.1)

29
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Break this into two parts and consider them separately: the first three
terms on the right hand side are

1

2

(
∂xµ

′

∂xη
∂xλ

′

∂xσ
gησ

){(
∂xτ

∂xν′
∂xζ

∂xλ′

)
∂ρ′gτζ +

(
∂xτ

∂xλ′
∂xζ

∂xρ′

)
∂ν′gτζ

−
(
∂xτ

∂xν′
∂xζ

∂xρ′

)
∂λ′gτζ

}

=
1

2

(
∂xµ

′

∂xη
∂xλ

′

∂xσ
gησ

)
×{(

∂xτ

∂xν′
∂xζ

∂xλ′

)(
∂xω

∂xρ′

)
∂ωgτζ +

(
∂xτ

∂xλ′
∂xζ

∂xρ′

)(
∂xω

∂xν′

)
∂ωgτζ

−
(
∂xτ

∂xν′
∂xζ

∂xρ′

)(
∂xω

∂xλ′

)
∂ωgτζ

}

=
1

2

(
∂xµ

′

∂xη
∂xλ

′

∂xσ
∂xζ

∂xλ′

)(
∂xτ

∂xν′

)(
∂xω

∂xρ′

)
gησ∂ωgτζ

+
1

2

(
∂xµ

′

∂xη
∂xλ

′

∂xσ
∂xτ

∂xλ′

)(
∂xζ

∂xρ′

)(
∂xω

∂xν′

)
gησ∂ωgτζ

− 1

2

(
∂xµ

′

∂xη
∂xλ

′

∂xσ
∂xω

∂xλ′

)(
∂xτ

∂xν′

)(
∂xζ

∂xρ′

)
gησ∂ωgτζ

=
1

2

(
∂xµ

′

∂xη
δζσ

)(
∂xτ

∂xν′

)(
∂xω

∂xρ′

)
gησ∂ωgτζ +

1

2

(
∂xµ

′

∂xη
δτσ

)(
∂xζ

∂xρ′

)(
∂xω

∂xν′

)
gησ∂ωgτζ

− 1

2

(
∂xµ

′

∂xη
δωσ

)(
∂xτ

∂xν′

)(
∂xζ

∂xρ′

)
gησ∂ωgτζ

=
1

2

(
∂xµ

′

∂xη

)(
∂xτ

∂xν′

)(
∂xω

∂xρ′

)
gησ∂ωgτσ +

1

2

(
∂xµ

′

∂xη

)(
∂xζ

∂xρ′

)(
∂xω

∂xν′

)
gησ∂ωgσζ

− 1

2

(
∂xµ

′

∂xη

)(
∂xτ

∂xν′

)(
∂xζ

∂xρ′

)
gησ∂σgτζ

=
1

2

(
∂xµ

′

∂xη
∂xτ

∂xν′
∂xω

∂xρ′

)
gησ∂ωgτσ +

1

2

(
∂xµ

′

∂xη
∂xτ

∂xρ′
∂xω

∂xν′

)
gησ∂ωgστ

− 1

2

(
∂xµ

′

∂xη
∂xτ

∂xν′
∂xω

∂xρ′

)
gησ∂σgτω

=
1

2

(
∂xµ

′

∂xη
∂xτ

∂xν′
∂xω

∂xρ′

)
gησ
(
∂ωgτσ + ∂τgσω − ∂σgτω

)

=

(
∂xµ

′

∂xη
∂xτ

∂xν′
∂xω

∂xρ′

)
Γηωτ ;
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the second three terms on the right hand side of (4.1) are

1

2

(
∂xµ

′

∂xη
∂xλ

′

∂xσ
gησ

)(
∂ρ′

(
∂xτ

∂xν′
∂xζ

∂xλ′

)
+ ∂ν′

(
∂xτ

∂xλ′
∂xζ

∂xρ′

)
− ∂λ′

(
∂xτ

∂xν′
∂xζ

∂xρ′

))
gτζ

=
1

2

(
∂xµ

′

∂xη
∂xλ

′

∂xσ
gησ

)(
∂2xτ

∂xρ′∂xν′
∂xζ

∂xλ′
+
∂xτ

∂xν′
∂2xζ

∂xρ′∂xλ′
+

∂2xτ

∂xν′∂xλ′
∂xζ

∂xρ′

+
∂xτ

∂xλ′
∂2xζ

∂xν′∂xρ′
− ∂2xτ

∂xλ′∂xν′
∂xζ

∂xρ′
− ∂xτ

∂xν′
∂2xζ

∂xλ′∂xρ′

)
gτζ

=
1

2

(
∂xµ

′

∂xη
∂xλ

′

∂xσ

)(
∂2xτ

∂xρ′∂xν′
∂xζ

∂xλ′
+
∂xτ

∂xλ′
∂2xζ

∂xρ′∂xν′

)
gησgτζ

=

(
∂xµ

′

∂xη
∂xλ

′

∂xσ

)(
∂2xτ

∂xρ′∂xν′
∂xζ

∂xλ′

)
gησgτζ

=

(
∂xµ

′

∂xη

)(
∂2xτ

∂xρ′∂xν′

)
δζσg

ησgτζ =

(
∂xµ

′

∂xη

)(
∂2xτ

∂xρ′∂xν′

)
δητ

=

(
∂xµ

′

∂xη

)(
∂2xη

∂xρ′∂xν′

)
.

Putting these together

Γµ
′

ν′ρ′ =
∂xµ

′

∂xη
∂xτ

∂xν′
∂xω

∂xρ′
Γηωτ +

∂xµ
′

∂xη
∂2xη

∂xρ′∂xν′
, (4.2)

as claimed.
2) From [E.7] the non-zero components of the Riemann tensor for a

general Robertson-Walker metric with cosmological scale a(t) are

R0α0β = − 1

c2
aäg̃αβ , Rαβγδ =

1

c2
(ȧ2 +Kc2)a2

(
g̃αγ g̃βδ − g̃γδ g̃βk

)
,

all other components vanish. Setting a = ct and K = −1, ä = 0 and
ȧ2 + c2K = 0 hence

R0α0β = Rαβγδ = 0,

the Riemann tensor vanishes identically so the space-time is neces-
sarily flat and is Minkowski space-time.

3) With

~n = (cosφ sin θ, sinφ sin θ, cos θ)
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we have

~uθ = ∂θ~n = (cosφ cos θ, sinφ cos θ,− sin θ)

~uφ = ∂φ~n = (− sinφ sin θ, cosφ sin θ, 0).

These vectors are tangent to the sphere with constant radius r, since

~uθ.~n = ~uφ.~n = 0.

The second derivatives

∂φ~uθ = ∂θ~uφ = (− sinφ cos θ, cosφ cos θ, 0) = cot θ ~uφ

are also tangent to the sphere, but

∂θ~uθ = −(cosφ sin θ, sinφ sin θ, cos θ) = −n̂
∂φ~uφ = −(cosφ sin θ, sinφ sin θ, 0) = − sin2 θ n̂− sin θ cos θ ~uθ

are not. But if we now project these vectors back on to the sphere
we get

∂θ~uθ → 0,

∂φ~uφ → − sin θ cos θ ~uθ

∂θ~uφ → cot θ~uφ,

∂φ~uθ → cot θ~uφ.

4) Hopefully there are enough pointers given in the appendix for the
student to fill in the gaps.

5) a) From the definition

Γµνρ =
1

2
gµσ(gσρ,ν + gνσ,ρ − gνρ,σ)
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so

δΓµνρ =
1

2
(δgµσ)(gσρ,ν + gνσ,ρ − gνρ,σ) +

1

2
gµσ(δgσρ),ν +

1

2
gµσ(δgνσ),ρ−

1

2
gµσ(δgνρ),σ

= −1

2
gµλ
(
δgλτ )gτσ(gσρ,ν + gνσ,ρ − gνρ,σ

)
+

1

2
gµσ
(
(δgσρ);ν + Γλνσ(δgλρ) + Γλνρ(δgλσ)

)
+

1

2
gµσ
(
(δgνσ);ρ + Γλρν(δgλσ) + Γλρσ(δgλν)

)
− 1

2
gµσ
(
(δgνρ);σ + Γλσν(δgλρ) + Γλσρ(δgλν)

)

= −gµλ
(
δgλτ )Γτνρ +

1

2
gµσ
(
(δgσρ);ν + Γλνσ(δgλρ) + Γλνρ(δgλσ)

)
+

1

2
gµσ
(
(δgνσ);ρ + Γλρν(δgλσ) + Γλρσ(δgλν)

)
− 1

2
gµσ
(
(δgνρ);σ + Γλσν(δgλρ) + Γλσρ(δgλν)

)

=
1

2
gµσ(δgσρ);ν +

1

2
gµσ(δgνσ);ρ −

1

2
gµσ(δgνρ);σ − gµλ

(
δgλσ)Γσνρ

+
1

2
gµσΓλνσ(δgλρ) +

1

2
gµσΓλνρ(δgλσ) +

1

2
gµσΓλρν(δgλσ) +

1

2
gµσΓλρσ(δgλν)

− 1

2
gµσΓλσν(δgλρ)−

1

2
gµσΓλσρ(δgλν) (underlined terms cancel)

=
1

2
gµσ(δgσρ);ν +

1

2
gµσ(δgνσ);ρ −

1

2
gµσ(δgνρ);σ − gµλ

(
δgλσ)Γσνρ

+
1

2
gµσΓλνρ(δgλσ) +

1

2
gµσΓλρν(δgλσ)

=
1

2
gµσ(δgσρ);ν +

1

2
gµσ(δgνσ);ρ −

1

2
gµσ(δgνρ);σ − gµσ

(
δgσλ)Γλνρ

+ gµσΓλνρ(δgλσ)

=
1

2
gµσ
(
(δgσρ);ν + (δgνσ);ρ − (δgνρ);σ

)
.

b) From the definition

Rµνρσ = ∂ρΓ
µ
νσ − ∂σΓµνρ + ΓµρλΓλνσ − ΓµσλΓλνρ
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we have

δRµνρσ = ∂ρ(δΓ
µ
νσ)− ∂σ(δΓµνρ) + (δΓµρλ)Γλνσ + Γµρλ(δΓλνσ)− (δΓµσλ)Γλνρ − Γµσλ(δΓλνρ)

= (δΓµνσ);ρ − Γµλρ(δΓ
λ
νσ) + Γλνρ(δΓ

µ
λσ) + Γλσρ(δΓ

µ
λν)

− (δΓµνρ);σ + Γµλσ(δΓλνρ)− Γλνσ(δΓµλρ)− Γλρσ(δΓµνλ)

+ (δΓµρλ)Γλνσ + Γµρλ(δΓλνσ)− (δΓµσλ)Γλνρ − Γµσλ(δΓλνρ)

= (δΓµνσ);ρ − (δΓµνρ);σ + Γλνρ(δΓ
µ
λσ)

+ Γµλσ(δΓλνρ)− Γλνσ(δΓµλρ) + (δΓµρλ)Γλνσ − (δΓµσλ)Γλνρ − Γµσλ(δΓλνρ)

= (δΓµνσ);ρ − (δΓµνρ);σ + Γµλσ(δΓλνρ)− Γµσλ(δΓλνρ)

= (δΓµνσ);ρ − (δΓµνρ);σ.

c) The first line is immediate from 5b) with µ = ρ and then sending
ν → µ, σ → ν. Then from 5a)

(
δΓλµν

)
;λ
−
(
δΓλµλ

)
;ν

=
1

2
gλσ
(
(δgσν);µ + (δgµσ);ν − (δgµν);σ

)
;λ

− 1

2
gλσ
(
(δgσλ);µ + (δgµσ);λ − (δgµλ);σ

)
;ν

=
1

2
gλσ
(
(δgσν);µ;λ + (δgµσ);ν;λ − (δgµν);σ;λ − (δgσλ);µ;ν

− (δgµσ);λ;ν + (δgµλ);σ;ν

)

=
1

2
gλσ
(
(δgσν);µ;λ + (δgµσ);ν;λ − (δgµν);σ;λ − (δgσλ);µ;ν

)
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d)

δR = δ(gµνRµν) = (δgµν)Rµν + gµν(δRµν)

= −gµλ(δgλσ)gσνRµν + gµν(δRµν)

= −(δgλσ)Rλσ +
1

2
gµνgλσ

(
(δgσν);µ;λ + (δgµσ);ν;λ − (δgµν);σ;λ − (δgσλ);µ;ν

)
= −(δgλσ)Rλσ + gµνgλσ

(
(δgσν);µ;λ − (δgµν);σ;λ

)
= −(δgλσ)Rλσ +

{
gµνgλσ

(
(δgσν);µ − (δgµν);σ

)}
;λ
.
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1) From the definition of the Einstein tensor1

Gµν;µ = Rµν;µ −
1

2
R;ν

= Rµρνρ;µ −
1

2
Rµρµρ;ν

=
1

2
Rµρνρ;µ −

1

2
Rµρνµ;ρ −

1

2
Rµρµρ;ν (since Rµρνρ;µ = −Rρµνρ;µ = −Rµρνµ;ρ)

= −1

2
Rµρρν;µ −

1

2
Rµρνµ;ρ −

1

2
Rµρµρ;ν (since Rµρνρ = −Rµρρν)

= −1

2
Rµρ[ρν;µ]

= 0,

from the second Bianchi identity.
2) i) A Maple™ script that achieves this (with Maple v2020.2) is:

> with(Physics)
> Setup(mathematicalnotation = true)
> Setup(coordinatesystems = cartesian)
> ds2 := ((dx)ˆ2 + (dy)ˆ2 + (dz)ˆ2)/(1 + 2*Phi(x,y,z)/cˆ2) - (cˆ2 + 2*Phi(x,y,z))*(dt)ˆ2
> Setup(metric = ds2)
> CompactDisplay()
> G_44 := simplify(Einstein[4, 4])
> G_11 := simplify(Einstein[1, 1])
> G_22 := simplify(Einstein[2, 2])
> G_33 := simplify(Einstein[3, 3])
> G_14 := simplify(Einstein[1, 4])
> G_24 := simplify(Einstein[2, 4])
> G_34 := simplify(Einstein[3, 4])
> G_23 := simplify(Einstein[2, 3])
> G_13 := simplify(Einstein[1, 3])
> G_23 := simplify(Einstein[2, 3])

1 For a scalar, such as the Ricci scalar, a co-variant derivative is just a partial
derivative (there are no connection terms), so a semi-colon just means a partial
derivative on R.

36
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though note that G44 is Gtt and not G00, with x0 = ct, so G44 =

c2G00.
ii) A Mathematica™ script (with Mathematica 12.1.1.0) is

In[1] Mathematica/EinsteinTensor.m
In[2]:= X = {t,x,y,z}
(* Cartesian coordinates: *)
In[3]:= (metric = DiagonalMatrix[{-(cˆ2+2*Phi[x,y,z]), 1/(1+2*Phi[x,y,z]/cˆ2),
1/(1+2*Phi[x,y,z]/cˆ2), 1/(1+2*Phi[x,y,z]/cˆ2)}] ) //MatrixForm
(* The line element: *)
In[4]:= (Einstein = Simplify[EinsteinTensor[metric,X]])

(*Calculate the Einstein tensor.*)

3) For a relativistic fluid with

Tµν =

(
ρ+

P

c2

)
UµUν + gµνP, (5.1)

and Uµ = γ(v)(c, v1, v2, v3),

T 00 = γ2(v)ρc2 +
(
g00 + γ2(v)

)
P,

Tα0 = γ2(v)ρcvα +

(
gα0 + γ2(v)

vα

c

)
P

Tαβ = γ2(v)ρvαvβ +

(
gαβ + γ2(v)

vαvβ

c2

)
P.

With gµν = ηµν =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 and

γ(v) =
1√

1− v2

c2

= 1 +
1

2

v2

c2
+ +O

(
v4

c4

)
,

a large c expansion is

T 00 = γ2(v)ρc2 +
(
γ2(v)− 1

)
P = ρ0c

2 +
1

2
ρ0v

2 + · · ·

Tα0 = γ2(v)ρcvα + γ2(v)
vα

c
P = ρ0cv

α +
vα

c

(
1

2
ρ0v

2 + P

)
+ · · ·

Tαβ = γ2(v)ρvαvβ +

(
δαβ + γ2(v)

vαvβ

c2

)
P

=
(
Pδαβ + ρ0v

αvβ
)

+
vαvβ

c2

(
1

2
ρ0v

2 + P

)
+ · · · ,

where ρ0 = γ(v)ρ. In T 00, ρ0c
2 is the rest energy per unit volume

associated with mass density ρ0, while 1
2ρ0v

2 is the non-relativistic
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kinetic energy per unit volume. In T 0α, ρ0v
α is the momentum per

unit volume associated with mass density ρ0 moving with velocity.
In Tαβ , Pδαβ is the usual isotropic pressure of a fluid while ρ0v

αvβ

is the extra contribution to the pressure due to the movement of the
fluid.

4) The enthalpy density h is

h = P +
U

V
.

Identifying U/V with the energy density at rest, the mass density
times c2, ρc2, the enthalpy density is

h = ρc2 + P.

So if the enthalpy is zero then P = −ρc2. This in turn implies, from
(5.1) above, that

Tµν = Pgµν ,

even when the fluid is in motion. Einstein’s equations are then

Gµν =
8πG

c4
Pgµν = −Λgµν

and a cosmological constant is equivalent to a fluid with vanishing
enthalpy and P = − Λc4

8πG .
5) From

Tµν =

(
ρ+

P

c2

)
UµUν + gµνP

we have, since gµνUµUν = −c2,

Tµµ = gµνT
µν = −(ρc2 + P ) + 4P = −(ρc2 − 3P ).

For photons the radiation pressure is P = ρc2

3 and Tµµ = 0 is trace-
less.
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1) The Einstein tensor, indeed the whole Riemann tensor, vanishes. This
can be verified explicitly but quicker is to observe that changing the
azimuthal co-ordinate from φ to φ′ = φ−ωt renders the line element
in the form

ds2 = −c2dt2 + dr2 + (dθ2 + sin2 θdφ′2)

which is just flat space-time in spherical polar co-ordinates. This is
just a co-ordinate transformation of the Minkowski space-time line
element.

Even if ω(t) is a function of time φ′ = φ−
∫ t
ω(t)dt is a perfectly

good co-ordinate (provided the integral is not singular) and the space-
time is still flat.

2) With the metric

gµν = ηµν + hµν

and hµν � 1,

gµν = ηµν − ηµρhρσησν +O(h2) = ηµν − hµν +O(h2).

The Christoffel symbols are

Γµνρ =
1

2
gµτ (gτρ,ν + gντ,ρ − gνρ,τ )

=
1

2
ηµτ (hτρ,ν + hντ,ρ − hνρ,τ ) +O(h2)

39
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and the Riemann tensor

Rµνρσ = ∂ρΓ
µ
νσ − ∂σΓµνρ +O(h2)

=
1

2
ηµτ (hτσ,ν,ρ + hντ,σ,ρ − hνσ,τ,ρ)−

1

2
ηµτ (hτρ,ν,σ + hντ,ρ,σ − hνρ,τ,σ) +O(h2)

=
1

2
ηµτ (hτσ,ν,ρ − hνσ,τ,ρ − hτρ,ν,σ + hνρ,τ,σ) +O(h2),

since hντ,σ,ρ = hντ,ρ,σ (partial derivatives commute).

Using the gravitational wave form, the real part of [6.12], the Rie-
mann tensor is

Rµνρσ =
1

2
ηµτRe

{(
(ikν)(ikρ)Pτσ − (ikτ )(ikρ)Pνσ − (ikν)(ikσ)Pτρ + (ikτ )(ikσ)Pνρ

)
eik.x

}
+O(h2)

⇒ Rµνρσ =
1

2
(−kνkρPµσ + kµkρPνσ + kνkσPµρ − kµkσPνρ) cos(k.x) +O(h2).

For example, with kµ = (ωc , k, 0, 0), ω = ck and Pµν =


0 0 0 0

0 0 0 0

0 0 P+ P×
0 0 P× −P+

,

Rct y x z =
1

2
k2P× cos

(
k(x− ct)

)
.

This is non-zero if P× and k are non-zero, so the space-time is not
flat, though Rµν = 0.

3) From appendix D of the text

R0r0r = fg

(
f ′

g

)′
, (6.1)

R0θ0θ =
rff ′

g2
, R0φ0φ =

rff ′

g2
sin2 θ, (6.2)

Rrθrθ =
rg′

g
, Rrφrφ =

rg′

g
sin2 θ, (6.3)

Rθφθφ =
(g2 − 1)

g2
r2 sin2 θ. (6.4)
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Setting g = 1
f these are

R0r0r =
1

2
(f2)′′, (6.5)

R0θ0θ =
1

2
rf2(f2)′, R0φ0φ =

1

2
rf2(f2)′ sin2 θ, (6.6)

Rrθrθ = − rf ′

f
, Rrφrφ = −rf

′

f
sin2 θ, (6.7)

Rθφθφ = (1− f2)r2 sin2 θ. (6.8)

Furthermore f(r) =
√

1− 2GM
rc2 gives

R0r0r = −2GM

r3c2
,

R0θ0θ =
GM

rc2

(
1− 2GM

rc2

)
, R0φ0φ =

GM

rc2

(
1− 2GM

rc2

)
sin2 θ,

Rrθrθ = −GM
rc2

(
1− 2GM

rc2

)−1

, Rrφrφ = −GM
rc2

(
1− 2GM

rc2

)−1

sin2 θ,

Rθφθφ =
2GMr

c2
sin2 θ.

With this form for the Riemann tensor the off-diagonal components
of the Ricci tensor vanish identically, because the metric is diagonal,
and we only need check the diagonal components:

R00 = grrR0r0r + gθθR0θ0θ + gφφR0φ0φ

= −(1− 2GM
rc2

) 2GM
r3c2

+ 1
r2

(GM
rc2

)(1− 2GM
rc2

)+ 1
r2 sin2 θ

(GM
rc2

)(1− 2GM
rc2

) sin2 θ

= 0,

Rrr = g00R0r0r + gθθRrθrθ + gφφRrφrφ

= −(1− 2GM
rc2

)
−1

(− 2GM
r3c2

)+ 1
r2

(−GM
rc2

)(1− 2GM
rc2

)
−1

+ 1
r2 sin2 θ

(−GM
rc2

)(1− 2GM
rc2

)
−1

sin2 θ

= 0,

Rθθ = g00R0θ0θ + grrRrθrθ + gφφRθφθφ

= −(1− 2GM
rc2

)
−1

(GM
rc2

)(1− 2GM
rc2

)+(1− 2GM
rc2

)(−GM
rc2

)(1− 2GM
rc2

)
−1

+ 1
r2 sin2 θ

( 2GMr
c2

) sin2 θ

= 0,

Rφφ = g00R0φ0φ + grrRrφrφ + gθθRθφθφ

= −(1− 2GM
rc2

)
−1

(GM
rc2

)(1− 2GM
rc2

) sin2 θ+(1− 2GM
rc2

)(−GM
rc2

)(1− 2GM
rc2

)
−1

sin2 θ+ 1
r2

( 2GMr
c2

) sin2 θ

= 0.
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4) One needs access to either Maple™ or Mathematica™ to do this prob-
lem.

5) a) From (6.1)-(6.4) above the Ricci tensor is

R00 = grrR0r0r + gθθR0θ0θ + gφφR0φ0φ

=
1

g2

(
fg

(
f ′

g

)′)
+

1

r2

(
rff ′

g2

)
+

1

r2 sin2 θ

(
rff ′

g2
sin2 θ

)
=
f

g

(
f ′

g

)′
+

2ff ′

rg2
,

Rrr = g00R0r0r + gθθRrθrθ + gφφRrφrφ

= − 1

f2

(
fg

(
f ′

g

)′)
+

1

r2

(
rg′

g

)
+

1

r2 sin2 θ

(
rg′

g

)
sin2 θ

= − g
f

(
f ′

g

)′
+

2g′

rg
,

Rθθ = g00R0θ0θ + grrRrθrθ + gφφRθφθφ

= − 1

f2

(
rff ′

g2

)
+

1

g2

(
rg′

g

)
+

1

r2 sin2 θ

(
g2 − 1

g2

)
r2 sin2 θ

= − rf
′

fg2
+
rg′

g3
+

(
g2 − 1

g2

)
Rφφ = g00R0φ0φ + grrRrφrφ + gθθRθφθφ

= − 1

f2

rff ′

g2
sin2 θ +

1

g2

(
rg′

g

)
sin2 θ +

1

r2

(
g2 − 1

g2

)
r2 sin2 θ

=

{
− rf

′

fg2
+
rg′

g3
+

(
g2 − 1

g2

)}
sin2 θ.

The Ricci scalar is

R = g00R00 + grrRrr + gθθRθθ + gφφRφφ

= − 1

f2

{
f

g

(
f ′

g

)′
+

2ff ′

rg2
,

}
+

1

g2

{
− g
f

(
f ′

g

)′
+

2g′

rg

}

+
2

r2

{
− rf

′

fg2
+
rg′

g3
+

(
g2 − 1

g2

)}
.
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The Einstein tensor, Gµν = Rµν − 1
2gµνR, then works out to be

G00 =
f2
(
g3 − g + 2rg′

)
r2g3

,

Grr =
f − fg2 + 2rf ′

r2f
=

1− g2

r2
+

2f ′

rf
, (6.9)

Gθθ =
r(gf ′ + rgf ′′ − rf ′g′ − fg′)

fg3
=
r
(
g(rf ′)′ − (rf)′g′

)
fg3

,

Gφφ = Gθθ sin2 θ

(note x0 = ct here, Gtt = c2G00). Then Einstein’s equations re-
quire

Gθθ =
8πG

c4
gθθT

θ
θ =

8πG

c4
r2P ⇒ g(rf ′)′ − (rf)′g′

rfg3
=

8πGP

c4

(6.10)
and Gφφ gives the same equation.

b) With the form of Tµν specified in the question, Tµν = gµσT
σ
ν the

00 component of Einstein’s equations is

G00 =
f2
(
g3 − g + 2rg′

)
r2g3

=
8πρf2

c2
. (6.11)

With g = 1√
1− 2Gm(r)

rc2

g′ = −

(
Gm
r2c2 −

Gm′

rc2

)
(
1− 2Gm

rc2

)3/2
⇒ g3 − g + 2rg′

r2g3
=

2Gm′

r2c2
.

Equation (6.11 is satisfied if

m(r) = 4π

∫ r

ρ(r)r2dr ⇒ ρ =
m′

4πr2
.

c) A differential equation for f can be obtained from (6.9),

Grr =
8πG

c4
grrT

r
r =

8πG

c4
g2T rr =

8πGP

c4
(
1− 2Gm

rc2

)
⇒ (1− g2)

r2
+

2f ′

rf
=

8πGP

c4
(
1− 2Gm

rc2

)
⇒ f ′

f
=

1(
1− 2Gm

rc2

) (Gm
r2c2

+
4πGrP

c4

)
. (6.12)
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d) Equation (6.10) gives another relation between f and P but a sim-
pler equation for f

′

f follows from conservation of energy-momentum

∇µTµν = ∂µT
µ
ν + ΓµµρT

ρ
ν − ΓρµνT

µ
ρ = 0

with ν = r (via Einstein’s equations this follows from the second
Bianchi identity). Since Tµν is diagonal this is

dT rr
dr

+ ΓµµrT
r
r − ΓρµrT

µ
ρ = 0,

⇒ P ′ + ΓµµrP − Γ0
0r(−ρc2)−

(
Γrrr + Γθθr + Γφφr

)
P = 0,

⇒ P ′ + Γ0
0r(ρc

2 + P ) = 0,

and we only need

Γ0
0r =

1

2
g00
(
g00,r + g0r,0 − g0r,0

)
=

1

2

(f2)′

f2

to evaluate the left-hand side and the radial component of the
energy-momentum conservation equation is

P ′ +
1

2

(f2)′

f2
(ρc2 + P ) = 0 ⇒ f ′

f
= − P ′

(ρc2 + P )
. (6.13)

Combining this with (6.12)

− P ′

(ρc2 + P )
=

1(
1− 2Gm

rc2

) (Gm
r2c2

+
4πrGP

c4

)
⇒ P ′ = −

G
(
ρ+ P

c2

)
r2
(
1− 2Gm

rc2

) (m+
4πr3P

c2

)
. (6.14)

e) i) For constant ρ = ρ0, m(r) = 4π
3 ρ0r

3 and

P ′ = −4πrG

3c4

(
ρ0c

2 + P
)(

1− 8πGρ0r2

3c2

) (ρ0c
2 + 3P

)
.

The total mass of the star isM = 4π
3 ρ0R

3 and rS = 2GM
c2 = 8πGρ0R

3

3c2

so (
1− rSr

2

R3

)
dP

rdr
= −4πG

3c4
(
ρ0c

2 + P
) (
ρ0c

2 + 3P
)
.

Define the dimensionless ratios ε = rS
R , P̃ = P

ρ0c2
and x = r2

R2 ,
so x = 1 is the surface of the star, then this is

(1−εx)
dP̃

dx
= −2πGρ0R

2

3c2
(1+P̃ )(1+3̃P ) = − ε

4
(1+P̃ )(1+3̃P ).
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With y = ln(1− εx), dy = −ε dx
1−εx and

dP̃

dy
=

1

4
(1 + P̃ )(1 + 3̃P )

⇒ dy

4
=

dP̃

(1 + P̃ )(1 + 3̃P )
=

3

2

dP̃

(1 + 3P̃ )
− 1

2

dP̃

(1 + P̃ )

which integrates to

ln(1− εx) = 2 ln

(
1 + 3P̃

1 + P̃

)
+ const.

With P̃ = 0 at the surface x = 1, the integration constant is
ln(1− ε) and

ln

(
1− εx
1− ε

)
= 2 ln

(
1 + 3P̃

1 + P̃

)

⇒ 1 + 3P̃

1 + P̃
=

√
1− εx
1− ε

⇒ P̃ =

√
1− εx−

√
1− ε

3
√

1− ε−
√

1− εx

⇒ P = ρ0c
2


√

1− r2rS
R3 −

√
1− rS

R

3
√

1− rS
R −

√
1− r2rS

R3


as claimed. The pressure at the centre is

Pc = ρ0c
2

(
1−

√
1− rS

R

3
√

1− rS
R − 1

)

which is positive only if R > 9
8rS . If R ≤

9
8rS the pressure

diverges at r2 = R2
(

9− 8R
rS

)
and the model is not valid all

the way down to r = 0 when R ≤ 9
8rS .

ii) Firstly

g(r) =
1√

1− 2Gm(r)
rc2

=
1√

1− 8πGρ0r2

3c2

=
1√

1− r2rS
R3

.
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Next, from (6.13),

ln f = − ln(ρ0c
2 + P ) + const. ⇒ f =

const

ρ0c2 + P
.

The constant of integration can be determined by demanding
that the metric must be Schwarzschild just above and at the
surface of the star, where P = 0, so

f2(R) = 1− 2GM

Rc2
= 1− rS

R

⇒ f2(r) =
(

1− rS
R

)( ρoc
2

ρ0c2 + P

)2

=
1

4

(
1− rS

R

){
3

√
1− rS

R
−
√

1− r2rS
R3

}2

.

You should convince yourself that (6.10) is also satisfied by this so-
lution. This is not a co-incidence, Einstein’s equations give 3 inde-
pendent equations, (6.9), and conservation of energy-momentum,
which is equivalent to the second Bianchi identity when Einstein’s
equations are satisfied, is not an independent equation, it is a con-
sequence of the original 3 equations.

6) We can use the Riemann tensor in equations (6.5)-(6.8). with

f2 =

(
1− 2GM

rc2
− r2

L2

)
.

The result is

R0r0r = −2GM

r3c2
− 1

L2
,

R0θ0θ =

(
GM

rc2
− r2

L2

)(
1− 2GM

rc2
− r2

L2

)
,

R0φ0φ =

(
GM

rc2
− r2

L2

)(
1− 2GM

rc2
− r2

L2

)
sin2 θ,

Rrθrθ =

(
−GM
rc2

+
r2

L2

)(
1− 2GM

rc2
− r2

L2

)−1

,

Rrφrφ =

(
−GM
rc2

+
r2

L2

)(
1− 2GM

rc2
− r2

L2

)−1

sin2 θ,

Rθφθφ =

(
2GM

rc2
+
r2

L2

)
r2 sin2 θ.
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The Ricci tensor is

R00 = grrR0r0r + gθθR0θ0θ + gφφR0φ0φ

= −
(

1− 2GM

rc2
− r2

L2

)(
2GM

r3c2
+

1

L2

)
+

1

r2

(
GM

rc2
− r2

L2

)(
1− 2GM

rc2
− r2

L2

)
+

1

r2 sin2 θ

(
GM

rc2
− r2

L2

)(
1− 2GM

rc2
− r2

L2

)
sin2 θ

= − 3

L2

(
1− 2GM

rc2
− r2

L2

)
,

Rrr = g00R0r0r + gθθRrθrθ + gφφRrφrφ

= −
(

1− 2GM

rc2
− r2

L2

)−1(
−2GM

r3c2
− 1

L2

)
+

1

r2

(
−GM
rc2

+
r2

L2

)(
1− 2GM

rc2
− r2

L2

)−1

+
1

r2 sin2 θ

(
−GM
rc2

+
r2

L2

)(
1− 2GM

rc2
− r2

L2

)−1

sin2 θ

=
3

L2

(
1− 2GM

rc2
− r2

L2

)−1

,

Rθθ = g00R0θ0θ + grrRrθrθ + gφφRθφθφ

= −
(

1− 2GM

rc2
− r2

L2

)−1(
GM

rc2
− r2

L2

)(
1− 2GM

rc2
− r2

L2

)
+

(
1− 2GM

rc2
− r2

L2

)(
−GM
rc2

+
r2

L2

)(
1− 2GM

rc2
− r2

L2

)−1

+
1

r2 sin2 θ

(
2GM

rc2
+
r2

L2

)
r2 sin2 θ

=
3r2

L2
,

Rφφ = g00R0φ0φ + grrRrφrφ + gθθRθφθφ

= −
(

1− 2GM

rc2
− r2

L2

)−1(
GM

rc2
− r2

L2

)(
1− 2GM

rc2
− r2

L2

)
sin2 θ

+

(
1− 2GM

rc2
− r2

L2

)(
−GM
rc2

+
r2

L2

)(
1− 2GM

rc2
− r2

L2

)−1

sin2 θ +
1

r2

(
2GM

rc2
+
r2

L2

)
r2 sin2 θ

=
3r2

L2
sin2 θ.

This can be neatly summarised as

Rµν =
3

L2
gµν ,
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so the Ricci scalar is

R =
12

L2

and the Einstein tensor

Gµν = − 3

L2
gµν .

This corresponds to Einstein’s equations with a cosmological constant
Λ = 3

L2 and Tµν = 0.



7

Chapter 7

1) This is a matter of working through the details of equations [E.2]-
[E.6] using the definitions

Γµνρ =
1

2
gµλ(gνλ,ρ + gλρ,ν − gνρ,λ),

Rρλµν = ∂µΓρλν − ∂νΓρλµ + ΓρσµΓσλν − ΓρσνΓσλµ,

Rµν = Rρµρν ,

R = Rµµ

and

Gµν = Rµν −
1

2
Rgµν .

It is convenient to decompose 4-dimensional indices µ, ν, . . . into time
0, with x0 = ct, and space α, β, . . .. The Einstein tensor is

G00 =
3

c2

(
ȧ

a

)2

, Gαβ = − 1

c2
(2äa+ ȧ2)δαβ

and Einstein’s equations are

G00 =
3

c2

(
ȧ

a

)2

=
8πG

c4
T00 =

8πGρ

c2
,

Gαβ = − 1

c2
(2äa+ ȧ2)δαβ =

8πG

c4
Tαβ =

8πGa2P

c4
δαβ ,

⇒
(
ȧ

a

)2

=
8πGρ

3
,

2ä

a
+

(
ȧ

a

)2

=
8πGP

c2
.

49
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2) The Robertson line element for K = 0 [7.7], with θ and φ constant,
is

ds2 = −c2dt2 + a2(t)dr2

from which the Lagrangian governing geodesic motion can immedi-
ately be written down

L(t, r; ṫ, ṙ) = −c2ṫ2 + a2(t)ṙ2 (7.1)

and the equations of motion are

c2ẗ = −ada
dt
ṙ2 (7.2)

d

dτ
(a2ṙ) = 0, (7.3)

and a2ṙ = A is constant. We can now use this in (7.2) to write

c2ẗ = −ada
dt

A2

a4
= − ȧ

ṫ

A2

a3
(7.4)

⇒ c2ṫ ẗ = −A2 ȧ

a3

⇒ 1

2
c2
d(ṫ2)

dτ
=
A2

2

d

dτ

(
1

a2

)
⇒ c2ṫ2 − A2

a2
= B

with B a constant. Note that the left-hand side of this equation is
minus the Lagrangian (7.1) so B = 0 is a light-like trajectory, along
which ds2 = 0, while for a time-like trajectory choosing B = c2 makes
τ the proper time. The solution with A = 0, B = c2 is a geodesic
with constant r.

3) The Robertson line element for general K, with θ and φ constant, is

ds2 = −c2dt2 +
a2(t)dr2

1−Kr2

from which the Lagrangian governing geodesic motion can immedi-
ately be written down

L(t, r; ṫ, ṙ) = −c2ṫ2 +
a2(t)ṙ2

1−Kr2
(7.5)
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and the equations of motion are

c2ẗ = −ada
dt

(
ṙ2

1−Kr2

)
(7.6)

d

dτ

(
a2ṙ

1−Kr2

)
=

Ka2rṙ2

(1−Kr2)2
. (7.7)

Tackling equation (7.7) first

1

(1−Kr2)

d

dτ

(
a2ṙ
)

+
2Ka2rṙ2

(1−Kr2)2
=

Ka2rṙ2

(1−Kr2)2

⇒ 1

(1−Kr2)

d

dτ

(
a2ṙ
)

+
Ka2rṙ2

(1−Kr2)2
= 0

⇒ d

dτ

(
a2ṙ√

1−Kr2

)
= 0,

so
a2ṙ√

1−Kr2
= A

is a constant and

ṙ2 =
A2

a4
(1−Kr2).

With this expression for ṙ the t equation of motion is the same as
7.4), so

c2ṫ2 − A2

a2
= B (7.8)

with B constant. For A = 0, r = const is a solution, with t linear in
τ , for any a(t).

When A 6= 0 let B = c2, then τ is the proper time and we can
interpret ṫ as the Lorentz γ-factor for speed v, ṫ = γ(v). Then (7.8)
is1

γ2(v)− A2

a2c2
= 1

⇒ A2

a2c2
=

1

1− v2

c2

− 1 =
v2

c2

1− v2

c2

⇒ v2

c2
=

A2

A2 + a2c2
=

a2ṙ2

a2ṙ2 + c2(1−Kr2)
.

1 In chapter 2.6, equation [2.23], we took v = a dx
dt

for K = 0, but we see here that
this is only valid non-relativistically, at large c
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When A 6= 0, v(τ) is a function of τ and

v →

{
c for K = 1, r → 1;

0 for K = −1, r →∞.

4) Write

ds2 = −c2dt2 + a2(t)

(
dr2

1−Kr2
+ r2(dθ2 + sin2 θdφ2)

)
,

= a2
(
t
)(
− c2

a2(t)
dt2 + (1−Kr2)−1dr2 + r2(dθ2 + sin2 θdφ2)

)

and define t′ as

t′ =

∫
dt

a(t)
,

then

ds2 = a2
(
t(t′)

) (
−c2dt′2 + (1−Kr2)−1dr2 + r2(dθ2 + sin2 θdφ2)

)
.

5) First check that the definitions satisfy the constraint

−z2
0 + z2

1 + z2
2 + z2

3 + z2
4 = L2.

a) This is automatic since

z2
4−z2

0 = L2−
(
sinh(ct/L)+cosh(ct/L)

)
ect/L(x2

1+x2
2+x2

3) = L2−e2ct/L(x2
1+x2

2+x2
3)

while

z2
1 + z2

2 + z2
3 = e2ct/L(x2

1 + x2
2 + x2

3).

Now evaluate the 5-dimensional Minkowski line element with this
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constraint:

dz0 = cosh(ct/L)cdt+
1

2L2
ect/L(x2

1 + x2
2 + x2

3)cdt

+
1

L
ect/L(x1dx1 + x2dx2 + x3dx3),

dz4 = sinh(ct/L)cdt− 1

2L2
ect/L(x2

1 + x2
2 + x2

3)cdt

− 1

L
ect/L(x1dx1 + x2dx2 + x3dx3),

dzα =
1

L
ect/Lxαcdt+ ect/Ldxα,

⇒ −dz2
0 + dz2

4 = −c2dt2

− cosh(ct/L)cdt

{
1

L2
ect/L(x2

1 + x2
2 + x2

3)cdt− 2

L
ect/L(x1dx1 + x2dx2 + x3dx3)

}
+

1

L3
e2ct/L(x2

1 + x2
2 + x2

3)cdt(x1dx1 + x2dx2 + x3dx3)

− sinh(ct/L)cdt

{
1

L2
ect/L(x2

1 + x2
2 + x2

3)cdt+
2

L
ect/L(x1dx1 + x2dx2 + x3dx3)

}
− 1

L3
e2ct/L(x2

1 + x2
2 + x2

3)cdt(x1dx1 + x2dx2 + x3dx3)

= −c2dt2 − 1

L2
e2ct/L(x2

1 + x2
2 + x2

3)c2dt2 − 2

L
e2ct/Lcdt(x1dx1 + x2dx2 + x3dx3)

and

dz2
1 + dz2

2 + dz2
3 =

1

L2
e2ct/L(x2

1 + x2
2 + x2

3)c2dt2 + e2ct/L(dx2
1 + dx2

2 + dx2
3)

+
2

L
e2ct/Lcdt(x1dx1 + x2dx2 + x3dx3),

hence

−dz2
0 + dz2

1 + dz2
2 + dz2

3 + dz2
4 = −c2dt2 + e2ct/L(dx2

1 + dx2
2 + dx2

3),

as required.
b) In this case

−z2
0 + z2

1 = a2 − r2

and

z2
2 + z2

3 + z2
4 = r2

so

−z2
0 + z2

1 + z2
2 + z2

3 + z2
4 = L2

is immediate.
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Now

dz0 = − sinh(ct′/L)√
L2 − r2

rdr +

√
L2 − r2

L
cosh(ct′/L)cdt′,

dz1 = −cosh(ct′/L)√
L2 − r2

rdr +

√
L2 − r2

L
sinh(ct′/L)cdt′,

⇒ −dz2
0 + dz2

1 =
r2dr2

L2 − r2
− (L2 − r2)

L2
c2(dt′)2,

while

dz2
2 + dz2

3 + dz2
4 = dr2 + r2(dθ2 + sin2 θdφ2),

so

ds2 =
r2dr2

L2 − r2
− (L2 − r2)

L2
c2(dt′)2 + dr2 + r2(dθ2 + sin2 θdφ2)

= −
(

1− r2

L2

)
c2(dt′)2 +

L2dr2

L2 − r2
+ dr2 + r2(dθ2 + sin2 θdφ2),

which is what was to be proven. This puts the de Sitter metric
into the Schwarzschild form

ds2 = −f2(r)c2dt′2 +
dr2

f2(r)
+ r2(dθ2 + sin2 θdφ2)

with f2(r) = 1− r2

L2 , for r ≤ L.

This is the same line element as question 6 of chapter 6 with
M = 0.

6) With M = 0, the line element is

ds2 = −
(

1− r2

L2

)
c2dt2 +

dr2(
1− r2

L2

) + r2(dθ2 + sin2 θdφ2).

Using the Lagrangian

L = −
(

1− r2

L2

)
c2ṫ2 +

ṙ2(
1− r2

L2

) + r2(θ̇2 + sin2 θφ̇2)
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the equations of motion are(
1− r2

L2

)
ṫ = k = const. ,

d

dτ

(
ṙ

1− r2

L2

)
= r(θ̇2 + sin2 θφ̇2) +

rc2ṫ2

L2
,

d

dτ

(
r2θ̇
)

= sin θ cos θφ̇2,

d

dτ

(
r2 sin2 θφ̇

)
= l = const.

We can set θ = π/2 to be constant in the equatorial plane, so r2φ̇ = l.
Rather than tackle the r equation directly it is simpler to choose τ
to be the proper time (for a massive particle) and set L = −c2,

c2 =
c2k2

1− r2

L2

− ṙ

1− r2

L2

− l2

r2

ṙ2 = c2k2 − c2
(

1− r2

L2

)
−
l2
(

1− r2

L2

)
r2

= c2(k2 − 1) +
c2r2

L2
− l2

r2
+
l2

L2

⇒ ṙ = ±
√
c2(k2 − 1) +

l2

L2
+
c2r2

L2
− l2

r2

⇒ dr

dt
= ±

(
1− r2

L2

)
k

√
c2(k2 − 1) +

l2

L2
+
c2r2

L2
− l2

r2
.

Since φ is a constant, l = 0 and

v

c
=

1

c

dr

dt
= ±1

k

(
1− r2

L2

)√
k2 − 1 +

r2

L2
.

When r > L, g00 = −
(

1− r2

L2

)
> 0 and t is no longer a time-like

coordinate, it makes no sense to think of drdt as a velocity.
Taking the plus sign, v(r) has a maximum at r =

√
9−6k2

3 , where

v =
2k3

3
√

3
,

which is the largest value v(r) can take.
7) With

ΩΛ =
Λc2

3H2
0

= 0.7
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and
3H2

0

8πG
= 10−26kg m−3, (equation [7.16] of the text)

the cosmological constant generates a negative pressure

P = − Λc4

8πG
= −

(
3H2

0 ΩΛ

c2

)(
c4

8πG

)
= −ΩΛc

2

(
3H2

0

8πG

)
≈ 10−9kg m−1s−2,

that is 10−9 Pa, or 10−14 atmospheres.
8) Creating a µ+−µ− pair requires an energy of 212 MeV, corresponding

to a temperature of 2×1010 K. From [7.35] this corresponds to a time

t ≈ 1

2002
= 2.5×−5 s,

or 25µs after the Big Bang.
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