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2 Solutions for Chapter 2: Probability

2.2 Axioms of Probability

2.1* Tossing a coin three times.
(a)

Ω = {(hhh), (hht), (hth), (htt), (thh), (tht), (tth), (ttt)}.

(b)

E0 = {(ttt)}, |E0| = 1;

E1 = {(htt), (tht), (tth)}, |E1| = 3;

E2 = {(hht), (hth), (thh)}, |E2| = 3;

E3 = {(hhh)}, |E3| = 1.

(c)

F = {(hhh), (hht), (hth), (thh)}.

2.2* Tossing a coin until “head” or “tail” occurs twice in succession. There are countably infinite
sample points.

Ω = {(hh), (tt), (thh), (htt), (hthh), (thtt), (ththh), (hthtt), . . .}.

As is seen, there are only two outcomes (or sample points) of string length n = 2, 3, 4, 5, . . ..
2.5* Probability assignment to the coin tossing experiment. Assuming the coin tossing is fair, the

probability measure should assign a probability of 1/8 to each sample point in Ω. I.e., P [{ω}] =
1/8 for each ω ∈ Ω.

P [E0] =
1

8
, P [E1] =

3

8
, P [E2] =

3

8
, P [E3] =

1

8
.

2.6* Probability assignment to the coin tossing experiment in Exercise 2.2.
(a) Since the coin is fair and tosses are independent, we have

P [{(hh)}] = P [{(tt)}] = 1

4
, P[{(thh)}] = P[{(htt)}] = 1

8
,

P [{hthh}] = P [{(thtt)}] = 1

16
, . . . .
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In general, to each of the two possible outcomes or sample points requiring n tosses we assign
1

2n−1 .
(b)

1

2
+

1

4
+

1

8
+

1

16
=

15

16
.

(c)

1

2
+

1

8
+

1

32
+ . . . =

1

2

1

1− 1
4

=
2

3
.

2.3 Bernoulli Trial’s and Bernoulli’s Theorem

2.10* Distribution laws and Venn diagram. Draw a Venn diagram in which the areas A,B and C
intersect each other.

2.11* DeMorgan’s law. Draw a Venn diagram in which the areas A and B intersect. Then we readily
see that the areas A ∩B and Ac ∪Bc are the complements of each other in the diagram. A
formal proof is as follows:
Suppose that ω ∈ (A ∩B)c. Then ω does not belong to both A and B. This implies that either ω
belongs to Ac or ω belongs to Bc; i.e., ω ∈ Ac ∪Bc. Hence, (A ∩B)c ⊆ Ac ∪Bc.
Conversely, suppose that ω ∈ Ac ∪Bc. Then ω belongs to either Ac or Bc. In the former case,
ω does not belong to A, which implies that ω 6∈ A ∩B. In the latter case, ω does not belong
to B, which also implies that ω 6∈ A ∩B. Hence, ω ∈ (A ∩B)c, so Ac ∪Bc ⊆ (A ∩B)c. This
establishes that (A ∩B)c = Ac ∪Bc.

2.14* Derivation of (2.48).
n∑

k=0

(k − np)2
(
n

k

)
pk(1−p)n−k

=

n∑
k=0

(k2 − 2npk + n2p2)

(
n

k

)
pk(1−p)n−k

=
n∑

k=0

k2
(
n

k

)
pk(1−p)n−k − 2np

n∑
k=0

k

(
n

k

)
pk(1−p)n−k

+ n2p2
n∑

k=0

(
n

k

)
pk(1−p)n−k. (1)
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In the last equation, the second summation term can be easily shown to equal np, and the third
summation is clearly equal to [p+ (1− p)]n = 1. The first summation term is evaluated below:

n∑
k=0

k2
(
n

k

)
pk(1−p)n−k =

n∑
k=1

k2
n!

k!(n− k)!
pk(1−p)n−k

= np

n∑
k=1

k

(
n− 1

k − 1

)
pk−1(1− p)n−k = np

n−1∑
j=0

(j + 1)

(
n− 1

j

)
pj(1− p)n−1−j

= np · [(n− 1)p+ 1].

Returning to (1), we have
n∑

k=0

(k − np)2
(
n

k

)
pk(1−p)n−k

= np[(n− 1)p+ 1]− 2n2p2 + n2p2 = np[(n− 1)p+ 1− np] = np(1− p).

2.4 Conditional Probability, Bayes’ Formula, and Statistical
Independence

2.16* Joint probabilities.
M∑

m=1

N∑
n=1

fN (Am, Bn) = 1.

where fN (Am, An) is given by (2.42). The above formula readily follows from the relation:

M∑
m=1

N∑
n=1

N(Am, Bn) = N.

2.17* Proof of Bayes’ theorem. The joint probability P [Aj , B] can be written as

P [Aj , B] = P [Aj |B]P [B] = P [Aj ]P [B|Aj ],

from which we have

P [Aj |B] =
P [Aj ]P [B|Aj ]

P [B]
.

The marginal probability P [B] can be expressed, in terms of probabilities P [Aj ] and the condi-
tional probabilities P [B|Aj ] (j = 1, 2, . . . , n), as in (2.61). Then (2.63) ensues.

2.18* Independent events. Since A and B are independent,

P [A,B] =
1

12
= P [A] · P [B]. (2)

We are also given that

P [(A ∪B)c] =
1

3
. (3)
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We also know that

P [(A ∪B)c] = 1− P [A ∪B] = 1− (P [A] + P [B]− P [A ∩B]) . (4)

Using (2) and (3) in (4), we can obtain the following equation in terms of P [A]:

1−
(
P [A] +

1

12 · P [A]
− 1

12

)
=

1

3
. (5)

This equation can be re-arranged as follows:

12(P [A])2 − 9 · P [A] + 1 = 0,

which is a quadratic equation. Applying the quadratic formula, we obtain two possible solutions:

P [A] ≈ 0.6143 or (6)

P [A] ≈ 0.1356. (7)

Using (2), we can solve for P [B]. For the solution (6), P [B] ≈ 0.09104. For the solution (7),
P [B] ≈ 0.9154. Thus, the values of P [A] and P [B] are approximately 0.1356 and 0.6143,
respectively or vice versa.

2.19* Medical test.
(a)

P [A2|B2] =
0.001× 0.99

0.999× 0.05 + 0.001× 0.99
=

0.00099

0.05094
= 0.0194 = 1.94%.

Hence, P [A1|B2] = 98.06%.
(b)

P [A2|B2] =
0.001× 0.95

0.999× 0.01 + 0.001× 0.95
=

0.00095

0.01094
= 0.0868 = 8.68%.

Hence P [A1|B2] = 91.32%.



3 Solutions for Chapter 3: Discrete
Random Variables

3.1 Random Variables

3.1* Property 4 of (3.3). Suppose b > a. Then

{X ≤ b} = {X ≤ a} ∪ {a < X ≤ b}.

Since the two events on the right-hand side are disjoint, we can apply Axiom 3 to obtain

P [X ≤ b] = P [X ≤ a] + P [a < X ≤ b],

or

P [a < X ≤ b] = P [X ≤ b]− P [X ≤ a] = FX(b)− FX(a).

Another Answer:
Let A = {X ≤ a} and B = {a < X ≤ b}. Then A and B are mutually exclusive events, and
thus P [A ∪B] = P [A] + P [B]. Since A ∪B = {X ≤ b}, we have

FX(b) = FX(a) + P [a < X ≤ b],

which leads to (??) .

3.2 Discrete Random Variables and Probability Distributions

3.2* A nonnegative discrete RV.

(a) From (3.16)

FX(∞) =

∞∑
i=0

pi =
k

1− ρ
= 1.

Hence, we find k = 1.
(b)

FX(x) =

{
0, for x < 0

1− ρn+1, for n ≤ x ≤ n+ 1, n = 0, 1, 2, . . .

5
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3.3* Statistical independence. Suppose that (3.25) holds. Then

FXY (xi, yj) = P [X ≤ xi, Y ≤ yj ]

=
∑

x≤xi,y≤yj

P [X = x, Y = y] =
∑

x≤xi,y≤yj

pXY (x, y)

=
∑

x≤xi,y≤yj

pX(x)pY (y)

=

(∑
x≤xi

pX(x)

)∑
y≤yj

pY (y)

 = FX(xi)FY (yj). (1)

Thus, (3.25) implies (3.26).
Now assume that (3.26) holds. Define

xi−1 = max
x<xi

x, yj−1 = max
y<yj

y.

Then

pX(xi)pY (yj)

= [FX(xi)− FX(xi−1)][FY (yj)− FY (yj−1)]

= FX(xi)FY (yj)− FX(xi−1)FY (yj)− FX(xi)FY (yj−1)

+ FX(xi−1)FY (yj−1)

= FXY (xi, yj)− FXY (xi−1, yj)− FXY (xi, yj−1)

+ FXY (xi−1, yj−1)

= P [X ≤ xi, Y ≤ yj ]− (P [X ≤ xi−1, Y ≤ yj ]
+ P [X ≤ xi, Y ≤ yj−1]− P [X ≤ xi−1, Y ≤ yj−1])

= P [X ≤ xi, Y ≤ yj ]− P [{X ≤ xi−1, Y ≤ yj} ∪ {X ≤ xi, Y ≤ yj−1}]
= P [X = xi, Y = yj ] = pXY (xi, yj). (2)

Thus, (3.26) implies (3.25).
We have already shown the equivalence of (3.27) and (3.28) for two discrete RVs. Proceeding
by mathematical induction, assume the equivalence of (3.27) and (3.28) holds for k ≥ 2 discrete
RVs X1, X2, . . . , Xk. Suppose that

pX1X2···Xk+1
(x1, x2, . . . , xk+1) = pX1

(x1)pX2
(x2) · · · pXk+1

(xk+1), (3)

for all values of x1, x2, . . . , xk+1. Using an argument similar to that used to obtain (1), we can
show that

FX1X2···Xk+1
(x1, x2, . . . , xk+1) = FX1X2···Xk

(x1, x2, . . . , xk)FXk+1
(xk+1), (4)

for all values of x1, x2, . . . , xk+1. By invoking the induction hypothesis, we then obtain

FX1X2···Xk+1
(x1, x2, . . . , xk+1) = FX1

(x1)FX2
(x2) · · ·FXk+1

(xk+1). (5)
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Conversely, assume that (5) holds. Using an argument similar to that used to obtain (2), we can
show that

pX1X2···Xk+1
(x1, x2, . . . , xk+1) = pX1X2···Xk

(x1, x2, . . . , xk)pXk+1
(xk+1). (6)

Then by invoking the induction hypothesis, we establish (3).
3.8* Properties of conditional expectations

(a)

E[E[X|Y ]] = E[ψ(Y )],

where

ψ(Y ) =
∑
i

pX|Y (xi|Y ).

Then

E[E[X|Y ]] =
∑
j

ψ(yj)pY (yj)

=
∑
j

∑
i

xipX|Y (xi|yj)pY (yj)

=
∑
i

xi
∑
j

pX|Y (xi|yj)pY (yj) =
∑
i

xi
∑
j

pXY (xi, yj)

=
∑
i

xipX(xi) = E[X].

(b) The LHS of the equation in (b) is

LHS =
∑
i

h(Y )g(xi)pX|Y (xi|Y )

= h(Y )
∑
i

g(xi)pX|Y (xi|Y )

= h(Y )E[g(X)|Y ],

which is the RHS in (b).
(c) Consider a set of random variables Xi’s and scalars ai’s. Then

E

[∑
i

aiXi|Y

]
=
∑
i

aiE[Xi|Y ],

which means that E[·|Y ] is a linear operator.

3.10* Correlation coefficient and Cauchy-Schwarz inequality For given random variables X and
Y , define new random variables

X∗ = X − E[X], Y ∗ = Y − E[Y ].

Then the Cauchy-Schwarz inequality applied to the RVs X∗ and Y ∗ gives

(E[X∗Y ∗])2 ≤ E[X∗2]E[Y ∗2],
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which is equivalent to

(Cov(X,Y ))2 ≤ Var[X]Var[Y ],

where the equality holds iff

X∗ = cY ∗,

where c is a scalar constant. The above inequality is equal to

(Cov(X,Y ))2 ≤ Var[X]Var[Y ],

which is equivalent to

(ρXY )
2 ≤ 1.

The equality holds iff Y − E[Y ] = c(X − E[X]) with probability 1, for some constant c. If
c > 0, then ρXY = 1. This corresponds to perfect positive correlation.
If c < 0, then ρXY = −1. This corresponds to perfect negative correlation.

3.3 Important Probability Distributions

3.11* Alternative derivation of the expectation and variance of binomial distribution.
The mean and variance of the Bernoulli random variables Bi’s are

E[Bi] = p, E[B2
i ] = p, hence, Var[X] = p− p2 = p(1− p) = pq.

Since Bi’s are mutually independent, they are pairwise independent. Thus, we can apply Theo-
rem 3.4, yielding

E[X] = p+ p+ . . .+ p = np, Var[X] = pq + pq + . . .+ pq = npq.

3.12* Trinomial and multinomial distributions.

(a)

P [E1] = p, P [E2] = q, P [E3] = 1− p− q.

Since E1 ∪ E2 ∪E3 = Ω, and Ei’s are independent E2 ∪E3 = Ec
1. Thus, out of the n

independent trials, the probability that event E1 occurs k1 times and Ec
1 occurs n− k1

times is given by the following binomial distribution:

P [N(E1) = k1] =

(
n

k1

)
pk1
1 (1− p1)n−k1 .

Then we distinguish whether a given outcome that shows Ec
1 is whether E2 or E3. The

conditional probability of E2 given that the event belongs to Ec
1 = E2 ∪ E3 is

P [E2|Ec
1] =

P [E2 ∩ Ec
1]

P [E1]
=
P [E2]

P [Ec
1]

=
q

1− p
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and

P [E3|Ec
1] = 1− q

1− p
=

1− p− q
1− p

.

Thus,

P [N(E2) = k2|N(E1) = k1] = P [N(E2) = k2|N(Ec
1) = n− k1]

=

(
n− k1
k2

)(
q

1− p

)k2
(
1− p− q
1− p

)n−k−k2

.

Thus, the joint probability is obtained as

P [N(E1) = k1, N(E2) = k2] = P [N(E1) = k1]P [N(E2) = k2|N(E1) = k1]

=

(
n

k1

)
pk1
1 (1− p1)n−k1

(
n− k1
k2

)(
q

1− p

)k2
(
1− p− q
1− p

)n−k−k2

=
n!

k1!k2!(n− k1 − k2)!
pk1qk2(1− p− q)n−k1−k2 .

(b) We can prove the formula by mathematical induction. Suppose that the multinomial for-
mula is true for some m =M1 ≥ 2. Consider the following composite event

E2 ∪ E3 ∪ · · · ∪EM = Ec
1.

Then the distribution of observingE1 k1 times out of n independent trials, andEc
1 (n− k1)

times is the binomial distribution:

P [N(E1) = k1] =

(
n

k1

)
pk1
1 (1− p1)n−k1 .

and the conditional probability of havingN(Ei) = ki, i = 2, 3, . . . ,M givenN(E1) = k1
is from the assumption (i.e., the formula is true up to m =M1)

P [N(E1) = k1, N(E3) = k3, · · · , N(EM ) = kM |N(E1) = k1]

=
(n− k1)!

k2!k3! · · · kM !

(
p2

1− p1

)k2
(

p3
1− p1

)k3

· · ·
(

pM
1− p1

)kM

.

Then the joint probability is obtained by multiplying the above two expression, which leads
to (3.117).

3.18* Mean, second moment and variance of the Poisson distribution.

(a)

E[X] =
∞∑

k=0

k
λk

k!
e−λ = λ

∞∑
k=1

e−λλk−1

(k − 1)!

= λe−λ
∞∑
i=0

λi

i!
= λe−λeλ = λ.
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(b)

E[X2] =
∞∑

k=0

k2
λk

k!
e−λ = λ

∞∑
k=1

k
e−λλk−1

(k − 1)!
= λ

∞∑
i=0

(i+ 1)e−λλi

i!

= λ

[ ∞∑
i=0

ie−λλi

i!
+
∞∑
i=0

e−λλi

i!

]
= λ(λ+ 1).

(c)

Var[X] = E[X2]− (E[X])2 = λ.

3.20* Identities between p(k;λ) and Q(k;λ).

(a) By substituting the definitions of p(k;λ) and Q(k;λ), the left hand side (LHS) becomes

LHS =

k∑
k′=0

λk−k
′

1

(k − k′)!
e−λ1

k′∑
i=0

λi2
i!
e−λ2 .

By setting k′ = i+ k − j and changing the order of summation, we have

LHS =

k∑
j=0

j∑
i=0

λj−i1

(j − 2)!

λi2
i!
e−(λ1+λ2)

=
k∑

j=0

(λ1 + λ2)
j

j!
e−(λ1+λ2) = Q(k;λ1 + λ2).

(b) Using the hint, we have∫ ∞
λ

p(k; y) dy =

[
−e−y y

k

k!

]∞
λ

−
∫ ∞
λ

(
−e−y

) yk−1

(k − 1)!
dy

= p(k;λ) +

∫ ∞
λ

p(k − 1; y) dy.

From this recursive relation, we have

LHS = p(k;λ) + p(k − 1;λ) + . . .+ p(1;λ) +

∫ ∞
λ

e−y dy

=

∫ k

i=0

p(i;λ) = Q(k;λ).

(c)

(k + λ+ 1)Q(k;λ) + (k + 1)Q(k;λ).

By substituting the recursive relations Q(k;λ) = Q(k − 1;λ) + p(k;λ) and Q(k;λ) =

Q(k + 1;λ)− p(k + 1;λ), we can rewrite the LHS of the first expression as

LHS = λQ(k − 1;λ) + (k + 1)Q(k + 1;λ) + λp(k;λ)− (k + 1)Q(k + 1;λ).

The last two terms cancel each other, since

λp(k;λ) = (k + 1)p(k + 1;λ) =
λk+1

k!
e−λ.
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Thus, the formula (c) follows.
(d) From the result (c), we have

Q(k − 1;λ) =
Q(k;λ) + kQ(k;λ)

k + λ
,

from which we can derive

kQ(k;λ)− λQ(k − 1;λ) = kQ(k − 1;λ)− λQ(k − 2;λ)

= Q(k − 1;λ) + (k − 1)Q(k − 1;λ)− λQ(k − 2;λ)

By applying this recursive relation, we have

LHS = Q(k−1;λ) +Q(k−2;λ) +. . .+Q(1;λ) +. . .+Q(1;λ) +Q(1;λ)− λQ(0;λ)

=
k−1∑
j=0

Q(j;λ),

where we used the relation

Q(1;λ)− λQ(0;λ) = λe−λ + e−λ − λe−λ = e−λ = Q(0;λ).

(e) From the result of (d), the right hand side is

RHS =
k−1∑
j=0

Q(j;λ).

Then using the result of (b), we have

RHS =

k−1∑
j=0

∫ ∞
λ

p(j;λ) dy.

By interchanging the order of summation and integration, we have

RHS =

∫ ∞
λ

k−1∑
j=0

p(j; y) dy =

∫ ∞
λ

Q(k − 1; y) dy.

3.21* Derivation of the identity (3.96). Let f(x) = (1− x)−r = (−1)r(x− 1)−r and expand this
around x = 0 using the Taylor series expansion:

f(x) =

∞∑
n=0

f (n)(0)

n!
xn,

where

f ′(x) = r(1− x)−r−1, f ′′(x) = r(r + 1)(1− x)−r−2, · · · ,

f (n) = r(r + 1) · · · (r + n− 1)(1− x)−(r+n).

Hence,

f (n)(0)

n!
=
r(r + 1) · · · (r + n− 1)

n!
=

(
r + n− 1

r − 1

)
.
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Set x = q, then

(1− q)−r =

∞∑
n=0

(
r + n− 1

r − 1

)
qn.

Setting n = k − r, we have

(1− q)−r =

∞∑
k=r

(
k − 1

r − 1

)
qk−r.

3.22* Equivalence of two expressions for the negative binomial distribution. We want to show that(
k − 1

k − r

)
prqk−r =

k∑
i=r

(
k

i

)
piqk−i −

k−1∑
i=r

(
k − 1

i

)
piqk−1−i, k ≥ r,

where q = 1− p. By moving the second term of the right-hand side, we want to show

k∑
i=r

(
k

i

)
piqk−i

?
=

(
k − 1

k − r

)
prqk−r +

k−1∑
i=r

(
k − 1

i

)
piqk−1−i. (7)

The left-hand side (LHS) and right-hand side (RHS) of the above can be written as

LHS = (p+ q)k −
r−1∑
i=0

(
k

i

)
piqk−i = 1−

r−1∑
i=0

(
k

i

)
piqk−i. (8)

and

RHS =

(
k − 1

k − r

)
prqk−r + (p+ q)k−1 −

r−1∑
i=0

(
k − 1

i

)
piqk−1−i

=

(
k − 1

r − 1

)
+ 1−

(
k − 1

r − 1

)
pr−1qk−r −

r−2∑
i=0

(
k − 1

i

)
piqk−1−i

= 1 +

(
k − 1

r − 1

)
pr−1(p− 1)qk−r −

r−2∑
i=0

(
k − 1

i

)
piqk−1−i

= 1−
(
k − 1

r − 1

)
pr−1qk+1−r −

r−2∑
i=0

(
k − 1

i

)
piqk−1−i. (9)

Thus we need to examine(
k − 1

r − 1

)
pr−1qk+1−r ?

=
r−1∑
i=0

(
k

i

)
piqk−i −

r−2∑
i=0

(
k − 1

i

)
piqk−1−i. (10)

Using the well-known formula (
k

i

)
=

(
k − 1

i− 1

)
+

(
k − 1

i

)
,
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we rearrange the RHS of (10) as follows:

RHS =

(
k

r − 1

)
pr−1qk−r+1 +

r−2∑
i=0

[(
k − 1

i− 1

)
q +

(
k − 1

i

)
q −

(
k − 1

i

)]
piqk−i−1

=

(
k

r − 1

)
pr−1qk+1−r +

r−2∑
i=0

(
k − 1

i− 1

)
piqk−i −

r−2∑
i=0

(
k − 1

i

)
pi+1qk−i−1

=

(
k

r − 1

)
pr−1qk+1−r +

r−3∑
j=0

(
k − 1

j

)
pj+1qk−j−1 −

r−2∑
i=0

(
k − 1

i

)
pi+1qk−i−1

=

(
k

r − 1

)
pr−1qk+1−r −

(
k − 1

r − 2

)
pr−1qk−r+1

=

(
k − 1

r − 1

)
pr−1qk+1−r,

which is equal to the LHS of (10).



4 Solutions for Chapter 4:
Continuous Random Variables

4.1 Continuous Random Variables

4.1* Expectation of a nonnegative continuous RV.

∫ ∞
0

xfX(x) dx = −
∫ ∞
0

x(1− FX(x))′ dx

= −[x(1− FX(x)]∞0 +

∫ ∞
0

(1− FX(x)) dx

=

∫ ∞
0

(1− FX(x)) dx.

Thus, the formula for non-negative random variables is proved. If we drop the assumption of
nonnegativity, we proceed as follows:∫ 0

−∞
xfX(x) dx =

∫ 0

−∞
xF

′

X(x) dx

= [xFX(x)]0−∞ −
∫ 0

−∞
FX(x) dx

= −
∫ 0

−∞
FX(x) dx.

Combining the above two, we have shown (4.10).
4.2* Properties of discrete RVs. Let the discrete random variables have probability masses pi > 0 at

x = xi; −∞ < i <∞ such that

· · · < x−2 < x1 < · · · < x0(= 0) < x1 < x2 < · · · ,

If x = 0 is not a mass point, assign p0 = 0.
We can write

FX(x) =
∞∑

i=−∞
piu(x− xi),

Let

Fj = F (xj) =
m∑

i=−n
piu(xj − xi) =

j∑
i=−∞

pi.

14
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and

F c
j = 1− F (xj) = 1−

j∑
i=−∞

pi.

Then ∫ ∞
0

(1− FX(x)) dx =
m∑
i=1

∫ xi

xi−1

F c
X(x) dx

=
∞∑
i=1

(xi − xi−1)F c
i−1 =

∞∑
i=1

F c
i−1xi −

∑
i = 0∞F c

i xi

= −F c
0 +

∞∑
i=1

(
F c
i−1 − F c

i

)
xi

= 0 +
∑

i = 1∞pixi,

where we used the property

F c
i−1 − F c

i = pi.

Similarly, ∫ 0

−∞
FX(x) dx =

0∑
i=−∞

(xi − xi−1)Fi−1

−1∑
i=−∞

xi(Fi−1 − Fi) + x0F−1 =
−1∑

i=−∞
xi(−pi).

Hence

E[X] =

∫ ∞
0

(1− FX(x)) dx−
∫ 0

−∞
FX(x) dx = +

−1∑
i=−∞

pixi +
∑

i = 1∞pixi

=
∞∑

i=−∞
pixi,

as expected.
For a nonnegative discrete RV,

E[X] =

∫ ∞
0

(1− FX(x)) dx =
∑

i = 1∞pixi =
∑

i = 0∞pixi,

as expected.
4.4* Expectation and the Riemann-Stieltjes integral

(a) We can write the PDF as

fX(x) =
∑
i

pX(xi)δ(x− xi).
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Then (4.9) implies

µX =

∫ ∞
−∞

x
∑
i

pX(xi)δ(x− xi) dx

=
∑
i

pX(xi)

∫ ∞
−∞

xδ(x− xi) dx =
∑
i

pX(xi)xi.

(b) (i) If X is a continuous RV,

FX(x) =

∫ x

−∞
fX(u) du, and dFX(x) = fX(x)dx.

Then (4.159) is reduced to (4.9) (not to (3.32)).
(ii) If X is a discrete RV,

FX(x) =
∑
i

pX(xi)u(x− xi), and , dFX(x) =
∑
i

pX(xi)δ(x− xi) dx.

Then (4.159) reduces to (3.32) (not to (4.9)).
(iii)

µX =

∫ ∞
0

xdFX(x) +

∫ 0

−∞
xdFX(x)

= −
∫ ∞
0

xd(1− FX(x)) +

∫ 0

−∞
xdFX(x)

= −[x(1− FX(x))]∞0 +

∫ ∞
0

(1− FX(x)) dx+ [xFX(x)]0−∞ −
∫ 0

−∞
FX(x) dx

=

∫ ∞
0

(1− FX(x)) dx−
∫ 0

−∞
FX(x) dx,

which is (4.10). For a nonnegative RV, the second term disappears and we obtain (4.11).

4.2 Important Continuous Random Variables and Their Distributions

4.9* Expectation, second moment and variance of the uniform RV.

µX = E[X] =

∫ ∞
−∞

xfX(x) dx =
1

b− a

∫ b

a

x dx

=
b2 − a2

2(b− a)
=
b+ a

2
,

which is the midpoint of the interval [a, b].
The 2nd moment can be found in a similar fashion:

E[X2] =

∫ ∞
−∞

x2fX(x) dx =
1

b− a

∫ b

a

x2 dx

=
b3 − a3

3(b− a)
=
b2 + ba+ a2

3
.
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Thus,

σ2
X = E[X2]− µ2

X =
b2 + ba+ a2

3
−
(
b+ a

2

)2

=
(b− a)2

12
.

4.10* Moments of uniform RV.

(a)

1

b− a

∫ b

a

xn dx =
bn+1 − an+1

(n+ 1)(b− a)
.

(b)

1

b− a

∫ b

a

(
x− b+ a

2

)n

dx =
1 + (−1)n

(n+ 1)2n
(b− a)n+1

b− a
.

4.13* Recursive formula for the gamma function. The gamma function is defined by

Γ(β) =

∫ ∞
0

xβ−1e−xdx.

Using integration by parts, we get

Γ(β) = xβ−1(e−x) |∞0 +

∫ ∞
0

(β − 1)xβ−2e−xdx = (β − 1)Γ(β − 1).

4.15* Mean and variance of the normal distribution.

E[X] =
1√
2πσ

∫ ∞
−∞

xe−
(x−µ)2

2σ2 dx

=
1√
2πσ

∫ ∞
−∞

(x− µ)e−
(x−µ)2

2σ2 dx+ µ
1√
2πσ

∫ ∞
−∞

e−
(x−µ)2

2σ2 dx

(a)
=

1√
2π

∫ ∞
−∞

ye−
y2

2 dy + µ

∫ ∞
−∞

φ(y) dy

=

∫ ∞
−∞

yφ(y)dy + µ = 0 + µ = µ,

Var[X] = E[(X − µ)2] = 1√
2πσ

∫ ∞
−∞

(x− µ)2e−
(x−µ)2

2σ2 dx

(b)
=

σ2

√
2π

∫ ∞
−∞

y2e−
y2

2 dy

= σ2

∫ ∞
−∞

y2φ(y)dy = σ2,

where in (a) and (b), the change of variables y = x−µ
σ is made.

4.16* Γ(1/2). Since φ(u) is a PDF, we have ∫ ∞
−∞

φ(u)du = 1.
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We have

1 =

∫ ∞
−∞

1√
2π
e−

u2

2 du
(i)
= 2

∫ ∞
0

1√
2π
e−

u2

2 du

(ii)
=

1√
π

∫ ∞
0

x−
1
2 e−xdx

(iii)
=

1√
π
Γ

(
1

2

)
,

where (i) follows because e−z
2

is an even function of z, (ii) follows from the change of variables
x = u2

2 , and (iii) follows from the definition of Γ(β) in (3.164). Hence,

Γ

(
1

2

)
=
√
π.

4.3 Joint and Conditional Probability Density Functions

4.21* Joint bivariate normal distribution and ellipses. The level curves are determined by the locus
of points (u1, u2) satisfying

φ0(u1, u2) = K,

where K is a constant. Substituting for φ0(u1, u2), we have

1

2π
√

1− ρ2
exp

{
− 1

2(1− ρ2)
(u21 − 2ρu1u2 + u22)

}
= K.

Taking logarithms on both sides and re-arranging terms, we obtain

u21 − 2ρu1u
2
2 = K1, (1)

where

K1 = −2(1− ρ2) log[2π
√

1− ρ2].

Re-arranging the left-hand side of (1), we obtain

(u1 − ρu2)2 − ρ2u22 + u22 = (u1 − ρu2)2 + u22(1− ρ2).

Using the transformation x = u1 − ρu2, y = u2 in (1), we have

x2 + y2(1− ρ2) = K1,

which is equivalent to

x2

a2
+
y2

b2
= 1,

where a =
√
K1 and b =

√
K1

1−ρ2 .
4.22* Conditional multivariate normal distribution.

From the definition of the conditional PDF we have

fXb|Xa
(xb|xa) =

fX(x)

fXa
(xa)

=
(2π)m/2|detΣaa|1/2

(2π)n/2|detΣ|1/2
exp

{
− 1

2 (x− µ)>Σ−1(x− µ)
}

exp
{
− 1

2 (xa − µa)
>Σ−1aa (xa − µa)

}
(2)
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where

µ =

[
µa

µb

]
, Σ =

[
Σaa Σab

Σba Σbb

]
. (3)

Since xa is fixed, we need to analyse only the exponent of the numerator in the RHS of equation
(2):
It is easy to verify that

Σ−1 =

[
Σaa Σab

Σba Σbb

]−1
=

[
I −Σ−1aaΣab

0 I

] [
Σ−1aa 0

0 S−1

] [
I 0

−ΣbaΣ
−1
aa I

]
(4)

where S = [Σbb −ΣbaΣ
−1
aaΣab] is the Schur complement of Σaa. Using this expression we find

(x− µ)>Σ−1(x− µ) = (xa − µa)
>Σ−1aa (xa − µa)

+[−(xa − µa)
>Σ−1aaΣab + (xb − µb)

>]S−1[−ΣbaΣ
−1
aa (xa − µa) + (xb − µb)].

(5)

Since xa is fixed, we are interested only the in terms that depend on xb. The previous equation
can be written as

(x− µ)>Σ−1(x− µ) = (xb − µb)
>S−1(xb − µb)− 2(xb − µb)

>b+ const. (6)

where

b = S−1ΣbaΣ
−1
aa (xa − µa).

It is not difficult to verify by direct multiplication that

(x− µ)>Σ−1(x− µ) = (xb − µb − Sb)>S−1(xb − µb − Sb) + const (7)

where

Sb = SS−1ΣbaΣ
−1
aa (xa − µa) = ΣbaΣ

−1
aa (xa − µa).

Thus,

fXb|Xa
(xb|xa) ∼ exp

{
−1

2
(xb − µb|a)

>Σ−1b|a(xb − µb|a)

}
(8)

where

µb|a = µb +ΣbaΣ
−1
aa (xa − µa)

Σb|a = S = Σbb −ΣbaΣ
−1
aaΣab

. (9)

4.4 Exponential Family of Distributions

4.26* Exponential families of distributions

(a) exponential distributions with PDF given by (4.25), parameterized by λ.
(b) gamma distributions with PDF given by (4.30), parameterized by (λ, β).
(c) binomial distributions given by (3.62), parameterized by (n, p).
(d) negative binomial (Pascal) distributions given by (3.98), parameterized by (r, p).
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4.5 Bayesian Inference and Conjugate Priors

4.30* Posterior hyperparameters of the beta distribution associated with the Bernoulli distribu-
tion in Example 4.4.

(a)

E[Θ|x] = α1

α1 + β1
=
α+

∑n
i=1 xi

α+ β + n

=

(
α+ β

α+ β + n

)
α

α+ β
+

(
n

α+ β + n

)
xn.

(b)

Var[Θ|x] = α1β1
(α1 + β1)2(α1 + β1 + 1)

=
(α+

∑n
i=1 xi)(β + n−

∑n
i=1 xi)

(α+ β + n)2(α+ β + n+ 1)
.



5 Solutions for Chapter 5: Functions
of Random Variables and Their
Distributions

5.1 A Function of one random variable

5.1* Half-wave rectifier.

FY (y) =


0, y < 0

FX(0) y = 0

FX(y) y > 0

Hence

fY (y) =


0, y < 0

FX(0)δ(y) y = 0

fX(y) y > 0

5.2 A Function of Two Random Variables

5.6* Leibniz’s rule.

(a) The LHS of (5.95) equals

d

dz
[H(b(z))−H(a(z))] = H ′(b(z))b′(z)−H ′(a(z))a′(z)

= h((bz))b′(z)− h(a(z))a′(z).

(b) The LHS of (5.94) equals

d

dz
[H(z, b(z))−H(z, a(z))] = [g(z, b(z)) + h(z, b(z))b′(z)]− [g(z, a(z)) + h(z, a(z))a′(z)]

= h(z, b(z))b′(z)− h(z, a(z))a′(z) + [g(z, b(z))− g(z, a(z))]

= h(z, b(z))b′(z)− h(z, a(z))a′(z) +
∫ b(z)

a(z)

∂h(z, y)

∂z
dy,

where we used the following relation in the last step:

∂g(z, y)

∂y
=

∂

∂y

∂H(z, y)

∂z
=

∂

∂z

∂H(z, y)

∂y
=
∂h(z, y)

∂z
.
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(c) Then

∂G

∂a
= −h(z, a), ∂G

∂b
= h(z, b), and

∂G

∂z
=

∫ b

a

∂

∂z
h(z, y) dy.

Substitution of these into (5.96) yields the Leibniz’s rule (5.94).

5.16* Maximum and minimum of two random variables.

(a)

Duv = {(x, y) : min(x, y) ≤ u,max(x, y) ≤ v}.

For u ≤ v, the regions {x ≤ u} ∩ {y ≤ v} and {x ≤ v} ∩ {y ≤ u} constitute Duv . The
region {x ≤ u} ∩ {y ≤ u} is included in both.
For v < u, the region {x ≤ v} ∩ {y ≤ v} defines Duv .

(b)

FUV (u, v) =

{
FXY (u, v) + FXY (v, u)− FXY (u, u) v ≥ u
FXY (v, v) v < u.

(c) The marginal distribution of U is obtained by setting v =∞ in the above equation for
v ≥ u:

FU (u) = FUV (u,∞) = FX(u) + FY (u)− FXY (u, u).

The marginal distribution of V is obtained by setting u =∞ in the above expression for
v < u:

FV (v) = FUV (∞, v) = FXY (v, v).

(d) We assume a ≤ b. (The case a > b can be treated in the same manner: we just exchange
a and b in the final result.) The PDF fXY (x, y) =

1
ab , x ∈ [0, a] ∩ y ∈ [0, b].

For u ≤ v;

FUV (u, v) =



0, u < 0
2uv−u2

ab , 0 ≤ u ≤ v ≤ a
ua+uv−u2

ab , 0 ≤ u ≤ a ≤ v
v
b , a ≤ u ≤ v ≤ b
1, v > b.

For v ≤ u

F (u, v) =


0, v < 0,
v2

ab , 0 ≤ v ≤ a,
v
b , a < v,

1, v > b.
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Thus, by combining the above results, we have

FUV (u, v) =



0, min(u, v)u < 0
v2

ab , {v < u} ∩ {0 < v < a}
umin(a,v)+uv−u2

ab , {v > u} ∩ {0 ≤ u ≤ a},
v
b , {u > a} ∩ {a < v < b}
1, {u > a} ∩ {v > b}.

5.3 Generation of Random Variates for Monte Carlo Simulation

5.19* Use of a rejection method.
Set a = 0, b = 1,M = 2 and fX(x) = 2x in Algorithm 5.1 of page 127. Then we obtain Algo-
rithm 5.1 given below.

Algorithm 5.1 RNG Algorithm for fX(x) = 2x

1: Generate a uniform variate u1 ∈ [0, 1], and set x = u1.
2: Generate another uniform variate u2 ∈ [0, 1].
3: If

2u2 ≤ 2x, i.e., u2 ≤ x, (1)

accept x, and reject otherwise.
4: Stop when the number of accepted variates x’s has reached a prescribed number. Otherwise,

return to Step 1.

5.20* Erlang variates. From (5.75) we see

xi = −
lnui
kµ

will be an exponential variate with mean 1/kµ. Thus,

x =

k∑
i=1

xi = −
k∑

i=1

lnui
kµ

= − ln(
∏k

i=1 ui)

kµ
,

which is (5.82).
The algorithm is simply

1. Generate k uniform variates u1, u2, . . . , uk.
2. Compute x = − ln(

∏k
i=1 ui)
kµ .

3. Repeat the above until the desired number of Erlang variates x’s are generated.

5.22* The polar method for generating the Gaussian variate. Let

X1 = R cosΘ, X2 = R sinΘ.
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The joint PDF of X1, X2 is given as

fX1X2
(x1, x2) =

1

2π
exp

{
−x

2
1 + x22
2

}
.

The PDF of R,Θ can be found as

fRΘ(r, θ) = |J |fX1X2
(x1, x2),

where

J =
∂(x1, x2)

∂(r, θ)
= det

[
cos θ sin θ

−r sin θ r cos θ

]
= r.

Thus,

fRΘ(r, θ) =
r

2π
exp

{
−r

2

2

}
.

Since this joint PDF does not depend on θ, the RVs R and Θ are not only independent but also
Θ is uniform. Thus the joint PDF is can be written as fΘ(θ)fR(r), where

fΘ(θ) =
1

2π
, 0 ≤ θ ≤ 2π,

and

fR(r) = r exp

{
−r

2

2

}
,

(a) By integrating the PDF obtained above

FR(r) =

∫ r

0

fR(s) ds = 1− exp

{
−r

2

2

}
.

The RV Θ is uniform in [0, 2π] as obtained above.
(b) R2 = X2

1 +X2
2 is exponentially distributed with mean 2. From (5.75) it then follows

that Y1 is uniformly distributed in (0, 1). It is clear that since Θ is uniform in [0, 2π], Y2 is
uniformly distributed in (0, 1).



6 Solutions for Chapter 6:
Fundamentals of Statistical
Analysis

6.1 Sample Mean and Sample Variance

6.1* Derivation of (6.11).
Let Y denote the average of Y1, . . . , Yn:

Y , 1

n

n∑
i=1

Yi.

Note that

Xi −X = (Xi − µ)− (x− µ) = Yi − Y .

Then, the sample variance variable can be expanded as

S2 =
1

n− 1

n∑
i=1

(Yi − Y )2 =
1

n− 1

[
n∑

i=1

Y 2
i − nY

2

]
. (1)

By writing Y
2

as

Y
2
=

1

n2

n∑
i=1

n∑
j=1

YiYj =
1

n2

 n∑
i=1

Y 2
i +

n∑
i=1

n∑
j=1(j 6=i)

YiYj

 , (2)

Then we can obtain (6.11)
6.6* Log-survivor functions and hazard functions of a constant and uniform random variables.

(a) For constant X = a, we have,

FX(x) = u(x− a), fX(x) = δ(x− a).

Hence

logF c
X(x) =

{
0, x < a

−∞. x ≥ a.

and

hX(x) ==

{
0, x < a

∞. x ≥ a.

25
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(b) For the uniform distribution X ∈ [a, b], we have

FX(x) =


0, x < a,
x−a
b−a , a ≤ x ≤ b,
1, x > b.

so,

fX(x) =


0, x < a,
1

b−a , a ≤ x ≤ b,
0, x > b.

Thus, the log-survivor function is

logF c
X(x) =


0, x < a,

log b−x
b−a , a ≤ x ≤ b,

−∞, x > b.

The hazard function is

hX(x) =
fX(c)

F c
X(x)

=


0, x < a,

log 1
b−x , a ≤ x ≤ b,

∞, x > b.

6.11* The mean residual life function and the hazard function
The conditional survivor function can be written as

SX(r|t) = SX(r + t)

SX(t)
= exp

{
−
∫ t+r

t

hX(u) du

}
.

Then SX(r|t) is a monotone-increasing function of t for all r, if and only if hX(t) is monotone
non-decreasing; the inverse result holds if and only if SX(r|x) is non-decreasing. Since we can
write

RX(t) = E[R|X > t] =

∫ ∞
0

SX(r|t) dr,

the stated property holds.
6.12* Conditional survivor and mean residual life functions for standard Weibull distribution.

(a)

SX(r|t) = P [R > r|X > t] =
P [R > r,X > t]

P [X > t]
=
P [X > t+ r]

P [X > t]

=
SX(t+ r)

SX(t)
, (3)

where SX(t) = e−t
α

and SX(t+ r) = e−(t+r)α for the standard Weibull distribution.
Thus,

SX(r|t) = e−(t+r)α+tα .
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(b) Using the formula for the expectation of a nonnegative RV, we have

RX(t) = E[R|X > t] =

∫ ∞
0

P [R > r|X > t] dr =

∫ ∞
0

SX(r|t) dr

=

∫ ∞
0

SX(t+ r)

SX(t)
dr =

∫∞
t SX(u) du

SX(t)
, (4)

which is consistent with (6.41). Thus

RX(t) = et
α

∫ ∞
t

e−y
α

dy.

Then by setting yα = z, or y = z1/α, we have

dy =
1

α
z

1
α−1 dz.

Thus,

RX(t) =
et

α

α

∫ ∞
tα

e−zz
1
α−1 dz.

Then using the upper incomplete gamma function Γ(β, x) defined by (4.34), we find

RX(t) =
et

α

α
Γ

(
1

α
, tα
)
.

For t = 0, we find

RX(0) =
1

α
Γ

(
1

α
, 0

)
=

1

α
Γ

(
1

α

)
= Γ

(
1

α
+ 1

)
,

where Γ(x) is the gamma function defined by (4.31). This also agrees with (4.81) as
expected, since RX(0) = E[X] as shown by (6.42).

6.15* Covariance between two random variables. Since X is uniformly distributed between −π
and π, E[X] = 0. Then

Cov[X,Y ] = E [(X − E[X])(Y − E[Y ])] = E[XY ]− E[X]E[Y ] = E[XY ],

By substituting Y = cosX , we have

E[XY ] =

∫ π

−π
fX(x)x cosx dx =

1

2π

∫ π

−π
x cosx dx = 0.

Therefore, Cov [X,Y ] = 0, hence X and Y are uncorrelated, but X and Y are not independent
random variables.
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6.18* Sample covariance.

sxy =
1

n− 1

n∑
i=1

(xi − µX)− 1

n

n∑
j=1

(xj − µX)

[(yi − µY )−
1

n

n∑
k=1

(yk − µX)

]

=
1

n− 1

n∑
i=1

(xi − µX)(yi − µY )−
1

n(n− 1)

n∑
i=1

(xi − µX)

n∑
j=1

(xj − µX)

=
1

n

n∑
i=1

(xi − µX)(yi − µY )−
1

n(n− 1)

n∑
i=1

∑
j 6=i

(xi − µX)(yj − µY ).

Taking the expectations, we have

E[sxy] = σ2
XY .



7 Solutions for Chapter 7:
Fundamentals of Statistical
Analysis

7.1 Chi-Squared Distribution

7.1* Sample variance and chi-squared variable.
We write

ui =
Xi −X

σ
, i = 1, 2, . . . , n.

Then

χ2 =

n∑
i=1

u2i , and

n∑
i=1

ui = 0.

We use the last equation to eliminate un from the expression for χ2:

un = −(u1 + u2 + · · ·+ un−1),

u2n = u21 + 2(u1u2 + u1u3 + · · ·+ u1un−1)

+ u22 + 2(u2u3 + · · ·+ u2un−1)

...

+ u2n−1.

29
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Then we can write χ2 as

χ2

2
= u21 + u1u2 + u1u3 + · · ·+ u1un−1

+ u22 + u2u3 + · · ·+ u2un−1

...

+ u2n−1

=

[
u1 +

1

2
(u2 + u3 + · · ·+ un−1)

]2
3

4
u22 +

1

2
(u2u3 + · · ·+ u2un−1)

3

4
u23 +

1

2
(u3u4 + · · ·+ u3un−1)

...

+
3

4
u2n−1.

By writing

û1 =
√
2

[
u1 +

1

2
(u2 + u3 + · · ·+ un−1)

]
û2 =

√
3

2

[
u2 +

1

3
(u3 + · · ·+ un−1)

]
...

ûi =

√
i+ 1

i

[
ui +

1

i+ 1
(ui+1 + · · ·+ un−1)

]
...

ûn−1 =

√
n

n− 1
un−1,

We can write

χ2 =
n−1∑
i=1

û2i .

Since ûis are linear functions of the normally distributed RVs, the distribution of (û1, . . . , ûn−1)
is an (n− 1)-dimensional normal distribution. In order to prove that ûis are statistically inde-
pendent, we need only to prove that the covariances are zero.
We write

ui =
Xi −X

σ
=
Xi − µ
σ

− X − µ
σ

= Ui − U,
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where Ui =
Xi−µ

σ as in (7.20) and

U =
1

n

n∑
i=1

Ui.

Note Û is different from U of (7.30) by a factor 1√
n

. Then we have

ûi =
1√

i(i+ 1)
[(i+ 1)ui + ui+1 + · · ·+ un−1]

=
1√

i(i+ 1)

[
(i+ 1)Ui + Ui+1 + · · ·+ Un−1 − nU

]
=

−1√
i(i+ 1)

[U1 + U2 + · · ·+ Ui1 + Un − iUi] .

Hence

E[ûi] = 0,

and

Var[ûi] =
1

i+ 1
[1 + 1 + · · ·+ 1 + 1 + i2] =

i+ i2

i(i+ 1)
= 1.

The product

ûiûj =
1√

i(i+ 1)j(j + 1)
[U1 + U2 · · ·+ Ui1− + Un − iUi][U1 + U2 + · · ·+ Uj−1 + Un − jUj ]

shows that for i < j,

E[ûiûj ] =
1√

i(i+ 1)j(j + 1)
E[U2

1 + U2
2 + · · ·+ U + i− 12 + U2

n − iU2
i ],

since E[UrUs] = 0 for r 6= s. It is easy to see

Var[ûiûj ] = E[ûiûj ] =
1√

i(i+ 1)j(j + 1)
[1 + 1 + · · ·+ 1 + 1− i] = 0.

Thus, the (n− 1)-variables û1, û2, · · · , ûn−1 are statistically independent standard normal vari-
ables.

7.3* Moments of gamma and χ2-distributions.

(a)

E[Xm] =

∫ ∞
0

xmfX(x)dx =
1

Γ(β)

∫ ∞
0

xm+β−1e−x dx =
Γ(m+ β)

Γ(β)
.

(b)

fχ2
n
(ν)dν =

ν
n
2 −1e−

ν
2

2
n
2 Γ
(
n
2

) , 0 ≤ ν <∞.
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E[(χ2
n)

m] =

∫ ∞
0

νmfχ2
n
(ν)dν

=
1

2n/2Γ(n/2)

∫ ∞
0

νm+n
2 −1e−ν/2 dν

=
2m+n

2

2n/2Γ(n/2)

∫ ∞
0

tm+n
2 −1e−t dt

=
2mΓ

(
n
2 +m

)
Γ(n/2)

.

7.2 Student’s t-Distribution

7.7* Moments of the F -distribution.
From (7.39), the rth moment of F is

E[F r] =

(
n2
n1

)r

E[V r
1 ]E[V −r2 ].

From the result of Problem 7.3 (b)

E[V r
1 ] =

2rΓ
(
n1

2 + r
)

Γ
(
n1

2

)
and

E[V −r2 ] =
2−rΓ

(
n2

2 − r
)

Γ
(
n2

2

) .

Hence,

E[F r] =

(
n2
n1

)r Γ
(
n1

2 + r
)
Γ
(
n2

2 − r
)

Γ
(
n1

2

)
Γ
(
n2

2

) .

From the conditions n1

2 + r > 0 and n2

2 − r > 0, we obtain −n1 < 2r < n2.

7.3 Lognormal Distribution

7.9* Median and mode of the lognormal distribution.

(a) The median of the distribution (7.46) is ymed = µY . The corresponding xmed is

xmed = eymed = eµY .
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Using (7.52), we find

xmed = eµY = e
lnµX− 1

2 ln

(
1+

σ2
Y

µ2
X

)

= µX

(
1 +

σ2
Y

µ2
X

)− 1
2

=
µX√(
1 +

σ2
Y

µ2
X

) .
(b) Take the logarithm of (7.47):

ln fX(x) = −1

2
ln(2π)− lnx− (lnx− µY )

2

2σ2
Y

.

Differentiate the above with respect to x:

f ′X(x)

fX(x)
= − 1

x
− lnx− µX

σ2
Y x

.

The mode xmode is such x that maximizes fX(x), and thus f ′X(xmode) = 0. Thus,

−1− lnxmode − µY

σ2
Y

= 0,

from which we have

xmode = eµY −σ2
Y .

By substituting the result of part (a) and (7.53), we obtain

xmode =
µX(

1 +
σ2
Y

µ2
X

) 3
2

.

7.4 Rayleigh and Rice Distributions

7.10* MGF of R2 and R variables in the Rayleigh distribution.

(a)

MZ(t) = E[et(X
2+Y 2)] =MX2(t)MY 2(t).

Let X = σU and Y = σV , then U and V are independent unit normal variables. Then

MX2(t) = E[etσ
2U2

] =
1√
2π

∫ ∞
−∞

etσ
2u2

e−
u2

2 du

=
1√
2π

∫ ∞
−∞

e−
(u
√

1−2σ2t)2

2 du.

By setting u
√
1− 2σ2t = w, we have

MX2(t) =
1√
2π

∫ ∞
−∞

e−
w2

2
dw√

1− 2σ2t
=

1√
1− 2σ2t

.
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Since MY 2(t) is the same as MX2(t), we have

MZ(t) =
1

1− 2σ2t
,

which leads to

mZ(t) = − ln(1− 2σ2t).

Thus,

m′Z(t) =
2σ2

1− 2σ2t
, m′′Z(t) =

(2σ2)2

(1− 2σ2t)2
.

Hence

E[Z] = m′Z(0) = 2σ2, Var[Z] = 4σ4.

(b)

MR(t) = E
[
et
√
X2+Y 2

]
=

1

2π

∫ ∞
−∞

∫ ∞
−∞

e−
u2+v2

2 etσ
√
u2+v2

du dv.

By writing

u = r cos θ, v = r sin θ, hence du dv = rdr dθ,

we have

MR(t) =
1

2π

∫ 2π

0

∫ ∞
0

e−
r2

2 etσrr dr dθ.

By setting r − σt = y, i.e., r = y + σt, we can write

MR(t) =

[∫ ∞
−σt

(y + σt)e−
y2

2 dy

]
e

σ2t2

2

=

{[
−e−

y2

2

]∞
−σt

+
√
2πσt [1− Φ(−σt)]

}
e

σ2t2

2

= 1 +
√
2πσtΦ(σt)e

σ2t2

2 ,

where Φ(x) is the distribution function of the unit normal variable, and we use the property
1− Φ(−x) = Φ(x).

(c) To simplify the notation we define

Φ , Φ(σt), and F , Φe
σ2t2

2 .

So

lnF = lnΦ +
σ2t2

2
.

By differentiating the above with respect to t, we have

F ′

F
=
σφ

Φ
+ σ2t,
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where φ , φ(σt), the PDF of the unit normal variable. By differentiating the above once
again

F ′′F − (F ′)2

F 2
=
σ2(φ′Φ− φ2)

Φ2
+ σ2,

where φ′ , φ′(σt). By setting t = 0 in the functions,

F (0) = Φ(0) =
1

2
, and

F ′(0)

F (0)
=
σφ(0)

Φ(0)
=

√
2

π
σ,

we find

M ′
R(0) =

√
2πσF (0) =

√
π

2
σ, and M ′′

R(0) =
√
2πσ(2F ′(0)) =

√
2πσ

2σ√
2π

= 2σ2.

Thus, we find the variance of R as given above.

7.13* Nakagami distribution.

(a)

E[Z] = 2mσ2 , Ω, (1)

Then by writing Xi = σUi, we readily find

Z = σ2χ2
2m, (2)

where χ2
2m is the chi-squared variable with 2m degrees of freedom1. Thus, we find the PDF

of Z as

fZ(z) =
1

σ2
fχ2

2m

( z
σ2

)
=

1

σ2

(
z
σ2

)m−1
e−

z
2σ2

2mΓ(m)
, z ≥ 0, (3)

where Γ(m) is the gamma function defined in (4.31), and Γ(m) = (m− 1)! when m is an
integer. By substituting (1), we have

fZ(z) =
mm

ΩmΓ(m)
zm−1e−

mz
Ω , z ≥ 0. (4)

(b) define a random variable R, or the envelope of the The PDF of R is obtained by setting
fR(r) dr = fZ(z) dz. This leads to

fR(r) =
2mm

ΩmΓ(m)
r2m−1e−

mr2

Ω , r ≥ 0. (5)

An alternative expression is given in terms of σ2 as

fR(r) =
2
(

m
2σ2

)m
Γ(m)

r2m−1e−
mr2

2σ2 , r ≥ 0, (6)

1 Recall that Y2m , χ2
2m/2 is an Em variable, i.e., is Erlangian distributed with mean m (cf. (7.16)):

fY2m (y) =
ym−1e−y

(m− 1)!
,

which can be seen as the gamma distribution with λ = 1 and β = m (cf. (4.30)).
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(c)

E[R] = 2
(m
Ω

)m 1

Γ(m)

∫ ∞
0

rr(2m− 1)e−
mr2

Ω dr

By setting mr2

Ω = x, we can write

E[R] = 2
(m
Ω

)m 1

Γ(m)

(
Ω

m

) 2m−1
2 Ω

2m

∫ ∞
0

xm+ 1
2−1e−x dx

=
Γ
(
m+ 1

2

)
Γ(m)

(
Ω

m

) 1
2

.

The second moment is similarly obtained, but E[R2] = E[Z] = Ω by definition. The vari-
ance is then readily found from E[R2]− E2[R].

7.5 Complex-valued normal variables

7.17* Joint PDF of (Z,Z∗). W> = [X>Y >] is a 2M -dimensional Gaussian variables with zero
mean and the 2M × 2M covariance matrix Σ of (7.98). Thus, the PDF of the vector variable W
is given by (7.106). By writing X and Y explicitly, the joint PDF of (X,Y ) is given by (7.107).
Since z = x+ iy and z∗ = x− iy, its Jacobian is given by the first expression of (7.108), i.e.,

J =
∂(z, z∗)

∂(x,y)
=

[
IM IM

iIM −iIM

]
,

where IM is an M ×M identity matrix. A nontrivial step is to show the second half of (7.108),
i.e.,

detJ = (−2i)M .

We want to show the following formula by mathematical induction:

det

[
Ik Ik

Ik −Ik

]
= (−2)k. (7)

For k = 1, we have

det

[
1 1

1 −1

]
= −2.

Thus, the formula holds for k = 1. Suppose that it holds for k = n− 1, i.e.,

det

[
In−1 In−1
In−1 −In−1

]
= (−2)n−1.

We can write the identity matrix In

In =

[
1 · · ·
... In−1

]
.
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Then we can write

[
In In

In −In

]
=


1 · · · 1 · · ·
... In−1

... In−1
1 · · · −1 · · ·
... In−1

... −In−1

 .
Then the determinant is calculated as

det

[
In In

In −In

]
= 1 · det

In−1
... In−1

· · · −1 · · ·

In−1
... −In−1

+ (−1)n · det


... In−1 In−1
1 · · · · · ·
... In−1 −In−1


= 1 · (−1) · det

[
In−1 In−1
In−1 −In−1

]
+ (−1)n · (−1)n−1 · det

[
In−1 In−1
In−1 −In−1

]
= −2 · det

[
In−1 In−1
In−1 −In−1

]
= (−2)(−2)n−1 = (−2)n

Thus, we have proved the formula (7) by mathematical induction. Then it is clear

det

[
Ik Ik

iIk −iIk

]
= (−2i)k.

Thus (7.108) is proved, and (7.109) follows from fXY (x,y) of (7.107), the Jacobian |J | = 2M

of (7.108), and the quadratic form (7.105).



8 Solutions for Chapter 8: Moment
Generating Function and
Characteristic Function

8.1 Moment Generating Function (MGF)

8.1* Properties of logarithmic MGF. For simplify the notation we drop the subscript X of MX(t).

M(t) = E
[
etX
]
, M ′(t) = E

[
XetX

]
, M ′′(t) = E

[
X2etX

]
.

By setting t = 0, we have

M(0) = E[1] = 1, M ′(0) = E[X], M ′′(0) = E[X2].

Letting

m(t) = lnM(t), m′(t) =
M ′(t)

M(t)
, m′′(t) =

M ′′(t)M(t)−M ′(t)2

M(t)2
.

By setting t = 0, we have

m(0) = 0, m′(0) =M ′(0) = E[X], m′′(0) =M ′′(0)−M ′(0)2 = E[X2]− E[X]2 = σ2.

8.3* Exponential distribution.

M(t) =

∫ ∞
0

etxµe−µx dx = µ

[
e(t−µ)x

t− µ

]∞
0

=

{
µ

µ−t t < µ

∞ t ≥ µ

8.7* Multivariate normal distribution. The derivation is essentially the same as that for the bivari-
ate normal distribution. Let

Y ,= t1X1 + . . .+ tmXm = 〈t,X〉.

Then the joint MGF of the multivariate X is given by

MX(t) =MY (1),

where MY (ξ) is the MGF of the scalar RV Y , i.e., MY (ξ) = E
[
eξY
]
. Since Y is a linear sum

of the normal variables, it is also a normal variable with mean and variance given by

µY = 〈t,µ〉, and σ2
Y = t>Ct.

Thus, its MGF is

MY (ξ) = eξµY +
ξσ2

Y
2 .

38
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Hence, the joint MGF of X = (X1, X2, . . . , Xm) is

MX(t) =MY (1) = eµY +
σ2
Y
2 ,

which leads to (8.54).
8.9* Erlang distribution. By definition the MGF is

MSr
(t) =

∫ ∞
0

ext
rλ(rλx)r−1

(r − 1)!
e−rλx dx =

(rλ)r

(r − 1)!

∫ ∞
0

xr−1e−(rλ−t)x dx

We use the following integration by parts:

I(r) ,
∫ ∞
0

xr−1e−(rλ−t)x dx =

∫ ∞
0

xr−1
(
−e
−(rλ−t)x

rλ− t

)′
dx

= −xr−1 e
−(rλ−t)x

rλ− t

∣∣∣∣∞
0

+
r − 1

rλ− t

∫ ∞
0

xr−2e−(rλ−t)x dx,

where the first term is zero if t < rλ, and is infinity, otherwise. Hence

I(r) =

{
r−1
rλ−tI(r − 1) t < rλ,

∞ t ≥ rλ.

By solving this recursively we find for t < rλ,

I(r) =
(r − 1)(r − 2)

(rλ− t)2
I(r − 2) = · · · = (r − 1)!

(rλ− t)r−1
I(1),

where I(1) =
∫∞
0 e−(rλ−t)x dx = (rλ− t)−1. Hence

MSr
(t) =

{(
rλ

rλ−t
)r
, t < rλ

∞ t ≥ rλ.

Alternatively, Sr can be expressed as the sum of r i.i.d. exponential RVs with mean (rλ)−1,
whose MGF is given by rλ

rλ−t , for t < rλ, as seen from the solution of Problem 8.3. Then from
the product formula (8.41) for the sum of independent RVs, we readily obtain the above result.

8.2 Characteristic Function (CF)

8.11* CF of the binomial distribution. By definition

φ(u) =
n∑

k=0

B(k;n, p)eiuk =
n∑

k=0

(
n

k

)
pk(1− p)n−keiuk

=

n∑
k=0

(
n

k

)
(peiu)k(1− p)n−k = (peiu + 1− p)n.

8.15* CF of the exponential distribution The CF is by definition

φX(u) =

∫ ∞
0

1

a
e−x/a eiux dx =

1

a
lim
R→∞

∫ R

0

e−
(1−iau)x

a dx. (1)
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Defining the complex variable z, we write the above as an integral in the complex plane:

φX(u) =
1

a(1− iau)
lim
R→∞

∫ R−iauR

0

e−
z
a dz. (2)

Then for u > 0, we consider the contour shown in Figure 8.1 (a). Since the function e−
z
a is

analytic in the entire plane, its integration along the contour is obviously zero:

0 =

∮
C

e−
z
a dz =

∫ R−iauR

0

e−
z
a dz +

∫ 0

−auR
e−

R+iy
a i dy +

∫ 0

R

e−
x
a dx. (3)

The second integral on the right hand side can be bounded as follows:∣∣∣∣ ∫ 0

−auR
e−

R+iy
a i dy

∣∣∣∣ ≤ e−R
a

∫ 0

−auR
dy = auRe−

R
a

R→∞−→ 0. (4)

Therefore, we have

lim
R→∞

∫ R−iauR

0

e−
z
a dz = lim

R→∞

∫ R

0

e−
x
a dx = a. (5)

Thus, we find

φX(u) =
1

1− iau
, −∞ < u <∞ (6)

for u > 0.

0

R-iauR

R0

x

y

z-plane

(a) for u > 0

0 R-iauR

R
0 x

y
z-plane

(b) for u < 0

Figure 8.1 Contours for complex integral to obtain the CF of the exponential distribution.

For u < 0, we consider the contour shown in Figure 8.1 (b), and repeat similar steps as in the case
for u > 0. In doing so, we can show that (6) holds for u < 0, as well. For u = 0, the integration
in (1) reduces to an integration on the real parameter x, and is readily obtained as φX(0) = 1,
which satisfies (6).
As is the case with the normal distribution, the result (6) could have been obtained by substitution
of t = iu in the MGF MX(t) = 1

1−at of the exponential distribution. The reader is cautioned
again that such derivation is mathematically incorrect.
The cumulant generating function, given by

ψX(u) , lnφX(u) = − ln(1− iau).
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By differentiating the above expression, we obtain

µX = (−i)ψ′X(0) = a, and σ2
X = (−i)2ψ′′X(0) = a2.



9 Solutions for Chapter 9:
Generating Functions and Laplace
Transform

9.1 Generating Functions

9.1* Region of convergence for PGF, generating function and Z-transform.

(a) If |fk| ≤M for all k and some constant M , then

|F (z)| ≤
∞∑

k=0

|fkzk| ≤M
∑
|zk| =M

1

1− |z|
, for |z| < 1.

(b) Similarly

|F̃ (z)| ≤
∞∑

k=0

|fkz−k| ≤M
∑
|z−k| =M

1

1− |z|−1
, for |z−1| < 1, or |z| > 1.

(c) Since
∑

k pk = 1 by definition

|P (z)| ≤ P (1) =
∑
k

pk = 1, for |z| ≤ 1.

9.2* Derivation of PGFs in Table 9.1.

(a) The PGF is given by

P (z) =
n∑

k=0

(
n

k

)
(pz)kqn−k = (pz + q)n, |z| <∞.

(b)

P (z) =
∞∑

k=1

z(zq)k−1p = pz
∞∑
j=0

(zq)j = C, |z| < q−1.

(c) We can write

Zr = X1 +X2 + . . .+Xr.

where Xi is the number of failures until the i success is attained after the (i− 1)st success.
Then Xi has the shifted geometric distribution with its PGF pz

1−qz , as obtained in Example

9.1. Since Xi’s are i.i.d., we have the PGF of Zr given by
(

pz
1−qz

)r
.

9.10* Shifted negative binomial distributions

42
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(a) The distribution of X is the shifted geometric distribution discussed in Example 9.1.
Using the result (9.6), we find

E[X] =
q

p
and Var[X] =

q

p2
.

(b) We can write Zr as

Zr = X1 +X2 + . . .+Xr,

where Xk denotes the number of failures after the (k − 1)st success and prior to the kth
success. Since Xk’s are independent, the PGF of the RV Zr is

PZr
(z) =

(
p

1− qz

)r

= pr(1− qz)−r. (1)

The mean and variance are readily obtained as

E[Zr] =
rq

p
and Var[Zr] =

rq

p2
.

(c) From the identity of the hint

(1− qz)−r =
∞∑
j=0

(
−r
j

)
(−qz)j , |z| < q−1.

Thus, from (1),

PZr
(z) = pr

∞∑
j=0

(
−r
j

)
(−qz)j .

(d) The coefficient of zk is given by (9.117), where the second expression was obtained by
using the identity (3.97):(

−n
i

)
=

(−n)!
i!(−n− i)!

= (−1)in(n+ 1) · · · (n+ i− 1)

i!
= (−1)i

(
n+ i− 1

i

)
, (2)

(e) The expression (1) suggests that the (shifted) negative binomial distribution f(j; r, p) is
r-fold convolutions of the (shifted) geometric distribution:

{f(k; r, p)} = {qkp}r~,

which implies the reproductive property.
From the definition of Zr, it is apparent that

Zr1 + Zr2 = Zr1+r2 ,

where Zr1 and Zr2 are independent in the Bernoulli trials.
Recall that the negative binomial distribution can be extended to the case for a positive real
r (but still 0 < p < 1) as defined in (3.109). The generating function remains the same as
(1).

9.15* Derivation of the binomial distribution via a two-dimensional generating function
C(z,w).
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(a)

b(k;n, p) = b(k − 1;n− 1, p)p+ b(k;n− 1, p)q

b(0;n, p) = b(0;n− 1, p)q, n ≥ k ≥ 1.

(b)

B(z;n, p) = pz
∞∑

k=1

b(k − 1;n− 1, p)zk−1 + q
∞∑

k=0

b(k;n− 1, p)zk

= pzB(z;n− 1, p) + qB(z;n− 1, p)

= (pz + q)B(z;n− 1, p), n ≥ 1.

B(z; 0, p) = 1.

(c) From the result in (b) we find immediately

C(z, w; p) = (pz + q)wC(z, w; p) + 1,

from which we have

C(z, w; p) =
1

1− w(pz + q)
=

∞∑
n=0

(pz + q)nwn.

Therefore, we find

B(z;n, p) = (pz + q)n,

and

b(k;n, p) =

(
n

k

)
pkqn−k.

9.18* Convolution and the Laplace transform.

Φg(s) =

∫ ∞
0

g(x)e−sx dx =

∫ ∞
0

(∫ x

0

f1(x− y)f2(y) dy
)
e−sx dx.

Define a new variable z = x− y, then 0 ≤ z <∞, because 0 ≤ y ≤ x. Then,

Φg(s) =

∫ ∞
0

f1(z)e
−sz dz

∫ ∞
0

f2(y)e
−sy dy = Φf1(s)Φf2(s).

9.21* Discontinuities in a distribution function. If FX(x) has a discontinuity only at x = 0, the
corresponding ΦX(s) is a rational function of the form (9.97). Then it is clear from (9.102) and
(9.106) that

lim
s→∞

ΦX(s) = lim
x→0+

FX(x) =
ad
bd
,

which is the magnitude of a jump in FX(x) at the origin.
If FX(x) contains discontinuities of pk’s at x = xk’s, we can write

FX(x) =
∑
k

pku(x− xk) +G(x),



45

where u(x) is the unit step function, and G(x) is a continuous and piecewise differentiable
function with g(x) = G′(x). Then the corresponding density function is

fX(x) =
∑
k

pkδ(x− xk) + g(x),

where δ(x) is Dirac’s delta function or the impulse function. The Laplace transform is then

ΦX(s) =
∑
k

pke
−sxk +

∫
g(x)e−sx dx.



10 Solutions for Chapter 10:
Inequalities, Bounds and Large
Deviation Approximation

10.1 Inequalities frequently used in Probability Theory

10.16* Bernstein’s inequality [21, 131].

(a)

P

[
Sn

n
− p ≥ ε

]
=

∑
k≥n(p+ε)

P [Sn = k] =
n∑

k=m

(
n

k

)
pkqn−k

≤ exp{λ[k − n(p+ ε)]}
(
n

k

)
pkqn−k

= e−λnε
n∑

k=m

(
n

k

)(
peλq

)k (
qe−λp

)n−k
≤ e−λnε

n∑
k=0

(
n

k

)(
peλq

)k (
qe−λp

)n−k
= e−λnε

(
peλq + qe−λp

)n
(b) Using the inequality in the hint

eλq ≤ λq + eλ
2q2 , and e−λp ≤ −λq + eλ

2p2

.

Thus,

peλq + qe−λp ≤ eλ2q2 + eλ
2p2

.

Thus,

P

[
Sn

n
− p ≥ ε

]
≤ e−λnε

(
eλ

2q2 + eλ
2p2
)n

≤ e−λnε
(
peλ

2

+ qeλ
2
)n

= exp(−nλ(ε− λ)).

(c) Since

λ(ε− λ) ≤ λ2

4
,
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We finally find

P

[
Sn

n
− p ≥ ε

]
≤ exp

(
−nε

2

3

)
, ε > 0.

Since the distribution of Sn

n should be symmetric around p, we have

P

[
Sn

n
− p ≤ −ε

]
≤ exp

(
−nε

2

3

)
.

Thus combining the above we obtain Bernstein’s inequality (10.136).

10.17* Hoeffding’s inequality for a martingale [152, 288].

(a) Suppose µ = 0. Then for any λ > 0, we have from Markov inequality

P [Yn ≥ t] = P
[
exp(λYn) ≥ eλt

]
≤ e−λtE[exp(λYn)].

Let Wn = exp(λYn) Then W0 = eµ = 1, and

Wn = eλYn−1eλ(Yn−Yn−1).

Thus,

E[Wn|Yn−1] = eλYn−1E
[
eλ(Yn−Yn−1)|Yn−1

]
≤Wn−1

bne
−λan + ane

λbn

an + bn
,

where we used the hint since f(x) = eix is a convex function, and thatX = Yn − Yn−1 sat-
isfies E[X] = 0, because E[Yn − Yn−1|Yn−1] = E[Yn|Yn−1]− E[Yn−1|Yn−1] = Yn−1 −
yn−1 = 0.

(b) Taking the expectation of the above,

E[Wn] ≤ E[Wn−1]
bne

−λan + ane
λbn

an + bn
,

which lead to

E[Wn] ≤
n∏

i=1

bie
−λai + aie

λbi

ai + bi
.

Then from (10.139)

P [Yn ≥ t] ≤ e−λt
n∏

i=1

bie
−λai + aie

λbi

ai + bi
≤ e−λt

n∏
i=1

exp

(
λ2(ai + bi)

2

8

)
,

where we set θ = ai

ai+bi
and x = λ(ai + bi) in the hint. Hence,

P [Yn ≥ t] ≤ exp

[
λ

(
λ

∑n
i=1(ai + bi)

2

8
− t
)]

,

(c) The expression in [ ] takes the minimum when λ = 4t∑n
i=1(ai+bi)2

, and we have

P [Yn ≥ t] ≤ exp

(
− 2t2∑n

i=1(ai + bi)2

)
.
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Then the Azuma-Hoeffding inequalities (10.137) and (10.138) follow by applying the
above to the zero-mean martingale Yi − µ and to a zero-mean martingale µ− Yi, respec-
tively.

10.18* Upper bound on the waiting time in a G/G/1 queuing system [196].

(a) By expanding (10.143) recursively, we have

Wn = max{0, Xn−1, Xn−1 +Xn−2, . . . , Xn−1 +Xn−2 + . . .+X0}.

For θ > 0, eθWn is a monotone increasing function of Wn. Hence,

eθWn = max
{
1, eθXn−1 , eθ(Xn−1+Xn−2), . . . , eθ(Xn−1+Xn−2+...+X0)

}
max {Y0, Y1, . . . , Yn} .

(b)

MX(θ) = E
[
eθXn

]
.

The MGF is defined over an interval Iθ, in which the MGF is bounded. This domain Iθ
includes θ = 0. The function MX(θ) is a convex function. Furthermore, MX(0) = 1 and
M ′

X(0) = E[X] < 0. Let θ > 0 be any value in Iθ that satisfies

MX(θ) ≥ 1. (1)

Then

E[Yn|Y1, Y2, . . . , Yn−1] = E
[
eθ(Xn−1+Xn−2+···+X0)

∣∣∣eθ(Xn−1+Xn−2), . . . , eθ(Xn−1+Xn−2+···+X1)
]

= e
[
eθX0

]
eθ(Xn−1+Xn−2+···+X1) =MX(θ)Yn−1 ≥ Yn−1,

which shows that Yn is a submartingale.
(c) By applying the Doob-Kolmorogov’ inequlaity, we obtain

F c
Wn

(t) = P [Wn > t] = P
[
eθWn≥eθt

]
= P

[
max{Y0, Y1, . . . , Yn} ≥ eθt

]
≤ P [Yn]

eθt
= e−θt+nmX(θ),

(c) The tightest bound is attained by finding

min

{
mX(θ)− tθ

n

}
with the constraint (1), or equivalently

mX(θ) ≥ 0. (2)
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10.2 Chernoff’s bound

10.3 Large Deviation Theory



11 Solutions for Chapter 11:
Convergence of a Sequence of
Random Variables

Appendix (or Supplementary Material): This is the proof of Lemma 11.25 in the text that is
omitted because of the space.

Lemma 11.1 [Conditions for a.s. convergence]
Xn

a.s.→ X , if and only if, for arbitrary ε > 0 and δ > 0, there exists a number M(ε, δ) such that

P

[ ∞∩
n=m

{ω : |Xn(ω)−X(ω)| < ε}

]
≥ 1− δ (1)

for all m ≥M(ε, δ).

Proof. Let sets A and An(ε) be as defined in (??) and (11.6), respectively:

A = {ω : lim
n→∞

Xn(ω) = X(ω)}, (2)

An(ε) = {ω : |Xn(ω)−X(ω)| < ε}. (3)

We define a sequence

Bm(ε) =
∞∩

n=m

An(ε), (4)

which is an increasing sequence with the limit

lim
m→∞

Bm(ε) , A(ε). (5)

The limit A(ε) can be interpreted as

A(ε) = {ω ∈ An(ε) for infinitely many values of n}. (6)

From the definition of almost sure convergence

Xn
a.s.→ X ⇐⇒ P [A] = 1, (7)

where the symbol⇐⇒ means “if and only if”. Since the events A and A(ε) are related by

A =
∩
ε>0

A(ε), (8)
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we have

P [Ac] = P

[∪
ε>0

Ac(ε)

]
≤
∑
ε>0

P [Ac(ε)]. (9)

Therefore, it follows that

P [Ac] = 0 ⇐⇒ P [Ac(ε)] = 0 for any ε > 0. (10)

or

P [A] = 1 ⇐⇒ P [A(ε)] = 1 for any ε > 0. (11)

Because of (5), we have

P [A(ε)] = 1 ⇐⇒ lim
m→∞

P [Bm(ε)] = 1 (12)

Thus, from (7), (11) and (12), we conclude

Xn
a.s.→ X ⇐⇒ lim

m→∞
P [Bm(ε)] = 1 for any ε > 0. (13)

The right hand side of the above implies, by referring to (4)

lim
m→∞

P

[ ∞∩
n=m

{ω : |Xn(ω)−X(ω)| < ε}

]
= 1, for any ε > 0. (14)

In other words, for any ε > 0 there exists a number N(ε, δ) such that for all m ≥ N(ε, δ)

P

[ ∞∩
n=m

{ω : |Xn(ω)−X(ω)| < ε}

]
≥ 1− δ, (15)

which is equivalent to (11.25).

11.1 Preliminaries: Convergence of a Sequence of Numbers or
Functions

11.2 Types of Convergence for Sequences of Random Variables

11.1* Example of D. convergence. The distribution function of Zn is given by

FZn
(z) = P [Zn ≤ z] = P [n(1− Yn) ≤ z] = P

[
Yn ≥ 1− z

n

]
. (16)

Since Yn = max{X1, X2, . . . , Xn},

P
[
Yn ≤ 1− z

n

]
= P

[
Xi ≤ 1− z

n
, 1 ≤ i ≤ n

]
=
[
FX

(
1− z

n

)]n
. (17)

Note that 0 ≤ Yn ≤ 1, almost surely, and hence Zn ≥ 0, a.s. When n > z ≥ 0,

0 ≤ 1− z

n
≤ 1,
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and therefore

FX

(
1− z

n

)
= 1− z

n
, n > z. (18)

Hence,

lim
n→∞

[
FX

(
1− z

n

)]n
= lim

n→∞

[
1− z

n

]n
= e−z. (19)

From (16), (17), and (19), we conclude that

lim
n→∞

FZn
(z) = 1− e−z, z ≥ 0,

i.e., Zn
D→ Z.

11.3* Convergence of sample average.

Xn − c =
1

n

n∑
k=1

(c+Nk)− c =
1

n

n∑
k=1

Nk.

By the weak law of large numbers,

1

n

n∑
k=1

Nk
P→ 0.

Therefore,

lim
n→∞

P [|Xn − c| ≥ ε] = 0,

for any ε > 0. Hence, Xn
P→ c.

11.6* Properties of ‖ Y ‖r [131].

(a) Hölder’s inequality: From the convexity of the exponential function, we have, from
Jensen’s inequality, for any real numbers u and v, and 1

r + 1
s = 1,

exp
(u
r
+
v

s

)
≤ eu

r
+
ev

s
. (20)

Set

u = ln

(
|X|
‖X‖r

)r

, and v = ln

(
|Y |
‖Y ‖s

)s

.

Then the LHS of (20) is

LHS = exp

(
1

r
ln

(
|X|
‖X‖r

)r

+
1

s
ln

(
|Y |
‖Y ‖s

)s)
= exp

1

r
ln

(
|X|
‖X‖r

)r

· exp 1

s
ln

(
|Y |
‖Y ‖s

)s

=
|XY |

‖X‖r‖Y ‖s
.
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Using

eu =

(
|X|
‖X‖r

)r

, and ev =

(
|Y |
‖Y ‖s

)s

,

the RHS of (20) is

RHS =
1

r

|X|r

‖X‖rr
+

1

s

|Y |s

‖Y ‖ss
.

Thus

|XY |
‖X‖r‖Y ‖s

≤ 1

r

|X|r

‖X‖rr
+

1

s

|Y |s

‖Y ‖ss
.

By taking the expectation, we find

‖XY ‖1
‖X‖r‖Y ‖s

≤ 1

r
+

1

s
= 1.

(b) The proof given in part (a) can carry over to this case. From (20), we have
n∑

i=1

exp
(ui
r

+
vi
s

)
≤

n∑
i=1

(
eui
r

+
evi
s

)
. (21)

Set

ui = ln

(
xi
‖x‖r

)r

, or eui =
xri
‖x‖rr

,

where

‖x‖r =

(
n∑

i=1

xri

)1/r

, for r > 1.

Then the LHS of (21) is

LHS =
n∑

i=1

exp
1

r
ln

(
xi
‖x‖r

)r

· exp 1

s
ln

(
yi
‖x‖s

)s

=

∑n
i=1 xiyi
‖x‖r‖y‖s

,

and the RHS is

RHS =

∑n
i=1 x

r
i

r‖x‖rr
+

∑n
i=1 y

s
i

s‖y‖ss
=

1

r
+

1

s
= 1.

An alternative proof: We use the hint given in part (b). It is easy to see that F (x) is
minimum when x = 1. Thus,

xr

r
+
x−s

s
≥ 1.

In order to derive

uv ≤ ur

r
+
vs

s
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We set x = u1/sv−1/r = urr + sv−
s

r+s in the above inequality, then we find

uv ≤ ur

r
+
vs

s
,

and the rest of the proof is similar to the first proof.
The proof for the integral version is similar. Instead of

∑n
i=1, use the integral.

(c) Minkowski’s inequality:

E[|X + Y |r] = E[|X + Y ||X + Y |r−1]
≤ E[(|X|+ |Y |)|X + Y |r−1]
= E[|X||X + Y |r−1] + E[|Y ||X + Y |r−1] (22)

≤ (E[|X|r])1/r ·
(
E[|X + Y |(r−1)s]

)1/s
+ (E[|Y |r])1/r ·

(
E[|X + Y |(r−1)s]

)1/s
(23)

= (||X||r + ||Y ||r) (E[|X + Y |r])
r−1
r , (24)

where (23) is obtained by applying Hölder’s inequality to each term in (22), with

1

r
+

1

s
= 1⇒ s =

r

r − 1
.

Multiplying both sides of the inequality (24) by the factor

||X + Y ||r
E[|X + Y |r]

,

we obtained the desired result:

||X + Y ||r ≤ ||X||r + ||Y ||r.

11.3 Limit theorems



12 Solutions for Chapter 12:
Random Process, Spectral
Analysis and Complex Gaussian
Process

12.1 Introduction

12.2 Classification of Random Processes

12.3 Stationary Random Process

12.1* Sinusoidal functions with different frequencies and random amplitudes [175].

(a)

RX(τ) = E[X(t+ τ)X(t)] =E

[(
m∑
i=0

{Ai cosωi(t+ τ) +Bi sinωi(t+ τ)}

)

·

 m∑
j=0

{Aj cosωjt+Bj sinωjt}

 .
Noting that E[AiBj ] = 0 and E[AiAj ] = E[BiB] = 0 for i 6= j, we find

RX(τ) =
m∑
i=0

E[A2
i cosωi(t+ τ) cosωit+B2

i sinωi(t+ τ) sinωit]

=
m∑
i=0

σ2
i cosωiτ = σ2

m∑
i=0

fi cosωiτ.

(b)

RX(τ) = σ2

∫ π

0

cosωτ dF (ω).

(c)

RX(τ) =
σ2

π

∫ π

0

cosωτ dω =

{
σ2, if τ = 0,

0, if τ 6= 0.

For a detailed mathematical treatment see Chapter 9 of Karlin and Taylor [174].
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12.4 Complex-Valued Gaussian Process

12.3* Condition for integration in mean-square.
We can expand the LHS of (12.39) as follows:

E[|Y − Sn|2] = E[Y Y ∗]− E[Y S∗n]− E[Y ∗Sn] + E[SnS
∗
n]

=

∫ b

a

∫ b

a

h(t)E[Z(t)Z∗(s)]h∗(s) dt ds

−
∫ b

a

n∑
i=1

h(t)E[Z(t)Z∗(ti)]h
∗(ti)(ti+1 − ti)

−
∫ b

a

n∑
i=1

h∗(t)E[Z∗(t)Z(ti)]h(ti)(ti+1 − ti)

+
n∑

i=1

n∑
j=1

h(ti)E[Z(ti)Z
∗(tj)]h

∗(tj)(ti+1 − ti)(tj+1 − tj).

(1)

Since E[Z(t)Z∗(s)] = RZZ(t, s), the first term equals Q of (12.40). By taking the limit n→∞
and max{ti=1 − ti} → 0, the second term becomes

lim
n→∞

∫ b

a

n∑
i=1

h(t)E[Z(t)Z∗(ti)]h
∗(ti)(ti+1 − ti) = lim

n→∞

∫ b

a

n∑
i=1

h(t)R(t, ti)h
∗(ti)(ti+1 − ti)

=

∫ b

a

∫ b

a

h(t)R(t, s)h∗(s) ds = Q

Similarly the third and fourth terms of (1) also equal Q. Thus,

lim
n→∞

E[|Y − Sn|2] = Q−Q−Q+Q = 0.

12.4* Circular symmetry criterion for a complex Gaussian process.
First, note that QZeiθZeiθ (s, t) = E[Z(s)eiθZ(t)eiθ] = QZZ(s, t)e

i2θ Thus the process Z(t)eiθ

satisfies the circular symmetric condition if and only if QZZ(s, t) = 0 for all t, s. Let

Z(t)eiθ = X(t) cos θ − Y (t) sin θ + i(X(t) sin θ + Y (t) cos θ)

, U(t) + iV (t).

If Z(t) = X(t) + iY (t) and Z(t)eiθ = U(t) + iV (t) have the same distribution, their 2× 2-
covariance function matrices must be the same. Let the four elements of the matrix be

E [X(s)X(t)] , A(s, t), E [X(s)Y (t)] , B(s, t)

E [Y (s)X(t)] = B(s, t), E [Y (s)Y (t)] , D(s, t).
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Then, the following relation must hold for any θ.

E[U(s)U(t)] = E [(X(s) cos θ − Y (s) sin θ)(X(t) cos θ − Y (t) sin θ)>]
= cos2 θA(s, t)− sin θ cos θ(B(s, t) +B(s, t)) + sin2 θD(s, t) = A(s, t), (2)

E[U(s)V (t)] = sin θ cos θ(A(s, t)−D(s, t))− sin2 θB(s, t) + cos2 θB(s, t) = B(s, t). (3)

E[V (s)U(t)] = sin θ cos θ(A(s, t)−D(s, t))− sin2 θB(s, t) + cos2 θB(s, t) = B(s, t), (4)

E[V (s)V (t)] = sin2 θA(s, t) + sin θ cos θ(B(s, t) +B(s, t)) + cos2 θD(s, t) = D(s, t). (5)

If we set θ = π/2 in (2), then D(s, t) = A(s, t). Using this result and setting θ = π/2 in (3), we
obtain B(s, t) = −B(s, t). Then (12.31) holds.
Conversely if (12.31) holds, thenD(s, t) = A(s, t) andB(s, t) = −B(s, t) must hold. The equa-
tions (2) through (5) hold for all θ, which implies that the distribution ofZ(t)eiθ is invariant under
θ.



13 Solutions for Chapter 13: Spectral
Representation of Random
Processes and Time Series

13.1 Generalized Fourier Series Expansion

13.1* Parseval’s identity. Using

G∗(f) =

∫ ∞
−∞

g∗(s)e2πft ds

we have∫ ∞
−∞
|G(f)|2 df =

∫ ∞
−∞

G(f)G∗(f) df =

∫ ∞
f=−∞

[∫ ∞
−∞

g(t)e−i2πft dt

∫ ∞
−∞

g∗(s)e2πfs ds

]
df

=

∫ ∞
−∞

∫ ∞
−∞

[∫ ∞
f=−∞

ei2π(s−t) df

]
g(t)g∗(s) dt ds

=

∫ ∞
t=−∞

[∫ ∞
s=−∞

δ(s− t)g∗(s) ds
]
g(t) dt

=

∫ ∞
t=−∞

g∗(t)g(t) dt =

∫ ∞
−∞
|g(t)|2 dt.

13.4* Orthogonality of Fourier expansion coefficients of a periodic WSS process.
In order to prove the second orthogonality (13.28), we expand the periodicR(τ) using the Fourier
series:

R(τ) =

∞∑
k=−∞

rke
i2πf0kτ , −∞ < τ <∞,

where

rk =
1

T

∫ T

0

R(τ)e−i2πf0kτ dτ.

58
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Then

E[X∗mXn] = E

[
1

T

∫ T

0

ei2πf0mtX∗(t) dt
1

T

∫ T

0

e−i2πf0nsX(s) ds

]
=

1

T 2

∫ T

0

∫ T

0

ei2πf0mte−i2πf0nsE[X(s)X∗(t)] ds dt

=
1

T 2

∫ T

0

∫ T

0

ei2πf0mte−i2πf0nsRX(s− t) ds dt

=
1

T 2

∫ T

0

∫ T

0

ei2πf0mte−i2πf0ns

( ∞∑
k=−∞

rke
i2πf0k(s−t)

)
ds dt

=

∞∑
k=−∞

rk

(
1

T

∫ T

0

ei2πf0(m−k)t dt

)(
1

T

∫ T

0

e−i2πf0(n−k)s ds

)

=

∞∑
k=−∞

rkδm,kδn,k = rnδm,n,

where we used (13.27) in the last step.
13.9* Orthogonality of eigenvectors. Note that

uH
i Ruj = λiu

H
i uj ,

since uH
i is a left-eigenvector of R. Also

uH
i Ruj = uH

i λjuj ,

since uj is a right eigenvector. Taking the difference of the above two equations, we have,

(λi − λj)uH
i uj = 0.

Since λi 6= λj , it follows that uHuj = 0.
13.12* Eigenvectors and eigenvalues of a circulant matrix.

(a) Consider the matrix equation Cu = λu. Expand this equation and consider the jth row:

cn−ju0 + cn−j+1u1 + · · ·+ cn−1uj−1 + c0uj + c1uj+1 + · · ·+ cn−j−1un−1 = λuj ,

which gives

n−1∑
k=n−j

ckuk−n+j +

n−j−1∑
k=0

ckuk+j = λuj .

(b) Substituting uj = αj into the above, we have

n−1∑
k=n−j

ckα
k−n+j +

n−j−1∑
k=0

ckα
k+j = λαj .

By dividing both sides by αj , we have

α−n
n−1∑

k=n−j

ckα
k +

n−j−1∑
k=0

ckα
k = λ.
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(c) If αn = 1, then the last equation becomes

λ =

n−1∑
k=0

ckα
k.

Equation αn = 1 has n distinct complex roots:

αm = e
i2πm

n =Wm, m = 0, 1, 2, . . . , n− 1. (1)

Then the mth eigenvalue is

λm =
n−1∑
k=0

ckW
km, (2)

and the mth eigenvector is

um = (α0
m, αm, α

2
m, . . . , α

n−1
m )> = (1,Wm,W 2m, . . . ,W (n−1)m)>.

From (2), we can write ck in terms of λm’s, i.e.,

ck =
1

n

n−1∑
m=0

λmW
−km,

which is the inverse DFT.
Note: The more common definition of the DFT and the inverse DFT may be

λm =
n−1∑
k=0

ckW
−km,

and

ck =
1

n

n−1∑
m=0

λmW
km.

This can be obtained by expressing the n distinct complex roots as

αm = e−
i2πm

n =W−m.

Alternative proof:
It is easy to verify that a matrix is circulant, if and only if it can be expressed as the following
matrix polynomial:

C = c0I + c1V + . . .+ cn−1V
n−1 (3)

where I is the identity matrix and

V =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

1 0 0 · · · 0


is the cyclic permutation matrix (also called the elementary circulant matrix).
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Let α and u denote an eigenvalue and its corresponding eigenvector of V , i.e.,

V u = αu. (4)

Then u is also an eigenvector of C, because

Cu =
n−1∑
k=0

ckV
ku =

n−1∑
i=0

ckα
ku.

Thus, the corresponding eigenvalue of C is

λ =
n−1∑
k=0

ckα
k. (5)

So the problem of finding n eigenvectors and eigenvalues of C reduces to that of finding those
of the cyclical permutation matrix V .
Let ui represent the ith element of the vector u, i.e.,

u = (u0, u1, . . . , un−1)
>. (6)

Then from (4), we find

u1 = αu0, u2 = αu1 = α2u0, . . . , ui = αui−1 = αiu0, . . . , un−1 = αn−1u0. (7)

From (4), we also find

V iu = αiu, i = 0, 1, 2, . . . . (8)

Note that the cyclical permutation matrix V satisfies V n = I . By setting i = n, we find

αn = 1, (9)

to be a necessary and sufficient condition for u to be a non-zero vector. There are n distinct
complex roots for α, which are given by

αm = exp

(
i2πm

n

)
=Wm, m = 0, 1, . . . , n− 1,

where W = exp
(
i2π
n

)
, as defined in (1).

The mth eigenvector is found from equation (6) as

um = (1,Wm,W 2m, . . . ,Wm(n−1))>, m = 0, 1, . . . , n− 1,

where we set um,0, the first component of the um, to be unity for all m. The corresponding
eigenvalues are found, from (5), as

λm =

n−1∑
k=0

ckW
mk, m = 0, 1, . . . , n− 1,

which shows that the eigenvalues are the DFT of (c0, c1, . . . , cn−1).
13.17* Matched filter and SNR. We assume that the signal duration interval is [0, T ]. Otherwise,

replace the integration
∫ T

0 below by
∫∞
−∞ throughout.
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(a)

S0(t) =

∫ T

0

h(u)S(t− u) du.

Thus,

PS = |S0(T )|2 =

∣∣∣∣∫ T

0

h(u)S(T − u) du
∣∣∣∣2

N0(t) =

∫ T

0

h(u)N(t− u) du.

Thus,

PN = E[|N0(t)|2] =
∫ T

0

∫ T

0

h(u)E[N(t− u)N ∗(t− v)]h∗(v) dv

=

∫ T

0

∫ T

0

σ2δ(v − u)h(u)h∗(v) du dv = σ2

∫ T

0

|h(u)|2 du.

(b)

SNR =
|
∫ T

0 h(u)S(T − u) du|2

σ2
∫ T

0 |h(u)|2 du
.

Using the Cauchy-Schwartz inequality |〈X,Y 〉|2 ≤ |X|2|Y |2, we have

SNR ≤
∫ T

0 |S(T − u)|
2 du

∫ T

0 |h(u)|
2 du

σ2
∫ T

0 |h(u)|2 du

=
1

σ2

∫ T

0

|S(T − u)|2 du =
ES

σ2

where the equality holds when

h(u) = kS∗(T − u)

with some constant k. ES is the signal energy: ES =
∫ T

0 |S(t)|
2 dt.

(c) Define PN = E[|N0(T )|2]. Then

PN =

∫ T

0

∫ T

0

h(u)E[N(t− u)N ∗(t− v)]h∗(v) du dv

=

∫ T

0

∫ T

0

RN (T − u, T − v)h(u)h∗(v) du dv.

Hence

SNR =
|
∫ T

0 h(u)S(T − u) du|2∫ T

0

∫ T

0 RN (T − u, T − v)h(u)h∗(v) du dv

Find h(t) that maximizes SNR. To simplify the presentation we use the following vector
and matrix representation.

h(u) −→ h, S(t− u) −→ S, RN (T − u, T − v) −→ RN .
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Then

SNR =
|h>S|2

h>RNh∗
=
|(R1/2

N h)>(R
−1/2
N S)|2

(R1/2h)>(R
1/2
N h∗)

≤
‖R1/2

N h‖2‖R−1/2N S‖2

‖R1/2h‖2
= ‖R−1/2N S‖2

= S>R−1N S∗,

where the equality holds if and only if (by setting an arbitrary scaling constant to be one)

R
1/2
N h = (R

−1/2
N S)∗,

or

h = R−1N S∗, or RNh = S∗,

Thus, the matched filter h(u) must satisfy the integral equation∫ T

0

RN (t, u)h(u) du = S∗(T − t),

which is equivalent to the equation for Q(u) of (13.136), with h(t) = Q∗(T − t).
Note: The square root of RN that appeared in the derivation corresponds to

R
1/2
N −→

∞∑
k=1

√
λkvk(t)vk(s).

Similarly,

R
−1/2
N −→

∞∑
k=1

1√
λk
vk(t)vk(s).

13.18* Orthogonal expansion of Wiener process (need corrections).

(a)

σ2

∫ T

0

min(t, s)ψ(s) ds = λψ(t).

Dividing [0, T ] into [0, t] and (t, T ],

σ2

(∫ t

0

sψ(s) ds+ t

∫ T

t

ψ(s) ds

)
= λψ(t).

Differentiate both sides with respect to t:

σ2

(
tψ(t) +

∫ T

t

ψ(s) ds− tψ(t)
)

= λψ′(t).

Differentiate again

σ2 (ψ(t) + tψ′(t)− ψ(t)− ψ(t)− tψ′(t)) = λψ
′′
(t).
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Hence,

−σ2ψ(t) = λψ
′′
(t).

(b) If λ < 0, then

ψ
′′
(t)− a2ψ(t) = 0, where a2 =

σ2

−λ
.

Then the solutions of this differential equation are known to be

ψ(t) = C1e
at , ψ1(t), and ψ(t) = C2e

−at , ψ2(t).

If we insert ψ1(t) (by setting C1 = 1 to simplify the matter) into the integral equation, we
have

a2
∫ T

0

min(t, s)eas ds = −eat.

By splitting the integration interval into two parts,

a2
(∫ t

0

seas ds+ t

∫ T

t

eas ds

)
= −eat.

Then

LHS = a2

(∫ t

0

s

(
eas

a

)′
ds+ t

[
eas

a

]T
t

)

= a2

([
seas

a

]t
0

−
∫ t

0

eas

a
ds+

t(eaT − eat)
a

)

= a2
(
teat

a
− eat − 1

a2
+
teaT − teat

a

)
= ateat − eat + 1 + ateaT − ateat = −eat + ateaT − 1.

The LHS equals the RHS (−eat) only if eaTat− 1 = 0 for all t, which does not hold.
Hence ψ1(t) cannot be a solution for any real number a. Similarly ψ2(t) = e−at cannot be
a solution of the integral equation. Hence no solution exists.

(c) Let σ2

λ = ω2. Then the solutions of the differential equation (13.247) are

ψ(t) = C1e
iωt + C2e

−iωt.

Then substituting this into (13.246),

σ2

[∫ t

0

s
(
C1e

iωs + C2e
−iωs

)
ds+ t

∫ T

t

(
C1e

iωs + C2e
−iωs

)
ds

]
= λ

(
C1e

iωt + C2e
−iωt

)
.
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Dividing both sides by λ and performing the integration, we have

LHS = ω2C1

(
teiωt

iω
− eiωt − 1

(iω)2
+
teiωT + iωteiωt

iω

)
+ ω2C2

(
te−iωt

−iω
− e−iωt − 1

(iω)2
+
te−iωT − iωte−iωt

iω

)
= C1(−1− iωteiωT ) + C2(−1 + iωte−ωT )

= −(C1 + C2)− iωt(C1e
iωT − C2e

−ωT ).

This equals the RHS (C1e
iωt + C2e

−iωt), if and only if

C1 + C2 = 0, and eiωT + e−iωT = 2 cosωT = 0.

Hence,

ωT =
π

2
+ nπ =

(2n+ 1)π

2
.

Thus,

ωn =
(2n+ 2)π

2T
, n = 0,±1,±2, . . . .

Thus, the eigenvalues are

λn =
σ2

ω2
n

, n = 0,±1,±2, . . . .

The corresponding eigenfunctions are

vn(t) = C1e
iωnt − C1e

−iωnt = i2C1 sinωnt.

From the normalization requirement
∫ T

0 |vn(t)|
2 dt = 1, we find

vn(t) =

√
2

T
sinωnt.

(d) The K-L expansion coefficients are

Wn =

∫ T

0

ψn(t)W (t) dt =

√
2

T

∫ T

0

sinωntW (t) dt.

From the theory of K-L expansion, we know the set of ψn(t), n = 0,±1,±2, . . . are
orthogonal.

E[W 2
n ] =

2

T

∫ T

0

∫ T

0

sinωntωnsE[W (t)W (s)] dt ds

=
2σ2

T

∫ T

0

∫ T

0

min(t, s) sinωnt sinωns dt ds
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Now, we evaluate∫ T

0

min(t, s) sinωns ds =

∫ t

0

s sinωns ds+ t

∫ T

t

sinωns ds

=

∫ t

0

s

(
−cosωns

ωn

)′
ds+ t

∫ T

t

sinωns ds

= −
[
s cosωnt

ωn

]t
0

+

∫ t

0

cosωns

ωn
ds− t

[
cosωns

ωn

]T
t

= − t cosωnt

ωn
+

1

ω2
[sinωns]

t
0 + t

cosωnt

ωn

=
sinωnt

ω2
. (10)

Thus,

E[W 2
n ] =

2

T

∫ T

0

sin2 ωnt

ω2
n

dt =

∫ T

0

1− cos 2ωnt

2ω2
n

=
T

2ω2
n

=
4T 2σ2

(2n+ 1)2π2
.

Using the result of (10), we can directly show the orthogonality between Wn and Wm

(m 6= n), as follows:

E[WnWm] =
2

T

∫ T

0

∫ T

0

sinωntωmsE[W (t)W (s)] dt ds

=
2σ2

T

∫ T

0

sinωnt

(∫ T

0

min(t, s) sinωms ds

)
dt

=
2σ2

Tω2

∫ T

0

sinωnt sinωmt dt.

Since ∫ T

0

sinωnt sinωmt dt = 0, for m 6= n,

we have proved the orthogonality.
(e) Note

ω−n =
(−2n+ 1)π

2T
= − (2n− 1)π

2T
= −ωn−1.

Hence the set of {ωn;n ≥ 0} is complete. So

W (t) =

√
2

T

∞∑
n=−∞

Wn sinωnt =

√
2

T

( −1∑
n=−∞

Wn sinωnt+
∞∑

n=0

Wn sinωnt

)
.

The first term can be written as
−1∑

n=−∞
Wn sinωnt =

∞∑
m=1

W−m sinω−mt = −
∞∑

m=1

W−m sinωm−1t

= −
∞∑

n=0

W−n−1 sinωnt.
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Hence,

W (t) =

√
2

T

∞∑
n=0

(Wn −W−n−1) sinωnt ,
√

2

T

∞∑
n=0

Un sinωnt,

where,

Un = (Wn −W−n−1).

Hence

E[U2
n] = E[W 2

n ] + E[W 2
−n−1]

= 4

(
σT

(2n+ 1)π

)2

+ 4

(
σT

(−2n− 1)π

)2

= 8

[
σT

(2n+ 1)π

]2
.

13.2 PCA and SVD

13.20* Sum of squares of the difference.

(a) ∑
i

∑
j

|aij |2 =
∑
i

∑
j

|bicj |2 =
∑
i

|bi|2
∑
j

|cj |2 = ‖b‖2‖c‖2.

(b)

aij = b
(1)
i c

(1)
j + b

(2)
i c

(2)
j .

Thus

|aij |2 = (b
(1)
i c

(1)
j + b

(2)
i c

(2)
j )(b

(1)
i c

(1)
j + b

(2)
i c

(2)
j )∗ = |b(1)i |

2|c(1)j |
2 + |b(2)i |

2|c(2)j |
2,

because 〈c(1), c(2)〉 = 〈c(2), c(1)〉 = 0. Thus,
m∑
i=1

n∑
j=1

|aij |2 = ‖b(1)‖2‖c(1)‖2 + ‖b(2)‖2‖c(2)‖2.

(c) By generalizing the result of part (b), we have that if

A =

m∑
i=k+1

b(i)c(i)
>
,

Then

‖A‖2 =
m∑

i=k+1

‖b(i)‖2‖c(i)‖2.

Now let
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Let b(i) = ui and c(i) = χi, i = k + 1, . . . ,m. Then using ‖ui‖2 = 1, we have

‖X− X̂‖2 =
m∑

i=k+1

‖χi‖2 =
m∑

i=k+1

µi,

where we used (13.160) to find ‖χi‖2 = µi.

13.26* Mean square convergence of (13.196).
By computing the mean square difference between Xn and

∑k−1
j=0 a

jen−j , we have

E

Xn −
k−1∑
j=0

ajen−j

2 = E[(akXn−k)
2] = a2kE[X2

n−k].

Since the process is assumed as stationary, E[X2
n−k] is a constant, independent of k and since

|a| < 1, the RHS decreases to zero with geometric progression. Thus, we have (13.252).



14 Solutions for Chapter 14: Point
Processes, Renewal Processes
and Birth-Death Processes

14.1 Poisson Process

14.1* Alternative derivation of the Poisson process.

(a) Since the exponential distribution is memoryless, the interval X1 till the first event point
t1 is exponentially distributed whether or not t = 0 is an event point, and

Ft1(t) = FX(t) = 1− e−λt, t ≥ 0. (1)

(b) Since tn+1 = tn +Xn+1 and tn and Xn+1 are independent, the PDF of tn+1 is the
convolution of the PDFs of tn and Xn+1.

(c) Thus, by setting n = 1 in the above, we have

ft2(t) =

∫ t

0

λe−λ(t−u)λe−λu du = λ2te−λt, t ≥ 0. (2)

By repeating the above step, we find

ftn(t) =
(λ)ntn−1

(n− 1)!
e−λt, t ≥ 0, n = 1, 2, . . . . (3)

Substitution of this result into (14.69) yields

P [N(t) = n] =

∫ t

0

[
ftn(u)− ftn+1

(u)
]
du =

λn

n!

∫ t

0

e−λu(nun−1 − λun) du

=
(λt)n

n!
e−λt , P (n;λt), (4)

where the last expression was obtained by applying “integration by parts” to the first term
in the integral, i.e.,∫ t

0

nun−1e−λu du =

∫ t

0

(
dun

du

)
e−λu du = une−λu

∣∣t
0
+ λ

∫ t

0

une−λu du

= tne−λt + λ

∫ t

0

une−λu du.

Thus, we have shown that this renewal process N(t) has a Poisson distribution with mean
λt, if the lifetime distribution is the exponential distribution (14.99).

14.8* Uniformity and statistical independence of Poisson arrivals. TBD
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(a) We wish to prove that the joint PDF of U1, . . . , Un conditioned on {N(T ) = n} is given
by

fU1···Un
(u1, . . . , un|N(T ) = n) =

1

Tn
, (14.103)

where U1, . . . , Un are the unordered arrival times of a Poisson process in the interval (0, T ].
Let u1, . . . , un be distinct values in the interval (0, T ). Without loss of generality, assume
that 0 < u1 < u2 < · · · < un < T . Define intervals Ij ∈ (uj , uj + hj ], where hj > 0, j =
1, . . . , n, such that the intervals are disjoint and each Ij is contained in (0, T ]. Let En denote
the event that n arrivals fall in the intervals Ij , j = 1, . . . , n, with exactly one arrival in each
interval. The interval (0, T ] can be partitioned into 2n+ 1 intervals as follows:

(0, T ] = (0, u1] ∪ I1 ∪ (u1 + h1, u2] ∪ · · · ∪ In ∪ (un + hn, T ]. (5)

When the event En occurs, exactly one arrival occurs in each interval Ij , j = 1, . . . , n, with
probability λhe−λh, and no arrival occurs in each of the other subintervals in the partition
(5). Therefore,

P [En] = (e−λu1)(λh1e
−λh1)(e−λ(u2−u1−h1)) · · · (λhne−λhn)(e−λ(T−un−hn))

= λne−λT
n∏

j=1

hj . (6)

We can also write

P [En]
(a)
=
∑
σ

P [U1 ∈ Iσ(1), U2 ∈ Iσ(2), . . . , Un ∈ Iσ(n), N(T ) = n]

(b)
= n! P [U1 ∈ I1, U2 ∈ I2, . . . , Un ∈ In], (7)

where the summation on the right-hand side of (a) is over all permutations σ on the set
{1, . . . , n}. Step (b) follows because the n arrivals are unordered. From (6) and (7), we
obtain

P [U1 ∈ I1, . . . , Un ∈ In] =
λn

n!
e−λT

n∏
j=1

hj . (8)

Hence,

P [U1 ∈ I1, . . . , Un ∈ In|N(T ) = n]

=
P [U1 ∈ I1, . . . , Un ∈ In]

P [N(T ) = n]
=

λn

n! e
−λT ∏n

j=1 hj
(λT )n

n! e−λT
=

∏n
j=1 hj

Tn
. (9)

We remark that (9) holds for any ordering of the ui’s, although we assumed u1 < · · · < un
for convenience in obtaining (6). The joint density of the unordered arrivals, U1, . . . , Un,
conditioned on the event {N(T ) = n}, then follows from (cf. (4.92))

fU1···Un
(u1, . . . , un|N(t) = n) = lim

hj→0

j=1,...,n

P [U1 ∈ I1, . . . , Un ∈ In|N(T ) = n]∏n
j=1 hj

, (10)

which results in (14.103).
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(b) The result (14.103) suggests the following procedure to generate Poisson arrivals in an
interval of (0, T ]:
a. Draw the number of arrivals n from a Poisson distribution with parameter λT .
b. For i = 1, . . . , n, draw the value of the unordered arrival time Ui from a uniform dis-

tribution on (0, T ], independently of the others.

14.2 Birth-Death (BD) Process

14.13* Time-dependent solution for a certain BD process. When λ(n) = λ and µ(n) = nµ for n ≥ 0,
the differential-difference equations for the BD process become:

P ′n(t) = −(λ+ nµ)Pn(t) + λPn−1(t) + (n+ 1)µPn+1(t), n = 1, 2, · · · , (11)

P ′0(t) = λP0(t) + µP1(t). (12)

Multiply both sides of (11) and (12) by zn and sum from n = 0 to∞ to obtain:
∞∑

n=0

P ′n(t)z
n = −λ

∞∑
n=0

Pn(t)z
n − µ

∞∑
n=1

nPn(t)z
n

+ λ
∞∑

n=1

Pn−1(t)z
n + µ

∞∑
n=0

(n+ 1)Pn+1(t)z
n, (13)

which can be written as:
∂

∂t
G(z, t) = −λG(z, t)− µz ∂

∂z
G(z, t) + λzG(z, t) + µ

∂

∂z
G(z, t). (14)

Re-arranging terms we have the following partial differential equation in G(z, t):[
∂

∂t
+ µ(z − 1)

∂

∂z

]
G(z, t) = λ(z − 1)G(z, t). (15)

It remains to verify that the solution

G(z, t) = exp

{
λ

µ
(1− e−µt)(z − 1)

}
(16)

satisfies (15). Alternatively, we may obtain the form of the solution (16) as follows. Based on
(15), we suppose that G(z, t) has the form: G(z, t) = exp(f(z, t)). In this case, (16) reduces to
the following partial differential equation:[

∂

∂t
+ µ(z − 1)

∂

∂z

]
f(z, t) = λ(z − 1). (17)

Based on (17), we suppose that f(z, t) is separable as follows: f(z, t) = λ(z − 1)f(t). Then
(17) simplifies to:

f ′(t) + µf(t) = 1. (18)
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This is a first-order differential equation that can be solved by multiplying both sides by the
integrating factor eµt, resulting in:

d

dt
[eµtf(t)] = eµt. (19)

The solution of the above equation is:

f(t) =
1

µ
+Ke−µt,

where the constant K is determined from:

G(0, 0) = P0(0) = 1.

But G(0, 0) = 1 implies that f(0) = 0, which determines K as −1/µ. Thus,

f(t) =
1

µ

(
1− e−µt

)
,

and

G(z, t) = exp[λ(z − 1)f(t)].

14.3 Renewal Process

14.14* Derivation of (14.72).

1

n

n∑
i=1

Xi
a.s.−→ mX , (20)

as n→∞. Noting that

1

N(t)

N(t)∑
i=1

Xi =
tN(t)

N(t)
, (21)

we deduce from (20) that

N(t)

tN(t)

a.s.−→ 1

mX
, (22)

as t→∞. The left-hand side of (22) can be written as

N(t)

t

t

tN(t)
. (23)

Since t
tN (t)

a.s.−→ 1 as t→∞, we can establish from (22) and (23) that (14.72) holds.



15 Solutions for Chapter 15:
Discrete-Time Markov Chains

15.1 Markov Processes and Markov Chains

15.1* Homogeneous Markov chain.

(a) Straightforward.
(b)

p>(1) = p>(0)P = (1 0 0)

1/2 1/2 0

1/3 0 2/3

0 1/5 4/5

 = (1/2 1/2 0)

p>(2) = p>(1)P = (1/2 1/2 0)

 1/2 1/2 0

1/3 0 2/3

0 1/5 4/5

 = (5/12 1/4 1/3)

p>(3) = p>(2)P = (5/12 1/4 1/3)

1/2 1/2 0

1/3 0 2/3

0 1/5 4/5

 = (7/24 11/40 13/30)

(c)

g>(z) = p>(0)[I − P z]−1.

det|I − P z| = det

1− z
2 −

z
2 0

− z
3 1 −2

3z

0 − z
5 1− 4

5z


= 1− 13z

10
+
z2

10
+
z3

5
= (1− z)

(
1− 3z

10
− z2

5

)
, ∆(z).

Hence,

[I − P z]−1 =
1

∆(z)

1− 4z
5 −

2z2

15
z
2

(
1− 4z

5

)
z2

3
z
3

(
1− 4z

5

) (
1− z

2

) (
1− 4z

5

)
z2

3

(
1− z

2

)
z2

15
z
5

(
1− z

2

)
1− z

2 −
z2

6


Then by substituting p>(0) = (1 0 ) and the last expression into (15.25), we have

g>(z) = (g1(z), g2(z), g3(z)),

73
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where

g1(z) =
1

∆(z)

(
1− 4z

5
− 2z2

15

)
,

g2(z) =
z

2∆(z)

(
1− 4z

5

)
,

g3(z) =
z2

3∆(z)
.

Hence

lim
t→∞

g1(z) = lim
z→1

(1− z)g1(z) =
2

15
,

lim
t→∞

g2(z) =
1

5
,

lim
t→∞

g1(z) =
2

3

15.2 Computation of State Probabilities

15.4* Transitive property. If i↔ j, then there exists at least onem such that P (m)
ij > 0, which allows

i to reach j. Similarly, j ↔ k means there exists n such that P (n)
jk > 0. Then

P
(m+n)
ik ≥ P (m)

ij P
(n)
jk > 0,

hence, i→ k. A symmetrical argument shows that k → i. Thus, i↔ k. Thus, we have proven
the transitive property of the communication property↔.

15.5* Stationary distribution.

(a)

det[P +E − I] = det

 0 2 1
5
4

1
4

3
2

1 3
2

1
2

 =
27

8
.

and

[P +E − I]−1 =
8

27

− 17
8

1
2

11
4

7
8 −1 5

4
13
8 2 − 5

2

 .
Therefore,

π> =

(
1

9
,
4

9
,
4

9

)
.

(b)

det[P +E − I] = det

 1
2

3
2 1

4
3 0 5

3

1 6
5

4
5

 =
3

2
.
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and

[P +E − I]−1 =
2

3

−2 0 5
2

3
5 −

3
5

1
2

8
5

9
10 −2

 .
Therefore,

π> =

(
2

15
,
1

5
,
2

3

)
.



16 Solutions for Chapter 16:
Semi-Markov Processes and
Continuous-Time Markov Chains

16.1 Semi-Markov Process

16.2* Conditional independence of sojourn times.
Using a basic property of conditional probability (see (2.59) in Section 2.4.1), we have

P [τ1 ≤ u1, τ2 ≤ u2, . . . , τn ≤ un|X0, X1, . . .]

= P [τ1 ≤ u1|τ2 ≤ u2, . . . , τn ≤ un, X0, X1, . . .]

· P [τ2 ≤ u2|τ3 ≤ u2, . . . , τn ≤ un, X0, X1, . . .]

· P [τ3 ≤ u3|τ4 ≤ u4, . . . , τn ≤ un, X0, X1, . . .]

· · ·
· P [τn ≤ un|X0, X1, . . .]. (1)

Since τj depends only on Xj−1 and Xj , we have for 1 ≤ j ≤ n− 1:

P [τj ≤ uj |τj+1 ≤ uj+1, . . . , τn ≤ un, X0, X1, . . .]

= P [τj ≤ uj |Xj−1, Xj ] = FXj−1Xj
(uj). (2)

Applying (2) in (1), we obtain the desired result

P [τ1 ≤ u1,τ2 ≤ u2, . . . , τn ≤ un|X0, X1, . . .]

= FX0X1
(u1)FX1X2

(u2) · · ·FXn−1Xn
(un).

16.3* Semi-Markovian kernel.
Suppose we are given the semi-Markovian kernel Q(t) = [Qij(t)], i, j ∈ S . We can obtain P =

[Pij ] as follows:

Pij = P [Xn+1 = j|Xn = i]

= lim
t→∞

P [Xn+1 = j, tn+1 − tn ≤ t|Xn = i] = lim
t→∞

Qij(t).
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Then we can obtain F (t) = Fij(t) as follows:

Fij(t) = P [tn+1 − t ≤ t|Xn = i,Xn+1 = j]

=
P [Xn+1, tn+1 − tn ≤ t|Xn = i]

P [Xn+1 = j|Xn = i]

=
Qij(t)

Pij
(3)

=
Qij(t)

limt→∞Qij(t)
.

Conversely, given P and F (t), the semi-Markovian kernel can be obtained from (3) as follows:

Qij(t) = Fij(t)Pij . (4)

16.2 Continuous-time Markov Chain (CTMC)

16.5* Markovian property of an SMP.
We will show that a CTMC X(t) is equivalent to an SMP with sojourn time distributions Fij(t)

given by

Fij(t) = 1− e−νit, t ≥ 0, i, j ∈ S. (16.17)

For simplicity, assume that none of the states of X(t) is an absorbing state. Suppose that the
CTMC X(t) enters state i at time 0. Let Si denote the sojourn time of X(t) in state i starting at
time 0 before it makes a jump to another state j 6= i. For s, t ≥ 0, we have

P [Si > s+ t | Si > s] = P [X(τ) = i; 0 ≤ τ ≤ s+ t | X(τ) = i; 0 ≤ τ ≤ s]
= P [X(τ) = i; s ≤ τ ≤ s+ t | X(τ) = i; 0 ≤ τ ≤ s]
= P [X(τ) = i; s ≤ τ ≤ s+ t | X(s) = i] (5)

= P [X(τ) = i, 0 ≤ τ ≤ t | X(0) = i] (6)

= P [Si > t], (7)

where (5) is due to the Markov property (see Definition 15.1) and (6) is due to the assumed
stationarity (or time-homogeneity) of the process X(t). This implies that the random variable
Si is memoryless and must then be an exponential random variable1, say with rate νi. In other
words, the sojourn time distributions of X(t) are given by (16.17).

1 Let g(t) = P [Si > t]. Then (7) implies that g(t+ s) = g(t)g(s) for all s, t ≥ 0. It is well-known that the unique solution
to this functional equation has the form g(t) = eαt for some constant α.
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Let t0 = 0 and let t1, t2, . . . denote the jump times of X(t). It remains to show that the process
{Xn} defined by X(tn), n = 0, 1, 2, . . . is a DTMC. For n ≥ 1, we have

P [Xn = j | X0, X1, . . . , Xn−1]

= P [X(tn) = j | X(t0), X(tn), . . . , X(tn−1)] (8)

= P [X(tn) = j | X(tn−1)]

= P [Xn = j | Xn−1] = PXn−1,i. (9)

In the above derivation, (8) formally resembles the Markov property given in Definition 15.1.
A key difference, however, is that the times t1, t2, . . . are random variables, not constants.
Nevertheless, (8) does in fact hold in the case of a CTMC and is called the strong Markov
property. The strong Markov property holds when t1, t2, . . . are stopping times for X(t). 2

16.6* CTMC as an SMP.
LetX(t) be a CTMC characterized by an infinitesimal generator matrix Q = [Qij ]. As shown in
Problem 16.5,X(t) is equivalent to an SMP with sojourn time distributions given by (16.17). Let
{Xn} denote the embedded Markov chain (EMC) of X(t) (see (16.2)) and let P = [Pij ] denote
its transition probability matrix (TPM).
Suppose that the CTMC X(t) enters state i at time 0. We shall first assume that state i is not
an absorbing state. In this case, Pii = 0. The CTMC X(t) remains in state i for a sojourn time
Si and then transitions to another state j 6= i. As shown in Problem 16.5, Si is exponentially
distributed with parameter νi > 0. Therefore, P [Si < h] = 1− e−νih, h ≥ 0. For sufficiently
small h,

P [Si < h] = 1− Pii(h).

Hence,

lim
h→0

P [Si < h]

h
= lim

h→

1− Pii(h)

h
= −Qii, (10)

Since the left-hand side of (10) is given by νi, we have νi = −Qii. The transition probability
Pij = P [X(Si) = j | X(0) = i] can be expressed as

Pij = lim
h→0

P [X(Si + h) = j | X(t) = i, 0 ≤ t < Si;X(Si + h) 6= i]

= lim
h→0

P [X(Si + h) = j | X(Si−) = i]

P [X(Si + h) 6= i | X(Si−) = i]
(11)

= lim
h→0

Pij(h)

1− Pii(h)
= lim

h→0

Pij(h)
h

1−Pii(h)
h

=
Qij

−Qii
, (12)

2 A random variable T taking values in [0,+∞] is called a stopping time for a process X(t) if for every t, 0 ≤ t <∞, the
occurrence or non-occurrence of the event {T ≤ t} is completely determined from {X(u), u ≤ t}. For a stopping time
T and a CTMC X(t), the following strong Markov property holds:

P [X(T + s) = j | X(i), u ≤ T ] = P [X(s) = j | X(0)] = PX(0),j(s).

For further details, the reader is referred to, e.g., Cinlar [57], Section 8.1.
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where we have applied the strong Markov property to obtain (11) and (16.23) and (16.24) to
obtain the last equality in (12). If state i is absorbing, νi = Qii = 0 and Pii = 1.
In summary, the CTMC X(t) with generator Q can be characterized as an SMP with sojourn
time distributions

Fij = 1− eQiit, t ≥ 0, i, j ∈ S, (13)

and transition probabilities given by

Pij =

{
Qij

−Qii
, if i is not absorbing

δij , if i is absorbing.
(14)

The SMP representation of a CTMC provides a convenient approach to simulate a sample path
of a CTMC given an initial state X(0) = x0. If state x0 is not an absorbing state (Qx0x0

6= 0),
the dwell time τ1 in state i as an exponentially distributed random variable with parameter
νx0

= −Qx0x0
. The next state x1 is then determined according to the the probability distri-

bution {Px0j}, j ∈ S , given by (23). In case x0 is an absorbing state, the CTMC remains
forever in this state, so dwell time τ1 = +∞ and the procedure terminates. The procedure is
repeated, if necessary, from state x1 to produce a dwell time τ2, etc. The resulting sequence
{(x0, τ1), (x1, τ2), . . .} specifies the sample path of the CTMC.

Alternative solution:

From Exercise 16.3, the semi-Markovian kernel of an SMP can be written as

Qij(t) = P [X1 = j, τ1 ≤ t|X0 = i] = Fij(t)Pij = (1− e−νit)Pij , (15)

where we applied (16.17) to obtain the last equality.
The transition probability matrix function (TPMF) for a CTMCX(t) is given by P (t) = [Pij(t)]

where (cf. (16.18))

Pij(t) = P [X(t) = j|X(0) = i] = P [X(t) = j|X0 = i], i, j ∈ S, 0 ≤ t <∞. (16)

We shall show that the transition probability function Pij(t) can be related to the semi-Markovian
kernel Qij(t) as follows:

Pij(t) = δij

[
1−

∑
k∈S

Qik(t)

]
+
∑
k∈S

∫ t

0

Pkj(t− s) dQik(s), (17)

where δij = 0 is the Kronecker delta. This equation can be interpreted as follows: First suppose
that i 6= j. Given that X(0) = X0 = i at time t0 = 0, in order for the event {X(t) = j} to hap-
pen, X(t) takes its first jump from state i to some state k at a time s, 0 < s ≤ t and then given
that X(s) = k, X(t) ends up in state j at time t. Now if i = j, there is an additional possibil-
ity that X(t) does not take its first jump until after time t. Equation (17) can be derived more
formally as follows:

Pij(t) = P [X(t) = j, T1 > t | X0 = i] + P [X(t) = j, T1 ≤ t | X0 = i]. (18)
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For the first term on the right, we have

P [X(t) = j, T1 > t | X0 = i]

= P [T1 > t | X0 = i] · P [X(t) = j | T1 > t,X0 = i]

=

[
1−

∑
k∈S

Qik(t)

]
· δij . (19)

For the second term, we have

P [X(t) = j, T1 ≤ t | X0 = i]

= E[P [X(t) = j, T1 ≤ t | X0 = i,X1, T1] | X0 = i]

= E[1{T1≤t} · P [X(t) = j | X1, T1, X0 = i] | X0 = i]

= E[1{T1≤t} · P [X(t− T1) = j | X1, X0 = i] | X0 = i]

= E[1{T1≤t}PX1,j(t− T1) | X0 = i]

=
∑
k∈S

∫ t

0

Pkj(t− s) dQik(s). (20)

Substituting (19) and (20) into (18), we obtain (17).
Applying (16.23),

Qij =
dPij

dt

∣∣∣
t=0

= −δij
∑
k∈S

Q′ik(0) +
∑
k∈S

Pkj(0)Q
′
ik(0)

= −δij
∑
k∈S

νiPik +
∑
k∈S

δkjνiPik.

For i 6= j, we have

Qij = νiPij , (21)

whereas

Qii = −νi
∑
k 6=i

Pik. (22)

If i is an absorbing state, then Pii = 1 and from (21) and (22) we have Qij = 0 for all j ∈ S . In
this case, νi = 0. If i is not an absorbing state, then Pii = 0 and from (22) we have Qii = −νi.
In this case, νi > 0 and in particular, we have

νi = −Qii, Pij =
Qij

νi
=

Qij

−Qii
. (23)

16.10* Balance equations.
From (16.42), we have ∑

j 6=i

πjQji + πiQii = 0, for all i ∈ S.
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From (16.24)

Qii = −
∑
j 6=i

Qij .

By substituting this into the above equation, we arrive at (16.43).

16.3 Reversible Markov chains

16.12* Converse of reversed balance equation for DTMC. TBD
We have an ergodic DTMC {Xn} with TPM P . Let P̃ be a TPM and π = [πi], i ∈ S be a
probability distribution, such that the reversed balance equations hold:

πiP̃ij = πjPji, i, j ∈ S. (16.57)

Summing both sides of (16.57) over j ∈ S and using the fact that each row of P̃ must sum to
one, we have

πi =
∑
j∈S

πjPji,

i.e., π> = π>P . Since {Xn} is ergodic, π is the unique stationary distribution of {Xn}. From
(16.60), we have

P [X̃n = x0 | X̃n−1 = x1] =
πx0

Px0x1

πx1

Applying (16.57) to the RHS, we find that P [X̃n = x0 | X̃n−1 = x1] = P̃x1x0
. Hence, P̃ is the

TPM of the reversed process {X̃n}. To show that π is the stationary distribution of {X̃n}, we
sum both sides of (16.57) over i ∈ S , which leads to the conclusion π> = π>P̃ . Therefore, π
is the unique stationary distribution of {X̃n}.

16.14* (a) The LHS of (16.85) can be written as

LHS =
P [X̃(tm) = x0, X̃(tm−1) = x1, X̃(tm−2) = x2, . . . , X̃(t0) = xm]

P [X̃(tm−1) = x1, X̃(tm−2) = x2, . . . , X̃(t0) = xm]

=
P [X(−tm) = x0, X(−tm−1) = x1, X(−tm−2) = x2, . . . , X(−t0) = xm]

P [X(−tm−1) = x1, X(−tm−2) = x2, . . . , X(−t0) = xm]

=
πx0

Px0x1
(tm − tm−1)Px1x2

(tm−1 − tm−2) · · ·Pxm−1xm
(t1 − 10)

πx1
Px1x2

(tm−1 − tm−2) · · ·Pxm−1xm
(t1 − 10)

=
πx0

Px0x1
(tm − tm−1)
πx1

, (24)

which is the RHS of (16.85). Since the RHS of (16.85) does not depend on x2, x2, . . . , xm,
the second equality in (16.85) holds. Let P̃ (t) denote the transition probability functions of
{X(−t)}. Then the second equality in (16.85) implies (16.86):

P̃ij(t) =
πjPji(t)

πi
, i, j ∈ S. (16.86)
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(b) Differentiating both sides of (16.86) by t, we have

dP̃ij(t)

dt
=
πj
πi

dPji(t)

dt
, i, j ∈ S.

Setting t = 0 on both sides and re-arranging terms, we obtain the reversed balance equations
(16.64) for the CTMC:

πiQ̃ij = πjQij , i, j ∈ S. (16.64)

16.16* Let {X(t)} be an ergodic CTMC with generator Q and let {X̃(t)} be its reversed process with
generator Q̃. The CTMC {X(t)} is reversible if and only if

Qij = Q̃ij , i, j ∈ S. (25)

Applying (25) in the reversed balance equations (16.64), leads to the conclusion that {X(t)} is
reversible if and only if

πiQij = πjQji, i, j ∈ S. (16.65)

16.4 An application: phylogenetic tree and its Markov chain
representation

16.21* (a) It is easy to verify that the (i, j) element of the matrix ΠQ is given by

[ΠQ]ij = πiQij , i, j ∈ S, (26)

and that the (i, j) element of the matrix (ΠQ)> is given by

[(ΠQ)>]ij = πjQji, i, j ∈ S. (27)

It is then clear that the detailed balance equations (16.73) hold if and only if

[ΠQ]ij = [(ΠQ)>]ij ,

i.e., if and only if ΠQ is a symmetric matrix.
(b) Given a DTMC with TPM P and stationary probability vector π, we again define the
matrix Π = diag[πi, i ∈ S]. Next, we verify that the (i, j) element of the matrix ΠP is given
by

[ΠP ]ij = πiPij , i, j ∈ S, (28)

and that the (i, j) element of the matrix (ΠP )> is given by

[(ΠP )>]ij = πjPji, i, j ∈ S. (29)

It is then clear that the detailed balance equations (16.63) hold if and only if

[ΠP ]ij = [(ΠP )>]ij ,

i.e., if and only if ΠP is a symmetric matrix.
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(c) Let P (τ) = [Pij(τ)], i, j ∈ S , denote the matrix of transition probability functions of the
given CTMC. By an argument similar to that given in parts (a) and (b), it suffices to show that
the matrix ΠP (τ) is symmetric for any τ > 0. We have that P (τ) = eQτ . Hence, it suffices
to show that

ΠeQτ = [ΠeQτ ]> = eQ
>τΠ. (30)

By part (a), the CTMC is reversible if and only if

ΠQ = Q>Π. (31)

Now suppose that

ΠQn = (Q>)nΠ (32)

for n ≥ 1. Then

ΠQn+1 = (ΠQn)Q = (Q>)nΠQ

= (Q>)nQ>Π = (Q>)n+1Π.

By the induction principle, (32) holds for all n ≥ 1. Now we have

ΠeQτ = Π

∞∑
k=0

(Qτ)k

k!
=

∞∑
k=0

ΠQkτk

k!

=
∞∑

k=0

(Q>)kτkΠ

k!
= eQ

>τΠ,

which establishes (30).
16.23* (a) Applying the given values into (16.77), we have

Q =


−0.9 0.2 0.2 0.5

0.1 −0.8 0.2 0.5

0.1 0.2 −0.8 0.5

0.1 0.2 0.2 −0.5

 .
Using (16.72) with ρ(e) = 1 and τ(e) = 1, we compute P (e) with four decimal places of
precision:

P (e) = eQ

=


0.4311 0.1264 0.1264 0.3161

0.0632 0.4943 0.1264 0.3161

0.0632 0.1264 0.4943 0.3161

0.0632 0.1264 0.1264 0.6839

 .
(b) We first obtain the stationary distribution π, which is the unique solution to

π>Q = 0, π>1 = 1.
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Let E denote the matrix of all ones. Then stationary distribution can be computed as follows
(cf. (15.107)):

π> = 1>(Q+E)−1 = [0.1, 0.2, 0.2, 0.5].

Let Π = diag{0.1, 0.2, 0.2, 0.5}. Applying (16.75), the mean substitutions that occur on an
edge e ∈ E is given by

κ(e) = Tr{ΠQ} = 0.66.

(c) Let Xv denote the random variable associated with node v ∈ {0, 1, 2, 3, 4} in the phylo-
genetic tree of Figure 16.4. Let X = (X0, X1, X2, X3, X4) denote the corresponding vector
and let x = (x0, x1, x2, x3, x4). The joint distribution of X is given by

P [X = x] = P [X0 = x0]P [X1 = x1 | X0 = 0]P [X2 = x2 | X1 = x1]

P [X3 = x3 | X1 = x1]P [X4 = x4 | X0 = x0]

= πx0
Px0x1

Px1x2
Px1x3

Px0x4
,

where Pij is the (i, j) element of the TPM P (e) given in part (a). The likelihood of the
character χ3 is given by

Pχ3
= P [X2 = C, X3 = T, X4 = A]

=
∑
x0,x1

P [X = (x0, x1,C,T,A)]

=
∑
x0

πx0
Px0A

∑
x1

Px1CPx1TPx0x1

=
∑
x0

πx0
Px0Afx0

, (33)

where we define

fx0
=
∑
x1

Px1CPx1TPx0x1
.

We compute to four decimal places,

fA = 0.0694, fC = 0.1121, fG = 0.0694, fT = 0.0865. (34)

Substituting into (33), we obtain Pχ3
= 0.0080.



17 Solutions for Chapter 17:
Random Walk, Brownian Motion
and Diffusion Process

17.1 Random Walk

17.2* Properties of the simple random walk.
(i) Spatial homogeneity: Both LHS and RHS of (17.3)equal P [

∑
i=1n Si = k − a], because

Xn −X0 = k − a = (k + b)− (k + a).
(ii) Temporal homogeneity: LHS of (17.4) is equal to P [

∑n
i=1 Si] and the RHS is equal to

P
[∑m+n

i=m+1 Si

]
. Both involve the sum of n i.i.d. RVs Sis, their probability distributions must

be identical.
(iii) Independent increment: We can write Xni

−Xmi
=
∑

j∈(mi,ni]
Sj . If the set of intervals

(mi, ni]’s are mutually disjoint, then all the Sj terms contributing to the increments Xni
−

Xmi
’s are mutually independent.

(iv) If we know Xn, then the probability distribution of Xn+m depends only on the steps
Sn+1, Sn+2, . . . , Sn+m, and the values of X0, X1, . . . , Xn−1 are not relevant.

17.2 Brownian Motion or Wiener Process

17.10* Derivation of (17.104) and (17.106).

(a) Let X be a RV with mean µ and variance σ2 and the PDF f(x). Then for any function
g(x) that is continuous and at least twice differentiable at x = µ, we can expand g(x) using
the Taylor series expansion:

g(x) = g(µ) + g′(µ)(x− µ) + g′′(µ)
(x− µ)2

2
+ o((x− µ)2).

Then

E[g(X)] =

∫
g(x)f(x) dx = g(µ) + 0 + g′′(µ)

σ2

2
+ o(σ2),

where the term o(σ2) approaches zero faster than σ2 as σ → 0. Thus, if σ2 becomes very
small, we can ignore the last term. Recall the following properties of Dirac’s delta function∫ ∞

−∞
δ(x− a)g(x) dx = g(a), (1)∫ ∞

−∞
δ(k)(x− a)g(x) dx = (−1)kg(k)(a), (2)
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where (2) can be derived from (1) by applying integration by parts k times. Thus, for very
small σ2, we can write

f(x) = δ(x− µ) + σ2

2
δ(2)(x− µ) + o(σ2).

Note: If the support of f(x) is [µ− ε, µ+ ε] with very small ε, the above condition σ2 ≈ 0 is
satisfied. This condition of finite support is sufficient, but not necessary for the above formula
to hold. If the distribution is Gaussian, the condition of finite support is, strictly speaking, not
warranted.
(b) When a random process X(t) is time-continuous as in a diffusion process, the value of
X(t+ h) = x cannot be much different from X(t) = x′, because x→ x′ as h→ 0. Since we
are given the drift rate and variance rate, we can write the conditional mean and conditional
variance of X(t+ h) as follows:

E[X(t+ h)|X(t) = x′] = x′ + E[X(t+ h)−X(t)|X(t) = x′] = x′ = β(x′, t)h+ o(h),

and

Var[X(t+ h)|X(t) = x′] = E[(X(t+ h)−X(t))2|X(t) = x′] = α(x′, t) + o(h).

Clearly as h→ 0, the conditional PDF f(x, th|x′, t) satisfies the property of f(x) having very
small σ2. By identifying µ as x′ + β(x′, t)h and σ2 as α(x′, t)h, we can write the conditional
(or transitional) PDF as

f(x, t+ h|x′, t) = δ(x− x′ − β(x′, t)h) + δ(2)(x− x′ − β(x′, t)h)α(x
′, t)h

2
+ o(h).

17.11* Derivation of the forward diffusion equation. We start with the Chapman-Kolmogorov
equation:

f(x, t+ h|x0, t0) =
∫
f(x, t+ h|x′, t)f(x′, t|x0, t0) dx′. (3)

Then

LHS = f(x, t|x0, t0) +
∂f(x, t|x0, t0)

∂t
+ o(h).

The conditional PDF f(x, t+ h||x′, t) is a Gaussian PDF with mean µ(t+ h|x′, t) = x′ +

β(x′, t)h and variance σ2(t+ h|x′, t), using the argument similar to the one in the derivation
of the backward equation. Thus, for sufficiently small h, we can use the same approximation as
(17.104):

f(y, t+ h|x′, t) = δ(x− x′ − β(x′, t)h) + δ(2)(x− x′ − β(x′, t)h)α(x
′, t)h

2
+ o(h). (4)

Then the RHS of (3) is

RHS =

∫ [
δ(x− x′ − β(x′, t)h) + δ(2)(x− x′ − β(x′, t)h)α(x

′, t)h

2

]
f(x′, t|x0, t0) dx′

, I1 + I2 + o(h),
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where

I1 =

∫
δ(x− x′ − β(x′, t)h)f(x′, t|x0, t0)dx′

=

∫
[δ(x− x′)− hδ(1)(x− x′)β(x′, t)]f(x′, t|x0, t0) dx′ + o(h)

= f(x, t|x0, t0)− h
∫
δ(1)(x− x′)[β(x′, t)f(x′, t|x0, t0)] dx′ + o(h)

= f(x, t|x0, t0)− h
∂(β(x, t)f(x, t|x0, t0))

∂x
+ o(h), (5)

where we used the properties

δ(1)(x− x′) = −δ(1)(x′ − x), and

∫
δ(1)(x′ − x)(x′) dx′ = −f ′(x).

Similarly

I2 =
h

2

∫
δ(2)(x− x′ − β(x′, t)h)α(x′, t)f(x′, t|x0, t0) dx′

=
h

2

∫
[δ(2)(x− x′)α(x′, t) + o(h)]f(x′, t|x0, t0) dx′

=
h

2

∂2(α(x, t)f(f, t|x0, t0))
∂x2

+ o(h).

From these Kolmogorov’s forward equation readily follows.

Note: The term I1 can be alternatively calculated without explicit use of δ(1)(x). Rewrite the
argument of the delta function in the RHS of the first line of (5):

x− x′ − β(x′, t)h = x− x′ − h
[
β(x, t)− (x− x′)∂β(x, t)

∂x

]
+ o(h)

= (x− x′)B(x, t, h)− hβ(x, t) + o(h),

where

B(x, t, h) = 1 + h
∂β(x, t)

∂x
,

Then

I1 =

∫
δ(B(x, t, h)(x− x′)− hβ(x, t) + o(h)f(x′, t|x0, t0) dx′

=

∫
δ

(
B(x, t, h)(x− x′)− hβ(x, t)

B(x, t, h)

)
f(x′, t|x0, t0) dx′ + o(h).
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Then, by identifying C = B(x, t, h) and c = β(x, t)h, we have

I1 =
f
(
x− β(x,t)h+o(h)

B(x,t,h) , t |x0, t0
)

B(x, t, h)
+ o(h)

= f(x, t|x0, t0)
(
1− h∂β(x, t)

∂x

)
− ∂f(x, t|x0, t0)

∂x

β(x, t)h+ o(h)

B2(x, t, h)
+ o(h)

= f(x, t|x0, t0)− hf(x, t|x0, t0)
∂β(x, t)

∂x
− hβ(x, t)∂f(x, t|x0, t0)

∂x
+ o(h)

= f(x, t|x0, t0)− h
∂(β(x, t)f(x, t|x0, t0))

∂x
+ o(h),

where we used

B−1(x, t, h) = 1− h∂β(x, t)
∂x

+ o(h), and B−2(x, t, h) = 1 + o(h).

The last expression agrees with the result of (5) obtained using the property of δ(1)(x).

17.3 Stochastic Differential Equations and Itô Process

17.16* Conditional mean and variance of the geometric Brownian motion.
We can write

E[Y (t)|Y (u), 0 ≤ u ≤ s] = E
[
eX(t)|X(u), 0 ≤ u ≤ s

]
= E

[
eX(s)+X(t)−X(s)|X(u), 0 ≤ u ≤ s

]
= eX(s)E

[
eX(t)−X(s)|X(u), 0 ≤ u ≤ s

]
(independent increments)

= Y (s)E
[
eX(t−s)−X(0)

]
(temporal homogeneity)

= Y (s)E
[
eX(t−s)

]
(because X(0) = 0)

Recall the moment generating function (MGF) of a normal RV X:

MX(ξ) = E[eξX ] = exp

{
E[X]ξ +

Var[X]ξ2

2

}
.

Thus,

E
[
eX(t−s)

]
=MX(t−s)(1) = exp

{
β(t− s) + α(t− s)

2

}
= e(β+

α
2 )(t−s).

Therefore,

E[Y (t)|Y (u), 0 ≤ u ≤ s] = Y (s)e(β+
α
2 )(t−s).
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Similarly,

E[Y (t)2|Y (u), 0 ≤ u ≤ s] = E
[
e2X(t)|X(u), 0 ≤ u ≤ s

]
= E

[
e2X(s)+2(X(t)−X(s))|X(u), 0 ≤ u ≤ s

]
= e2X(s)E

[
e2(X(t)−X(s))|X(u), 0 ≤ u ≤ s

]
= Y (s)2E

[
e2(X(t−s)−X(0))

]
= Y (s)2E

[
e2X(t−s)

]
= Y (s)2e2(β+α)(t−s)

Thus, the conditional variance is

Var[Y (t)|Y (u), 0 ≤ u ≤ s] = E[Y (t)2|Y (u), 0 ≤ u ≤ s]− (E[Y (t)|Y (u), 0 ≤ u ≤ s])2

= Y (s)2e2(β+α)(t−s) −
(
Y (s)e(β+

α
2 )(t−s)

)2
= Y (s)2e(2β+α)(t−s)

(
eα(t−s) − 1

)
.

17.19* European call option.

(a) The call option price is $13.50.
(b) The call option price is $17.03.
(c) The call option price is $19.99. A MATLAB program is as follows:

function option
%
% Example in Chapter 16: European call option
%
Yt=100; C=90; Tt=0.5; sigma=0.2; r=0.1;
%
alpha=sigmaˆ2; t1=log(Yt/C); t2=sqrt(alpha*Tt); t3=(r+alpha/2)*Tt;
t4=(r-alpha/2)*Tt; u1=(t1+t3)/t2; u2=(t1+t4)/t2; Phi1=normcdf(u1);
Phi2=normcdf(u2); v=Yt*Phi1-C*exp(-r*Tt)*Phi2;
fprintf(’Current price= %5.2f \n’, Yt);
fprintf(’Exercise price= %5.2f \n’, C);
fprintf(’Expiration date (in month)= %5.2f \n’, Tt*12);
fprintf(’Volatility= %5.2f \n’, sqrt(alpha));
fprintf(’Risk-free interest rate= %5.2f \n’, r);
fprintf(’The value of the call option= %5.2f \n’,v);



18 Solutions for Chapter 18:
Statistical Estimation and
Decision Theory

18.1 Parameter Estimation

18.4* Properties of the score function and the observed Fisher information matrix.

(a) We assume that the regularity conditions for the validity of the following transformations
are satisfied. Taking the gradient with respect to θ of E[T>(X,θ)] =

∫
x f(x,θ)T

>(x,θ)dx

and using the formula for the gradient of a product (see Supplementary Materials), we obtain

∇θE[T>(X,θ)] =

∫
x

f(x,θ)(∇θT
>(x,θ))dx+

∫
x

(∇θf(x,θ))T
>(x,θ)dx (1)

But, according to definition of the score,

s(x,θ) = ∇θ log f(x,θ) =
∇θf(x,θ)

f(x,θ)

so that the previous equation can be written as

∇θE[T>(X,θ)] = E[∇θT
>(X,θ)] + E[s(X,θ)T>(X,θ)] (2)

which is equivalent to 18.111.
(b) Equation (18.111) with T = 1 yields

E[s(X;θ)] = 0.

Alternatively, we can derive the formula directly, by expressing the expectation in terms of the
PDF. Again we show the single parameter case:

LHS =

∫
log fX(x; θ)

∂θ
fX(x; θ) dx =

∫
∂fX(x; θ)

∂θ
dx =

∂

∂θ

∫
fX(x; θ) dx =

∂1

∂θ
= 0.

(c) Substitute T (X;θ) = s(X;θ) in (18.111). Since E[s(X;θ)] = 0 and ∇θs
>(x;θ) =

J(x;θ) according to (18.32), (18.111) becomes (18.113).
When θ is a one-dimensional parameter, the LHS of (18.113) is E[s(x; θ)2] =

E

[(
log f(x;θ)

∂θ

)2]
, and the RHS is I(θ) = −E

[
∂2 logLX(θ)

∂θ2

]
.

(d) Denote as T (x,θ) = θ̂ − θ. Since θ̂ is unbiased, E[T>(x,θ)] = 0. Also∇θT
>(x,θ) =

−∇θθ
> = −I . Thus, equation (18.111) can be written as

E[s(X,θ)(θ̂ − θ)>] = Cov[s(X,θ), θ̂] = I.
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Since

Cov[θ̂, s(X,θ)] = (Cov[s(X,θ), θ̂])>

we conclude that

Cov[s(X,θ), θ̂] = Cov[θ̂, s(X,θ)] = I. (3)

An alternative proof: Since ∇θ log fX(x;θ) has zero mean, it suffices to show∫
fX(x;θ)∇θ log fX(x;θ)

(
θ̂(x)− θ

)
dx = 0.

The unbiasedness of θ̂(X) gives,∫
fX(x;θ)(θ̂(x)− θ) dx = 0.

By applying ∇θ to the above, and using the formula ∇θ log fX(x;θ) = ∇θfX(x;θ)
fX(x;θ) , the

required result readily follows.

18.7* The CRLB and a sufficient statistic.
Apply the inverse operation of the operator∇θ to both sides in (18.43), leading to

log fX(x;θ) =

∫
(θ̂(x)− θ)>I(θ) dθ + C(x), (4)

where C(x) is an arbitrary function of x that must satisfy the normalization condition for
Lx(x;θ)). The integration notation

∫
a>(θ)dθ should not be confused as the regular multi-

ple integrations of many variables. For a vector function a(θ) = (a1(θ), a2(θ), . . . , aM (θ)), we
define ∫

a> dθ ,
M∑
i=1

∫
ai(θ) dθi. (5)

Thus,

Lx(x;θ) = h(x) exp

(∫
(θ̂(x)− θ)>I(θ) dθ

)
= exp

(
η(θ)>θ̂(x)−A(θ)

)
, (6)

where h(x) = expC(x), and

η(θ) =

∫
I(θ) dθ, and A(θ) =

∫
θ>I(θ) dθ. (7)

Hence, it is apparent from Theorem 18.1 that an efficient estimate θ̂(x) is a sufficient statistic for
estimating θ.

18.2 Hypothesis Testing and Statistical Decision



19 Solutions for Chapter 19:
Estimation Algorithms

19.1 Classical Numerical Methods of Estimation

19.1* Nonnegativity of KLD.
We can extend any of the methods used in proving Shannon’s lemma (or Gibbs’ inequality)
discussed in Section 10.1.3.

(a) If we use the inequality lnx ≤ x− 1, then

log
g(x)

f(x)
≤ (log e)

(
g(x)

f(x)
− 1

)
.

Then

D(‖g) =
∫
f(x) log

f(x)

g(x)
dx = −

∫
f(x) log

g(x)

f(x)
dx

≥ − log e

∫
f(x)

(
g(x)

f(x)
− 1

)
dx

= − log e

[∫
g(x) dx−

∫
f(x) dx

]
= − log e(1− 1) = 0.

(b) Use of Jensen’s inequality.
Since log x is a concave function, we have from Jensen’s inequality

Ef

[
log

g(X)

f(X)

]
≤ logEf

[
g(X)

f(X)

]
= log

∫
f(x)

g(x)

f(x)
dx = 0, (1)

where equality holds when g(x)
f(x) = constant for all i. This constant must be unity, since∫

f(x) dx =
∫
g(x) dx = 1. Thus f(x) = g(x) for all x. Hence∫

f(x) log g(x) dx ≤
∫
f(x) log f(x) dx, (2)

from which D(f‖g) ≥ 0 follows.
(c) Lagrangian multiplier method: Consider

F (g) =

∫
f(x) log g(x) dx.

Since log g is a concave function of g and f(x) ≥ 0 for all x, F (g) is a concave function of
g(x). Thus, if we find a stationary point, it becomes the point of a global maximum.
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Define

J(g, λ) =

∫
f(x) log g(x) dx+ λ

(∫
g(x) dx− 1

)
. (3)

Differentiate it with respect to g, and λ and set them all to zero:

∂J(g, λ)

∂g(x)
=
f(x)

g(x)
+ λ = 0, for −∞ < x <∞,

∂J(g, λ)

∂λ
=

∫
g(x) dx− 1 = 0.

From the first equation we find

f(x) = −λg(x), for −∞ < x <∞, (4)

and substituting to the last equation (i.e., the original constraint equation) and using∫
f(x) dx = 1, we find

λ = −1. (5)

Thus, the condition for a stationary point is

g(x) = f(x), for −∞ < x <∞. (6)

Thus, by substituting the condition (6) into (3), we attain the maximum of J :

Jmax = Fmax =

∫
f(x) log f(x) dx,

from which the nonnegativity of KLD follows.

19.2 Expectation-Maximization Algorithm

19.10* EM algorithm when the complete variables come from the exponential family of distribu-
tions.
By substituting (19.56) into (19.24), we find

Q(θ|θ(p)) = E[log h(X)|y;θ(p)] + η>(θ)T (p) −A(θ),

where

T (p) = E[T (x)|y,θ(p)].

Since the first term E[log h(X)|y;θ(p)] in the above expansion is independent of θ, the M-step
is reduced to

θ(p+1) = argmax
θ

[
η>(θ)T (p) −A(θ)

]



20 Solutions for Chapter 20: Hidden
Markov Models and Applications

20.1 Introduction

20.2 Formulation of a Hidden Markov Model

20.1* Observable process Y (t). Since Yt is a probabilistic function of St−1 and St, we write

yt = f(st, st−1), yt−1 = f(st−1, st−2), . . . .

In order for Yt to be a Markov chain, we must have

p(yt|yt−1, yt−2, . . .) = p(yt|yt−1).

The LHS can be written as

LHS = p(yt|st, st−1, st−2, st−3, . . .)

and the RHS is representable as

RHS = p(yt|yt−1) = p(yt|st, st−1, st−2),

which contradicts to the definition that Yt depends only on St and St−1, not on St−2. Thus, Yt is
not a simple Markov process.

20.6* Partial-response channel.

(a) Define the state of the transmitter, which is hidden as the transmitted information itself,
i.e.,

St = It.

Then, the output Xt from the partial-response channel, in the absence of noise, can be written
as

Xt = A(St − St−1).

Hence, the conditional PDF of Yt = y given a state transition St−1 = 1→ St = j, (t ≥ 1)

is, in referring to (??),

fYt|St−1St
(y | i, j) = 1√

2πσ2
exp

{
− (y − x(i, j))2

2σ2

}
,
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where the noise-free output x(i, j) associated with a state transition i→ j is

x(i, j) = A(j − i), i, j ∈ {0, 1}.

The Markov chain {St} in this case is simply a zero-th order Markov chain. The state transi-
tion probability matrix is

A = [a(i; j)] =

[
1/2 1/2

1/2 1/2

]
. (1)

Figure 20.1 Trellis diagrams of the HMM representations of a partial-response channel output with
additive white Gaussian noise. We assume the initial bit I0 = 0: (a) the transition-based output
model; (b) the state-based output model.

(b) Define the state as

St , (It−1, It), t = 1, 2, . . . .

Thus, the state space now consists of four states:

S = {00, 01, 10, 11} , {0, 1, 2, 3}. (2)

with the state transition matrix

A =


1/2 1/2 0 0

0 0 1/2 1/2

1/2 1/2 0 0

0 0 1/2 1/2

 , (3)

The conditional PDF (20.32) of the output, given the current states is:

fYt|St
(y|s) = 1√

2πσ2
exp

{
− (y − x(s))2

2σ2

}
,

where the output x(s) for state s ∈ {0, 1, 2, 3} is defined by

x(s) =


+A for s = 1;

0 for s = 0, or 3;
−A for s = 2.

Figure 20.1 (b) shows the HMM with state-based output; state St = s corresponds to s =
(i, j) = (It−1, It), and the number attached to each state s is x(s). In both (a) and (b) we
assume that I0 = 0, and the receiver should exploit this information in attempting to recover
the transmitted information sequence {I0}, as we will discuss further later in this chapter.
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20.3 Evaluation of a Hidden Markov Model

20.7* Likelihood function as a sum of products.
Using the Markovian property of the sequence S, we can write

p(s;θ) = π0(s0)
T∏

t=0

a(st−1; st), (4)

Under the state-based output model, where θ = (π0,A,B), p(y|s;θ) can be written as the
product of the conditional probabilities b(st; yt):

p(y|s;θ) =
T∏

t=0

b(st; yt). (5)

Thus, by taking the product of the last two expressions,

p(s,y;θ) = p(s;θ)p(y|s;θ),

and substituting it into (20.48), we have

Ly(θ) =
∑

s∈ST+1

π0(s0)b(s0, y0)
T∏

t=1

a(st−1; st)b(st; yt)

=
∑
s0∈S

∑
s1∈S

· · ·
∑
sT∈S

π0(s0)b(s0; y0)a(s0; s1)b(s1; y1) · · · a(sT−1; sT )b(sT ; yT ). (6)

Therefore, the likelihood function is again expressed as a sum of products.
20.9* Forward recursion formula when Yt is a continuous random variable.

Define the functions c(i; j, yt) as

c(i; j, yt) = at(i; j)fYt|St−1St
(yt|(i, j)), (7)

where fYt|St−1St
(yt|(i, j)) is the conditional PDF defined by (??). Then from (20.55) we have

the same forward recursion algorithm:

αt(j,y
t
0) =

∑
i∈S

αt−1(i,y
t−1
0 )c(i; j, yt), j ∈ S, 1 ≤ t ≤ T, (8)

20.4 Estimation Algorithms for State Sequence

20.14* Viterbi algorithm
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α̃t(j) = max
St−1

0

P [St−1
0 , St = j,yt

0] = max
i∈S

max
St−2

0

P [St−2
0 , St−1 = i, St = j,yt−1

0 , yt]

= max
i∈S

max
St−2

0

P [St−2
0 , St−1 = i,yt−1

0 ]P [St = j, yt|St−2
0 , St−1 = i,yt−1

0 ]

= max
i∈S

max
St−2

0

P [St−2
0 , St−1 = i,yt−1

0 ]P [St = j, yt|St−1 = i]

= max
i∈S

(
max
St−2

0

P [St−2
0 , St−1 = i,yt−1

0 ]

)
P [St = j, yt|St−1 = i]

= max
i∈S
{α̃t−1(i)c(i; j, yt)}.

Note that in deriving the 3rd line, we used the defining property that the Markov proces Xt =

(St, Yt) depends on only St−1, if it is an HMM.
20.18* Viterbi algorithm for a partial-response channel [199,200].

(a) Since a(i; j) = 1/2 for all (i, j), we can drop the term σ ln a(i; j) in the recursion. Fur-
thermore, noting

(yt − xt)2 = −2
(
ytxt −

x2t
2

)
+ yt,

we can replace (20.131) by (20.133).
(b)

ᾰt(0) = max

{
ᾰt−1(0), ᾰt−1(1)−Ayt −

A2

2

}
,

ᾰt(1) = max

{
ᾰt−1(0) +Ayt −

A2

2
, ᾰt−1(1)

}
(9)

In the above procedure, if the left term in the parenthesis gives the maximum, then the survivor
emanates from state St−1 = 0, otherwise from St−1 = 1.

20.25* Alternative derivation of the FBA for the transition-based HMM.

(a) We begin with the general auxiliary function derived in (19.38) of Section 19.2.2

Q(θ|θ(p)) , E
[
log p(S,y;θ)|y;θ(p)

]
=
∑
s

p(s|y;θ(p)) log p(s,y;θ),

(10)
where θ(p) is the pth estimate of the model parameters, p = 0, 1, 2, . . ..
By referring to p(S,y;θ) in the above expression for Q(θ|θ(p)), we find from (20.49)

p(S,y;θ) = α(S0, y0)
T∏

t=1

c(St−1;St, yt). (11)
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Since each c(St−1;St, yt) is equal to c(i; j, k) for some i, j ∈ S and k ∈ Y , we can write the
above as

p(S,y;θ) = α0(S0, y0)
∏

i,j∈S,k∈Y

c(i; j, k)M(i;j,k), (12)

where M(i; j, k) is the number of times that (st, st+1, yt+1) = (i, j, k) is found in the
sequence (s,y). For each t = 1, 2, . . . , T , (st, st+1, yt+1) belongs to one and only one of
the possible triplets (i, j, k) ∈ S × S × Y . Thus, the following identity must hold for any
sequence (s,y): ∑

i,j∈S,k∈Y

M(i; j, k) = T.

Although we observe an instance y, we cannot observe the associated instance s, so we must
treat this missing data as a RV. Hence, M(i; j, k), being a function of S, is also a RV and so
is p(S,y;θ). Taking the logarithm of both sides yields

log p(S,y;θ) = logα0(S0, y0) +
∑

i,j∈S,k∈Y

M(i; j, k) log c(i; j, k). (13)

Thus, we can write Q(θ;θ(p)) as

Q(θ|θ(p)) = Q0(θ|θ(p)) +Q1(θ|θ(p)), (14)

where

Q0(θ|θ(p)) = E
[
logα0(S0, y0)|y;θ(p)

]
, (15)

Q1(θ|θ(p)) =
∑

i,j∈S,k∈Y

E
[
M(i; j, k)|y,θ(p)

]
log c(i; j, k). (16)

(b) We denote the above conditional expectation of the random variable M(i; j, k) as

E
[
M(i; j, k)|y,θ(p)

]
,M

(p)
(i; j, k|y). (17)

By counting only those sequences in which yt = k for some t, we can rewrite the last expres-
sion by using the forward and backward variables that are obtained together with the updated
model parameters:

M
(p)

(i; j, k|y) =
∑T

t=1 α
(p)
t−1(i,y

t−1
0 )c(p)(i; j, k)β

(p)
t (j;yT

t+1)δyt,k

Ly(θ
(p))

, (18)

where c(p)(i; j, yt) is the pth update of the conditional probability (20.15), and α(p)
t (i,yt

0) and
β
(p)
t (i;yT

t+1) are the variables (20.54) and (20.60) computed under the assumption θ = θ(p);
and δyt,k is one for yt = k, and is zero otherwise.
(18) can be derived as follows: We can write

M
(p)

(i; j, k|y) =
∑T

t=1 δyt,kP [St−1 = i, St = j,Y T
0 = yT

0 ;θ
(p)]

p(y)
.
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By noting

P [St−1 = i, St = j,Y = y;θ(p)] = P [St−1 = i,Y t−1
0 = yt−1

0 ;θ(p)]

· P [St = j,Y T
t |St−1 = i,Y t−1

0 = yt−1
0 ;θ(p)]

= P [St−1 = i,Y t−1
0 = yt−1

0 ;θ(p)]P [St = j, Yt = yt|St−1 = i,Y t−1
0 ;θ(p)]

· P [Y T
t+1|St−1 = i, St = j,Y t

0 = yt
0;θ

(p)]

= α
(p)
t−1(i,y

t−1
0 )P [St = j, Yt = yt|St−1 = i;θ(p)]P [Y T

t+1 = yT
t+1|St = j;θ(p)]

= α
(p)
t−1(i,y

t−1
0 )c(p)(i; j, yt)β

(p)
t (j;yT

t+1)

Thus, we obtain (18).
Similarly We can write

M
(p)
0 (j, k|y) = δy0,kP [S0 = j, Y0 = k;θ(p)]

p(y)
.

By noting

P [S0 = j, Y0 = k;θ(p)] = α
(p)
0 (j, y0)β

(p)
0 (j;yT

1 ),

we obtain (21) to be given below.
(c) Maximization step:
Since the model parameters are the joint probability and conditional joint probability distribu-
tions, they must satisfy constraints∑

j∈S,k∈Y

α0(j, k) = 1, (19)

∑
j∈S,k∈Y

c(i; j, k) = 1, for all i ∈ S. (20)

We wish to find the value of θ that maximizes Q(θ|θ(p)) under the set of constraints (20).
Maximization ofQ0(θ|θ(p)) can be found as follows. For a given j ∈ S, k ∈ Y , we denote by
M0(j, k) the number of times that the initial state (S0, Y0) = (j, k) occurs. ClearlyM0(j, k) is
a 1-0 random variable such that

∑
j∈S,k∈YM0(j, k) = 1. We can write its conditional expec-

tation, given Y = y (see the second result in part (b).) as

M
(p)
0 (j, k|y) =

{
α

(p)
0 (j,y0)β

(p)
0 (j;yT

1 )

Ly(θ
(p))

, k = y0

0, k 6= y0
(21)

Thus, Q0(θ|θ(p)) of (15) can be written as

Q0(θ|θ(p)) =
∑
j∈S

M
(p)
0 (j, k|y) logα0(j, y0). (22)
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Using the log sum inequality of (10.21), we find the above expression can be maximized when
α0(j, y0) = α

(p+1)
0 (j, y0), where

α
(p+1)
0 (j, y0) =

M
(p)
0 (j, k|y)∑

j∈S,k∈YM
(p)
0 (j, k|y)

=
α
(p)
0 (j, y0)β

(p)
0 (j;yT

1 )∑
j∈S α

(p)
0 (j, y0)β

(p)
0 (j;yT

1 )
(23)

=
α
(p)
0 (j, y0)β

(p)
0 (j;yT

1 )

Ly(θ
(p))

. (24)

Maximization of Q1(θ|θ(p)) is equivalent to maximizing the following expression for each
i ∈ S. ∑

j∈S,k∈Y

M
(p)

(i; j, k|y) log c(i; j, k), i ∈ S. (25)

By using the log sum inequality (10.21) again, we find that the maximum of (25) can be
achieved when

c(i; j, k) =
M

(p)
(i; j, k|y)∑

j∈S,k∈YM
(p)

(i; j, k|y)
, for all j ∈ S, k ∈ Y. (26)

By substituting (18) into (26), we obtain the following expression for the (p+ 1)st update of
the model parameter c(i; j, k):

c(p+1)(i; j, k) =

∑T
t=1 α

(p)
t−1(i,y

t−1
0 )c(p)(i; j, k)β

(p)
t (j;yT

t+1)δyt,k∑
j∈S
∑T

t=1 α
(p)
t−1(i,y

t−1
0 )c(p)(i; j, yt)β

(p)
t (j;yT

t+1)

=

∑T
t=1 ξ

(p)
t−1(i, j|y)δyt,k∑

j∈S
∑T

t=1 ξ
(p)
t−1(i, j|y)

, (27)

where we used the property (20.142) of the APP ξt(i, j|y):

ξ
(p)
t (i, j|y) =

α
(p)
t (i,yt

0)c
(p)(i; j, yt+1)β

(p)
t+1(j;y

T
t+2)

Ly(θ
(p))

, i, j ∈ S, t ∈ T ,

(28)
which is the APP of observing a transition St = i −→ St+1 = j, given the observations y and
the model parameter θ(p). We can relate ξ(p)t (i, j|y) to the APP γt(i|y) defined in (20.81):

γ
(p)
t (i|y) =

∑
j∈S

ξ
(p)
t (i, j|y) =

α
(p)
t (i,yt

0)β
(p)
t (i;yT

t+1)

Ly(θ
(p))

(29)

with γ(p)T (i|y) given, from (20.85) and (20.63), by

γ
(p)
T (i|y) =

α
(p)
T (i,yT

0 )

Ly(θ
(p))

=
α
(p)
T (i,yT

0 )∑
i∈S α

(p)
T (i,yT

0 )
, i ∈ S. (30)
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Algorithm 20.1 EM Algorithm for a transition-based HMM

1: Set p←− 0, and denote the initial estimate of the model parameters as α(0)
0 = [α

(0)
0 (i, y0), i ∈

S] and C(0)(y0) = [c(0)(i; j, k)δk,y0
; i, j ∈ S, k ∈ Y].

2: Forward part of E-step: Compute and save the forward vector variables α(p)
t recursively:

α(p)>
t = α(p)>

t−1C
(p)(yt), t = 1, 2, . . . , T,

3: Compute the likelihood function: L(p) = 1>α
(p)
T .

4: Backward Part of E-step: Compute the backward vector variables β(p)
t recursively. Compute

and accumulate the APPs ξ(p)t (i, j|y) and γ(p)t (i|y).
a. Set β

(p)
T = 1, Ξ(p)(i, j, k) = 0, and Γ(p)(i, k) = 0, i, j ∈ S, k ∈ Y .

b. For t = T − 1, T − 2, . . . , 0:
i.Compute β

(p)
t = C(p)(yt+1)β

(p)
t+1.

ii.Compute ξ(p)(i, j|y) = α
(p)
t−1(i)c

(p)(i; j, k)β
(p)
t+1(j) and add to Ξ(p)(i, j, k):

Ξ(p)(i, j, k)← Ξ(p)(i, j, k) + ξ
(p)
t (i, jy)δk,yt

.

iii.Compute γ(p)(i|y) =
∑

j∈S ξ
(p)(i, j|y) and add to Γ(p)(i, k):

Γ(p)(i, k)← Γ(p)(i, k) + γ
(p)
t (i|y)δk,yt

, for all i ∈ S, k ∈ Y.

5: M-step: Update the model parameters:

α
(p+1)
0 (j)← α

(p)
0 (j)β

(p)
0 (j)

L(p)
, for all j ∈ S

c(p+1)(i; j, k)← Ξ(p)(i, j, k)

Γ(p)(i, k)
for all i, j ∈ S, k ∈ Y.

6: If any of the stopping conditions is met, stop the iteration and output the estimated α
(p+1)
0 and

C(p+1); else set p← p+ 1 and repeat the Steps 2 through 5.

Thus, we can express c(p+1)(i; j, k) of (27), using (28) and (20.148), as

c(p+1)(i; j, k) =

∑T
t=1: yt=k ξ

(p)
t−1(i, j|y)∑T

t=1 γ
(p)
t−1(i|y)

, (31)

where
∑T

t=1: yt=k in the numerator means summation with respect to t for which yt = k.
Algorithm 20.1 implements the EM algorithm discussed above. The forward part of the E-
step is the same as Algorithms 20.1 and 20.3, and we use the vector-matrix notation as before.
The backward part is basically the same as Algorithm 20.3, as far as the computation of the
backward vector variables β(p)

t is concerned. However, we need to compute the APP variables
ξt(i, j|y) and γt(i|y) as well, and sum them with respect to t. For this purpose we create arrays
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Ξ(i, j, k) and Γ(i, k), where

Ξ(i, j, k) =
T∑

t=1

ξt(i, j|y)δyt=k (32)

Γ(i, k) =
T∑

t=1

γt(i|y)δyt=k. (33)

For the parameter variables used in the algorithm, we explicitly show the superscript (p),
although we suppress the observed data y. If we do not need to keep all the computation results
in the iterative procedure, we can overwrite the parameter values of the previous iteration and
can suppress (p).

20.26* Alternative derivation of the Baum-Welch Algorithm.
Then

log p(S,y|θ) = log π0(S0) +
∑
i,j∈S

M(i, j) log a(i; j) +
∑

j∈S,k∈Y

N(j, k) log b(j; k). (34)

Thus we can write Q(θ|θ(p)) as

Q(θ|θ(p)) = E[log π0(S0)|y,θ(p)] +
∑
i,j∈S

E
[
M(i, j)|y,θ(p)

]
log a(i; j)

+
∑

j∈S,k∈Y

E
[
N(j, k)|y,θ(p)

]
log b(j; k). (35)

By denoting

E
[
M(i, j)|y,θ(p)

]
, M̄ (p)(i, j|y),

E
[
N(j, k)|y,θ(p)

]
, N̄ (p)(j, k|y)

We can write the above expectations by using the forward and backward variables:

M̄ (p)(i; j|y) =
∑T

t=1 α
(p)
t−1(i,y

t−1
0 )a(p)(i; j)β

(p)
t (j;yT

t+1)

Ly(θ
(p))

(36)

N̄ (p)(j, k) =

∑T
t=0 α

(p)
t (j,yt

0)β
(p)
t (j;yT

t+1)δ(yt, k)

Ly(θ
(p))

(37)

where Ly(θ
(p)) = p(p)(y). Note that the range of summation for M̄ and N̄ differ.

The first term of (35) can be written as

E[log π0(S0)|y,θ(p)] =
∑
j∈S

log π0(j)P [S0 = j|y,θ(p)].
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By applying the equality condition for the log-sum inequality, we find that (35) can be maximized
when we set the model parameters to the following values in the (p+ 1)st iteration:

π
(p+1)
0 (j) = P [S0 = j|y,θ(p)] = γ

(p)
0 (j|y) = α

(p)
0 (j, y0)β

(p)
0 (j;yT

1 )

Ly(θ
(p))

a(p+1)(i; j) =
M̄ (p)(i, j|y)∑
j∈S M̄

(p)(i, j|y)
i, j ∈ S

b(p+1)(j; k) =
N̄ (p)(j, k|y)∑
k∈Y N̄

(p)(j, k|y)
, j ∈ S.

The mean values M̄ (p)(i; j|y of (36) and N̄ (p)(j, k) of (37) can be written in terms of the APP
ξt(i, j|y) of (20.142) and the APP γt(i|y) of (20.85) as follows:

M̄ (p)(i; j|y) =
T∑

t=0

ξ
(p)
t−1(i, j|y), and N̄ (p)(j, k) =

T∑
t=0

γ
(p)
t (j|y)b(p)(j; k)δ(yt, k), (38)

Thus, we have the expressions (20.105) as the M-step solution:

20.5 Application Example: Parameter Estimation in Mixture
Distributions



21 Solutions for Chapter 21:
Elements of Machine Learning

21.4* Sum-product algorithm for a phylogenetic tree.
The character χ of a phylogenetic tree can be represented in the form of a vector w = (wi, i ∈ Ṽ )

such that

wφ(`) = χ(`), ` ∈ L.

Define X = (Xj , j ∈ V) to be the vector of node variables of the tree, and let X̃ denote the
restriction of X to the node variables associated with the leaves of the tree, i.e., X̃ = (Xu, u ∈
Ṽ). Then the probability that the character χ is realized by the phylogenetic tree can be expressed
as

Pχ = pX̃(w) = P [X̃ = w] =
∑

x:x̃=w

P [X = x], (1)

where P [X = x] is the joint probability distribution of all of the node variables, Xi, associated
with the tree T . Let us assume that the nodes in V are labeled as 0, 1, . . . , |V| − 1, reflecting a
total ordering of the nodes, with 0 denoting the root node. Then the probability P [X = x] can
be written as

P [X = x] = P [X0 = x0]
∏

v∈Ṽ\{0}

P [Xv = xv
∣∣Xu = xu, u ≤ v]

(a)
= πx0

(0)
∏

e=(u,v)∈E

Pxuxv
(e), (2)

where the Markov property (16.68) is applied in step (a). Combining (1) and (2) we obtain

Pχ =
∑

x:x̃=w

πx0
(0)

∏
e=(u,v)∈E

Pxuxv
(e). (3)

We now develop a sum-product algorithm to compute Pχ by recursively decomposing the tree T
into its constituent subtrees. Corresponding to the subtree, T u, rooted at node u, we define the
random vector Xu = (Xv, v ∈ Vu). By restricting the components of Xu to the node variables
corresponding to the leaves of the subtree T u, we define the random vector X̃

u
= (Xv, v ∈ Ṽu).

By conditioning on X0, (1) can be written as

Pχ =
∑
i∈S

P [X̃ = w|X0 = i]P [X0 = i] =
∑
i∈S

P [X̃ = w|X0 = i]πi(0). (4)

104
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For an arbitrary node u ∈ V , the conditional probability of {X̃u
= wu} given {Xu = i} can be

expressed as

P [X̃
u
= wu|Xu = i] = P [X̃

v
= wv, v ∈ ch(u)|Xv = i]

=
∏

v∈ch(u)

∑
j∈S

P [X̃
v
= wv, Xv = j|Xv = i]

(a)
=

∏
v∈ch(u)

∑
j∈S

P [X̃
v
= wv|Xv = i]Pij((u, v)), (5)

where the Markov property (16.68) was used in step (a). Conditioning on X0 and applying (5) in
(1), we have

Pχ = P [X̃ = w] =
∑
i∈S

P [X̃ = w|X0 = i]πd(0)

=
∑
i∈S

πd(0)
∏

v∈ch(0)

∑
j∈S

P [X̃
v
= wv|Xv = c]Pij((0, v)). (6)

By applying (5) recursively to (6), we obtain an efficient sum-product algorithm to compute Pχ:
We start at the leaves of T by applying (5) and work up to the root node 0, finally applying (6).
Such an algorithm has a computational complexity that is linear in the number of nodes, |V|, in
the tree.

Section 21.7: Markov Chain Monte Carlo (MCMC) Methods
21.5* Second-order Markov chains. The second-order MC is defined by the TPM

P =

[
P11 P12

P21 P22

]
.

The stationary distribution satisfies the following equations:

π1P11 + π2P21 = π1,

π1P12 + π2P22 = π2
(7)

To construct an ergodic MC whose stationary distribution is π = (π1, π2), we must solve for Pij

these equations together with

P11 + P21 = 1,

P12 + P22 = 1

which is a system of three independent equations (since equations in (7) are linearly dependent)
with four unknowns. If we denote x = P12, we can write a general solution as

P =

[
1− x x
π1

π2
x 1− π1

π2
x

]
where x is a free variable. It is clear that the matrix is stochastic and ergodic if

0 < x < 1 and x <
π2
π1

.
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Thus, we conclude that infinitely many MCs with the TPMs of the form

P =

[
1− x x
π1

π2
x 1− π1

π2
x

]
(8)

have the same steady-state distribution π = (π1, π2), if

0 < x < min{1, π2
π1
}.

This inequality is equivalent to

0 < x <

{ π2

π1
if π2 ≤ 0.5

1 otherwise

Note that if x = 0, then

P =

[
1 0

0 1

]
.

Any distribution is a stationary distribution of this chain. The chain is reversible but not ergodic
(because it is reducible). Similarly, if x = 1, then

P =

[
0 1

1 0

]
.

The chain has a unique stationary distribution π = (0.5, 0.5). The chain is reversible, but not
ergodic (because it is periodic). Thus, we see that not every reversible MC can be used for
MCMC. The chain must be ergodic.

21.7* Stationary distribution in the block MH algorithm.

∫
x1

∫
x2

f1(x1;y1|x2)f2(x2;y2|y1)π(x1,x2) dx1 dx2

=

∫
x2

f2(x2;y2|y1)π2(x2) dx2

(∫
x1

f1(x1;y1|x2)π1(y1|x2) dx1

)
(9)

=

∫
x2

f2(x2;y2|y1)π2(x2)π1(y1|x2) dx2 (10)

=

∫
x2

f2(x2;y2|y1)π(y1,x2) dx2 (11)

= π1(y1)

∫
x2

f2(x2;y2|y1)π2(x2|y1) dx2 (12)

= π1(y1)π2(x2|y1) (13)

= π(y1,y2). (14)

where equations (9), (11), (12) and (14) follow from Bayes’ rule, while (10) and (13) follow from
(21.50) and (21.51), respectively.

21.8* Stationary distribution in the Gibbs sampler.

f(x;y) = π1(y1|x2)π2(y2|y1), where x = (x1,x2), y = (y1, by2)
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∫
x

π(x)f(x;y)dx =

∫
x1

∫
x2

π(x1, bx2)π1(y1|x2)π2(y2|y1)dx1dx2

=

∫
x1

∫
x2

π1(x1|bx2)π2(x2)π1(y1|x2)π2(y2|y1)dx1dx2

=

∫
x2

π2(x2)π1(y1|x2)π(y2|y1)dx2

=

∫
x2

π(y1,x2)π(y2|y1)dx2

= π1(y1)π2(y2|y1) = π(y1,y2)

= π(y).



22 Solutions for Chapter 22: Filtering
and Prediction of Random
Processes

22.1 Conditional Expectation and MMSE Estimation

22.3* Alternative proof of Lemma 22.1.
The law of iterated expectations (or the law of total expectation) states: if S is a RV such that
E[|S|] <∞, and X is any RV, then

E[S] = Ex[Es|x[S|X]], (1)

where Es|x means the expectation with respect to the conditional probability of S given X , and
Ex means the expectation with respect to the marginal probability of X .

(a) The proof of the above formula follows essentially the same step as in the proof of the
lemma given in the text. You use the joint, conditional and marginal PDF of the RVs.
(b) Then by applying the above formula, we find

〈S − E[S|X], h(X)〉 , E [(S − E[S|X])h∗(X)]

= Ex

[(
Es|x(S − E[S|X])]

)
h∗(X)

]
= 0, (2)

because the term in the parenthesis is zero for all X:

Es|x(S − E[S|X]) = Es|x(S − E[S|X]) = Es|x[S|X]− Es|x[S|X] = 0. (3)

22.13* Regression coefficient estimates.
Note: There is a typo in (22.57) and (22.61). (22.57) should be

β̂ =

[
n∑

i=1

(xi − x)(xi − x)>

]−1 n∑
j=1

(xj − x)yj . (4)

and the second equation of (22.61) should be

Var[β̂0] =
σ2
ε

n

1 + nx>

[
n∑

i=1

(xi − x)(xi − x)>

]−1
x

 . (5)

We first derive (4), i.e., the correct expression of (22.57). Let

Q =
n∑

j=1

(yj − β0 − β>xj)
2.
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Differentiate it with respect to β> and set it to 0:

∂Q

∂β>
= −2

n∑
j=1

(yj − β0 − β>xj)xj = 0, (6)

Similarly, by differentiating Q with respect to β0 and setting it to zero, we have

∂Q

∂β0
= −2

n∑
j=1

(yj − β0 − β>xj) = 0,

from which we find the optimal β̂0 should satisfy
n∑

j=1

yj − nβ̂0 − β̂
>

n∑
j=1

xj = 0,

hence,

β̂0 =

∑n
j=1 yj

n
− β̂

>
∑n

j=1 xj

n
= y − β̂

>
x.

Substituting β̂0 into (6), we obtain
n∑

j=1

(yj − y + β̂
>
x− β̂

>
xj)xj =

n∑
j=1

[(yj − y)− β̂
>
(xj − x)]xj = 0. (7)

Since
n∑

j=1

(yj − y) = 0 and
n∑

j=1

(xj − x) = 0,

we can rewrite equation (7) as
n∑

j=1

[(yj − y)− β̂
>
(xj − x)](xj − x) =

n∑
j=1

(xj − x)[(yj − y)− (xj − x)>β̂] = 0 (8)

or

Σxβ̂ =

n∑
j=1

(xj − x)(yj − y), (9)

where we denoted as

Σx ,
n∑

j=1

(xj − x)(xj − x)>.

Therefore,

β̂ = Σ−1x

n∑
j=1

(xj − x)(yj − y) = Σ−1x

n∑
j=1

(xj − x)yj (10)

which is the corrected version of (22-57).
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Now we proceed to derive (22.62) and then (22.61). From (22.47) we have

E[yj ] = f(xj) = β0 + β>xj

where we assume that εj represent noise with zero mean, i.e., E[εj ] = 0. It follows from this
equation that

E[y] = β0 + β>x.

Thus,

E[yj − y] = β>(xj − x) = (xj − x)>β. (11)

Taking the expectation of (10) and using (11), we obtain

E[β̂] = Σ−1x

n∑
j=1

(xj − x)E[yj − y]

= Σ−1x

 n∑
j=1

(xj − x)(xj − x)>

β = β. (12)

In order to derive the first equation of (22.62), note that

yj = E[yj ] + εj .

Similar to the derivation of (12), we obtain

β̂ = E[β̂] +Σ−1x

n∑
j=1

(xj − x)εj = β +Σ−1x

n∑
j=1

(xj − x)εj , (13)

from which the first equation of (22.62) readily follows. From the last equation we have

β̂ − β = Σ−1x

n∑
j=1

(xj − x)εj ,

Thus, the variance of β̂ is computed as

Var[β̂] =
n∑

j=1

n∑
k=1

E[εjεk]Σ
−1(xj − x)(xk − x)>Σ−1

= σ2
εΣ
−1
x ,

where we use the property that the noise variables εj’s are mutually independent, i.e., E[εjεk] =

σ2
ε δjk.

The first equation in (22.61) can be obtained by taking the expectation of (22.58):

E[β̂0] = E[y]− E[β̂
>
x] = β0 + β>x− β>x = β0. (14)

In order to compute the variance of the estimate β̂0, we write from (22.58)

β̂0 = y − β̂
>
x = β0 + β>x+

1

n

n∑
j=1

εj − β>x+
n∑

j=1

(xj − x)>Σ−1x xεj
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where we used equation (13) for β̂. Thus,

β̂0 = β0 +
n∑

j=1

(
1

n
− (xj − x)>Σ−1x x

)
εj (15)

Therefore,

Var[β̂0] = E

εjεk n∑
j=1

(
1

n
− (xj − x)>Σ−1x x

) n∑
k=1

(
1

n
− (xk − x)>Σ−1x x

)
=

1

n2

∑
j

∑
k

σ2
ε δjk +

∑
j

∑
k

σ2
ε δjkx

>Σ−1x (xj − x)(xk − x)>Σ−1x x

− 1

n

∑
j

∑
k

σ2
ε δjk(xj − x)>Σ−1x x− 1

n

∑
j

∑
k

σ2
ε δjk(xk − x)>Σ−1x x

=
σ2
ε

n
+ σ2

εx
>Σ−1x ΣxΣ

−1
x x− 0− 0

=
σ2
ε

n

1 + nx>

[
n∑

i=1

(xi − x)(xi − x)>

]−1
x

 . (16)

22.2 Linear Smoothing and Prediction: Wiener Filter Theory

22.14* An alternative expression for (22.74). If we define the output of the linear system as

Yt =
n∑

i=0

h∗[i]Xt−k,

Then (22.73) should replaced by

Ryy[d] =
n∑

k=0

n∑
j=0

h∗[k]h[j]Rxx[d+ j − k], (17)

which in matrix form becomes

Ryy[d] = hHRxx[d]h,

where hH = (h∗[0], h∗[1], . . . , h∗[n]).

22.3 Kalman Filter



23 Solutions for Chapter 23
Queuing and Loss Models

23.1 Introduction

23.2 Little’s Formula

23.3 Queueing Models

23.8* Derivation of the waiting time distribution (23.37).
From (23.36) we have

FW (x) = 1− ρ+ (1− ρ)
∞∑

n=1

ρn − (1− ρ)e−µx
∞∑

n=1

n−1∑
j=0

ρn
(µx)j

j!

= 1− (1− ρ)e−µx
∞∑
j=0

∞∑
n=j+1

ρn
(µx)j

j!

= 1− (1− ρ)e−µx
∞∑
j=0

ρj+1

1− ρ
(µx)j

j!
= 1− ρe−µx

∞∑
j=0

(ρµx)j

j!

= 1− ρe−µ(1−ρ)x.

23.10* Time-dependent solution for a certain BD process: Consider a BD process with λn = λ for all
n ≥ 0, and µn = nµ for all n ≥ 1. This process represents the M/M/∞ queue. Find the partial
differential equation that G(z, t) must satisfy. Show that the solution to this equation is

G(z, t) = exp

{
λ

µ
(1− e−µt)(z − 1)

}
.

Show that the solution for pn(t) is given as

pn(t) =
(λµ (1− e

−µt))j

j!
exp

{
−λ
µ
(1− e−µt)

}
, 0 ≤ n <∞. (1)

23.15* Waiting time distribution in the M/M/m queue.
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(a)

F c
W (x)

∞∑
n=0

am+nF
c
W (x|m+ n) =

∞∑
n=0

πm+nF
c
W (x|m+ n)

= F c
W (0)(1− ρ)

∞∑
n=0

ρnF c
W (x|m+ n), (2)

where we used πm+n = ρnπm from (23.52) and πm = (1− ρ)F c
W (0) from (23.53). Note

that the formula (2) holds under any work-conserving queue discipline, although the actual
functional forms of F c

W (x) and F c
W (x|m+ n) will depend on the specific queue discipline.

(b) Let Ti be the interval between the (i− 1)st service completion and the ith completion, i =
2, 3, . . . , n+ 1, as illustrated in Figure 23.1.

Arrival

(N= n + m)

In
Service

In
Queue

1st
completion

2nd nth (n+1)th

Service
Initiation

Waiting Time 

T1 2T n+1T

Figure 23.1 Relationship between the waiting time and service completion intervals Ti’s in M/M/m.

In this scenario, all m exponential servers are busy. Let Xj , 1 ≤ j ≤ m be the interval from
an arbitrarily chosen instant until the completion of a job in service at the jth server. The Xj’s
are independent and identically distributed with complementary distribution function

F c
Xj

(t) = P{Xj ≥ t}e−µt.

The distribution of Ti, 1 ≤ i ≤ n+ 1 is equivalent to that of the random variable T defined
by

T , min{X1, X2, . . . , Xm}.

The complementary distribution function of T satisfies

F c
T (t) = P{T ≥ t} = P{Xj ≥ t : ∀j, 1 ≤ j ≤ m}

=
m∏
j=1

P{Xj ≥ t} =
m∏
j=1

e−µt = e−mµt.

Therefore, Ti, 1 ≤ i ≤ n+ 1 are exponentially distributed with parameter mµ. Further, it
should be clear that the Ti’s are independent.

(c) The waiting time of the customer in question is T1 + T2 + · · ·+ Tn+1. Following the argu-
ments that led to (??)(Note that in the waiting time analysis for M/M/1, we assumed that
n− 1 customers were in queue, whereas here we assume n customers in queue.), we obtain
(23.148), which is an (n+ 1)-stage Erlangian distribution.
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(d) Substitution of (23.148) into (2) gives

F c
W (x) = F c

W (0)e−mµx(1− ρ)
∞∑

n=0

ρn
n∑

j=0

(mµx)j

j!
. (3)

The double summation over (n, j) can be rewritten as a double summation over (k, j), where
k = n− j, as follows:

∞∑
n=0

n∑
j=0

ρn
(mµx)j

j!
=

∞∑
k=0

∞∑
j=0

ρk+j (mµx)
j

j!

=
∞∑

k=0

ρkeρmµx =
1

1− ρ
eρmµx (4)

Using (4)in (3) yields where we interchanged the order of summation and using the formula
for a geometric series, we obtain

F c
W (x) = F c

W (0)e−mµ(1−ρ)x (5)

or (23.149).

23.22* The waiting time distribution in M(K)/K/m.
If an arriving customer finds only n ≤ m− 1 customers in the system, it gets immediate service
without waiting, i.e.,

F c
W (x|n) = P [W > x|N = n] = 0, 0 ≤ n ≤ m− 1, x ≥ 0. (6)

On the other hand, when n ≥ m, the waiting time is given by:

W = R1 + S2 + · · ·+ Sn−m+1, (7)

where R1 represents the residual time until the next service completion. The random variables
S2, · · · , Sn−m+1 represent the subsequent inter-service times. Note that after n−m+ 1 service
completions, the nth call enters service. By the memoryless property of the exponential distribu-
tion, the remaining time in service of a call currently in service is exponentially distributed. Then
the time between service completions (while all servers are busy) is the minimum of m i.i.d.
exponentially distributed random variables with parameter µ. Hence, the time between service
completions is exponentially distributed with parameter mµ. Therefore, R1, S2, . . . , Sn−m+1

are i.i.d. and exponentially distributed with parameter mµ. Then W has an n−m+ 1-stage
Erlangian distribution, i.e.,

F c
W (x|n) = e−µx

n−m∑
j=0

(µx)j

j!
, m ≤ n ≤ K. (8)

Alternatively, we can write

F c
W (x|n+m) = e−µx

n∑
j=0

(µx)j

j!
= Q(n;mµx), 0 ≤ n ≤ K −m, (9)
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which is (23.71). Therefore,

F c
W (x) =

K−m∑
n=0

an(K)F c
W (x|n+m). (10)

Since an(K) = πn(K − 1) for the M(K)/M/m system, we have:

F c
W (x) =

K−m∑
n=0

πn+m(K − 1)F c
W (x|n+m), (11)

which is (23.70), where F c
W (x|n+m) is given by (9). We note that since πK(K − 1) = 0, the

upper limit of the summation in (23.70) can be replaced by K −m− 1, i.e.,

F c
W (x) =

K−m−1∑
n=0

πn+m(K − 1)F c
W (x|n+m). (23.70’)

23.31* Derivation of waiting time distribution (23.103).

f ∗W (s) =
1− ρ

1− λ 1−f ∗S(s)

s

.

By substituting

1− f ∗S(s)
s

= E[S]f ∗R(s),

we find the desired expression for f ∗W (s).

23.4 Loss Models

23.41* Differential-difference equation for the Engset model [203].
(a) Let N(t) be the number of calls in progress at time t: 0 ≤ N(t) ≤ m. This process is a BD

process with λn and µn given by (23.60) and (23.111). Then the differential-difference equa-
tions for pn(t;K) is the same as those for pn(t) given by (14.45), where n = 1, 2, 3, . . . ,m

and pn = 0 for n ≥ m+ 1.
(b) The balance equations in the steady state are given by (14.51), i.e.,

nµπn(K) = (K − n)νπn−1, for all n = 1, 2, . . . ,m.

Thus, from the above (or from (14.53)), we have

πn(K) = π0(K)
n−1∏
i=0

(K − i)ν
(i+ 1)µ

= π0(K)

(
K

n

)
.

Thus, the normalization constant G is given by (23.124) and πn(K) = G−1
(
K
n

)
, hence we

obtain (23.125).
(c) We have

P [A|Bi] = (K − i)νδt, P [Bi] = πi(K).
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Hence,

P [A] =
m∑
i=0

P [A,Bi] = νδt
m∑
i=0

(K − i)πi(K).

Hence,

an(K) = P [Bn|A] =
P [A|Bn]P [Bn]

P [A]
=

(K − n)πn(K)∑m
i=0(K − i)πi(K)

.

Substitution of the result of (b) (or (23.125)) leads to (23.130).
(d) If we keep Kν = constant , λ, then in the limit K →∞, the Engset distribution of (23.125)

converges to the Erlang distribution (23.115).
23.43* Link efficiency [203].

(a) The formula (23.122) can apply to the Engset model, i.e.,

L(K) = 1− ac
a
, or ac = a(1− L(K)).

Substituting this into (23.132), we obtain (23.154).
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Figure Exercise 3.2-8: The efficiency η vs. the number of circuits (output lines) m. The
number of input lines (sources) is K = 10, 20, 40, 60, 80, 100, and the specified QoS is

L = 0.01.

(b)



117

23.44* Example of MLN [203].
(a)

r1 =
ν1
µ1

= 0.5 [erl] per class-1 subscriber, a2 =
λ2
µ2

= 0.5 [erl] for the entire class 2.

(b) Equation (23.137) reduces in this case to

πN (n|m,K1) =
1

G(m,K1)

(
K1

n1

)
rn1
1

an2
2

n2!
, n ∈ FN (m,K1), (12)

where

FN (m,K1) = {n = (n1, n2) ≥ (0, 0) : n1 + 2n2 ≤ m,n1 ≤ K1}

and

G(m,K1) =
∑

n∈FN

(m,K1)

(
K1

n1

)
an2
2

n2!
.

(c) Start with m = 0. Obviously, FN (0, 3) = {(0, 0)}, and G(0, 3) = 1. For m = 1, we find
FN (1, 3) = {(0, 0), (1, 0)} and G(1, 3) = 1 +

(
3
1

)
1
2 = 5

2 . By proceeding in a similar man-
ner, we find the feasible set for m = 4,K1 = 3:

FN (4, 3) = {(0, 0), (1, 0), (2, 0), (0, 1), (3, 0), (1, 1), (2, 1), (0, 2)},

and the corresponding normalization constant: G(4, 3) = 41
8 = 5.125.

For m = 5,

FN (5, 3) = FN (4, 3) ∪ {(3, 1), (1, 2)},

G(5, 3) = G(4, 3) +

(
3

3

)(
1

2

)3
1

2
+

(
3

1

)
1

2

(1/2)2

2!
=

41

8
+

1

4
=

43

8
= 5.375.

For m = 6,

FN (6, 3) = FN (5, 3) ∪ {(2, 2), (0, 3)},

G(6, 3) = G(5, 3) +

(
3

2

)(
1

2

)2
1

2

(1/2)2

2!
+

(1/2)3

3!
=

43

8
+

11

96
=

527

96
= 5.486,

to three decimal places.
(d) Using (23.141), we find

B2(6, 3) = 1− G(4, 3)

G(6, 3)
=

4/16 + 11/96

527/96
=

35

527
= 0.0664,

L2(6, 3) = B2(6, 3) = 0.0664.

(e) We need to find FN (m,K1) and G(m,K1) for K1 = 2. Since FN (m, 2) ⊂ FN (m, 3), this
does not really require an additional effort: it is easy to find

FN (5, 2) = {(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 1), (0, 2), (1, 2)},

G(5, 2) = 1 + 1 +
1

4
+

1

2
+

1

2
+

1

8
+

1

8
+

1

8
=

29

8
= 3.625,
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and

FN (6, 2) = FN (5, 2) ∪ {(2, 2), (0, 3)},

G(6, 2) = G(5, 2) +

(
2

2

)(
1

2

)2
(1/2)2

2!
+

(1/2)3

3!
=

29

8
+

5

96
=

353

96
= 3.677.

Then, from the formula (23.142) we find

L1(6, 3) = B1(6, 2) = 1− G(5, 2)

G(6, 2)
=

5/96

353/96
=

5

353
= 0.0142.

Remarks: It will be instructive to make the following observations: the time congestion
for class-1 customers (in the closed chain) occurs when the GLS is in states (n1, n2) =

(0, 3) or (2, 2). The stationary probabilities of these states are found from (12) as

πN ((0, 3)|6, 3) = 1/48

G(6, 3)
and πN ((2, 2)|6, 3) = 3/32

G(6, 3)
.

By adding these probabilities, we find B1(3, 6) =
1/48+3/32

527/96 = 11
527 = 0.0209, as was

obtained above.
Similarly, time congestion for class-2 customers (in the open route) occurs when the GLS
is in one of the following four states: (0, 3), (2, 2), (1, 2), (3, 1). By adding the stationary
probabilities of these states, we have

B2(3, 6) =
1/48 + 3/32 + 3/16 + 1/16

G(6, 3)
=

35

527
= 0.0664,

as expected.


