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2 Solutions for Chapter 2: Probability

2.2 Axioms of Probability

2.1* Tossing a coin three times.

(a)
2 = {(hhh), (hht), (hth), (htt), (thh), (tht), (tth), (ttt)}.
(b)
Eo = {(ttt)}, | Eo| = 1;
E; = {(htt), (tht), (tth)}, |Eq| = 3;
E5 = {(hht), (hth), (thh)}, |Es| = 3;
E5 = {(hhh)}, |Es| = 1.
(©)

F = {(hhh), (hht), (hth), (thh)}.

2.2* Tossing a coin until “head” or “tail” occurs twice in succession. There are countably infinite
sample points.

Q = {(hh), (tt), (thh), (htt), (hthh), (thtt), (ththh), (hthtt),...}.

As is seen, there are only two outcomes (or sample points) of string length n = 2,3,4,5,....
2.5% Probability assignment to the coin tossing experiment. Assuming the coin tossing is fair, the
probability measure should assign a probability of 1/8 to each sample point in 2. Le., P[{w}] =

1/8 for each w € Q.
1 3 3 1
P|Ey]| = =, P|E1| = =, P|Es] = =, P[Es] = <.
[Fol = 5 PIE] = 5, PIBa) = 5, PIBs] = 5
2.6* Probability assignment to the coin tossing experiment in Exercise 2.2.
(a) Since the coin is fair and tosses are independent, we have

PI{m)Y] = PI{(0)}] = 5 PH(h)] = P[{(hee)}] = ¢,

Pl{hthhy] = P[{(thtt)}] = =,



In general, to each of the two possible outcomes or sample points requiring n tosses we assign
1

(b)
1 1 1 1 15
2 1T T T 16
(©)
11 1 112
28 TR T T I3

2.3 Bernoulli Trial’s and Bernoulli’s Theorem

2.10* Distribution laws and Venn diagram. Draw a Venn diagram in which the areas A, B and C'
intersect each other.

2.11* DeMorgan’s law. Draw a Venn diagram in which the areas A and B intersect. Then we readily
see that the areas A N B and A°U B¢ are the complements of each other in the diagram. A
formal proof is as follows:

Suppose that w € (A N B)¢. Then w does not belong to both A and B. This implies that either w
belongs to A€ or w belongs to B¢; i.e., w € AU B€. Hence, (AN B)¢ C A°U B©.
Conversely, suppose that w € A° U B¢. Then w belongs to either A° or B€. In the former case,
w does not belong to A, which implies that w ¢ A N B. In the latter case, w does not belong
to B, which also implies that w ¢ A N B. Hence, w € (AN B)¢, so AU B¢ C (AN B)°. This
establishes that (A N B)¢ = A° U B©.

2.14* Derivation of (2.48).

> (= ()t
= zn:(’fz — 2npk + n’p?) (Z)pk(lp)"k
= (Z)M(l—p)“ “onpy k(Z)p’“u—p)“

k=0

+np® (Z)p"'(l—p)"”“- (1)



In the last equation, the second summation term can be easily shown to equal np, and the third
summation is clearly equal to [p + (1 — p)]™ = 1. The first summation term is evaluated below:

kzn:_o K’ <Z)p’“ i pH(1—p)""

&
=np§k(k i)p’“ H1-pyt = :é(“”( )y

Returning to (1), we have

zn;) — np) (> F1—p)"*

=np[(n—1)p+1] — 2n*p* + n*p* = np[(n — 1)p+ 1 — np] = np(1 — p).

2.4 Conditional Probability, Bayes’ Formula, and Statistical
Independence

2.16* Joint probabilities.

M N
SO in(Am, Ba) =1.

m=1n=1

where fn (A, Ay,) is given by (2.42). The above formula readily follows from the relation:

M N
Z Z N(Antn) -

m=1n=1

2.17* Proof of Bayes’ theorem. The joint probability P[A,, B] can be written as
P[A;, B] = P[A;|B|P[B] = P[A;|P[B|Aj],
from which we have
_ P[A;]P[B|A;]
PIA|B] = =S

The marginal probability P[B] can be expressed, in terms of probabilities P[A;] and the condi-
tional probabilities P[B|A,] (j = 1,2,...,n), as in (2.61). Then (2.63) ensues.
2.18* Independent events. Since A and B are 1ndependent,

PJA,B] = % = P[4] - P[B. 2)

We are also given that

PI(AUB)| = % 3)



We also know that
P[(AUuB)’]=1—-P[AUB]=1- (P[A]+ P[B]— P[AnB]). 4@

Using (2) and (3) in (4), we can obtain the following equation in terms of P[A]:

1 1 1
1_(P[A]+12-P[A]_12):3. &)

This equation can be re-arranged as follows:
12(P[A])* —9- P[A]+1 =0,
which is a quadratic equation. Applying the quadratic formula, we obtain two possible solutions:

P[A] ~ 0.6143 or (6)
P[A] = 0.1356. @)
Using (2), we can solve for P[B]. For the solution (6), P[B] a2 0.09104. For the solution (7),
P[B] ~ 0.9154. Thus, the values of P[A] and P[B] are approximately 0.1356 and 0.6143,

respectively or vice versa.
2.19*% Medical test.

(a)
0.001 x 0.99 0.00099
P[Ay| By = —
[42] B2] 0.999 x 0.05 + 0.001 x 0.99  0.05094
Hence, P[A;|Bs] = 98.06%.
(b)

= 0.0194 = 1.94%.

0.001 x 0.95 _0.00095
0.999 x 0.01 4+ 0.001 x 0.95  0.01094

Hence P[A;|Bs] = 91.32%.

P[As|By) = = 0.0868 = 8.68%.



3 Solutions for Chapter 3: Discrete
Random Variables

3.1 Random Variables

3.1* Property 4 of (3.3). Suppose b > a. Then
{X<b}={X<a}U{a< X <b}.
Since the two events on the right-hand side are disjoint, we can apply Axiom 3 to obtain
P[X <b]=P[X <a]+ Pla< X <],
or
Pla< X <b]=P[X <b|— P[X <a]=Fx(b) — Fx(a).

Another Answer:
Let A={X <a} and B = {a < X <b}. Then A and B are mutually exclusive events, and
thus P[AU B] = P[A] + P[B]. Since AU B = {X < b}, we have

FX(b):FX(a)+P[a<X§b],

which leads to (2?) .

3.2 Discrete Random Variables and Probability Distributions

3.2*% A nonnegative discrete RV.

(a) From (3.16)

Hence, we find k£ = 1.
(b)

Fx(z) = 0, forxz <0
T 1= pt, forn<a<n+1, n=0,1,2,...



3.3* Statistical independence. Suppose that (3.25) holds. Then

Fxy(zi,y5) = P[X <2, Y < yj]
= Y PX=zY=y= > pxv(zy)

TIT,YSY; T4, YSY;
= > px(@py(y)
TTHYSY;
= <Z px($)> > py(y) | = Fx(a:)Fy (y;)- (M
z<z; Y<Y;

Thus, (3.25) implies (3.26).
Now assume that (3.26) holds. Define

Ti_1 = maxze i1 = maxy.
i—1 s y Yy y<yjy

Then

px (@:)py (y;)
= [Fx (i) = Fx (zi-1)][Fy (y;) — Fy (yj-1)]
= Fx(23)Fy (y;) — Fx(zi1)Fy (y5) — Fx(2:) Fy (y;-1)
+ Fx(zi-1)Fy (y;-1)
= Fxy(wi,yj) — Fxy(vi1,y5) — Fxv(wi,yj-1)
+ Fxy(®i-1,Yj-1)
=P[X <2,V <y;] = (PIX <21, Y <y
+PX <2, Y <yjq] - PIX < 1,Y <yja])
=P[X <2;,)Y <y;] —P{X <2;.1,Y <y;} U{X <a;,Y <y;_1}]
= PIX =2;,Y = y;| = pxv (@i, y5)- 2)
Thus, (3.26) implies (3.25).
We have already shown the equivalence of (3.27) and (3.28) for two discrete RVs. Proceeding

by mathematical induction, assume the equivalence of (3.27) and (3.28) holds for k£ > 2 discrete
RVs X1, X, ..., Xk. Suppose that

PX1 XoXpps (1, T2, -, Thy1) = Px, (21)Px0 (T2) -+ Py (Trg1), 3)
for all values of x1, 9, ..., z11. Using an argument similar to that used to obtain (1), we can
show that

Fx XX (1,02, Teg1) = Fxoxpox, (21, 2,0 20) Fixyy (241), 4
for all values of 1, x2, ..., Zx+1. By invoking the induction hypothesis, we then obtain

Fx, xgxpiy (X1, 22, . Tpg1) = Fx, (1) Fx, (22) - Fxp o (Thg1)- &)



Conversely, assume that (5) holds. Using an argument similar to that used to obtain (2), we can
show that

DX Xo Xpog1 (15 T2+ oy Ty 1) = DX, Xoo X5 (015 T2, - o, T )DXG ) (Th1)- (6)

Then by invoking the induction hypothesis, we establish (3).
3.8*% Properties of conditional expectations

(a)
E[EX|Y]] = E[$(Y)],

where
Y)= ZPX|Y (ilY).

Then
EEX]Y]] Zw Yi)py (y;)

= Z Z xz‘px\y(l‘i\yj )py(yj)
= szZpX\Y (@ily;)py (y;) szZpXY Tis Yj)
Zza?ipx r;) = E[X].

i

(b) The LHS of the equation in (b) is

LHS = Z h(Y)g(z:)pxy (zi]Y)

= ZQ zi)pxpy (zilY)

= h(Y)E[g(X)|Y],

which is the RHS in (b).
(c) Consider a set of random variables X;’s and scalars a;’s. Then

E|) aXi|Y| =Y a;E[X|Y],

which means that E[-|Y] is a linear operator.

3.10% Correlation coefficient and Cauchy-Schwarz inequality For given random variables X and
Y, define new random variables

X"=X-FE[X], Y'=Y - E[Y].
Then the Cauchy-Schwarz inequality applied to the RVs X* and Y* gives
(BIX*Y*))? < EX*2|E[Y*?,



which is equivalent to
(Cov(X,Y))? < Var[X]|Var[Y],
where the equality holds iff
X" =cY",
where c is a scalar constant. The above inequality is equal to
(Cov(X,Y))? < Var[X]Var[Y],
which is equivalent to
(pxv)? < L.

The equality holds iff Y — E[Y] = ¢(X — E[X]) with probability 1, for some constant c. If
c > 0, then pxy = 1. This corresponds to perfect positive correlation.
If ¢ < 0, then pxy = —1. This corresponds to perfect negative correlation.

3.3 Important Probability Distributions

3.11%

3.12%

Alternative derivation of the expectation and variance of binomial distribution.
The mean and variance of the Bernoulli random variables B;’s are

E[B;] = p, E[BZQ] = p, hence, Var[X]=1p —p = p(1—p) =pq.

Since B;’s are mutually independent, they are pairwise independent. Thus, we can apply Theo-
rem 3.4, yielding

EX]=p+p+...+p=mnp, Var[X]=pg+pg+...+pg=npq.
Trinomial and multinomial distributions.
(a)
P[E\] = p, P[Ey] = ¢, P[Es] =1 —p—q.

Since Fh U Es U E3 =, and E;’s are independent Fo U E5 = EY. Thus, out of the n
independent trials, the probability that event F; occurs k; times and Ef occurs n — ky
times is given by the following binomial distribution:

P[N(El) = kl] = (]Z)plfl(l —pl)"’_kl.

Then we distinguish whether a given outcome that shows EY is whether Ey or E3. The
conditional probability of E5 given that the event belongs to 'Y = Ey U E3 is
P[E; N EY] _ PlE] q

PIBIE = = 3ET = PlEg ~ 1




and

c q 1-p—q
P|Es|ES) =1 — - .
1-p 1-p
Thus,

P[N(Ez) = k2|N(E1) = k1] = P[N(E2) = k2| N(EY) = n — k1]

_(n—hk g \"(1-p—q\"" "™
N ko 1—p 1-p ’

Thus, the joint probability is obtained as

P[N(E1) = k1, N(E2) = ko] = P[N(E1) = k1] P[N(E3) = k2| N (E1) = k1]

n n—k g \2[(1-p—qg\" "k
k n—k - —P—

_ 1(1 — 1

(k‘l)pl( P) < k2 ><1—p> ( 1-p )

n! bk
— 1gk2(1 —p—
T pray e LA Gt el

’I’L*k)l 7]{72 .
(b) We can prove the formula by mathematical induction. Suppose that the multinomial for-
mula is true for some m = M; > 2. Consider the following composite event
EsUE3U---UFE)y :Ef

Then the distribution of observing F k; times out of n independent trials, and F{ (n — k1)
times is the binomial distribution:

P[N(E1) = k1] = (Z)pg«l(l I

and the conditional probability of having N (E;) = k;, i =2,3,..., M given N(Ey) = k;
is from the assumption (i.e., the formula is true up to m = M)

P[N(Ey) = k1, N(E3) = ks, - ,N(Epy) = kp|N(E1) = k1]
N (n —ky)! P2 k2 p3 k?’“_ Pm Far
_kg'kglkM' 1—p1 1—p1 1—]91 '

Then the joint probability is obtained by multiplying the above two expression, which leads
to (3.117).

3.18* Mean, second moment and variance of the Poisson distribution.

(a)
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(b)
SNPPL L e AR L (i 4 1)e N
2 2 AT N —
EIX?) =)k 7r € _)‘Zk(k,l)l_)‘z il
k=0 k=1 =0
e M e M
=2 i! +Yy° T =AA+D)
i=0 =0
©)

3.20* Identities between p(k; ) and Q(k; \).
(a) By substituting the definitions of p(k; A) and Q(k; \), the left hand side (LHS) becomes

k K K
A E

)\i
LHS = LM T2 A2,

By setting &’ = i + k — j and changing the order of summation, we have

(b) Using the hint, we have

00 yk o0 00 yk—l
kiy)dy = |—e¥Vo—| — —e7Y d
/Ap( y)dy [e k!L /A(@)(kfl)!y
p

[ee}

= p(k; A) + A p(k —1;y)dy.

From this recursive relation, we have

o0

LHS:p(k;;/\)+p(k‘—1;/\)+...+p(1;)\)+/ e Ydy
A

k
= /:Op(i;)\) = Q(k; A).
(©
(k+A+1DQ(kA) + (k+1)Q(K; N).

By substituting the recursive relations Q(k;\) = Q(k — 1;A) + p(k; \) and Q(k; \) =
Q(k+ 1;A) — p(k + 1; \), we can rewrite the LHS of the first expression as

LHS = AQ(k — ;N + (k+ 1)Q(k + 1; \) + Mp(k; A) — (B+1)Q(k + 1; A).
The last two terms cancel each other, since

)\k+1

il e .

Ap(k;A) = (k+ L)p(k + 1;0) =
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Thus, the formula (c) follows.
(d) From the result (c), we have

Q(k; \) + kQ(k; )
E+ X ’

Q(k—1;\) =
from which we can derive
kQ(k: A) = AQ(k — L;\) = kQ(k — 1;A) — AQ(k — 2, \)
=Q(k - LA+ (k—1)Q(k —1;0) = AQ(k — 2;A)

By applying this recursive relation, we have

LHS = Q(k—1;0) + Q(k—2A) ...+ Q(L;A) +.. .+ Q(L;A) + QL3 A) — AQ(0; \)

where we used the relation
QL) = AQ(0;N) =Xe* +e = Xed=e? =Q(0; \).
(e) From the result of (d), the right hand side is

k—1
RHS =) " Q(j; A).

Jj=0

Then using the result of (b), we have

k=1 oo
RHS = / p(ji A) dy.
j=0"A

By interchanging the order of summation and integration, we have

00 k-1

RHS:/A jz_:op(j;y)dy=/A Q(k —1;y) dy.

3.21% Derivation of the identity (3.96). Let f(z) = (1 —2) " = (=1)"(x — 1)~" and expand this
Yy p
around x = 0 using the Taylor series expansion:

. f(n)

o n!
where
fla)y=r@-2)7" f'@)=rc+1)1-2)7"2 -,
fO =rr+1) - (rdn—1)(1—z) T,
Hence,

@0 rr4+1)---(r+n-1) _ (r+n—1>.

r—1
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Set x = ¢, then

(l_q)_,,:ni (r—:ﬁzl)qn.

Setting n = k£ — r, we have

(1-¢) " = g: (fj B 1)(1’”-

3.22* Equivalence of two expressions for the negative binomial distribution. We want to show that

k-1

k
E—=1\ ., w_, kN ok k=1\ ; p 1
= — >
(kr>pq E (i>pq E ( ; )pq , k>,

i=r i=r

where ¢ = 1 — p. By moving the second term of the right-hand side, we want to show

k k-1
KN i pi 2 (F=1\ , por k=1\ i r1i
> (i>p ¢ = (kr>p ¢+ ;ﬂ ( ; )p q : (7

i=r

The left-hand side (LHS) and right-hand side (RHS) of the above can be written as

Uy A RN L,
LHS = (p+¢)* =) (Z.)pzq’” =1-Y <i)plq’“. (8)

=0 =0

and

k—1 S k-1 4
1— r—1_k—r _ i k—1—1
s (P2 ) z( ;)i

(-
E—1 k-1 4
=1- ( )p”q’“*” - ( . )plq’““. 9)
=0

Thus we need to examine
r—1

k—=1\ ;4 k+1-r 2 k ik—i_. k—=1\ ; k1
(T_1>p q =3 ;)P Z ;P - (10)

=0

(-G ()

Using the well-known formula
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we rearrange the RHS of (10) as follows:

k k— k—1 k—1
RHS:( )p’r 1 _k— ’l‘+1 |:< ) ( ) >q_< ) >:|p7,qk) i—1
r—1 1 7
r—2
— k 7“ 1 k+1 r k i k‘ ] k -1 pi+lqk7ifl
r—1 i= 0 i=0 i
k r—3 E_1 r—2 )
_ (T B l)pr 1 _k+1-7r ( J >p]+1 k—j-1 Z ( ) z—i—lqk:fzfl

k r— —r k -1 r— —r
— P 1qk+1 _ p 1qk 41
r—1 r—2

— (k - 1>p7'—1qk—i-1—r7
r—1

which is equal to the LHS of (10).

I\JO

\3 s



4 Solutions for Chapter 4
Continuous Random Variables

4.1 Continuous Random Variables

4.1* Expectation of a nonnegative continuous RV.

/Oa:fx(m)dxz—/o (1 — Fx(2)) dx
:—[x(l—FX(:L')]SO—i-/ (1 - Fx(x))dx
0

_ /mu ~ Fy(a)) da.
0

Thus, the formula for non-negative random variables is proved. If we drop the assumption of
nonnegativity, we proceed as follows:

/_ " (o) dz = / " F(2) de

00 —00
0

— Py (@) — / Fy () dz

0
=— / Fx(x)dz.
Combining the above two, we have shown (4.10).
4.2*% Properties of discrete RVs. Let the discrete random variables have probability masses p; > 0 at
xr=ux;; — 00 <1< oosuch that

<z a< s < - <xp(=0) <z <X < -0y

If z = 0 is not a mass point, assign pg = 0.
We can write

Fx(z) = ) piu(e — ),

Let
m 7
Fj=F(z;) =Y pu(z;—x)= Y pi

i=—n 1=—00
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and

J
FJ-C:].—F([IJJ'):].— sz

i=—00

Then

I

@
I
—

/000(1 — Fy(2))dz = /w FS (2) do

I

Il
-

00
(J?i — l‘i_l)Fic_l = ZFiC_l,fEi - ZZ = OOOFiCZEi
i=1

=—F5+ > (Ffy - Ff)a
=1

=0+ i=1"px;,

where we used the property

Fiy—F =pi.
Similarly,
0 0
/ Fx(z)dx = Z (x; —xi-1)Fi1
e 1=—00
—1 -1
Z Ii(Fifl — Fi) + on—l = Z xi(—pi).
i=—00 1=—00
Hence
00 0 -1
E[X] :/ (1 - Fx(z))dx —/ Fx(z)de =+ Z DiTi +Zi =1%p;z;
0 -0

1=—00

o0
= Z biZi,

1=—00

as expected.
For a nonnegative discrete RV,

E[X] = /000(1 — Fx(x))dz = Zl =1%p;x; = Zl = 0%p;x;,

as expected.

4.4* Expectation and the Riemann-Stieltjes integral

(a) We can write the PDF as
Fx(@) =" px(x:)d(z — x;).



16

Then (4.9) implies

hx = /700 prX(xi)é(x —x;)dx
= pr(:z:i) /:)o 20(x — x;) de = pr(xi)xi.

(b) (i) If X is a continuous RV,
Fy(z) = / " () du, and dFy(z) = fx(2)da.

Then (4.159) is reduced to (4.9) (not to (3.32)).
(i1) If X is a discrete RV,

Fx(z) = pr(a:i)u(aj —x;), and ,dFx(z) = pr(x,-)zs(aj —x;) dx.

Then (4.159) reduces to (3.32) (not to (4.9)).
(iii)
00 0
MX:/ xdFX(x)+/ xdFx ()
0 —

[e¢}

:—/Ooomd(l—FX(x))—i-/o rdFx ()

—00

00 0
= (1 - Fx@)[F + / (1 - Fy(x)) dz + [zFx ()], - / Fy () dz

/Ooc(lFX(x))dx/o Fx(x)da,

oo

which is (4.10). For a nonnegative RV, the second term disappears and we obtain (4.11).

4.2 Important Continuous Random Variables and Their Distributions

4.9* Expectation, second moment and variance of the uniform RYV.

] b
/LX:E[X]:/7 fo(x)dx:ﬁ/ xdx

b2 — a2 _b+a
2(b—a) 2

which is the midpoint of the interval [a, b].
The 2nd moment can be found in a similar fashion:

00 b
E[XQ]:/_ 1?2fx($)d$=bia/ 2* dr

b —a? _ b2 + ba + a?
3(b—a) 3 ’




Thus,

b +ba+a® (b+a)2_ (b—a)?

4.10* Moments of uniform RV.

(a)

b—a

I b " L+ (=)™ (b—a)"t*
/ . +a dr — +(-1)"(b—a) .
b—a /, 2 (n+1)2" b—a
4.13* Recursive formula for the gamma function. The gamma function is defined by

rp) = /OOO P e " dy.

(b)

Using integration by parts, we get

TB) =21 ™) ¥+ /Ooo(p2 —1DaP2e%de = (- 1DT(B - 1).

4.15* Mean and variance of the normal distribution.

1 o (z-m)?
EX] = 7/ ze 22 dx
210 J-x
1 o (z-p)? 1 e (z-p)2
27/ (x —p)e” 27 dr + / e 507 dx
210 J -0 270 J—0o

(@ 1 g2 o
:\/TTT/ ye 2dy+u/ o(y) dy

=/ yo(y)dy +p =0+ p = p,

VarlX] = B(X ~ )] = —— / (- e S

210 J_—co
0.2 /OO 9 2
e zd
o 7ooy Y
2 [ o 2
ZU/ Yy o(y)dy = o7,

®

where in (a) and (b), the change of variables y = % is made.

4.16* T'(1/2). Since ¢(u) is a PDF, we have

/_Z d(u)du = 1.

17
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We have

1 /OO L 2y (i)Q/OC LI
= € u = e U
o V2T 0 \/ﬂ
@ 1 (% 1 o @) 1 1
ﬁ/o " 2e Pdx =2)

z

where (i) follows because e =" is an even function of z, (ii) follows from the change of variables

x = “72, and (#i7) follows from the definition of I'(3) in (3.164). Hence,
1

4.3 Joint and Conditional Probability Density Functions
4.21* Joint bivariate normal distribution and ellipses. The level curves are determined by the locus
of points (u1, ug) satisfying
do(u1,uz) = K,
where K is a constant. Substituting for ¢o(u1,us), we have
1 1 9 9
m exp {—2(1_p2)(u1 — 2pujug + uz)} =K.
Taking logarithms on both sides and re-arranging terms, we obtain
u? — 2puiul = K7, (1
where
Ky = =2(1 - p*)log[2m/1 = p?].
Re-arranging the left-hand side of (1), we obtain
(w1 — pus)® — pu} + w3 = (ur — puz)? + u3(1 - p?).
Using the transformation x = u; — pug, y = ug in (1), we have
2? + (1 - p®) = K,

which is equivalent to

where a = /K and b =,/ 117(;2.
4.22% Conditional multivariate normal distribution.

From the definition of the conditional PDF we have

 Ix(@) @n)?|detEq V2 exp{—3(x—p)"S (@ —p)}
Pxa(enlea) = 5 e = T Rm Pt oxp {— L0 — o) Bl (0 — o))

aa
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where

M Eaa 2]ab:|
— M| m= _ 3
H L‘b] |:Eba b )

Since x,, is fixed, we need to analyse only the exponent of the numerator in the RHS of equation
2):
It is easy to verify that

51 _ [Baa Bap resls,] (2 o I 0 @
TS S| (O I 0 S |-, T

where S = [X, — EbaE;(} 34p] is the Schur complement of 33,,,. Using this expression we find

(&= w)E" (@ — 1) = (Ta — o) Za (Ta = o) )
H(@a = 1a) " Ea Ban + (2 — 1) 18 [ B (Ta — 1) + (2 — )]

Since x, is fixed, we are interested only the in terms that depend on x;. The previous equation
can be written as

(—p)' S e —p) = (@ — )" S (@ — 1) — 2(xp — ) b+ const.  (6)
where
b= S’lzbaﬁg;(:ca — W)

It is not difficult to verify by direct multiplication that

(—p) T Yz —p) = (2, — py — Sb)' Sz, — py, — Sb) + const @)
where
Sb =S85, 200 (T — Ha) = ZpaZeq (Ta — Ha)-
Thus,
e @nla) ~ oxo { =5 @ o) Eyb e~ )| ®
where

Hpja = Hyp + Ebazz;; (wa - l"’a)

, . ©)
Sa =S =Sy — B E,0 Tap

4.4 Exponential Family of Distributions

4.26* Exponential families of distributions

(a) exponential distributions with PDF given by (4.25), parameterized by .

(b) gamma distributions with PDF given by (4.30), parameterized by (X, 3).

(c) binomial distributions given by (3.62), parameterized by (n, p).

(d) negative binomial (Pascal) distributions given by (3.98), parameterized by (7, p).
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4.5 Bayesian Inference and Conjugate Priors

4.30* Posterior hyperparameters of the beta distribution associated with the Bernoulli distribu-
tion in Example 4.4.

(a)

o at
Bl = 8 = e s+
_( a+ 3 > a +< n )
\a+pB+n) a+8 a+f8+n n
(b)
Var[O|z] = a1

(a1 + 61)% (a1 + 51+ 1)
(et Y w)(Bn— 3, @)
(a+B+n)a+B+n+1)




5 Solutions for Chapter 5: Functions
of Random Variables and Their
Distributions

5.1 A Function of one random variable

5.1* Half-wave rectifier.

0, y <0
Fy(y)Z{Fx(O) y=20
Fx(y) y>0

Hence

0, y<0
fr(y) = {FX(0)5(1/) y=0
fx(y) y>0

5.2 A Function of Two Random Variables

5.6* Leibniz’s rule.

(a) The LHS of (5.95) equals

d%[H(b(Z)) — H(a(2))] = H'(b(2))V'(2) — H'(a(2))d'(2)
= h((b2))V'(2) = h(a(z))a'(2).
(b) The LHS of (5.94) equals
d%[H(% b(2)) — H(z, a(2))] = [9(2,b(2)) + h(z,b(2))V'(2)] = [9(z, a(2)) + h(z, a(z))a’(2)]
= h(z,b(2))V(2) — h(z, a(2))a’(z) + [9(z, b(2)) — (2, a(2))]
: / 2 Oh(z,y)
= h(z,b(2))b'(2) — h(z,a(z))a'(z ——==d
W E) Ao @) + [ ay
where we used the following relation in the last step:

9g(z,y) _ 0 0H(z,y) _ 0 0H(z,y) _ Oh(z,y)

oy oy 0z 0z Oy 0z
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(¢) Then

Pe oG G b9
Ba = —h(z,a), 5 = h(z,b), and S —/a ah(z,y) dy.

Substitution of these into (5.96) yields the Leibniz’s rule (5.94).
5.16* Maximum and minimum of two random variables.
(a)
Duv = {(z,y) : min(z, y) < u,max(z,y) < v}.

For u < v, the regions {x < u} N {y < v} and {z < v} N {y < u} constitute D,,,,. The
region {x < u} N {y < u} is included in both.
For v < u, the region {x < v} N {y < v} defines D,,.

(b)

Fov(u,v) = Fxy(u,v) + Fxy(v,u) — Fxy(u,u) v>u
UVt Fxvy(v,v) v < U.
(¢) The marginal distribution of U is obtained by setting v = oo in the above equation for
v > U
FU(U) = FUv(u, OO) = FX(U) + Fy(u) — ny(u,u).

The marginal distribution of V' is obtained by setting « = oo in the above expression for
v < U

Fv(’l)) = FUv(OO,’U) = ny('l},'l}).

(d) Weassume a < b. (The case a > b can be treated in the same manner: we just exchange
a and b in the final result.) The PDF fxy (z,y) = &, z € [0,a] Ny € [0,b].

For u < w;
0, u <0
%, 0<u<v<a
Fyy(u,v) = w2 0 <y <a<wv
%, a<u<v<yd
1, v > b.
For v <u
0, wv<0,
2
v
F(u,v): b’ 0<v<a,
7 a<uwv,
1 v > b.



Thus, by combining the above results, we have

0, min(u, v)u < 0

%z, {v<u}n{0<v<a}
Fyy (u,v) = %, {fv>upn{0<u<a},

7 {u>a}n{a<v<b}

1, {u>a}n{v>b}

5.3 Generation of Random Variates for Monte Carlo Simulation

5.19*% Use of a rejection method.

23

Seta=0,b=1,M =2 and fx(z) = 2z in Algorithm 5.1 of page 127. Then we obtain Algo-

rithm 5.1 given below.

Algorithm 5.1 RNG Algorithm for fx (z) = 2z

1: Generate a uniform variate u; € [0, 1], and set © = u;.
2: Generate another uniform variate ug € [0, 1].
3 If

2ug < 22, i.e., U

accept z, and reject otherwise.

<,

ey

4: Stop when the number of accepted variates x’s has reached a prescribed number. Otherwise,

return to Step 1.

5.20* Erlang variates. From (5.75) we see
_ In U
kp

will be an exponential variate with mean 1/kpu. Thus,

€Tr; =

ln(Hle u;)

k k
lnui
xr = E T; = — E =
i=1

= o

which is (5.82).
The algorithm is simply

1.  Generate k uniform variates uq, us, . . . , Ug.

2. Compute x = _1“(1_[:7:1“)

o
3. Repeat the above until the desired number of Erlang variates z’s are generated.

)

5.22* The polar method for generating the Gaussian variate. Let

X1 =Rcos®, Xy =RsinO.
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The joint PDF of X, X5 is given as

1 22 + a2
Ixix(T1,22) = %exp{— ! B 2}~
The PDF of R, © can be found as
fre(r,0) = |J|fx, x,(x1,22),
where

7 O(w1,22) . cosf sinf
o) —rsinf rcosd

Thus,

2
fro(r,0) = % exp {—TZ} .

Since this joint PDF does not depend on 6, the RVs R and © are not only independent but also
© is uniform. Thus the joint PDF is can be written as fo () fr(r), where

1
fo(0) = —, 0<60 <2,
21

v 2}

(a) By integrating the PDF obtained above

FR<r>=/OrfR<s>ds=1—exp{—f}.

The RV O is uniform in [0, 27| as obtained above.

(b) R? = X?+ X7 is exponentially distributed with mean 2. From (5.75) it then follows
that Y7 is uniformly distributed in (0, 1). It is clear that since © is uniform in [0, 27], Y3 is
uniformly distributed in (0, 1).

and



6 Solutions for Chapter 6:
Fundamentals of Statistical
Analysis

6.1 Sample Mean and Sample Variance

6.1* Derivation of (6.11).
Let Y denote the average of Y7,...,Y,,:

Y &

>V,
i=1

3=

Note that

Xi-X=(Xi—p)— (@ —p) =Y, - Y.

Then, the sample variance variable can be expanded as

n

52=ni12(y Y)?

=1

ZYQ—WY

6]

By writing Y~ as

. 1 n n
QZEZZY%_*

i=1 j=1

Yve) 3wy

i=1 j=1(j#i)

; 2

Then we can obtain (6.11)
6.6* Log-survivor functions and hazard functions of a constant and uniform random variables.

(a) For constant X = a, we have,

Fx(z) =u(x —a), fx(x)=4d(x—a).

Hence
0 r<a
log F'§ = ’
08 X(x) { —00. T > a.
and
0, z<a
hx () == {oo T>a
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(b)  For the uniform distribution X € [a, b], we have

SO,

The hazard function is

Fx(o) 0, z < a,
hX(a:):Ff( 7= lggt a<z<b
' (x
00, x>b

6.11* The mean residual life function and the hazard function
The conditional survivor function can be written as

Sx(rlt) = ‘w ~ exp {—/tm i () du}.

Then Sx (r|t) is a monotone-increasing function of ¢ for all r, if and only if 4 x (¢) is monotone
non-decreasing; the inverse result holds if and only if Sx (r|z) is non-decreasing. Since we can
write

Rx(t) = BRIX > ] = /030 Sx(rlt) dr,

the stated property holds.
6.12* Conditional survivor and mean residual life functions for standard Weibull distribution.

(a)
PR>r, X >t] P[X >t+7]
x(rft) = PR >r|X >1] PIX > 1] PIX > 1]
Sx(t
_ X( + T) , 3)
Sx(t)

where Sx(t) = e " and Sx(t+7) = e +7" for the standard Weibull distribution.
Thus,

Sx(r[t) = e (" HT,
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(b) Using the formula for the expectation of a nonnegative RV, we have
Rx(t) = BIRIX > ] = / PIR> r[X > t]dr / Sx(rlt) dr
0 0

/°° Sx(t+r) ftDOSX(u)du
= —_— d’]" = —_—
o Sx(t) Sx(t)
which is consistent with (6.41). Thus

Rx(t) =€ / e V" dy.
t

“4)

1/a

Then by setting y* = 2z, or y = 2/, we have

Thus,

Then using the upper incomplete gamma function I'(3, ) defined by (4.34), we find

Ry(t) = 1 <1,t°‘) .

« «
For t = 0, we find

me0 = o (o) = Ir(2) =r(L+1),

where T'(z) is the gamma function defined by (4.31). This also agrees with (4.81) as
expected, since Rx (0) = E[X] as shown by (6.42).

6.15*% Covariance between two random variables. Since X is uniformly distributed between —7
and 7, E[X] = 0. Then

Cov[X,Y] = E[(X — E[X])(Y — E[Y))] = E[XY] - E[X]E[Y] = E[XY],

By substituting Y = cos X, we have

T

T 1
E[XY}:/ fX(x)mcosxdx:?/ xcoszdr = 0.
- ™

—T

Therefore, Cov [X,Y] = 0, hence X and Y are uncorrelated, but X and Y are not independent
random variables.
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6.18* Sample covariance.

n

Spy = L > (Sci—/ix)—lZ(-Tj_MX) (yi_NY)_%Z(yk_MX)

n—14 -
i=1 j=1 k=1

n

- ni 1 Z(I’ — )i = ) = #Z(% —px) ) (x5 — px)

:%Z(xiiux)(yii'uy)f;z (i — px)(yj — py)-

Taking the expectations, we have

E[Sry] = Gg(Y-



7 Solutions for Chapter 7:
Fundamentals of Statistical
Analysis

7.1 Chi-Squared Distribution

7.1* Sample variance and chi-squared variable.
We write

X;i—X

g

U; = , 1=1,2,...,n.

Then

n n
%= Zuf, and ZUZ =0.
i=1 i=1
We use the last equation to eliminate w,, from the expression for x?2:

Up = —(U1 +u+---+ unfl)v
ui = u% —+ Q(U1U2 +ujuz + -+ ulu’n,—l)

+ U2 + 2(ugus 4 - + Uty 1)

2
+ Up—1-
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Then we can write x2 as

2
X? = uf + urtiy + uruz + - + UgUp_1

2
+ uy + uguz + - - + UsUp_1

1
5
3, 1

10+ S (uaus s uzun )
3

, 1
7us g (usua + - +uzun-y)

By writing
1
iy = V2 {ul + 2(U2+U3+-~-+un1)]

2 3

N 1+ 1 1
U; = ; ui+i+1(ui+1+~~+un_1)

. 3 1
Uy = [’LLQ—F(’LL3+"'—|—U7L_1):|

. n
Unp—1 = n— lunfh
We can write
n—1
2 )
X = ;.
=1
Since ;s are linear functions of the normally distributed RVs, the distribution of (a1, . . ., tp—1)

is an (n — 1)-dimensional normal distribution. In order to prove that ;s are statistically inde-
pendent, we need only to prove that the covariances are zero.
We write
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where U; = i a5 in (7.20) and

o

U:

> UL
=1

Note U is different from U of (7.30) by a factor ﬁ Then we have

SRS

1
s [+ D+ i )

1
= ——= [+ 1)U+ Uiy1+ -+ + Up1 — nU|

i(i+1)
-1
:%[U1+U2+"'+Ui1+Un—iUi].
i(i+1)
Hence
Ela;] =0,
and
1 i+
Var[t] = —[14+14 - +14+1+44] = —— =1.
ar(i;] i—i—l[ +14+--+141+47 D
The product
1
Wl = U+Us---4+Upn_+ U, —UlU+Us+---+U; 1+ U, — 3U;
iUy Z(’L—‘rl)j(j-i-l)[ 1 2 il n z][ 1 2 j—1 n—J j]
shows that for i < j,
1
Elaa;] = EUf4+Us+--+U+i—-1*+U; —iU}],

GF 06+ 1)
since E[U,U,] = 0 for r # s. It is easy to see
1

i(i+1)j(7 +1)

Var[asi) = Bliyi,] = L4114 +1+1—14=0.

Thus, the (n — 1)-variables 41, tg, - - - , @i,,—1 are statistically independent standard normal vari-
ables.
7.3* Moments of gamma and y>-distributions.

(a)

> I . L(m + B)

E[X™) = / ™ fx () = —— / gt-1gms gy — LM+ 5)

0 I'(B) Jo L'(B)
(b)
vz-le~%
[z (v)dv = 2T (3) 0<v<oo



32

E[(x2)™] = / T ()

1 0 n
- - m+5 -1 —l//2d
2/°T(n/2) / 0w

m+% 00
= 72 i ] / tmtz—le—t gy
0

2n/2(n /2
_ 2mT (% + m)

I'(n/2)

7.2 Student’s t-Distribution
7.7%* Moments of the F'-distribution.
From (7.39), the rth moment of F'is
T na " T —r
BlF = (22) BB, ]

From the result of Problem 7.3 (b)

and

Hence,

DRCELCLD
m) T

From the conditions - +r > 0 and %> — r > 0, we obtain —n; < 2r < na.

E[F"] = (

7.3 Lognormal Distribution

7.9*% Median and mode of the lognormal distribution.
(a) The median of the distribution (7.46) iS Ymeq = py . The corresponding xmeq 1S

Tmed = eYmed — oHY
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Using (7.52), we find
1 o3

lnuxffln(l-i-TY)

Tmed = e =e Hx

1
o2\ 2 4
ZMX(H;) S S
X (1+2F)
Hx

(b) Take the logarithm of (7.47):
(Inw — py)?

1
In fx(z) = —3 In(27) —Inz — )
Differentiate the above with respect to z:
fx(@) 1 Inz—px
fx(@) =z ox

The mode 04 is such x that maximizes fx (), and thus f% (mode) = 0. Thus,
. lnxmode — MY _ 07

—1
2
Oy

from which we have
py —o
Tmode = € Y.

By substituting the result of part (a) and (7.53), we obtain
X

Tmode = RN
o 2
(1)
7.4 Rayleigh and Rice Distributions
7.10% MGF of R? and R variables in the Rayleigh distribution.
(a)
Mz (t) = E[e!C7HY")] = My (t) My (t).

Let X =oU andY = oV, then U and V are independent unit normal variables. Then

1 & 2,2 _u?
Mx=(t) = E[et"2U2] = — el e du
VT J-x
1 X @i 225%)2 J
= — e u.
V2T J -
By setting uv/1 — 202t = w, we have
1

dw _
V1=202t /1-202%

w?
2
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Since My (t) is the same as M x=(t), we have

1

MZ(t) = 1 _20_2t7

which leads to

mz(t) = —In(1 — 20%t).

Thus,
202 (202)2
() = ——7, mzt) = ——FH5-
Mz = T oen M2 = T
Hence
E[Z] = m/y(0) = 20%, Var[Z] = 40*.
(b)
TIVE 1 OO O 24,2 T
Mg(t) =FE [et X2+Y2] = 7/ / e T etV gy .
27 —00 J —00
By writing
u =rcosf, v=rsinf, hence dudv = rdrdf,
we have

1 27 00 .
Mn(t) = 5 / / e~ T dr df.
™ Jo 0

By setting r — ot =y, i.e., r = y + ot, we can write

v = [ [ ot ] e

ot
2,2

_ { [~e %]+ Vamoti - (P(—at)}} e

o2t2
=1+ V2not®(ct)e 2,
where ®(z) is the distribution function of the unit normal variable, and we use the property
1—®(—z) = d(x).
(c) To simplify the notation we define

a2t2

® £ ®(ot), and F = Pe™ 2

So
242
ImF=Ind+ %

By differentiating the above with respect to ¢, we have

F' o 9
. t
F-oo 70
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where ¢ £ ¢(ct), the PDF of the unit normal variable. By differentiating the above once
again

FIE-(F)? 00— ¢?)
2o e 7

where ¢ = ¢/(ot). By setting ¢ = 0 in the functions,

F(0) = ®(0) = &, and 10 _ 790 _ \/za,

2’ F(0) ©(0)
we find
2
M1(0) = V2710 F(0) = \/?a, and M7,(0) = 210 (2F(0)) = V2r0 —ae = 202.
2 s
Thus, we find the variance of R as given above.
7.13* Nakagami distribution.
(a)
E[Z] =2mo? £ Q, (D)
Then by writing X; = oU,, we readily find
Z = U2X§m’ (2)
where x3,, is the chi-squared variable with 2m degrees of freedom'. Thus, we find the PDF
of Z as
m—-1 __z_
1 z 1 (%) € 202
1249 = 5 (52) = 2~y — 220 )

where I'(m) is the gamma function defined in (4.31), and I'(m) = (m — 1)! when m is an
integer. By substituting (1), we have
— Lm m=1,-%5" >0 4
fz(2) er(m)z € , 2>0. (€))
(b) define a random variable R, or the envelope of the The PDF of R is obtained by setting
fr(r)dr = fz(z) dz. This leads to

2m™ o _mr?

fr(r) = W(m)r e 2, r>0. (5)
An alternative expression is given in terms of o2 as
2 (52)" me?
fr(r) = (ﬁ(‘j; ; r¥m e a0, 1 >0, ©)

! Recall that Yo, £ X%m/2 is an E,,, variable, i.e., is Erlangian distributed with mean m (cf. (7.16)):
y" ey

(m—1)!’

which can be seen as the gamma distribution with A = 1 and 8 = m (cf. (4.30)).

FYom (¥) =
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()

my\ ™ ]. o mr2
— ( _ o
E[R] =2 (Q) e /0 rr'i2m —1)e” @ dr

. 2 .
By setting *{j— = x, we can write

w1 =2(5)" w5 ()
T (m+ 1) (Q)

L(m) \m

2m

n—1

2 Q o 1 .
— 2"t e gy
2m 0

The second moment is similarly obtained, but E[R?] = E[Z] = Q by definition. The vari-
ance is then readily found from E[R?] — E?[R).

7.5 Complex-valued normal variables

7.17% Joint PDF of (Z,Z*). W' = [X"Y "] is a 2M-dimensional Gaussian variables with zero
mean and the 2M x 2M covariance matrix X of (7.98). Thus, the PDF of the vector variable W
is given by (7.106). By writing X and Y explicitly, the joint PDF of (X ,Y") is given by (7.107).
Since z = x + 1y and 2" = x — iy, its Jacobian is given by the first expression of (7.108), i.e.,

~ 0(z,2") [IM Iy }7

 O(z,y) Iy —idy
where I is an M x M identity matrix. A nontrivial step is to show the second half of (7.108),
ie.,
det J = (—2i)M.
We want to show the following formula by mathematical induction:
I, I | k
det = (—2)". 7
| =2 )
For k = 1, we have
1 1]
det = —2.
“[1 4]

Thus, the formula holds for £ = 1. Suppose that it holds for k = n — 1, i.e.,

Infl Infl _ (_o9\n—1
det [Inl _In1:| =(=2)"".

We can write the identity matrix I,
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Then we can write

1 --- 1
In In _ Infl Infl
I,-I,| |1 - —1 ..
Infl _In—l
Then the determinant is calculated as
det In Lo} _ 1-det o E1 e +(=1)" - det 1 fro e
e In _In = e e f— e e PRI o
Infl : _Infl : Infl _Infl
_ Infl Infl n n—1 Infl Infl
=1-(-1)-det |:In1 _In1:| + (=" (-1) det |:In1 _In1:|
Infl Infl -1
=-2- = (=) (=2)" 1 = (=)
dor [ 1 T = oot = (-

Thus, we have proved the formula (7) by mathematical induction. Then it is clear
I, Iy K
det = (—29)".
¢ L‘Ik il ] (=20)

Thus (7.108) is proved, and (7.109) follows from fxy (x, y) of (7.107), the Jacobian |J| = 2M
of (7.108), and the quadratic form (7.105).



8 Solutions for Chapter 8: Moment

Generating Function and
Characteristic Function

8.1 Moment Generating Function (MGF)

8.1%

8.3%

8.7*%

Properties of logarithmic MGF. For simplify the notation we drop the subscript X of Mx (¢).
M(t)=E [e"*], M'(t)=E[XeX], M"(t)= E [X?e"Y].
By setting t = 0, we have
M(0) = E[1] =1, M'(0) = E[X], M"(0) = E[X?].

Letting

\
%
—
o~
~
S
~
~
\
=
<
—

o~
~
[

m(t) =InM(t), m'(t) = , m'(t) =

By setting t = 0, we have
m(0) =0, m/(0) = M'(0) = E[X], m"(0) = M"(0) — M'(0)? = E[X?] — E[X]? = o>

Exponential distribution.

o (t-p)z > VTR
M(t) = / et:xlue—;mr do = p |:€ ] _ = L
0 t—p Jg o t>pu

Multivariate normal distribution. The derivation is essentially the same as that for the bivari-
ate normal distribution. Let

Ye=tX1 +... +tn Xy = X).
Then the joint MGF of the multivariate X is given by
Mx (t) = My (1),

where My (£) is the MGF of the scalar RV Y, i.e., My (£) = E [e*Y]. Since Y is a linear sum
of the normal variables, it is also a normal variable with mean and variance given by

py = (t, 1), and o2 =t Ct.
Thus, its MGF is

02
My () = €§“Y+£TY-



Hence, the joint MGF of X = (X1, Xo,..., X,,) is

o

Mx (t) = My (1) = et =,

which leads to (8.54).
8.9*% Erlang distribution. By definition the MGF is

© MrAz)™! A [
Mg (t) :/ ot TAAD) g (1) / LA g
0 0

(r—1)! (r—1)!

We use the following integration by parts:

00 00 ef(rkft)z !
I(r) é/ a" e (AT gy =/ z" ! (—) dx
0 0 rA—1

—(rA—t)x

:—J/‘r
rA—1t

00 1 00
+ r / xr7267(r)\7t)z dx
0 rA—t 0 ’

where the first term is zero if ¢ < rJ, and is infinity, otherwise. Hence

{ ILI(r—1) t<r),

t

I(r) = 00 t>rA.

By solving this recursively we find for ¢ < 7,

1) = T oD g gy D),

(rh —1)2

e~ (PA=DT g — (pX — t)~L. Hence

(rA —t)r—1

where I(1) = [~

(1’§\it)r’ t< A

Ms, (1) = {oo t>rA.
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Alternatively, S, can be expressed as the sum of r i.i.d. exponential RVs with mean (r\)~1,

A

whose MGF is given by 3=,

for t < r), as seen from the solution of Problem 8.3. Then from

the product formula (8.41) for the sum of independent RVs, we readily obtain the above result.

8.2 Characteristic Function (CF)

8.11*% CF of the binomial distribution. By definition
o(u) =D Bkin.p)e™* = ; <Z>p’“(1 —p)"ret

= (Z) (pe™)* (1 —p)" " = (pe™ + 1 —p)".
k=0

8.15* CF of the exponential distribution The CF is by definition

00 1 . 1 R —iau)x
dx(u) = / “em®/a T gy — — lim e g
o a

a R—oo [q

e))
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Defining the complex variable z, we write the above as an integral in the complex plane:
1 R—iauR ;
= i “adz. 2
ox(v) a(l —iau) e 0 € @

Then for u > 0, we consider the contour shown in Figure 8.1 (a). Since the function e @ is
analytic in the entire plane, its integration along the contour is obviously zero:

= Riaul 0 Rtiy o,
0:% e @ dz:/ e @ dz—i—/ e e idy+/ e o dx. 3)
C 0 —auR R

The second integral on the right hand side can be bounded as follows:

0 0
_ Reiy , _R _E R
‘/ e ayzdy’<ea/ dy = auRe = =% 0. 4)
—auR —auR
Therefore, we have
R—iauR . R .
lim e adz= lim e adr =a. (®)]
R—oo Jg R—oo Jg
Thus, we find
1
ox(u) = ——, —oo<u<oo (6)
1 —au
foru > 0.
y
y z-plane
z-plane 0 R-iauR
® R
0 R X
R-iauR
(a) foru >0 (b) foru <0

Figure 8.1 Contours for complex integral to obtain the CF of the exponential distribution.

For v < 0, we consider the contour shown in Figure 8.1 (b), and repeat similar steps as in the case
for u > 0. In doing so, we can show that (6) holds for u < 0, as well. For u = 0, the integration
in (1) reduces to an integration on the real parameter x, and is readily obtained as ¢x (0) = 1,
which satisfies (6).

As is the case with the normal distribution, the result (6) could have been obtained by substitution
of ¢t = iu in the MGF Mx (t) = ﬁ of the exponential distribution. The reader is cautioned
again that such derivation is mathematically incorrect.

The cumulant generating function, given by

¥x(u) 2 Ingx(u) = —In(l — iau).



By differentiating the above expression, we obtain

px = ()¢ (0) = a, and 0% = (~i)?

"
X

(0) = a®.
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9 Solutions for Chapter 9:
Generating Functions and Laplace
Transform

9.1 Generating Functions

9.1* Region of convergence for PGF, generating function and Z-transform.

(@) If|fx| < M for all k and some constant M, then

- 1
|F(z)| < kz-olkak‘ <MY | = M, for|z| <1.

||
(b) Similarly

. s 1
|F(2)] < I;)|fkfk| < MZ |27F| = Mi——=

, for|z7Y < 1, or|z] > 1.
|21
(c) Since Y, px, = 1 by definition

|P(z)| <P(1)=> pp=1, for|z] < 1.

9.2* Derivation of PGFs in Table 9.1.
(a) The PGF is given by

(b)

(c) We can write
Zy=X1+Xo+...+X,.

where X, is the number of failures until the 7 success is attained after the (¢ — 1)st success.

Then X; has the shifted geometric distribution with its PGF 1{2 ~, as obtained in Example

9.1. Since X;’s are i.i.d., we have the PGF of Z,. given by ( bz )T.

1—qz

9.10* Shifted negative binomial distributions
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(a) The distribution of X is the shifted geometric distribution discussed in Example 9.1.
Using the result (9.6), we find

EX] = 9" and Var[X] = %
p p
(b) We can write Z,. as
Zp=X1+Xo+ ...+ X,

where X}, denotes the number of failures after the (k — 1)st success and prior to the kth
success. Since X},’s are independent, the PGF of the RV Z,. is

Py, (2) = (1 pqz) =p'(1—q2)" ()

The mean and variance are readily obtained as
EZ)="2 and Var[z,] = 2.
p p

(c) From the identity of the hint
N ; ~
(=g =30 () cars B <ot
Thus, from (1),
Pae =0y () ey
j=o \J

(d) The coefficient of z* is given by (9.117), where the second expression was obtained by
using the identity (3.97):

(—'n)_(—71)!':(_1)1-11(71+1)-~:(n+i—1):(_1)i(n+zj—1>7 )

i) il(=n—i) i )

(e) The expression (1) suggests that the (shifted) negative binomial distribution f(j;r, p) is
r-fold convolutions of the (shifted) geometric distribution:

{f(k;r,p)} = {d"p}"®,

which implies the reproductive property.
From the definition of Z,, it is apparent that

Z7‘1 + ZTz = 4ri+raes

where Z,., and Z,., are independent in the Bernoulli trials.
Recall that the negative binomial distribution can be extended to the case for a positive real
r (but still 0 < p < 1) as defined in (3.109). The generating function remains the same as

(D.

9.15*% Derivation of the binomial distribution via a two-dimensional generating function
C(z,w).
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(@)
b(k;n,p) =bk—1;n—1,p)p+b(k;n —1,p)q
b(0;n,p) =b(0;n —1,p)g, n>k > 1.

(b)
B(zn,p) =pz »_b(k—1;n—1,p)2" " +¢> bkin—1,p)2F
k=1 k=0

B(z0,p) = 1.
(c) From the result in (b) we find immediately
C(z,w;p) = (pz + QuwC(z,w;p) + 1,

from which we have

C . — — n TL.
(zwip) = 7= E(pzﬂz) w
Therefore, we find

B(zin,p) = (pz +q)",

and
n _
b(k;n,p) = <k)pkq" k.

9.18* Convolution and the Laplace transform.

B = [ g i [ ( | ne-nnw dy) e da.

Define a new variable z = x — y, then 0 < z < oo, because 0 < y < x. Then,

Dy(s) = /Ooo fi(z)e* dz /OOO fa(y)e ¥ dy = @, (s)Py, (s).

9.21* Discontinuities in a distribution function. If F'x(x) has a discontinuity only at = 0, the
corresponding ® x (s) is a rational function of the form (9.97). Then it is clear from (9.102) and
(9.106) that

. . aq
Jm @ (s) = lim Fy(z) = 3=,
which is the magnitude of a jump in Fx () at the origin.
If F'x () contains discontinuities of py’s at z = xj’s, we can write

Fx(x) = Zpku(x —xi) + G(z),
k
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where u(x) is the unit step function, and G(z) is a continuous and piecewise differentiable
function with g(z) = G'(z). Then the corresponding density function is

fx(@) = prd(x — zx) + g(),

k

where §(x) is Dirac’s delta function or the impulse function. The Laplace transform is then

Bx(s) =S me o+ [ gla)e > da.
k



10 Solutions for Chapter 10:
Inequalities, Bounds and Large
Deviation Approximation

10.1 Inequalities frequently used in Probability Theory

10.16* Bernstein’s inequality [21, 131].

(a)
P {Sn > e] - Y PS.=H=Y <Z>pkan
" k>n(p+e) k=m
<exp{Alk—n(p+ I}, Jpha"*
— g ne kg: (Z) (pe)\q)k (qefkp)nfk
e (1 A —Ap\n—k
<32 (1) 09" )

_ efkne (pe/\q + qe—Ap)n
(b)  Using the inequality in the hint

M < \g+ e)‘zqz, and e < —\g+ NP

Thus,
per 4 ge P < N 4 NP7

Thus,

Sn 2.2 2,2\ "™

P|l—Z2—-p>el <e ’\"g(ekq +e)‘p)
n
< e Ane (pe’\ + qe’\z) = exp(—nA(e — X))
(c) Since
/\2
Ae—A) <
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We finally find

2
P[Sane} §exp<n€>, € > 0.
n 3

Since the distribution of % should be symmetric around p, we have

2
p[&pge} Sexp<n€)
n 3

Thus combining the above we obtain Bernstein’s inequality (10.136).
10.17* Hoeffding’s inequality for a martingale [152, 288].
(a) Suppose p = 0. Then for any A > 0, we have from Markov inequality
P[Y, > 1] = P [exp(AY,) > €] < e M E[exp(AY,)]
Let W,, = exp(AY,,) Then Wy = e# =1, and
W, = M1 A¥n=Yn1),
Thus,
E[Wo Yy 1] = o B [0y, |

be o 4 g, e on
S Wn—l ’
a, + b,

where we used the hint since f(x) = €'® is a convex function, and that X = Y,, — Y,,_; sat-
isfies E[X] = 0, because E[Y,, — Y,,-1|Yn-1] = E[Ya|Yn-1] — E[Yn-1|Yn-1] = Yn-1 —
Yn—1 = 0.
(b) Taking the expectation of the above,
bpe 2 + a,ertn
a, + by

E[Wn} S E[anl]

)

which lead to
i bie i 4 q el
EW. | < _—
Wl < };[1 a; +b;

Then from (10.139)

n

bi —Xa; ; Ab; n )\2 ; bz 2
P, > 1) < e M B H o e (<a+>> ,
i=1

pale} a; +b; 8
where we set 0 = a,‘fﬁb, and x = A(a; + b;) in the hint. Hence,
" (ai + b;)?
P[Yn > t] < exp |:/\ </\z:ll(cé+) — t>:| ,

(c) The expression in [ ] takes the minimum when A = W and we have
i=1\i 104

2t2
P[Y,, > t] < exp ST (b))
i=1\@q i
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Then the Azuma-Hoeffding inequalities (10.137) and (10.138) follow by applying the

above to the zero-mean martingale Y; — u and to a zero-mean martingale 1 — Y, respec-
tively.

10.18* Upper bound on the waiting time in a G/G/1 queuing system [196].
(a) By expanding (10.143) recursively, we have
W, =max{0, X, 1, Xn 1+ Xpn 2,...,. X1+ Xno+...+ Xo}
For § > 0, e/ is a monotone increasing function of 17,,. Hence,
Wi — max {1,69)("*1,eG(X“*IJ“X"*?), o ee(xn,1+xn,2+...+xo)}
max {Yp, Y7,..., Y, }.
(b)
Mx(0) = E ["*].

The MGEF is defined over an interval Iy, in which the MGF is bounded. This domain I
includes @ = 0. The function Mx (6) is a convex function. Furthermore, Mx (0) = 1 and
M%(0) = E[X] < 0. Let 6 > 0 be any value in Iy that satisfies

Mx () > 1. 1
Then

E[Y,|Y1,Ys,...,Y, 1| =E |:€0(X7L71+X71,72+'“+X0) ee(Xn—1+X71—2)’ s X1+ Xn ot-4+X1)

=e I:QGXO} ee(Xn71+Xn72+".+X1) = MX(Q)Y,,L,1 > Ynfh

which shows that Y, is a submartingale.
(c) By applying the Doob-Kolmorogov’ inequlaity, we obtain

Ky, (t) = PWy > 1] =P |:69Wn269t}
= P [max{Yy,Y1,...,Y,} > th]

< P[Yn] _ 670t+nmx(9)

(c) The tightest bound is attained by finding
t0
min {mX(H) - }

n

with the constraint (1), or equivalently

mx (0) > 0. 2



10.2 Chernoff’s bound

10.3 Large Deviation Theory
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11 Solutions for Chapter 11:
Convergence of a Sequence of
Random Variables

Appendix (or Supplementary Material): This is the proof of Lemma 11.25 in the text that is
omitted because of the space.

Lemma 11.1 [Conditions for a.s. convergence]
X, *3 X, if and only if, for arbitrary € > 0 and § > 0, there exists a number M (e, §) such that

Pl {w: | Xn(w) = X(w)| <e}| =1-96 (1)

for all m > M (e, 9).
Proof. Letsets A and A,,(€) be as defined in (??) and (11.6), respectively:

A={w: lim X,(w) = X(w)}, (2)
n—o0
Ap(e) = {w : | Xp(w) — X(w)| < €} 3)
We define a sequence
Bp(e) = () Anle), €5
which is an increasing sequence with the limit
lim B,,(e) £ Ale). 6)
m—o0
The limit A(e) can be interpreted as
A(e) = {w € A, (e) for infinitely many values of n}. (6)

From the definition of almost sure convergence
X, ¥ X «— P[A] =1, (7

where the symbol <= means “if and only if”. Since the events A and A(e) are related by

A= Ao, (8)

e>0
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we have
PlAT =P |[JA%(e)| <) PlA(e))- ©)
e>0 e>0
Therefore, it follows that
P[A°] =0 <= P[A%(¢e)] =0 forany e > 0. (10)
or
P[A] =1 < P[A(e)] =1 forany e > 0. (11)
Because of (5), we have
PlA(e)] =1 «— nlLianP[Bm(e)] =1 (12)
Thus, from (7), (11) and (12), we conclude
X, "3 X < lim P[B,(¢)] = 1foranye > 0. (13)

m—0o0

The right hand side of the above implies, by referring to (4)

lim P

m—0o0

() {w: [Xn(w) - X(w)| < e}] =1, forany e > 0. (14)
In other words, for any € > 0 there exists a number N (e, §) such that for all m > N (e, J)

P

) {w: [Xn(w) = X ()| < e}] >1-04, (15)

which is equivalent to (11.25). O]

11.1 Preliminaries: Convergence of a Sequence of Numbers or
Functions
11.2 Types of Convergence for Sequences of Random Variables

11.1* Example of D. convergence. The distribution function of Z,, is given by

Fy,(2) = PlZy < 2] = Pln(1=Y,) € 4| = P [V, 21— 2. (16)
Since Y,, = max{X1, Xo,..., X},
P{Yngl—ﬂ:P{Xigl—%,1§i§n}:{Fx(1—§>]n. 17)

Note that 0 < 'Y,, < 1, almost surely, and hence Z,, > 0, a.s. Whenn > 2z > 0,

0<1-2<1,
n
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and therefore

Fx(l—f):l—f,n>z. (18)
n n
Hence,
lim [FX (1 _ f)r — Lm [1 _ fr — e (19)
n—00 n n—0o0 n

From (16), (17), and (19), we conclude that

lim Fz (z)=1—e"%, z2>0,

n—00

ie. Z, 3 Z.
11.3* Convergence of sample average.

By the weak law of large numbers,
1 n
=3 N Ho.
n
k=1

Therefore,

lim P[| X, —c| >¢ =0,

n—0o0

for any € > 0. Hence, X, e
11.6* Properties of | Y ||,- [131].

(a) Holder’s inequality: From the convexity of the exponential function, we have, from
Jensen’s inequality, for any real numbers v and v, and % + % =1,

exp (3+9) <42 (20)
T S T S

RS ) ( Y| >
u=In|—] , andv=In| —— ) .
(Xllr Y1l

Then the LHS of (20) is

LK L (Y] Y
LHS = —1 -1
5 ex"(r “(nxn) i “(nyns
x|

L (X " L (Y] s
= eXp — In -eXp — In
P TP Tl

XY
X111

Set
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Using
RY )T ( Y] )S
e = , and e’ = ,
(llelr 1Yl

_ L rpyp
rlIXIE s IYls

the RHS of (20) is

RHS

Thus
| XY Xy Ly
XTIV = 71X 5170
By taking the expectation, we find

XY 11
XYY = s

(b) The proof given in part (a) can carry over to this case. From (20), we have

u

= U "L e ey
Zexp(+><z<+>. @1)
P r S P T S

Set

where

n 1/r
x|, = <me) , for r>1.
i=1

)T~explln( Yi >S _ Z?:lxiyi’
s \lllls ]| [ylls

n r n s 1 1
RHS = Zz:l Ly 21:1 Y; — 1

Then the LHS of (21) is

LHS = -1
;exf’r “(|w||r

and the RHS is

ey slyls  r s

An alternative proof: We use the hint given in part (b). It is easy to see that F'(x) is
minimum when z = 1. Thus,

3

8]
8

— + >1
T s
In order to derive
u" vt
uv < — 4+ —
T s
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We set z = ul/5v™1/" = 4”1 + sv~ 7+ in the above inequality, then we find
u" vf

uw < —+ —,

ro s

and the rest of the proof is similar to the first proof.
The proof for the integral version is similar. Instead of Y ;, use the integral.
(c) MinkowskKi’s inequality:
E[X+Y|=E[|X+Y||X+Y|"]
< B[(1X] + [YDIX + Y|

E[IX|IX + Y[+ E[Y|IX + Y] (22)

< (BIXI)Y7 - (BlX 4 vieo)

Y)Y (Bx o) e3)

r—1
-
)

= (X1l + Y1) (E[IX +Y]7]) (24)

where (23) is obtained by applying Holder’s inequality to each term in (22), with
1 1 T

-+ -=1=s5s=—7-.
T s r—1

Multiplying both sides of the inequality (24) by the factor

X + Y|
E|X+Y/|7]
we obtained the desired result:

X+ Y <[IX]] + Y]]

11.3 Limit theorems



12 Solutions for Chapter 12:
Random Process, Spectral
Analysis and Complex Gaussian

Process

12.1 Introduction

12.2 Classification of Random Processes

12.3 Stationary Random Process
12.1* Sinusoidal functions with different frequencies and random amplitudes [175].
(@)

Rx(t)=EX({t+1)X(t)] =F (i {A; cosw;(t+ 7) + B;sinw; (t + T)})

=0

. (Z {A;j cosw;t + Bj;sin wﬂ}) j| .

Jj=0

Noting that E[A; B;] = 0 and E[A;A;] = E[B;B) = 0 for i # j, we find

Rx (1) = Z E[A? cosw;(t + T) cosw;t + BZ sin w;(t + 7) sin w;t]
i=0

m m
= E af cosw;T = o2 E ficosw;T.
i=0 i=0

(b)
Rx (1) =02 /W cos wT dF(w).

0

©

2 o2, ift =0,

RX(T)ZU*/ coswrdw:{o it 70
0 ’ :

™

For a detailed mathematical treatment see Chapter 9 of Karlin and Taylor [174].
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12.4 Complex-Valued Gaussian Process

12.3* Condition for integration in mean-square.
We can expand the LHS of (12.39) as follows:

E[lY - S,|*] = E[YY*] — E[YS}] — E[Y*S,] + E[S,S]
= /b /bh(t)E[Z(t)Z*(s)]h*(s) dt ds
b N
- [ S HOBZOZ @ @) b~ )

- [ S B O 2@ b - 6)

@ =1
n n

+ 3 h(E)E[Z() Z ()N () (tirr — ) (i1 — ).

i=1 j=1
(D

Since E[Z(t)Z*(s)] = Rzz(t, s), the first term equals @ of (12.40). By taking the limit n — oo
and max{t;—1 — t;} — 0, the second term becomes

n—o0

b n
lim | Y h()E[Z(H)Z ()] (t:)(tiar — ) = lim [ Y h(E)R(E, )" (t:) (i1 — L)
i=1

Similarly the third and fourth terms of (1) also equal ). Thus,
lim E[Y =S, =Q-Q—-Q+Q=0.

n—oo
12.4* Circular symmetry criterion for a complex Gaussian process.
First, note that Q ;.i0 70 (s, 1) = E[Z(s)e? Z(t)e'®] = Qzz(s,t)e??? Thus the process Z(t)e?’
satisfies the circular symmetric condition if and only if Qzz(s,t) = 0 for all ¢, s. Let
Z(t)e" = X (t)cosf — Y (t)sin@ +i(X (t)sin@ + Y (t) cos 6)
2U(@)+iV(t).

If Z(t) = X(t) +iY(t) and Z(t)e’ = U(t) + iV (t) have the same distribution, their 2 x 2-
covariance function matrices must be the same. Let the four elements of the matrix be

E[X(s)X (1) 2 A(s, 1), E[X(s)Y(t)] 2 B(s,1)

E[Y(s)X(t)] = B(s,t), E[Y(s)Y(t)] = D(s,1).
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Then, the following relation must hold for any 6.

E[U(S)U(t)] =E[(X(s)cost —Y(s)sin€)(X(t)cosf — Y (t)sind)T]
0s? 0A(s,t) —sinf cos 0(B(s,t) + B(s,t)) +sin® 0D (s, t) = A(s, ), 2)

[ ( YW (t)] = sinf cos O(A(s,t) — D(s,t)) — sin? 0B(s,t) + cos® 0B(s,t) = B(s,t). (3)
E[V(s)U(t)] = sinf cos 0(A(s,t) — D(s,t)) — sin? §B(s,t) + cos® 0B(s,t) = B(s,t), (4)
E[V(s)V(t)] = sin? QA(s, t) + sin 0 cos §(B(s,t) + B(s,t)) 4+ cos> 0D(s,t) = D(s,t). (5)

If we set = 7/2 in (2), then D(s,t) = A(s,t). Using this result and setting § = 7/2 in (3), we
obtain B(s,t) = —B(s,t). Then (12.31) holds.

Conversely if (12.31) holds, then D(s, t) = A(s,t) and B(s,t) = —B(s,t) must hold. The equa-
tions (2) through (5) hold for all §, which implies that the distribution of Z (¢ )e' is invariant under
6.



13 Solutions for Chapter 13: Spectral

Representation of Random
Processes and Time Series

13.1 Generalized Fourier Series Expansion

13.1%

13.4%

Parseval’s identity. Using
(= geas
—00

we have

o0

| cnra= [ atne - . [ | awe s [ g e ds] ar

- { /, T e df] g(t)g" (s) dt ds
= [T | - ngas] oy

[ swewde= [l

Orthogonality of Fourier expansion coefficients of a periodic WSS process.

In order to prove the second orthogonality (13.28), we expand the periodic R(7) using the Fourier
series:

o0
R(r) = Z rkei%f"]”, —00 < T <0,
k=—00
where
17 ,
TR = — R(7)e 2ok g7,

T()
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Then

T

) 1 T .
[X* ez27rf0mtX* (t) di= / 67127rf0nsX(s) d5:|
0 T 0

m

X]=E |7

T
1 T

/ / ezZﬂ'fomt 7127rf0nsE[X( ) *(t)] ds dt
T2 0 0

1 T T iom o
7, T fomt 77, mfons
T2/0 /0 0 O Rx (s —t)dsdt

1 T T o
= / ez27rfomt —i27m fons Z rk€i27rfgk(s—t) ds dt
T 0 0

k=—oc

IR
< 127rf0(m k)t dt) <T/ e*lQ’]Tfo(n*k)s dS)
0

E Tk(sm,k(sn,k = T’n(sm,na

k=—o00

where we used (13.27) in the last step.
13.9* Orthogonality of eigenvectors. Note that

u;” Ruj; = \ju;" uj,

since ulf

is a left-eigenvector of R. Also

uZHRuj = uf{)\juj,
since u; is a right eigenvector. Taking the difference of the above two equations, we have,
(N = A\)ufu; = 0.

Since A\; # A;, it follows that uHuj =0.
13.12* Eigenvectors and eigenvalues of a circulant matrix.

(a) Consider the matrix equation C'u = Au. Expand this equation and consider the jth row:
Cn—jUg + Cpjy1Uy + -+ + Cp1Uj_1 + CoUj + C1Ujqr1 + -+ Cpjo1Un_1 = AUy,

which gives

n—1 n—j—1

E ChUk—n+j + E ChUk+j = AU; .

k=n—j
(b) Substituting u; = o7 into the above, we have

n—j—1

Z cpaf T 4 Z ot = o,
k=n—j k=0

By dividing both sides by o, we have

n—1 —j—
o 3 qks 'Y
k

=n—j k=0
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() If @™ = 1, then the last equation becomes

n—1
A= E ckak.
k=0

Equation o™ = 1 has n distinct complex roots:

i2mm

am=€en =W" m=0,1,2,...,n—1. (1)

Then the mth eigenvalue is

n—1
Am =Y kW™, 2)
k=0
and the mth eigenvector is
U = (2 o, 02, o DT = (1, W W e my T

From (2), we can write ¢ in terms of \,,’s, i.e.,
1 n—1
== ApWRT
n
m=0

which is the inverse DFT.
Note: The more common definition of the DFT and the inverse DFT may be

n—1
Am =Y cgWrm,
k=0
and
1 n—1
e =~ > AW
m=0
This can be obtained by expressing the n distinct complex roots as
i2mm
oy =€ n =W

Alternative proof:
It is easy to verify that a matrix is circulant, if and only if it can be expressed as the following
matrix polynomial:

C=cl+cV+.. +c, V¥ (3)

where I is the identity matrix and

010---0

001---0
V=

100---0

is the cyclic permutation matrix (also called the elementary circulant matrix).
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Let o and u denote an eigenvalue and its corresponding eigenvector of V/, i.e.,
Vu = au. @

Then w is also an eigenvector of C', because

n—1 n—1
Cu = E cxVFu = E ek,
k=0 i=0

Thus, the corresponding eigenvalue of C' is
n—1
A=) et (5)
k=0
So the problem of finding n eigenvectors and eigenvalues of C' reduces to that of finding those
of the cyclical permutation matrix V.
Let u; represent the ith element of the vector u, i.e.,

w = (Uo, Uty . Uy 1) . (6)

Then from (4), we find
UL = QUg, Uy = QU] = a2u0, LU = QU = aiuo, e Up = a"’luo. @)

From (4), we also find
Viu=a'u, i=0,1,2,.... (8)

Note that the cyclical permutation matrix V satisfies V™" = I. By setting ¢ = n, we find
o =1, 9

to be a necessary and sufficient condition for u to be a non-zero vector. There are n distinct
complex roots for o, which are given by

12
cum:exp<Z 7rm> =W™m™ m=0,1,....n—1,
n

where W = exp (127”) as defined in (1).

The mth eigenvector is found from equation (6) as

U = (L, W, W2 W= INT o, =0,1,...,n—1,
where we set uyy, o, the first component of the u,,, to be unity for all m. The corresponding
eigenvalues are found, from (5), as

n—1
Am =Y W™, m=01,...,n-1,
k=0

which shows that the eigenvalues are the DFT of (cg, 1, ..., Cp-1).
Matched filter and SNR. We assume that the signal duration interval is [0, 7. Otherwise,
replace the integration fOT below by [ throughout.
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(@)
T
Sg(t):/o h(u)S(t — u) du
Thus,
Ps = [So(T T —u)du
NM@:A h(w)N (t — ) du
Thus,
Py = E[|No(t) / / N(t—u)N*(t —v)]h*(v) dv
T
o(v —u)h *(v) dudv = o w)|? du.
// (Wl (0) dudo = o* [ ) a
(b)
SNR — |f0 )S(T — u) du|2
02f |h(u)]? du

Using the Cauchy-Schwartz inequality | (X, Y)|? < | X|?|Y|?, we have
JEIS(T = i du f [h(w)? du
o2 [T |n(u) 2 du
e E
== [ IS(T-wfdu==2
0

o2 o2

SNR <

where the equality holds when
h(u) = kS*(T — u)

with some constant k. E is the signal energy: Fg = fOT |S(t)|? dt.
(c) Define Py = E[|No(T)|?]. Then

Py = /0 /0 h(u)E[N(t — u)N*(t — v)]h* (v) du dv
:/ / RN(T — u, T — v)h(u)h*(v) du dv.
o Jo

Hence

| f) hw)S(T — ) duf?
foT foT RN(T — u, T — v)h(u)h*(v) dudv

SNR =

Find h(t) that maximizes SNR. To simplify the presentation we use the following vector
and matrix representation.

hMu) — h, S(t—u) — S, Ry(T —u,T —v) — Rn.
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Then

TSP |(RYR)T(Ry2S))

SNR = =
h'Ryh*  (RY?h)T(RY’R")
IRRIPIBLSIP | gz o
T IRVR? "
— STRR{ls*,

where the equality holds if and only if (by setting an arbitrary scaling constant to be one)
Ry*h=(Ry*S)",
or
h = Ry'S*, or Ryh =S,
Thus, the matched filter 4(u) must satisfy the integral equation
/ Ry (t,u)h(u)du = S*(T —t),

which is equivalent to the equation for Q(u) of (13.136), with h(t) = Q*(T — t).
Note: The square root of R that appeared in the derivation corresponds to

RY? — " VNon(t)u(s)
k=1

Similarly,

—1/2
Uk ()i (s)-
—3
13.18* Orthogonal expansion of Wiener process (need corrections).

(a)
o? min(¢, s)y(s) ds = .
/0 (t,s)¥(s)d A(t)

Dividing [0, T into [0, t] and (¢, T,

o? (/Ot s1(s) ds th/tTw(s) ds> = \(2).

Differentiate both sides with respect to ¢:
T
o? <w(t) +/ Y(s)ds — tqp(t)) = \/(1).
t
Differentiate again

o () + 1/ (1) = (t) — () — 1/ () = X' (1)
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Hence,

—o2y(t) = ' (2).
(b) If X <0,then

2
7/’,[@) —a®y(t) =0, where a® = %.

Then the solutions of this differential equation are known to be

’(/J(t) = Cleat £ 1/)1(t>, and w(t) = Cge_at £ 1/)2(t).

If we insert 1 (t) (by setting C; = 1 to simplify the matter) into the integral equation, we
have

T
a2/ min(t, s)e* ds = —e®.
0

By splitting the integration interval into two parts,

t T
a? (/ se*® ds —|—t/ e’ d5> = —e%,
0 t

t eas / eas T
LHS = a* /s( > ds—|—t{ ]
0 a a t
ast t _as al _ _at
a2<{se } _/ e ds—i—t(e e ))
a | Jo a a

) <t€at eat -1 teaT _ teat)
= Qa +

Then

a a? a

= ate™ — e + 1 4 ate®T — ate™ = —e + ate®” — 1.

The LHS equals the RHS (—e®) only if e*Tat — 1 = 0 for all ¢, which does not hold.
Hence 11 (t) cannot be a solution for any real number a. Similarly 5 (¢) = e~ ** cannot be
a solution of the integral equation. Hence no solution exists.

(¢) Let "—/\2 = w?. Then the solutions of the differential equation (13.247) are

’lﬂ(t) = Cleiwt + Cge_iwt.
Then substituting this into (13.246),

t T
o2 {/ s (C’1eiws + C’ge*iws) ds + t/ (Cleiws + 02671'0')8) ds| =\ (Clei“’t n CQefiwt) .
0 t



Dividing both sides by A and performing the integration, we have

teiwt eiwt -1 tein + Z‘wteiwt
LHS = w?C -
! ( iw (iw)? iw
N WQCz te*iwt B efiwt -1 tefin _ iwtefiwt
—iw (iw)? iw

= C1(—1 —iwte™T) 4 Oy (—1 + iwte ™)
= —(Cl + 02) — iwt(Clei‘*’T — Cgein).
This equals the RHS (C;e™? + Coe~™?), if and only if

Ch4Co =0, and e“T + e T = 2coswT = 0.

Hence,
2 1
WT=T tnr = W
Thus,
(2n+2)m
= =0,+1,42,....
w 5T n

Thus, the eigenvalues are

2

M= T n=0,41,42,
w

n
The corresponding eigenfunctions are
v (t) = Cre™nt — Cre ™nt = 4§20 sinwyt.

From the normalization requirement fOT |vn (t)|? dt = 1, we find

12 .
vp(t) = T sin wyt.

(d)  The K-L expansion coefficients are

W, = /OTq/;n(t)W(t) dt = \/E/OT sinwntW (t) dt.

From the theory of K-L expansion, we know the set of ¢, (t), n=0,+£1,+2,...

orthogonal.
2 T T
EW;] = = / / sin wy tw, s E[W (t)W (s)] dt ds
o Jo

202 (T (T
= T/o /0 min(t, s) sinwy,t sinwy,s dt ds

65
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Now, we evaluate

t T
min(t, s) sinw,sds = / ssinw,sds + t/ sinw, s ds
0 t

0
¢ / T
COS Wy, S
:/ s( n > dert/ sinwy, s ds
0 Wn, t

t t T
S COoS wpt COS Wy, S COS Wy, S
= | + ds —t
Wn 0 0 Wp Wp ¢

t coswpt 1 .. ‘ coS wyt

=———— + — [sinwys|; + ¢

W, wa Wn,

_ sin c;znt. (10)

w
Thus,
By = 2 /T sin” ;.)nt it — /T 1- cosz2wnt _ T 41
T Jo w2 0 2w2 2w2  (2n+1)272

Using the result of (10), we can directly show the orthogonality between W, and W,,
(m # n), as follows:

E[W,Wp,] / / sinwp tw sE[W (t)W (s)] dt ds
= — sin wy,t (/ min(¢, s) sinwy, s ds> dt
T 0
20_2 T

= T2 sin wy,t sin w,,t dt.
w

Since

T
/ sinwyt sinwy,tdt =0, for m # n,
0

we have proved the orthogonality.
(e) Note

Hence the set of {w,;n > 0} is complete. So

t)—\/z i Wnsinwnt—\/g< Z Wh, smwnt+ZW smwn>.

n=-—00 n=-—00 n=0

The first term can be written as

o0
Z W, sinw,t = Z W_psinw_,,t = Z W_ o sinwy,_1t

n=-—oo

=— g W_,—1sinwy,t.
n=0



Hence,
2 & : s (2%, o
= \/;T;)(W” —W_,_1)sinw,t = \/;nz% Up sinwnt,
where,
Up =W, —W_p,_4).
Hence

B2 = BIWE + B2,
(@)

<[]

13.2 PCA and SVD

13.20* Sum
(a)

(b)

(©

of squares of the difference.

ol 2
—2n —1)m

S aul? = 32 S iy P = S5 les = 80P el
7 7 7 7 7 7

ai; = bVl bl

Thus
‘aU'Q (b(l (1) + b (2) (2 )(b(l) + b (2) (2 )

because (c(V), c(?) = (¢, c(l)) = 0. Thus,

B PIES P + 1o Pl P,

S5 lasl? = IOV 2 + 53 2c)).

i=1 j=1
By generalizing the result of part (b), we have that if
A= Z b(i)c(i)T’
i=k+1
Then

LA|* = Z 1712,

i=k+1
Now let

67
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Let b = w; and ¢ = x;, i =k+1,...,m. Then using ||u;||? = 1, we have

m

m
IX=XI2= > Il?= Y

i=k+1 i=k+1
where we used (13.160) to find ||x;||? = 1.
13.26* Mean square convergence of (13.196).
By computing the mean square difference between X, and Z?;é a’e,_j, we have

2

k—1
E Xn - Z ajen—j = E[(aan—k)2] = GZkE[X?sz]'
=0

Since the process is assumed as stationary, E[X EL_ k] is a constant, independent of k£ and since
|a| < 1, the RHS decreases to zero with geometric progression. Thus, we have (13.252).



14 Solutions for Chapter 14: Point
Processes, Renewal Processes
and Birth-Death Processes

14.1 Poisson Process

14.1* Alternative derivation of the Poisson process.

(a) Since the exponential distribution is memoryless, the interval X till the first event point
t; is exponentially distributed whether or not ¢ = 0 is an event point, and

Fi,(t)=Fx(t)=1—¢e* t>0. (1)

(b) Since t,4+1 =t, + Xn+1 and ¢, and X, are independent, the PDF of ¢,,,; is the
convolution of the PDFs of ¢,, and X, 1.
(c) Thus, by setting n = 1 in the above, we have

t
[, (t) = / e AW N gy = A2te™ N ¢ > 0. )
0
By repeating the above step, we find
hY ntn—l B
ftn(t):((n)l)'e kta t207n21727 (3)

Substitution of this result into (14.69) yields

t A" t
PIN(t) =n] = /0 [0 = frapa ()] du = 5 [ et = )
= 7@3”6% £ P(n; At), )

where the last expression was obtained by applying “integration by parts” to the first term
in the integral, i.e.,

! t o dun . t
/ nu" e du = / <> e M du = u"e”‘“|0 + )\/ u"e M du
0 0 du 0

t
= t"e M 4 )\/ ue M du.
0

Thus, we have shown that this renewal process N (t) has a Poisson distribution with mean
At, if the lifetime distribution is the exponential distribution (14.99).

14.8* Uniformity and statistical independence of Poisson arrivals. TBD



(a) We wish to prove that the joint PDF of Uy, ..., U, conditioned on {N(T") = n} is given
by

1
= F
where Uy, . .., U, are the unordered arrival times of a Poisson process in the interval (0, T7].
Let uq, ..., uy be distinct values in the interval (0, T"). Without loss of generality, assume
that0 < uy < ug < -+ < u, < T.Define intervals I; € (u;,u; + h;], where h; > 0, j =
1,...,n, such that the intervals are disjoint and each I; is contained in (0, 7. Let &,, denote
the event that n arrivals fall in the intervals I, j = 1, ..., n, with exactly one arrival in each
interval. The interval (0, 7] can be partitioned into 2n + 1 intervals as follows:

foru, (U, un|N(T) = n) (14.103)

(OaT] = (O,Ul] Ul U (ul + h17u2] U---ul,u (Un + hqu}- @)

When the event &,, occurs, exactly one arrival occurs in each interval I}, j = 1,...,n, with
probability Ahe™*", and no arrival occurs in each of the other subintervals in the partition
(5). Therefore,

P[gn] _ (ef)\ul )(/\hlef)\hl)(efA(uzfu1fh1)) . (/\hnef)\hn)(ef)\(Tfunfhn))
— X [ ©)
j=1

We can also write

P[gn] (;) ZP[Ul S Io-(l),UQ S Ia(z),---yUn S Ig(n),N(T) = n]

(:b)n!P[Ul611,U2612""’U”€I”]’ @

where the summation on the right-hand side of (a) is over all permutations o on the set
{1,...,n}. Step (b) follows because the n arrivals are unordered. From (6) and (7), we
obtain

N -
P[U; efl,...,UneIn}:Fe**Tth. (8)
! =

Hence,
PlUy € L,...,U, € I,|N(T) = n]

—_ P[Ul S Il7 sty Uﬂ, S In] _ %eiAT H?:l h] _ H?:l h] (9)
PIN(T) = n] OI) o ar Tn

We remark that (9) holds for any ordering of the u;’s, although we assumed u; < --- < uy,
for convenience in obtaining (6). The joint density of the unordered arrivals, Uy, ..., U,,
conditioned on the event {N(T") = n}, then follows from (cf. (4.92))

. PlUely,...,. U, e I,IN(T)=n
fUr“Un(ula"'aUn‘N(t):TL): lim [ ! ! 7 | ( ) ]’
h ;=0 Hj:lhj

j=1,....n

(10)

which results in (14.103).



71

(b) The result (14.103) suggests the following procedure to generate Poisson arrivals in an
interval of (0, T
a. Draw the number of arrivals n from a Poisson distribution with parameter \7T'.
b. Fori=1,...,n, draw the value of the unordered arrival time U; from a uniform dis-
tribution on (0, 7'}, independently of the others.

14.2 Birth-Death (BD) Process
14.13* Time-dependent solution for a certain BD process. When A(n) = A and p(n) = nuforn > 0,
the differential-difference equations for the BD process become:

Po(t) = =N+ np)Po(t) + APy (t) + (0 + DpPpia(t), n=1,2,---, (11)
Py(t) = APo(t) + uPi(t). (12)

Multiply both sides of (11) and (12) by 2™ and sum from n = 0 to co to obtain:

i Pl (t)2" = =\ i P,(t)z" — i nP,(t)z"
n=0 n=1

n=0

FAY Poa(®)z +p Y (n+ 1) Paga(t)z", (13)
n=1 n=0
which can be written as:
QG(Z t) = —AG(z,t) — ZQG(Z t) + AzG(z,t) + 2G(Z t) (14)
at ) - i l’[’ 82 ? ) ll’l’az ) *
Re-arranging terms we have the following partial differential equation in G(z,t):
g—!— (Z—l)g G(z,t) = Mz — 1)G(z,t) (15)
ar M 0z e e

It remains to verify that the solution

G(z,t) = exp {2(1 —e MY (2 — 1)} (16)

satisfies (15). Alternatively, we may obtain the form of the solution (16) as follows. Based on
(15), we suppose that G(z, t) has the form: G(z,t) = exp(f(z,t)). In this case, (16) reduces to
the following partial differential equation:

[gt—l—,u(z—l);z} f(z,t) = Az—-1). 17

Based on (17), we suppose that f(z,t) is separable as follows: f(z,t) = A(z — 1) f(¢). Then
(17) simplifies to:

@) +pft)=1. (18)
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This is a first-order differential equation that can be solved by multiplying both sides by the
integrating factor /¢, resulting in:

d ut _ ut
et p) = e

The solution of the above equation is:

FH) = -+ Ke,
I

where the constant K is determined from:

G(0,0) = -P()(O) =1

But G(0,0) = 1 implies that f(0) = 0, which determines K as —1/u. Thus,

and

1 —ut
f(t):;(]‘ie )’

14.3 Renewal Process

14.14* Derivation of (14.72).

as n — oo. Noting that

we deduce from (20) that

n 4
=1
N(#)

1 tN(t)
= X = ;
N 2= = N

N@) as, 1
IN() mx

as t — oo. The left-hand side of (22) can be written as

Since

t

tN(t)

N@t) t

totne

2% 1 ast — oo, we can establish from (22) and (23) that (14.72) holds.

19)

(20)

21

(22)

(23)



15 Solutions for Chapter 15:
Discrete-Time Markov Chains

15.1 Markov Processes and Markov Chains

15.1* Homogeneous Markov chain.

(a) Straightforward.

(b)
1/21/2 0
p ' (1)=p (0)P=(100) {1/3 0 2/3] =(1/21/20)
0 1/54/5
1/21/2 0
p'(2)=p ()P =(1/21/20) [1/3 0 2/3] =(5/121/41/3)
0 1/54/5
1/21/2 0
p (3)=p (2P =(5/121/41/3) {1/3 0 2/3] = (7/24 11/40 13/30)
0 1/54/5
(©)
gT(z)=p" (I - Pz}
1-2-%2 0
det|I—Pz|:det[ -2 1 -2 }
0 —21-2z
13z 22 23 3z 22\ 4
ST s o (15 ) 2ae
Hence,
T-Pat =5 | 505%) (-5 (-%) 5(01-3)
5 $1-5) 1-5-%

Then by substituting p’ (0) = (1 0 ) and the last expression into (15.25), we have

9" (2) = (91(2), 92(2), g3(2)),
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where
1 4z 22
= 1—- = _ ==
91(2) = X33 ( 5 15 ) ’
z 4z
n0) =555 (1-5):
2
z
95(2) = 3A(2)
Hence
li = lim(1 — _ 2
dim g1(2) = lim(1 - 2)g1(2) = 7,
, 1
im g2(2) = 5’
, 2
Ao =3

15.2 Computation of State Probabilities

15.4*% Transitive property. If < <+ j, then there exists at least one m such that PZ-(Jm) > 0, which allows

i to reach j. Similarly, j <+ k£ means there exists n such that Pj(,? ) > 0. Then
(m+n) (m) p(n)
Py > PPy >0,

hence, i« — k. A symmetrical argument shows that £ — ¢. Thus, ¢ <+ k. Thus, we have proven
the transitive property of the communication property <.
15.5% Stationary distribution.

(@)
021
513 27
det[P+ E —1I|=det | 7 ; 5 -3
141
and
_17r 1 11
8 8 2 4
[P+E7I]*1:7 % 1 %
27| 3 5 s
8 2
Therefore,
WT: 17%57
9°9°9
(b)
13
731 3
det[P + E — I| = det %0% =2
6 1 2
164
5 5



and

Therefore,

-2 0
3 _3
5 5
8 9
5 10
2

3

|
I\
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16 Solutions for Chapter 16:
Semi-Markov Processes and
Continuous-Time Markov Chains

16.1 Semi-Markov Process

16.2* Conditional independence of sojourn times.
Using a basic property of conditional probability (see (2.59) in Section 2.4.1), we have

P[Tl S Ui, T2 S U2y ...y Tn S u”|X0,X1,...]
= Plr <ui|me <wug, .., Ty < Uy, Xo, X,
'P[Tg S U2|7'3 SUQ,...,Tn S U",X(),Xl,...]
- Plrs < wuglry < g, Ty < up, Xo, X1,
~P[7‘n < un|XO,X1,...]. (1)

Since 7; depends only on X;_; and X;, we have for1 < j <n — 1

= P[Tj S Uj‘Xjfl,Xj] = FXjlej (UJ) (2)

Plrj S ujlmjer S ujpr, .. Tn < tn, Xo, X1,

Applying (2) in (1), we obtain the desired result

Pl <up,mp <ug, .., T < up|Xo, X1,

= Fxox, (u1)Fx, x,(u2) - Fx, , x, (un)-

16.3* Semi-Markovian kernel.
Suppose we are given the semi-Markovian kernel Q(t) = [Q;;(t)], 4, j € S. We can obtain P =
[P;;] as follows:
P;j = P[Xp41 = j| X = 1]
= tlgglo P[X7L+1 =Jytnt1 —tn < t|X7z, = Z] = thﬂnolo ij(t)
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Then we can obtain F(t) = F;;(t) as follows:

F;j(t) = Pltpy1 — t < t/X,, =4, Xp41 = J]
_ PXps1tagr =ty < HX, =]
PlXo 1 = j| X =]

Qij(t)
— 3
5 3)
__Qu)
limy 00 Qi(t)
Conversely, given P and F'(t), the semi-Markovian kernel can be obtained from (3) as follows:
Qij(t) = Fij(t)Pyy. “)

16.2 Continuous-time Markov Chain (CTMC)

16.5*% Markovian property of an SMP.
We will show that a CTMC X (¢) is equivalent to an SMP with sojourn time distributions F;; (¢)
given by

Fi(t)=1—e¥! >0, i,jeS. (16.17)

For simplicity, assume that none of the states of X (¢) is an absorbing state. Suppose that the
CTMC X (¢) enters state ¢ at time 0. Let S; denote the sojourn time of X (¢) in state 4 starting at
time 0 before it makes a jump to another state j # 4. For s,¢ > 0, we have

P[S;>s+t|S;>s]|=PX(1)=40<7<s+t|X(r)=14 0<7 <]
=PX(r)=i;s<7<s+t|X(r)=14;0<7<5]
=PX(r)=10s<17<s+t]|X(s) =1] ®)
=P[X(r)=14, 0<7<t|X(0) =1 (6)
= P[S; > 1], %)

where (5) is due to the Markov property (see Definition 15.1) and (6) is due to the assumed
stationarity (or time-homogeneity) of the process X (¢). This implies that the random variable
S; is memoryless and must then be an exponential random variable!, say with rate v;. In other
words, the sojourn time distributions of X (¢) are given by (16.17).

! Let g(t) = P[S; > t]. Then (7) implies that g(t 4 s) = g(t)g(s) forall s,¢ > 0. It is well-known that the unique solution
to this functional equation has the form g(t) = e®? for some constant a.
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16.6%*

2

Let to = 0 and let ¢1, o, . . . denote the jump times of X (¢). It remains to show that the process
{X,} defined by X (¢,),n =0,1,2,...is a DTMC. For n > 1, we have

P[Xn :j|X07X17"‘7Xn71]

= P[X(tn) = j | X(to), X(tn), ..., X (tn-1)] (8)
= P[X(tn) =J ‘ X(tnfl)]
= P[X,=j| Xo1] = Px, .. ©)

In the above derivation, (8) formally resembles the Markov property given in Definition 15.1.
A key difference, however, is that the times t1,¢s,... are random variables, not constants.
Nevertheless, (8) does in fact hold in the case of a CTMC and is called the strong Markov
property. The strong Markov property holds when t1, ts, . . . are stopping times for X (t). >

CTMC as an SMP.

Let X (t) be a CTMC characterized by an infinitesimal generator matrix = [Q;;]. As shown in
Problem 16.5, X (t) is equivalent to an SMP with sojourn time distributions given by (16.17). Let
{X,} denote the embedded Markov chain (EMC) of X (¢) (see (16.2)) and let P = [P;;] denote
its transition probability matrix (TPM).

Suppose that the CTMC X (¢) enters state ¢ at time 0. We shall first assume that state ¢ is not
an absorbing state. In this case, P;; = 0. The CTMC X (¢) remains in state ¢ for a sojourn time
S; and then transitions to another state j # i. As shown in Problem 16.5, S; is exponentially
distributed with parameter v; > 0. Therefore, P[S; < h] = 1 — e ", h > 0. For sufficiently
small h,

P[SZ < h] =1- P”(h)
Hence,

P[S; 1- Py
lim 7[51 </ = lim 7“(}0
h—0 h h—

= —Qii, (10)

Since the left-hand side of (10) is given by v;, we have v; = —(@Q);;. The transition probability
P;; = P[X(S;) =j | X(0) = ] can be expressed as

Py = lim PX(8; +h) = j | X(t) =i, 0< t < S;: X(S; + ) # ]
PX(S; +h) =j | X(Si—) =1

=1l 11
W PIX (S + h) £ | X(S—) =1 b
ij (1)
L Py(h) P’T _Qy
N flbl—% 1—Py(h) ilzli% 1*P;‘11(h) Qi (12)

A random variable T taking values in [0, 4+o00] is called a stopping time for a process X () if for every ¢, 0 < ¢ < oo, the
occurrence or non-occurrence of the event {T" < ¢} is completely determined from {X (u), u < t}. For a stopping time
T and a CTMC X (t), the following strong Markov property holds:

PX(T+s) =7 | X(), u<T] = P[X(s) = j | X(0)] = Px(0),;(s)-

For further details, the reader is referred to, e.g., Cinlar [57], Section 8.1.
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where we have applied the strong Markov property to obtain (11) and (16.23) and (16.24) to
obtain the last equality in (12). If state 7 is absorbing, v; = ;; = 0 and Py; = 1.

In summary, the CTMC X (¢) with generator @ can be characterized as an SMP with sojourn
time distributions

Fj=1—e9t ¢t>0,i,j€S, (13)

and transition probabilities given by

(14)

p. 7%”', , if 7 is not absorbing
N d;j, if 4 is absorbing.

The SMP representation of a CTMC provides a convenient approach to simulate a sample path
of a CTMC given an initial state X (0) = x,. If state x( is not an absorbing state (3,2, 7 0),
the dwell time 7; in state ¢ as an exponentially distributed random variable with parameter
Vg = —Quoze- The next state x; is then determined according to the the probability distri-
bution {onj}, j €8, given by (23). In case x( is an absorbing state, the CTMC remains
forever in this state, so dwell time 73 = +o00 and the procedure terminates. The procedure is
repeated, if necessary, from state z; to produce a dwell time 7o, etc. The resulting sequence
{(z0, 1), (x1,72), ...} specifies the sample path of the CTMC.

Alternative solution:

From Exercise 16.3, the semi-Markovian kernel of an SMP can be written as
Qij(t) = P[Xl = j, T1 S t‘X() = ’L] = sz(t)PZ = (1 — eiuit)Pij, (15)

where we applied (16.17) to obtain the last equality.
The transition probability matrix function (TPMF) for a CTMC X (¢) is given by P(t) = [P;;(t)]
where (cf. (16.18))

Pi(t)=P[X(t)=j|X(0) =i =PX(t)=j|Xo=1], i,j€S, 0<1t< 0. (16)

We shall show that the transition probability function P;;(¢) can be related to the semi-Markovian
kernel Q;;(t) as follows:

t
+ 3 [ Pt =) d@ulo). am

keS

Pij (t) = 57ij [1 - Z sz(t)

keS

where d;; = 0 is the Kronecker delta. This equation can be interpreted as follows: First suppose
that ¢ # j. Given that X (0) = X, = ¢ at time to = 0, in order for the event { X (¢) = j} to hap-
pen, X (t) takes its first jump from state 7 to some state k at a time s, 0 < s < ¢ and then given
that X (s) = k, X (¢) ends up in state j at time ¢. Now if ¢ = j, there is an additional possibil-
ity that X (¢) does not take its first jump until after time ¢. Equation (17) can be derived more
formally as follows:

Py(t)=P[X(t) =4, Ty >t| Xo=i]+ P[X(t) =4, Ty <t | Xo =1. (18)
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For the first term on the right, we have
=P >t|Xo=1i] - PIX(t)=j|Th >t,Xo=1]

1- Z@-m} 0y (19)

keS

For the second term, we have

PX(t) =5, Ty <t| Xo =1

=E[P[X(t)=5T1 <t| Xo=1,X1,T1]| Xo =1
= E[lip <y - P[X(t) =7 | X1,T1, Xo =1] | Xo = 1]
=Elin<y - PIX(t—T1) =3 | X1, X0 =1] | Xo = 1]
= B[l <y Px, ;(t = T1) | Xo = 1]
t
= Z/ Pyj(t — 5) dQir(s). (20)
keS 0
Substituting (19) and (20) into (18), we obtain (17).
Applying (16.23),
@iy = dt lt=0
= =015y Qu(0) + Y Pr;(0)Q3;,(0)
keS keS
=—0ij Y _viPi + > Ox;viPig.
keS keS
For i # j, we have
Qij = Vi-Pija 2D
whereas
Qii = —v; Z Py, (22)
ki
If 7 is an absorbing state, then P;; = 1 and from (21) and (22) we have );; = O forall j € S. In
this case, v; = 0. If 7 is not an absorbing state, then P;; = 0 and from (22) we have Q;; = —v;.
In this case, v; > 0 and in particular, we have
vi=—Qu, Pij= Qi _ Qi (23)
Vi —Qii

16.10* Balance equations.
From (16.42), we have

3 mQji+ miQi = 0, foralli € S,
J#i
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From (16.24)

Qi = — ZQij~

J#i

By substituting this into the above equation, we arrive at (16.43).

16.3 Reversible Markov chains

16.12* Converse of reversed balance equation for DTMC. TBD
We have an ergodic DTMC {X,,} with TPM P. Let P be a TPM and 7 = [m;], i € S be a
probability distribution, such that the reversed balance equations hold:

Wipij = Wijiv i,] € S. (16.57)

Summing both sides of (16.57) over j € S and using the fact that each row of P must sum to

one, we have
T, = Z?ijji,
jes
ie., m' =" P.Since {X,} is ergodic, 7 is the unique stationary distribution of {X,, }. From
(16.60), we have

P[Xn = X9 | Xn,1 = 1‘1} = 77T$0P$0I1
Ty
Applying (16.57) to the RHS, we find that P[)N(n =1z | X, = x1] = lexo. Hence, P is the
TPM of the reversed process {X,, }. To show that 7 is the stationary distribution of {X,}, we
sum both sides of (16.57) over i € S, which leads to the conclusion 7w = 7| P. Therefore, 7
is the unique stationary distribution of { X, }.
16.14*  (a) The LHS of (16.85) can be written as

LHS — P[X (t,,) = o, X(tm-1) = 21, X (tm2) = 2, .- X (to) = )
P[X(tmfl) = $1,X(tm,2) = T2,..., X(to) = xm]
_ P[X(~tm) =20, X(~tim-1) = 21, X (~tm—2) = T2,..., X(~t0) = Zp]
P[X(=tm-1) =1, X (—tim-2) = T2,..., X(—t0) = T
TPz, (b — tm—1) Poyzy (b1 — tm—2) -+ - Pe, ye,, (b1 — 1o)
- Moy Pryoy(tm-1 = tm—2) -+ Po,, 1, (1 — 10)
_ WzOngxl (tm - tm71)7 (24)

T,

which is the RHS of (16.85). Since the RHS of (16.85) does not depend on zs, xs, . .., Tm,
the second equality in (16.85) holds. Let P(t) denote the transition probability functions of
{X(—t)}. Then the second equality in (16.85) implies (16.86):

Pz’j(t) _ ﬂjpj‘i(t)

. i,j€ES. (16.86)

Ur
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(b) Differentiating both sides of (16.86) by ¢, we have
dPy(t) _ mj dPj(t)

= i,j €S.
dt a0 Y ©
Setting t = 0 on both sides and re-arranging terms, we obtain the reversed balance equations
(16.64) for the CTMC:
WiQij :ﬂ'jQi]‘, i,j eS. (16.64)

16.16* Let {X(¢)} be an ergodic CTMC with generator @ and let {X (¢)} be its reversed process with
generator Q. The CTMC {X (¢)} is reversible if and only if

Qij = Qijy i,JES. (25)

Applying (25) in the reversed balance equations (16.64), leads to the conclusion that { X (¢)} is
reversible if and only if

miQij = miQji, 1,J €S. (16.65)

16.4 An application: phylogenetic tree and its Markov chain
representation

16.21*  (a) Itis easy to verify that the (i, j) element of the matrix IIQ is given by

and that the (4, j) element of the matrix (IIQ)" is given by
(OQ)')ij = 7 Qji, 4,5 €S. 27)

It is then clear that the detailed balance equations (16.73) hold if and only if
[11Qli; = [(11Q) "]i5,

i.e., if and only if ITQ is a symmetric matrix.

(b) Given a DTMC with TPM P and stationary probability vector 7r, we again define the
matrix IT = diag[m;, ¢ € S]. Next, we verify that the (7, j) element of the matrix ILP is given
by

[IIP);; =mP;;, 1i,j€S, (28)
and that the (4, j) element of the matrix (ILP)' is given by
(IIP)');; =Py, i,j€S. (29)
It is then clear that the detailed balance equations (16.63) hold if and only if
[IP];; = [(TIP)]y;,

i.e., if and only if ITP is a symmetric matrix.
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(c) Let P(1) = [P;;(7)],4,j € S, denote the matrix of transition probability functions of the
given CTMC. By an argument similar to that given in parts (a) and (b), it suffices to show that
the matrix TLP(7) is symmetric for any 7 > 0. We have that P(7) = ¢?7. Hence, it suffices
to show that

Q™ = [[1eQ7]T = @ TII. (30)
By part (a), the CTMC is reversible if and only if
nQ = Q'I1IL. (31)
Now suppose that
Q" = (Q")'m (32)
for n > 1. Then
He"*' = (IIQ"Q = (Q")"IQ
=(Q")"Q'I=(Q")"IL
By the induction principle, (32) holds for all n > 1. Now we have

QF -+
ey

I1e97 =

EDC: k kH eQTTH’

which establishes (30).
(a) Applying the given values into (16.77), we have

-09 02 02 0.5
0.1 -0.8 0.2 0.5
0.1 0.2 —-0.8 0.5
01 02 02 -05

Q=

Using (16.72) with p(e) =1 and 7(e) = 1, we compute P(e) with four decimal places of
precision:

Pe) =€

0.4311 0.1264 0.1264 0.3161
0.0632 0.4943 0.1264 0.3161
0.0632 0.1264 0.4943 0.3161
0.0632 0.1264 0.1264 0.6839

(b) We first obtain the stationary distribution 7r, which is the unique solution to

Q=0 w'l=1.
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Let E denote the matrix of all ones. Then stationary distribution can be computed as follows
(cf. (15.107)):

7w =1"(Q+E) ' =10.1,0.2,0.2,0.5].

Let IT = diag{0.1,0.2,0.2,0.5}. Applying (16.75), the mean substitutions that occur on an
edge e € £ is given by

k(e) = Tr{IIQ} = 0.66.
(c) Let X, denote the random variable associated with node v € {0,1,2,3,4} in the phylo-

genetic tree of Figure 16.4. Let X = (X, X1, X2, X3, X4) denote the corresponding vector
and let ¢ = (2, x1, T2, 3, 24). The joint distribution of X is given by

P[X:iB]ZP[XQ:Io]P[Xl:{El|X0:0]P[X2:£E2|X1 :.1?1]
P[X3:1'3|X1 :l'l]P[X4:.T4|X0:£C0}
- 7TI()P$0$1PI1I2PE11173PI0Z47

where P;; is the (4, ) element of the TPM P(e) given in part (a). The likelihood of the
character 3 is given by

Py, = P[Xo=C,X3=T,X, = A]
=Y P[X = (x0,21,C,T,A)]

Zo,T1

= Z WxOPxOA Z PavlCP;L'lTPI()xl
o T

= Z Wzopngfa:m (33)
xo

where we define

fwo = prlcpalePwow1~

1

We compute to four decimal places,
fa =0.0694, fc = 0.1121, fg = 0.0694, fr = 0.0865. (34)
Substituting into (33), we obtain P,, = 0.0080.



17 Solutions for Chapter 17:

17.1

Random Walk, Brownian Motion
and Diffusion Process

Random Walk

17.2*% Properties of the simple random walk.

®

(i)

(iii)

(iv)

Spatial homogeneity: Both LHS and RHS of (17.3)equal P[>, ;. S; =k — a], because
X,—Xo=k—-—a=(k+b)— (k+a).

Temporal homogeneity: LHS of (17.4) is equal to P[>, S;] and the RHS is equal to
P [yt | S;]. Both involve the sum of n i.i.d. RVs S;s, their probability distributions must
be identical.

Independent increment: We can write X,,, — X,,,, = > je(ma ] S;. If the set of intervals
(mj, n;]’s are mutually disjoint, then all the S; terms contributing to the increments X,,, —
Xom,;’s are mutually independent.

If we know X, then the probability distribution of X, .,, depends only on the steps

Sn+1sSn+2, - -« Sntm, and the values of Xy, X1,..., X,,_1 are not relevant.

17.2 Brownian Motion or Wiener Process

17.10* Derivation of (17.104) and (17.106).

(a) Let X be a RV with mean y and variance o2 and the PDF f(z). Then for any function
g(x) that is continuous and at least twice differentiable at © = u, we can expand g(z) using
the Taylor series expansion:

o(@) = a() + e — )+ ") L 4 of(@ - ).

Then

Blo(X)) = [ g(a)f(a)dz = glu) + 0+ 9"(1 G + o(o?)

where the term o(o?) approaches zero faster than o as ¢ — 0. Thus, if o2 becomes very
small, we can ignore the last term. Recall the following properties of Dirac’s delta function

[wﬂx—wﬂwdr:mw, (1)

[%ﬂ“u—ammwm:«4%¢“mx @)
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where (2) can be derived from (1) by applying integration by parts k times. Thus, for very
small o2, we can write

0.2
f@) = 6w — ) + T6@) (@ — ) + o(0?),

Note: If the support of f(z) is [ — €, it + €] with very small ¢, the above condition 02 = 0 is
satisfied. This condition of finite support is sufficient, but not necessary for the above formula
to hold. If the distribution is Gaussian, the condition of finite support is, strictly speaking, not
warranted.

(b) When a random process X (t) is time-continuous as in a diffusion process, the value of
X (t + h) = x cannot be much different from X (t) = 2/, because © — 2’ as h — 0. Since we
are given the drift rate and variance rate, we can write the conditional mean and conditional
variance of X (t 4+ h) as follows:

EXt+h)|X(t)=2 =2+ EX({t+h)—X(t)|X(t)=2]=12" =B t)h+o(h),
and
Var[X (t + h)| X (t) = 2] = E[(X(t + h) — X(1))*|X () = 2'] = a(2/,t) + o(h).

Clearly as h — 0, the conditional PDF f(x, t,|2', t) satisfies the property of f(z) having very

small o2. By identifying p as 2’ + (2, t)h and o2 as a(a’, t)h, we can write the conditional

(or transitional) PDF as

alz' t)h
2

17.11*% Derivation of the forward diffusion equation. = We start with the Chapman-Kolmogorov
equation:

f(z,t+hla' t) =6(x —a' — B/, t)h) + 6@ (x — 2’ — B(z,t)h) + o(h).

f(z,t+ hlzo, to) = /f(:lc7 t+ hlz' t) f(2 t|xo, to) do’. 3)

Then

Of (@, t[xo,t0)
ot

The conditional PDF f(x,¢+ hl|z',t) is a Gaussian PDF with mean u(t + h|2/,t) = 2’ +

B(2',t)h and variance o2(t + h|a’,t), using the argument similar to the one in the derivation

of the backward equation. Thus, for sufficiently small &, we can use the same approximation as
(17.104):

LHS = f(x, t|xo, to) + +o(h).

a(z' t)h

f(yat + h|ml7t) = 6('73 - 'T/ - B(J?/, t)h) + 6(2)(‘1: - Z‘/ - ﬁ('T,at)h) 2

+o(h). @)
Then the RHS of (3) is
alz',t)h

RHS:/{5($—w’—ﬁ(w’vt)h)+5(2)(x—ff/—5(”f/’t)h) 2

£ Il + .[2 + O(h),
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where
I = /5 x—a — B, t)h) f(a, t|xo, to)da’
= /[6(x — ') = hdW (z — 2B, )] f (2, t|zo, to) da’ + o(h)

= f(x,t|zo, to) — h / Wz — 2[B!, ) f (&', t|zo, to)] da’ + o(h)

8(ﬁ($, t)f(x7 t|.1307 tO))
Oz

= f(x,tll‘o, to) —h + O(h), (5)

where we used the properties
6z — 2y = —6W (' —2), and /5(1)(x’ —x)(2)dx' = —f' ().
Similarly
I, = /5 x—a — B t)h)a(d t) f(2', t|zo, to) da’

=5 [162@ — e’ 0) + oW (&t o) do

_ h & (afz, t) f(f, tlzo, to))
2 Ox?
From these Kolmogorov’s forward equation readily follows.

+ o(h).

Note: The term I; can be alternatively calculated without explicit use of §(1) (x). Rewrite the
argument of the delta function in the RHS of the first line of (5):

0f(zx,t)
ox
= (z — 2')B(z,t,h) — hB(z,t) + o(h),

r—a - B th=x—2 —h|B(z,t)— (z —2) + o(h)

where

0B(x,t)

B(z,t,h)=1+h prat

Then

L= /5(3(:5, th) (@ — ') — hB(x,t) + o(h) f (', t|zo, to) da’

= /5 <B(x,t,h)(x —a') - m> [ t|lwo, to) da’ + o(h).
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Then, by identifying C = B(x,t, h) and ¢ = B(x,t)h, we have

F (= Bl 4z, 1)
I = (2.0.1) +o(h)

B(x,t, h)
= f(z,t|zo, to) (1 - haﬁéi’ t)> — 6f(x,(;5|xxo,to) ﬂ(g;()f :}(gh) + o(h)
= Fla o, t0) — S, thao, t0) 2t g,y L1

_ f($7t‘a?0,t0) _ ha(ﬁ<x’t)f[§'zvt|x0>t0)> =+ O(h),

where we used

B Yz, t,h) =1~ h% +o(h), and B~ 2(z,t,h) =14 o(h).

The last expression agrees with the result of (5) obtained using the property of §(!)(z).

17.3 Stochastic Differential Equations and It6 Process

17.16* Conditional mean and variance of the geometric Brownian motion.
We can write

EY®[Y(w),0<u<s]=E [eX<t>|X(u),o <u< s}
=FE [eX(S)+X(t)fX(S)|X(u)’O <u< S}
=eXOp [ex(t)*x(snX(u), 0<u< s} (independent increments)
=Y(s)E {ex(t_s)_x(o)} (temporal homogeneity)
=Y(s)E [ex(t’s)} (because X (0) = 0)
Recall the moment generating function (MGF) of a normal RV X:
Mx(9) = Bl = exp { BLxIe + MEIE .

Thus,

Therefore,
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Similarly,
EY(t)?Y(w),0<u<s|=E [ezx(t)|X(u)7 0<u< s}
- FE [62X(s>+2<X<t>fX<s>>|X(u)70 <u< S}

=X R [eQ(X(t)_X(S))|X(u),O <u< s}

=Y (s)2e2(B+)(t=9)
Thus, the conditional variance is
Var[Y (8)|Y (u),0 < u < s] = E[Y ()?[Y (u),0 < u < s] — (E[Y (1)|Y (1),0 < u < 5])?
Y (s)2e2B+a)(t=s) _ (y(s)e(ﬁ+%)<t—s))2
= Y (5)2e2B+)(t=9) (eau—s) _ 1) .
17.19* European call option.

(a) The call option price is $13.50.
(b) The call option price is $17.03.
(c) The call option price is $19.99. A MATLAB program is as follows:

function option

Example in Chapter 16: European call option

o° o° o°

Yt=100; C=90; Tt=0.5; sigma=0.2; r=0.1;

[o)

°

alpha=sigma”2; tl=log(Yt/C); t2=sqgrt (alpha*Tt); t3=(r+alpha/2)*Tt;
td=(r-alpha/2) «Tt; ul=(tl+t3)/t2; u2=(tl+td)/t2; Phil=normcdf (ul);

Phi2=normcdf (u2); v=Yt+Phil-Cxexp (-r*Tt)+Phi2;
fprintf (' Current price= %5.2f \n’, Yt);

fprintf ('Exercise price= %$5.2f \n’, C);

fprintf ('Expiration date (in month)= %5.2f \n’, Ttx12);
fprintf (' Volatility= %5.2f \n’, sgrt(alpha));

fprintf ('Risk—-free interest rate= %5.2f \n’, r);
fprintf (' The value of the call option= %5.2f \n’,v);



18 Solutions for Chapter 18:
Statistical Estimation and
Decision Theory

18.1 Parameter Estimation

18.4* Properties of the score function and the observed Fisher information matrix.

(a) We assume that the regularity conditions for the validity of the following transformations
are satisfied. Taking the gradient with respect to 6 of E[T'"(X,0)] = [, f(z,0)T " (z,6)dz
and using the formula for the gradient of a product (see Supplementary Materials), we obtain

VeE[T'(X,0)] =/f(w,f))(VeTT(-’vﬁ))dw+/(Vef(w,9))TT($79)dw (D

But, according to definition of the score,

VQf(m, 0)
) =Vl 0)=————
8(:13, ) Ve og f(.’B, ) f(:v,@)
so that the previous equation can be written as
VeE[T'(X,0)] = E[VeT ' (X,0)] + E[s(X,0)T' (X, 6)] )

which is equivalent to 18.111.
(b) Equation (18.111) with T" = 1 yields

E[s(X;6)] =0.

Alternatively, we can derive the formula directly, by expressing the expectation in terms of the
PDF. Again we show the single parameter case:

I ;9 0 ;9 b a1
LHS:/%]”X(:B;Q)%::/%dm:%/fx(@@)dw:%:O.

(c) Substitute T'(X;80) = s(X;0) in (18.111). Since E[s(X;0)] =0 and Vgs'(x;0) =
J(x; 0) according to (18.32), (18.111) becomes (18.113).
When 6 is a one-dimensional parameter, the LHS of (18.113) is E[s(x;60)?] =

2
E {(‘Oggﬁ’) },and the RHS is Z(0) = —F [732 l°§(,@x<9)]

(d) Denote as T'(x, 8) = 6 — 6. Since 8 is unbiased, E[T'' (z;,0)] = 0. Also VoT' ' (z,0) =
—Vg0'" = —I. Thus, equation (18.111) can be written as

E[s(X,0)(0 —0)"] = Cov[s(X,0),0] = I.
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Since
Cov[f,s(X,0)] = (Cov[s(X,0),6])"
we conclude that

Cov[s(X,8),0] = Cov]d, s(X,0)] =1I. 3)

An alternative proof: Since Vg log fx (x; 0) has zero mean, it suffices to show
[ fx(@:6)V0log fx(@:6) (b(z) - 6) do —0.
The unbiasedness of 8(X) gives,

/fx(ﬂﬂ; 0)(6(x) — 0) dx = 0.

By applying Vg to the above, and using the formula Vg log fx (x;0) = %ﬂng),

required result readily follows.

the

18.7% The CRLB and a sufficient statistic.
Apply the inverse operation of the operator Vg to both sides in (18.43), leading to

log fx (a:6) = / (B(z) — 0)Z(6)d6 + C(a), @

where C'(z) is an arbitrary function of « that must satisfy the normalization condition for
L (2; 0)). The integration notation [ a'(0)d@ should not be confused as the regular multi-
ple integrations of many variables. For a vector function a(0) = (a1(0), a2(0),...,ax(0)), we
define

/aT de = i/ai(a) do;. 6))
i=1
Thus,
Lo(2;6) = h(z) exp ( @ -0z0) da) — exp (n(6) 0(w) ~ A0)) . ©)
where h(x) = exp C(x), and
n(0) = / Z(6)d6, and A(0) = / 0'Z(6)de. (7
Hence, it is apparent from Theorem 18.1 that an efficient estimate 9(:c) is a sufficient statistic for

estimating 6.

18.2 Hypothesis Testing and Statistical Decision



19 Solutions for Chapter 19:
Estimation Algorithms

19.1 Classical Numerical Methods of Estimation

19.1* Nonnegativity of KLD.
We can extend any of the methods used in proving Shannon’s lemma (or Gibbs’ inequality)
discussed in Section 10.1.3.

(a) If we use the inequality Inz < x — 1, then

o(x) oz
l%ﬂwgm“%ﬂ@ Q'

D(|g):/f(m)logf(;cj))dw:—/f(:v)logjgc((gdm

loge/f (?2—1) da
~ loge Ug(w)dw—/f(m)dm] — loge(1—1) = 0.

(b) Use of Jensen’s inequality.
Since log x is a concave function, we have from Jensen’s inequality

Then

| \/

g(X)] [g(X)} / 9(z)
E; |log <logEs || =1log | f(x)=——dx =0, (1
7 [oe 5 T @)
where equality holds when % = constant for all ¢. This constant must be unity, since
[ f(z)dz = [ g(x)dx = 1. Thus f(z) = g() for all . Hence

/f Ylog g(x) dx < /f )log f(x 2)

from which D(f|lg) > 0 follows.
(¢) Lagrangian multiplier method: Consider

Fm:/ﬂmbM@Mm

Since log g is a concave function of ¢ and f(x) > 0 for all &, F'(g) is a concave function of
g(x). Thus, if we find a stationary point, it becomes the point of a global maximum.
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Define
Ho.0 = [ fl@yogg(e)de s A ( [ ofa)dz-1). )

Differentiate it with respect to ¢, and A and set them all to zero:

0J(g.)) _ f(@)
dg(xz)  g(=)
%:/g(m)dmfle.

From the first equation we find

+A=0, for —0 <z <0,

f(@®) = —=Xg(x), for —oo <@ < o0, 4)

and substituting to the last equation (i.e., the original constraint equation) and using
J f(x)dx =1, we find

A=-1 (5)
Thus, the condition for a stationary point is
g(x) = f(x), for —oo <& < 0. (6)

Thus, by substituting the condition (6) into (3), we attain the maximum of J:

Jmax = Frnax = /f(w) log f(x) da,

from which the nonnegativity of KLD follows.

19.2 Expectation-Maximization Algorithm

19.10* EM algorithm when the complete variables come from the exponential family of distribu-
tions.
By substituting (19.56) into (19.24), we find

Q(80(p)) = Ellog h(X)|y; 6]+ n' (6)T™ — A(8),
where
T® = E[T(z)|y, 0%).

Since the first term E[log h(X)|y; )] in the above expansion is independent of 6, the M-step
is reduced to

0P+ — arg max n"(0)T® — A(G)]



20 Solutions for Chapter 20: Hidden
Markov Models and Applications

20.1 Introduction

20.2 Formulation of a Hidden Markov Model

20.1* Observable process Y (¢). Since Y; is a probabilistic function of S;_; and S, we write
Yr = f(st,50-1), Y1 = f(St-1,5t-2),----
In order for Y; to be a Markov chain, we must have
P(Yelye-1,Ye-2. ) = p(Yelye-—1).
The LHS can be written as
LHS = p(y¢|st, St-1,5t-2,5¢-3,- )
and the RHS is representable as
RHS = p(yelye-1) = p(yelse, se-1, 51-2),

which contradicts to the definition that Y; depends only on Sy and S;_1, not on S; . Thus, Y; is
not a simple Markov process.
20.6* Partial-response channel.

(a) Define the state of the transmitter, which is hidden as the transmitted information itself,
ie.,

S¢ = 1.

Then, the output X; from the partial-response channel, in the absence of noise, can be written
as

Xt == A(St - Stfl).
Hence, the conditional PDF of Y; = y given a state transition S;_1 =1 — S; =4, (t>1)

is, in referring to (2?),
(y - LL'(Z7 .7))2
exp { 957 ,

Lo 1
f}/t‘St—lst(y|Z7j)_ W
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where the noise-free output x(i, j) associated with a state transition i — j is

The Markov chain {S;} in this case is simply a zero-th order Markov chain. The state transi-
tion probability matrix is

A=fulisi)] = | )3 Va) 0

Figure 20.1 Trellis diagrams of the HMM representations of a partial-response channel output with
additive white Gaussian noise. We assume the initial bit I, = 0: (a) the transition-based output
model; (b) the state-based output model.

(b) Define the state as
Sy & (Lo, L), t=1,2,....

Thus, the state space now consists of four states:

S =1{00,01,10,11} £ {0, 1,2, 3}. )
with the state transition matrix
1/21/2 0 0
0o 0 1/21/2
A=11212 0 0 | 3)
0 0 1/21/2

The conditional PDF (20.32) of the output, given the current states is:

oo -G,

202

1
fYt|St(y|s) = \/W

where the output z(s) for state s € {0,1, 2, 3} is defined by

+A for s = 1;
x(s)=4 0 fors=0, or3;
—A fors = 2.

Figure 20.1 (b) shows the HMM with state-based output; state S; = s corresponds to s =
(i,5) = (It—1,I1), and the number attached to each state s is z(s). In both (a) and (b) we
assume that Iy = 0, and the receiver should exploit this information in attempting to recover
the transmitted information sequence {I}, as we will discuss further later in this chapter.
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20.7*

20.9*

20.3 Evaluation of a Hidden Markov Model

Likelihood function as a sum of products.
Using the Markovian property of the sequence S, we can write

T

p(s;0) = WO(SO)HG(St—l;St), 4)

t=0

Under the state-based output model, where 6 = (g, A, B), p(y|s; @) can be written as the
product of the conditional probabilities b(s¢; y:):

y|3 0 Hb Styyt (5)

Thus, by taking the product of the last two expressions,

p(s,y;0) = p(s;0)p(yls; 0),
and substituting it into (20.48), we have

T

Ly(8) = > mo(s0)b(s0,0) [ [ alse-1;s0)b(se; ve)

seST+1 t=1
= Z Z Z 70(50)b(s0; yo)a(so; s1)b(s1;91) - - - alsr—1; s7)b(sT5y7).  (6)
80688165 STES

Therefore, the likelihood function is again expressed as a sum of products.
Forward recursion formula when Y; is a continuous random variable.
Define the functions c(%; 7, y;) as

C(%]/!/t) :at(%])fYt\S,,lst(yt|(l»]))7 (7)
where fy,s, s, (y¢|(4,7)) is the conditional PDF defined by (??). Then from (20.55) we have

the same forward recursion algorithm:

a(G,yh) =Y e,y elizg, ), G€S, 1<t<T, ®)
€S

20.4 Estimation Algorithms for State Sequence

20.14*

Viterbi algorithm
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a(j) = glﬂ)fp[st , St = j,ybh] = maxmax P[S}, 2.8, 1=1,8S =7, yh Ly

€S Sf 2

— P -2 _ t— — t—2 = t—1
= maxma (S5 2,81 =4,y IP[Se = 7, 4:|S6 7%, Se1 = 4,95 1]

= m%xmaxP[S 2,81 =i,y "IP[Sy = j,ye| Se-1 = 1]
i€ S’

= max (maxP[S 7St71 = i’y6_1]> P[S; = j, yt|St-1 = i]
€S St—2
= max{at 1(8)c(i; 4, ye) }-

Note that in deriving the 3rd line, we used the defining property that the Markov proces X; =
(S, Y:) depends on only S;_1, if it is an HMM.
20.18* Viterbi algorithm for a partial-response channel [199,200].

(a) Since a(i;j) = 1/2 for all (i, ), we can drop the term o In a(; j) in the recursion. Fur-
thermore, noting

2 952
(yr — x¢)” = =2 yray — ? + Y,

we can replace (20.131) by (20.133).

(b)
A2
dt(O) = max {dt1(0)7 Ou[tfl( ) Ayt — 2} s
AQ
dt(l) = Imax {dtl(O) + Ayt — 7, dtl(l)} (9)

In the above procedure, if the left term in the parenthesis gives the maximum, then the survivor
emanates from state .S;_; = 0, otherwise from S;_; = 1.

20.25* Alternative derivation of the FBA for the transition-based HMM.

(a) We begin with the general auxiliary function derived in (19.38) of Section 19.2.2

Q(616")) £ E |logp(S, y; 0)| y; 0(’”} Zp sly; %)) logp(s, y; 6),

(10)
where ) is the pth estimate of the model parameters, p = 0,1,2,....
By referring to p(S,y; 0) in the above expression for Q(8|6), we find from (20.49)
T
(8,93 0) = (S0, y0) [ [ e(Se-1; St we)- (11)

t=1
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Since each ¢(S;_1; S, y:) is equal to ¢(; j, k) for some 4, j € S and k € ), we can write the
above as

p(S,y;0) = ao(So, o) [ clisg, k)M5R), (12)

i,J€S,keEY
where M (i;7,k) is the number of times that (s¢, S¢41,¥yi+1) = (4,7, k) is found in the
sequence (s,y). For each t =1,2,...,T, (s, St+1,Y1+1) belongs to one and only one of
the possible triplets (i,7,k) € S x & x ). Thus, the following identity must hold for any
sequence (s, y):
> Mg k) =T.
i,j€S, k€Y

Although we observe an instance y, we cannot observe the associated instance s, so we must

treat this missing data as a RV. Hence, M (i; j, k), being a function of .S, is also a RV and so
is p(S, y; 0). Taking the logarithm of both sides yields

logp(S,y;0) =logao(So,y0) + Y M(i; j, k) log c(i; j, k). (13)
i,j€S, k€Y

Thus, we can write Q(0; ) as

Q(016™) = Qo(6]6®)) + Q1(6]6"), (14)
where
Qo(616%)) = E [log ao(So, yo)ly; 07| (1s)
Q1 (66W)= > E [M(z';j, k)\yﬂ@] log c(is j, k). (16)
i,J€S,kEY

(b) We denote the above conditional expectation of the random variable M (i; j, k) as
E [M(isj,k)|y, 0] 2 51 i j, Kly). an

By counting only those sequences in which y; = k for some ¢, we can rewrite the last expres-
sion by using the forward and backward variables that are obtained together with the updated
model parameters:

10 e i o 6y (i k)BT Gy ) By
(Za]a |y) - (p)
Ly(0%)

; (18)

where ¢(P) (i; j, ;) is the pth update of the conditional probability (20.15), and aﬁp ) (i,yh) and

t(p ) (4 ytT_H) are the variables (20.54) and (20.60) computed under the assumption 8 = o );
and d,, , is one for y; = k, and is zero otherwise.
(18) can be derived as follows: We can write

M(p)(’t,j,k"y) _ Zz:l 6Z/t,kP[St71 :;7(51; =J, Yg = yg,H(p)] .
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By noting
PlSi1=4,8=35Y =y4;0P]=P[S,_1 =i, Y ' =yh ;0P
CP[S, =43, YT|S 1 =i, Y5 =yt 0P
= P[S 1 =i, Y5 =yi 0WIPIS, =5,V = S 1 =i, Y 0%
PIYTL|Si1 =4,8 =5, Y =y 7]
— a,(ﬁ)l(@yé—l)P[St =3,Y, = y|Se 1 = i;g(?)]p[YtT+1 —yT ]S = 7 0®)]
= o”y (i, b ™)™ (i 5,) B (s vl

Thus, we obtain (18).
Similarly We can write

—w),. Sy ik PlSo = 4,Yo = k; 6P
O T T

By noting

P[So = j, Yo = k; 0% = of” (4,40) 8 (5; w7,
we obtain (21) to be given below.
(c) Maximization step:

Since the model parameters are the joint probability and conditional joint probability distribu-
tions, they must satisfy constraints

> aolik) =1, (19)
jES,kEY
> clizg k) =1, foralli€S. (20)
JES kEY

We wish to find the value of 6 that maximizes Q(8]0®)) under the set of constraints (20).
Maximization of Qo (0|6") can be found as follows. For a given j € S, k € ), we denote by
My (34, k) the number of times that the initial state (So, Yo) = (4, k) occurs. Clearly My (3, k) is
a 1-0 random variable such that ;s .y Mo(j, k) = 1. We can write its conditional expec-
tation, given Y = y (see the second result in part (b).) as

(P) (P) (.0, T
_ o (4:90) By (G571 ) _
M (G kly) = { Lyt K= @
Oa k 7& Yo
Thus, Qo(8]60™)) of (15) can be written as
Qo(016®) = >~ 1 (j, kly) log a0 yo)- 22)

jes
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Using the log sum inequality of (10.21), we find the above expression can be maximized when
(p+1)

ao(d,y0) = ag ' ' (4,Y0), where
W+ MGkl oG08 Gyt 2
(> %0) = p—y = ) ) T (23)
Zjes keyMO (]»k|y) Zjesao (]JJO)ﬂo (J;yl)
_ oG8y Giyl) o4
Ly(g(p))

Maximization of Q1(0|6")) is equivalent to maximizing the following expression for each
ieS.
S 37, ky)logeliz g, k), i€ S. (25)
JESkEY

By using the log sum inequality (10.21) again, we find that the maximum of (25) can be
achieved when

M7 (i; j, kly)
7P .
Zjes,k-eyM 8 (i35, kly)

By substituting (18) into (26), we obtain the following expression for the (p + 1)st update of
the model parameter ¢(¢; j, k):

c(i; g, k) = , forall j €S, ke). (26)

Sty oy Gy e (65, k)8 (i yFa) 3y
ZjES Zt 1()‘£17)1(Z Yo )@ (i34, i) (p)(J yii1)
_ Zthl gt(—l(i’ﬂy) Oy, k @7
ZjES Zthl éht(é)l(iaﬂy)7
where we used the property (20.142) of the APP & (i, j|y):

D (i; j k) =

a™ (i, yb)e®) (65 4, yer1) B8, (s yEo)

(p)
. Ly (67))

, 1,j€S, teT,

i,jly) =

(28)
which is the APP of observing a transition S; = i — S;11 = 7, given the observations y and
the model parameter 7). We can relate §t(p) (4, 7]y) to the APP ~;(i|y) defined in (20.81):

(p) (p)
(p) Zg(p) (4, yo) (i 7yf+1)
(4, jly) = (29)
= Ly(g(p))
with 'y(p)( |y) given, from (20.85) and (20.63), by
p) . T ® ;T
(P)( ‘y) Qrp (Z»yo) _ ar (%yo) icS. (30)

Ly0®) Y sal(,yd)
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Algorithm 20.1 EM Algorithm for a transition-based HMM

1: Setp +— O and denote the initial estimate of the model parameters as aé ) = = o (0)(2 Yo), @ €
S]and C O (yo) = [0 (4; §, k)Op.yo; 4,7 € S,k € V).
2: Forward part of E-step: Compute and save the forward vector variables a(p ) recursively:

a(p)tT = oz(p),llC'(p)(yt)7 t=1,2,...,T,

3: Compute the likelihood function: L® = 1TalP).

4: Backward Part of E-step: Compute the backward vector variables BEP ) recursively. Compute
and accumulate the APPs 5(’)) (i,j|y) and 'y(p)( ly).

a. Set B =1, EW(i j k) =0, and TP (i, k) =0, i,j €S, ke .
b. For t=T-1,T—-2,...,0:

i.Compute B = C) (3,418,

ii.Compute £%) (i, ly) = 0y (1)) (i 4, k) B}, (7) and add to 2P (i, j. ):
=00, ,k) = EP (6,4, K) + & (0. 79) .

iii.Compute v®) (i|y) = Zjesf(p)(i,j\y) and add to I'(®) (4, k):

T (i, k) < T (i, k) + v (i]y)dk,y,, forall i €S ke .

5: M-step: Update the model parameters:

(p) (p)

. Q j
a(()p+1)(j)<_ 0 (L)(p;) ()
=i, j, k)
T (i, k)

, forall j €8
P (34 k) forall i,j €S, ke ).

6: If any of the stopping conditions is met, stop the iteration and output the estimated a(p 1 and
CPtY): else set p < p+ 1 and repeat the Steps 2 through 5.

Thus, we can express c(p“)(i;j, k) of (27), using (28) and (20.148), as

St e &G jly) (31)
ST AP Gily)

where ZtT:l: yo—r 10 the numerator means summation with respect to ¢ for which y;, = k.

Algorithm 20.1 implements the EM algorithm discussed above. The forward part of the E-
step is the same as Algorithms 20.1 and 20.3, and we use the vector-matrix notation as before.
The backward part is basically the same as Algorithm 20.3, as far as the computation of the
backward vector variables B,(fp ) is concerned. However, we need to compute the APP variables
(1, j|y) and v¢(i|y) as well, and sum them with respect to ¢. For this purpose we create arrays

P (i34, k) =
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=(4, 4, k) and T'(, k), where

E(i, 4, k) Z&wly 4= (32)

= Z e (iy) 0y, = (33)
=1

For the parameter variables used in the algorithm, we explicitly show the superscript ),
although we suppress the observed data y. If we do not need to keep all the computation results
in the iterative procedure, we can overwrite the parameter values of the previous iteration and
can suppress (p).

20.26% Alternative derivation of the Baum-Welch Algorithm.

Then
logp(S,y|6) =logmo(So) + > M(i,j)loga(i;j)+ Y N(j,k)logb(j;k).  (34)
i,j€S JES, k€Y
Thus we can write Q(8]0®)) as
Q(616")) = Ellog mo(So)ly, 6] + Y B [M(i, j)ly,0® | 10g a(is )
i,JES
+ Y EB[NGR)y, 0] logb(i k). (35)

jES kY

By denoting
B[ M, j)ly, 6] 2 1P, jly),
E [N( k)ly, 0] £ N9 (j, kly)

We can write the above expectations by using the forward and backward variables:

Zt 10‘1(tp)1(l 3/0 ) ()(l J) (p)(J;ytT+1)

MW (i jly) = (9(,,)> (36)
- STl Gy yh)BY (s yT )6 (v, k)
N(”)(j,k) t=0 & 0)Pt Y ) 37)
Ly(g(p))

where L, (8?)) = pP) (). Note that the range of summation for M and N differ.
The first term of (35) can be written as

Elogm(So)|y, 0P = Zlogﬂo P[Sy = jly, 0™,
jES
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By applying the equality condition for the log-sum inequality, we find that (35) can be maximized
when we set the model parameters to the following values in the (p + 1)st iteration:

(), (p)
Qg \J, Y Y

) = Piso = sl 6] = ) = LI

Yy
M® G, jly)
PV (i; j) = i,j€S
>jes MW (i, jly)
bt (j k) = NT G kly) , JES.

Zkey N(p)(j7 kly)

The mean values M ) (i; j|y of (36) and N(P)(j, k) of (37) can be written in terms of the APP
& (i, j|y) of (20.142) and the APP ~;(i|y) of (20.85) as follows:

MW@ (i; jly) = Zé(p) (i,4ly), and N®(j,k) Zv(p) (Gily)b® (G5 k)o(ye k), (38)

Thus, we have the expressions (20.105) as the M-step solution:

20.5 Application Example: Parameter Estimation in Mixture
Distributions



21 Solutions for Chapter 21:
Elements of Machine Learning

21.4* Sum-product algorithm for a phylogenetic tree.
The character x of a phylogenetic tree can be represented in the form of a vector w = (w;,i € V)
such that

We(o) = X(g), lel.

Define X = (X;,j € V) to be the vector of node variables of the tree, and let X denote the
restriction of X to the node variables associated with the leaves of the tree, i.e., X = (X,,,u €

V). Then the probability that the character Y is realized by the phylogenetic tree can be expressed
as

Py=pg(w)=P[X =w]= > P[X =a], (1)

T:T=w
where P[X = ] is the joint probability distribution of all of the node variables, X, associated
with the tree 7. Let us assume that the nodes in V are labeled as 0,1, ..., |V| — 1, reflecting a

total ordering of the nodes, with 0 denoting the root node. Then the probability P[X = x] can
be written as

PIX =a] = P[Xg=x0] [[ PIXo=2u|Xu=2u, u<u|
veV\{0}
Dr© [T Praea(e), @)
e=(u,v)e€
where the Markov property (16.68) is applied in step (a). Combining (1) and (2) we obtain
Po= > mm(0) ] Proa(e) 3)
T:T=w e=(u,v)e€

We now develop a sum-product algorithm to compute P, by recursively decomposing the tree 7
into its constituent subtrees. Corresponding to the subtree, 7%, rooted at node u, we define the
random vector X* = (X,,v € V*). By restricting the components of X to the node variables
corresponding to the leaves of the subtree 7, we define the random vector X Y= (Xy,v € f)“)
By conditioning on X, (1) can be written as

Py = Z;P[X = w|Xo = i|P[Xo = i] = Z;p[j( — w| Xy = iJmi(0). @
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For an arbitrary node u € V, the conditional probability of {X " = w*"} given {X, = i} can be
expressed as

P[Xu =w"|X, =1 = P[XU =w"’, v € ch(u)|X, = i
= H ZP[XU:wv7X’U:]|XU:Z]
vech(u) jES
G Y PIX = wrlX, = Py (), (5)
vech(u) jES

where the Markov property (16.68) was used in step (a). Conditioning on X and applying (5) in
(1), we have

Py =P[X =w] =) P[X =w|X = i]ra(0)

€S
=> ma(0) J] D PIX" =w"[X, = c]P;((0,0)). (6)
i€S vech(0) jES

By applying (5) recursively to (6), we obtain an efficient sum-product algorithm to compute P, :
We start at the leaves of 7 by applying (5) and work up to the root node 0, finally applying (6).

Such an algorithm has a computational complexity that is linear in the number of nodes, |V|, in

the tree.

Section 21.7: Markov Chain Monte Carlo (MCMC) Methods
Second-order Markov chains. The second-order MC is defined by the TPM

Py P12]
P = .
[Pm Py

The stationary distribution satisfies the following equations:

TPy + me P = my,
m1 P + Mo Pag = ma

@)
To construct an ergodic MC whose stationary distribution is 7w = (71, 72), we must solve for P;;
these equations together with

P+ Py =1,
Pio+Py=1

which is a system of three independent equations (since equations in (7) are linearly dependent)
with four unknowns. If we denote x = P2, we can write a general solution as

where z is a free variable. It is clear that the matrix is stochastic and ergodic if

e
0<z<1and < -2
Uyt
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Thus, we conclude that infinitely many MCs with the TPMs of the form

1_
P=[m o } ®)
o T2

have the same steady-state distribution 7w = (71, m2), if
, i
0 <z < min{l, =}.
™

This inequality is equivalent to

T2 9f 715 < 0.5
<< m .
1 otherwise

Note that if z = 0, then

P=[oi)

Any distribution is a stationary distribution of this chain. The chain is reversible but not ergodic
(because it is reducible). Similarly, if x = 1, then

01
P = .
1]
The chain has a unique stationary distribution 7 = (0.5,0.5). The chain is reversible, but not
ergodic (because it is periodic). Thus, we see that not every reversible MC can be used for

MCMC. The chain must be ergodic.
21.7* Stationary distribution in the block MH algorithm.

/ / Ji(®1;y1l22) fo(xo; Yo |y )7 (21, T2) day daco
€1 i)

= /{ch fa(@2:y5|y )ma(22) ds </:c1 fl(wl;y1|ﬁﬂ2)ﬂl(y1|$2)dwl) ©)
_/m2 fa(@2; yoly1)ma(w2)m (y1|22) das (10)
-/ ol )l @) i (an
= ml) [ Pl () o (12)
= 7T1(y1)7T2;332|y1) (13)
=71(Y1,Ys)- (14)

where equations (9), (11), (12) and (14) follow from Bayes’ rule, while (10) and (13) follow from
(21.50) and (21.51), respectively.
21.8* Stationary distribution in the Gibbs sampler.

f(x;y) = m1(y1|x2)m2(yaly,), wherex = (21, 22), y = (y1,by2)
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m(x1, br2)T1 (Y |T2) T2 (Yolyy ) dT1dTs

2

/ (@) f (2 y)dz

1

Ty (21 |bro) T2 (22) T (Y |22) 72 (Yo |y )d 1 ds

S

1

o (x2)m1 (Y1 |T2) 7 (Y2 |y, )dao

2

F— T s s

(Y1, T2) (Y2 |y, )dxs

2

y1)m2(Yaly1) = (Y1, Y2)
Y).

™

—~

™



22 Solutions for Chapter 22: Filtering
and Prediction of Random
Processes

22.1 Conditional Expectation and MMSE Estimation

22.3* Alternative proof of Lemma 22.1.
The law of iterated expectations (or the law of total expectation) states: if S is a RV such that
E[|S|] < oo, and X is any RV, then

E[S] :Ew[Es\w[SlX]L (D

where F |, means the expectation with respect to the conditional probability of S given X, and
FE ., means the expectation with respect to the marginal probability of X.

(a) The proof of the above formula follows essentially the same step as in the proof of the
lemma given in the text. You use the joint, conditional and marginal PDF of the RVs.
(b) Then by applying the above formula, we find

(S — E[S|X],n(X)) = E[(S — E[S|X])h"(X)]
= E; [(By«(S — EISIX])]) k*(X)] =0, @)
because the term in the parenthesis is zero for all X:
Eoa(S — EIS|X]) = Bya(S — EIS|X]) = B,,[S|X] - EglSIX] =0, @)
22.13* Regression coefficient estimates.

Note: There is a typo in (22.57) and (22.61). (22.57) should be

n

B= [Z(m —Z)(z; —w)Tl > (x; —@)y;. )
j=1

i=1

and the second equation of (22.61) should be

Var|[fo] = i 14 nE' [Z(azl —Z)(x; —a:)T] z|. (5)

n ;
=1

We first derive (4), i.e., the correct expression of (22.57). Let

Q=> (yi—Bo—B'z;)”
=1



Differentiate it with respect to 3" and set it to 0:
W:_QZ —Bo—B j)mj:07

Similarly, by differentiating ) with respect to 3y and setting it to zero, we have
_ Ty —
87,50__22 —Bo—B ;) =

from which we find the optimal By should satisfy

n

Zyj *HBO*BTZQT =
j=1

hence,

s Y AT T AT
R N

n

Substituting Bo into (6), we obtain

n

> -7+ B'E—p aj)a; = > Iy —v) - B (x; - B)a; = 0.

=1 j=1

Since

Z( y; —7) =0 and Z

j=1

we can rewrite equation (7) as

Sl —9) -8 (@ - D@ —2) = (= —7) — (=) Bl =0
j=1 j=1
or

where we denoted as
Therefore,

which is the corrected version of (22-57).
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(6)

)

€))

(10)
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Now we proceed to derive (22.62) and then (22.61). From (22.47) we have
Ely;] = f(z;) = o+ B =;

where we assume that €; represent noise with zero mean, i.e., &/ [ej] = 0. It follows from this
equation that

Ely] =B+ B8'7.
Thus,

Ely -yl =8"(z; - %) = (x; — )" 8. (11)

Taking the expectation of (10) and using (11), we obtain

Z v — 7]
(Z z; —@)(x; 7)) | B=p. (12)

In order to derive the first equation of (22.62), note that
y; = Ely;] + €.

Similar to the derivation of (12), we obtain
B=EB +=; Z =p+3x;! Z (13)
from which the first equation of (22.62) readily follows. From the last equation we have
B-B=3%," Z z)e;,
Thus, the variance of B is computed as

Var|3 ZZEejek Ny —)(zf — ) D

Jj=1k=1
_ 2y-1
_Uezm )

where we use the property that the noise variables €;’s are mutually independent, i.e., E[e;ex] =
2
O¢ 0 k-

The first equation in (22.61) can be obtained by taking the expectation of (22.58):
- AT
Elfpo] = E[] - E[B @) = o+ B'T - B'T = fo. (14)

In order to compute the variance of the estimate BO, we write from (22.58)

bo=7g-B'T=Po+B'T+ - Ze] Bw—i—z TS, Te;
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where we used equation (13) for ﬁ Thus,

n
R 1 _ 1—
Bo=Bo+) (n — (; —w)TEwlm) € (15)
j=1
Therefore,
5 "1 "1
Var[Bg] = E |€jep Z < —(z; — w)TE;1w> Z ( — (zg —w)TE;1w>
=1 \" =1 \"
1
== > o+ > olipT B (@ —)(zp — ) B,'F
MR ik
1 1
- — Z Z oféjk(a:j — f)TE;lf - — Z Z U?(Sjk(il:k — E)TE;E
n ; P n J A
o?

=< 4oE' 28,2 'T-0-0

n
n -1
=< |14+nz | (@i-T)(xi-T) | T|. (16)

=1

3|,

22.2 Linear Smoothing and Prediction: Wiener Filter Theory
22.14* An alternative expression for (22.74). If we define the output of the linear system as
Y= Wi Xk,
i=0
Then (22.73) should replaced by
Ryyld) = > W [k]hlf) Reald + j — K, (17)

which in matrix form becomes
Ry,[d] = h" R,.[d]h,
where h* = (R*[0], h*[1], ..., h*[n]).

22.3 Kalman Filter



23 Solutions for Chapter 23
Queuing and Loss Models

23.1 Introduction
23.2 Little’s Formula
23.3 Queueing Models

23.8* Derivation of the waiting time distribution (23.37).
From (23.36) we have

S oo n—1 j
Fy(@)=1-p+(1—-p) Y p"—(1—p e’“"ZZp"
n=1 n=1 j=0
oo o0
=1—(1—ple ™
j=0n=j+1
00 i1 i 00 i
1 (1—pe e p’ (/tf)ﬂ 1 pe S (p/{a;c)J
por 1—p 4! = I

—-1— pe—u(l—p)»b_

23.10* Time-dependent solution for a certain BD process: Consider a BD process with A,, = A for all
n > 0, and ,, = ny for all n > 1. This process represents the M /M /oo queue. Find the partial
differential equation that G(z, t) must satisfy. Show that the solution to this equation is

A
G(z,t) = exp {(1 —e MY (2 — 1)} .
]
Show that the solution for p,, (t) is given as
(B -ery
B S,
J!
23.15*% Waiting time distribution in the M/M/m queue.

pn(t) = Xp{i(le“t)}, 0<n<oo. ()
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(a)
Fyy () Z A Eyy (2lm +n) = Z Tt Fyy (x[m + 1)
n=0 n=0
= Fir (001 = p) Y p"Fyy (am + n), )
n=0

where we used 7,4y, = p"7y, from (23.52) and 7, = (1 — p)F,(0) from (23.53). Note
that the formula (2) holds under any work-conserving queue discipline, although the actual
functional forms of F, (x) and F§, (z|m + n) will depend on the specific queue discipline.

(b) Let T; be the interval between the (¢ — 1)st service completion and the ith completion, i =
2,3,...,n 4+ 1, as illustrated in Figure 23.1.

1st 2nd nth (n+1)th
completion
) T o
Service .
-T a‘«—T _ o o ‘«—T Service
In 1 2 N+I nitiation
Queue

T<7 Waiting Time —»
Arrival
(N=n+m)

Figure 23.1 Relationship between the waiting time and service completion intervals T;’s in M/M/m.

In this scenario, all m exponential servers are busy. Let X;, 1 < j < m be the interval from
an arbitrarily chosen instant until the completion of a job in service at the jth server. The X;’s
are independent and identically distributed with complementary distribution function

F§, (1) = P{X; > t}e .

The distribution of T;, 1 <7 < n + 1 is equivalent to that of the random variable 7" defined
by

T £ min{Xl,Xg, . ,Xm}
The complementary distribution function of 7" satisfies

F§(t)=P{T >t} = P{X; >t:Yj, 1<j<m}
Tz [T - e
Jj=1 j=1

Therefore, T;, 1 <7 < n -+ 1 are exponentially distributed with parameter myu. Further, it
should be clear that the T;’s are independent.

(c) The waiting time of the customer in question is 77 + 75 + - - - + T;,41. Following the argu-
ments that led to (??)(Note that in the waiting time analysis for M/M/1, we assumed that
n — 1 customers were in queue, whereas here we assume n customers in queue.), we obtain
(23.148), which is an (n + 1)-stage Erlangian distribution.
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(d) Substitution of (23.148) into (2) gives

o0

Fiy(e) = Fip(0) (1 - ) Y 3 A @

n=0  j=0

The double summation over (n, j) can be rewritten as a double summation over (k, j), where
k =n — j, as follows:

i i: g (m;{'x)j _ i i pk+jM

|
n=0 j=0 J: k=0 j=0 J
= 1
— Z pkepmpm — ePmbT 4)
k=0 I=»

Using (4)in (3) yields where we interchanged the order of summation and using the formula
for a geometric series, we obtain

Fiy (x) = Fy (0)e- ™70 5)
or (23.149).

23.22* The waiting time distribution in M(X)/K/m.
If an arriving customer finds only n < m — 1 customers in the system, it gets immediate service
without waiting, i.e.,

Fy(xln) =PW >z[N=n]=0, 0<n<m-—1, 2>0. (6)
On the other hand, when n > m, the waiting time is given by:
W=Ri+ S+ -+ Sn_mt1, @)

where R; represents the residual time until the next service completion. The random variables
So, -+, Sp_m+1 represent the subsequent inter-service times. Note that after n — m + 1 service
completions, the nth call enters service. By the memoryless property of the exponential distribu-
tion, the remaining time in service of a call currently in service is exponentially distributed. Then
the time between service completions (while all servers are busy) is the minimum of m i.i.d.
exponentially distributed random variables with parameter 1. Hence, the time between service
completions is exponentially distributed with parameter mu. Therefore, R, So,..., Sh—m+1
are i.i.d. and exponentially distributed with parameter mu. Then W has an n — m + 1-stage
Erlangian distribution, i.e.,

Fy (xn) = e ('Mj) , m<n<K. (8)
=0 7
Alternatively, we can write
n J
FS (xln+m) = e ** () =Q(n;mux), 0 <n < K —m, 9)
w

il
i—o I
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which is (23.71). Therefore,

K-m
Fiy(z) = Y an(K)Fy(z(n +m). (10)

n=0

Since a, (K) = 7, (K — 1) for the M (K)/M /m system, we have:

K-m
Fiy(z) =Y Tnpm(K = 1) Fj(2n +m), (11
n=0

which is (23.70), where Fj, (x|n 4+ m) is given by (9). We note that since 7 (K — 1) = 0, the
upper limit of the summation in (23.70) can be replaced by K — m — 1, i.e.,

K-m-1
Fy(x)= Y pim(K = 1)F(2ln +m). (23.70°)

n=0

23.31* Derivation of waiting time distribution (23.103).

l—-p
fw(s) = e
w 1— )\1 ff(S)
By substituting
1 _ *
LI s pcs)

we find the desired expression for f7, (s).

23.4 Loss Models

23.41* Differential-difference equation for the Engset model [203].

(a)

(b)

(©

Let N(t) be the number of calls in progress at time ¢: 0 < N(¢) < m. This process is a BD
process with \,, and pu,, given by (23.60) and (23.111). Then the differential-difference equa-
tions for p, (¢; K) is the same as those for p,(t) given by (14.45), where n = 1,2,3,...,m
and p, = 0forn >m + 1.

The balance equations in the steady state are given by (14.51), i.e.,

num,(K) = (K — n)vm,_1, foralln =1,2,... m.

Thus, from the above (or from (14.53)), we have

n(K) = mo(K) ﬁ E=iv k) <K>

n

Thus, the normalization constant G is given by (23.124) and 7, (K) = G 1 (5), hence we
obtain (23.125).
We have
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Hence,
P[A] =) P[A,B;] = véty (K —i)mi(K)
=0 =0
Hence,
_ _ P[A|BH]P[BH] _ (K _n)ﬂ-n(K>
) = P Al = = T S - )

Substitution of the result of (b) (or (23.125)) leads to (23.130).
(d) If we keep Kv = constant £ )\, then in the limit K — oo, the Engset distribution of (23.125)
converges to the Erlang distribution (23.115).
23.43* Link efficiency [203].
(a) The formula (23.122) can apply to the Engset model, i.e.,

L(K)=1- % ora. = a(l — L(K)).

Substituting this into (23.132), we obtain (23.154).

1

0.9

0.8

0.7

efficiency
© o o "o
w N a1 o

o
N

0.1

0 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

m: number of circuits
Figure Exercise 3.2-8: The efficiency n vs. the number of circuits (output lines) m. The
number of input lines (sources) is K = 10, 20, 40, 60, 80, 100, and the specified QoS is
L =0.01.

(b)
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23.44* Example of MLN [203].

(@)
2 . A2 .
ry = — = 0.5 [erl] per class-1 subscriber, ao = — = 0.5 [erl] for the entire class 2.
M1 H2
(b) Equation (23.137) reduces in this case to
1 Kl CL;12
JK) = ———+— m , e F LK), 12
an(n|m, K1) GO KY) ( 1)7"1 ] n ~n(m, K1) (12)
where
Fn(m, K1) = {n = (n1,n2) > (0,0) : ny + 2ne <m,n; < K1}
and

Gm, 1) = Y () ()%

ny ) na!’
nern 1 2

(c) Start with m = 0. Obviously, Fn(0,3) = {(0,0)}, and G(0,3) = 1. For m = 1, we find
Fn(1,3) = {(0,0),(1,0)} and G(1,3) = 1+ (3)3 = 5. By proceeding in a similar man-
ner, we find the feasible set form = 4, K; = 3:

Fn(4,3) = {(0,0),(1,0),(2,0),(0,1),(3,0), (1,1), (2, 1), (0,2)},

and the corresponding normalization constant: G(4, 3) = % = 5.125.
Form =5,

Fn(5,3) =Fn(4,3)U{(3,1),(1,2)},

G(5,3) = G(4,3) + (g) (

For m = 6,
]:N(Gvg) - fN(533) U {(2a2)7 (073)}a

3\ /1\*1(1/2)%2 (1/2)® 43 11 527
G(6,3) = G(5,3) + (2> (2> 551+t 3 <t o5 = og = 0486,

to three decimal places.

(d) Using (23.141), we find
G(4,3) _ 4/16+11/96 _ 35 _ 0.0664.
G(6,3) 527/96 527

Ly(6,3) = Bo(6,3) = 0.0664.

By(6,3) =1—

(e) We need to find F(m, K1) and G(m, K;) for K; = 2. Since Fn(m,2) C Fn(m,3), this
does not really require an additional effort: it is easy to find

Fn(5,2) ={(0,0),(1,0),(2,0),(0,1),(1,1),(2,1),(0,2),(1,2)},
G52 =141+t L L L 29 g
U 42 2'8 88 8 T
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and

]:N(672) = fN(5a2) U {(272)7((:)’3)}’

G(6,2) = G(5,2) + (2> <1> (/2" + (/2% _ 29 PRI L

2 2 2! 3! 8 96 96
Then, from the formula (23.142) we find

G(5,2) = 5/96 = 5 = 0.0142.

G(6,2) 353/96 353

Remarks: It will be instructive to make the following observations: the time congestion
for class-1 customers (in the closed chain) occurs when the GLS is in states (nj,ns) =

(0,3) or (2,2). The stationary probabilities of these states are found from (12) as

1/48 3/32
G(6,3) G(6,3)

L1(633) = B1(672) =1-

7~ ((0,3)[6,3) = and 7N ((2,2)[6,3) =
By adding these probabilities, we find B1(3,6) = 1/;‘2877% = % = 0.0209, as was
obtained above.

Similarly, time congestion for class-2 customers (in the open route) occurs when the GLS
is in one of the following four states: (0,3),(2,2),(1,2),(3,1). By adding the stationary
probabilities of these states, we have

 1/48+43/32+43/164+1/16 35
By(3,6) = 6.3 = 257 = 0.0664,

as expected.



