
5 Chapter 5 Solution Set

Problems

5.1 Derive the ISP integral equation Eq.(5.1a) in terms of boundary value data

as given by Eq.(5.1b) by applying standard Green function techniques to the

two wave equations satisfied by the radiated field u+(r′, t′) and the free field

propagator gf (r− r′, t− t′).
We have that

[∇2
r′ −

1

c2
∂2

∂t′2
]u+(r′, t′) = q(r′, t′),

[∇2
r′ −

1

c2
∂2

∂t′2
]gf(r− r′, t− t′) = 0.

Using our (by now) standard Green function techniques we obtain

gf(r− r′, t− t′)[∇2
r′ −

1

c2
∂2

∂t′2
]u+(r′, t′)

−u+(r′, t′)[∇2
r′ −

1

c2
∂2

∂t′2
]gf(r− r′, t− t′) = q(r′, t′)gf(r− r′, t− t′).

We now integrate both sides of the above equation over a finite volume τ ⊃ τ0
and from t′ = −∞ to +∞ to obtain
∫ ∞

−∞
dt′

∫

∂τ

dS′ [gf(r− r′, t− t′) ∂

∂n′ u+(r′, t′)− u+(r′, t′)
∂

∂n′ gf(r− r′, t− t′)]

+
1

c2

∫

τ

d3r′ [u+(r′, t′)
∂

∂t′
gf(r− r′, t− t′)− gf(r− r′, t− t′) ∂

∂t′
u+(r′, t′)]|∞−∞

=

∫ T0

0

dt′
∫

τ0

d3r′ q(r′, t′)gf (r− r′, t− t′),

where the normal derivatives are directed out of the interior τ into the exterior

τ⊥. Since the volume τ is finite the last term in the second term in the above

equation vanishes which then yields the ISP integral equation in terms of over

specified boundary value data.

5.2 Derive the ISP integral equation Eq.(5.1a) in terms of Cauchy data as given

by Eq.(5.2) by applying standard Green function techniques to the two wave

equations satisfied by the radiated field u+(r′, t′) and the free field propagator

gf(r− r′, t− t′).
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Following identical lines as used in the previous problem we find using

standard Green function techniques that

gf(r− r′, t− t′)[∇2
r′ −

1

c2
∂2

∂t′2
]u+(r′, t′)

−u+(r′, t′)[∇2
r′ −

1

c2
∂2

∂t′2
]gf(r− r′, t− t′) = q(r′, t′)gf (r− r′, t− t′).

We now integrate both sides of the above equation over an infinite volume

and from t′ = 0− ε to t0 > T0 to obtain

∫ t0

−ε
dt′

∫

Σ∞

dS′ [gf(r− r′, t− t′) ∂

∂n′ u+(r′, t′)− u+(r′, t′)
∂

∂n′ gf (r− r′, t− t′)]

+
1

c2

∫
d3r′ [u+(r′, t′)

∂

∂t′
gf(r− r′, t− t′)− gf(r− r′, t− t′) ∂

∂t′
u+(r′, t′)]|t0t′=−ε

=

∫ T0

0

dt′
∫

τ0

d3r′ q(r′, t′)gf (r− r′, t− t′),

where Σ∞ is the surface of a sphere having infinite radius. Since the radiated

field is causal it will vanish over Σ∞ throughout the time interval [−ε, t0] so

the first term in the above equation will vanish as will the second term at the

end point t′ = −ε. We thus arrive at the result

∫ T0

0

dt′
∫

τ0

d3r′ q(r′, t′)gf (r− r′, t− t′)

=
1

c2

∫
d3r′ [u+(r′, t0)

∂

∂t0
gf(r− r′, t− t0)− gf(r− r′, t− t0)

∂

∂t0
u+(r′, t0)]

which is the required result.

5.3 Prove that the ISP integral equation holds under the replacement of gf(r −
r′, t− t′) by any function ĝf (r−r′, t− t′) that satisfies the homogeneous wave

equation over all of space-time.

This result follows from the fact that the derivations of the ISP integral

equation employed in the previous two problems remains valid under the re-

placement of gf with ĝf .

5.4 Derive the frequency domain back propagated field given in terms of Cauchy

data in Eq.(5.3d) by Fourier transformation of Eq.(5.2).

The time-dependent back propagated field in terms of Cauchy data at time

t = t0 > T0 is given by

φ(r, t) =
1

c2

∫
d3r′ [u+(r′, t0)g

′
f(r− r′, t− t0)− gf(r− r′, t− t0)u′+(r′, t0)],

where the primes denote differentiation w.r.t. t0. We can express the free field

propagator in the Fourier integral

gf (r− r′, t− t0) =
1

2π

∫ ∞

−∞
dωGf (r− r′, ω)e−iω(t−t0),
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from which we conclude that

g′f (r− r′, t− t0) =
1

2π

∫ ∞

−∞
dω iωGf(r− r′, ω)e−iω(t−t0).

Using the above two Fourier expansions in the back propagated field and

performing some elementary algebra yields

φ(r, t) =
1

2π

∫ ∞

−∞
dω {e

iωt0

c2

∫
d3r′ [iωu+(r′, t0)Gf(r−r′, ω)−Gf(r−r′, ω)u′+(r′, t0)}e−iωt,

which then yields the required result

Φ(r, ω) =
eiωt0

c2

∫
d3r′ [iωu+(r′, t0) − u′+(r′, t0)]Gf(r− r′, ω).

5.5 Use the multipole expansion of the free field propagator given in Eq.(5.4) of

Example 5.1 in Eq.(5.3d) to derive the expansion

Φ(r, ω) =
∑

l,m

Φml (ω)jl(kr)Y
m
l (r̂)

where

Φml (ω) = −2ki
eiωt0

c2

∫
d3r′ [iωu+(r′, t0)−

∂

∂t0
u+(r′, t0)]jl(kr

′)Y ml
∗(r̂′).

We have from Eq.(5.4)

Gf (R, ω) = −2ik

∞∑

l=0

l∑

m=−l
jl(kr)jl(kr

′)Y ml (r̂)Y ∗m
l (r̂′)

which when employed in Eq.(5.3d) yields

Φ(r, ω) =
eiωt0

c2

∫
d3r′ [iωu+(r′, t0)− u′+(r′, t0)]

Gf(r−r
′,ω)︷ ︸︸ ︷

−2ik

∞∑

l=0

l∑

m=−l
jl(kr)jl(kr

′)Y ml (r̂)Y ∗m
l (r̂′)

=

∞∑

l=0

l∑

m=−l
{−2ik

eiωt0

c2

∫
d3r′ [iωu+(r′, t0)− u′+(r′, t0)]jl(kr

′)Y ∗m
l (r̂′)}jl(kr)Y ml (r̂)

5.6 Use the expansions of the back propagated field obtained in problem 5.5 and

in Example 5.1 to establish a relationship between Dirichlet data on a sphere

surrounding the source and Cauchy conditions acquired after a source ceases

to radiate.

We have from Example 5.1 that

Φ(r, ω) = 2

∞∑

l=0

l∑

m=−l

uml (ω)

h+
l (kr0)

jl(kr)Y
m
l (r̂)

where

uml (ω) =

∫
dΩU+(r, ω)|r=r0Y ∗m

l (r̂).
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On the other-hand, we found in problem 5.5 that

Φ(r, ω) =
∑

l,m

Φml (ω)jl(kr)Y
m
l (r̂)

where

Φml (ω) = −2ki
eiωt0

c2

∫
d3r′ [iωu+(r′, t0)−

∂

∂t0
u+(r′, t0)]jl(kr

′)Y ml
∗(r̂′).

On equating terms in the two representations we find that

2
uml (ω)

h+
l (kr0)

= Φml (ω)

which yields

∫
dΩU+(r, ω)|r=r0Y ∗m

l (r̂) = −kih
+
l (kr0)e

iωt0

c2

∫
d3r′ [iωu+(r′, t0)

− ∂

∂t0
u+(r′, t0)]jl(kr

′)Y ml
∗(r̂′)

which is the desired result.

5.7 Show that the PB integral equation for a source distributed over the surface

of a sphere and where the data consists of boundary value data of any kind

over the surfaces of two concentric spheres one interior and one exterior to the

source sphere is incomplete and only involves the data on the exterior sphere.

This is an example where the formulation of the ISP in terms of the PB

integral equation fails and the more powerful SVD based approach is required

(cf. Problem 5.18).

The general expression for a source distributed over the surface of a sphere

of radius a0 is found following the same general procedure as employed for

the planar source in Section 5.2 and is given by

Q(r, ω) = Qs(r̂, ω)δ(r − a0) +
1

r2
Qd(r̂, ω)

∂

∂r
[r2δ(r − a0)].

where the unit vector r̂ = r/r denotes the two angular coordinates on the

surface of the sphere. The Porter-Bojarski integral equation then becomes

Φ(r, ω) =

∫

τ0

d3r′Gf(r− r′, ω)Q(r′, ω)

= a2
0

∫
dΩ′ [Qs(r̂

′, ω)Gf(r− a0r̂
′, ω)−Qd(r̂′, ω)

∂

∂a0
Gf(r− a0r̂

′, ω)]

We have from Example 5.1

Gf(R, ω) = −2ik

∞∑

l=0

l∑

m=−l
jl(kr)jl(kr

′)Y ml (r̂)Y ∗m
l (r̂′)
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which when employed in the above PB integral equation yields

Φ(r, ω) = a2
0

∫
dΩ′ {Qs(r̂′, ω)

Gf (r−a0r̂
′,ω)︷ ︸︸ ︷

−2ik

∞∑

l=0

l∑

m=−l
jl(kr)jl(ka0)Y

m
l (r̂)Y ∗m

l (r̂′)

−Qd(r̂′, ω)

∂
∂a0

Gf (r−a0r̂
′,ω)

︷ ︸︸ ︷

−2ik

∞∑

l=0

l∑

m=−l
kjl(kr)j

′
l(ka0)Y

m
l (r̂)Y ∗m

l (r̂′)}

= −2ika2
0

∞∑

l=0

l∑

m=−l
{
∫
dΩ′ [jl(ka0)Qs(r̂

′, ω)− kj′l(ka0)Qd(r̂
′, ω)]Y ∗m

l (r̂′)}jl(kr)Y ml (r̂),

which we can write in the compact form

Φ(r, ω) =

∞∑

l=0

l∑

m=−l
{−2ika2

0[jl(ka0) < Y ml , Qs >

−kj′l(ka0) < Y ml , Qd >]}jl(kr)Y ml (r̂), (5.1)

where < x, y > denote the inner product of x and y over the unit sphere.

The surface source is bounded by the union of the interior sphere and ex-

terior sphere so that the back propagated field appearing in the l.h.s. of the

above PB integral equation requires the sum of the back propagated fields from

both data spheres into the annulus lying between these two data spheres. The

back propagated field from the exterior sphere having radius r> is readily

computed and found using the results of Example 5.1 to be expressible in

terms of Dirichlet data as

Φ>(r, ω) = 2

∞∑

l=0

l∑

m=−l

uml >(ω)

h+
l (kr>)

jl(kr)Y
m
l (r̂),

where

uml >(ω) =

∫
dΩU+(r, ω)|r=r>

Y ∗m
l (r̂) =< Y ml , U+(r>r̂) >,

where, as before, < x, y > denotes an inner product over the unit sphere.

The back propagated field from data acquired over the inner concentric

sphere unfortunately vanishes so that the data over this sphere does not come

into play in the solution of the problem so this approach fails. The reason for

this is that the field within the interior of the surface source must satisfy the

homogeneous Helmholtz equation so that at any point within this region we

find using standard Green function techniques that
∫

∂τ<

dS′[U+(r′, ω)
∂

∂n′G±(r− r′, ω)−G±(r− r′, ω)
∂

∂n′U+(r′, ω)] = U+(r, ω),

if r is in the interior of the data sphere τ< and zero if it lies in the exterior



45 Problems

of this sphere and where G± is either the outgoing or incoming wave Green

function. It then follows that the back propagated field will vanish throughout

the annulus lying between these two data spheres (indeed will be identically

zero over all of space) so that the PB integral equation will only involve the

data on the exterior bounding sphere and, hence, is incomplete. Indeed, on

substituting the back propagated field from the exterior sphere into Eq.(5.1)

we obtain

−2ika2
0[jl(ka0) < Y ml , Qs > −kj′l(ka0) < Y ml , Qd >] =

< Y ml , U+(r>r̂) >

h+
l (kr>)

.

The above equation has two unknowns < Y ml , Qs > and < Y ml , Qd > and

only one known < Y ml , U+(r>r̂) > and, hence, is incomplete.

5.8 Derive the most general form of a surface source distributed over an infinite

plane and that is NR throughout one of the two half-spaces bounded by the

plane.

By a straightforward generalization of Eq.(5.13) we find that the field radi-

ated by the surface source is given by

U+(r, ω) =

∫

z=0

d2ρ′ [G+(r− ρ′, ω)Qs(ρ
′, ω) +Qd(ρ

′, ω)
∂

∂z
G+(r− ρ′, ω)].

If we substitute the Weyl expansion from Eq.(4.4a) into the above equation

we obtain

U+(r, ω) =
−i
8π2

∫ ∞

−∞

d2Kρ

γ
[Q̃s(Kρ, ω)± γQ̃d(Kρ, ω)]e±iγzeiK·ρ

where the + sign is used in the r.h.s. z > 0 and the minus sign if z < 0. We

conclude that the field will vanish in the r.h.s. half-space if

Q̃s(Kρ, ω) + γQ̃d(Kρ, ω) = 0

and throughout the l.h.s. if

Q̃s(Kρ, ω) − γQ̃d(Kρ, ω) = 0.

We can thus take the singlet component Qs(ρ, ω) to be arbitrary and select

the doublet component Qd(ρ, ω) to satisfy one of the two above equations to

obtain a surface source that is NR throughout one of the two half-spaces.

5.9 Derive the most general form a a surface source distributed over the surface

of a sphere and that is NR throughout the interior (exterior) of the sphere.

This is solved in a parallel fashion to the previous problem. The field radi-

ated by a surface source distributed over a sphere of radius a0 is easily found

to be (cf., Problem 5.7)

U+(r, ω) = a2
0

∫
dΩ′ [Qs(r̂

′, ω)G+(r−a0 r̂
′, ω)−Qd(r̂′, ω)

∂

∂a0
G+(r−a0r̂

′, ω)].

In place of the Weyl expansion used in the previous problem we now use the
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multipole expansion of the outgoing wave Green function given in Eq.(??) to

find that

U+(r, ω) = −ika2
0

∞∑

l=0

l∑

m=−l
aml jl(kr)Y

m
l (r̂), r < a0,

U+(r, ω) = −ika2
0

∞∑

l=0

l∑

m=−l
bml h

+
l (kr)Y ml (r̂), r > a0,

where

aml = h+
l (ka0) < Y ml , Qs > −kh+

l

′
(ka0) < Y ml , Qd >,

bml = j+l (ka0) < Y ml , Qs > −kj′l(ka0) < Y ml , Qd >,

and where < x, y > denote the inner product over the unit sphere of x with

y. If we then require aml to be zero we have a surface source that will be NR

throughout the entire of the sphere and if bml = 0 it will be NR throughout

the exterior of the sphere.

5.10 Prove the following theorem which is the frequency domain version of the

“source decomposition theorem” Theorem 1.3 proven in Section 1.7 of Chap-

ter 1: Let Q(r, ω) be a square integrable source compactly supported within

τ0. Then this source can be uniquely decomposed into an NR component

Qnr(r, ω) and a minimum norm component Q̂(r, ω) such that
∫

τ0

d3r Qnr(r, ω)Q̂(r, ω) = 0,

[∇2
r + k2]Q̂(r, ω) = 0,

Qnr(r, ω) = [∇2
r + k2]Π(r, ω),

where Π(r, ω) is a square integrable function supported in τ0 that has contin-

uous first partial derivatives.

5.11 Verify Eqs.(5.27).

We wish to show that with −a0 ≤ z ≤ +a0 we have that

lim
a0→0

cos γz

a0(1 + j0(2γa0))
→ δ(z), lim

a0→0

γ sin γz

a0(1− j0(2γa0))
→ −δ′(z).

The above results are easily verified by using the definitions of the delta func-

tion and doublet; i.e.,
∫ ∞

−∞
dz g(z)δ(z) = g(0),

∫ ∞

−∞
dz g(z)δ′(z) = −g′(0),

for any function g(z) that is analytic in the neighborhood of the origin.

We have that

cos γz

a0(1 + j0(2γa0))
=

cos γz

2a0 +O(a3
0)
,

γ sin γz

a0(1− j0(2γa0))
=

γ sinγz

a0
(2γa0)2

3! +O(a5
0)
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Using these results we find that

lim
a0→0

∫ a0

−a0

dz g(z)
cos γz

a0(1 + j0(2γa0))
= lim

a0→0

∫ +a0

−a0

dzg(z)
cos γz

2a0 + O(a3
0)

= lim
a0→0

1

2a0 +O(a3
0)

∫ +a0

−a0

dz g(z) cos γz = g(0), (5.2)

a result that follows from expanding the analytic function g(z) into a Taylor

series about the origin. We also find that

lim
a0→0

∫ +a0

−a0

dz g(z)
γ sin γz

a0(1− j0(2γa0))

= lim
a0→0

γ

a0
(2γa0)2

3! + O(a5
0)

∫ +a0

−a0

dz g(z) sin γz.

If we again expand g(z) in a Taylor series about the origin we find that
∫ +a0

−a0

dz g(z) sin γz =

∫ +a0

−a0

dz [g(0) + g′(0)z + O(z2)][γz − 1

3!
(γz)3 +O(z5)]

= g′(0)[γ
z3

3
− 1

3!

γ3z4

4
+ O(z6)]|+a0

−a0
= g′(0)[2γ

a3
0

3
+ O(a4

0)].

Substituting this into Eq.(5.2) we obtain

lim
a0→0

∫ a0

−a0

dz g(z)
cos γz

a0(1 + j0(2γa0))

= lim
a0→0

γ

a0
(2γa0)2

3! +O(a5
0)
g′(0)[2γ

a3
0

3
+O(a4

0)]

which simplifies to g′(0) thus establishes the required result.

5.12 Show that the adjoint of a compact operator is also compact. Hint: Show that

it is Hilbert-Schmidt.

For A† : Hf → He to be Hilbert-Schmidt and, hence, compact we must

show that there exists a complete O.N. sequence fm, m = 1, 2 · · · ∈ Hf such

that

If =
∑

m

||A†fm||2 <∞.

We now show that this holds so long as A : He → Hf is Hilbert-Schmidt.

To do this we take fm, m = 1, 2 · · · ∈ Hf and en, n = 1, 2 · · · ∈ He to

be any two complete O.N. sequences in their respective Hilbert spaces. Since

{en} is complete and O.N. we have that

A†fm =
∑

n

< en, A
†fm >He

en

so that

If =
∑

m

||A†fm||2 =
∑

m

∑

n

| < en, A
†fm >He

|2 =
∑

m

∑

n

| < Aen, fm >Hf
|2.
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But by Bessel’s inequality we have that

If =
∑

m

∑

n

| < Aen, fm >Hf
|2 ≤

∑

n

| < Aen >He
|2 <∞

since A is compact so that there exists at least one complete O.N. sequence

satisfying the above inequality.

5.13 Prove that T̂ †T̂ and T̂ T̂ † are compact if T̂ is compact.

Since T̂ : He → Hf is compact it follows from the previous problem that so

to is T̂ † : Hf → He. Now consider

I =
∑

m

||T̂ T̂ †fm||2

where fm, m = 1, 2, · · · ∈ Hf is a complete O.N. sequence. Define

φm = T̂ †fm.

Then we can express I in the form

I =
∑

m

||T̂φm||2.

But T̂ is compact by hypothesis and, hence, bounded so that

||T̂φm||2 ≤M ||φm||2, ∀φm ∈ Hf .

Using this result we then find that

I ≤M
∑

m

||φm||2 <∞

with the last inequality following from the fact that T̂ † is compact so that
∑

m

||φm||2 =
∑

m

||T̂ †fm||2 <∞.

The proof that T̂ †T̂ is also compact is proven in exactly the same manner.

5.14 Let H be an N ×M matrix with complex elements hn,m and possessing the

singular set vp, up, σp. Then show that it admits the SVD

H = UΣV †

where U is the N × N matrix whose column vectors u1, u2, · · · , uN , V is

the M ×M matrix with column vectors v1, v2, · · · , vM and Σ is the N ×M
diagonal matrix with elements σ1, σ2, · · · , σP where P = Min (N,M).

Let Hv and Hu denote the Hilbert spaces generated by the {vp} and {up}
respectively. Then since H is an N × M matrix Hv and Hu are CM and

CN respectively whose elements can be taken to be M and N dimensional

complex column vectors.

Now let v ∈ Hv be an arbitrary element in Hv. Then since Hv is generated

by {vp} we have that

v =
∑

p

< vp, v >Hv
vp
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and

Hv =
∑

p

< vp, v >Hv
Hvp =

∑

p

σp < vp, v >Hv
up

which must hold for any v ∈ Hv. We can rewrite the above equation in the

form

Hv =
∑

p

σpupv
†
pv

where up is an N column vector and v†p denotes the Hermitian adjoint (com-

plex row vector) of the M column vector vp. Since the above equation must

hold for any v ∈ Hv we have that the N ×M matrix H admits the decompo-

sition

H =
∑

p

σpupv
†
p. (5.3)

The representation given in Eq.(5.3) is in the form of a weighted sum of

outer products of vectors. It can be converted into a triple matrix product

using standard methods of matrix algebra. Here we will demonstrate this for

the simple case where N = M = 2. In this case we can express Eq.(5.3) in

the form

H = σ1

[
u11

u12

] [
v∗11 v∗12

]
+ σ2

[
u21

u22

] [
v∗21 v∗22

]

where vp = [vp1, vp2], p = 1, 2 and similarly for up. If we expand each of the

outer products in the above equation we obtain

H = σ1

[
u11v

∗
11 u11v

∗
12

u12v
∗
11 u12v

∗
12

]
+ σ2

[
u21v

∗
21 u21v

∗
22

u22v
∗
21 u22v

∗
22

]

which can be further reduced to

H =

[
(σ1u11v

∗
11 + σ2u21v

∗
21) (σ1u11v

∗
12 + σ2u21v

∗
22)

(σ1u12v
∗
11 + σ2u22v

∗
21) (σ1u12v

∗
12 + σ2u22v

∗
22)

]
.

The final reduction takes two steps:

H =

[
u11 u21

u12 u22

] [
σ1v

∗
11 σ1v

∗
12

σ2v
∗
21 σ2v

∗
22

]
=

U︷ ︸︸ ︷[
u11 u21

u12 u22

]
Σ︷ ︸︸ ︷[

σ1 0

0 σ2

]
V †

︷ ︸︸ ︷[
v∗11 v∗12

v∗21 v∗22

]
.

5.15 Compute the singular system for the antenna synthesis problem addressed in

Section 5.5 by first solving for the singular functions up and then computing

the rest of the system from these functions.

The singular functions up satisfy the normal equation Eq.(5.55b)

∞∑

l=0

l∑

m=−l
µ2
l < Y ml , up >Hf

Y ml (s) = σ2
pup(s, ω)
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and are thus linear combinations of the spherical harmonics. On setting

up(s, ω) =
∑

l,m

Cml (p)Y ml (s)

we then obtain the equation

∞∑

l=0

l∑

m=−l
µ2
lC

m
l (p)Y ml (s) = σ2

p

∑

l,m

Cml (p)Y ml (s)

which requires that Cml (p) = 0 unless l = p and µp = σp. The index p = l is

degenerate so that the singular functions for fixed p can be taken to be the

spherical harmonics

up(s) = Y ml (s), −l ≤ m ≤ +l,

where p now represents the double index l, m.

The singular functions vp are obtained using T †up = σ2
pvp. The adjoint

operator is given in Eq.(5.52d) which then yields

T̂ †up = −Mτ0

∞∑

l′=0

l′∑

m′=−l′
il

′

j∗l′ (kr)Y
m′

l′ (r̂)

∫

4π

dΩs Y
m′

l′
∗
(s)Y ml (s)

= −Mτ0 i
lj∗l (kr)Y

m
l (r̂) = σpvp,

thus yielding the singular functions defined in Eqs.(5.56a) with p = (l, m).

5.16 1. Show that the singular values σp and singular vectors up for the one-

dimensional far field version of the ISP defined in Example 5.5 satisfy the

normal equation

T̂ †T̂ vp︷ ︸︸ ︷
1

4|k|2M
∑

s=±1

eik
∗sz

∫

L0

dz′ e−iksz
′

vp(z
′, ω) = σ2

pvp(z, ω).

We showed in Example 5.5 that

T̂ = − i

2k

∫

L0

dz′ e−iksz
′

, T̂ † =
i

2k∗
M

∑

s=±1

eik
∗sz.

The normal equation satisfied by vp is then found to be

T †Tvp = { i

2k∗
M

∑

s=±1

eik
∗sz}{− i

2k

∫

L0

dz′ e−iksz
′}vp(z′, ω) = σ2

pvp(z, ω),

which simplifies to

1

4|k|2M
∑

s=±1

eik
∗sz

∫

L0

dz′ e−iksz
′

vp(z
′, ω) = σ2

pvp(z, ω). (5.4)
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2. Give an argument why the singular functions vp for σp > 0 satisfy the

homogeneous Helmholtz equation with wavenumber k∗ everywhere inside

the interval L0 and are, in fact, a linear combination of the two functions

exp(±ik∗z).
The plane waves exp(ik∗z) satisfy the 1D Helmholtz equation with wavenum-

ber k∗. It then follows that if z ∈ L0 we can commute the Helmholtz

operator with the masking operatorM proving that the vp satisfy the ho-

mogeneous Helmholtz equation with wavenumber k∗ so long as z ∈ L0.

If z /∈ L0 we cannot commute the two operators so that these singular

functions are generated by singularities on the two ends of L0.

3. Using the above result show that the singular functions can be expressed

in the form

vp(z, ω) =M
∑

s′=±1

As′(p)e
ik∗s′z, σp > 0,

where the Fourier coefficients As, s = ±1 satisfy the matrix equation

[
sinc[a0(k − k∗)] sinc[a0(k + k∗)]
sinc[a0(k + k∗)] sinc[a0(k − k∗)]

] [
A−1(p)

A+1(p)

]
= σ2

p

[
A−1(p)

A+1(p)

]
.

Since the singular functions vp with σp > 0 satisfy the homogeneous

Helmholtz equation with wavenumber k∗ we can express them in the form

vp(z) =
∑

s=±1

Ase
ik∗sz

which, when used in Eq.(5.4) yield

1

4|k|2M
∑

s=±1

eik
∗sz

∫

L0

dz′ e−iksz
′

[
∑

s′=±1

As′e
ik∗s′z′ ] = σ2

p

∑

s=±1

Ase
ik∗sz.

The plane waves exp(±ik∗z) are linearly independent so that the above

equation requires that

1

4|k|2
∫

L0

dz′ e−iksz
′

[
∑

s′=±1

As′e
ik∗s′z′ ] = σ2

pAs

which reduces to

1

2|k|2
∑

s′=±1

sin[(ks− k∗s′)a0]

ks− k∗s′ As′ = σ2
pAs.

The above equations then simplify to the matrix equations in the problem

statement on setting s = ±1.

5.17 Set up and solve the ISP for a source compactly supported between two

parallel planes and Dirichlet data over two bounding parallel planes using the

SVD. Compare and contrast your solution with that found in Section 5.3.

We begin by formulating the problem using the angular spectrum expansion
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of the radiated field. We showed in Section 4.2 that the angular spectrum is

related to the source via the equation

A(k±, ω) = − 1

4π
Q̃(k±, ω)

and in Section 4.3 related the angular spectrum to Dirichlet conditions over

any plane z = z0 lying outside the source support volume τ0 via the equation

A(k±, ω) =
γ

2πi
Ũ+(Kρ, z0, ω)e±iγz0 .

In these equations k± = Kρ ± γẑ and Kρ is the spatial frequency vector

relative to the x, y plane. We will take the two measurement planes to lie on

either side of the source region at z = ±a0 and we then obtain the imaging

model

− 1

4π
Q̃(k±, ω) =

γ

2πi
Ũ+(Kρ,±a0, ω)e±iγa0 . (5.5a)

At this point it is preferable to set k± = Kρ±γẑ and write the above image

model in the form

− 1

4π

∫ a0

−a0

dzQ(Kρ, z, ω)e∓iγz =
γ

2πi
Ũ+(Kρ,±a0, ω)e±iγa0 (5.5b)

where

Q(Kρ, z, ω) =

∫
d2ρQ(ρ, z, ω)e−iKρ·ρ.

We can then write the imaging equation in the standard form T̂Q = f with

T̂ = −
∫ a0

−a0

dz e−isγz

with

f(s) =
γ

2πi
Ũ+(Kρ, sa0, ω)eisγa0 , s = ±1.

The actual source Q(r, ω) is recovered from Q(Kρ, z, ω) via an inverse 2D

Fourier transform.

We see that by writing the imaging model in the form Eq.(5.5b) rather

than (5.5a) we have effectively reduced the dimensionality of the ISP to one

dimension which, we will find, yields an inverse problem that is completely

analogous to the 1D ISP considered in Example 5.5 and Problem 5.16. The

transverse wavevector Kρ now plays the role of a parameter and the ISP is

then solved for Q(Kρ, z, ω) for each value of this wavevector. The Hilbert

space HQ is L2(−a0,+a0) and the data space Hf is simply C2 corresponding

to the two complex numbers f(s) with s = ±1. The inner products in the two

spaces are

< v2, v1 >HQ
=

∫ a0

−a0

dz v∗2(z)v1(z), < u2, u1 >Hf
=

∑

s=±1

u∗2(s)u1(s).
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Using the above inner products we find that

T̂ † = − 1

4π
M

∑

s=±1

eisγ
∗z,

where M = 1, z ∈ [−a0,+a0] and zero otherwise is the masking operator.

The composite operator T̂ †T̂ is easily found to be

T̂ †T̂ = (
1

4π
)2M

∑

s=±1

eisγ
∗z

∫ a0

−a0

dz′ e−isz
′

.

We introduce the SVD in the usual way with vp(z) ∈ HQ and up(s) ∈ Hf .
The normal equations for the vp are found to be

T̂ †T̂ vp︷ ︸︸ ︷
(

1

4π
)2M

∑

s=±1

eisγ
∗z

∫ a0

−a0

dz′ e−isz
′

vp(z
′) = σ2

pvp(z). (5.6)

The computation of the singular functions vp(z) follows from the observation

that the vp(z) with σp > 0 are linear combinations of exp(±iγ∗z) and can

thus be represented in the form

vp(z) =M
∑

s=±1

Ap(s)e
isγ∗z. (5.7)

On substituting the above representation into the left hand side of the normal

equations and performing some elementary calculus we find that

a0

2
M

∑

s=±1

eisγ
∗z

∑

s′=±1

Ap(s
′)Sinc [(sγ − s′γ∗)a0] = σ2

pvp(z),

where Sinc (x) = sinx/x is the Sinc function. It then follows from the above

two equations that

a0

2

∑

s′=±1

Ap(s
′)Sinc [(sγ − s′γ∗)a0] = σ2

pAp(s),

which can be expressed in matrix form as

[
sinc[a0(γ − γ∗)] sinc[a0(γ + γ∗)]
sinc[a0(γ + γ∗)] sinc[a0(γ − γ∗)]

] [
Ap(s = −1)

Ap(s = +1)

]
(5.8a)

=
2σ2

p

a0

[
Ap(s = −1)

Ap(s = +1)

]
. (5.8b)

The singular values σp are obtained as solutions to

det




2σ2
p

a0
− sinc[a0(γ − γ∗)] sinc[a0(γ + γ∗)]

sinc[a0(γ + γ∗)]
2σ2

p

a0
− sinc[a0(γ − γ∗)]


 = 0
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Evaluating the determinant and performing some elementary algebra then

leads to the result

σ2
p =

a0

2
[sinc[a0(γ − γ∗)] + p sinc[a0(γ + γ∗)]] , (5.8c)

with p = ±1.

As a final step the spectral amplitudes Ap(s) are obtained from the solu-

tions to the matrix equation Eq.(5.8b) using the singular values computed in

Eq.(5.8c). The singular functions vp(z) are then found from Eqs.(5.7) and the

singular functions up(s) are then obtained from T̂ †vp = σpup and the mini-

mum norm least squares solution to the ISP is obtained in the usual way via

Eqs.(5.48b).

We note that this problem solution differs from that obtained using the

BP integral equation in Section 5.3 in that it includes homogeneous and

evanescent data. The back propagation operator employed in the BP inte-

gral equation destroys evanescent waves so that the solution includes on the

homogeneous wave data.

5.18 Setup and solve the ISP for a source distributed over the surface of a sphere

and where the data consists of Dirichlet data over the surfaces of two concen-

tric spheres one interior and one exterior to the source sphere.

We express the radiated field from the surface source using Eq.(2.57)

U+(r, ω) =

∫

∂τ0

dS0 [Qs(r0, ω)G+(r− r0, ω)−Qd(r0, ω)
∂

∂n′G+(r− r0, ω)].

For this problem ∂τ0 is the surface of a sphere of radius a0 and the radiated

field is measured over two concentric spheres which having radii a+ > a0 and

a− < a0. Using the multipole expansion of the Green function obtained in

Section 3.4 we obtain the equations

U+(a+r̂, ω) = −ika2
0

∑

l,m

[< Y ml , Qs > jl(ka0)h
+
l (ka+)

− < Y ml , Qd > a0j
′
l(ka0)h

+
l (ka+)]Y ml (r̂),

U+(a−r̂, ω) = −ika2
0

∑

l,m

[< Y ml , Qs > h+
l (ka0)jl(ka−)

− < Y ml , Qd > a0h
+
l

′
(ka0)jl(ka−)]Y ml (r̂),

from which we obtain the data model

< Y ml , U+(a+r̂, ω) >= −ika2
0[< Y ml , Qs > jl(ka0)h

+
l (ka+)

− < Y ml , Qd > a0j
′
l(ka0)h

+
l (ka+)]

< Y ml , U+(a−r̂, ω) >= −ika2
0[< Y ml , Qs > h+

l (ka0)jl(ka−)

− < Y ml , Qd > a0h
+
l

′
(ka0)jl(ka−)].
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The above equations can be cast into matrix form as

[
jl(ka0)h

+
l (ka+) −a0j

′
l(ka0)h

+
l (ka+)

h+
l (ka0)jl(ka−) −a0h

+
l

′
(ka0)jl(ka−)

] [
< Y ml , Qs >

< Y ml , Qd >

]

=
i

ka2
0

[
< Y ml , U+(a+r̂, ω) >

< Y ml , U+(a−r̂, ω) >

]
.

The solution to the problem is then obtained in by solving the above matrix

equation and expressing the two source components as generalized Fourier

series in terms of the spherical harmonics.

5.19 Compute the singular system given in Example 5.7.

The normal equations for the singular functions {vp(x)} are given in the

example as

T̂ †T̂ vp =Ma0

1

2π

∫ ∞

−∞
dKeiKx

∫ a0

−a0

dx′ e−iKx
′

vp(x
′) = σ2

pvp(x).

Since the domain of the singular functions vp(x) is the finite interval [−a0,+a0]

they can be expanded into a Fourier series in the form

vp(x) =
1

2a0

∞∑

n=−∞
Cn(p)e

i π
a0
nx
, x ∈ [−a0,+a0]

which, when substituted into the normal equations yields

Ma0

1

2π

∫ ∞

−∞
dKeiKx

∫ a0

−a0

dx′ e−iKx
′{ 1

2a0

∞∑

n=−∞
Cn(p)e

i π
a0
nx′

}

= σ2
pMa0

1

2a0

∞∑

n=−∞
Cn(p)e

i π
a0
nx

The integral over K on the l.h.s. of the equation yields 2πδ(x − x′) so the

equation simplifies to become

Ma0

∫ a0

−a0

dx′ δ(x′−x){ 1

2a0

∞∑

n=−∞
Cn(p)e

i π
a0
nx′

} =Ma0

1

2a0

∞∑

n=−∞
Cn(p)e

i π
a0
nx

so the normal equations become

Ma0

1

2a0

∞∑

n=−∞
Cn(p)e

i π
a0
nx = σ2

pMa0

1

2a0

∞∑

n=−∞
Cn(p)ei

π
a0
nx.

It follows from the normal equations that σp = 1 and that the complex

exponentials 1/
√

2a0Ma0 exp(iπ/a0nx) form an O.N. basis for the singular

functions vp(x). We can thus arbitrarily select this basis to be the singular

functions under the assignment of n = p. The singular functions up(K) are
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then found to be

up(K) = T̂ vp =
1√
2π

∫ a0

−a0

dx

vp(x)︷ ︸︸ ︷
1√
2a0

ei
π

a0
px e−iKx =

sinc a0

π (K − π
a0
p)

√
π
a0

,

where

sinc x =
sinπx

πx

is the “Sinc function.”

5.20 Derive the singular system of the Slepian Polack problem given in Exam-

ple 5.8.

We begin with Eq.(5.42) in Example 5.8:

κnS0,n(c, ω) =

∫ 1

−1

dξ S0,n(c, ξ)e
icωξ, −1 < ω < +1,

where c is a constant parameter and

Kn =
2in√
2π
R(1)
on (c, 1),

with R
(1)
on (c, 1) being the Radial Prolate Spheroidal Wave Functions that are

orthogonal over the intervals −1 < ξ < +1 and −1 < ω < +1 with norm

||S0,n||2 =

∫ +1

−1

dξ |S0,n(c, ξ)|2.

We now set c = K0a0 and make the transformation ξ = x/a0 to obtain

κnS0,n(c, ω) =
1

a0

∫ a0

−a0

dx S0,n(c, x/a0)e
iK0ωx, −1 < ω < +1.

On setting ω = K/K0 the above converts to

κnS0,n(c,K/K0) =
1

a0

∫ a0

−a0

dx S0,n(c, x/a0)e
iKx, −K0 < K < +K0.

Two final steps are required. First we wish to normalize the two functions

appearing on either side of the equation so that we have orthonormal singular

functions. This is easily accomplished noting that

||S0,n(c,K/K0)||2 =

∫ K0

−K0

dK |S0,n(c,K/K0)|2 = K0

∫ 1

−1

dω |S0,n(c, ω)|2 = K0||S0,n||2

with a similar result for ||S0,n(c, x/a0)||2. Thus we find that

√
K0κn

S0,n(c,K/K0)√
K0||S0,n||

=
1√
a0

∫ a0

−a0

dx
S0,n(c, x/a0)√
a0||S0,n||

eiKx, −K0 < K < +K0 .

so that now
S0,n(c,K/K0)√

K0||S0,n||
,

S0,n(c, x/a0)√
a0||S0,n||
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are each orthonormal over their respective domains. The final step is simply

to note that κn = |κn|in to find that

σn︷ ︸︸ ︷√
K0a0|κn|

in/2S0,n(c,K/K0)√
K0||S0,n||

=

∫ a0

−a0

dx
i−n/2S0,n(c, x/a0)√

a0||S0,n||
eiKx, −K0 < K < +K0,

which is the desired result.

5.21 By following identical steps as used in solving the full view 2D ISP problem

for a cylindrical source region show that in the limited view problem that T̂

and T̂ † can be expressed in the form

T̂ =
1√
2π

∞∑

n=−∞
(−i)neinαj

∫ a0

0

rdr

∫ π

−π
dφ Jn(kr)e

−inφ,

T̂ † =Mτ0

1√
2π

∞∑

n=−∞
ineinφJ∗

n(kr)

N∑

j=1

e−inαj .

This results from a straightforward modification of the procedure employed

in the full view 2D ISP.

5.22 Using the expressions for T̂ and T̂ † found in the previous problem show that

the 2D composite operators T̂ †T̂ and T̂ T̂ † are given by

T̂ †T̂ =Mτ0

1

2π

∑

n,n′

r(n, n′)einφJ∗
n(kr)

∫ a0

0

r′dr′
∫ π

−π
dφ′ Jn′(kr′)e−in

′φ′

T̂ T̂ † =
1

2π

∞∑

n=−∞
ν2
n(ka0)e

inαj

N∑

j=1

e−inαj′

where

r(n, n′) = i(n−n
′)

N∑

j=1

e−i(n−n
′)αj .

This is a straightforward calculation using the definitions of T̂ and T̂ † given

in the previous problem and the definitions of the inner products for the

limited view problem.

5.23 Derive Eq.(5.88).

We have that

χj(r) =
1√
2π
Mτ0e

ik∗
sj·r

where τ0 is the interior of a circle of radius a0 centered at the origin. We then

find that

< χj , χj′ >HQ
=

∫

τ0

d2r χ∗
j (r)χj′(r) =

1

2π

∫ a0

0

rdr

∫ 2π

0

dφ e−iksj·reik
∗
sj′ ·r.

We now make use of the multipole expansion of the plane wave given in
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Eq.(5.76)

e−ikr cos(φ−α) = e−iksj·r =

∞∑

n=−∞
(−i)neinαJn(kr)e−inφ,

where sj = (cosα, sinα). We then obtain

< χj, χj′ >HQ
=

1

2π

∫ a0

0

rdr

∫ 2π

0

dφ

e−iksj·r

︷ ︸︸ ︷
∞∑

n=−∞
(−i)neinαjJn(kr)e−inφ

×

e
ik∗

s
j′ ·r

︷ ︸︸ ︷
∞∑

n=−∞
(i)n

′

ein
′αj′J∗

n′(kr)ein
′φ =

∫ a0

0

rdr

∞∑

n=−∞
ein(αj−αj′)|Jn(kr)|2

=

∞∑

n=−∞
ν2
n(ka0)e

in(αj−αj′)

where

ν2
n(ka0) =

∫ a0

0

rdr|Jn(kr)|2.


