
EXERCISES FOR STATISTICAL METHODS
FOR CLIMATE SCIENTISTS

Timothy DelSole and Michael K. Tippett

CONTENTS

1 Exercises: Basic Concepts in Probability and Statistics 1

2 Exercises for Statistical Inference 5

3 Exercises for Confidence Intervals 9

4 Exercises for Statistical Tests Based on Ranks 13

5 Exercises for Stochastic Processes 17

6 Exercises on the Power Spectrum 21

7 Exercises for Vectors, Matrices, and Geometry 25

8 Exercises for Linear Regression: Least Squares Estimation 29

9 Exercises for Linear Regression: Inference 35

iii

iv CONTENTS

10 Exercises for Model Selection 39

11 Pitfalls of Statistical Inference 45

12 Exercises for Principal Component Analysis 47

13 Computational Exercises on Field Significance 53

14 Exercises for Multivariate Linear Regression 59

15 Exercises for Canonical Correlation Analysis 63

16 Exercises: Covariance Discriminant Analysis 67

17 Analysis of Variance 71

18 Predictable Component Analysis 77

19 Data Assimilation 81

20 Ensemble Square Root Filters 87

21 Exercises: Extreme Value Analysis 89

22 Answers to Exercises 91

v

Foreward

This document contains exercises and solutions to accompany Statistical Methods for Cli-
mate Scientists by Timothy DelSole and Michael K. Tippett. The usefulness of these solu-
tions would be greatly diminished if they were posted on an insecure website. Therefore,
we hope that instructors are mindful to not post these solutions on an insecure website. We
will greatly appreciate users of this document notifying us about errors or ambiguities in
these exercises and solutions.

CHAPTER 1

EXERCISES: BASIC CONCEPTS IN
PROBABILITY AND STATISTICS

Table 1.1 Sample Outcome of 100 pairs of coin tosses

H2 T2

H1 30 21
T1 22 27

Exercise 1.1 (Empirical Probabilities). The relative frequency of an event is the fraction
of times that the event occurs. Suppose a coin is tossed 200 times. The outcome of 100
consecutive pairs of tosses is summarized in the contingency table 1.1, where H1 and T1
indicate the number of heads and tails on the first toss, respectively, andH2 and T2 indicate
the number of heads and tails on the second toss. For instance, the “21” listed in the top
right entry of the table means that 21 out of 100 pairs was “heads-tails.” The empirical
probability of “heads-tails” is therefore 21/100.

a) What is the empirical probability of heads on the first toss of a pair, denoted P (H1)?

b) What is the empirical probability of a heads in the second toss of a pair, denoted
P (H2)?

c) What is the empirical probability of the joint event H1 and T2, denoted P (H1, T2)?

Exercises for Statistical Methods for Climate Scientists. By DelSole and Tippett 1

2 EXERCISES: BASIC CONCEPTS IN PROBABILITY AND STATISTICS

d) What is the empirical probability of T2 given H1, denoted P (T2|H1)? Compute this
by examining only those cases in which H1 is true.

e) Verify that the empirical conditional probability computed in (d) is the ratio of the
joint probability over the marginal: P (T2|H1) = P (T2, H1)/P (H1).

(Incidentally, this exercise suggests why unconditional probabilities are called marginal
probabilities, namely because they can be calculated by summing values in a table along
rows and columns and writing the results along the margins of the table.)

Exercise 1.2. If X and Y are independent, then show that p(x, y) = p(x)p(y) implies
E[XY] = E[X]E[Y].

Exercise 1.3. Let X and Y be independent random variables with respective means µX
and µY , and respective variances σ2

X and σ2
Y . In terms of the population means and vari-

ances:

(a) Compute E[XY]?

(b) Compute cov[X,Y]?

(c) Compute var[X − Y]?

(d) Compute var[XY]?

Exercise 1.4 (Properties of Variance). Let k be a constant and X be a random variable
with expectation µX and variance σ2

X . Using the definition of variance and the properties
of expectation, prove the following:

(a) var[k] = 0

(b) var[kX] = k2 var[X]?

(c) var[k +X] = var[X]?

Exercise 1.5. Using the properties of expectation, show that

cov[X,Y] = E[XY]− E[X]E[Y]. (1.1)

Exercise 1.6. If X is a random variable and k is a constant (i.e., independent of X), then
show that E[(X−k)2] is minimized when k = E[X]. (Hint: there are at least two ways to
prove this: one way is to use calculus, the other way is to add and subtract an expectation.
Can you find both proofs?) Be sure to prove that the solution is actually a minimum.

Exercise 1.7 (Bounds on the Correlation Coefficient). Prove that the correlation coefficient
between any two random variablesX and Y is always between -1 and 1. Explain when the
correlation is exactly equal to one, and when the correlation is exactly equal to -1, in terms
of the relation between X and Y . Hint: use the fact that

E[(t(X − E[X]) + (Y − E[Y]))2] = t2 var[X] + 2t cov[X,Y] + var[Y] ≥ 0, (1.2)

3

for any t. Note that this equation for t is a parabola. What is the minimum value?

Exercise 1.8 (Distribution of a Difference in Means). Suppose X1, X2, . . . , XN are in-
dependent random random variables drawn from a Gaussian distribution with mean µX
and variance σ2. Similarly, let Y1, Y2, . . . , YN be identically distributed random variables
drawn from a Gaussian distribution with different mean µY but common variance σ2. Also,
assume that the X’s and Y ’s are independent.

• What are the distributions of the sample means µ̂X and µ̂Y ? (Do not just say “nor-
mal.” Tell me all the parameters– e.g., the mean and variance.)

• What is the distribution of the difference in sample means µ̂X − µ̂Y ?

• What is the distribution of the sample variances σ̂2
X and σ̂2

Y ? (Tell me all parame-
ters.)

• What is the distribution of the sum of sample variances σ̂2
X + σ̂2

Y ?

Exercise 1.9 (Expectation of a Roll of a Die). If X is the outcome of the roll of a fair die,
what is E[X]? What is var[X]?

Exercise 1.10 (Expectations on Dice). LetX be the sum of the outcome of the roll of three
fair dice. What is E[X]? What is var[X]? Assume the outcome of any individual die is
independent of that of the others.

Exercise 1.11 (Prove the Sample Variance is Unbiased). Let X1, . . . , XN be independent
random samples drawn from a population with expectation µ and variance σ2. Show that
the expectation of the sample variance σ̂2

X is

E[σ̂2
X] = σ2 (1.3)

For this reason, σ̂2
X is called an unbiased estimate of σ2

X . (This question is hard)

Exercise 1.12. Suppose you are predicting whether Y will be above or below normal. If
“normal” is defined as the median, then, by definition, Y will be above normal 50% of
the time (like a coin flip). Suppose, however, you are predicting Y given knowledge of
another variable X . If X and Y are independent, then knowledge of X tells you nothing
new about Y ; i.e., the probability that Y is above normal is still 50%. However, if X and
Y have a non-zero correlation, then knowledge of one tells you something new about the
other. Suppose that the correlation between X and Y is 0.5. An example of such a sample
is shown in fig. 1.3c. IfX is above normal, what is the probability that Y is above normal?
To answer this question, use example 1.7 to generate random numbers with a population
correlation of ρ = 0.5, and then from these numbers compute the probability that Y > 0
given that X > 0. You should generate enough random samples to obtain robust estimates
of the probability (i.e., ensure your answer does not change if you re-run your code with
different random numbers).

Exercise 1.13 (Random Walk in Two Dimensions). A particle takes random steps in the
xy-plane. The step increment in the x-direction is determined by drawing independent
random numbers from a normal distribution with zero mean and variance σ2. Positive

4 EXERCISES: BASIC CONCEPTS IN PROBABILITY AND STATISTICS

values correspond to steps in the positive x-direction and negative values correspond to
steps in the negative x-direction. The step increment in the y-direction is determined in
the analogous way. Find the equation for the radius of the circle such that there is a 95%
probability that the particle lies within the circle after 10 steps. Evaluate this equation for
the case σ = 2.

Exercise 1.14. In exercise 1.6, you proved that k = E[X] minimized E[(X − k)2]. This
says that the best prediction of X (in a mean square sense) is the mean. However, the
population mean is unknown. Accordingly, consider a prediction of X based on the sample
mean µ̂X , derived from X1, . . . , XN . It turns out that the sample mean is not the best
prediction of X ′, when X ′ is independent of the sample used to construct µ̂X . Introduce a
scaling factor α, and show that the α that minimizes

E[(X ′ − αµ̂)2],

is
α =

1(
σ2
X

Nµ2
X

)
+ 1

,

where µX and σ2
X are the population means and variances of X . Show that α < 1, which

explains why this predictor is sometimes called a shrinkage estimator.

CHAPTER 2

EXERCISES FOR STATISTICAL INFERENCE

Exercise 2.1. A widely used measure of the state of the Pacific Ocean is the Pacific
Decadal Oscillation (PDO) index. This index is a certain linear combination of sea surface
temperatures in the Pacific Ocean poleward of 20N. More details and background informa-
tion can be found at http://jisao.washington.edu/pdo/, but this information is not necessary
in order to complete this homework assignment. The January-March mean value of this
index is plotted in fig. 2.1. A glance at the figure reveals that the PDO index was predom-
inantly negative during the period 1950-1976 and predominantly positive 1977-2017. In
this homework set, you will address the following questions about the PDO:

1. Are the samples independent?

2. Has the mean PDO changed in recent decades?

To address the above questions, you need to download the data file PDO.latest.txt
from the class website. The R tutorial discussed how to download this data set, but the data
file from the PDO webpage changed slightly, so I have updated the data set and included R
code for reading it called pdo.student.R. Both files can be downloaded from the class
website1 (click “data” and ”repository of R programs”). This code should run without
generating any errors, so please contact me if you have trouble running this code.

1http://cola.gmu.edu/delsole/clim762/webpage/clim762 frontpage.html

Exercises for Statistical Methods for Climate Scientists. By DelSole and Tippett 5

6 EXERCISES FOR STATISTICAL INFERENCE

1950 1960 1970 1980 1990 2000 2010

−
2

−
1

0
1

2

year

J
F

M
 P

D
O

 I
n

d
e
x

JFM Average PDO Index

Figure 2.1 The January-March mean Pacific Decadal Oscillation (PDO) index. Positive
values are indicated by thick bars. Statistics of the January-March mean PDO Index are
given in the table.

For this homework set, you may use the built-in functions mean and var, but do not
use the built-in functions cov and cor; rather, you should compute these quantities ex-
plicitly using the sum command (as shown in the tutorial). The purpose of requiring you
to calculate these directly is to ensure you understand how to do these calculations your-
self. You can, however, use these functions to check your results. You may also use these
built-in functions after this homework set.

You will write a function that performs a hypothesis test. You should read the appro-
priate sections of the tutorial to become familiar with functions. In particular, the tutorial
illustrates a complete example for one particular hypothesis test (i.e., equality-of-variance
test), which in turn can serve as a template for the other hypothesis tests in this homework.

In each problem, you should explicitly state your null hypothesis, test statistic, the ob-
served value of the statistic, rejection region, and final decision about the hypothesis. You
should also state all the assumptions that were made in performing the hypothesis test.

(a) Are the Samples Independent? Recall that one assumption in both the F-test and t-test
is that the samples are independent. Climate time series have the property that the degree of
dependence decays with time separation. For instance, 1-day forecasts are more accurate
than 5-day forecasts. One approach to checking the independence assumption is by testing
if the correlation between two consecutive time steps vanishes. If no correlation can be
detected between consecutive time steps, then it is unlikely it can be detected for larger
time separations. Write an all-purpose function called cor.equal.test that tests the

7

hypothesis that the correlation between two given data sets vanishes. Turn in a copy of
your code. The call to this function should start as follows:

1 cor.equal.test = function(data1,data2,alpha=0.05) {
2 ## THIS FUNCTION TESTS VANISHING CORRELATION BETWEEN
3 ## TWO BI-VARIATE, NORMALLY DISTRIBUTED RANDOM VARIABLES
4 ##
5 # INPUT:
6 # DATA1: [N]-DIMENSIONAL VECTOR OF DATA
7 # DATA2: [N]-DIMENSIONAL VECTOR OF DATA
8 # ALPHA: SIGNIFICANCE LEVEL OF THE TEST (DEFAULT = 5%)
9 # OUTPUT LIST:

10 # RHO: SAMPLE CORRELATION BETWEEN DATA1 AND DATA2
11 # RHO.CRIT: 100*ALPHA% CRITICAL VALUE FOR THE CORRELATION
12 # PVAL: P-VALUE OF THE STATISTIC RHO

(b) Using this function, test the hypothesis that during 1950-1977 the correlation between
consecutive years is zero. This means that whatever you use for the time series in data1,
data2 is the same time series shifted by one year. This also means you cannot input the
entire time series, but instead the length of the time series is short by one year. Do the same
test for 1978-2017. What is your answer to these questions? Turn in a copy of the output
of your function, which should give numerical values for all quantities like ρ̂, ρcrit, p-value.

Incidentally, an R function called cor.test also performs this test. Check that your function
agrees with cor.test.

(c) Repeat the above test, but this time for the whole period 1950-2017. You should find
that ρ = 0 is rejected more strongly than for the two separate periods individually. Explain
why. Hint: draw a scatter diagram for the three separate cases.

(d) Answer the other questions posed at the beginning (i.e., define your test statistic, state
the value of the statistic, specify the rejection region, etc.).

(e) Has the mean PDO changed in recent decades? To address this question, we test
the hypothesis of no difference in population mean between the periods 1950-1977 and
1978-2017? Write a function called mean.equal.test that performs the hypothesis
test. Run your function on the PDO data. Turn in a copy of your code and its output. The
function should begin as follows:

8 EXERCISES FOR STATISTICAL INFERENCE

1 mean.equal.test = function(data1,data2,alpha=0.05) {
2 ## THIS FUNCTION TESTS EQUALITY OF MEANS OF TWO IID
3 ## NORMALLY DISTRIBUTED RANDOM VARIABLES
4 ##
5 # INPUT:
6 # DATA1: [N1]-DIMENSIONAL VECTOR OF DATA
7 # DATA2: [N2]-DIMENSIONAL VECTOR OF DATA
8 # ALPHA: SIGNIFICANCE LEVEL OF THE TEST (DEFAULT = 5%)
9 # OUTPUT LIST:

10 # DIFF.MEAN: DIFFERENCE IN MEANS (MEAN1 - MEAN2)
11 # DIFF.MEAN.CRIT: 100*ALPHA% LEVEL CRITICAL VALUE OF THE DIFFERENCE IN MEANS
12 # PVAL: P-VALUE OF THE T-STATISTIC
13 # T: T-STATISTIC FOR DIFFERENCE IN MEANS
14 # T.CRIT: 100*ALPHA% LEVEL CRITICAL VALUE OF THE T STATISTIC
15 # MEAN1: ESTIMATE OF THE MEAN OF DATA1
16 # MEAN2: ESTIMATE OF THE MEAN OF DATA2
17 # SPOOL: POOLED ESTIMATE OF THE STANDARD DEVIATION

(f) An output quantity not discussed in class (or the notes) is diff.mean.crit: this
is the threshold value of the absolute difference in means for deciding whether to reject
the null hypothesis. Write an equation that gives this threshold value. State the numerical
value for this problem.

(g) State your test statistic, the value of the statistic, and specify the rejection region. What
is your decision? Be sure to explicitly state all assumptions made in your hypothesis test.

(h) Explain whether the ρ = 0 test and equality-of-variance tests, which examined above
and in the R tutorial, are relevant to testing equality of means.

CHAPTER 3

EXERCISES FOR CONFIDENCE INTERVALS

Exercise 3.1. SupposeX1, . . . , XN are independent and identically distributed asN (10, 3).
Derive a formula for the 95% confidence interval for the mean. (The answer is given in
(3.17), but I want to see you derive it.) Write an R code that generates N = 20 samples
N (10, 3), computes the confidence interval, and repeats this many times (1000s). Com-
pute the fraction of intervals that include the true mean µ = 10. Verify that this fraction is
close to 95%.

Exercise 3.2. The tutorial contains the function var.equal.test for testing equality
of variance. Augment this function to also calculate a confidence interval for the ratio of
variances. The preamble of the revised function should like the following:

Exercises for Statistical Methods for Climate Scientists. By DelSole and Tippett 9

10 EXERCISES FOR CONFIDENCE INTERVALS

1 var.equal.test = function(data1,data2,alpha=0.05) {
2 ### THIS FUNCTION TESTS EQUALITY OF VARIANCE OF TWO
3 ### IID NORMALLY DISTRIBUTED RANDOM VARIABLES
4 ###
5 # INPUT:
6 # DATA1: [N1]-DIMENSIONAL VECTOR OF DATA
7 # DATA2: [N2]-DIMENSIONAL VECTOR OF DATA
8 # ALPHA: SIGNIFICANCE LEVEL OF THE TEST (DEFAULT = 5%)
9 # OUTPUT LIST:

10 # F.MAX: RATIO OF VARIANCE, CONSTRUCTED TO BE GREATER THAN 1
11 # F.CRIT: THE UPPER CRITICAL THRESHOLD OF SIGNIFICANCE
12 # PVAL: P-VALUE OF THE F.MAX RATIO
13 # VAR1: UNBIASED ESTIMATE OF THE VARIANCE OF DATA1
14 # VAR2: UNBIASED ESTIMATE OF THE VARIANCE OF DATA2
15 # RATIO: VAR1/VAR2
16 # RATIO.LOWER: LOWER LIMIT OF ALPHA% CONFIDENCE INTERVAL FOR VARIANCE RATIO
17 # RATIO.UPPER: UPPER LIMIT OF ALPHA% CONFIDENCE INTERVAL FOR VARIANCE RATIO

The above is identical to the function in the tutorial, but with three additional lines at
the end. Be sure the resulting confidence interval pertains to var1/var2 and not its
reciprocal. Run this function on exactly the same PDO data you used in exercise 2.1 to test
if the variance before and after 1977 differ. Report the 95% confidence interval. Comment
on whether the result is consistent with the hypothesis test you performed in exercise 2.1.

Exercise 3.3. In the last exercise, you wrote the function cor.equal.test to test the
correlation coefficient. Modify this function to also calculate a confidence interval for the
correlation coefficient. The preamble of this function should look like the following:

1 cor.equal.test = function(data1,data2,alpha=0.05) {
2 ## THIS FUNCTION TESTS VANISHING CORRELATION BETWEEN
3 ## TWO BI-VARIATE, NORMALLY DISTRIBUTED RANDOM VARIABLES
4 ##
5 # INPUT:
6 # DATA1: [N]-DIMENSIONAL VECTOR OF DATA
7 # DATA2: [N]-DIMENSIONAL VECTOR OF DATA
8 # ALPHA: SIGNIFICANCE LEVEL OF THE TEST (DEFAULT = 5%)
9 # OUTPUT LIST:

10 # RHO: SAMPLE CORRELATION BETWEEN DATA1 AND DATA2
11 # RHO.CRIT: 100*ALPHA% CRITICAL VALUE FOR THE CORRELATION
12 # PVAL: P-VALUE OF THE STATISTIC RHO
13 # RHO.LIMITS: [2] (1-ALPHA)*100% CONFIDENCE LIMITS OF THE CORRELATION

Run this function on the same PDO data to test if the lag-1 correlation is significant before
1977, after 1977, and the full period. Report the 95% confidence intervals. Comment on
whether the result is consistent with the hypothesis tests you performed in exercise 2.1.

Exercise 3.4. In the last exercise you wrote the function mean.equal.test to test
equality of means. Modify this function to also compute a confidence interval for the
difference in mean. The preamble of this function should look like the following:

11

1 mean.equal.test = function(data1,data2,alpha=0.05) {
2 ## THIS FUNCTION TESTS EQUALITY OF MEANS OF TWO IID
3 ## NORMALLY DISTRIBUTED RANDOM VARIABLES
4 ##
5 # INPUT:
6 # DATA1: [N1]-DIMENSIONAL VECTOR OF DATA
7 # DATA2: [N2]-DIMENSIONAL VECTOR OF DATA
8 # ALPHA: SIGNIFICANCE LEVEL OF THE TEST (DEFAULT = 5%)
9 # OUTPUT LIST:

10 # DIFF.MEAN: DIFFERENCE IN MEANS (MEAN1 - MEAN2)
11 # DIFF.MEAN.CRIT: 100*ALPHA% LEVEL CRITICAL VALUE OF THE DIFFERENCE IN MEANS
12 # PVAL: P-VALUE OF THE T-STATISTIC
13 # T: T-STATISTIC FOR DIFFERENCE IN MEANS
14 # T.CRIT: 100*ALPHA% LEVEL CRITICAL VALUE OF THE T STATISTIC
15 # MEAN1: ESTIMATE OF THE MEAN OF DATA1
16 # MEAN2: ESTIMATE OF THE MEAN OF DATA2
17 # SPOOL: POOLED ESTIMATE OF THE STANDARD DEVIATION
18 # DIFF.MEAN.LIMITS: [2] (1-ALPHA)100% CONFIDENCE
19 # LIMITS FOR THE DIFFERENCE IN MEANS

Apply this function to the same PDO data to test if the mean PDO index changed before and
after 1977. State the 95% confidence limits. Comment on whether the result is consistent
with the hypothesis tests you performed in the last exercise.

Exercise 3.5 (Bootstrap Confidence Interval for a Correlation Coefficient). Write an R
function to compute a confidence interval for a correlation coefficient using the bootstrap
method. The preamble of this function should look like the following:

1 cor.equal.boot = function(x,y,alpha=0.05,nboot=100000) {
2 ## ESTIMATES (1-ALPHA)100% CONFIDENCE INTERVAL
3 ## FOR THE CORRELATION COEFFICIENT USING BOOTSTRAP METHODS
4 ## INPUT:
5 ## X[NSAMP]: FIRST DATA SET
6 ## Y[NSAMP]: SECOND DATA SET
7 ## ALPHA: EQUIVALENT SIGNIFICANCE LEVEL (DEFAULT = 5%)
8 ## NBOOT: NUMBER OF BOOTSTRAP SAMPLES (DEFAULT = 100000)
9 ## OUTPUT:

10 ## CONFIDENCE LIMITS[2]

To test your code, generate N = 20 random samples of (X,Y) from a population with
correlation ρ = 0.5 (do you remember how to do this? The answer is in homework 1.).
Show both the bootstrap interval and the interval computed from cor.test. Discuss.

The following are some coding hints. R has a function called sample that will ran-
domly sample a vector with replacement. To compute a confidence interval for a correla-
tion coefficient, you must sample the two data sets X and Y in such a way as to preserve
their pairing. This can be done by sampling the indices rather than the values themselves.
For instance, if the sample size isN = 10, then the indices 1, . . . , 10 can be sampled using
the following commands:

12 EXERCISES FOR CONFIDENCE INTERVALS

1 > nsamp = 10
2 > npic = sample(nsamp,nsamp,replace=TRUE)
3 > npic
4 [1] 4 6 6 4 6 1 1 2 2 8

The bootstrap sample and its correlation is then

1 x = rnorm(nsamp); y = rnorm(nsamp)
2 xy.cor.obs = cor(x,y)
3 xy.cor.boot = cor(x[npic],y[npic])

After you generate lots of bootstrap samples, the (1 − α)100% confidence limits can be
obtained using the command

1 confidence.limits = quantile(xy.cor.boot,probs=c(alpha/2,1-alpha/2))

Because the bootstrap requires 1000s of iterations, you want a code that is fast. Unfortu-
nately, R is slow whenever for loops are involved. Can you write a function that performs
the bootstrap without for loops? If you cannot figure out how to do this, then just use
loops– I much prefer that you turn in a slow code that is correct, rather than a fast code
that is incorrect! Hint: use rowMeans or colMeans. Advice: set nboot to a small
number (e.g., 100 or 1000) while you debug your code, so it will run fast, and then when
you believe the code is working, increase nboot to 100,000 as requested in the above
preamble.

CHAPTER 4

EXERCISES FOR STATISTICAL TESTS
BASED ON RANKS

Exercise 4.1. Write a function to perform the Wilcoxon Rank-Sum test for a difference in
medians. The preamble of this function should be as follows:

1 diff.mean.nonparametric = function(data1,data2,alpha=0.05) {
2 ### PERFORMS MANN-WHITNEY TEST FOR A DIFFERENCE IN MEDIANS
3 ### INPUT:
4 ### DATA1[N1]: SAMPLE 1
5 ### DATA2[N2]: SAMPLE 2
6 ### ALPHA: SIGNIFICANCE LEVEL (DEFAULT = 5%)
7 ### OUTPUT: LIST$
8 ### Z: Z-VALUE FOR THE NORMAL APPROXIMATION TO MANN-WHITNEY TEST
9 ### Z.CRIT: CRITICAL VALUE FOR ALPHA*100% SIGNIFICANCE

10 ### PVAL: P-VALUE OF THE TEST

The following R functions are useful for non-parametric testing: rank(), sort(),
order(). You can read the documentation for these functions and play with them by
generating the random numbers seeing what happens:

Exercises for Statistical Methods for Climate Scientists. By DelSole and Tippett 13

14 EXERCISES FOR STATISTICAL TESTS BASED ON RANKS

1 > x = rnorm(5)
2 > x
3 [1] 0.5726722 -0.6338714 0.3260635 -1.6519467 0.9540662
4 > sort(x)
5 [1] -1.6519467 -0.6338714 0.3260635 0.5726722 0.9540662
6 > order(x)
7 [1] 4 2 3 1 5
8 > x[order(x)]
9 [1] -1.6519467 -0.6338714 0.3260635 0.5726722 0.9540662

10 > rank(x)
11 [1] 4 2 3 1 5

Rank is a very useful function for this homework set because it automatically deals with
ties correctly.

1 > x[1] = x[2]
2 > x
3 [1] -0.6338714 -0.6338714 0.3260635 -1.6519467 0.9540662
4 > rank(x)
5 [1] 2.5 2.5 4.0 1.0 5.0

Exercise 4.2. Run this function on exactly the same PDO data you used in the previous
2 exercise sets to test if the median before and after 1977 differ. Clearly state the z-value,
critical z value, and the p-value of the test. Clearly state whether you reject the null hy-
pothesis or not, and whether this conclusion is consistent with your conclusions on previous
homeworks. You can check your answer using wilcox.test(pdo1,pdo2)

Exercise 4.3. In exercise 2.1, you wrote the function cor.equal.test to test the cor-
relation coefficient. Write a new function that performs a correlation test based on Spear-
man’s rank correlation. The preamble of this function should look like the following:

1 cor.test.nonparametric = function(data1,data2,alpha=0.05) {
2 ### PERFORMS RANK CORRELATION TEST
3 ### INPUT:
4 ### DATA1[N1]: SAMPLE 1
5 ### DATA2[N2]: SAMPLE 2
6 ### ALPHA: SIGNIFICANCE LEVEL (DEFAULT = 5%)
7 ### OUTPUT: LIST$
8 ### RHO.SPEARMAN = SPEARMAN’S RANK CORRELATION
9 ### ZVAL: Z-VALUE FOR THE NORMAL APPROXIMATION TO MANN-WHITNEY TEST

10 ### Z.CRIT: CRITICAL VALUE FOR ALPHA*100% SIGNIFICANCE
11 ### PVAL: P-VALUE OF THE TEST

Exercise 4.4. Run this function on the same PDO data you used in previous exercises to
test if the lag-1 correlation is significant before 1977, after 1977, and the full period. State
whether the procedure rejects the null hypothesis or not. Comment on whether the result

15

is consistent with the hypothesis tests you performed in exercise 2.1. You can check your
answer to some extent using

1 cor.test(pdo1[l0],pdo1[l0+1],method=’spearman’,continuity=FALSE,exact=FALSE)

However, the p-value will not be exactly the same (but they are close). The reason they are
not the same is because R computes p-values using

t =
ρ̂Sp
√
N − 2√

1− ρ̂2Sp
, (4.1)

and then it refers to a t-distribution with N − 2 degrees of freedom.

Exercise 4.5. Write a function called diff.dispersion for testing a difference in
dispersion. The preamble of this function should be as follows:

1 diff.dispersion = function(data1,data2,alpha=0.05) {
2 ## PERFORMS WILCOXON SQUARED-RANK TEST
3 ## ON ABSOLUTE DEVIATIONS |X - MEDIAN(X)|
4 ### INPUT:
5 ### DATA1[N1]: SAMPLE 1
6 ### DATA2[N2]: SAMPLE 2
7 ### ALPHA: SIGNIFICANCE LEVEL (DEFAULT = 5%)
8 ### OUTPUT: LIST$
9 ### ZVAL: Z-VALUE FOR THE NORMAL APPROXIMATION TO MANN-WHITNEY TEST

10 ### Z.CRIT: CRITICAL VALUE FOR ALPHA*100% SIGNIFICANCE
11 ### PVAL: P-VALUE OF THE TEST

Run your function on exactly the same PDO data you used in previous exercises to test if
the variance before and after 1977 differ. Clearly state the z-value, critical z value, and the
p-value of the test. Clearly state whether you reject the null hypothesis or not, and whether
this conclusion is consistent with your conclusions on previous homeworks. (Hint: most
of this function is similar to your difference in medians test.)

CHAPTER 5

EXERCISES FOR STOCHASTIC PROCESSES

Exercise 5.1. Write an R function to compute the autocorrelation function of a time series.
The preamble of the function should be as follows:

1 acf.brute = function(x,lag.max=NULL) {
2 ## COMPUTES THE AUTOCORRELATION FUNCTION OF A TIME SERIES
3 ## INPUT:
4 ## X: [NTOT]-LENGTH NUMERICAL VECTOR OF THE TIME SERIES
5 ## LAG.MAX: MAXUMIM LAG TO COMPUTE
6 ## (DEFAULT = MAX(1,FLOOR(10*log10(LENGTH(X)))))
7 ## OUTPUT:
8 ## X.ACF: [1:(LAG.MAX+1)] AUTOCORRELATION FUNCTION OF X
9 ## FOR LAGS 0 TO LAG.MAX

Test your function on the time series {set.seed(1); x = rnorm(20)} and state
the correlation values for all lag.max lags. Show that these values equal those obtained
from the built-in R function acf(x), by printing them out using the commands

1 acf.R = acf(x)
2 as.numeric(acf.R$acf)

Exercises for Statistical Methods for Climate Scientists. By DelSole and Tippett 17

18 EXERCISES FOR STOCHASTIC PROCESSES

Exercise 5.2. Write a function to generate a time series from the AR1 model

xt+1 = φ1xt + wt + k (5.1)

where wt ∼ GWN(0, 1). The beginning of this function should be as follows:

1 ar1.ts = function(phi1,ntot,stdv=1,constant=0,iseed=1) {
2 ## GENERATE A REALIZATION FROM THE AR1 MODEL
3 ## X(T+1) = PHI1 * X(T) + W(T) + CONSTANT
4 ## WHERE W(T) IS GAUSSIAN WHITE NOISE WITH MEAN 0 AND ST. DEV. ’STDV’
5 ## INITIAL CONDITION IS RANDOMLY DRAWN FROM STATIONARY DISTRIBUTION
6 ## INPUT:
7 # PHI1: AUTOREGRESSIVE PARAMETER
8 # NTOT: LENGTH OF THE DESIRED TIME SERIES
9 # STDV: STANDARD DEVIATION OF THE NOISE (DEFAULT = 1)

10 # CONSTANT: CONSTANT TERM IN THE AR1 MODEL (DEFAULT = 0)
11 # ISEED: SEED FOR THE RANDOM NUMBER GENERATOR (DEFAULT = 1)
12 # OUTPUT:
13 # X: [NTOT]- RANDOM TIME SERIES FROM AR(1) PROCESS

The initial condition should be drawn from the stationary distribution of the AR process.
What is this distribution? State this distribution for general k, φ1, σ2

W . Use this equation
in your function.

Exercise 5.3. Use the above functions to generate a time series of length 50, and cor-
responding sample autocorrelation functions, for φ1 = 0, 0.5, 0.9. Make plots of both
quantities. In addition, on the plot for the autocorrelation, superimpose the population au-
tocorrelation function, and the approximate 95% confidence interval for zero correlation.
Comment on whether the results make sense, or whether they are ‘surprising.’

Exercise 5.4. Use the above function to generate a time series of length 50 for φ1 = 0.
Split this time series into two halves, each of length 25. Use the function mean.equal.test
to calculate the t-statistic for testing equality of means. Repeat this 1000 times, thereby
generating 1000 t-values. Plot a histogram of these t-values. Superimpose on this his-
togram the expected distribution of the t-statistic. This can be done using the curve
command, as follows:

1 hist(tval,col="grey",freq=FALSE)
2 curve(dt(x,dof),add=TRUE)

(In the above example, x does not need to be pre-defined. See the manual on R graphics
or the help pages for curve.) You should find that the histogram is reasonably consistent
with the exact t distribution. Repeat this for φ1 = 0.5, 0.9. Are the histograms still consis-
tent with the exact t distribution? Explain the result you find. If someone concludes that
there is significant difference in mean based on a standard t-test (i.e., using iid assumption),
how might this conclusion be affected if autocorrelation were taken into account? Does the
true significance level increase or decrease when autocorrelation is taken into account?

19

Exercise 5.5 (Mean and Variance of an AR(p) Process). Consider the AR(p) process

Xt = φ1Xt−1 + φ2Xt−2 + ...+ φpXt−p +Wt + k, (5.2)

where Wt is white noise with zero mean and variance σ2, and k is a constant. Show that
the expectation of the stationary AR(p) process is

E[Xt] =
k

1− φ1 − φ2 − · · · − φp
. (5.3)

Show that the variance of the stationary process is

var[Xt] =
var[Wt]

1− ρ1φ1 − ρ2φ2 − · · · − ρpφp
. (5.4)

(Hint: multiply both sides of (5.2) by Xt − E[Xt] and take the expectation.)

Exercise 5.6 (Autocorrelation of a running mean). Consider the running mean

Yt =
1

2K + 1

K∑
k=−K

Xt+k. (5.5)

Assume Xt ∼ GWN(0, σ2). Compute the mean and variance of Yt. Show that the
autocorrelation function of Yt is

cor[Yt+τ , Yt] =

{
1− |τ |

2K+1 for |τ | ≤ 2K + 1

0 for|τ | > 2K + 1
. (5.6)

Note that even though the processXt is uncorrelated, running averages ofXt are correlated
for lags less than twice the window size K. Explain why this makes sense.

CHAPTER 6

EXERCISES ON THE POWER SPECTRUM

In this homework you will determine power spectra from models and data. To do this, you
will need to use the Fast Fourier Transform, which is performed by the R function fft().
The output of fft is somewhat technical, so I give you the following program to convert
the output into a periodogram:

1 periodogram = function(x) {
2 ## COMPUTES THE PERIODOGRAM OF A VECTOR X USING THE FFT
3 ## ASSUMES THE LENGTH OF X IS EVEN AND HIGHLY COMPOSITE
4 ## (E.G., EXPRESSIBLE AS POWERS OF 2,3,5)
5 # INPUT:
6 # X[NTOT]: DATA VECTOR
7 # OUTPUT:
8 # PGRAM[NTOT/2]: VECTOR OF PERIODOGRAM AMPLITUDES AT HARMONIC FREQUENCIES
9 # 1/N, 2/N, . . ., 1/2 CYCLES PER TIME STEP (A TOTAL NTOT/2 FREQUENCIES)

10 # COMMENT: (BIASED) VARIANCE = 2 * SUM(PGRAM[1:(NTOT/2-1)]) + PGRAM[NTOT/2]
11

12 ntot = length(x)
13 if (ntot %% 2 != 0) stop(’length of x must be even’)
14 x.fft = fft(x)
15 pgram = Re(x.fft * Conj(x.fft))[1:(ntot/2)+1] / ntot
16 pgram
17 }

Exercises for Statistical Methods for Climate Scientists. By DelSole and Tippett 21

22 EXERCISES ON THE POWER SPECTRUM

You should verify that this function works by setting x to be specific sum of sines and
cosines and ensuring that the output gives the appropriate amplitudes, when appropriately
scaled. The following example shows a successful test of this function:

1 > set.seed(4)
2 > ntot = 32
3 > t = 1:ntot - 1
4 > x = 1 * cos(2*pi*t*5/ntot) - 3 * sin(2*pi*t*13/ntot)
5 + 8 * cos(2*pi*t*(ntot/2)/ntot)
6 > x.pgram = periodogram(x)
7 > x.amplt = sqrt(4*x.pgram/ntot) # convert pgram to fourier amplitude
8 # special conversion for last harmonic
9 > x.amplt[ntot/2] = sqrt(x.pgram[ntot/2]/ntot)

10 > x.amplt
11 [1] 2.519803e-15 2.181560e-15 7.616681e-16 1.930989e-15 1.000000e+00
12 [6] 1.260945e-15 7.422817e-16 3.202373e-15 2.989367e-15 2.373832e-15
13 [11] 3.143748e-15 1.223717e-15 3.000000e+00 3.084970e-16 1.271623e-15
14 [16] 8.000000e+00

The output shows that the absolute amplitude of the 5th, 13th, and 16th harmonics are 1,
3, 8, as they should, while the other amplitudes are effectively zero, as expected. Another
check is to verify the formula

N∑
t=1

(xt − x)
2

= 2 ∗
N
2 −1∑
j=1

P̂ (j/N) + P̂ (N/2), (6.1)

which holds for even N . The following lines perform this check:

1 > set.seed(1)
2 > x = rnorm(ntot)
3 > ssx = sum((x-mean(x))ˆ2)
4 >
5 > x.pgram = periodogram(x)
6 > ssx.fft = 2*sum(x.pgram[1:(ntot/2-1)]) + x.pgram[ntot/2]
7 > print(all.equal(ssx,ssx.fft))
8 [1] TRUE

Exercise 6.1. Write an R function to compute the spectral average

p̂M (ωj) =
1

2M + 1

M∑
m=−M

p̂(ωj). (6.2)

The preamble of this R function should be as follows:

23

1 spectrum.smooth = function(pgram,window,alpha=0.1) {
2 ## COMPUTES SPECTRAL RUNNING MEAN AS:
3 ## SPEC_AVE = SMOOTHED PERIODOGRAM FROM M = -WINDOW TO M = WINDOW
4 ## INPUT:
5 ## PGRAM[NTOT/2]: PERIODOGRAM VALUES FROM PERIODOGRAM.R
6 ## WINDOW: HALF-WIDTH OF AVERAGING WINDOW
7 ## ALPHA: THE (1-ALPHA)100% LEVEL FOR THE CONFIDENCE LIMITS
8 ## OUTPUT: LIST
9 ## PGRAM.AVE[NTOT/2]: AVERAGED PERIODOGRAM

10 ## FREQ[NTOT/2]: FREQUENCIES (CYCLES PER TIME STEP)
11 ## BW[2]: BANDWIDTH C(-WINDOW/NTOT,WINDOW/NTOT)
12 ## CI.LIMITS[2]: PROPORTIONALITY CONSTANT FOR LOWER AND UPPER CONFIDENCE LIMITS
13 ## (DOF/CHI-SQUARE[ALPHA/2, DOF], DOF/CHI-SQUARE[1-ALPHA/2,DOF])
14 ## PGRAM[NTOT/2]: REPEATS PERIODOGRAM (FOR LATER PLOTTING)

The spectral average near the extreme low and high frequencies, where the smoothing
cannot be performed consistently, should be set to NA.

Exercise 6.2. Generate a time series of length 64 from a standardized Gaussian white noise
process, perform a spectral average using M = 5, and write out the results, as follows:

1 > set.seed(1)
2 > x.sd = 1
3 > window = 5
4 > ntot = 64
5 > freq = 1:(ntot/2) / ntot
6 > x = rnorm(ntot,sd=x.sd)
7 > x.pgram = periodogram(x)
8 > x.pgram.smooth = spectrum.smooth(x.pgram,window)
9 > cbind(freq,x.pgram,x.pgram.smooth$pgram.ave)

Plot the results using the R function spectrum.plot.R, provided on the class website.
Based on this result, would you say that the estimated power spectrum is consistent with a
white noise process? Explain why or why not.

Exercise 6.3. What is the theoretical (i.e., population) power spectrum for the Gaussian
white noise process? Superimpose this theoretical power spectrum on your spectrum plot.
Is the estimated power spectrum consistent with the theoretical spectrum?

Exercise 6.4. Generate a time series of length 64 from an AR(1) process with parameter
φ1 = 0.8, as follows:

1 ntot = 64
2 phi1 = 0.8
3 x = ar1.ts(phi1,ntot,iseed=1)

Perform a spectral average of this time series using M = 5, and write out the results, as
follows:

24 EXERCISES ON THE POWER SPECTRUM

1 > window = 5
2 > x.pgram = periodogram(x)
3 > x.pgram.smooth = spectrum.smooth(x.pgram,window)
4 > cbind(freq,x.pgram,x.pgram.smooth$pgram.ave)

Make a plot of the power spectrum, smoothed periodogram, bandwidth, and 90% con-
fidence interval using spectrum.plot.R. Is the estimated spectrum more consistent
with white noise or an AR(1) process? Explain why or why not.

Exercise 6.5. What is the theoretical power spectrum of the above AR(1) process? Super-
impose this theoretical spectrum on your spectrum plot. Is your estimated power spectrum
consistent with the theoretical spectrum?

Exercise 6.6. Estimate the power spectrum of the NINO3.4 index. The NINO3.4 index
can be extracted using the following R program:

1 fname = paste(dir.enso,’nina34.data’,sep=’’)
2 line1 = scan(fname,nlines=1,quiet=TRUE)
3 nino34.yr = line1[1]:line1[2]
4 nino34.nyrs = length(nino34.yr)
5 cnames = c(’YEAR’,month.abb[])
6 data2 = read.table(fname,skip=1,nrows=nino34.nyrs,
7 na.strings=-99.99,col.names=cnames)
8

9 ## CREATE VECTOR WITH NINO34 TIME SERIES AND TIME AXIS
10 nino34.ts = as.numeric(t(as.matrix(data2[,1:12+1])))
11 nino34.time = seq(from=data2[1,1],length.out=length(nino34.ts),by=1/12)

The resulting time series will have NA’s which need to be stripped out before performing
spectral analysis. Trim the length of the index to be highly composite (i.e., a product of
powers of 2, 3, 5). State the final length that you use. What are the units of “frequency”?
Are there any significant peaks? Do these peaks make sense (do you expect certain peaks)?
Could an AR-process fit this spectrum? ENSO is often said to be characterized by oscilla-
tions around 4-7 years. Does your estimated power spectrum support this characterization?
Explore different bandwidths, choose a single one that you believe is most revealing, and
show that one.

CHAPTER 7

EXERCISES FOR VECTORS, MATRICES,
AND GEOMETRY

Exercise 7.1 (Linear combination of random vectors). Let x1,x2, . . . ,xK be indepen-
dent M -dimensional random vectors. However, the vectors are not drawn from the same
population. Instead, the populations have individual means E[xk] = µk and covariance
matrices cov[xk] = Σk. Because the vectors are independent,

cov[xk,x
T
k′] =

{
0 k 6= k′

Σk k = k′
. (7.1)

Note that there are K distinct covariance matrices Σ1,Σ2, . . . ,ΣK . Suppose y = c1x1 +
c2x2 + · · · + cNxN , where the c’s are known scalars. What is the mean and covariance
matrix of y?

Exercise 7.2 (Matrix combinations of random vectors). Let x ∼ NM (µ,Σ). Suppose
y = Ax + b, where A is a constant matrix and b is a constant vector. What is the
complete distribution of y?

Exercise 7.3 (Properties of the Trace and Determinant). Let A be a square matrix, but not
necessarily symmetric. Square matrices still have eigenvectors and eigenvalues that satisfy

As = λs. (7.2)

As a result, the matrix is close enough for practical purposes to having an eigen decompo-
sition of the form

A = SΛS−1, (7.3)

Exercises for Statistical Methods for Climate Scientists. By DelSole and Tippett 25

26 EXERCISES FOR VECTORS, MATRICES, AND GEOMETRY

in which case A is said to diagonalizable and the properties below are easy to prove. If A
is symmetric, then we know that there exists a decomposition of the above form where S
is an orthogonal matrix and Λ has real diagonal elements, but these special properties are
not needed in the following problems.

(a) Show that tr A = tr AT for any matrix A.

(b) Show that tr{AB} = tr{ATBT } for any two matrices A and B such that tr{AB} is
defined.

(c) Show that tr A =
∑
λi, where the λi’s are the eigenvalues of A, and the sum is over

all eigenvalues.

(d) What is tr{Ak} in terms of the eigenvalues of A?

(e) Show that tr[A−1] =
∑M
m=1 λ

−1
m , where the λm’s are the eigenvalues of A.

(f) Show that tr{AAT } =
∑
i

∑
j a

2
ij , where aij is the (i, j) element of A.

(g) Show that |A| = λ1λ2 . . . λp, where A is a p×pmatrix and the λi’s are the eigenvalues
of A.

(h) If A is symmetric and positive definite, show that tr A > 0 and |A| > 0.

(i) Show that the trace of a positive semi-definite matrix is non-negative. Show that the
determinant of a positive semi-definite matrix is non-negative.

Exercise 7.4 (Idempotent matrices). An idempotent matrix is a matrix A such that A2 =
A. Show that the eigenvalues of an idempotent matrix can have only two values, namely 0
and 1. Show that the number of eigenvalues equal to 1 is given by tr[A].

Exercise 7.5 (Properties of Orthogonal Matrices).

(a) Show that orthogonal transformations preserve the Euclidean length of a vector. That
is, if ξ = Ux, where U is an orthogonal matrix, then show that ξT ξ = xTx.

(b) Show that orthogonal transformations preserve the cosine-angle between two vectors.
That is, show that the cosine-angle between x and y, and the cosine-angle between ξ = Ux
and η = Uy, are equal. The cosine-angle between two vectors x and y is

cos θ =
xTy√

(xTx)(yTy)
. (7.4)

(c) Show that the determinant of an orthogonal matrix is +1 or −1.

(d) Show that |UAUT | = |A|, where U is an orthogonal matrix and A is any matrix.

(e) Show that tr{UAUT } = tr{A}, where U is orthogonal and A is a square matrix.

(f) If U1 and U2 are orthogonal matrices, show that U1U2 is also orthogonal. Hint: re-
member that orthogonal matrices satisfy two properties.

27

Exercise 7.6. Suppose A is a constant matrix and y is a random vector with mean µY
and covariance matrix ΣY . Show that the expected value of the quadratic form yTAy is
tr[AΣY] + µTAµ.

Exercise 7.7. Show that the inverse of a transpose equals the transpose of the inverse:(
AT
)−1

=
(
A−1

)T
. (7.5)

Hint: start with AA−1 = I.

Exercise 7.8 (Frobenius Norm). The “length” of a vector is defined as the square root of
the sum square vector elements. A natural generalization of “length” to a matrix X is

‖X‖F =

√∑
i

∑
j

x2ij . (7.6)

This measure is called the Frobenius Norm. It is clear that the Frobenius norm vanishes if
and only if X = 0, consistent with a measure of “length.”

(a) Show that the Frobenius Norm can be written equivalently as

‖X‖2F = tr
[
XXT

]
. (7.7)

(b) Suppose U and V are orthogonal matrices with dimensions such that the product UAV
is defined. Show that

‖UAV‖F = ‖A‖F . (7.8)

Exercise 7.9. Consider a M ×M matrix A with eigenvalues λ1, λ2, . . . , λM . Show that
the eigenvalues of aI + bA are a+ bλm, m = 1, 2, . . . ,M .

Exercise 7.10. If A is positive definite, show that each diagonal element of A must be
positive.

Exercise 7.11 (Distribution of a random quadratic form). Suppose x ∼ Np(µ,Σ), where
Σ is positive definite. In this problem you will determine the distribution of the quadratic
form

Q = (x− µ)
T

Σ−1 (x− µ) . (7.9)

(a) Let the eigenvector decomposition of the covariance matrix be

Σ = UΛUT , (7.10)

where U is an orthogonal matrix, and Λ is the diagonal eigenvalue matrix. What is the
eigenvector decomposition of Σ−1?

(b) Using the results from part (a), construct a transformation matrix A such that

ζ = A (x− µ) and ζT ζ = Q . (7.11)

28 EXERCISES FOR VECTORS, MATRICES, AND GEOMETRY

What is A?

(c) What is the distribution of ζ?

(d) A theorem in statistics states that if two random variables are uncorrelated and dis-
tributed as a multivariate Gaussian, then they are independent. Use this theorem to show
that ζi and ζj are independent if i 6= j.

(e) What is the distribution of Q?

CHAPTER 8

EXERCISES FOR LINEAR REGRESSION:
LEAST SQUARES ESTIMATION

In this homework assignment you will write an R function that estimates the regression
parameter β in the model

y = Xβ + ε, (8.1)

where y is an N -dimensional vector of predictands, and X is an N × M dimensional
matrix of predictors. The core of this function is to compute an estimate of β based on
solution of the normal equations

β̂ =
(
XTX

)−1
XTy. (8.2)

In practice, most packages use the SVD or QR algorithm to estimate β. You will not
be asked to use these algorithms because we are interested in focusing on statistics, not
numerics. Having said that, you should be aware that you are solving the least squares
problem inefficiently and perhaps inaccurately.

To calculate (8.2), we need to calculate XTX and XTy. In R, the transpose operation
is t(), and matrix multiplication is %*%. Thus, these terms are obtained by the commands

1 xtx = t(x) %*% x
2 xty = t(x) %*% y

The inverse of a general matrix can be calculated using the solve command. However,
the matrix we want to invert is symmetric, and it is faster and more accurate to invert

Exercises for Statistical Methods for Climate Scientists. By DelSole and Tippett 29

30 EXERCISES FOR LINEAR REGRESSION: LEAST SQUARES ESTIMATION

a symmetric matrix using the Cholesky decomposition. R can invert a matrix using the
Cholesky decomposition as follows:

1 xtx.inv = chol2inv(chol(xtx))

Verify that xtx %*% xtx.inv equals the identity matrix (to within roundoff error).

In addition to estimating the parameters β, you also should estimate the sum square
error SSE and coefficient of determination R2. The sum square error is

SSE =
(
y −Xβ̂

)T (
y −Xβ̂

)
. (8.3)

In the notes, R2 was estimated from centered variables. It is not necessary to center the
variables as long as you include the intercept as a predictor. Therefore, your R function
should automatically insert the intercept as a predictor. That is, you will give the function
all the predictors except the intercept, and the function will insert the intercept among the
predictors. You can generate a vector of 1s using the command rep, and then join this
vector with the predictor matrix using the command cbind.

In general, R2 can be calculated as

R2 = 1− SSE
SST

, (8.4)

where
SST =

∑
n

(yn − µ̂)
2
. (8.5)

Exercise 8.1. Write an R function that sets up the normal equations for solving (8.1),
solves the normal equations to obtain the least squares estimates, and computes R2. The
function call based on the normal equations should be regress.normal(y,x), where
y and x are the appropriate vector and matrix of the regression model (8.1). The preamble
of this function should be the following:

1 regress.normal = function(y,x,include.intercept=TRUE) {
2 ##
3 ## DETERMINES THE LEAST SQUARES ESTIMATE OF B IN THE EQUATION Y = XB + E
4 ## BASED ON THE NORMAL EQUATIONS
5 ## INPUT:
6 ## Y[NTOT]: N-DIMENSIONAL VECTOR OF PREDICTANDS
7 ## X[NTOT,MTOT]: N X M DIMENSIONAL MATRIX OF PREDICTORS
8 ## INCLUDE.INTERCEPT: INCLUDE THE INTERCEPT? (DEFAULT=TRUE)
9 ## OUTPUT:

10 ## BHAT: M-DIMENSIONAL VECTOR OF ESTIMATES OF B
11 ## R2: R-SQUARED
12 ## SSE: SUM SQUARE ERROR OF THE LEAST SQUARES PREDICTION
13 ## DOF: DEGREES OF FREEDOM OF THE SSE.
14 ## RES.SE: STANDARD ERROR OF THE RESIDUALS
15 ##

31

Exercise 8.2. Apply your function to the following random numbers:

1 > set.seed(1)
2 > ntot = 20
3 > y = rnorm(ntot); pred1 = rnorm(ntot); pred2 = rnorm(ntot)
4 > x = cbind(pred1,pred2)

After running your function, print out β̂, R2, SSE, and dof produced by your function.

You should check your function by comparing with the R function lm(). To do this,
apply the lm function as follows:

1 > xy.lm = lm(y˜x)
2 > summary(xy.lm)
3

4 Call:
5 lm(formula = y ˜ x)
6

7 Residuals:
8 Min 1Q Median 3Q Max
9 -2.0455 -0.6782 0.2175 0.5049 1.4532

10

11 Coefficients:
12 Estimate Std. Error t value Pr(>|t|)
13 (Intercept) 0.1494 0.2072 0.721 0.481
14 xpred1 -0.1516 0.2504 -0.605 0.553
15 xpred2 0.2894 0.2695 1.074 0.298
16

17 Residual standard error: 0.9119 on 17 degrees of freedom
18 Multiple R-squared: 0.1078, Adjusted R-squared: 0.002868
19 F-statistic: 1.027 on 2 and 17 DF, p-value: 0.3791

In line 1, the function lm is called using the formula notation. Then, in line 2, the sum-
mary function is used to extract basic information about the linear model. For the purpose
of the present homework, we are interested in only three parts of this summary: the co-
efficients, R2, and residual standard error. The value of the coefficients are listed under
Coefficients: Estimate, and are 0.1494, -0.1516, and 0.2894, corresponding to
the three predictors: intercept, pred1, and pred2. These should match the values com-
puted from regress.normal above. The R2 is in the second to last line: 0.1078, and
should agree with that calculated from regress.normal. Finally, the residual standard
error derived from regress.normal should agree with the result from lm (line 17).

Exercise 8.3. Apply your regression function to estimate the growth rate of atmospheric
CO2 concentration over the past half-century or so. State the growth rate in units of ppm/yr.
The CO2 concentration data can be downloaded as co2 mm mlo.txt from the class
website (which in turn was downloaded from http://www.esrl.noaa.gov/gmd/ccgg/trends/).
This data set can be read into R as follows:

32 EXERCISES FOR LINEAR REGRESSION: LEAST SQUARES ESTIMATION

1 iyst = 1960
2 iynd = 2017
3

4 #######################################
5 ######## GET CO2 DATA
6 #######################################
7 fdata = ’/Users/delsole/data/indices/co2_mm_mlo.txt’
8 nskip = 72
9 col.names = c(’year’,’month’,’date’,’average’,’interp’,’trend’,’#days’)

10 co2.table = read.table(fdata,skip=nskip,col.names=col.names,na.strings=-99.99)
11

12 year.get = co2.table[,’year’] >= iyst & co2.table[,’year’] <= iynd
13 year.say = co2.table[year.get,’date’]
14 month = co2.table[year.get,’month’]
15 co2 = co2.table[year.get,’average’]
16 plot(year.say,co2,type="l",col="black",xlab=’year’,ylab=’Parts Per Million’)

You should change fdata to correspond to the data file on your computer. The resulting
plot should reproduce the figure in the notes.

Unfortunately, there exists missing data. Therefore, inside your R function, you will
have to strip out this missing data before applying the least squares method. I recommend
including the following inside your R function:

1 ntot = length(y)
2 if (length(x) %% ntot != 0) stop(’x not dimensioned correctly’)
3 mtot = length(x)/ntot
4 if (ntot <= mtot) stop(’regression problem is not over-determined’)
5

6 ### STRIP MISSING DATA
7 dim(x) = c(ntot,mtot)
8 is.missing = is.na(y) | is.na(rowSums(x))
9 x.good = x[!is.missing,]

10 y.good = y[!is.missing]
11 nsamp = sum(!is.missing)

Note that the correct sample size after missing data has been stripped is nsamp. This is
important when you augment the predictor matrix X by a column of ones.

After running your function, print out β̂,R2, SSE, and dof produced by your function.
You can check your calculations against the built-in R function lm (you will need to use
the na.action=na.omit option to deal with missing data).

Exercise 8.4. Compute the residuals of the regression equation. Make a plot of them, and
state the first 50 values as a vector (e.g., as.numeric(residuals[1:50]).

Exercise 8.5. Use your regression function to estimate the annual cycle of the CO2 con-
centration. The annual cycle should be defined as the first two Fourier harmonics of the
annual cycle (i.e., sin/cos function with periods of 12 months and 6 months). The predictor
matrix for just these harmonics can be constructed in R as follows:

33

1 year = iyst + (1:ntot - 0.5)/12
2 year.shift = year - 1960
3 t = seq(year.shift)/12
4 nharm = 2
5 x = NULL
6 for (n in 1:nharm) x = cbind(x,cos(2*pi*t*n),sin(2*pi*t*n))
7 colnames(x) = c(paste(rep(c(’cos’,’sin’),nharm),
8 rep(1:nharm,each=2),sep=""))

State the five coefficients of this fit (i.e, the intercept, the 2 coefficients for the sin
function, 2 coefficients for the cosine function). Print out the resulting coefficients, R2,
dof , and SSE.

Exercise 8.6. Plot the residuals after the annual cycle has been removed. Superimpose a
plot of the actual CO2 data for comparison. To do this, you will need to add a constant
term to the residuals to make them fit on the same figure; state what constant should you
use and why.

CHAPTER 9

EXERCISES FOR LINEAR REGRESSION:
INFERENCE

In this homework, you will investigate whether Guam sea level has been rising over the last
few decades. To do this, you need to download the following files from the class website:

file name purpose

540.rlrdata Guam sea level Data file
detrend.nino34.ascii.txt SST data file
enso.index.v2.R R code for reading SST
hw.LinRegInference.student.R R code for reading sea level

Sea level data was downloaded from https://www.psmsl.org/data/obtaining/stations/540.php.
The SST data was downloaded from
https://www.cpc.ncep.noaa.gov/products/analysis monitoring/ensostuff/detrend.nino34.ascii.txt.
The first few lines of the sea level data file look like this:

1 1948.0417; 6977; 0;000
2 1948.1250; 6992; 0;000
3 1948.2083; 7023; 0;000
4 1948.2917; 7114; 0;000

Exercises for Statistical Methods for Climate Scientists. By DelSole and Tippett 35

36 EXERCISES FOR LINEAR REGRESSION: INFERENCE

The first column is the year-month is the decimal form year + (month-0.5)/12.0. The sec-
ond column is the mean sea level value for the month, in mm, and the remaining numbers
pertain to missing data. If there are no values to average, then the value for the month is
set to -99999. However, you do not need to know these details. The R code reads the data
file and extracts the data needed to do the homework. At the end of the code, you will see
the following lines explaining the variables:

1 #### AT THIS POINT, THE FOLLOWING VARIABLES ARE DEFINED:
2 #### SEASON: CHARACTER DESCRIBING THE SEASON
3 #### (E.G., ’OND’ FOR ’OCT-NOV-DEC’)
4 #### IYST: START YEAR
5 #### IYND: END YEAR
6 #### NYRS: TOTAL NUMBER OF YEARS
7 #### Y[NYRS]: GUAM SEA LEVEL (mm) AVERAGED OVER THE SEASON
8 #### X.YEAR[NYRS]: YEAR
9 #### X.SST[NYRS]: NINO3.4 INDEX FOR THE SAME YEAR/SEASON

Note: the numbers derived in this homework will not match those in the notes because
the data set here has been updated based on new observations (also, the units in the notes
were incorrect).

Exercise 9.1. Make a plot of the tide gauge data for Guam during JFM, 1973-2006. Be
sure that the axis labels are accurate (with units) and the title explains what is shown in
the figure, including the station and the calendar period. Comment on whether the figure
suggests that the tide gauge measurements have been increasing in the last few decades.

Exercise 9.2. Use regress.normal to determine the trend of sea level. The trend is
obtained by fitting sea level to the model

sea level = β1 + β2 year + εY . (9.1)

Print out the output of regress.normal. Report the trend in units of cm per year.

Exercise 9.3. Augment regress.normal so that it calculates the t-statistic and asso-
ciated p-value for each regression coefficient. Call these values tval and pval in the
output list. Recall that if the model is defined as

y = Xβ + ε, (9.2)

where X is N ×M , then the least squares estimate of β is

β̂ =
(
XTX

)−1
XTy, (9.3)

and the t-statistic for testing βj = 0 is

t =
β̂j

se
√
dj
, (9.4)

where se =
√
SSE/(N −M) and dj is the j’th diagonal element of

(
XTX

)−1
. The t-

statistic has a t-distribution withN−M degrees of freedom, which allows you to calculate
the p-value. You are encouraged to check your calculations using lm.

37

Exercise 9.4. Is the trend significant at the 5% level? To answer this, test the hypothesis
β2 = 0 in model (9.1). Print out the output of regress.normal. Check to ensure that
the t-value you calculate agrees with the t-value obtained from the R function lm().

Exercise 9.5. Augment regress.normal to calculate the (1 − α)100% confidence
interval of each regression coefficient. Call the interval bhat.ci in the output list (it
should be dimensioned [MTOT,2]). The confidence interval can be calculated from

β̂j ± tα/2,N−Mse
√
dj . (9.5)

Give the 95% confidence interval for the slope and intercept. Is this confidence interval
consistent with your answer to the previous question? You are encouraged to check your
calculations using confint.

Exercise 9.6. Test whether sea level has a significant trend after the effect of ENSO has
been taken into account. This test is performed by fitting the model

sea level = β1 + β2 ∗ year + β3 ∗ NINO3.4 + ε (9.6)

and testing the hypothesis β2 = 0. Print out the output of regress.normal. Use this
output to form a conclusion about whether sea level has a statistically significant trend.

CHAPTER 10

EXERCISES FOR MODEL SELECTION

In this problem set you will estimate the annual cycle of the NINO3.4 index and apply
model selection criteria to determine the number of terms in the Fourier series that should
be fitted. The NINO3.4 index can be downloaded from

1 http://www.esrl.noaa.gov/psd/data/correlation/nina34.data

An R-code for reading this data set is ModSel.student.R, which can be downloaded
from the class website. You will need to modify the variables dir.rlib and dir.enso
to point to the directories containing your R-functions and ENSO time series, respectively.
The variable nharm specifies the maximum number of Fourier harmonics to be consid-
ered. When you run this code, it should produce a figure showing the raw NINO3.4 time
series (without annual cycle removed).

The exercises below will ask you to write a function to evaluate a variety of model
selection criteria. Each exercise will focus on a single criterion, but in the end you should
submit a single function that calculates all these criteria. This function should have the
following name and preamble:

Exercises for Statistical Methods for Climate Scientists. By DelSole and Tippett 39

40 EXERCISES FOR MODEL SELECTION

1 modsel.loo.simple = function(y,x,kmax=dim(x)[2]+1) {
2 #### EVALUATES VARIOUS MODEL SELECTION CRITERIA FOR THE MODEL
3 #### Y = X B + E
4 #### NOTE: THE CONSTANT (INTERCEPT) SHOULD NOT BE INCLUDED IN X;
5 #### IT IS INSERTED BY THIS PROGRAM
6 #
7 # INPUT:
8 # Y[N]: PREDICTAND, WHERE N = NUMBER OF INDEPENDENT SAMPLES
9 # X[N,K]: PREDICTOR MATRIX, K = NUMBER OF PREDICTORS

10 # (NOT INCLUDING CONSTANT TERM)
11 # KMAX: MAXIMUM NUMBER OF PREDICTORS (INCLUDING THE CONSTANT)
12 # (DEFAULT: ALL PREDICTORS)
13 # OUTPUT:
14 # SE.SQR[KMAX]: UNBIASED ERROR VARIANCE OF EACH MODEL 1, 2, ..., KMAX
15 # NSE.SQR[KMAX]: NORMALIZED UNBIASED ERROR VARIANCE OF EACH MODEL
16 # CVMSE[KMAX]: LOO CROSS-VALIDATED MEAN SQUARE ERROR FOR EACH MODEL
17 # CVSTD[KMAX]: STANDARD ERROR OF LOO CROSS-VALIDATED SQUARED ERRORS
18 # AIC[KMAX],AICC[KMAX],BIC[KMAX]: INFORMATION CRITERIA FOR EACH MODEL
19 # IC.STD[KMAX]: STANDARD ERROR OF THE INFORMATION CRITERIA

Exercise 10.1. We want to fit the regression model

yn = β0 +

H∑
h=1

(ch cos (2πnh/12) + sh sin (2πnh/12)) (10.1)

where yn is the NINO3.4 index and n = 1, 2, . . . , N . Show that this model can be written
in the form

y = Xβ + ε. (10.2)

What is X? What is β? Hint: in R, the predictor matrix containing the Fourier harmonics
can be generated as

1 x.pred = NULL
2 for (nh in 1:nharm) x.pred =
3 cbind(x.pred,cos(2*pi*nh*nino34.time),sin(2*pi*nh*nino34.time))

Exercise 10.2. Write a function that computes the unbiased error variance of the regression
model (10.1) as a function of the number of harmonics H . The unbiased error variance is

s2e =
SSE

N −M
. (10.3)

The input to this function is the time series y and the predictor matrix X without the
constant term. Internally, you can insert the constant function as follows:

1 ntot = length(y)
2 x.const = cbind(rep(1,ntot),x); # ADD COLUMN OF ONES IN PREDICTOR MATRIX

If k is the number of columns of x.const, then the following commands will fit the
regression model and produce fitted values and residuals.

41

1 for (k in 1:kmax) {
2 x.pred = x.const[,1:k]
3 xy.lm = lm(y˜x.pred-1)
4 yhat = fitted(xy.lm)
5 yresid = residuals(xy.lm)
6 }

Add to this code by computing s2e and the normalized error variance

s2e
σ̂2
Y

, (10.4)

where σ̂2
Y is the sample variance of y. Make a plot of the normalized error variance as a

function of the number of predictors. Where does the minimum occur? How many Fourier
harmonics does this correspond to? How much variance is explained by the annual cycle?
How much variance is unexplained by the annual cycle?

Exercise 10.3. Write a function that computes the leave-one-out cross validated mean
square error. Hint: use “negative” arguments in R arrays to leave data out. For instance:

1 yhat = numeric(ntot)
2 for (n in 1:ntot) {
3 y.pred = y[-n]
4 x.pred = x.const[-n,1:k]
5 yhat[n] = sum(coefficients(lm(y.pred˜x.pred-1)) * x.const[n,1:k])
6 }

State the values of the leave-one-out cross validated mean square error (after normalizing
by the variance of y).

Exercise 10.4. The above approach to leave-one-out cross validation is computationally
intensive. A faster numerical method is explained in exercise 11.2. You do not have to
prove exercise 11.2, but you will use the result. Write a function that computes the leave-
one-out cross validated mean square error based on the numerical approach discussed in
exercise 11.2. Verify that the result is identical to what you found in the previous exercise.
Discuss how much faster the new function is relative to the old.

Exercise 10.5. Compute the standard error of the cross validated mean square error. Indi-
cate the standard error as error bars on the figure produced in the previous problem. Error
bars can be plotted using the arrows command as follows:

42 EXERCISES FOR MODEL SELECTION

1 modsel.list = modsel.loo.simple(nino34.ts,x.pred)
2 x0 = 0:(2*nharm)
3 y0 = modsel.list$cvmse - modsel.list$cvstd
4 y1 = modsel.list$cvmse + modsel.list$cvstd
5 yrange = range(y0,y1)
6 plot(x0,modsel.list$cvmse,type=’b’,pch=19,xlab=’number of Fourier terms’,
7 ylab=’unbiased error variance’,ylim=yrange)
8 arrows(x0,y0,x0,y1,length=0.1,angle=90,code=3,lwd=2)

What model does the “one-standard-deviation rule” select?

Exercise 10.6. Write a function to evaluate AIC, BIC, and AICC. Plot these values as a
function of the number of predictors in the annual cycle model. State the numerical values
of these quantities. What model does these criteria select?

Exercise 10.7. Write a function that computes the standard error of the information cri-
teria. Show the standard error in the plot generated in the previous exercise. What model
does the “one-standard-error” rule select?

Exercise 10.8. Based on all of the above results, you should have found that either 1 or
2 harmonics should be used to fit the annual cycle of NINO3.4. Let us decide to use 2
harmonics (so this means you have 5 predictors: 1 intercept term, cos/sine for the first
harmonic, and cos/sine for the second harmonic). Now subtract this annual cycle from the
NINO3.4 index and plot the residual. This is called the NINO3.4 anomaly. You should
recognize the 1982, 1998, and 2015 El Niño events.

Exercise 10.9 (Apparently Different Information Criteria). Different definitions of AIC,
AICC, BIC appear in the literature. However, these definitions differ by either a factor of
N or an additive constant, neither of which affect the location of the minimum value. For
example, some papers define AICc as

AICc = N log

(
SSE

N

)
+

2KN

N −K − 1
, (10.5)

where K is the total number of “parameters” in the regression model including the error
variance σ2

ε ; that is, K = M + 1 in terms of the model defined in (??). Show that
this definition differs from the AICc defined (10.28) by a constant and therefore the two
expressions (10.28) and (10.5) are equivalent model selection criteria.

Exercise 10.10 (Shortcut for Leave-One-Out Cross Validation). Show that the leave-one-
out cross validated error of the regression model (??) can be written as

εLOOk = yk − xkβk =
yk − xkβ̂

1− αk
, (10.6)

where β̂ is the least-squares estimate of β using all data and αk is the scalar

αk = xk
(
XTX

)−1
xTk . (10.7)

43

Interestingly, the cross validated error yn−xnβn is merely an inflated version of the resid-
ual of the least squares model derived from the entire data set yn − xnβ̂. Equation (10.6)
also shows that the leave-one-out cross validated mean square error can be determined
from the traditional least squares solution, without re-fitting the model N separate times.
Although the method requires computing the inverse of XTX once, this inverse is already
available since it is required to compute β̂. Hint: note that

βk =
(
XTX− xTk xk

)−1 (
XTy − xTk yk

)
, (10.8)

and apply the Sherman-Morrison-Woodbury formula.

CHAPTER 11

PITFALLS OF STATISTICAL INFERENCE

Exercise 11.1 (Selecting Predictors Using Screening). A forecaster wants to predict hurri-
canes for the season. To do this, the forecaster evaluates the correlation between hurricane
counts and 50 variables around the globe that may be relevant. The correlations are com-
puted using 30 years of data. Based on this analysis, the forecaster selects the predictor
with the maximum correlation, which has a correlation of 0.6 with hurricane counts, and
uses that predictor to make a forecast. Is the predictor statistically significant at the 5%
level? For your null hypothesis, you may assume the 50 variables are independent and
normally distributed. Does your conclusion change if the variables are not independent?

Exercise 11.2 (Selecting the Best Forecasts). A forecaster has nine forecasts and would
like to combine them to make a single, superior forecast. The forecaster decides to se-
lect the four forecasts that are most correlated with observations from a 20-year historical
record, and then average those forecasts to make a prediction. When the four best fore-
casts are averaged, the correlation between the mean 4-member forecast and observations
is 0.55. For reference, the 5% significance level for a 20-year forecast is about 0.45. Since
the actual correlation exceeds the threshold, the forecaster claims that the 4-member mean
forecast has a statistically significant correlation. What is “wrong” with this argument?
What is the experimentwise error rate for this procedure? Plot a histogram of the correla-
tion skill under the null hypothesis of independent variables.

Hint: generate random numbers to simulate the above scenario and perform the same
steps as the forecaster. Repeat this procedure numerous times to estimate an empirical
distribution of the correlation under the null hypothesis of no-skill (all variables are in-

Exercises for Statistical Methods for Climate Scientists. By DelSole and Tippett 45

46 PITFALLS OF STATISTICAL INFERENCE

dependent). You can use the cor function to determine the correlation between 1 vari-
able and 9 others (e.g., if obs is 20 elements long, and frcs is a 20 × 9 matrix, then
as.numeric(cor(frcs,obs)) gives 9 correlations). Also, the order command
allows you to identify the forecasts with the four largest correlations.

Exercise 11.3 (Discovery of a new Predictor). An investigator believes that a particular
index, called DOOM, is useful for predicting JFM temperature. The 50-year correlation
between JFM temperature and DOOM is 0.2 in December and 0.1 in November, but 0.3
in October. Since the 5% significance threshold for a correlation coefficient based on 50
independent samples is about 0.28, the investigator promptly publishes a paper proclaim-
ing that the October value of DOOM is a good predictor of JFM temperature. Has the
significance test been applied properly? If not, why not? Is the predictor significant when
screening is taken into account? If not, how large would the correlation need to be to ensure
a true 5% significance?

CHAPTER 12

EXERCISES FOR PRINCIPAL COMPONENT
ANALYSIS

In this problem set you will calculate the principal components of December mean sea
surface temperature (SST). To do this, you will need to download some R code, data sets,
and install appropriate libraries. This homework set will walk you through these steps.

First, you need prepare R to make plots of spatial fields. The libraries for making spatial
plots are not automatically included in R, so you must install them. The libraries you need
are the following:

• maps

• fields

• rworldmap

• ncdf4

• chron

On the MAC, it is very easy to install libraries:

1. Click “Packages & Data.”

2. Click “Package Installer.”

Exercises for Statistical Methods for Climate Scientists. By DelSole and Tippett 47

48 EXERCISES FOR PRINCIPAL COMPONENT ANALYSIS

3. Click “Get list” (if a list is not already there).

4. Click the appropriate library (see above list).

Next, you need to download the data. The data file is sst.mnmean.v4.nc.

Finally, you should download two R programs

• plot latlon v4.R for plotting spatial fields

• sst.pca.student.R, which reads this data and plots the SST for a single year.

As usual, before running sst.pca.student.R, you should modify the directory names
dir.data and dir.lib to correspond to the directories where you save data and R
functions, respectively. If you have successfully followed all of the above directions, then
sst.pca.student.Rwill run with no errors or warnings and will generate a plot show-
ing SST in December 1983.

To calculate a principal component, you must first calculate the climatological mean,
and then subtract it out from all fields. Remember that R is faster for vector calculations
than for for loops. Therefore, we want to calculate the climatological mean using vector
calculations. A trick for doing this is to re-shape the data array so that the command
rowMeans can be used. When converting from vector to matrix or vice versa, R assumes
the elements are stored column-wise. You can get the idea from the following R session:

1 > dum = letters[1:12]
2 > print(dum)
3 [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l"
4 > dim(dum) = c(3,4)
5 > print(dum)
6 [,1] [,2] [,3] [,4]
7 [1,] "a" "d" "g" "j"
8 [2,] "b" "e" "h" "k"
9 [3,] "c" "f" "i" "l"

Taking advantage of this convention, the monthly anomalies can be calculated effi-
ciently as follows:

1 dim(sst) = c(nlon*nlat,nyrs)
2 sst.clim = rowMeans(sst)
3 sst.anom = sst.data - sst.clim

In addition to subtracting out the mean, you also need to create weights that take into
account the fact that the area of a grid point is proportional to the cosine of latitude. A
concise way of generating the appropriate vector of weights is the following.

1 ######## CREATE AREA WEIGHTING VECTOR #############
2 weight = rep(sqrt(cos(lat*pi/180)),each=nlon)
3

4 #### CONSTRUCT WEIGHTED ANOMALY DATA
5 sst.anom.weight = sst.anom * weight

49

Make sure you understand what both commands do and why!

Note that the array sst.anom.weight is shaped as [space, time], whereas the
notes assumes the transpose. There is a good reason why I define the data array the way
that I did, but let’s not get into that. There are two ways to deal with this inconsistency:
take the transpose of the data array before performing PCA, or perform SVD on the data
array but switch the labels U and V. The second approach is taken in this homework.

Another pesky issue is that SST is defined only over the ocean– the grid points over land
have no SST value. The undefined points need to be “stripped away” before computing the
EOFs. The basic idea is to construct a new (smaller) data matrix in which each column
contains only the defined ocean points, apply PCA to the resulting data matrix, then “fill
in” the undefined land points at the end of the calculation. Since this is a programming
trick and not statistics, I’ll just give you the answer for a generic data set data.array:

1 # IDENTIFY MISSING OR 0-WEIGHTED DATA
2 dim(data.array) = c(nlon*nlat,ntot)
3 lbad = is.na(rowSums(data.array)) | weight == 0
4

5 # COMPRESS DATA BY ELIMINATING MISSING GRID POINTS
6 data.array = data.array[!lbad,]
7 ndef = sum(!lbad)
8

9 # COMPUTE SVD
10 mmin = min(ndef,ntot)
11 data.svd = svd(data.array,nu=mmin,nv=mmin)
12

13 # FILL IN MISSING POINTS IN EOF
14 eof = array(NA,dim=c(nlon*nlat,mmin))
15 eof [!lbad,] = data.svd$u

Exercise 12.1. Note that the data array sst is shaped as [space, time], whereas the
lecture notes assumed the data array is [time, space]. This means that if you take the
SVD of sst, the identification of U and V differs from that of the notes. Starting from
the SVD of the weighted data

W Y′ = U̇ Ṡ V̇T

M ×M M ×N M ×N N ×N N ×N, (12.1)

where W is a diagonal matrix whose diagonal elements equal the square root of the cosine
of latitude, state the equations for the scaled EOFs E and scaled PCs F such that

Y′ = EFT . (12.2)

Show mathematically that the scaled PCs have unit variance.

Exercise 12.2. Based on the above hints, write a function called eof.latlon.simple
that performs principal component analysis on a data array formatted as [space, time].
The preamble of this function should be the following:

50 EXERCISES FOR PRINCIPAL COMPONENT ANALYSIS

1 eof.latlon.simple <- function(lon, lat, data.array, neof=30) {
2

3 # COMPUTE PRINCIPAL COMPONENTS OF A DATA ARRAY.
4

5 # INPUT:
6 # LON[NLON]: VECTOR SPECIFYING LONGITUDES
7 # LAT[NLAT]: VECTOR SPECIFYING LATITUDES
8 # DATA.ARRAY[NLON,NLAT,NTOT] OR DATA.ARRAY[NLON*NLAT,NTOT]:
9 # THE DATA ARRAY IN [SPACE1,SPACE2,TIME] OR [SPACE,TIME] FORMAT

10 # NEOF = NUMBER OF SPATIAL EOFS (WITH MASK) TO BE OUTPUTTED. DEFAULT = 30
11

12 # OUTPUT LIST:
13 # $EOF[NLON*NLAT,NEOF]: THE FIRST NEOF SCALED EOFS
14 # $PC[NTOT,NEOF]: THE PCS, NORMALIZED TO UNIT VARIANCE
15 # $FEXPVAR: FRACTION OF EXPLAINED VARIANCE FOR EACH EOF (ALL OF THEM).
16 # $FEXPVAR.CI: CONFIDENCE INTERVALS FOR FRACTION OF EXPLAINED VARIANCE.
17 # $EOFI[NLON*NLAT,NEOF]: PSEUDO INVERSE OF EOF (I.E.,T(EOFI) %*% EOF = I)
18 # $NEOF: MINIMUM OF (NEOF IN ARGUMENT LIST, RANK OF DATA.ARRAY)

This function should subtract out the time mean, apply an area weighting, allow for unde-
fined points, and produce a list containing the quantities indicated above.

Exercise 12.3. Apply your function to compute the principal components of December
SST. Show a plot of the spatial structure and time series of the leading component. Also,
show a plot of the explained variances of the leading components along with confidence
intervals. These plots should be similar to those displayed in the notes.

Exercise 12.4. Consider the linear combination

r = a1X1 + a2X2 + · · ·+ aMXM = aTx, (12.3)

where a1, . . . , aM are constants and X1, . . . , XM are random variables. A standardized
linear combination is one in which the coefficients a are constrained such that aTa = 1.

(a) Show that b = a/
√

aTa satisfies bTb = 1 for any choice of a 6= 0. It follows from
this that

bTx =
aTx√
aTa

(12.4)

is a standardized linear combination for any choice of a 6= 0.

(b) Write an expression for the variance of r in terms of the covariance matrix of x, Σ.

(c) Consider the new variable
ã = UTa, (12.5)

where U is the orthogonal eigenvector matrix of Σ (i.e, Σ = UΛUT , where UTU = I).
Write the variance of r in terms of ã. Something “special” happens under this transforma-
tion. What is it? Write out a simple expression for the variance of r without using vector
notation (explicitly write out sums and products).

(d) Show that maximum variance of r is λ1 (i.e., the largest eigenvalue of Σ). What vector
ã gives this maximum? What vector a gives this maximum?

51

(e) Suppose the covariance matrix is estimated from the sample covariance matrix of the
centered data matrix X:

Σ̂ =
1

N − 1
XTX. (12.6)

How are the eigenvalues and eigenvectors of Σ̂ related to the singular values and singular
vectors of X?

(f) Use these results to give an alternative description of the leading principal component.
That is, instead of describing the leading component as something that best approximates
the data, describe it in terms of standard linear combinations.

CHAPTER 13

COMPUTATIONAL EXERCISES ON FIELD
SIGNIFICANCE

In this homework set, you will perform a series of field significance tests. The first step of
this homework is to obtain the following files from the class website. It is good practice to
put all of your data in a single directory (say “data”), and all your auxiliary programs into
a single directory that can be referred to in future R programs.

fieldsig.student.R main program: reads data and computes EOFs
cca.data.clim763.DJF.RData data (will be used in future homeworks)
eof.latlon.R auxiliary file: calculate EOFs
plot latlon v4.R auxiliary file: plot spatial maps
gev.R auxiliary file: function to solve eigenvalue problem
index.climate.v2.R auxiliary file: function to compute NINO3.4 index

Your starting point is the R program fieldsig.student.R, which does the follow-
ing things things:

• It reads the data file cca.data.clim763.DJF.RData and loads them in the
arrays tem.data and sst.data. Inside fieldsig.student.R, you need to
modify the variable dir.data to correspond to the directory to which you down-
loaded the data.

Exercises for Statistical Methods for Climate Scientists. By DelSole and Tippett 53

54 COMPUTATIONAL EXERCISES ON FIELD SIGNIFICANCE

• It reads the auxiliary programs (e.g., eof.latlon.R and plot latlon v4.R).
You will need to modify dir.Rlib to correspond to the directory to which you
downloaded the auxiliary programs.

• It computes the nino3.4 index from sst.data.

• It also computes the EOFs of U.S. temperature using eof.latlon, which creates
the list variable tem.eof. The EOFs are tem.eof$eof[space,neof], and
the pc time series are tem.eof$pc[time,neof].

• It plots the leading EOF and PC of North American Temperature and SST. The
resulting figure should look like fig. 13.1.

Note: temperature over the ocean is set to NA. Also, temperature is read as an array with
dimension nlon, nlat, time, but eventually is “reshaped” into an array with dimen-
sion nlon*nlat, nyrs. If you do not understand what this means, please see me!

The purpose of this homework is to test the hypothesis that tropical Pacific SSTs influ-
ence North American temperature in DJF. You will begin by looking at the correlation map
between temperature and NINO3.4. This is very convenient to plot in R. First, we compute
the correlation between NINO3.4 and every grid point of temperature using the command

cor.map = cor(t(tem.data),nino34)

The R-function cor assumes data matrices are in the form TIME x SPACE, so we must
take the transpose of tem.data (which is an array with dimensions SPACE x TIME) to
use cor. To plot this, we then use the command

plot_latlon_v4(lon,lat,cor.map).

To “maskout” insignificant correlations, we use the commands

cor.crit = 2/sqrt(nyrs)
cor.map[abs(cor.map)<cor.crit] = NA
plot_latlon_v4(lon,lat,cor.map)

The resulting plot should look like fig. 13.1 in the notes.

Assignment

Exercise 13.1. Write an R code that applies the Livezey-Chen field significance test. The
preamble of the function should be the following:

1 livezey.chen = function(lon,lat,xdata,ydata,ntrials=1000,alpha=0.05) {
2 ### PERFORMS THE LIVEZEY-CHEN FIELD SIGNIFICANCE TEST
3 # INPUT:
4 # LON[NLON]: LONGITUDE OF THE FIELD DATA
5 # LAT[NLAT]: LATITUDE OF THE FIELD DATA
6 # XDATA[NLON,NLAT,NTOT]: DATA ARRAY FOR THE FIELD
7 # YDATA[NTOT]: REFERENCE TIME SERIES
8 # NTRIALS: NUMBER OF MONTE CARLO TRIALS (DEFAULT = 10000)
9 # ALPHA: SIGNIFICANCE LEVEL OF THE TEST (DEFAULT = 5%)

10 # OUTPUT:
11 # HISTOGRAM OF AREAS WITH SIGNIFICANT CORRELATIONS
12 # LIST:
13 # $CRIT.NULL: SIGNIFICANCE THRESHOLD FROM LIVEZEY-CHEN TEST
14 # $SIG.AREA.OBS: PERCENTAGE AREA WITH SIGNIFICANT CORRELATIONS

55

Apply the Livezey-Chen field significance test to test whether NINO3.4 is related to DJF
temperature over North America. Make a histogram of the Monte Carlo results.

Be sure to express the answer in terms of percentage area with significant correlations.
Suggestion: create another field that gives the fractional area at each grid point, then sum
over those points. For instance:

1 area.frac = rep(cos(lat*pi/180),each=nlon)
2 lgood = !is.na(xdata[,1])
3 area.frac[!lgood] = NA
4 area.frac = area.frac/sum(area.frac,na.rm=TRUE)
5

6 cor.map = as.numeric(cor(t(xdata),ydata))
7 sig.area.obs = sum(area.frac[abs(cor.map) > 2/sqrt(ntot)],na.rm=TRUE)*100

You should obtain a plot similar to fig. 13.4 of the lecture notes. Make a conclusion
regarding whether the field is significant.

Exercise 13.2. Write an R code that applies the permutation field significance test. The
preamble of the function should be the following:

1 fieldsig.permutation = function(lon,lat,xdata,ydata,ntrials=1000,alpha=0.05) {
2 ### PERFORMS PERMUTATION FIELD SIGNIFICANCE TEST
3 # INPUT:
4 # LON[NLON]: LONGITUDE OF THE FIELD DATA
5 # LAT[NLAT]: LATITUDE OF THE FIELD DATA
6 # XDATA[NLON,NLAT,NTOT]: DATA ARRAY FOR THE FIELD
7 # YDATA[NTOT]: REFERENCE TIME SERIES
8 # NTRIALS: NUMBER OF TRIALS (DEFAULT = 10000)
9 # ALPHA: SIGNIFICANCE LEVEL OF THE TEST (DEFAULT = 5%)

10 # OUTPUT:
11 # HISTOGRAM OF AREAS WITH SIGNIFICANT CORRELATIONS
12 # LIST:
13 # $CRIT.NULL: SIGNIFICANCE THRESHOLD FROM LIVEZEY-CHEN TEST
14 # $SIG.AREA.OBS: PERCENTAGE AREA WITH SIGNIFICANT CORRELATIONS

The sample function is very useful for generating a permutation. For instance, sample(N)
generates a permutation of the integers 1-N. To ensure there are no accidental matches, the
following loop may be helpful

1 temp = TRUE
2 while(temp) {
3 nperm = sample(nyrs)
4 temp = any(nperm == 1:nyrs)
5 }

56 COMPUTATIONAL EXERCISES ON FIELD SIGNIFICANCE

Answer the same questions as the previous exercise. How does this result compare to that
from the Livezey-Chen test?

Exercise 13.3. Write a function that evaluates Mutual Information Criterion (MIC) for the
field significance problem. MIC is a function of R-square, which can be computed from R
functions as follows

1 r.square = summary(lm(y˜x))$r.square

Show a plot of MIC versus the number of EOFs of U.S. temperature and identify the
minimum. The figure should be similar to fig. 13.5 in the notes.

Exercise 13.4. Write a code to evaluate the significance level for MIC. Include this in your
function for MIC. Plot the significance level.

Exercise 13.5. Write an R code that computes the False Discovery Rate. The preamble of
this function should be the following:

1 fdr.fieldsig = function(y,x,fdr=0.1) {
2 ## APPLIES FALSE DISCOVERY RATE TO A CORRELATION MAP
3 ## INPUT:
4 # Y[NTOT]: REFERENCE TIME SERIES
5 # X[NTOT,MTOT]: FIELD TIME SERIES
6 # FDR: FALSE DISCOVERY RATE
7 ## OUTPUT:
8 # LREJECT[MTOT]: LOGICAL VECTOR INDICATING REJECTIONS

Make a plot showing where the FDR implies rejection of the null hypothesis. The plot
should be similar to fig. 12.7 of the notes.

57

150 200 250

−
20

20
60

−1.2 −0.6 0.2 0.6 1

EOF1 of SST

240 250 260 270 280 290 300

30
40

−2.5 −1 0.5 1.5 2.5

EOF1 of US Temperature

1985 1990 1995 2000 2005 2010 2015

−
2

0
1

PC1 of SST

year

ss
t.e

of
$p

c[
, 1

]

1985 1990 1995 2000 2005 2010 2015

−
2

0
1

2

PC1 of US Temp

year

te
m

.e
of

$p
c[

, 1
]

Figure 13.1 Leading EOF of DJF North American temperature during 1982-2017
(top) and correlation between DJF NINO34 index and DJF temperature during 1982-2017
(bottom).

CHAPTER 14

EXERCISES FOR MULTIVARIATE LINEAR
REGRESSION

Exercise 14.1. It is natural to wonder whether a “better” estimate of B can be obtained by
weighting the SSE toward certain variables. To explore this possibility, suppose ws is the
weight for the s’th spatial location. Then, the SSE in (14.20) can be modified as

SSE =

S∑
s=1

N∑
n=1

ws

(
Yns −

M∑
m=1

XnmBms

)2

. (14.1)

More generally, one can specify a positive-definite weight matrix W and define

SSE =

S∑
s′=1

S∑
s=1

N∑
n=1

Wss′

(
Yns −

M∑
m=1

XnmBms

)(
Yns′ −

M∑
m=1

XnmBms′

)
, (14.2)

which can be written equivalently as

SSEW = tr
[
(Y −XB) W (Y −XB)

T
]
. (14.3)

Show that the matrix B that minimizes SSEW is independent of W and equal to the least
squares estimate (14.25). This means that there is nothing to gain by weighting different
spatial locations differently. Explain why this is so.

Computational Exercise for Multivariate Linear Regression

Exercises for Statistical Methods for Climate Scientists. By DelSole and Tippett 59

60 EXERCISES FOR MULTIVARIATE LINEAR REGRESSION

In this homework, you will derive a multivariate linear prediction model for Sea Surface
Temperature.

Getting the Data The data set will be the ERSSTv5,2 which is on the COLA servers.3

However, you might prefer to download the data set directly on your laptop (I would rec-
ommend this). To download this data using R, grab the following files on the class website:

1 download.ersstv5.R
2 download_ftp_file.R
3 create_directory.R

Then type source(’download.ersstv5.R’). The code will take a few minutes
to run and will show the file names being downloaded. It also will generate a warning
message about creating directories, which can be ignored.

Reading the Data To make this assignment easier, I have written an R code called
mlinreg.student.R that does the following things:

1. read the NetCDF files for ERSSTv5

2. load the data into the array sst.full[space,month,year]

3. regress out the mean and linear trend from each grid point

4. define the Pacific Ocean domain to be between 30◦S and 60◦N

5. compute the EOFs of monthly SST in the prescribed domain

This code also requires the following files from the class website:

1 eof.latlon.R
2 mask.define.R

It is good practice to put all of your data in a single directory (say “data”), and all your
auxiliary programs into a single directory that can be referred to in future R programs. You
should change dir.Rlib to point to the directory of your R functions, and dir.ersst
to point to the directory of your ERSSTv5 data.

After running mlinreg.student.R, you should see a plot of the leading EOF and
PC. If the code crashes or gives an error message, please see me. Otherwise, you are ready!
After the code runs to completion, you should have the following data arrays available.

1 # 1) THE GRIDDED DATA SET IS IN SST.FULL[SPACE,MONTH,YEAR]
2 # 2) EOFS ARE IN EOF.LIST
3 # (E.G., EOF.LIST$EOF[SPACE,NEOF], EOF.LIST$PC[TIME,NEOF])
4 # 3) LAT/LON IS LON.SST, LAT.SST
5 # 4) MON.INIT IS THE CALENDAR MONTH OF THE INITAL CONDITION
6 # 5) MON.TARG IS THE CALENDAR MONTH OF THE TARGET

2https://www.ncdc.noaa.gov/data-access/marineocean-data/extended-reconstructed-sea-surface-temperature-
ersst-v5
3/shared/obs/sst/ncdc/ersst-v5

61

Temperature over the ocean is set to NA. Also, temperature is read as an array with dimen-
sion nlon, nlat, time, but eventually is “reshaped” into an array with dimension
nlon*nlat, 12, nyrs. If you do not understand what this means, please see me!

Exercise 14.2. Write a R function to compute MIC given two data arrays. The function
also should compute the 5% significance threshold for MIC. The preamble should be as
follows

1 mic.gaussian = function(x,y,equal.dim=TRUE,alpha=0.05) {
2 ### THIS FUNCTION COMPUTES CORRECTED MUTUAL INFORMATION CRITERION (MIC)
3 ### FOR Y = XB + E
4 ### INPUT:
5 ## X[NSAMP,XDIM]: X DATA ARRAY, OFTEN FORMATTED AS [TIME,EOF]
6 ## Y[NSAMP,YDIM]: Y DATA ARRAY, OFTEN FORMATTED AS [TIME,EOF]
7 ## EQUAL.DIM: LOGICAL INDICATING WHETHER
8 ## (TRUE) EQUAL NUMBER OF X’S, Y’S CHOSEN: MIC[MIN(XDIM,YDIM)];
9 ## (FALSE) MIC FOR ALL TRUNCATIONS ARE COMPUTED: MIC[XDIM,YDIM]

10 ### OUTPUT: LIST (DIMENSIONS DEPEND ON EQUAL.DIM)
11 ## $MIC: MIC VALUES
12 ## $PENALTY: THE PENALTY TERM IN MIC
13 ## $CRIT: SIGNIFICANCE THRESHOLD OF MIC

Exercise 14.3. Consider the case of predicting December SST based on June SST. Calcu-
late the MIC for EOF truncations at least for 1-25. The MIC values should be the following:

1 > micc
2 [1] -0.93434963 -1.23487398 -1.61938679 -1.67394748
3 [5] -1.84103698 -1.50387241 -1.19900423 -0.69182271
4 [9] 0.05407005 0.33422799 1.48966123 2.50855073
5 [13] 4.09619446 5.50819524 7.95854904 11.03580560
6 [17] 14.07453324 18.15159799 23.34799814 30.02343607
7 [21] 38.16355309 48.57419513 62.29384427 79.60195564
8 [25] 101.97693930 131.36865590 172.06833168 227.00353490
9 [29] 312.44543534 452.13622542 710.10017386 1323.74697742

10 [33] 4435.93164492 NA

Plot the MIC values and indicate the minimum, which should be 5 EOFs. Next, do the
same thing, except for predicting December SST based on September initial condition.
Print the values of MIC (as above). Decide how many EOFs should be used and state your
answer.

Exercise 14.4. Use multivariate regression to make a prediction of December SSTs based
on June SSTs using 5 EOFs. Submit your code for doing this. Make sure your results are
consistent with the notes. Then, make a prediction for December SSTs using September
SSTs and 5 EOFs. Submit plots of your predictions.

CHAPTER 15

EXERCISES FOR CANONICAL
CORRELATION ANALYSIS

cca.student.R main program
cca.data.clim763.DJF.RData SST and N. American temperature for DJF
eof.latlon.R auxiliary file: calculate EOFs
plot latlon v4.R auxiliary file: plot spatial maps

In this homework you will write an R function that performs Canonical Correlation
Analysis. You will need to download data and a few R programs. These files are summa-
rized in the above table. The R code cca.student.R reads the data file
cca.data.clim763.DJF.RData and computes the EOFs of SST and U.S. temper-
ature, and plots out the leading EOF and PC time series. In a previous homework you
investigated the relation between ENSO and U.S. temperature using the concept of field
significance. However, that analysis assumed you knew the NINO3.4 index. Here, you
will derive an index for predicting U.S. temperature based on SST.

The following exercises break up CCA into discrete steps. However, in the end, you
should submit a single function that performs all the calculations. The preamble of this
function should be the following:

Exercises for Statistical Methods for Climate Scientists. By DelSole and Tippett 63

64 EXERCISES FOR CANONICAL CORRELATION ANALYSIS

1 cca.pca = function(x.pca,y.pca,tx=NULL,ty=NULL) {
2 ##
3 ## PERFORMS CANONICAL CORRELATION ANALYSIS ON X AND Y.
4 ## X AND Y ARE ASSUMED TO BE IN THE FOLLOWING FORMS:
5 ## X = FX %*% EXˆT ### AND ### Y = FY %*% EYˆT
6 ## WHERE FX AND FY HAVE COVARIANCE MATRICES = I
7 ## FOR EXAMPLE: FROM PRINCIPAL COMPONENT ANALYSIS
8 ## IF TX OR TY = NULL, THEN BOTH (TX,TY) SELECTED USING MIC
9 ## INPUT:

10 # X.PCA: LIST OUTPUT FROM EOF.LATLON[X-DATA]
11 # Y.PCA: LIST OUTPUT FROM EOF.LATLON[Y-DATA]
12 # TX: TRUNCATION FOR X (TX <= MX); IF NULL, TX IS SELECTED
13 # TY: TRUNCATION FOR Y (TY <= MY); IF NULL, TY IS SELECTED
14 ## OUTPUT LIST:
15 # MIC[MX,MY]: MUTUAL INFORMATION CRITERION
16 # NMIN[1,2]: VALUES OF TX,TY THAT MINIMIZES MIC
17 # CAN.COR[MIN(TX,TY)]: CANONICAL CORRELATIONS
18 # RX[NTOT,MIN(TX,TY)]: CANONICAL VARIATES FOR X
19 # RY[NTOT,MIN(TX,TY)]: CANONICAL VARIATES FOR Y
20 # PX[SX ,MIN(TX,TY)]: CANONICAL LOADING VECTORS FOR X
21 # PY[SY ,MIN(TX,TY)]: CANONICAL LOADING VECTORS FOR Y
22 # QX.TILDE[TX,MIN(TX,TY)]: WEIGHTING VECTORS FOR X-FEATURES
23 # QY.TILDE[TY,MIN(TX,TY)]: WEIGHTING VECTORS FOR Y-FEATURES
24 # TX, TY: SELECTED VALUES OF TX AND TY
25 ##

Following the notes, the data sets are assumed to have been decomposed into the form

X = FX ET
X

N × SX N ×MX MX × SX ,
(15.1)

and
Y = FY ET

Y

N × SY N ×MY MY × SY ,
(15.2)

where
1

N − 1
FTXFX = I and

1

N − 1
FTY FY = I. (15.3)

This decomposition is accomplished in cca.student.R using principal component
analysis. You will be performing CCA on the time series matrices FX and FY .

Exercise 15.1. In a previous homework you wrote a function that computed Mutual In-
formation Criterion (MIC). Augment that function to compute MIC for all truncations TX
and TY , up to some maximum number (what *is* the maximum number?). As a reminder,
MIC is defined as

MIC =
∑
i

log(1− ρ̂2i) + P, (15.4)

where ρ̂i is the i’th sample canonical correlation and

P = (N + 1)

(
TX + TY

N − TX − TY − 2
− TX
N − TX − 2

− TY
N − TY − 2

)
. (15.5)

65

Plot MIC for a range of values and identify the value of TX and TY that minimizes MIC.
Print out the values for the first 5 rows and columns (i.e., print mic[1:5,1:5]). These
results should match the example in the notes. Where is the minimum value, and what is
it? The location of the minimum can be found using the following R commands:

1 nmin = which(mic == min(micc,na.rm=TRUE),arr.ind=TRUE)
2 tx = nmin[1]
3 ty = nmin[2]

Exercise 15.2. Compute all canonical correlations for the optimum choice of TX and TY .
State the values. These values should be consistent with those in the notes.

Exercise 15.3. Write a function that computes canonical variates. Compute the leading
canonical variates between SST and U.S. temperature using the same truncation parameters
as above. Make a plot that shows the leading canonical variate for the two data sets. Verify
that the sample covariance matrices of the canonical variates equals the identity matrix.
The sample covariance matrix of rx can be obtained using the R command cov(rx).

Exercise 15.4. Write a function that computes canonical loading vectors. Compute the
leading canonical loadings between SST and U.S. temperature using the same truncation
parameters as above. Make a plot that shows the leading canonical loadings for the two
data sets.

Exercise 15.5. Write a function to compute the fraction of variance explained by the
canonical component. This is somewhat tricky because (1) the area weighting needs to
be included, (2) missing data should be skipped, and (3) the total variance needs to be
computed to compute the fraction. All of this information is available from the output of
eof.latlon. To help you out, here is the way to compute it for the EOFs of SST:

1 var.x.tot = sum(sst.eof$svalˆ2)/(nyrs-1)
2 exp.var.x = rep(NA,dim=tx)
3 for (n in 1:tx) exp.var.x[n] = sum(px[!sst.eof$lbad,n]ˆ2 *
4 sst.eof$weight[!sst.eof$lbad]ˆ2)/var.x.tot

Verify that the sum of the fractional variances equals the sum of the fractional variances of
the first TX EOFs sum(sst.eof$fexpvar[1:tx]). You might have to compute all
of the singular vectors using the command svd(cov.mat,nu=tx,nv=ty). State the
explained variances of the canonical components for SST and for U.S. Temperature. These
variances should match those in the notes.

Exercise 15.6. Write a separate code that computes the 5% significance levels of the
canonical correlations based on 5000 trials of Monte Carlo experiments. State the critical
values for each canonical correlation based on the optimum choice of TX and TY . Use
these results to decide whether the canonical correlations computed from data are signifi-
cant. Clearly state your conclusion. (Coding advice: first use only 100 trials until you have
debugged your code, and then change to 5000 trials when the code is working.)

66 EXERCISES FOR CANONICAL CORRELATION ANALYSIS

Exercise 15.7. Repeat the above steps, except this time do not detrend the data. To prevent
detrending, set npoly =0 at the top of the code. How do the results differ? Explain why
this makes sense.

Exercise 15.8. Show mathematically that the error covariance matrix for the model (15.80)
is

Σ̃εY = I− Ŝ2
ρ. (15.6)

This result shows that the error covariance matrix is diagonal, and that the diagonal ele-
ments equal 1 − ρ̂2k, which can be interpreted as the variance explained by the canonical
variate.

CHAPTER 16

EXERCISES: COVARIANCE DISCRIMINANT
ANALYSIS

Exercise 16.1. Prove (16.14). Hint, substitute (16.12) into the outer product and expanding
gives

(xt − µ̂Y) (xt − µ̂Y)
T

= A + B + C, (16.1)

where

A = (u∗t − µ̂Y) (u∗t − µ̂Y)
T (16.2)

B = ftf
T
t (16.3)

C = (u∗t − µ̂Y) fTt + ft (u∗t − µ̂Y)
T
. (16.4)

Show that E[C] = 0. What is E[A]?

Exercise 16.2. Suppose d(σ2
X , σ

2
Y) is some measure of the difference between the vari-

ances σ2
X , σ

2
Y . Suppose further that the function d(,) is invariant to an invertible linear

transformation of X and Y . Prove that d(,) can depend only on the ratio of variances

d(σ2
X , σ

2
Y) = f

(
σ2
X

σ2
Y

)
(16.5)

Exercise 16.3 (Discriminant analysis via SVD). Given two data matrices X and Y, solve
discriminant analysis based on the singular value decomposition (SVD) (i.e., without solv-

Exercises for Statistical Methods for Climate Scientists. By DelSole and Tippett 67

68 EXERCISES: COVARIANCE DISCRIMINANT ANALYSIS

ing an eigenvalue problem). Show how the discriminant ratios, variates, and loading vec-
tors can be derived from the results of the SVD. Hint: compute the SVD of Y to construct
a whitening transformation, then compute the SVD of the whitened data matrix X.

Exercise 16.4 (Loading Patterns). Show that the matrix P that minimizes

γY = E
[
‖y − E[y]−PrY ‖2W

]
, (16.6)

is
P = cov[y, rY] (cov[rY , rY])

−1
, (16.7)

thereby proving (16.64). Also, show that the matrix P that minimizes

γ̇Y = ‖Ẏ −RY PT ‖2W . (16.8)

is
Ṗ = ẎTRY

(
RT
Y RY

)−1
, (16.9)

thereby proving (16.94). Note that Ṗ and P are merely the sample and population versions
of each other.

Exercise 16.5. Prove that if ΣX 6= ΣY , then there exists a q such that λ 6= 1, where

λ =
qTΣXq

qTΣY q
. (16.10)

Exercise 16.6. Define the sum total variance of Ẏ as

‖Ẏ‖2W =
1

NY − 1
tr
[
ẎWẎT

]
, (16.11)

where W is a positive definite matrix defining how different points are weighted. If Ẏ =
RY ṖT

Y , use the properties of CDA to show explicitly that the sum total variance can be
written as

‖Ẏ‖2W =

T∑
k=1

pTkWpk. (16.12)

69

Numerical Exercises

discr.student.R program for reading the data sets
tas Amon CCSM4 historical r1i1p1 185001-200512.nc 20C, 1st member
tas Amon CCSM4 historical r2i1p1 185001-200512.nc 20C, 2nd member
tas Amon CCSM4 piControl r1i1p1 080001-130012.nc PI simulation

In this homework you will write an R function to perform covariance discriminant anal-
ysis. You will need to download data and a few R programs. These files are summarized
in the above table. The R code discr.student.R reads data files for the 20C and
PI simulations, combines them, and computes EOFs. The following exercises break up
the discriminant analysis into discrete steps, but you should submit a single function that
performs all the calculations. The preamble of this function should be the following:

1 cda.eof = function(xdata,ydata,eof.list) {
2 ### PERFORMS COVARIANCE DISCRIMINANT ANALYSIS ON X AND Y
3 ### INPUT:
4 ### XDATA[NX,MDIM]
5 ### YDATA[NY,MDIM]
6 ### EOF.LIST: LIST FROM EOF CALCULATION
7 ### OUTPUT:
8 ### MIC[NEOF]: MIC AS A FUNCTION OF NUMBER OF PCS
9 ### NMIN: LOCATION OF MINIMUM MIC

10 ### DISCR.RATIO[NEOF]: DISCRIMINANT RATIOS VS. NUMBER OF PCS
11 ### RX[NX,NMIN]: VARIATE TIME SERIES FOR X
12 ### RY[NY,NMIN]: VARIATE TIME SERIES FOR Y
13 ### PMAT[SPACE,NMIN]: LOADING VECTOR

In the following calculations, you should include *both* ensemble members from 20C.
A trick for doing this is to reshape the array so that the time series looks twice as long:

1 ### RESHAPE PC.20C[TIME,NENS,NEOF] TO PC.20C[TIME*NENS,NEOF]
2 dim(pc.20c) = c(tdim.20c*nens,neof)

Then, when you want individual ensemble members, you can reshape the array back to
[time,ensemble,eof]

Exercise 16.7. Write a function that evaluates Mutual Information Criterion (MIC) for
comparing covariance matrices. MIC is defined as

MIC =
1

NT
log

(
|ΣX |NX |ΣY |NY

|ΣT |NT

)
+ P, (16.13)

where

P =
T

NT

(
NX(NX + 1)

NX − P − 2
+
NY (NY + 1)

NY − P − 2
− NT (NT + 1)

NT − P − 2

)
,

70 EXERCISES: COVARIANCE DISCRIMINANT ANALYSIS

and

Σ̂T =
NXΣX +NY ΣY

NT
and NT = NX +NY . (16.14)

The function should evaluate MIC over all possible EOF truncations T. Plot MIC for a
range of values and identify the value of T that minimizes MIC. Print out the first 5 values
of MIC. These results should match the example in the notes.

Exercise 16.8. Compute the discriminant ratios for the optimum choice of T . State the
values. These values should be consistent with those in the notes

Exercise 16.9. Write a function that computes discriminant variates. Compute the variates
for the optimum choice of T and plot them. Verify that the sample covariance matrix of
the PI variates equals the identity matrix. Verify that the sample covariance matrix of 20C
variates is diagonal, with diagonal elements equal to the discriminant ratios.

Exercise 16.10. Write a function that computes the loading vectors. Plot the leading load-
ing vector.

Exercise 16.11. Write a separate code that computes the 5% significance levels of the
discriminant ratios based on 5000 trials of Monte Carlo experiments. State the 95% per-
centile for all discriminant ratios for the optimum choice of T . Are your discriminant ratios
significant or not?

Exercise 16.12. What is the 5% significance level of the univariate F-test for equality of
variances for sample sizes NX = 51, NY = 51? Using your Monte Carlo code, show
a plot of the 5% and 95% percentiles of the leading discriminant ratio as a function of
the truncation parameter T . In this exercise, let NX = 51, NY = 51, and the number
of trials = 1000. Also, let the maximum dimension be 30. What happens to the ratios
as T increases? Explain why this happens. The 95% percentile from the Monte Carlo
experiments should be close to the univariate F-test for T = 1.

CHAPTER 17

ANALYSIS OF VARIANCE

Table 17.1 default

prca.student.R main program
[year]11 tref NCEP-CFSv2.nc NetCDF data files
land cover.nc NetCDF file for the land-sea mask
interesting.points.R auxiliary file: R function for identifying large values in a field
index.climate.v2.R auxiliary file: R function for defining N. American land area
eof.latlon.R auxiliary file: calculate EOFs
plot latlon v4.R auxiliary file: plot spatial maps
gev.R auxiliary file for solving generalized eigenvalue problem

In this homework set you will use Analysis of Variance (ANOVA) to quantify the pre-
dictability of seasonal forecasts from the CFSv2 Retrospective Hindcasts. More precisely,
you will determine whether April-mean temperature over North America is predictable by
CFSv2 based on November initial conditions.

The above table shows the programs and data sets you need to download to do this
homework. Download these files and run prca.student.R. As usual, modify dir.data
and dir.Rlib to correspond to your data and library directories, respectively.
prca.student.R should run to completion without any error or warning messages
(please contact me if this is not true). After completion, the following variables are avail-
able to you:

Exercises for Statistical Methods for Climate Scientists. By DelSole and Tippett 71

72 ANALYSIS OF VARIANCE

1 ## VARBL: NAME OF THE VARIABLE (E.G., TEMPERATURE)
2 ## ICMON: INITIAL CONDITION MONTH (E.G., ’NOV’)
3 ## VFMON: VERIFICATION MONTH (E.G., ’JAN’)
4 ## EPIC: SELECTED ENSEMBLE MEMBERS (E.G., 1,2,...,24)
5 ## NENS: TOTAL NUMBER OF ENSEMBLE MEMBERS (LENGTH(EPIC))
6 ## NYRS: NUMBER OF YEARS
7 ## IYST: FIRST YEAR OF THE DATA SET
8 ## LON[NLON]: LONGITUDE VALUES OF THE DOMAIN
9 ## LAT[NLAT]: LATITUDE VALUES OF THE DOMAIN

10 ## HCST.DATA[NLON,NLAT,NENS,NYRS]: HINDCAST DATA
11 ## VIEW[NLON,NLAT]: N. AMERICAN MASK

Note that the data array has the format [space, ensemble, year], which is not the same
as in the notes (the notes assume [ensemble, year, space]). There is a good reason why the
notes use a different format than the usual format for data, but that is a long story.

In dealing with multivariate data in R, your programs will run much faster if instead of
using for loops, you make use of the commands rowMeans, rowSums, colMeans,
and colSums. In order to make use of these commands, you will need to “reshape”
your arrays using the dim command. Any array can be reshaped into another array with
different dimensions, as long as the product of the dimensions are the same. The rule is that
R fills up columns first, then rows. For instance, consider the following set of commands:

1 > x = rnorm(20)
2 > print(x)
3 [1] -0.08253025 -0.66934158 -2.55017522 2.19427432 -0.56563243 1.17370178 1.43692367
4 [8] -0.63444609 -1.17081896 -2.23559009 -1.83286874 0.76325786 -0.20322325 -0.59558207
5 [15] -2.17997749 -0.99505771 0.23259272 1.14159830 -1.63726907 -0.70107359
6 > dim(x) = c(4,5)
7 > print(x)
8 [,1] [,2] [,3] [,4] [,5]
9 [1,] -0.08253025 -0.5656324 -1.1708190 -0.2032233 0.2325927

10 [2,] -0.66934158 1.1737018 -2.2355901 -0.5955821 1.1415983
11 [3,] -2.55017522 1.4369237 -1.8328687 -2.1799775 -1.6372691
12 [4,] 2.19427432 -0.6344461 0.7632579 -0.9950577 -0.7010736

In the above example, a random vector of length 20 is printed. Then, the vector is reshaped
into a 4 × 5 array and printed. You can see that R takes the sequence of numbers in the
vector and fills the 4× 5 array, filling columns first, then the rows.

To illustrate the above technique, we will calculate a few quantities that are needed in
ANOVA. One quantity that is needed is the grand mean at each grid point. This can be
calculated as follows:

1 ## COMPUTE GRAND MEAN
2 dim(hcst.data) = c(nlon*nlat,nens*nyrs)
3 gmean = rowMeans(hcst.data)

The resulting variable gmean is a vector of length nlon*nlat giving the mean at each
grid point. Another quantity that is needed is the ensemble mean, which can be calculated
as follows:

73

1 ## COMPUTE ENSEMBLE MEAN
2 dim(hcst.data) = c(nlon*nlat,nens,nyrs)
3 emean = array(NA,dim=c(nlon*nlat,nyrs))
4 for (ny in 1:nyrs) emean[,ny] = rowMeans(hcst.data[,,ny])

The first line reshapes the data array. The second line creates an array of the appropriate di-
mensions, but fills the array with NA. It is good practice to always initialize arrays with NA,
so that if you accidentally do not fill up the entire array you will get an NA whenever any
algebraic calculation is performed with those elements. The resulting NA is then useful for
debugging. The last line calculates the ensemble mean for each year (i.e., the “condition”
is “year”). The unbiased estimate of the variance of conditional means is therefore

1 ## COMPUTE SIGNAL VARIANCE
2 var.sig = rowSums((emean - gmean)ˆ2) / (nyrs-1)

Note that emean is a 2-dimensional array while gmean is a vector. R will automatically
repeat gmean until it fills up an array of the same size as emean, so that the subtraction
can be performed. After the subtraction, each term in the resulting array is squared, then
the sum of the squares is computed. Dividing by the degrees of freedom yields the unbiased
estimate of the signal variance.

A key quantity in ANOVA is the critical value of F for testing significance. This is
very simple to do in R using the command qf. For the above parameters, the α100%
significance threshold is

1 f.crit = qf(alpha,nyrs-1,nyrs*(nens-1),lower.tail=FALSE)

Assignment

Exercise 17.1. Write a function called f.anova.array that performs ANOVA for each
grid point in an array of data. The output should give the F-value at each grid point and the
corresponding significance level. The header of this function should be the following:

1 f.anova.array = function(x,nspace,nens,ncon,alpha=0.05) {
2 ### COMPUTES THE F-STATISTIC IN ANOVA FOR EACH ELEMENT IN NSPACE
3 # INPUT:
4 # X: [NSPACE,NENS,NCON] ARRAY OF DATA
5 # NSPACE: NUMBER OF SPATIAL ELEMENTS FOR INDIVIDUALLY COMPUTING F
6 # NENS: NUMBER OF ENSEMBLE MEMBERS
7 # NCON: NUMBER OF CONDITIONS
8 # ALPHA: SIGNIFICANCE LEVEL
9 # OUTPUT: LIST WITH THE FOLLOWING VARIABLES

10 # F: [NSPACE] VECTOR CONTAINING THE F-VALUES
11 # F.CRIT: THE CRITICAL F-VALUE FOR F AT THE ALPHA*100% SIGNIFICANCE LEVEL

Turn in a copy of your program.

74 ANALYSIS OF VARIANCE

Exercise 17.2. Use your function to calculate the F-statistic for CFSv2 hindcasts of Jan-
uary 2m temperature. Mask out insignificant values, like so:

1 f.list = f.anova.array(hcst.data,nlon*nlat,nens,nyrs)
2

3 ### MASK OUT INSIGNIFICANT F’S
4 fval = f.list$f
5 fval[fval < f.list$f.crit] = NA

Make a plot of the F values and turn it in.

Also, print out the result of summary(fval), which should be 2 lines giving the
minimum, 1st quantile, median, etc.

Exercise 17.3. Use interesting.points to identify grid points with large Fvalues.
For instance, this can be done as follows:

1 ilist = interesting.points(fval,max,3,nlon,nlat,lon,lat,20,20)

The output of ilist should be self-explanatory (but see me if it doesn’t make sense to
you). Show a box-whisker plot of the data using the command

1 npic = 1 # (or 2 or 3)
2 y = hcst.data[ilist$x.pic[npic],ilist$y.pic[npic],,]
3 boxplot(y,names=year,col=’grey’)

In the title of each figure, state the corresponding value of F and the longitude and latitude
of the point. Explain how the resulting figure is consistent with the value of F .

Exercise 17.4. Explore what happens to the F values as you reduce the number of ensem-
ble members or change the lead time. These parameters can be changed by changing epic
and lead, respectively. For instance, the default settings are

1 lead = 6
2 epic = 9:24

lead = 6 tells the code to pick the 6th lead time. Since the data is monthly, starting on
November, this corresponds to predicting April (November is the “first lead”). epic =
9:24 tells the code to pick ensemble members 9-24. The ensemble members are stored in
reverse order, as indicated in the following table from Saha et al. (2014).

75

1 8 Oct at 0000, 0600, 1200, and 1800 UTC
2 13 Oct at 0000, 0600, 1200, and 1800 UTC
3 18 Oct at 0000, 0600, 1200, and 1800 UTC
4 23 Oct at 0000, 0600, 1200, and 1800 UTC
5 28 Oct at 0000, 0600, 1200, and 1800 UTC
6 2 Nov at 0000, 0600, 1200, and 1800 UTC
7 7 Nov at 0000, 0600, 1200, and 1800 UTC

So, to choose an 8-member ensemble, you would set epic = 17:24. Try a few choices,
plot the results, and explain why the results make sense. For instance, what do you think
happens to predictability when you decrease the ensemble size? Or decrease the lead time?

CHAPTER 18

PREDICTABLE COMPONENT ANALYSIS

In this homework set you will apply Predictable Component Analysis (PrCA) to quantify
the predictability of seasonal forecasts over North America from the CFSv2 Retrospective
Hindcasts. The data set and codes for reading this data set are identical to those you used
in the last homework for ANOVA.

To apply predictable component analysis, you must first compute the principal compo-
nents of the data set. This can be done by pooling all ensemble members and years together
as if it were one long time series. This will be done automatically by eof.latlon. Since
the data set is dimensioned as

1 hcst.data[nlon,nlat,nens,nyrs]

On output, the PCs will have dimension [nens*nyrs,neof]. When desired, the PCs
can be re-shaped into an array of dimension [nens,nyrs,neof].

In this homework, you will eventually write an R function called prca that performs
predictable component analysis on the PCs. The homework assignment below will direct
you to write this code in “pieces.” In the end, you should combine all these pieces together
to produce a single function that performs all the calculations. The header for this function
should be:

Exercises for Statistical Methods for Climate Scientists. By DelSole and Tippett 77

78 PREDICTABLE COMPONENT ANALYSIS

1 prca.eof = function(data.eof,nens,ncon,alpha=0.01) {
2 ## PERFORMAS PREDICTABLE COMPONENT ANALYSIS (OR EQUIVALENTLY MANOVA)
3 ## ON PC-TIME SERIES OF AN ENSEMBLE FORECAST DATA SET
4 ## INPUT:
5 ## DATA.EOF: LIST OUTPUT FROM EOF.LATLON
6 ## NENS: NUMBER OF ENSEMBLE MEMBERS
7 ## NCON: NUMBER OF CONDITIONS
8 ## ALPHA: SIGNIFICANCE LEVEL (DEFAULT = 1%)
9 ## OUTPUT: LIST$

10 # MIC: VALUES OF MUTUAL INFORMATION CRITERION
11 # MIC.CRIT: SIGNIFICANCE VALUES OF MIC
12 # F.MAX[NTRUN]: MAXIMIZED F-RATIOS
13 # R[NENS,NCON,NTRUN]: PREDICTABLE VARIATES
14 # P[NSPACE,NTRUN]: PREDICTABLE LOADING VECTORS
15 # FEXPVAR[NMIN]: FRACTION OF VARIANCE EXPLAINED
16 # RSQR.ADJ[NMIN]: ADJUSTED R-SQUARE
17 # SNR.ADJ[NMIN]: ADJUSTED SIGNAL-TO-NOISE RATIO
18 # NENS, NCON, NMIN, ALPHA: OTHER PARAMETERS

Exercise 18.1. Write an R program called prca.null.fixdim that estimates the 1%
significance level of each eigenvalue from predictable component analysis using ntrun
feature vectors. Run this program using ntrun = 6 and state the significance values.
The header of this program should be

1 prca.null.fixdim = function(ndim,ncon,nens,alpha=0.01,ntrial=10000) {
2 ## ESTIMATES SIGNIFICANCE LEVEL OF THE ALL EIGENVALUES FROM PRCA/MANOVA
3 ## FOR FIXED TRUNCATION NDIM
4 ## BY MONTE CARLO METHODS
5 ## INPUT:
6 # NDIM: DIMENSION OF THE RANDOM VECTOR
7 # NCOM: NUMBER OF CONDITIONS (E.G., NUMBER OF YEARS)
8 # NENS: NUMBER OF ENSEMBLE MEMBERS (E.G., NUMBER OF REPITITIONS)
9 # ALPHA: DESIRED SIGNIFICANCE LEVELS (CAN BE MORE THAN ONE)

10 # NTRIALS: NUMBER OF MONTE CARLO TRIALS
11 ## OUTPUT:
12 # EVAL.CRIT[2,NDIM]: (alpha,1-alpha) SIGNIFICANCE THRESHOLDS FOR EACH EIGENVALUE

It is a good idea to start out with ntrial = 100 while you are writing and debugging
your code, and then change to ntrial = 10000 at the last step.

Exercise 18.2. Write an R function to compute the MIC as a function of the number of
PCs. The expression for MIC that is appropriate for PrCA is:

MIC = log
∣∣ΣN

∣∣− log
∣∣ΣT

∣∣+
2CT + T (T + 1)

CE − C − T − 1
− 2T + T (T + 1)

CE − 1− T − 1
, (18.1)

where T is the number of PCs. State the values of MIC that you obtain, and state the value
of T at which the minimum occurs.

Exercise 18.3. Write an R function to compute the maximized F-ratios from PrCA, and
the associated adjusted signal-to-noise ratios and R-square. This function will need to

79

compute the signal and noise covariance matrices from the PCs and then solve a general-
ized eigenvalue problem. State the maximized F-ratios for T = 6. Also state the adjusted
signal-to-noise ratios and R-square.

Exercise 18.4. Write an R function that computes the predictable variates. Remember to
normalize the weight vector q so that the total variance equals unity. Run this function for
T = 6. Make a plot of the variates for the two most predictable components. If the variate
is dimensioned as r[nens,nyrs,ntrun], then the variates for the most predictable
component can be plotted using the command

1 boxplot(r[,,1],names=year,col=’grey’)

Label the plot as in the lecture notes, so that all information required to interpret the plot is
contained in the plot.

Exercise 18.5. Verify that the predictable variates are orthogonal. More generally, verify
that the sample covariance matrix of the predictable components equals the identity matrix.

Exercise 18.6. Write a function that calculates the loading vectors. Plot them.

CHAPTER 19

DATA ASSIMILATION

In this homework set you will apply the Kalman Filter to assimilate observations using a
vector autoregressive model. A vector autoregressive model allows probabilities of fore-
casted variables to be solved exactly, so it illustrates the Kalman Filter in an “ideal” sit-
uation. However, this ideal situation is very unrealistic, so there is potential for being
mislead.

A vector autoregressive model is of the form

yt = A yt−1 + wt

M × 1 M ×M M × 1 M × 1
, (19.1)

where A is a matrix called the dynamical operator and wt is Gaussian white noise with
zero mean and covariance matrix Q. After specifying the matrices A and Q and an initial
condition y0, the vectors y1,y2, . . . can be solved for a particular realization of the noise
wt.

In this homework set, you will consider the following experimental situation. First, you
will create a vector time series y1,y2, . . . ,y100 from (19.1) for a particular choice of A,
Q, and y0 and for a particular realization of wt. The resulting vector time series will be
the “truth.” To mimic reality, we will pretend that we do not know the truth. Instead, you
will create “observations” using the model

ot = H yt + rt
K × 1 K ×M M × 1 K × 1

, (19.2)

Exercises for Statistical Methods for Climate Scientists. By DelSole and Tippett 81

82 DATA ASSIMILATION

for a particular choice of H and covariance matrix R of rt. The observations ot are known
and our goal is to estimate the truth yt from these observations (pretending that we don’t
know the truth). You will use the Kalman Filter to assimilate these observations to estimate
the true state. Then you will compare this estimate with the true state to see how well the
Kalman Filter works.

Download the R program kf student.R from the class website. This program gen-
erates a time series from (19.1) for the choice

A =

0.9 0.5 0.3
0.0 0.5 2.0
0.0 0.0 0.4

 , Q =

0 0 0
0 0 0
0 0 1

 , and y0 =

0
0
0

 , (19.3)

and generates “observations” using the choice

H =
(
1 0 0

)
and R = 49. (19.4)

Note that this choice implies that only one variable (i.e., the first element of yt) is observed
with noise. The program assumes that Q is diagonal, so that the elements of the noise
vector wt are independent and have variances equal to the diagonal elements of Q. This
special form allows the noise vector to be specified very efficiently numerically as

w = rnorm(M,sd=sqrt(diag(Q)))

Similarly, R is assumed to be diagonal and hence the observations generated by (19.2) can
be specified efficiently in a similar way. This is done in the R code that you will download.

After the R code runs (hopefully without error messages!), you should have the follow-
ing quantities available:

1 # NDIM: THE DIMENSION OF THE VECTOR AUTOREGRESSIVE MODEL (VAR); DEFAULT = 3
2 # NTOT: THE TOTAL LENGTH OF THE TIME SERIES; DEFAULT = 100
3 # NOBS: NUMBER OF OBSERVATIONS PER TIME STEP; DEFAULT = 1
4 # X: [NDIM, NTOT] MATRIX SPECIFYING THE "TRUTH" AT EACH TIME STEP
5 # OBS: [NOBS, NTOT] MATRIX SPECIFYING THE "OBSERVATIONS" AT EACH TIME STEP
6 # DYNOP: [NDIM, NDIM] MATRIX SPECIFYING THE DYNAMICAL OPERATOR OF THE VAR
7 # HOP: [NOBS, NDIM] MATRIX SPECIFYING THE INTERPOLATION OPERATOR
8 # Q.COV: [NDIM, NDIM] MATRIX SPECIFYING THE NOISE COVARIANCE MATRIX OF THE VAR
9 # R.COV: [NOBS, NOBS] MATRIX SPECIFYING THE ERROR COVARIANCE MATRIX OF THE OBS

Exercise 19.1. Plot the first element of the true time series. Also plot the corresponding
observations. The result should look something like the curve and dots in fig. 19.1.

Exercise 19.2. Write a function to evaluate the Kalman Filter equations

µAt = µBt + ΣB
t HT

t

(
HtΣ

B
t HT

t + Rt

)−1 (
ot −Htµ

B
t

)
(19.5)

ΣA
t = ΣB

t −ΣB
t HT

t

(
HtΣ

B
t HT

t + Rt

)−1
HtΣ

B
t . (19.6)

The function call should be

83

1 kalman.population = function(mub,sigmab,hop,r.cov,obs) {
2 ##########
3 ## EVALUATES THE KALMAN FILTER EQUATIONS FOR THE MEAN AND COVARIANCE MATRIX OF THE ANALYSIS
4 ## BASED ON *POPULATION* COVARIANCE MATRICES AND MEANS
5 ## INPUT:
6 # MUB: [NDIM] MEAN OF THE BACKGROUND DISTRIBUTION
7 # SIGMAB: [NDIM,NDIM] BACKGROUND COVARIANCE MATRIX
8 # HOP: [NOBS,NDIM] INTERPOLATION OPERATOR
9 # R.COV: [NOBS,NOBS] COVARIANCE MATRIX OF THE OBSERVATIONAL ERROR

10 # OBS: [NOBS] THE OBSERVATIONS
11 ## OUTPUT
12 # MUA: [NDIM] VECTOR OF THE ANALYSIS DISTRIBUTION
13 # SIGMAA: [NDIM,NDIM] COVARIANCE MATRIX OF THE ANALYSIS DISTRIBUTION

As you can see from the equations, you will need to compute the inverse of a matrix.
You should invert the matrix using the commands chol2inv(chol(MATRIX)), which
takes advantage of the fact that the matrix being inverted is symmetric.

Exercise 19.3. The background distribution is obtained from the previous analysis. In
particular, the mean and covariance matrix of the background distribution are

µBt = AµAt−1 and ΣB
t = AΣA

t−1A
T + Q. (19.7)

Assume the initial analysis µA0 = 0 and

ΣA
0 =

400 0 0
0 400 0
0 0 400

 . (19.8)

Combine these equations together with your Kalman Filter function to construct an analysis
for one hundred time steps. Plot the mean analysis and its uncertainty for the first element
of yt. The result should look something like the grey shading in fig. 19.1, which shows

(µA)1 ±
√

(ΣA)11.

Exercise 19.4. Plot the standard error of the analysis for each element of yt as a function
of time (i.e., plot the square roots of the diagonal elements of ΣA

t). What happens to the
errors after a long time?

Exercise 19.5. In this problem only, set Rt = 1 and show the analysis, observations (if
available), and the truth for the first and second elements of yt. How do these plots differ
from the previous case? Explain why this difference makes sense.

Exercise 19.6. Suppose that, instead of observing (yt)1, we can observe only the sum
z(t) = (yt)1 + (yt)2. Furthermore, suppose the error of this observation is normally
distributed with zero mean and variance 25. Explain how you would assimilate these ob-
servations (e.g., explain how you would change your R code to handle this case). Actually
do this and show the standard error of the analysis and the truth for (yt)1.

Exercise 19.7 (Least Squares Derivation of the Kalman Filter Equations). The Kalman
Filter equations can be derived by the method of least squares. The essential problem is
that we are given a set of observations o, and based on this want to estimate the state x. To
do this, we assume a linear prediction model

ŷ = Ao + b. (19.9)

84 DATA ASSIMILATION

0 20 40 60 80 100

−
20

−
10

0
10

20
30

time

y 1

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

truth
observation
KF−estimate

Figure 19.1 A particular realization of the first element y1(t) generated by the vector
autoregressive model (19.1) (solid curve), corresponding observations (dots), and the analysis
mean plus a standard deviation, as estimated state by the Kalman Filter (grey shading).

Show that the method of least squares gives

A = ΣY OΣ−1O and b = E[y]−AE[o], (19.10)

where the expectation operatorE[·] is an average over all possible realizations of the obser-
vations and background quantities. Under this definition, E[y] = µB and cov[y] = ΣB .
The observations are assumed to be related to the state y through the model

o = Hy + r, (19.11)

where H is the interpolation operator and r is independent and normally distributed with
zero mean and covariance matrix ΣR. Show that this equation implies

ΣOY = HΣY = HΣB (19.12)

and
ΣO = HΣY HT + ΣR = HΣBHT + ΣR. (19.13)

and
E[o] = HµB (19.14)

Substituting these equations into (19.10) gives

A = ΣBHT
(
HΣBHT + ΣR

)−1
(19.15)

85

and
b = µB −ΣBHT

(
HΣBHT + ΣR

)−1
HµB . (19.16)

It follows that the linear regression model (19.9) yields

ya = µB + ΣBHT
(
HΣBHT + ΣR

)−1
(o−HµB) , (19.17)

which is precisely the Kalman Filter equation for the mean analysis.

Show that the error covariance of the regression model (19.9) is

Σa = E
[
(y − ya) (y − ya)

T
]

= E
[
(y − µB −A(o−HµB)) (y − µB −A(o−HµB))

T
]

= ΣY −ΣY OAT −AΣOY + AΣOAT

= ΣB −ΣBHT
(
HΣBHT + ΣR

)−1
HΣB , (19.18)

which is precisely the Kalman Filter equation for the analysis error covariance.

CHAPTER 20

ENSEMBLE SQUARE ROOT FILTERS

Exercise 20.1. Recall from sec. 20.5 that observations can be assimilated sequentially if
their errors are independent. In this exercise, you will derive how this is done for the square
root filter. In the case of one observation, (21.18) can be written as

D = I− βwwT , (20.1)

where

w = XBTHT
t and β =

(
wTw + Rt

)−1
. (20.2)

Since only one observation is under consideration, β is a scalar. The matrix D differs from
the identity matrix by a rank-1 matrix. It is natural to assume that the square root also
differs from the identity by a term proportional to the same rank-1 matrix. Therefore, we
seek a symmetric square root of D of the form

I− βwwT =
(
I− δwwT

) (
I− δwwT

)
, (20.3)

where δ is a parameter to be determined. Expanding the right side and simplifying yields

I− βwwT = I− 2δwwT + δ2wwTwwT (20.4)

0 =
(
wTwδ2 − 2δ + β

)
wwT . (20.5)

Exercises for Statistical Methods for Climate Scientists. By DelSole and Tippett 87

88 ENSEMBLE SQUARE ROOT FILTERS

This equation is satisfied for arbitrary w only if the quadratic equation for δ vanishes,
which requires

δ =
1±

√
1−wTwβ

wTw
=

1±
√
βRt

wTw
= β

(
1∓

√
R

R + wTw

)−1
. (20.6)

This gives two solutions, but only the solution

δ =
1−

√
1−wTwβ

wTw
=

1−
√
βRt

wTw
= β

(
1 +

√
R

R + wTw

)−1
. (20.7)

produces a positive semi-definite square root matrix. Show that this is true.

Exercise 20.2. Prove the Schur Product theorem (theorem 21.1). Hint: show that the
Schur product between a positive semi-definite matrix and a rank-1 matrix is positive semi-
definite. Then, use the spectral factorization theorem to argue that any symmetric, positive
semi-definite matrix can be represented by a sum of rank-1 matrices.

CHAPTER 21

EXERCISES: EXTREME VALUE ANALYSIS

In this homework set, you will use the Generalized Extreme Value Distribution to quan-
tify the return period for extreme cold temperatures in the mid-Atlantic U.S. The data set
and R code to read this data are summarized in the table below and can be downloaded
from the class website. You also will need to install the extRemes library. Also, inside
tele index.R, you need to change indices.fname to the full directory path of the
data file tele index.nh.

Table 21.1 default

GHNC OBS T mid atlantic 1950 2015.txt data file for mid-Atlantic temperature
gev.student.R R code to read the mid-Atlantic temperature
tele index.R R code to read climate indices
tele index.nh NOAA climate indices

Exercise 21.1. Run gev.student.R and ensure it generates a time series/box plot iden-
tical to fig. 19.1. Next, fit the cold extremes to a GEV using the commands

1 t.cold = -t.cold # reverse sign to use extreme value functions
2 cold.x = fevd(t.cold)

Exercises for Statistical Methods for Climate Scientists. By DelSole and Tippett 89

90 EXERCISES: EXTREME VALUE ANALYSIS

Submit a print out of the output when you type cold.x. This print out should be consis-
tent with table 19.1.

Make a plot using the command plot(cold.x) and submit it. This plot is discussed
in Gilleland and Katz (2016). Consult this document and describe what this plot shows.

What are the return levels for 2-year, 20-year, and 200-year events (you will need a
special command in Gilleland and Katz (2016) to answer this question)?

Exercise 21.2. Is the fitted distribution a Gumbel, Fréchet, or Weibull? Explain your
answer.

Exercise 21.3. Fit the data to a GEV, but this time use NAO as a covariate for the location
parameter. The NAO is index in the R code. Is this covariate significant? Is the fitted
distribution a Gumbel, Fréchet, or Weibull? Explain your answer. Generate a plot similar
to the first exercise above and describe the new information that it conveys.

Exercise 21.4. Suppose the probability of exceedance in any randomly selected year is p.
If the exceedances in different years are independent, then what is the average number of
years one will wait before observing the next exceedance? Hint: the average number of
years one will wait before observing the next exceedance is computed as

return period =

∞∑
y=1

y ∗ (probability that next exceedance occurs in year y) . (21.1)

What is the probability that the exceedance occurs in year 1? year 2? etc?

CHAPTER 22

ANSWERS TO EXERCISES

Exercise 1.1, page 2

The frequency of H1 is the sum over all joint frequencies involving H1:

P (H1) = P (H1, H2) + P (H1, T2) = (30 + 21)/100 = 51%

Similarly for H2

P (H2) = P (H1, H2) + P (T1, H2) = (30 + 22)/100 = 52%

The joint event P (H1, T2) can be read directly from the table:

P (H1, T2) = 21/100 = 21%.

The conditional frequency P (T2|H1) is the number of counts of T2 out of all cases in
which the first toss is heads:

P (T2|H1) = 21/(30 + 21) = 21/51 ≈ 41%.

It is readily verified that

P (T2|H1) = P (T2, H1)/P (H1) = 21/51 ≈ 41% (22.1)

Exercises for Statistical Methods for Climate Scientists. By DelSole and Tippett 91

92 ANSWERS TO EXERCISES

Exercise 1.2, page 2

Since X and Y are independent, p(x, y) = p(x)p(y). Therefore:

E[XY] =

∫ ∞
−∞

∫ ∞
−∞

xyp(x, y)dxdy

=

∫ ∞
−∞

∫ ∞
−∞

xyp(x)p(y)dxdy

=

(∫ ∞
−∞

xp(x)dx

)(∫ ∞
−∞

yp(y)dy

)
E[XY] = E[X]E[Y]. (22.2)

Exercise 1.3, page 2

(a) Since X and Y are independent, E[XY] = E[X]E[Y] = µXµY .

(b) cov[X,Y] = 0, since X and Y are independent.

(c)

var[X − Y] = E[((X − Y)− (µX − µY))2]

= E[(X − µX)2 + (Y − µy)2 − 2(X − µX)(Y − µY)]

= σ2
X + σ2

Y .

(d)

var(XY) = E[(XY − E[XY])2]

= E[(XY − µXµY)2]

= E[X2Y 2 + µ2
Xµ

2
Y − 2XY µXµY]

= E[X2]E[Y 2] + µ2
Xµ

2
Y − 2µ2

Xµ
2
Y

= (σ2
X + µ2

X)(σ2
Y + µ2

Y)− µ2
Xµ

2
Y

= σ2
Xσ

2
Y + σ2

Xµ
2
Y + σ2

Y µ
2
X .

Exercise 1.4, page 2

var[k] = E[(k − E[k])2] = E[(k − k)2] = E[0] = 0.

var[kX] = E[(kX − E[kX])2] = E[(kX − kE[X])2]

= E[k2(X − E[X])2] = k2 var[X]

var[k +X] = E[((k +X)− E[k +X])2] = E[(k +X − k − E[X])2]

= E[(X − E[X])2] = var[X]

93

Exercise 1.5, page 2

cov[X,Y] = E [(X − E[X]) (Y − E[Y])]

= E [XY −XE[Y]− Y E[X] + E[X]E[Y]]

= E[XY]− E[X]E[Y]− E[X]E[Y] + E[X]E[Y]

= E[XY]− E[X]E[Y]. (22.3)

Exercise 1.6, page 2

Calculus method: take the first and second derivatives with respect to k:

∂E[(X − k)
2
]

∂k
= −2E[X − k] = 0

∂2E[(X − k)
2
]

∂k2
= 2 ≥ 0

The first equation gives the solution k = E[X]. The second equation demonstrates that the
second derivative is positive everywhere and hence the solution is a minimum.

Second method: add and subtract E[X] and take expectations:

E[(X − k)
2
] =E[(X − E[X] + E[X]− k)

2
]

=E[(X − E[X])
2
] + E[(E[X]− k)

2
] + E[(X − E[X]) (E[X]− k)]

The last term vanishes because E[X]− k is a constant and hence can be taken outside the
expectation operator, leaving E[X − E[X]] = E[X]− E[X] = 0. It follows that

E[(X − k)
2
] = E[(X − E[X])

2
] + E[(E[X]− k)

2
].

Both terms on the right hand side are positive, but only the last depends on k. Moreover,
the last term vanishes if k = E[X], so this choice minimizes the left hand side.

Exercise 1.7, page 2

From the hint,

E[(t(X − E[X]) + (Y − E[Y]))2] = t2 var[X] + 2t cov[X,Y] + var[Y] ≥ 0. (22.4)

The minimum value is found by setting the derivative of t to zero and solving, which gives

tmin = − cov[X,Y]/ var[X] (22.5)

94 ANSWERS TO EXERCISES

Substituting this value into the t-equation gives

0 ≤
(
− cov[X,Y]

var[X]

)2

var[X]− 2
cov2[X,Y]

var[X]
+ var[Y]

≤ cov2[X,Y]

var[X]
− 2

cov2[X,Y]

var[X]
+ var[Y]

≤ var[Y]− cov2[X,Y]

var[X]

≤ var[Y]

(
1− cov2[X,Y]

var[X] var[Y]

)
≤ var[Y]

(
1− ρ2

)
Hence

ρ2 =
cov2[X,Y]

var[X] var[Y]
≤ 1,

which proves that the correlation coefficient must be between -1 and 1.

Alternatively, one can reason geometrically: the equation is a parabola that is concave
upward. For the inequality to be satisfied, there should either no roots or exactly one root
(i.e., if there are two roots, then the parabola crosses the x-axis and hence must be negative).
The condition for no root or exactly one root is that the discriminant is not positive. That
is, for a parabola of the form y = Ax2 +Bx+ C, the discriminant B2 − 4AC ≤ 0. This
condition gives:

4 cov2[X,Y]− 4 var[X] var[Y] ≤ 0 → cov2[X,Y]

var[X] var[Y]
≤ 1. (22.6)

If the squared correlation is exactly equal to 1, then the quadratic equation vanishes
exactly. But the only way an expression of the form E[Z2] can equal zero is if Z itself is
exactly zero, which implies

Y = −t(X − E[X]) + E[Y],

for some constant t; in other words, if X and Y are exactly linearly related.

Exercise 1.8, page 3

The answers to the questions are as follows:

µ̂X ∼ N(µX , σ
2/N)

µ̂Y ∼ N(µY , σ
2/N)

µ̂X − µ̂Y ∼ N(µX − µY , 2σ2/N)

(N − 1)σ̂2
X/σ

2 ∼ χ2
N−1

(N − 1)σ̂2
Y /σ

2 ∼ χ2
N−1

(N − 1)(σ̂2
X + σ̂2

Y)/σ2 ∼ χ2(N−1)

95

Exercise 1.9, page 3

Since the die is fair, the probability of each outcome is equal, so P (1) = · · · = P (6) =
1/6. Therefore, the expected value is

E[X] = 1

(
1

6

)
+ 2

(
1

6

)
+ · · ·+ 6

(
1

6

)
=

7

2
. (22.7)

Similarly, the expected squared value is

E[X2] = 12
(

1

6

)
+ 22

(
1

6

)
+ · · ·+ 62

(
1

6

)
=

91

6
. (22.8)

Hence, the variance is

var[X] = E[X2]− (E[X])
2

=
91

6
−
(

7

2

)2

=
35

12
. (22.9)

Exercise 1.10, page 3

Let Xi denote the outcome of the i’th die. Then X = X1 +X2 +X3 and

E[X] = E[X1] + E[X2] + E[X3] = 3

(
7

2

)
=

21

2
= 10.5 (22.10)

where the answer from exercise 1.9 has been used. Similarly, since the dice rolls are
independent, the variance of the sum is the sum of the variances:

var[X] = var[X1] + var[X2] + var[X3] = 3
35

12
=

35

4
= 8.75. (22.11)

where the answer from exercise 1.9 has been used again.

96 ANSWERS TO EXERCISES

Exercise 1.11, page 3

E[σ̂2] = E

[
1

N − 1

N∑
n=1

(Xn − µ̂X)
2

]
definition of σ̂2

= E

[
1

N − 1

N∑
n=1

(Xn − µ+ µ− µ̂X)
2

]
insert 0 = µ− µ

= E

[
1

N − 1

N∑
n=1

(
(Xn − µ)

2
+ 2 (Xn − µ) (µ− µ̂X) + (µ̂X − µ)

2
)]

algebra

=
1

N − 1

N∑
n=1

E
[
(Xn − µ)

2
+ 2 (Xn − µ) (µ− µ̂X) + (µ̂X − µ)

2
]

linearity of expectation

=
1

N − 1

N∑
n=1

(
var[X] + 2E [(Xn − µ) (µ− µ̂X)] +

var[X]

N

)
(1.20) and (1.45)

=
1

N − 1

(
N var[X] + 2E

[
N∑
n=1

(Xn − µ) (µ− µ̂X)

]
+ var[X]

)
expectations are constant

=
1

N − 1
(N var[X] + 2NE [(µ̂X − µ) (µ− µ̂X)] + var[X]) def. of sample mean

=
1

N − 1

(
N var[X]− 2NE

[
(µ̂X − µ)

2
]

+ var[X]
)

algebra

=
1

N − 1

(
N var[X]− 2N

var[X]

N
+ var[X]

)
(1.45)

=
1

N − 1
(N − 1) var[X] algebra

= var[X] algebra.

Exercise 1.12, page 3

The basic idea is to use a computer to generate samples (X,Y) from a population with
cor[X,Y] = 0.5 and then estimate the probability

P (Y > 0 | X > 0) =
P (Y > 0 and X > 0)

P (X > 0)
. (22.12)

A code that generates samples (X,Y) from a bivariate normal population with cor[X,Y] =
ρ and then computes relative frequencies is the following:

97

1 ntrials = 1000000
2 rho = 0.5
3 xvar = rnorm(ntrials)
4 nvar = rnorm(ntrials)
5 yvar = rho * xvar + sqrt(1-rhoˆ2)*nvar
6 x.ge.0 = xvar >= 0
7 y.ge.0 = yvar >= 0
8 prob.yge0.cond.xge0 = sum(x.ge.0 & y.ge.0) / sum(x.ge.0)
9 print(prob.yge0.cond.xge0)

After running this code, it is found that P (Y > 0|X > 0) ≈ 2/3 when ρ = 0.5. A figure
showing the probabilities for other values of ρ is shown in fig. 22.1.

●
●

●
●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

correlation

pr
ob

ab
ili

ty

Probability that Y>0 given X>0

Figure 22.1 Probability that Y > 0 given that X > 0, as a function of the correlation
cor[X,Y] for a bivariate normal distribution with zero means

Exercise 1.13, page 3

The displacement in the x and y directions have the distributions

dx = x1 + x2 + · · ·+ xN ∼ N(0, Nσ2) (22.13)

dy = y1 + y2 + · · ·+ yN ∼ N(0, Nσ2). (22.14)

The total squared displacement is r2 = d2x + d2y . Since dx/σ/
√
N and dy/σ/

√
N are

standardized Gaussians,

r2

Nσ2
=

(
dx

σ
√
N

)2

+

(
dy

σ
√
N

)2

∼ χ2
2. (22.15)

The upper 5% percentile of a chi-squared distribution with 2 degrees of freedom is approx-
imately 6. Therefore, the radius of the circle in which there is a 95% probability that the

98 ANSWERS TO EXERCISES

particle is in the circle after 10 steps is

r95 ≈ σ
√

6N = 2
√

6 ∗ 10 ≈ 15.5. (22.16)

Exercise 1.14, page 4

E[(X ′ − αµ̂)2] = E[((X ′ − µX)− (αµ̂X − µX))
2
] add 0 = µX − µX

= E[(X ′ − µ)2] + E[(αµ̂X − µX)2] X ′ and µ̂X are independent

= σ2
X + E[(αµ̂X − αµX + αµX − µX)2] definition of variance

= σ2
X + E[(αµ̂X − αµX)2] + E[(αµX − µX)2] cross terms vanish

= σ2
X + α2E[(µ̂X − µX)2] + (α− 1)2µ2

X basic identities

= σ2
X + α2σ2

X/N + (α− 1)2µ2
X var[µ̂X] = σ2/N

Differentiating with respect to α gives

d

dα
E[(X ′ − αµ̂)2] = 2ασ2

X/N + 2(α− 1)µ2
X

Setting this to zero and solving for α gives the desired answer.

Exercise 2.1, page 8

(a) A function that tests for vanishing correlation is the following

99

1 cor.equal.test = function(data1,data2,alpha=0.05) {
2 ## THIS FUNCTION TESTS VANISHING CORRELATION BETWEEN
3 ## TWO BI-VARIATE, NORMALLY DISTRIBUTED RANDOM VARIABLES
4 ##
5 # INPUT:
6 # DATA1: [N]-DIMENSIONAL VECTOR OF DATA
7 # DATA2: [N]-DIMENSIONAL VECTOR OF DATA
8 # ALPHA: SIGNIFICANCE LEVEL OF THE TEST (DEFAULT = 5%)
9 # OUTPUT LIST:

10 # RHO: SAMPLE CORRELATION BETWEEN DATA1 AND DATA2
11 # RHO.CRIT: 100*ALPHA% CRITICAL VALUE FOR THE CORRELATION
12 # PVAL: P-VALUE OF THE STATISTIC RHO
13

14 if (length(data1) != length(data2)) stop(’data sets are not the same length’)
15

16 ntot = length(data1)
17

18 mean1 = sum(data1)/ntot
19 mean2 = sum(data2)/ntot
20

21 ssr1 = sum((data1-mean1)ˆ2)
22 ssr2 = sum((data2-mean2)ˆ2)
23 sscx = sum((data1-mean1)*(data2-mean2))
24

25 rho.hat = sscx / sqrt(ssr1*ssr2)
26

27 t.crit = qt(alpha/2,ntot-2,lower.tail=FALSE)
28 rho.crit = t.crit / sqrt(ntot - 2 + t.critˆ2)
29

30 tval = rho.hat * sqrt(ntot-2) / sqrt(1-rho.hatˆ2)
31 pval = 2*pt(abs(tval),ntot-2,lower.tail=FALSE)
32

33 list(rho=rho.hat,rho.crit=rho.crit,pval=pval,tval=tval)
34 }

(b) Applying this function to lagged PDO indices can be done as follows:

1 >print(’early period’)
2 >npic = 2:length(pdo1)
3 >pdo1.half1 = pdo1[npic-1]
4 >pdo1.half2 = pdo1[npic]
5 >print(cor.equal.test(pdo1.half1,pdo1.half2))$rho
6

7 [1] 0.05495659
8

9 $rho.crit
10 [1] 0.3808629
11

12 $pval
13 [1] 0.7854252
14

15 $tval
16 [1] 0.2751988

100 ANSWERS TO EXERCISES

1 print(’later period’)
2 npic = 2:length(pdo2)
3 pdo2.half1 = pdo2[npic-1]
4 pdo2.half2 = pdo2[npic]
5 print(cor.equal.test(pdo2.half1,pdo2.half2))
6

7 $rho
8 [1] 0.3836199
9

10 $rho.crit
11 [1] 0.3160319
12

13 $pval
14 [1] 0.01591744
15

16 $tval
17 [1] 2.526791

The year-to-year correlation for the first and second periods are 0.05 and 0.38. Only the
second is large enough to reject the hypothesis of vanishing correlation at the 5% level, but
only marginally (p-value is 2%).

(c) Performing the test on the whole period

1 print(’full period’)
2 npic = 2:length(pdo)
3 pdo.half1 = pdo[npic-1]
4 pdo.half2 = pdo[npic]
5 print(cor.equal.test(pdo.half1,pdo.half2))
6

7 [1] "full period"
8 $rho
9 [1] 0.5081405

10

11 $rho.crit
12 [1] 0.1816386
13

14 $pval
15 [1] 4.964102e-09
16

17 $tval
18 [1] 6.326905
19

20 $rho.limits
21 [1] 0.3597967 0.6314279

For the whole 1950-2017 period, the correlation is 0.50, which is statistically significant at
the 5% level.

101

PDO(t)

P
D

O
(t

+
1)

JFM PDO 1950−1977(a)

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

PDO(t)

P
D

O
(t

+
1)

JFM PDO 1978−2017(b)

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

PDO(t)

P
D

O
(t

+
1)

JFM PDO 1950−2016

●

1950−1977
1978−2016

(c)

Figure 22.2 Scatter plots of the JFM PDO index with itself lagged by one year, for the
periods 1950-1977 (a), 1978-2017 (b), and 1950-2017 (c).

Why do the above conclusions differ? Following the hint, we draw scatter diagrams for the
three periods. The result is shown in fig. 22.2. There is only a weak positive relation for
the two periods individually, shown in (a) and (b), but a much stronger linear relation in the
last (c). Closer examination reveals that the values in the later period tend to be above those
of the lower period. This “shift in mean” produces an apparent positive relation when the
two data sets are pooled together. This apparent relation is not a local relation, in the sense
that it exists no matter how the data is sampled (as assumed under stationarity), but instead
it is a property of the data as a whole that arises when all the data are pooled together.

(d) The answer to the other questions are

null hypothesis: population correlation vanishes

test statistic:

ρ̂ =

∑
n (xn − µ̂X) (yn − µ̂Y)√(∑

n (xn − µ̂X)
2
)(∑

n (yn − µ̂X)
2
) (22.17)

value of the test statistic: 0.05 (1950-1977), 0.38 (1978-2017), 0.49 (1950-2017)

rejection region: |ρ̂| > ρc where ρc =0.38 (1950-1977), 0.32 (1978-2017), 0.24 (1950-
2017)

final decision: can reject the null hypothesis ρ = 0 in the period 1950-1977, but not for
1978-2017 (marginally) nor for the whole period 1950-2017.

assumption: paired samples (X,Y) are iid from a Gaussian distribution.

(e) A function that tests for equality of means is the following:

102 ANSWERS TO EXERCISES

1 mean.equal.test = function(data1,data2,alpha=0.05) {
2 ## THIS FUNCTION TESTS EQUALITY OF MEANS OF TWO IID
3 ## NORMALLY DISTRIBUTED RANDOM VARIABLES
4 ##
5 # INPUT:
6 # DATA1: [N1]-DIMENSIONAL VECTOR OF DATA
7 # DATA2: [N2]-DIMENSIONAL VECTOR OF DATA
8 # ALPHA: SIGNIFICANCE LEVEL OF THE TEST (DEFAULT = 5%)
9 # OUTPUT LIST:

10 # DIFF.MEAN: DIFFERENCE IN MEANS (MEAN1 - MEAN2)
11 # DIFF.MEAN.CRIT: 100*ALPHA% LEVEL CRITICAL VALUE OF THE DIFFERENCE IN MEANS
12 # PVAL: P-VALUE OF THE T-STATISTIC
13 # T: T-STATISTIC FOR DIFFERENCE IN MEANS
14 # T.CRIT: 100*ALPHA% LEVEL CRITICAL VALUE OF THE T STATISTIC
15 # MEAN1: ESTIMATE OF THE MEAN OF DATA1
16 # MEAN2: ESTIMATE OF THE MEAN OF DATA2
17 # SPOOL: POOLED ESTIMATE OF THE STANDARD DEVIATION
18 # DIFF.MEAN.LIMITS: [2] (1-ALPHA)100% CONFIDENCE LIMITS
19 # FOR THE DIFFERENCE IN MEANS
20

21 n1 = length(data1)
22 n2 = length(data2)
23 dof = n1 + n2 - 2
24

25 mean1 = sum(data1)/n1
26 mean2 = sum(data2)/n2
27 diff.mean = mean1 - mean2
28

29 ssr1 = sum((data1-mean1)ˆ2)
30 ssr2 = sum((data2-mean2)ˆ2)
31

32 spool = sqrt((ssr1 + ssr2)/dof)
33

34 tval = diff.mean/spool/sqrt(1/n1 + 1/n2)
35 pval = 2* pt(abs(tval),dof,lower.tail=FALSE)
36 t.crit = qt(alpha/2,dof,lower.tail=FALSE)
37

38 diff.mean.crit = t.crit * spool * sqrt(1/n1 + 1/n2)
39

40 list(diff.mean=diff.mean,diff.mean.crit=diff.mean.crit,pval=pval,
41 tval=tval,t.crit=t.crit,mean1=mean1,mean2=mean2,spool=spool)
42 }

Applying this test to the PDO index gives:

103

1 > mean.equal.test(pdo1,pdo2)
2 > print(mean.equal.test(pdo1,pdo2))
3 $diff.mean
4 [1] -1.156262
5

6 $diff.mean.crit
7 [1] 0.4537684
8

9 $pval
10 [1] 3.22733e-06
11

12 $tval
13 [1] -5.08751
14

15 $t.crit
16 [1] 1.996564
17

18 $mean1
19 [1] -0.7405952
20

21 $mean2
22 [1] 0.4156667
23

24 $spool
25 [1] 0.9223707

(f) The critical value of t is computed in line 38 of the above code.

(g) Answers:

null hypothesis: population means are equal
test statistic: (µ̂X − µ̂Y) /sp/

√
1/NX + 1/NY

value of the test statistic: -5.09
rejection region: |t| > 2.0

final decision: the null hypothesis is rejected at the 5% level.
assumption: samples are iid from a Gaussian distribution.

(h) The ρ = 0 test is relevant to the equality-of-means test because the t-test assumes
the samples are independent. The equality-of-variance test is relevant to to the equality-
of-means test because the t-test assumes the variance are constant. Specifically, the fact
that the year-to-year correlation in each sample is insignificant (or almost insignificant)
implies that the independence assumption is reasonable for each sample separately (except
possibly for the second period). The fact that the differences in variance are insignificant
implies that the assumption of equal variances is reasonable.

Exercise 3.1, page 9

Since X1, . . . , XN
iid∼ N (µ, σ2),

µ̂ ∼ N (µ, σ2/N). (22.18)

104 ANSWERS TO EXERCISES

Hypothesis tests for the mean are based on

observed− hypothesized
standard error

=
µ̂− µ
σ/
√
N
∼ N (0, 1). (22.19)

Replacing σ2 by the sample estimate σ̂2 leads to the t-distribution:

t =
µ̂− µ
σ̂/
√
N
∼ tN−1. (22.20)

By definition of tα,N−1,

1− α = P
(
−tα/2,N−1 ≤ t < tα/2,N−1

)
(22.21)

= P

(
−tα/2,N−1 ≤

µ̂− µ
σ̂/
√
N

< tα/2,N−1

)
(22.22)

= P

(
−tα/2,N−1 ≤

µ̂− µ
σ̂/
√
N

and
µ̂− µ
σ̂/
√
N

< tα/2,N−1

)
(22.23)

(22.24)

We want to solve for µ by itself:

1− α = P
(
µ ≤ µ̂+ tα/2,N−1σ̂/

√
N and µ̂− tα/2,N−1σ̂/

√
N < µ

)
(22.25)

= P
(
µ̂− tα/2,N−1σ̂/

√
N < µ ≤ µ̂+ tα/2,N−1σ̂/

√
N
)
. (22.26)

An R code for computing the coverage of this confidence interval is

1 ntrials = 100000
2 nsamp = 20
3 mu = 10
4 stdv = 3
5 alpha = 0.05
6

7 x = array(rnorm(nsamp*ntrials,mean=mu,sd=stdv),dim=c(ntrials,nsamp))
8 x.mean = rowMeans(x)
9 x.stdv = sqrt(rowSums((x-x.mean)ˆ2)/(nsamp-1)/nsamp)

10 tcrit = qt(alpha/2,nsamp-1,lower.tail=FALSE)
11

12 mean.ci = cbind(x.mean-tcrit*x.stdv,x.mean+tcrit*x.stdv)
13 coverage = sum(mu >= mean.ci[,1] & mu <= mean.ci[,2])/ntrials
14

15 print(paste(’coverage=’,coverage))
16 [1] "coverage= 0.94961"

The coverage is very close to 95%.

Exercise 3.2, page 10

An augmented var.equal.test that calculates a confidence interval is the following:

105

1 var.equal.test = function(data1,data2,alpha=0.05) {
2 ### THIS FUNCTION TESTS EQUALITY OF VARIANCE OF TWO
3 ### IID NORMALLY DISTRIBUTED RANDOM VARIABLES
4 ###
5 # INPUT:
6 # DATA1: [N1]-DIMENSIONAL VECTOR OF DATA
7 # DATA2: [N2]-DIMENSIONAL VECTOR OF DATA
8 # ALPHA: SIGNIFICANCE LEVEL OF THE TEST (DEFAULT = 5%)
9 # OUTPUT LIST:

10 # F.MAX: RATIO OF VARIANCE, CONSTRUCTED TO BE GREATER THAN 1
11 # F.CRIT: THE UPPER CRITICAL THRESHOLD OF SIGNIFICANCE
12 # PVAL: P-VALUE OF THE F.MAX RATIO
13 # VAR1: UNBIASED ESTIMATE OF THE VARIANCE OF DATA1
14 # VAR2: UNBIASED ESTIMATE OF THE VARIANCE OF DATA2
15 # RATIO: VAR1/VAR2
16 # RATIO.LOWER: LOWER LIMIT OF ALPHA% CONFIDENCE INTERVAL FOR VARIANCE RATIO
17 # RATIO.UPPER: UPPER LIMIT OF ALPHA% CONFIDENCE INTERVAL FOR VARIANCE RATIO
18

19 n1 = length(data1); n2 = length(data2)
20

21 mean1 = sum(data1)/n1; mean2 = sum(data2)/n2
22

23 var1 = sum((data1-mean1)ˆ2)/(n1-1)
24 var2 = sum((data2-mean2)ˆ2)/(n2-1)
25

26 if (var1 > var2) {
27 f.max = var1/var2
28 f.crit = qf(alpha/2,n1-1,n2-1,lower.tail=FALSE)
29 pval = 2*pf(f.max,n1-1,n2-1,lower.tail=FALSE)
30 } else {
31 f.max = var2/var1
32 f.crit = qf(alpha/2,n2-1,n1-1,lower.tail=FALSE)
33 pval = 2*pf(f.max,n2-1,n1-1,lower.tail=FALSE)
34 }
35

36 f.upper = qf(alpha/2,n1-1,n2-1,lower.tail=FALSE)
37 f.lower = qf(alpha/2,n1-1,n2-1,lower.tail=TRUE)
38

39 ratio = var1/var2
40 ratio.lower = ratio/f.upper
41 ratio.upper = ratio/f.lower
42

43 list(f.max=f.max,f.crit=f.crit,pval=pval,var1=var1,var2=var2,
44 ratio=ratio,ratio.lower=ratio.lower,ratio.upper=ratio.upper)
45 }

Note that the critical F values f.upper and f.lower were recomputed after the if
statement so that they correspond to the ratio var1/var2 and not its reciprocal.

The output of this function for the PDO index is the following

106 ANSWERS TO EXERCISES

1 > nbreak = which(year == 1977)
2 > pdo1 = pdo[1:nbreak]
3 > pdo2 = pdo[(nbreak+1):nyrs]
4 >
5 > ###
6 > ## TEST EQUALITY OF VARIANCE
7 > ###
8 > source(paste(’var.equal.test.R’,sep=""))
9 > print(var.equal.test(pdo1,pdo2))

10 $f.max
11 [1] 1.247894
12

13 $f.crit
14 [1] 2.074389
15

16 $pval
17 [1] 0.5522268
18

19 $var1
20 [1] 0.7420675
21

22 $var2
23 [1] 0.9260218
24

25 $ratio
26 [1] 0.80135
27

28 $ratio.lower
29 [1] 0.4043894
30

31 $ratio.upper
32 [1] 1.662312

Or if the data is entered in the opposite direction...

107

1 > var.equal.test(pdo2,pdo1)
2 $f.max
3 [1] 1.247894
4

5 $f.crit
6 [1] 2.074389
7

8 $pval
9 [1] 0.5522268

10

11 $var1
12 [1] 0.9260218
13

14 $var2
15 [1] 0.7420675
16

17 $ratio
18 [1] 1.247894
19

20 $ratio.lower
21 [1] 0.6015718
22

23 $ratio.upper
24 [1] 2.472864

Accordingly, the 95% confidence interval for the ratio of variances is (0.39, 1.63), or
(0.61, 2.54), depending on how the two variances are ordered in the ratio. Note that this
interval includes one, implying that the ratio is not significantly different from one at the
5% significance level, consistent with the p-value.

Exercise 3.3, page 10

A modified version of cor.equal.test that also computes a confidence interval is the
following:

108 ANSWERS TO EXERCISES

1 cor.equal.test = function(data1,data2,alpha=0.05) {
2 ## THIS FUNCTION TESTS VANISHING CORRELATION BETWEEN
3 ## TWO BI-VARIATE, NORMALLY DISTRIBUTED RANDOM VARIABLES
4 ##
5 # INPUT:
6 # DATA1: [N]-DIMENSIONAL VECTOR OF DATA
7 # DATA2: [N]-DIMENSIONAL VECTOR OF DATA
8 # ALPHA: SIGNIFICANCE LEVEL OF THE TEST (DEFAULT = 5%)
9 # OUTPUT LIST:

10 # RHO: SAMPLE CORRELATION BETWEEN DATA1 AND DATA2
11 # RHO.CRIT: 100*ALPHA% CRITICAL VALUE FOR THE CORRELATION
12 # PVAL: P-VALUE OF THE STATISTIC RHO
13 # RHO.LIMITS: [2] (1-ALPHA/2)*100% CONFIDENCE LIMITS OF THE CORRELATION
14

15 if (length(data1) != length(data2)) stop(’data sets are not the same length’)
16

17 ntot = length(data1)
18

19 mean1 = sum(data1)/ntot
20 mean2 = sum(data2)/ntot
21

22 ssr1 = sum((data1-mean1)ˆ2)
23 ssr2 = sum((data2-mean2)ˆ2)
24 sscx = sum((data1-mean1)*(data2-mean2))
25

26 rho.hat = sscx / sqrt(ssr1*ssr2)
27

28 t.crit = qt(alpha/2,ntot-2,lower.tail=FALSE)
29 rho.crit = t.crit / sqrt(ntot - 2 + t.critˆ2)
30

31 tval = rho.hat * sqrt(ntot-2) / sqrt(1-rho.hatˆ2)
32 pval = 2*pt(abs(tval),ntot-2,lower.tail=FALSE)
33

34 z = 0.5 * log((1+rho.hat)/(1-rho.hat))
35 zc = qnorm(alpha/2,mean=0,sd=1/sqrt(ntot-3),lower.tail=FALSE)
36 z.limits = c(z - zc, z+zc)
37

38 rho.limits = (exp(2*z.limits)-1)/(exp(2*z.limits)+1)
39

40 list(rho=rho.hat,rho.crit=rho.crit,pval=pval,tval=tval,rho.limits=rho.limits)
41 }

Applying this function to the PDO data gives the following

109

1 > ## test vanishing correlation for first half
2 > l0 = 1:(length(pdo1)-1)
3 > pdo1.l0 = pdo1[l0]; pdo1.l1 = pdo1[l0+1]
4 > print(cor.equal.test(pdo1.l0,pdo1.l1))
5 $rho
6 [1] 0.05495659
7

8 $rho.crit
9 [1] 0.3808629

10

11 $pval
12 [1] 0.7854252
13

14 $tval
15 [1] 0.2751988
16

17 $rho.limits
18 [1] -0.3319908 0.4260723

1 > ## test vanishing correlation for 2nd half
2 > l0 = 1:(length(pdo2)-1)
3 > pdo2.l0 = pdo2[l0]; pdo2.l1 = pdo2[l0+1]
4 > print(cor.equal.test(pdo2.l0,pdo2.l1))
5 $rho
6 [1] 0.3836199
7

8 $rho.crit
9 [1] 0.3160319

10

11 $pval
12 [1] 0.01591744
13

14 $tval
15 [1] 2.526791
16

17 $rho.limits
18 [1] 0.07748101 0.62365106

110 ANSWERS TO EXERCISES

1 > ## test vanishing correlation for whole period
2 > l0 = 1:(length(pdo)-1)
3 > pdo.l0 = pdo[l0]; pdo.l1 = pdo[l0+1]
4 > print(cor.equal.test(pdo.l0,pdo.l1))
5 $rho
6 [1] 0.4915623
7

8 $rho.crit
9 [1] 0.2404471

10

11 $pval
12 [1] 2.398144e-05
13

14 $tval
15 [1] 4.550883
16

17 $rho.limits
18 [1] 0.2850066 0.6544904

The first confidence interval includes 0, implying that the correlation is not significantly
difference from zero. The second confidence interval does not include 0, but only marginally.
The third confidence interval does not include 0, hence the correlation is significantly dif-
ferent from zero. All three conclusions are consistent with the corresponding hypothesis
tests.

Exercise 3.4, page 11

A modified version of mean.equal.test that also computes confidence limits for the
difference in means is the following:

111

1 mean.equal.test = function(data1,data2,alpha=0.05) {
2 ## THIS FUNCTION TESTS EQUALITY OF MEANS OF TWO IID
3 ## NORMALLY DISTRIBUTED RANDOM VARIABLES
4 ##
5 # INPUT:
6 # DATA1: [N1]-DIMENSIONAL VECTOR OF DATA
7 # DATA2: [N2]-DIMENSIONAL VECTOR OF DATA
8 # ALPHA: SIGNIFICANCE LEVEL OF THE TEST (DEFAULT = 5%)
9 # OUTPUT LIST:

10 # DIFF.MEAN: DIFFERENCE IN MEANS (MEAN1 - MEAN2)
11 # DIFF.MEAN.CRIT: 100*ALPHA% LEVEL CRITICAL VALUE OF THE DIFFERENCE IN MEANS
12 # PVAL: P-VALUE OF THE T-STATISTIC
13 # T: T-STATISTIC FOR DIFFERENCE IN MEANS
14 # T.CRIT: 100*ALPHA% LEVEL CRITICAL VALUE OF THE T STATISTIC
15 # MEAN1: ESTIMATE OF THE MEAN OF DATA1
16 # MEAN2: ESTIMATE OF THE MEAN OF DATA2
17 # SPOOL: POOLED ESTIMATE OF THE STANDARD DEVIATION
18 # DIFF.MEAN.LIMITS: [2] (1-ALPHA)100% CONFIDENCE LIMITS
19 # FOR THE DIFFERENCE IN MEANS
20

21 n1 = length(data1)
22 n2 = length(data2)
23 dof = n1 + n2 - 2
24

25 mean1 = sum(data1)/n1
26 mean2 = sum(data2)/n2
27 diff.mean = mean1 - mean2
28

29 ssr1 = sum((data1-mean1)ˆ2)
30 ssr2 = sum((data2-mean2)ˆ2)
31

32 spool = sqrt((ssr1 + ssr2)/dof)
33

34 tval = diff.mean/spool/sqrt(1/n1 + 1/n2)
35 pval = 2* pt(abs(tval),dof,lower.tail=FALSE)
36 t.crit = qt(alpha/2,dof,lower.tail=FALSE)
37

38 diff.mean.crit = t.crit * spool * sqrt(1/n1 + 1/n2)
39

40 diff.mean.limits = diff.mean + c(-1,1)*diff.mean.crit
41

42 list(diff.mean=diff.mean,diff.mean.crit=diff.mean.crit,pval=pval,
43 tval=tval,t.crit=t.crit,mean1=mean1,mean2=mean2,spool=spool,
44 diff.mean.limits=diff.mean.limits)
45 }

Applying this to the PDO data gives

112 ANSWERS TO EXERCISES

1 > print(mean.equal.test(pdo1,pdo2))
2 $diff.mean
3 [1] -1.156262
4

5 $diff.mean.crit
6 [1] 0.4537684
7

8 $pval
9 [1] 3.22733e-06

10

11 $tval
12 [1] -5.08751
13

14 $t.crit
15 [1] 1.996564
16

17 $mean1
18 [1] -0.7405952
19

20 $mean2
21 [1] 0.4156667
22

23 $spool
24 [1] 0.9223707
25

26 $diff.mean.limits
27 [1] -1.6100303 -0.7024935

The confidence limits do not include 0, so the difference in means is significantly different
from zero. This is consistent with the hypothesis test.

Exercise 3.5, page 12

An R function for constructing a confidence interval for a correlation coefficient is the
following:

113

1 cor.equal.boot = function(x,y,alpha=0.05,nboot=100000) {
2 ## ESTIMATES (1-ALPHA)100% CONFIDENCE INTERVAL
3 ## FOR THE CORRELATION COEFFICIENT USING BOOTSTRAP METHODS
4 ## INPUT:
5 ## X[NSAMP]: FIRST DATA SET
6 ## Y[NSAMP]: SECOND DATA SET
7 ## ALPHA: EQUIVALENT SIGNIFICANCE LEVEL (DEFAULT = 5%)
8 ## NBOOT: NUMBER OF BOOTSTRAP SAMPLES (DEFAULT = 100000)
9 ## OUTPUT:

10 ## CONFIDENCE LIMITS[2]
11 nsamp = length(x)
12 if (length(y) != nsamp) stop(’x and y must be same length’)
13

14 npic = sample(nsamp,nboot*nsamp,replace=TRUE)
15 x.boot = x[npic]
16 y.boot = y[npic]
17 dim(x.boot) = c(nboot,nsamp)
18 dim(y.boot) = c(nboot,nsamp)
19 x.boot = x.boot - rowMeans(x.boot)
20 y.boot = y.boot - rowMeans(y.boot)
21 cor.boot = rowSums(x.boot*y.boot)/sqrt(rowSums(x.bootˆ2)*rowSums(y.bootˆ2))
22 cor.boot.conf = quantile(cor.boot,probs=c(alpha/2,1-alpha/2))
23

24 cor.boot.conf
25 }

The result of running this function is:

1 nsamp = 20
2 rho = 0.5
3 nboot = 100000
4 set.seed(310)
5 x = rnorm(nsamp)
6 w = rnorm(nsamp)
7 y = rho * x + sqrt(1-rhoˆ2)*w
8

9 rho.test1 = cor.equal.test(x,y)
10 rho.test2 = cor.test(x,y)
11

12 print(paste(’Traditional Confidence interval:’,
13 paste(signif(rho.test1$rho.limits,4),collapse=’, ’)))
14 print(paste(’Bootstrap confidence interval :’,
15 paste(signif(cor.boot.conf,4),collapse=’, ’)))
16

17

18

19 [1] "Traditional Confidence interval: 0.3301, 0.8601"
20 [1] "Bootstrap confidence interval : 0.328, 0.8761"

The bootstrap interval is nearly identical to the standard interval.

114 ANSWERS TO EXERCISES

Exercise 4.1, page 14

An R function to perform the Wilcoxon-Mann-Whitney test is the following:

1 diff.mean.nonparametric = function(data1,data2,alpha=0.05) {
2 ### PERFORMS MANN-WHITNEY TEST FOR A DIFFERENCE IN MEDIANS
3 ### INPUT:
4 ### DATA1[N1]: SAMPLE 1
5 ### DATA2[N2]: SAMPLE 2
6 ### ALPHA: SIGNIFICANCE LEVEL (DEFAULT = 5%)
7 ### OUTPUT: LIST$
8 ### ZVAL: Z-VALUE FOR THE NORMAL APPROXIMATION TO MANN-WHITNEY TEST
9 ### Z.CRIT: CRITICAL VALUE FOR ALPHA*100% SIGNIFICANCE

10 ### PVAL: P-VALUE OF THE TEST
11

12 n1 = length(data1)
13 n2 = length(data2)
14 rank.12 = rank(c(data1,data2))
15 rank.1 = rank.12[1:n1]
16 rank.2 = rank.12[1:n2+n1]
17 rank.sum.1 = sum(rank.1)
18 rank.sum.2 = sum(rank.2)
19

20 mu.rank.sum = n1*(n1+n2+1)/2
21 var.rank.sum = n1*n2*(n1+n2+1)/12
22 if (rank.sum.1 > mu.rank.sum) continuity.cor = -0.5 else continuity.cor = 0.5
23 zval = (rank.sum.1 - mu.rank.sum + continuity.cor)/sqrt(var.rank.sum)
24 z.crit = qnorm(alpha/2,lower.tail=FALSE)
25 pval = 2*pnorm(abs(zval),lower.tail=FALSE)
26

27 list(zval=zval,z.crit=z.crit,pval=pval,
28 rank.sum.1=rank.sum.1,rank.sum.2=rank.sum.2)
29 }

Exercise 4.2, page 14

The result of applying this function to the PDO time series is:

115

1 > print(diff.mean.nonparametric(data1,data2))
2 $zval
3 [1] -4.243011
4

5 $z.crit
6 [1] 1.959964
7

8 $pval
9 [1] 2.205404e-05

10

11 $wval
12 [1] 219
13

14 $rank.sum.1
15 [1] 625
16

17 $rank.sum.2
18 [1] 1721

The z-value is significant, with a p-value of 0.022%, which is much less than 5%, hence
the null hypothesis of equal medians should be rejected. This conclusion is consistent with
the t-test from previous homeworks.

Exercise 4.3, page 14

An R function that computes Spearman’s rank correlation and performs a hypothesis test
is the following

116 ANSWERS TO EXERCISES

1 cor.test.nonparametric = function(data1,data2,alpha=0.05) {
2 ### PERFORMS RANK CORRELATION TEST
3 ### INPUT:
4 ### DATA1[N1]: SAMPLE 1
5 ### DATA2[N2]: SAMPLE 2
6 ### ALPHA: SIGNIFICANCE LEVEL (DEFAULT = 5%)
7 ### OUTPUT: LIST$
8 ### RHO.SPEARMAN = SPEARMAN’S RANK CORRELATION
9 ### ZVAL: Z-VALUE FOR THE NORMAL APPROXIMATION TO MANN-WHITNEY TEST

10 ### Z.CRIT: CRITICAL VALUE FOR ALPHA*100% SIGNIFICANCE
11 ### PVAL: P-VALUE OF THE TEST
12

13 if (length(data1) != length(data2)) stop(’data sets not of equal length’)
14 ntot = length(data1)
15 r.mean = (ntot+1)/2
16 r.var = ntot*(ntotˆ2-1)/12
17 rank.1 = rank(data1)
18 rank.2 = rank(data2)
19

20 rho.spearman = sum((rank.1-r.mean)*(rank.2-r.mean))/r.var
21

22 zval = rho.spearman * sqrt(ntot - 1)
23 z.crit = qnorm(alpha/2,lower.tail=FALSE)
24 pval = 2*pnorm(abs(zval),lower.tail=FALSE)
25

26 list(rho.spearman=rho.spearman,zval=zval,z.crit=z.crit,pval=pval)
27

28 }

Exercise 4.4, page 15

The result of testing correlations for the 3 data sets are as follows:

1 > ## test vanishing correlation for first half
2 > l0 = 1:(length(pdo1)-1)
3 > pdo1.l0 = pdo1[l0]; pdo1.l1 = pdo1[l0+1]
4 > print(cor.test.nonparametric(pdo1.l0,pdo1.l1))
5 $rho.spearman
6 [1] 0.05494505
7

8 $zval
9 [1] 0.2801659

10

11 $z.crit
12 [1] 1.959964
13

14 $pval
15 [1] 0.7793502

117

1 > ## test vanishing correlation for 2nd half
2 > l0 = 1:(length(pdo2)-1)
3 > print(cor.test.nonparametric(pdo2[l0],pdo2[l0+1]))
4 $rho.spearman
5 [1] 0.3487854
6

7 $zval
8 [1] 2.150058
9

10 $z.crit
11 [1] 1.959964
12

13 $pval
14 [1] 0.03155065

1 > ## test vanishing correlation for whole period
2 > l0 = 1:(length(pdo12)-1)
3 > print(cor.test.nonparametric(pdo12[l0],pdo12[l0+1]))
4 $rho.spearman
5 [1] 0.4570496
6

7 $zval
8 [1] 3.713089
9

10 $z.crit
11 [1] 1.959964
12

13 $pval
14 [1] 0.000204745

The null hypothesis is rejected in the first half, but not in the second half, or in the whole
period. This result is consistent with the parametric correlation test.

Exercise 4.5, page 15

A function that tests difference in dispersions is

118 ANSWERS TO EXERCISES

1 diff.dispersion = function(data1,data2,alpha=0.05) {
2 ## PERFORMS WILCOXON SQUARED-RANK TEST ON ABSOLUTE DEVIATIONS |X - MEDIAN(X)|
3 ### INPUT:
4 ### DATA1[N1]: SAMPLE 1
5 ### DATA2[N2]: SAMPLE 2
6 ### ALPHA: SIGNIFICANCE LEVEL (DEFAULT = 5%)
7 ### OUTPUT: LIST$
8 ### ZVAL: Z-VALUE FOR THE NORMAL APPROXIMATION TO MANN-WHITNEY TEST
9 ### Z.CRIT: CRITICAL VALUE FOR ALPHA*100% SIGNIFICANCE

10 ### PVAL: P-VALUE OF THE TEST
11

12 n1 = length(data1)
13 n2 = length(data2)
14 ntot = n1 + n2
15

16 median1 = median(data1)
17 median2 = median(data2)
18 absdev = c(abs(data1-median1),abs(data2-median2))
19 rank.12 = rank(absdev)
20 rank.1 = rank.12[1:n1]
21 rank.2 = rank.12[1:n2+n1]
22 rank.sqr.sum.1 = sum(rank.1ˆ2)
23 rank.sqr.sum.2 = sum(rank.2ˆ2)
24

25 mu.rank.sum = n1*(ntot+1)*(2*ntot+1)/6
26 var.rank.sum = n1*(ntot-n1)/(ntot-1)/ntot*sum(((1:ntot)ˆ2-mu.rank.sum/n1)ˆ2)
27 zval = (rank.sqr.sum.1 - mu.rank.sum)/sqrt(var.rank.sum)
28 z.crit = qnorm(alpha/2,lower.tail=FALSE)
29 pval = 2*pnorm(abs(zval),lower.tail=FALSE)
30

31 list(zval=zval,z.crit=z.crit,pval=pval,
32 rank.sqr.sum.1=rank.sqr.sum.1,rank.sqr.sum.2=rank.sqr.sum.2)
33

34 }

The result of running this function on the PDO data set is

119

1 > print(diff.dispersion(data1,data2))
2 $zval
3 [1] -0.9649911
4

5 $z.crit
6 [1] 1.959964
7

8 $pval
9 [1] 0.3345493

10

11 $mu.rank.sum
12 [1] 44114
13

14 $var.rank.sum
15 [1] 32644360
16

17 $rank.sqr.sum.1
18 [1] 38600.5
19

20 $rank.sqr.sum.2
21 [1] 68532

The null hypothesis is not rejected, and this is consistent with previous homeworks.

Exercise 5.1, page 17

An R function that calculates the sample autocorrelation function is the following:

120 ANSWERS TO EXERCISES

1 acf.brute = function(x,lag.max=NULL) {
2 ## COMPUTES THE AUTOCORRELATION FUNCTION OF A TIME SERIES
3 ## INPUT:
4 ## X: [NTOT]-LENGTH NUMERICAL VECTOR OF THE TIME SERIES
5 ## LAG.MAX: MAXUMIM LAG TO COMPUTE
6 ## (DEFAULT = MAX(1,FLOOR(10*log10(LENGTH(X)))))
7 ## OUTPUT:
8 ## X.ACF: [1:(LAG.MAX+1)] AUTOCORRELATION FUNCTION OF X
9 ## FOR LAGS 0 TO LAG.MAX

10

11 ntot = length(x)
12

13 if (is.null(lag.max)) lag.max = max(1,floor(10*log10(ntot)))
14 x.anom = x - mean(x)
15 x.ssa = sum(x.anomˆ2)
16

17 x.acf = numeric(lag.max+1)
18 for (lag in 0:lag.max) {
19 npic = 1:(ntot-lag)
20 x.acf[lag+1] = sum(x.anom[npic]*x.anom[npic+lag])/x.ssa
21 }
22

23 x.acf
24 }

Result of applying this function to x = rnorm(20) is:

1 > set.seed(1)
2 > x = rnorm(20)
3 > acf.mine = acf.brute(x)
4 > acf.R = acf(x)
5 > print(acf.mine)
6 [1] 1.00000000 -0.12228595 -0.18521142 -0.04940401 0.14719994
7 [6] -0.28278013 -0.25514538 0.21242725 0.09722174 -0.11993122
8 [11] -0.18075942 0.28550651 -0.06259741 0.09444605
9 > print(as.numeric(acf.R$acf))

10 [1] 1.00000000 -0.12228595 -0.18521142 -0.04940401 0.14719994
11 [6] -0.28278013 -0.25514538 0.21242725 0.09722174 -0.11993122
12 [11] -0.18075942 0.28550651 -0.06259741 0.09444605

Exercise 5.2, page 18

The stationary distribution of the AR1 process is normal with mean k/(1−φ1) and variance
σ2
W /(1 − φ2). An R function that generates a time series from an AR1 model is the

following

121

1 ar1.ts = function(phi1,ntot,stdv=1,constant=0,iseed=1) {
2 ## GENERATE A REALIZATION FROM THE AR1 MODEL
3 ## X(T+1) = PHI1 * X(T) + W(T) + CONSTANT
4 ## WHERE W(T) IS GAUSSIAN WHITE NOISE WITH MEAN 0 AND ST. DEV. ’STDV’
5 ## INITIAL CONDITION IS RANDOMLY DRAWN FROM STATIONARY DISTRIBUTION
6 ## INPUT:
7 # PHI1: AUTOREGRESSIVE PARAMETER
8 # NTOT: LENGTH OF THE DESIRED TIME SERIES
9 # STDV: STANDARD DEVIATION OF THE NOISE (DEFAULT = 1)

10 # CONSTANT: CONSTANT TERM IN THE AR1 MODEL (DEFAULT = 0)
11 # ISEED: SEED FOR THE RANDOM NUMBER GENERATOR (DEFAULT = 1)
12 # OUTPUT:
13 # X: [NTOT]- RANDOM TIME SERIES FROM AR(1) PROCESS
14

15 set.seed(iseed)
16

17 x = numeric(ntot)
18 x[1] = rnorm(1,mean=constant/(1-phi),sd=stdv/sqrt(1-phiˆ2))
19 w = rnorm(ntot,sd=stdv)
20 for (n in 2:ntot) x[n] = phi1 * x[n-1] + w[n] + constant
21 x }

Exercise 5.3, page 18

Time series and corresponding autocorrelation functions can be generated as follows:

1 pdf(’ts.acf.pdf’)
2 par(mfrow=c(3,2),mar=c(5,5,3,2),cex.axis=1.5,cex.lab=1.5,cex.main=1.5)
3 ntot = 50
4 for (phi1 in c(0,0.5,0.9)) {
5 x = ar1.ts(phi1,ntot,iseed=2)
6 plot(x,type="l",col=’blue’,xlab=’time’,lwd=2,
7 main=paste(’Time Series for phi1=’,signif(phi1,2)))
8 acf.mine = acf.brute(x)
9 lag.max = length(acf.mine)-1

10 yrange = c(-0.4,1)
11 plot(0:lag.max,acf.mine,xlab="lag",ylab="ACF",type="l",ylim=yrange,lwd=2,
12 main=paste(’Autocorrelation for phi1=’,signif(phi1,2)))
13 acf.exact = phi1ˆ(1:ntot-1)
14 par(new=TRUE)
15 plot(1:ntot-1,acf.exact,type="l",lty="solid",col="red",xlim=c(0,lag.max),
16 ylim=yrange,xlab="",ylab="",axes=FALSE,lwd=2)
17 abline(h=2/sqrt(ntot),col="blue",lty="dashed",lwd=2)
18 abline(h=-2/sqrt(ntot),col="blue",lty="dashed",lwd=2)
19 legend(’topright’,legend=c(’sample’,’population’),col=c(’black’,’red’),lwd=2)
20 }
21 dev.off()

A sample plot is shown in fig. 22.3.

122 ANSWERS TO EXERCISES

0 10 20 30 40 50

−
2

0
1

Time Series for phi1= 0

time

x

0 5 10 15
−

0.
4

0.
2

0.
8

Autocorrelation for phi1= 0

lag

A
C

F

sample
population

0 10 20 30 40 50

−
2

0
1

Time Series for phi1= 0.5

time

x

0 5 10 15

−
0.

4
0.

2
0.

8

Autocorrelation for phi1= 0.5

lag

A
C

F

sample
population

0 10 20 30 40 50

−
2

0
2

Time Series for phi1= 0.9

time

x

0 5 10 15

−
0.

4
0.

2
0.

8

Autocorrelation for phi1= 0.9

lag

A
C

F

sample
population

Figure 22.3 Sample time series and corresponding autocorrelation function from an AR1
model.

123

As φ1 → 1, the time series get “smoother” and the ACF decays more slowly. The
sample ACF for φ1 = 0.9 is “surprising” because it looks very different from the true
ACF: the sample ACF oscillates, changes sign, and exceeds the 95% significance level.
However, these results are not inconsistent with theory, because we expect an average of
0.75 autocorrelations out of 15 to exceed the 95% level. Since the true ACF is relatively
high for all lags less than 15, any high correlation due to sampling variability will exhibit
a smooth oscillation. The ACF is especially misleading because the trough and peak occur
at multiples of 7, suggesting the existence of a oscillation with a period of 14, when in fact
the process is strictly AR(1).

Exercise 5.4, page 18

An R code that generates time series, splits it into 2, and performs a t-test, is the following:

1 source(’/Users/delsole/R/delsole_tools/mean.equal.test.R’)
2 ntrials = 10000
3 nx = 25
4 ny = 25
5 tval = numeric(ntrials)
6 yrange = c(0,0.4)
7 for (phi1 in c(0,0.5,0.9)) {
8 for (nt in 1:ntrials) {
9 z = ar1.ts(phi1,nx+ny,iseed=nt)

10 x = z[1:nx]
11 y = z[(nx+1):(nx+ny)]
12 tval[nt] = mean.equal.test(x,y)$tval
13 }
14 t1 = 1 + 2 * sum(phi1ˆ(1:length(x))*(1-(1:length(x)/ntot)))
15 ftitle=paste(’Histogram of T for phi1=’,signif(phi1,2))
16 hist(tval,col="grey",freq=FALSE,main=ftitle,ylim=yrange)
17 dof = nx + ny - 2
18 curve(dt(x,dof),add=TRUE)
19 }

The plot for a particular realization is shown in fig. 22.4. The histograms show that as
the autocorrelation parameter φ1 increases, the variance of t-values increases. This implies
that performing the t-test on serially correlated data will tend to incorrectly reject the null
hypothesis at a greater rate than the chosen significance level. Equivalently, a sample that
is deemed “significant” by the standard decision rule may actually be insignificant when
autocorrelation is taken into account.

Exercise 5.5, page 19

Taking the expectations of both sides of (5.2) gives

E[Xt] = φ1E[Xt−1] + φ2E[Xt−2] + ...+ φpE[Xt−p] + E[Wt] + k. (22.27)

124 ANSWERS TO EXERCISES

Histogram of T for phi1= 0

tval

D
en

si
ty

−4 −2 0 2 4

0.
0

0.
2

0.
4

Histogram of T for phi1= 0.5

tval

D
en

si
ty

−5 0 5

0.
0

0.
2

0.
4

Histogram of T for phi1= 0.9

tval

D
en

si
ty

−15 −10 −5 0 5 10 15 20

0.
0

0.
2

0.
4

Figure 22.4 Histograms of the t-statistic for testing equality of means calculated from
time series generated by an AR1 model with φ1 = 0, 0.5, 0.9. The time series are each of
length 25.

125

Since the process is stationary, all expectations of Xt+τ are identical. Solving for the
expectation therefore gives

E[Xt] =
k

1− φ1 − φ2 − · · · − φp
, (22.28)

where E[Wt] = 0 has been used.

To calculate the variance, first subtract the mean from both sides of (5.2), which yields

Xt − µ = φ1 (Xt−1 − µ) + φ2 (Xt−2 − µ) + ...+ φp (Xt−p − µ) +Wt, (22.29)

where the k term vanishes because of (22.28). Multiply both sides by Xt − µ and take
expectations:

var[Xt] = φ1 cov[Xt, Xt−1]+φ2 cov[Xt, Xt−2]+ · · ·+φp cov[Xt, Xt−p]+cov[Xt,Wt].
(22.30)

The last term can be evaluated by substituting (5.2) for Xt, which yields

cov[Xt,Wt] = cov[φ1Xt−1+φ2Xt−2+ ...+φpXt−p+Wt+k,Wt] = var[Wt], (22.31)

since Wt is independent of Xt−τ for all τ ≥ 1. Substituting the relation cov[Xt, Xt−τ] =
var[Xt]ρτ and solving for the variance gives

var[Xt] =
var[Wt]

1− ρ1φ1 − ρ2φ2 − · · · − ρpφp
. (22.32)

Exercise 5.6, page 19

The expectation of Yt is

E[Yt] =
1

2K + 1

K∑
k=−K

E[Xt+k] = 0. (22.33)

The variance of Yt is

var[Yt] =
1

(2K + 1)2

K∑
k=−K

K∑
j=−K

E [Xt+kXt+j] .

SinceXt is white noise, E [Xt+kXt+j] vanishes except when k = j. Thus, the double sum
collapses to a single sum:

var[Yt] =
1

(2K + 1)2

K∑
k=−K

σ2

=
σ2

(2K + 1)
.

The autocovariance function is

cov[Yt+τ , Yt] =
1

(2K + 1)2

K∑
k=−K

K∑
j=−K

E [Xt+τ+kXt+j]

(22.34)

126 ANSWERS TO EXERCISES

Since Xt is white noise, E [Xt+τ+kXt+j] vanishes except when k + τ = j. When τ = 0,
this identity holds 2K + 1 times. When τ = 1, this identity holds 2K times. For general
τ , the identity holds 2K + 1− |τ | times. Thus

cov[Yt+τ , Yt] =
σ2

(2K + 1)2
(2K + 1− |τ |) for |τ | <= 2K + 1

(22.35)

The autocorrelation is therefore

cor[Yt+τ , Yt] =
cov[Yt+τ , Yt]

var[Yt]
= 1− |τ |

2K + 1
for |τ | <= 2K + 1.

For |τ | > 2K + 1, the autocorrelation of Yt vanishes. Thus, the autocorrelation function
of Yt decreases linearly from 1 until it vanishes, and then remains 0 thereafter.

The fact that running means are correlated even when the underlying process is not
follows from the fact that a running mean is computed from the time mean within a window,
so when the two windows intersect they contain the same data, and hence are correlated.

Exercise 6.1, page 23

A spectral averaging function is the following:

127

1 spectrum.smooth = function(pgram,window,alpha=0.1) {
2 ## COMPUTES SPECTRAL RUNNING MEAN AS:
3 ## SPEC_AVE = SMOOTHED PERIODOGRAM FROM M = -WINDOW TO M = WINDOW
4 ## INPUT:
5 ## PGRAM[NTOT/2]: PERIODOGRAM VALUES FROM PERIODOGRAM.R
6 ## WINDOW: HALF-WIDTH OF AVERAGING WINDOW
7 ## ALPHA: THE (1-ALPHA)100% LEVEL FOR THE CONFIDENCE LIMITS
8 ## OUTPUT: LIST
9 ## PGRAM.AVE[NTOT/2]: AVERAGED PERIODOGRAM

10 ## FREQ[NTOT/2]: FREQUENCIES (CYCLES PER TIME STEP)
11 ## BW[2]: BANDWIDTH C(-WINDOW/NTOT,WINDOW/NTOT)
12 ## CI.LIMITS[2]: PROPORTIONALITY CONSTANT FOR LOWER AND UPPER CONFIDENCE LIMITS
13 ## (DOF/CHI-SQUARE[ALPHA/2, DOF], DOF/CHI-SQUARE[1-ALPHA/2,DOF])
14 ## PGRAM[NTOT/2]: REPEATS PERIODOGRAM (FOR LATER PLOTTING)
15

16 nhalf = length(pgram)
17 ntot = nhalf * 2
18 freq = 1:(ntot/2) / ntot
19 dof = 2*(2*window + 1)
20

21 pgram.ave = as.numeric(rep(NA,nhalf))
22 for (n in (window+1):(nhalf-window-1)) pgram.ave[n] =
23 mean(pgram[(n-window):(n+window)])
24

25 bw = c(-window,window)/ntot
26 ci = dof/qchisq(c(alpha/2,1-alpha/2),dof)
27

28 list(pgram.ave=pgram.ave,freq=freq,bw=bw,ci=ci,pgram=pgram)
29 }

Exercise 6.2, page 23

The output from the spectral estimation is:

128 ANSWERS TO EXERCISES

1 > set.seed(1)
2 > x.sd = 1
3 > window = 5
4 > ntot = 64
5 > freq = 1:(ntot/2) / ntot
6 > x = rnorm(ntot,sd=x.sd)
7 > x.pgram = periodogram(x)
8 > x.pgram.smooth = spectrum.smooth(x.pgram,window)
9 > cbind(freq,x.pgram,x.pgram.smooth$pgram.ave)

10 freq x.pgram
11 [1,] 0.015625 0.46954028 NA
12 [2,] 0.031250 0.08678869 NA
13 [3,] 0.046875 0.20078007 NA
14 [4,] 0.062500 0.08812362 NA
15 [5,] 0.078125 0.73401690 NA
16 [6,] 0.093750 2.15621581 0.8100061
17 [7,] 0.109375 0.40955937 0.7723600
18 [8,] 0.125000 0.26816996 0.8389093
19 [9,] 0.140625 1.14349297 0.8596130
20 [10,] 0.156250 1.03053739 0.9965911
21 [11,] 0.171875 2.32284234 1.0368931
22 [12,] 0.187500 0.05543276 0.9298071
23 [13,] 0.203125 0.81883090 1.0700647
24 [14,] 0.218750 0.42852123 1.0775075
25 [15,] 0.234375 1.59488238 1.0317232
26 [16,] 0.250000 1.17733897 0.9613558
27 [17,] 0.265625 0.97827006 0.7704560
28 [18,] 0.281250 1.95239234 0.8123769
29 [19,] 0.296875 0.35004103 0.8457826
30 [20,] 0.312500 0.63986523 0.9243640
31 [21,] 0.328125 0.25649685 0.8015068
32 [22,] 0.343750 0.22294430 0.7269105
33 [23,] 0.359375 0.51656297 0.7570746
34 [24,] 0.375000 1.18629292 0.6136065
35 [25,] 0.390625 1.29291736 0.6251425
36 [26,] 0.406250 0.24345292 0.5862000
37 [27,] 0.421875 0.35677905 NA
38 [28,] 0.437500 1.31007588 NA
39 [29,] 0.453125 0.37424337 NA
40 [30,] 0.468750 0.47693653 NA
41 [31,] 0.484375 0.21149808 NA
42 [32,] 0.500000 1.95934289 NA

The plot produced by

1 spectrum.plot(x.pgram.smooth)
2 abline(h=x.sd,lty="dashed",lwd=2)
3 ftitle = paste("White Noise (N=",ntot,")",sep="")
4 title(main=ftitle)

129

is shown in fig. 22.5. To judge whether the spectrum is consistent with a white noise
process, we must to decide whether the power spectrum is “flat,” or constant. Technically,
to do this, we would compare the ratio of spectral estimates with an appropriate threshold
from an F-distribution. Instead of doing this, we crudely use the confidence interval by
checking whether the differences between spectral estimates exceed the confidence inter-
val. It can be seen that no two spectral estimates differ by more than a confidence interval,
so we conclude the spectrum is consistent with a white noise process.

0.0 0.1 0.2 0.3 0.4 0.5

0.
2

0.
5

1.
0

2.
0

5.
0

frequency (cycles per time step)

po
w

er

White Noise (N=64)

Figure 22.5 Periodogram and spectral average of a white noise process. The error bars
in the upper right show the 90% confidence interval and the bandwidth. The horizontal
dashed line shows the theoretical power spectrum of the process.

Exercise 6.3, page 23

The theoretical power spectrum for GWN(0, σ2) is derived from the Discrete Fourier
Transform

p(ω) = c0 + 2

∞∑
τ=1

cτ cos(ωτ) (22.36)

For GWN, cτ = 0 for all τ ≥ 1, so the power spectrum is easily evaluated to be

p(ω) = c0 = σ2. (22.37)

This power spectrum can be superimposed on the plot using the commands:

1 exact.pgram = x.sdˆ2
2 abline(h=exact.pgram,lwd=2,lty="dashed",col="black")

130 ANSWERS TO EXERCISES

The difference between the theoretical and estimated power spectra lies within a confidence
interval, so we conclude the estimated spectra is consistent with the theoretical power
spectrum.

Exercise 6.4, page 24

The output from the spectral estimation is:

1 > window = 5
2 > x.pgram = periodogram(x)
3 > x.pgram.smooth = spectrum.smooth(x.pgram,window)
4 > cbind(freq,x.pgram,x.pgram.smooth$pgram.ave)
5 freq x.pgram
6 [1,] 0.015625 4.12171567 NA
7 [2,] 0.031250 4.28688721 NA
8 [3,] 0.046875 2.18587695 NA
9 [4,] 0.062500 0.80868492 NA

10 [5,] 0.078125 5.00694613 NA
11 [6,] 0.093750 8.68718662 3.0192022
12 [7,] 0.109375 0.45912976 2.6531974
13 [8,] 0.125000 0.69869530 2.3055704
14 [9,] 0.140625 2.36259034 2.1226395
15 [10,] 0.156250 2.03132280 2.1816207
16 [11,] 0.171875 2.56218866 1.8167134
17 [12,] 0.187500 0.09566224 1.1014335
18 [13,] 0.203125 0.46299053 1.1621120
19 [14,] 0.218750 0.17363724 1.1047530
20 [15,] 0.234375 1.45747803 0.9041859
21 [16,] 0.250000 0.99296599 0.7397831
22 [17,] 0.265625 0.81910720 0.5225284
23 [18,] 0.281250 1.12659371 0.5375536
24 [19,] 0.296875 0.06774579 0.5196011
25 [20,] 0.312500 0.15635229 0.5302911
26 [21,] 0.328125 0.22289282 0.4021078
27 [22,] 0.343750 0.17238675 0.3240738
28 [23,] 0.359375 0.26093924 0.2755012
29 [24,] 0.375000 0.26551307 0.1774613
30 [25,] 0.390625 0.29122684 0.1816354
31 [26,] 0.406250 0.04746208 0.1769702
32 [27,] 0.421875 0.13459156 NA
33 [28,] 0.437500 0.28480903 NA
34 [29,] 0.453125 0.04815466 NA
35 [30,] 0.468750 0.11366153 NA
36 [31,] 0.484375 0.10503442 NA
37 [32,] 0.500000 0.81701638 NA

A plot of the estimated power spectra is shown in fig. 22.6.

131

0.0 0.1 0.2 0.3 0.4 0.5

0.
05

0.
20

0.
50

2.
00

5.
00

frequency (cycles per time step)

po
w

er

AR1 Process; phi1= 0.8

Figure 22.6 Periodogram and spectral average of an AR(1) process with φ = 0.8. The
error bars in the upper right show the 90% confidence interval and the bandwidth. The
horizontal dashed line shows the theoretical power spectrum of the process.

Exercise 6.5, page 24

The theoretical power spectrum for an AR(1) process was derived in the text as

p(ω) =
σ2
ε

1 + φ21 − 2φ1 cos(2πf)
. (22.38)

R commands for evaluating this power spectrum are as follows:

1 freq = 1:(ntot/2) / ntot
2 x.spec.exact = 1/(1+phi1ˆ2-2*phi1*cos(2*pi*freq))
3 lines(freq,x.spec.exact,lty="dashed",lwd=3)

The final plot is shown in fig. 22.6.

Exercise 6.6, page 24

The power spectrum for NINO3.4 can be estimated using the following:

132 ANSWERS TO EXERCISES

1 fname = paste(dir.enso,’nina34.data’,sep=’’)
2 line1 = scan(fname,nlines=1,quiet=TRUE)
3 nino34.yr = line1[1]:line1[2]
4 nino34.nyrs = length(nino34.yr)
5 data2 = read.table(fname,skip=1,nrows=nino34.nyrs,na.strings=-99.99,col.names=cnames)
6

7 ## CREATE VECTOR WITH NINO34 TIME SERIES AND TIME AXIS
8 nino34.ts = as.numeric(t(as.matrix(data2[,1:12+1])))
9 nino34.time = seq(from=data2[1,1],length.out=length(nino34.ts),by=1/12)

10

11 nomit = is.na(nino34.ts)
12 nino34.ts = nino34.ts[!nomit]
13 nino34.time = nino34.time[!nomit]
14

15 ### FIND HIGHLY COMPOSITE NUMBER
16 chunk = 10
17 length.composite = length(nino34.time)
18 while (nextn(length.composite) > length(nino34.time)) length.composite =
19 length.composite - chunk
20 length.composite = nextn(length.composite)
21

22 ### INCLUDE ONLY HIGHLY COMPOSITE NUMBER OF SAMPLES
23 nino34.ts = nino34.ts [1:length.composite + length(nino34.ts) - length.composite]
24 nino34.time = nino34.time[1:length.composite + length(nino34.ts) - length.composite]
25

26 nino34.pgram = periodogram(nino34.ts)
27 nino34.pgram.smooth = spectrum.smooth(nino34.pgram,window)
28 spectrum.plot(nino34.pgram.smooth)

The resulting power spectra is shown in fig. 22.7.

There are significant peaks near 1/12 ≈ 0.083 and 1/6 ≈ 0.17, which are obviously
associated with the annual and sub-annual cycles.

The largest peak occurs near 1/48 ≈ 0.02, which is near 4-years. However, the peak
does not rise outside the confidence interval relative to its neighboring values, so it is not
objectively clear that the peak is at 4-years or at even lower frequencies. The characteriza-
tion that ENSO has dominant oscillatory periods around 4-7 years is not unambiguous.

Exercise 7.1, page 25

E[y] = E

 N∑
j=1

cjxj

 =

N∑
j=1

cjE[xj] = c1µ1 + . . . cNµN

133

0.0 0.1 0.2 0.3 0.4 0.5

1e
−

04
1e

−
02

1e
+

00

frequency (cycles per month)

po
w

er

NINO34 Index (raw)
12 6

Figure 22.7 Periodogram and spectral average of the raw NINO3.4 index. The error
bars in the upper right show the 90% confidence interval and the bandwidth.

cov[y] =E

 N∑
j=1

cj
(
xj − µj

)(N∑
k=1

ck (xk − µk)

)T
=

N∑
j=1

N∑
k=1

cjckE
[(

xj − µj
)

(xk − µk)
T
]

=

N∑
j=1

c2jΣj due to independence of xj and xk

Exercise 7.2, page 25

Since y is a linear combination of Gaussian variables, it is itself Gaussian and hence only
the mean and covariance need be computed. These are E[y] = Aµ + b, and

cov(y) =E
[
(y − E[y]) (y − E[y])

T
]

=E
[
(Ax + b−Aµ− b) (Ax + b−Aµ− b)

T
]

=E
[
A (x− µ) (x− µ)

T
AT
]

=AΣAT

Thus, y ∼ N(Aµ + b,AΣAT)

134 ANSWERS TO EXERCISES

Exercise 7.3, page 26

(a) A and AT have the same diagonal, so they have the same trace.

(b) tr[AB] = tr
[
(AB)

T
]

= tr
[
BTAT

]
= tr[ATBT]. The first equality follows from

part (a), the others from properties of transpose and trace discussed in the chapter.

(c) tr[A] = tr[SΛS−1] = tr[ΛS−1S] = tr[ΛI] = tr[Λ].

(d)

tr[Ak] = tr[
(
SΛS−1

)k
] definition

= tr[
(
SΛS−1

) (
SΛS−1

)
. . .
(
SΛS−1

)
] expand the power

= tr[SΛkS−1] the intermediate terms S−1S = I cancel out

= tr[Λk]

Alternatively, Akx = λkx implies that λk is an eigenvalue of Ak, in which case the result
follows from part c.

(e)

tr[A−1] = tr
[(

SΛS−1
)−1]

= tr
[
S−1Λ−1S

]
= tr

[
Λ−1

(
SS−1

)]
= tr

[
Λ−1

]
=

M∑
m=1

λ−1m .

The last equality follows from the fact that the inverse of a diagonal matrix is diagonal
with diagonal elements equal to reciprocals of the original matrix.

(f) tr[AB] =
∑
i

∑
j AijBji for any two matrices A and B. Substituting B = AT gives

tr[AAT] =
∑
i

∑
j AijAij =

∑
i

∑
j A2

ij

(g) |A| = |SΛS−1| = |S||Λ||S−1| = |S||S−1||Λ| = |SS−1||Λ| = |I||Λ| = λ1λ2 . . . λP .
We use the fact that the determinant is a scalar so the order does not matter, and the deter-
minant of a diagonal matrix equals the product of diagonals.

(h) By part (c), the trace equals the sum of eigenvalues values. Since the eigenvalues of a
symmetric, positive definite matrix are positive, it follows the trace is positive. Similarly,
by part (f), the determinant equals the product of eigenvalues. Since the eigenvalues are
positive, the product is positive.

(i) A positive semi-definite matrix has only non-negative eigenvalues. Since the trace of
a matrix equals the sum of eigenvalues, the sum of eigenvalues of a positive semi-definite
matrix must also be non-negative, and hence the trace is non-negative. Since the determi-
nant of a matrix equals the product of eigenvalues, the product of eigenvalues of a positive
semi-definite matrix must be non-negative, and hence the determinant is non-negative.

135

Exercise 7.4, page 26

Consider the eigenvalue problem
Ax = λx.

Multiply both sides of this equation by A, and invoke the fact that A is idempotent:

A2x = λAx ⇒ Ax = λ2x.

Eliminating Ax from the above equations gives

λx = λ2x.

Since the eigenvector is non-zero (i.e., x 6= 0), this equation can be satisfied in general
only if λ = λ2, which has the two solutions λ = 0 and λ = 1.

The trace of any matrix equals the sum of eigenvalues. Since the eigenvalues of A are
either 0 or 1, the sum of eigenvalues equals the number that are equal to one.

Exercise 7.5, page 26

(a) ξT ξ = (Ux)
T

(Ux) = xTUTUx = xTx since U is orthogonal.

(b) ξTη = (Ux)
T

(Uy) = xTUTUy = xTy. Thus, we have the identities ξT ξ = xTx,
ηTη = yTy, and ξTη = xTy. Since the angle depends only on these three quantities, it
is preserved by the transformation.

(c) Since U is orthogonal, UUT = I. Taking the determinant of both sides gives |I| =
1 = |UUT | = |U||UT | = |U|2. Thus, |U| = ±1.

(d) |UAUT | = |U||AT ||UT | = |U||UT ||A| = |UUT ||A| = 1|A|.

(e) tr[UAUT] = tr[UUTA| = tr[A] = tr[A].

(f) Show that (U1U2) (U1U2)
T

= I and (U1U2)
T

(U1U2) = I (need to show both).

Exercise 7.6, page 26

By definition, ΣY = E[(y − µY) (y − µY)
T

] = E[yyT]− µY µ
T
Y . Therefore

E[yTAy] = E[
∑
i

∑
j

yiyjAij] =
∑
i

∑
j

E[yiyj]Aij =
∑
i

∑
j

(Σij + µiµj)Aij

= tr[AΣY] + µTAµ.

Exercise 7.7, page 27

Take the transpose of the hint:(
A−1

)T
AT = I transpose of the hint (22.39)(

A−1
)T

=
(
AT
)−1

multiply both sides by the inverse of transpose. (22.40)

136 ANSWERS TO EXERCISES

Exercise 7.8, page 27

(a)

‖X‖2F = tr
[
XXT

]
=
∑
i

∑
j

(X)ij
(
XT
)
ji

=
∑
i

∑
j

(X)ij (X)ij =
∑
i

∑
j

(X)
2
ij .

Taking the square root of both sides gives (7.6).

(b)

‖UAV‖2F = tr[(UAV) (UAV)
T

] = tr[UAVVTATUT]

= tr[AATUTU] = tr[AAT] = ‖A‖2F .

Exercise 7.9, page 27

Consider the eigenvalue equation
Ax = λx.

Multiplying this equation by b gives

bAx = bλx.

Of course,
aIx = ax.

Adding these two equations together gives:

ax + bAx = ax + bλx

(aI + A) x = (a+ bλ) x.

The last equation shows that the eigenvalue of aI + A is a+ bλ.

Exercise 7.10, page 27

Positive definite means xTAx > 0 for all x. Choose

x =

1
0
...
0

 . (22.41)

For this choice, xTAx = A11. Hence, the first diagonal element must be positive. Next,
let x be a vector of all zeros except for a one in the second row. Then in this case xTAx =
A22, which must be positive. Repeating this procedure for each row of x reveals that each
and every diagonal element must be positive.

137

Exercise 7.11, page 28

(a) Σ−1 =
(
UΛUT

)−1
= (UT)−1Λ−1U−1 = UΛ−1UT , since UT = U−1.

(b)

Q = (x− µ)
T

Σ−1 (x− µ) = (x− µ)
T

UΛ−1UT (x− µ)

=
(

(x− µ)
T

UΛ−1/2
)(

Λ−1/2UT (x− µ)
)

= ξT ξ

where ξ = A (x− µ) and A = Λ−1/2UT . Since the covariance matrix is positive def-
inite, all diagonal elements of Λ are positive and hence have an inverse and a positive
square root.

(c) ξ is a linear combination of constants and Gaussians, so it is itself Gaussian. The mean
is

E[ξ] = E[A (x− µ)] = A (E[x]− µ) = 0

and the covariance is

cov[ξ] =E[(ξ) (ξ)
T

]

=E[A (x− µ) (x− µ)
T

AT]

=AE[(x− µ) (x− µ)
T

]AT

=AΣAT = Λ−1UT
(
UΛUT

)
UΛ−1

=I

Thus, ξ ∼ N(0, I).

(d) The covariance matrix of ξ is diagonal, so cov[ξi, ξj] = 0 if i 6= j. That is, each
element of ξ is uncorrelated with every other element of ξ. Since ξ also is Gaussian,
uncorrelatedness implies independence.

(e) Since Q = ξ21 + ξ22 + . . . ξ2P is a sum of squared independent Gaussians, each with
zero mean and unit variance, it must have the chi-squared distribution with P degrees of
freedom.

Exercise 8.1, page 30

An R function that solves the least squares problem using the normal equations is the
following:

138 ANSWERS TO EXERCISES

1 regress.normal = function(y,x,include.intercept=TRUE,alpha=0.05) {
2 ##
3 ## DETERMINES THE LEAST SQUARES ESTIMATE OF B IN THE EQUATION Y = XB + E
4 ## BASED ON THE NORMAL EQUATIONS
5 ## INPUT:
6 ## Y[NTOT]: N-DIMENSIONAL VECTOR OF PREDICTANDS
7 ## X[NTOT,MTOT]: N X M DIMENSIONAL MATRIX OF PREDICTORS
8 ## INCLUDE.INTERCEPT: INCLUDE THE INTERCEPT? (DEFAULT=TRUE)
9 ## OUTPUT:

10 ## BHAT: M-DIMENSIONAL VECTOR OF ESTIMATES OF B
11 ## R2: R-SQUARED
12 ## SSE: SUM SQUARE ERROR OF THE LEAST SQUARES PREDICTION
13 ## DOF: DEGREES OF FREEDOM OF THE SSE.
14 ## RES.SE: STANDARD ERROR OF THE RESIDUALS
15 ##
16

17 ntot = length(y)
18 if (length(x) %% ntot != 0) stop(’x not dimensioned correctly’)
19 mtot = length(x)/ntot
20 if (ntot <= mtot) stop(’regression problem is not over-determined’)
21

22 ### STRIP MISSING DATA
23 dim(x) = c(ntot,mtot)
24 is.missing = is.na(y) | is.na(rowSums(x))
25 x.good = x[!is.missing,]
26 y.good = y[!is.missing]
27 nsamp = sum(!is.missing)
28

29 if (include.intercept) x.good = cbind(rep(1,nsamp),x.good)
30 mtot = dim(x.good)[2]
31

32 xtx = t(x.good) %*% x.good
33 xty = t(x.good) %*% y.good
34 xtx.inv = chol2inv(chol(xtx))
35 bhat = as.numeric(xtx.inv %*% xty)
36

37 sse = sum((y.good - x.good %*% bhat)ˆ2)
38 r2 = 1 - sse/sum((y.good-mean(y.good))ˆ2)
39 dof = nsamp - mtot
40 res.se = sqrt(sse/dof)
41

42 list(bhat=bhat,r2=r2,sse=sse,dof=dof,res.se=res.se)
43 }

Exercise 8.2, page 31

Using this ‘data,’ we obtain least squares estimates of the model (8.1) as follows:

139

1 > set.seed(1)
2 > ntot = 20
3 > y = rnorm(ntot); pred1 = rnorm(ntot); pred2 = rnorm(ntot)
4 > x = cbind(pred1,pred2)
5 > xy.normal = regress.normal(y,x)
6 > print(xy.normal)
7 $bhat
8 [,1]
9 [1,] 0.1493806

10 [2,] -0.1516176
11 [3,] 0.2893589
12

13 $r2
14 [1] 0.1078292
15

16 $sse
17 [1] 14.13789
18

19 $dof
20 [1] 17
21

22 $res.se
23 [1] 0.9119432

Exercise 8.3, page 32

The result of fitting a trend line to CO2 concentration is:

1 > ntot = length(co2)
2 > year = iyst + (1:ntot - 0.5)/12
3 > year.shift = year - 1960
4 > year.sqr = year.shiftˆ2
5 > co2.trend.normal = regress.normal(co2,year.shift)
6 > print(co2.trend.normal)
7 $bhat
8 [1] 308.698631 1.565872
9

10 $r2
11 [1] 0.9792493
12

13 $sse
14 [1] 10031.19
15

16 $dof
17 [1] 689
18

19 $res.se
20 [1] 3.815633

Thus, the growth rate is 1.6 ppm/year.

140 ANSWERS TO EXERCISES

Using the lm function gives:

1 > co2.year.lm = lm(co2˜year.shift,na.action=na.omit)
2 > print(summary(co2.year.lm))
3

4 Call:
5 lm(formula = co2 ˜ year.shift, na.action = na.omit)
6

7 Residuals:
8 Min 1Q Median 3Q Max
9 -7.4921 -2.6494 -0.3407 2.3416 11.1495

10

11 Coefficients:
12 Estimate Std. Error t value Pr(>|t|)
13 (Intercept) 3.087e+02 2.917e-01 1058.4 <2e-16 ***
14 year.shift 1.566e+00 8.684e-03 180.3 <2e-16 ***
15 ---
16 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
17

18 Residual standard error: 3.816 on 689 degrees of freedom
19 (5 observations deleted due to missingness)
20 Multiple R-squared: 0.9792, Adjusted R-squared: 0.9792
21 F-statistic: 3.251e+04 on 1 and 689 DF, p-value: < 2.2e-16

The coefficients, R2, and dof are consistent.

Exercise 8.4, page 32

The residuals are:

1 > options(width=70)
2 > x = cbind(rep(1,ntot),year.shift)
3 > y.pred = x %*% co2.trend.normal$bhat
4 > resid = co2 - y.pred
5 > print(as.numeric(resid[1:50]))
6 [1] 7.666124 8.075635 8.555146 9.864656 10.744167 10.173678
7 [7] 8.633188 6.232699 4.352210 3.891720 4.931231 5.990742
8 [13] 6.600252 7.239763 7.949274 8.758784 9.728295 8.787806
9 [19] 7.457316 5.546827 3.426338 3.875848 4.465359 5.244870

10 [25] 6.044380 6.533891 7.523402 8.342912 8.592423 8.001933
11 [31] 6.901444 4.590955 3.320465 2.349976 3.489487 4.358997
12 [37] 5.278508 5.488019 6.137529 7.537040 8.266551 7.356061
13 [43] 5.495572 3.395083 1.704593 1.354104 2.353615 3.413125
14 [49] 4.542636 NA

A plot of the residuals is shown in fig. 22.8.

141

1960 1970 1980 1990 2000 2010 2020

−
5

0
5

10

year

P
ar

ts
 P

er
 M

ill
io

n

Figure 22.8 Residuals of CO2 data after linear trend has been removed.

Exercise 8.5, page 33

The annual cycle can be estimated as follows:

1 > nharm = 2
2 >
3 > t = seq(year.shift)/12
4 > x = NULL
5 > for (n in 1:nharm) x = cbind(x,cos(2*pi*t*n),sin(2*pi*t*n))
6 > colnames(x) = c(paste(rep(c(’cos’,’sin’),nharm),rep(1:nharm,each=2),sep=""))
7 > co2.cycle.normal = regress.normal(co2,x)
8 > print(co2.cycle.normal)
9 $bhat

10 [1] 354.3263100 -1.4843479 2.1128289 0.7733454 -0.3005125
11

12 $r2
13 [1] 0.005265222
14

15 $sse
16 [1] 480868.2
17

18 $dof
19 [1] 686
20

21 $res.se
22 [1] 26.47591

142 ANSWERS TO EXERCISES

Exercise 8.6, page 33

The residuals after the annual cycle has been removed can be computed as

1 x = cbind(rep(1,ntot),x)
2 y.pred = x %*% co2.cycle.normal$bhat
3 resid = co2 - y.pred

A plot of the residuals and corresponding raw data is produced by

1 resid = co2 - y.pred + co2.cycle.normal$bhat[1]
2

3 fout = ’co2.cycle.residuals.eps’
4 if (lplotfile) postscript(fout,horizontal=FALSE,
5 onefile=FALSE,height=6,width=8,pointsize=12)
6 par(mfcol=c(1,1),mar=c(5,5,3,1))
7 par(cex.lab=1.2,cex.axis=1.2,cex.main=1.2)
8 yrange = range(co2,resid,na.rm=TRUE)
9 plot(year.say,resid,type=’l’,xlab=’year’,

10 ylab=’Parts Per Million’,ylim=yrange,col=’red’,lwd=2)
11 par(new=TRUE)
12 plot(year.say,co2,type=’l’,xlab=’’,ylab=’’,ylim=yrange,axes=FALSE)
13 if (lplotfile) dev.off()

The resulting plot is shown in fig. 22.9.

1960 1970 1980 1990 2000 2010 2020

32
0

34
0

36
0

38
0

40
0

year

P
ar

ts
 P

er
 M

ill
io

n

Figure 22.9 CO2 (black curve) and CO2 after annual cycle has been removed (red).

143

Exercise 9.1, page 36

A code for generating a plot is the following. The resulting figure is shown in fig. 22.10.

1 plot(x.year,y,type=’b’,pch=19,lwd=2,xlab=’year’,ylab=’sea level (mm)’)
2 ftitle = paste(station,’Sea Level During’,season)
3 title(main=ftitle,line=0.5)
4 abline(lm(y˜x.year),lty=’dashed’,lwd=3,col=’grey50’)

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

1975 1980 1985 1990 1995 2000 2005

68
00

70
00

72
00

year

se
a

le
ve

l (
m

m
)

Guam Sea Level During JFM

Figure 22.10 Sea level at Guam during JFM.

The figure suggests a slight increase in sea level over the past few decades.

Exercise 9.2, page 36

The result of fitting JFM Guam sea level to year is the following:

1 > print(regress.normal(y,x.year))
2 $bhat
3 [1] -560.046422 3.805933
4

5 $r2
6 [1] 0.135494
7

8 $sse
9 [1] 302447.4

10

11 $dof
12 [1] 32
13

14 $res.se
15 [1] 97.21873

144 ANSWERS TO EXERCISES

Exercise 9.3, page 36

An R function that performs regression and computes the t-value, p-value, and confidence
interval is the following:

145

1 regress.normal = function(y,x,include.intercept=TRUE,alpha=0.05) {
2 ##
3 ## DETERMINES THE LEAST SQUARES ESTIMATE OF B IN THE EQUATION Y = XB + E
4 ## BASED ON THE NORMAL EQUATIONS
5 ## INPUT:
6 ## Y[NTOT]: N-DIMENSIONAL VECTOR OF PREDICTANDS
7 ## X[NTOT,MTOT]: N X M DIMENSIONAL MATRIX OF PREDICTORS
8 ## INCLUDE.INTERCEPT: INCLUDE THE INTERCEPT? (DEFAULT=TRUE)
9 ## OUTPUT:

10 ## BHAT: M-DIMENSIONAL VECTOR OF ESTIMATES OF B
11 ## R2: R-SQUARED
12 ## SSE: SUM SQUARE ERROR OF THE LEAST SQUARES PREDICTION
13 ## DOF: DEGREES OF FREEDOM OF THE SSE.
14 ## RES.SE: STANDARD ERROR OF THE RESIDUALS
15 ## TVAL[MTOT]: T-STATISTIC FOR EACH REGRESSION COEFFICIENT
16 ## PVAL[MTOT]: P-VALUE FOR EACH REGRESSION COEFFICIENT
17 ## BHAT.CI[MTOT,2]: CONFIDENCE INTERVAL FOR EACH REGRESSION COEF.
18 ##
19

20 ntot = length(y)
21 if (length(x) %% ntot != 0) stop(’x not dimensioned correctly’)
22 mtot = length(x)/ntot
23 if (ntot <= mtot) stop(’regression problem is not over-determined’)
24

25 ### STRIP MISSING DATA
26 dim(x) = c(ntot,mtot)
27 is.missing = is.na(y) | is.na(rowSums(x))
28 x.good = x[!is.missing,]
29 y.good = y[!is.missing]
30 nsamp = sum(!is.missing)
31

32 if (include.intercept) x.good = cbind(rep(1,nsamp),x.good)
33 mtot = dim(x.good)[2]
34

35 xtx = t(x.good) %*% x.good
36 xty = t(x.good) %*% y.good
37 xtx.inv = chol2inv(chol(xtx))
38 bhat = as.numeric(xtx.inv %*% xty)
39

40 sse = sum((y.good - x.good %*% bhat)ˆ2)
41 r2 = 1 - sse/sum((y.good-mean(y.good))ˆ2)
42 dof = nsamp - mtot
43 res.se = sqrt(sse/dof)
44

45 ### INFERENCE
46 st.err = sqrt(sse/dof*diag(xtx.inv))
47 tval = bhat/st.err
48 pval = 2*pt(abs(tval),dof,lower.tail=FALSE)
49 t.crit = qt(alpha/2,dof,lower.tail=FALSE)
50 bhat.ci = cbind(bhat - t.crit*st.err, bhat + t.crit*st.err)
51

52 list(bhat=bhat,r2=r2,sse=sse,dof=dof,res.se=res.se,tval=tval,pval=pval,bhat.ci=bhat.ci)
53 }

146 ANSWERS TO EXERCISES

Exercise 9.4, page 36

The output is identical to earlier problems, except for the following added items

1 > print(regress.normal(y,x.year))
2 ...
3 $tval
4 [1] -0.1656398 2.2394999
5

6 $pval
7 [1] 0.86948250 0.03220094
8

9 $bhat.ci
10 [,1] [,2]
11 [1,] -7447.1429574 6327.050113
12 [2,] 0.3442531 7.267614

The trend is significant at the 5% level, but just barely. The results agree with lm:

1 > trend.lm = lm(y˜x.year)
2 > trend.sum = summary(trend.lm)
3 > print(trend.sum)
4

5 Call:
6 lm(formula = y ˜ x.year)
7

8 Residuals:
9 Min 1Q Median 3Q Max

10 -204.45 -100.43 24.59 78.49 145.99
11

12 Coefficients:
13 Estimate Std. Error t value Pr(>|t|)
14 (Intercept) -560.046 3381.110 -0.166 0.8695
15 x.year 3.806 1.699 2.239 0.0322 *
16 ---
17 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
18

19 Residual standard error: 97.22 on 32 degrees of freedom
20 Multiple R-squared: 0.1355, Adjusted R-squared: 0.1085
21 F-statistic: 5.015 on 1 and 32 DF, p-value: 0.0322

And with confint:

1 > print(confint(trend.lm))
2 2.5 % 97.5 %
3 (Intercept) -7447.1429574 6327.050113
4 x.year 0.3442531 7.267614

147

Exercise 9.5, page 37

The output is given above.

Exercise 9.6, page 37

The result of fitting sea level to both year and NINO3.4 is the following:

1 > print(regress.normal(y,cbind(x.year,x.sst)))
2 $bhat
3 [1] -676.326254 3.865792 -77.019967
4

5 $r2
6 [1] 0.6148428
7

8 $sse
9 [1] 134747.3

10

11 $dof
12 [1] 31
13

14 $res.se
15 [1] 65.9294
16

17 $tval
18 [1] -0.2949533 3.3541617 -6.2113731
19

20 $pval
21 [1] 7.699959e-01 2.112795e-03 6.733968e-07
22

23 $bhat.ci
24 [,1] [,2]
25 [1,] -5352.919193 4000.266686
26 [2,] 1.515179 6.216405
27 [3,] -102.309586 -51.730348

Trend is significant: p-value is less than 5% and confidence interval does not include 0.
This result agrees with lm:

148 ANSWERS TO EXERCISES

1 > trend.enso.lm = lm(y˜x.year+x.sst)
2 > trend.enso.sum = summary(trend.enso.lm)
3 > print(trend.enso.sum)
4

5 Call:
6 lm(formula = y ˜ x.year + x.sst)
7

8 Residuals:
9 Min 1Q Median 3Q Max

10 -99.02 -49.59 9.31 28.70 201.20
11

12 Coefficients:
13 Estimate Std. Error t value Pr(>|t|)
14 (Intercept) -676.326 2292.994 -0.295 0.77000
15 x.year 3.866 1.153 3.354 0.00211 **
16 x.sst -77.020 12.400 -6.211 6.73e-07 ***
17 ---
18 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
19

20 Residual standard error: 65.93 on 31 degrees of freedom
21 Multiple R-squared: 0.6148, Adjusted R-squared: 0.59
22 F-statistic: 24.74 on 2 and 31 DF, p-value: 3.779e-07

And with confint:

1 > print(confint(trend.enso.lm))
2 2.5 % 97.5 %
3 (Intercept) -5352.919193 4000.266686
4 x.year 1.515179 6.216405
5 x.sst -102.309586 -51.730348

Exercise 10.1, page 40

Xn,j =

 1 if j = 1
cos (2πn(j/2)/12) if j is even

sin (2πn(j − 1)/2/12) if j is odd and j > 1
.

and

β =

β0
c1
s1
c2
s2
...
cH
sH

(22.42)

149

Exercise 10.2, page 41

A complete code for all parts of the exercises is the following:

150 ANSWERS TO EXERCISES

1 modsel.loo.simple = function(y,x,kmax=dim(x)[2]+1) {
2 ntot = length(y)
3 x.const = cbind(rep(1,ntot),x); # ADD COLUMN OF ONES IN PREDICTOR MATRIX
4 if (dim(x)[1] != ntot) stop("inconsistent dimension of y and x in modsel.loo")
5 if (kmax > dim(x.const)[2]) stop("kmax exceeds 1 + number of predictors")
6 yvar = var(y)
7 ypss = sum((y-mean(y))ˆ2)
8

9 cvmse = numeric(kmax); cvstd = numeric(kmax); se.sqr = numeric(kmax)
10 nse.sqr = numeric(kmax); ic.std = numeric(kmax)
11 aic = numeric(kmax); aicc = numeric(kmax); bic = numeric(kmax)
12

13 for (k in 1:kmax) {
14 x.pred = x.const[,1:k]
15 xy.lm = lm(y˜x.pred-1)
16 yhat = fitted(xy.lm)
17 yresid = residuals(xy.lm)
18 se.sqr[k] = sum(yresidˆ2)/(ntot-k)
19 nse.sqr[k] = se.sqr[k]/yvar
20

21 ## BRUTE FORCE LOO
22 # yhat.loo = numeric(ntot)
23 # for (n in 1:ntot) {
24 # y.pred = y[-n]
25 # x.pred = x.const[-n,1:k]
26 # yhat.loo[n] = sum(coefficients(lm(y.pred˜x.pred-1)) * x.const[n,1:k])
27 # }
28 # cverr = (y-yhat.loo)ˆ2
29

30 ## FAST LOO
31 dim(x.pred) = c(ntot,k)
32 xtx.inv = chol2inv(chol(t(x.pred) %*% x.pred))
33 alpha = numeric(ntot)
34 for (n in 1:ntot) alpha[n] = as.numeric(t(x.pred[n,]) %*% xtx.inv %*% x.pred[n,])
35 cverr = (y - yhat)ˆ2/(1-alpha)ˆ2
36

37 cvmse[k] = mean(cverr)
38 cvstd[k] = sd(cverr)/sqrt(ntot)
39

40 nparm = k + 1
41 aic[k] = ntot *log(2*pi) + ntot*log(mean(yresidˆ2)) + ntot + 2*nparm
42 aicc[k] = ntot *log(2*pi) + ntot*log(mean(yresidˆ2)) + ntot +
43 2*nparm*(nparm+1)/(ntot-nparm-1)
44 bic[k] = ntot *log(2*pi) + ntot*log(mean(yresidˆ2)) + ntot + nparm*log(ntot)
45 ic.std[k] = ntot * sqrt(psigamma(ntot/2,deriv=1))
46 }
47

48 cvmse = cvmse/yvar
49 cvstd = cvstd/yvar
50

51 list(cvmse=cvmse,cvstd=cvstd,k.min=k.min,k.sel=k.sel,se.sqr=se.sqr,nse.sqr=nse.sqr,
52 npcs.min=npcs.min,npcs.sel=npcs.sel,aic=aic,aicc=aicc,bic=bic,ic.std=ic.std)}

151

A plot of the normalized unbiased error variance as a function of the number of predictors
is shown in fig. 22.11. “0” means only the intercept term is included, and in this case the
normalized error variance is 1 because the model error variance equals the total variability.
The minimum error variance occurs when 4 Fourier terms are included, which corresponds
to 2 harmonics (since the sine and cosine count as one harmonic). The minimum normal-
ized error variance is about 78%. This means the annual cycle explains about 22% of the
variance of the NINO3.4 index, leaving 78% unexplained by the annual cycle. The values
of the normalized unbiased error variance are

1 [1] "unbiased error variance"
2 [1] 1.0000000 0.9431272 0.8116455 0.7987252 0.7796379 0.7806310
3 [7] 0.7815282 0.7824943 0.7832677 0.7842617 0.7852547

●

●

●

●

● ● ● ● ● ● ●

0 2 4 6 8 10

0.
80

0.
85

0.
90

0.
95

1.
00

number of sines/cosines

un
bi

as
ed

 e
rr

or
 v

ar
ia

nc
e

Normalized Unbiased Error Variance of Annual Cycle Model

NINO3.4 Index

Figure 22.11 Normalized unbiased error variance of annual cycle model for NINO3.4.

Exercise 10.3, page 41

The normalized cross validated mean square error of annual cycle model for NINO3.4 is
shown in fig. 22.12. The numerical values are

1 [1] "unbiased error variance"
2 [1] 1.0012658 0.9454002 0.8147378 0.8027723 0.7846022 0.7865786
3 [7] 0.7885135 0.7905072 0.7922921 0.7943716 0.7963414

Exercise 10.4, page 41

152 ANSWERS TO EXERCISES

●

●

●
●

● ● ● ● ● ● ●

0 2 4 6 8 10

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

1.
05

number of sines/cosines

un
bi

as
ed

 e
rr

or
 v

ar
ia

nc
e

Normalized Cross Validated Mean Square Error of Annual Cycle Model

NINO3.4 Index

Figure 22.12 Normalized cross validated mean square error of annual cycle model for
NINO3.4. Error bars show the standard error.

Exercise 10.5, page 42

See figure 22.12 for the error bars. The “one-standard-deviation rule” would select the
model with 1 Fourier harmonic (but both sine and cosine).

Exercise 10.6, page 42

The numerical values of the information criteria are

1 [1] "AIC"
2 [1] 2113.715 2068.396 1950.634 1938.937 1920.799 1922.799 1924.699
3 [8] 1926.667 1928.438 1930.429 1932.416
4 [1] "AICC"
5 [1] 2109.730 2062.427 1942.685 1929.013 1908.906 1908.942 1908.883
6 [8] 1908.897 1908.720 1908.767 1908.817
7 [1] "BIC"
8 [1] 2123.061 2082.416 1969.328 1962.304 1948.839 1955.512 1962.086
9 [8] 1968.727 1975.171 1981.835 1988.496

Exercise 10.7, page 42

See figure. 22.13

153

●

●

●

●

● ● ● ● ● ● ●

0 2 4 6 8 10

19
00

19
50

20
00

20
50

21
00

number of sines/cosines

In
fo

rm
at

io
n

C
rit

er
ia

●

●

●
●

●
●

●
●

●
●

●

Information Criteria for Annual Cycle Model

NINO3.4 Index

●

●

AIC
AICC
BIC

Figure 22.13 Information criteria for various annual cycle models for NINO3.4.

Exercise 10.8, page 42

The NINO3.4 anomaly can be computed and plotted as follows

1 y = nino34.ts
2 nh.sel = 4
3 x = x.pred[,1:nh.sel]
4 xy.lm = lm(y˜x)
5

6 fout = ’nino34.anomaly.pdf’
7 if (lplotfile) pdf(fout,width=8,height=5)
8 par(mfcol=c(1,1),mar=c(5,5,5,1))
9 plot(nino34.time,residuals(xy.lm),type=’l’,col=’blue’,xlab=’year’,ylab=’NINO3.4 Anomaly’)

10 ftitle.top = paste(’NINO3.4 Anomaly’)
11 ftitle.bot = paste(nh.sel/2,’Annual Harmonics Removed’)
12 title(main=ftitle.top,line=2.0)
13 title(main=ftitle.bot,line=0.5)
14 if (lplotfile) dev.off()

The resulting plot is shown in fig. 22.14

Exercise 10.9, page 42

Substituting K = M + 1 in (10.5) gives

AICc = N log

(
SSE

N

)
+

2(M + 1)N

N −M − 2
. (22.43)

154 ANSWERS TO EXERCISES

1950 1960 1970 1980 1990 2000 2010

−
2

−
1

0
1

2

year

N
IN

O
3.

4
A

no
m

al
y

NINO3.4 Anomaly

2 Annual Harmonics Removed

Figure 22.14 NINO3.4 anomaly after 2 annual harmonics have been removed.

Taking the difference of the two expressions gives

∆AICc =
2(M + 1)N

N −M − 2
−
(

2(M + 1) +
2(M + 1)(M + 2)

N −M − 2

)
= 0

This shows that the two expressions differ by a constant. However, shifting a function
upward or downward by a constant does not change the location of the minimum, so both
expressions would be minimized by the same model and hence give identical model selec-
tions.

Exercise 10.10, page 43

Using the notation (??), it follows that

XTX =
(
xT1 xT2 . . . xTN

)

x1

x2

...
xN

 =

N∑
n=1

xTnxn, (22.44)

and

XTy =
(
xT1 xT2 . . . xTN

)

y1
y2
...
yN

 =

N∑
n=1

xTnyn. (22.45)

Let βk denote the least squares estimate of β based on all samples except the k’th. This
estimate can be expressed as

βk =
(
XTX− xTk xk

)−1 (
XTy − xTk yk

)
. (22.46)

155

To simplify this expression, we invoke the Sherman-Morrison-Woodbury formula:

(A−BDC)
−1

= A−1 + A−1B
(
D−1 −CA−1B

)−1
CA−1, (22.47)

where it is assumed that the matrices are conformable and all matrix inverses are defined
(i.e., A and D are not singular). This formula implies(
XTX− xTk xk

)−1
=
(
XTX

)−1
+
(
XTX

)−1
xTk

(
I− xk

(
XTX

)−1
xTk

)−1
xk
(
XTX

)−1
.

(22.48)
Substituting this expression in (22.46), and noting that I − xk

(
XTX

)−1
xTk is a scalar,

gives

βk =

((
XTX

)−1
+

(
XTX

)−1
xTk xk

(
XTX

)−1
1− xk (XTX)

−1
xTk

)(
XTy − xTk yk

)
= β̂ +

(
XTX

)−1
xTk

(
−yk +

xkβ̂ − xk
(
XTX

)−1
xTk yk

1− xk (XTX)
−1

xTk

)

= β̂ +
(
XTX

)−1
xTk

(
xkβ̂ − yk

1− xk (XTX)
−1

xTk

)
. (22.49)

The difference between the withheld sample yk and its least squares prediction xkβk is
therefore

yk − xkβk = yk − xkβ̂ −
xk
(
XTX

)−1
xTk

(
xkβ̂ − yk

)
1− xk (XTX)

−1
xTk

= yk − xkβ̂ +
αk

1− αk

(
yk − xkβ̂

)
=
yk − xkβ̂

1− αk
, (22.50)

where we define the scalar
αk = xk

(
XTX

)−1
xTk . (22.51)

Exercise 11.1, page 45

If the comparisons are independent, then the experimentwise error rate is related to the
per-comparison significance level by

αpc = 1− (1− αE)1/M . (22.52)

An experimentwise error rate of αE = 5% therefore corresponds to a per-comparison
significance level of 0.1%:

1 > nsamp = 30; nvarb = 50; alpha.e = 0.05; rho.obs = 0.6
2 > alpha.pc = 1 - (1-alpha.e)ˆ(1/nvarb)
3 > alpha.pc
4 [1] 0.00102534

156 ANSWERS TO EXERCISES

Under the null hypothesis of independent and normally distributed variables, the statistic

T =
ρ̂√

1− ρ̂2
√
N − 2, (22.53)

has a t distribution with N − 2 degrees of freedom. The question is ambiguous because
either the maximum value or maximum absolute value are appropriate, so we compute
critical t-values and critical correlations for both interpretations:

1 > t.1tail = qt(alpha.pc ,nsamp-2,lower.tail=FALSE)
2 > t.2tail = qt(alpha.pc/2,nsamp-2,lower.tail=FALSE)
3 > rho.1tail = t.1tail / sqrt(nsamp-2+t.1tailˆ2)
4 > rho.2tail = t.2tail / sqrt(nsamp-2+t.2tailˆ2)
5 > rho.1tail
6 [1] 0.5403947
7 > rho.2tail
8 [1] 0.5693206

Both critical correlations (i.e, 0.54, 0.57) are less than the observed correlation of 0.6,
so we conclude that the predictor is significant at the 5% significance level, regardless of
whether the forecaster is looking at the maximum, or maximum absolute, correlation.

Alternatively, we can compute the actual experimentwise error rate and compare with
5%. The observed correlation of 0.6 corresponds to a t-value of

1 > tval = rho.obs*sqrt(nsamp-2)/sqrt(1-rho.obsˆ2)
2 > tval
3 [1] 3.968627

The area to the right of this value is

1 > alpha.pc.1tail = pt(tval,nsamp-2,lower.tail=FALSE)
2 > alpha.pc.1tail
3 [1] 0.0002285276

Therefore, the experimentwise error rate is

1 > alpha.pc.2tail = 2*alpha.pc.1tail
2 > alpha.e.1tail = 1 - (1-alpha.pc.1tail)ˆnvarb
3 > alpha.e.2tail = 1 - (1-alpha.pc.2tail)ˆnvarb
4 > alpha.e.1tail
5 [1] 0.01136264
6 > alpha.e.2tail
7 [1] 0.02259872

157

Both of these error rates are less than 5%, so the predictor is significant at the 5% level
even after taking screening into account, in agreement with the previous analysis.

If the variables are not independent, then we can use the Bonferroni bound αE ≤Mαpc:

1 > alpha.e.bonferroni.1tail = nvarb * alpha.pc.1tail
2 > alpha.e.bonferroni.2tail = nvarb * alpha.pc.2tail
3 > alpha.e.bonferroni.1tail
4 [1] 0.01142638
5 > alpha.e.bonferroni.2tail
6 [1] 0.02285276

Both values of αE are less than 5% and hence imply significance.

Exercise 11.2, page 46

The significance test is invalid because the selection of the four forecasts is based on the
same data as used to test significance. The experimentwise error rate cannot be estimated
from αE = 1− (1− αpc)M because this equation pertains to selecting a single maximum
and determining the probability of achieving that value. In contrast, we are choosing the
best four out of nine variables, then we are applying some other calculation on those
variables (i.e., computing their mean, and then computing the correlation using that mean).

To estimate the experimentwise error rate, we perform a numerical simulation. First,
we generate random numbers to simulate 20 years of 9 forecasts, plus 20 years of ob-
servations. By construction, the random numbers are independent, so the true correlation
between any pair of variables is zero. The correlation between each of the 9 “forecasts”
and “observations” are computed and ranked, the four forecasts with largest correlation are
averaged to construct a single forecast, and the correlation between this 4-member mean
and “observations” is computed. This procedure is repeated 10,000 times to produce an
empirical distribution for the correlation skill. An R code for this analysis is the following:

158 ANSWERS TO EXERCISES

1 > set.seed(1)
2 > ntot = 20
3 > ntrials = 10000
4 > nmod = 9
5 > nsel = 4
6 > obs = rnorm(ntot)
7 > cor.skill = numeric(ntrials)
8 > for (nt in 1:ntrials) {
9 + frcs = array(rnorm(ntot*nmod),dim=c(ntot,nmod))

10 + cor.xy = as.numeric(cor(frcs,obs))
11 + npic = order(cor.xy,decreasing=TRUE)
12 + frcs.mean = rowMeans(frcs[,npic[1:nsel]])
13 + cor.skill[nt] = cor(frcs.mean,obs)
14 + }
15 > cor.95 = quantile(cor.skill,probs=0.95)
16 > cor.95
17 95%
18 0.6145697
19 > pval.e = sum(cor.skill >= 0.55)/ntrials
20 > pval.e
21 [1] 0.1166

A histogram of the resulting correlations of the 4-member mean is shown in fig. 22.15.
First, we see that the correlations are skewed above zero, even though none of the forecasts
have skill. Second, the ninety-fifth percentile, indicated by the vertical dashed line, shows
that the correlation would have to exceed 0.61 in order to reject the null hypothesis of
zero correlation at the 5% level. Consistent with this, the experimentwise p-value for this
procedure is 11.7% (i.e., greater than 5%). Therefore, the correlation skill of 0.55 is not
significant when the selection process has been taken into account.

Exercise 11.3, page 46

The significance test is not valid because it did not account for the fact that the investigator
looked at 3 correlations and chose the largest. The probability of finding at least one out
of three independent correlations to exceed the 5% level is

pe = 1− (1− 0.05)3 ≈ 14%. (22.54)

This calculation is not realistic because the correlations are not independent (e.g., the 3
correlations are computed using exactly the same observations). The Bonferroni bound,
which can be applied even if the variables are dependent, implies αE ≤ Mαpc, or αE ≤
15%. Both calculations suggest that the experimentwise error rate for this analysis could
be as high as 14-15%, so there is little basis to assume the variable is significant.

To ensure an experimentwise error rate of 5%, the Bonferroni bound implies that the
comparisonwise error rate should be

pc = 0.05/3 ≈ 1.7%. (22.55)

The critical value of the correlation for a 1.7% significance level is

159

correlation of multi−model mean

F
re

q
u
e
n
c
y

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8

0
5
0
0

1
5
0
0

2
5
0
0

Skill of Multi−Model Mean Using Best 4 out of 9

Random 20−year correlations

Figure 22.15 Histogram of correlation coefficients of a multi-model forecast derived
from averaging the four most correlated “no-skill” forecasts out of nine no-skill forecasts.
The vertical dashed line indicates the ninety-fifth percentile.

1 > alpha = 0.05
2 > nyrs = 50
3 > nsel = 3
4 >
5 > pe = 1 - (1-alpha)ˆnsel
6 > pc = 1 - (1-alpha)ˆ(1/nsel)
7 > pc
8 [1] 0.01695243
9 > t.c = qt(pc/2,nyrs-2,lower.tail=FALSE)

10 > rho.c = t.c/sqrt(nyrs-2+t.cˆ2)
11 > rho.c
12 [1] 0.3362835

Therefore, the observed correlation of 0.3 is not significant, in an experimentwise sense,
when screening is taken into account.

Also, one normally expects a predictor to become less useful as the lead time increases.
However, in this example, the correlation is strong in October and weak in the months in
closer proximity (November and December). Since this behavior contradicts expectations
based on past experience and physical models, the investigator is obliged to explain how
the value in October is a better predictor than the values in November or December.

160 ANSWERS TO EXERCISES

Exercise 12.1, page 49

Y′ = W−1U̇ṠV̇T (22.56)

=

(
1√
N − 1

W−1U̇Ṡ

)(√
N − 1V̇T

)
(22.57)

= EFT (22.58)

where

E =
1√
N − 1

W−1U̇Ṡ (22.59)

F =
√
N − 1V̇ (22.60)

The PCs satisfy

1

N − 1
FTF = I. (22.61)

Exercise 12.2, page 50

A function that performs PCA is the following:

161

1 eof.latlon.simple <- function(lon, lat, data.array, neof=30) {
2 # COMPUTE PRINCIPAL COMPONENTS OF A DATA ARRAY.
3 # INPUT:
4 # LON[NLON]: VECTOR SPECIFYING LONGITUDES
5 # LAT[NLAT]: VECTOR SPECIFYING LATITUDES
6 # DATA.ARRAY[NLON,NLAT,NTOT] OR DATA.ARRAY[NLON*NLAT,NTOT]:
7 # THE DATA ARRAY IN [SPACE1,SPACE2,TIME] OR [SPACE,TIME] FORMAT
8 # NEOF = NUMBER OF SPATIAL EOFS (WITH MASK) TO BE OUTPUTTED. DEFAULT = 30
9 # OUTPUT LIST:

10 # $EOF[NLON*NLAT,NEOF]: THE FIRST NEOF SCALED EOFS
11 # $PC[NTOT,NEOF]: THE PCS, NORMALIZED TO UNIT VARIANCE
12 # $FEXPVAR: FRACTION OF EXPLAINED VARIANCE FOR EACH EOF (ALL OF THEM).
13 # $FEXPVAR.CI: CONFIDENCE INTERVALS FOR FRACTION OF EXPLAINED VARIANCE.
14 # $EOFI[NLON*NLAT,NEOF]: PSEUDO INVERSE OF EOF (I.E.,T(EOFI) %*% EOF = I)
15 # $NEOF: MINIMUM OF (NEOF IN ARGUMENT LIST, RANK OF DATA.ARRAY)
16

17 # DEFINE PARAMETERS
18 nlon = length(lon)
19 nlat = length(lat)
20 ntot = length(data.array)/(nlon*nlat)
21 if (length(data.array) %% nlon*nlat != 0)
22 stop("data.array dimension not integral multiple of nlon*nlat")
23

24 # DEFINE WEIGHTING
25 weight =rep(sqrt(cos(lat*pi/180)),each=nlon)
26

27 # IDENTIFY MISSING OR 0-WEIGHTED DATA
28 dim(data.array) = c(nlon*nlat,ntot)
29 lbad = is.na(rowSums(data.array)) | weight == 0
30

31 data.array = data.array - rowMeans(data.array) # REMOVE CLIMATOLOGY
32 data.array = data.array * weight # NORMALIZE/WEIGHT THE VARIABLES
33

34 # COMPRESS DATA BY ELIMINATING MISSING GRID POINTS
35 data.array = data.array[!lbad,]
36 ndef = sum(!lbad)
37

38 # COMPUTE SVD
39 mmin = min(ndef,ntot,neof)
40 data.svd = svd(data.array,nu=mmin,nv=mmin)
41

42 fexpvar = data.svd$dˆ2/sum(data.svd$dˆ2) # COMPUTE FEXPVAR
43

44 # COMPUTE CONFIDENCE INTERVAL OF FEXPVAR
45 fexpvar.ci = cbind(fexpvar * (1 + sqrt(2/ntot)) , fexpvar * (1 - sqrt(2/ntot)))
46

47 # COMPUTE PCS
48 pc = sqrt(ntot-1)*data.svd$v[,(1:mmin)]
49

50 # FILL IN MISSING POINTS IN EOF
51 eof = array(NA,dim=c(nlon*nlat,mmin))
52 eofi = array(NA,dim=c(nlon*nlat,mmin))
53 for (n in 1:mmin) eof [!lbad,n] = data.svd$u[,n]/weight[!lbad]*data.svd$d[n]/sqrt(ntot-1)
54 for (n in 1:mmin) eofi[!lbad,n] = data.svd$u[,n]*weight[!lbad]/data.svd$d[n]*sqrt(ntot-1)
55

56 list(eof=eof,pc=pc,fexpvar=fexpvar,fexpvar.ci=fexpvar.ci,eofi=eofi,neof=mmin)
57 }

Exercise 12.3, page 50

The plots should be similar to those shown in the notes.

Exercise 12.4, page 51

(a) bTb = aTa/aTa = 1.

162 ANSWERS TO EXERCISES

(b)

var[r] = var

[
aTx√
aTa

]
=

(
1√
aTa

)2

var[aTx] =
aTΣa

aTa
. (22.62)

(c) Substitute a = Uã in the above expression:

var[r] =
aTΣa

aTa
=

aTUΛUTa

aTa
=

ãTΛã

ãTUTUã
=

ãTΛã

ãT ã
. (22.63)

Λ is diagonal, so variance of r can be written as

var[r] =
ã21λ1 + · · ·+ ã2MλM
ã21 + · · ·+ ã2M

(22.64)

(d) Because λ1 > λ2 > · · · > λM , we have the inequality

ã21λ1 + · · ·+ ã2MλM
ã21 + · · ·+ ã2M

<
ã21λ1 + · · ·+ ã2Mλ1
ã21 + · · ·+ ã2M

= λ1

(
ã21 + · · ·+ ã2M
ã21 + · · ·+ ã2M

)
= λ1. (22.65)

This maximum is obtained when

ã =

1
0
...
0

 . (22.66)

This solution corresponds to the vector a equal to the leading eigenvector of Σ.

(e) Let the SVD be X = USVT . Then, the sample covariance matrix becomes

1

N − 1
XTX =

1

N − 1
VSTSVT . (22.67)

This implies that the orthogonal eigenvector matrix of Σ is V, and the eigenvalues are
related to the singular values as

λ̂i =
1

N − 1
s2i . (22.68)

(f) The leading principal component maximizes the variance of a standardized linear com-
bination.

Exercise 13.1, page 55

An R code for doing the Livezey-Chen test is the following:

163

1 livezey.chen = function(lon,lat,xdata,ydata,ntrials=1000,alpha=0.05) {
2 ### PERFORMS THE LIVEZEY-CHEN FIELD SIGNIFICANCE TEST
3 # INPUT:
4 # LON[NLON]: LONGITUDE OF THE FIELD DATA
5 # LAT[NLAT]: LATITUDE OF THE FIELD DATA
6 # XDATA[NLON,NLAT,NTOT]: DATA ARRAY FOR THE FIELD
7 # YDATA[NTOT]: REFERENCE TIME SERIES
8 # NTRIALS: NUMBER OF MONTE CARLO TRIALS (DEFAULT = 10000)
9 # ALPHA: SIGNIFICANCE LEVEL OF THE TEST (DEFAULT = 5%)

10 # OUTPUT:
11 # HISTOGRAM OF AREAS WITH SIGNIFICANT CORRELATIONS
12 # LIST:
13 # $CRIT.NULL: SIGNIFICANCE THRESHOLD FROM LIVEZEY-CHEN TEST
14 # $SIG.AREA.OBS: PERCENTAGE AREA WITH SIGNIFICANT CORRELATIONS
15

16 nlon = length(lon)
17 nlat = length(lat)
18 ntot = length(ydata)
19 dim(xdata) = c(nlon*nlat,ntot)
20

21 area.frac = rep(cos(lat*pi/180),each=nlon)
22 lgood = !is.na(xdata[,1])
23 area.frac[!lgood] = NA
24 area.frac = area.frac/sum(area.frac,na.rm=TRUE)
25

26 cor.map = as.numeric(cor(t(xdata),ydata))
27 sig.area.obs = sum(area.frac[abs(cor.map) > 2/sqrt(ntot)],na.rm=TRUE)*100
28

29 perc.mc = numeric(ntrials)
30 for (n in 1:ntrials) {
31 signif.goodonly = abs(cor(t(xdata[lgood,]),rnorm(ntot))) > 2/sqrt(ntot)
32 perc.mc[n] = sum(area.frac[lgood][signif.goodonly])*100
33 }
34 crit.null = quantile(perc.mc,probs=1-alpha)
35 perc.hist = hist(perc.mc,breaks=nbreaks,plot=FALSE)
36 xrange = range(perc.hist$breaks,sig.area.obs)
37 xlab.say = paste(’Percent Area with Significant Correlations (p<’,alpha,’)’,sep=’’)
38 hist(perc.mc,col=’grey70’,xlab=xlab.say,ylab=’count’,xlim=xrange,main="")
39 abline(v=crit.null,lwd=2,col=’grey30’,lty=’dashed’)
40 text(crit.null,mean(par()$yaxp[1:2]),’95%\npercentile’,pos=2,cex=1.2)
41 abline(v=sig.area.obs,lwd=2)
42 text(sig.area.obs,mean(par()$yaxp[1:2]),paste(’obs fraction= ’,round(sig.area.obs),’%’,sep=’’),pos=4,cex=1.2)
43 ftitle.top = ’Percent Area with Significant Correlations’
44 title(ftitle.top,line=2.0)
45 list(crit.null=crit.null,sig.area.obs=sig.area.obs)
46 }

The figure should look like fig. 13.4 in the lecture notes. State the values of crit.null and
sig.area.obs that you obtain.

Exercise 13.2, page 55

An R code that performs the permutation test is the following:

164 ANSWERS TO EXERCISES

1 fieldsig.permutation = function(lon,lat,xdata,ydata,ntrials=1000,alpha=0.05) {
2 ### PERFORMS PERMUTATION FIELD SIGNIFICANCE TEST
3 # INPUT:
4 # LON[NLON]: LONGITUDE OF THE FIELD DATA
5 # LAT[NLAT]: LATITUDE OF THE FIELD DATA
6 # XDATA[NLON,NLAT,NTOT]: DATA ARRAY FOR THE FIELD
7 # YDATA[NTOT]: REFERENCE TIME SERIES
8 # NTRIALS: NUMBER OF TRIALS (DEFAULT = 10000)
9 # ALPHA: SIGNIFICANCE LEVEL OF THE TEST (DEFAULT = 5%)

10 # OUTPUT:
11 # HISTOGRAM OF AREAS WITH SIGNIFICANT CORRELATIONS
12 # LIST:
13 # $CRIT.NULL: SIGNIFICANCE THRESHOLD FROM LIVEZEY-CHEN TEST
14 # $SIG.AREA.OBS: PERCENTAGE AREA WITH SIGNIFICANT CORRELATIONS
15

16 nlon = length(lon)
17 nlat = length(lat)
18 ntot = length(ydata)
19 dim(xdata) = c(nlon*nlat,ntot)
20

21 area.frac = rep(cos(lat*pi/180),each=nlon)
22 lgood = !is.na(xdata[,1])
23 area.frac[!lgood] = NA
24 area.frac = area.frac/sum(area.frac,na.rm=TRUE)
25

26 cor.map = as.numeric(cor(t(xdata),ydata))
27 sig.area.obs = sum(area.frac[abs(cor.map) > 2/sqrt(ntot)],na.rm=TRUE)*100
28

29 perc.mc = numeric(ntrials)
30 for (n in 1:ntrials) {
31 temp = TRUE
32 while(temp) {
33 nperm = sample(nyrs)
34 temp = any(nperm == 1:nyrs)
35 }
36 signif.goodonly = abs(cor(t(xdata[lgood,]),ydata[nperm])) > 2/sqrt(ntot)
37 perc.mc[n] = sum(area.frac[lgood][signif.goodonly])*100
38 }
39 crit.null = quantile(perc.mc,probs=1-alpha)
40 perc.hist = hist(perc.mc,plot=FALSE)
41 xrange = range(perc.hist$breaks,sig.area.obs)
42 xlab.say = paste(’Percent Area with Significant Correlations (p<’,alpha,’)’,sep=’’)
43 hist(perc.mc,col=’grey70’,xlab=xlab.say,ylab=’count’,xlim=xrange,main="")
44 abline(v=crit.null,lwd=2,col=’grey30’,lty=’dashed’)
45 text(crit.null,mean(par()$yaxp[1:2]),’95%\npercentile\nUnder H0’,pos=2,cex=1.2)
46 abline(v=sig.area.obs,lwd=2)
47 text(sig.area.obs,mean(par()$yaxp[1:2]),paste(’obs fraction= ’,round(sig.area.obs),’%’,sep=’’),pos=4,cex=1.2)
48 ftitle.top = ’Percent Area with Significant Correlations Under Null Hypothesis’
49 title(ftitle.top,line=2.0)
50 list(crit.null=crit.null,sig.area.obs=sig.area.obs,ntrials=ntrials)
51 }

The figure should look like fig. 13.4 in the lecture notes.

Exercise 13.3, page 56

MIC can be computed as follows:

165

1 r.sqr = as.numeric(rep(NA,tem.eof$neof))
2 for (n in 1:tem.eof$neof) if (nyrs -n - 1 - 1 > 0) r.sqr[n] =
3 summary(lm(nino34˜tem.eof$pc[,1:n]))$r.square
4

5 n = 1:tem.eof$neof
6 mic.rsqr = log(1-r.sqr)+
7 (nyrs+1)*(n+1)/(nyrs-(n+1)-2) -
8 (nyrs+1)/(nyrs-1-2) -
9 (nyrs+1)*(n)/(nyrs-n-2)

Exercise 13.4, page 56

Exercise 13.5, page 56

An R code for calculating FDR is the following:

1 fdr.fieldsig = function(y,x,fdr=0.1) {
2 ## APPLIES FALSE DISCOVERY RATE TO A CORRELATION MAP
3 ## INPUT:
4 # Y[NTOT]: REFERENCE TIME SERIES
5 # X[NTOT,MTOT]: FIELD TIME SERIES
6 # FDR: FALSE DISCOVERY RATE
7 ## OUTPUT:
8 # LREJECT[MTOT]: LOGICAL VECTOR INDICATING REJECTIONS
9

10 ## DEFINE SHAPE OF ARRAYS
11 ntot = length(y)
12 if (length(x) %% ntot != 0) stop(’x not dimensioned correctly’)
13 mtot = length(x)/ntot
14 dim(x) = c(ntot,mtot)
15

16 ## COMPUTE CORRELATION MAP AND ASSOCIATED P-VALUES
17 dof = ntot - 2
18 cor.map = as.numeric(cor(x,y))
19 tval = abs(cor.map) * sqrt(dof / (1-cor.mapˆ2))
20 pval = 2 * pt(tval,dof,lower.tail=FALSE)
21

22 ## SCREEN OUT MISSING DATA
23 lgood = !is.na(x[1,])
24 ngood = sum(lgood)
25

26 n.order = order(pval)
27

28 p.upper = (1:ngood)/ngood*alpha
29

30 lreject = rep(NA,mtot)
31 lreject[n.order[1:ngood]] = pval[n.order[1:ngood]] <= p.upper
32

33 lreject
34

35 }

The plot should be similar to fig. 13.8 of the notes.

166 ANSWERS TO EXERCISES

Exercise 14.1, page 59

To minimize SSEW , differentiate (14.2) with respect to B and set the result to zero. The
derivative is

∂SSEW
∂Bab

= (−2)

S∑
s′=1

N∑
n=1

Wbs′ (Xna)

(
Yns′ −

M∑
m=1

XnmBms′

)
= (−2)W (Y −XB)

T
X

Because W is positive definite, the derivative vanishes if and only if

(Y −XB)
T

X = 0. (22.69)

The solution is independent of W and identical to the least squares estimate.

Exercise 14.2, page 61

An R function that computes MIC is the following:

167

1 micc.gaussian = function(x,y,equal.dim=TRUE,alpha=0.05) {
2 ### THIS FUNCTION COMPUTES CORRECTED MUTUAL INFORMATION CRITERION (MICC)
3 ### FOR Y = XB + E
4 ### INPUT:
5 ## X[NSAMP,XDIM]: X DATA ARRAY, OFTEN FORMATTED AS [TIME,EOF]
6 ## Y[NSAMP,YDIM]: Y DATA ARRAY, OFTEN FORMATTED AS [TIME,EOF]
7 ## EQUAL.DIM: LOGICAL INDICATING WHETHER
8 ## (TRUE) EQUAL NUMBER OF X’S, Y’S CHOSEN: MIC[MIN(XDIM,YDIM)];
9 ## (FALSE) MIC FOR ALL TRUNCATIONS ARE COMPUTED: MIC[XDIM,YDIM]

10 ### OUTPUT: LIST (DIMENSIONS DEPEND ON EQUAL.DIM)
11 ## $MICC: MIC VALUES
12 ## $PENALTY: THE PENALTY TERM IN MIC
13 ## $CRIT: SIGNIFICANCE THRESHOLD OF MIC
14

15 if (is.null(dim(x))) dim(x) = c(length(x),1)
16 if (is.null(dim(y))) dim(y) = c(length(y),1)
17

18 nsamp = dim(x)[1]
19 nx.dim = dim(x)[2]
20 ny.dim = dim(y)[2]
21

22 if (nsamp != dim(y)[1]) stop(’x and y have inconsistent leading dimensions’)
23

24 cov.xy = cov(cbind(x,y))
25

26 if (equal.dim) {
27 max.dim = min(nsamp-1,nx.dim,ny.dim)
28 micc = as.numeric(rep(NA,max.dim))
29 micc.penalty = as.numeric(rep(NA,max.dim))
30 micc.crit = as.numeric(rep(NA,max.dim))
31 for (n in 1:max.dim) if (nyrs -2*n-2>0){
32 nall = c(1:n,1:n+nx.dim)
33 micc.penalty[n] = (nyrs+1) * (2*n/(nyrs-2*n-2)-2*n/(nyrs-n-2))
34 micc.crit[n] = - qchisq(alpha,nˆ2,lower.tail=FALSE)/(nyrs-(2*n+3)/2) + micc.penalty[n]
35 micc[n] = log(det(cov.xy[nall,nall])) -
36 log(det(cov.xy[1:n,1:n,drop=FALSE])) -
37 log(det(cov.xy[1:n+nx.dim,1:n+nx.dim,drop=FALSE])) +
38 micc.penalty[n]
39 }
40 } else {
41 [LEAVE BLANK]
42 }
43

44 list(micc=micc,penalty=micc.penalty,crit=micc.crit)
45

46 }

Exercise 14.3, page 61

The MIC values for prefix= ”Sep2Dec” are

168 ANSWERS TO EXERCISES

1 > micc
2 [1] -2.4045042 -3.0197617 -3.1685965 -3.5064433
3 [5] -3.8591420 -3.8506078 -3.6629287 -3.3292924
4 [9] -2.6104376 -2.2448622 -1.3491189 -0.4359491
5 [13] 1.2171204 3.1035460 5.3236336 8.2142499
6 [17] 11.2348781 15.7603783 20.8051143 27.8231220
7 [21] 36.3598677 46.9349010 59.7489209 76.9114337
8 [25] 98.6326493 128.3214484 169.2004940 226.5889051
9 [29] 310.8455055 450.1993069 707.8745492 1318.4198146

10 [33] 4431.5898013 NA

Exercise 14.4, page 61

A code for making predictions and plotting results is the following:

1 ##################################
2 ######### PLOT PREDICTED AND OBSERVED FIELDS
3 ##################################
4 beta.hat = chol2inv(chol(cov(pc[mon.init,year.keep,1:nmin]))) %*% cov(pc[mon.init,year.keep,1:nmin],pc[mon.targ,year.keep,1:nmin])
5 ypred.tilde = pc[mon.init,,1:nmin] %*% beta.hat
6

7 cbar.breaks = c(-3.5, -3.0, -2.5, -2.0, -1.5, -1.0, -0.5, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.5)
8 cbar.cols = c("white","white","white","white","white","white","white","#BEBEBE","#A7A7A7","#909090","#7A7A7A","#636363","#4D4D4D")
9 cbar.list = list(plot.breaks=cbar.breaks,plot.cols=cbar.cols)

10

11 if (leave.data.out) yhat.say = ’Prediction’ else yhat.say = ’Regression Fit’
12

13 for (year in c(1981,1982,1988)) {
14 nypic = year - iyst + 1
15 fout = paste(’ersstv5.pred’,year,prefix,sep=’’)
16 if (lplotfile) pdf.eps(fout,’pdf’,height=3)
17 ypred = as.numeric(eof.list$eof[,1:nmin] %*% ypred.tilde[nypic,1:nmin])
18 if (year == 1981) cbar.list$plot.breaks = cbar.breaks/2 else cbar.list$plot.breaks = cbar.breaks
19 par(mfrow=c(1,2),mar=c(0.5,0.5,2,0.5))
20 plot_latlon_bw(lon.sst,lat.sst,sst.full[,mon.targ,nypic],lmaskzero=FALSE,shrinkdomain=TRUE,suppress.axislab=TRUE,plot.legend=FALSE,cbar.list=cbar.list)
21 title(main=paste(’Observed’,month.abb[mon.targ],year),line=0.5)
22 plot_latlon_bw(lon.sst,lat.sst,ypred,lmaskzero=FALSE,shrinkdomain=TRUE,suppress.axislab=TRUE,plot.legend=FALSE,cbar.list=cbar.list)
23 title(main=paste(yhat.say,’ for ’,year,’ (’,month.abb[mon.init],’ IC; ’,nmin,’EOFs)’,sep=’’),line=0.5)
24 if (lplotfile) dev.off()
25 }

169

 −1

 −0.25

 0.25

 0.25

 0.25

 0.25
 0.5

 0.5
 0.5

 0.5

 −1

 −0.25

 0.25

 0.25

 0.25

 0.25
 0.5

 0.5
 0.5

 0.5

Observed Dec 1981

 −0.25 −0.25

Regression Fit for 1981 (Sep IC; 5EOFs)

 −1

 −1

 −0.5

 −0.5

 0.5

 0.5

 0.5

 0.5

 1 1.5

 2
 3

 −1

 −1

 −0.5

 −0.5

 0.5

 0.5

 0.5

 0.5

 1 1.5

 2
 3

Observed Dec 1982

 −0.5

 −0.5

 0.5

 0.5

 1 1.5 2

 −0.5

 −0.5

 0.5

 0.5

 1 1.5 2

Regression Fit for 1982 (Sep IC; 5EOFs)

 −2 −1.5 −1

 −1
 −0.5

 −0.5

 −0.5

 −0.5

 0.5

 0.5

 0.5 0.5

 −2 −1.5 −1

 −1
 −0.5

 −0.5

 −0.5

 −0.5

 0.5

 0.5

 0.5 0.5

Observed Dec 1988

 −1.5 −1

 −0.5

 −0.5

 −1.5 −1

 −0.5

 −0.5

Regression Fit for 1988 (Sep IC; 5EOFs)

Figure 22.16 Comparison between the predicted (left) and observed (right) December
anomaly SSTs for a neutral (top; 1981), warm (middle; 1982), and cold (bottom; 1988)
ENSO year. The contour label is in units of degrees Celcius. The prediction is based on 22
EOFs with September initial conditions.

Exercise 15.1, page 65

The plot of MIC should be consistent with fig. 15.5 from the notes. The first 5 rows and
columns are

170 ANSWERS TO EXERCISES

1 > mic[1:5,1:5]
2 [,1] [,2] [,3] [,4] [,5]
3 [1,] -0.001874504 -0.05766078 -0.2613093 -0.2377176 -0.2327597
4 [2,] -0.198177256 -0.42024605 -0.6405989 -0.5908572 -0.5438949
5 [3,] -0.185517754 -0.51092279 -0.6917943 -0.6108790 -0.6101217
6 [4,] -0.149274572 -0.65337786 -0.9198444 -0.8214891 -0.7746863
7 [5,] -0.111265453 -0.61204103 -0.8646096 -0.7910013 -0.6999580

The minimum occurs at TX = 4, TY = 3 and is -0.9198444.

Exercise 15.2, page 65

An R function that performs all of CCA is given below. For TX = 4, TY = 3, the canonical
correlations are

1 > cca.list$can.cor
2 [1] 0.73858363 0.66234594 0.05366594

171

1 cca.pca = function(fx,fy,ex,ey,tx=NULL,ty=NULL) {
2 ##
3 ## PERFORMS CANONICAL CORRELATION ANALYSIS ON X AND Y.
4 ## X AND Y ARE ASSUMED TO BE IN THE FOLLOWING FORMS:
5 ## X = FX %*% EXˆT ### AND ### Y = FY %*% EYˆT
6 ## WHERE FX AND FY HAVE COVARIANCE MATRICES = I
7 ## FOR EXAMPLE: FROM PRINCIPAL COMPONENT ANALYSIS
8 ## IF TX OR TY = NULL, THEN BOTH (TX,TY) SELECTED USING MIC
9 ## INPUT:

10 # FX[NTOT,MX]: TIME SERIES FOR X-COMPONENTS: ORTHOGONAL
11 # FY[NTOT,MY]: TIME SERIES FOR Y-COMPONENTS: ORTHOGONAL
12 # EX[SX,MX]: SPATIAL STRUCTURES OF THE X-COMPONENTS
13 # EY[SY,MY]: SPATIAL STRUCTURES OF THE Y-COMPONENTS
14 # TX: TRUNCATION FOR X (TX <= MX); IF NULL, TX IS SELECTED
15 # TY: TRUNCATION FOR Y (TY <= MY); IF NULL, TY IS SELECTED
16 ## OUTPUT LIST:
17 # MIC[MX,MY]: MUTUAL INFORMATION CRITERION
18 # NMIN[1,2]: VALUES OF TX,TY THAT MINIMIZES MIC
19 # CAN.COR[MIN(TX,TY)]: CANONICAL CORRELATIONS
20 # RX[NTOT,MIN(TX,TY)]: CANONICAL VARIATES FOR X
21 # RY[NTOT,MIN(TX,TY)]: CANONICAL VARIATES FOR Y
22 # PX[SX ,MIN(TX,TY)]: CANONICAL LOADING VECTORS FOR X
23 # PY[SY ,MIN(TX,TY)]: CANONICAL LOADING VECTORS FOR Y
24 # QX.TILDE[TX,MIN(TX,TY)]: WEIGHTING VECTORS FOR X-FEATURES
25 # QY.TILDE[TY,MIN(TX,TY)]: WEIGHTING VECTORS FOR Y-FEATURES
26 # TX, TY: SELECTED VALUES OF TX AND TY
27 ##
28

29 ntot = dim(fx)[1]
30 mx = dim(fx)[2]
31 my = dim(fy)[2]
32 if (ntot != dim(fy)[1]) stop(’fx and fy have inconsistent time dimension’)
33

34 micc = array(NA,dim=c(mx,my))
35 for (ty in 1:mx) for (tx in 1:my) if (ntot-tx-ty-2 > 0) {
36 penalty = (ntot+1)*((tx+ty)/(ntot-tx-ty-2) - tx/(ntot-tx-2) - ty/(ntot-ty-2))
37 xy.svd = svd(cov(fx[,1:tx],fy[,1:ty]))
38 micc [tx,ty] = sum(log(1-xy.svd$dˆ2)) + penalty
39 }
40

41 nmin = which(micc == min(micc,na.rm=TRUE),arr.ind=TRUE)
42 tx = nmin[1]
43 ty = nmin[2]
44 cov.xy = cov(fx[,1:tx],fy[,1:ty])
45 xy.svd = svd(cov.xy)
46 can.cor = xy.svd$d
47 qx = xy.svd$u
48 qy = xy.svd$v
49 rx = fx[,1:tx] %*% qx
50 ry = fy[,1:ty] %*% qy
51 px = ex[,1:tx] %*% qx
52 py = ey[,1:ty] %*% qy
53

54 list(can.cor=can.cor,rx=rx,ry=ry,px=px,py=py,tx=tx,ty=ty,mic=micc)
55

56 }

Exercise 15.3, page 65

see fig. ?? of the lecture notes.

Exercise 15.4, page 65

see figs. 15.1 and 15.2 of the lecture notes.

172 ANSWERS TO EXERCISES

Exercise 15.5, page 65

1 > cca.pca.list$fexpvar.x
2 [1] 0.1678503 0.2410055 0.1668347 0.1111007
3 > cca.pca.list$fexpvar.y
4 [1] 0.1997934 0.3069071 0.2975915
5 >
6 [1] "sum exp. var. x= 0.68679126577992 from EOFs= 0.686791265779918"
7 [1] "sum exp. var. y= 0.804291929099929 from EOFs= 0.804291929099928"

Exercise 15.6, page 65

An R code that computes the 5% significance levels of the canonical correlations based on
5000 trials of Monte Carlo experiments is the following:

1 ## SIGNIFICANCE THRESHOLDS FOR CORRELATIONS
2 ntrials = 5000
3 alpha = 0.05
4 rho.mc = array(NA,dim=c(min(nx.min,ny.min),ntrials))
5 for (nt in 1:ntrials) {
6 x = array(rnorm(nyrs*nx.min),dim=c(nx.min,nyrs))
7 y = array(rnorm(nyrs*ny.min),dim=c(ny.min,nyrs))
8 rho.mc[,nt] = svd(t(svd(x - rowMeans(x))$v) %*% svd(y - rowMeans(y))$v)$d
9 }

10 rho.crit = numeric(min(nx.min,ny.min))
11 for (n in 1:min(nx.min,ny.min)) rho.crit[n] = quantile(rho.mc[n,],probs=1-alpha)

The resulting values are

1 > rho.crit
2 [1] 0.4619982 0.3083790 0.1772026

The first two canonical correlations exceed these 5% significance thresholds.

Exercise 15.7, page 65

The figures for no detrending are shown below. The big change is that the leading com-
ponent contains a strong trend component. This makes sense because trends are highly
correlated, and CCA maximizes correlation.

173

2 4 6 8 10 12 14

−
2.

5
−

1.
5

−
0.

5
0.

5
1.

0

TX (number of SST EOFs)

M
IC

TY = 1
TY = 2

TY = 3
TY = 4

TY = 5

TY = 6
TY = 7

TY = 8

TY = 9101112

●

TX = 5; TY=5

Variable Selection for CCA

DJF US Temp and DJF Pacific Ocean Temp

●●●●

●

●

●

●

●

●●●

●●

●
●●●
●
●

●●●

●
●

●
●

●
●
●●

●●●

●●●
●

●

●

●

●●●

●

●●●
●
●
●

●

●

●

●●
●
●●●
●

●

●●
●●●●●
●
●●

●

●
●

●●●●

●

●●
●●●●●●

●●

●
●●●

●

●●●●●●
●●

●

●

●
●
●
●●●

●

●●●●
●●●●

●●●

●
●
●

●

●

●

●●●
●
●

●

●
●

●

●
●
●●●●●
●
●●

●

●
●

●

●
●●●
●
●

●

●

●

●●

●

●
●●
●●●●●
●
●●●
●●
●●●
●
●

●●
●
●●●●●
●
●●●
●
●●●
●
●●●●
●●
●●●●●
●
●●
●
●●●
●●
●●●
●
●●●●●●

●

●

●●
●●●●●●●
●
●●●●
●●●●●
●
●

●

●
●
●●●●●●●●●●●●●
●●

●

●●●●●●
●
●●
●
●●●●●●●
●
●
●●●●
●

●
●●
●
●●●●●●●●
●●●●●●
●
●

●●●●

●
●
●●●●
●
●●
●
●
●
●●●●
●
●●
●●●
●●
●
●

●
●●●●
●
●●●●●
●●●
●
●●
●
●●●●●
●
●●●
●
●●●●●●

●

●
●●●●●●●●●●●
●
●●●
●
●●

●

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

index

ca
no

ni
ca

l c
or

re
la

tio
n

●

●

●

●

●

0.88

0.77

0.69

0.24

0.04

Canonical Correlations

5 SST PCs, 5 US Temp PCs, 1950−2017; NT=10000

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

DJF Loadings for Component 1 (16%)

5 SST PCs, 5 US Temp PCs, 1950−2017

 −0.1
 0.1

 0.1

 0.1

 0.2

 0.2
 0.2

 0.2

 0.2

 0.2

 0.2

 0.3

 0
.3

 0.3

 0.3
 0.3

 −0.1
 0.1

 0.1

 0.1

 0.2

 0.2
 0.2

 0.2

 0.2

 0.2

 0.2

 0.3

 0
.3

 0.3

 0.3
 0.3

DJF SST Loadings for Component 1 (13%)

174 ANSWERS TO EXERCISES

●

●●

●

●
●

●

●

●

●
●

●
●

●

●
●

●
●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●●

●
●

●
●

●

●
●

●
●

●

●
●

●

●
●

●

●
●

●●

●
●

●

●

●

1950 1960 1970 1980 1990 2000 2010

−
2

−
1

0
1

2

am
pl

itu
de

Canonical Variate 1 DJF US Temp and SST
CC= 0.88, 5 SST PCs, 5 US Temp PCs, 1950−2017

● SST US Temp

●

●

●

●
●

●●

●●

●
●

●

●●

●

●
●●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

1950 1960 1970 1980 1990 2000 2010

−
2

0
1

2

am
pl

itu
de

Canonical Variate 2 DJF US Temp and SST
CC= 0.77, 5 SST PCs, 5 US Temp PCs, 1950−2017

● SST US Temp

Exercise 15.8, page 66

Σ̃εY = (RY −RXSρ)
T

(RY −RXSρ) /(N − 1)

=
(
RT
Y RY − SρR

T
XRY −RT

Y RXSρ + SρR
T
XRXSρ

)
/(N − 1)

= I− S2
ρ, (22.70)

where we have used

RT
Y RY

N − 1
= I,

RT
XRX

N − 1
= I,

RT
Y RX

N − 1
= Sρ. (22.71)

Exercise 16.1, page 67

E[C] = 0 because E[u∗t − µ̂Y] = 0. Also

E[A] = cov [u∗t − µ̂Y] = cov [u∗t] + cov [µ̂Y] = ΣU +
1

NY
ΣU =

(
1 +

1

NY

)
ΣU .

Exercise 16.2, page 67

By the invariance property, X and Y may be re-scaled without affecting the measure.
Accordingly, normalize each variable by the standard deviation of Y :

X∗ = X/σY and Y ∗ = Y/σY . (22.72)

175

Then, var[Y ∗] = 1, and var[X∗] = σ2
X/σ

2
Y , hence

d(σ2
X , σ

2
Y) = d(σ2

X/σ
2
Y , 1). (22.73)

The last function clearly depends only on the variance ratio.

Exercise 16.3, page 67

First compute the economy SVD of Y:

Y = UY ṠY V̇T
Y

NY × S NY × T T × T T × S, (22.74)

where we assume T < min(NY , S). Now define the transformation matrix

L = V̇Y Ṡ−1Y . (22.75)

The transformed variables become

Y′ = YL = UY (22.76)
X′ = XL. (22.77)

Thus the covariance matrices for the transformed variables become

Σ̃Y =
1

NY − 1
Y

′TY′ =
1

NY − 1
I and Σ̃X =

1

NX − 1
X

′TX′. (22.78)

Substituting this into the generalized eigenvalue problem gives

(NY − 1)Σ̃X q̃ = λq̃. (22.79)

Note, this is a standard eigenvalue problem. Thus, we compute the SVD√
NY − 1XL = UXSXVT

X . (22.80)

It is straightforward to show that the eigenvectors q̃ are the columns of VX , and the eigen-
values are the squared singular values. Thus, ignoring the normalization convention, the
variates are

RX = XLVX and RY = YLVX . (22.81)

The loading vectors can be found by regression.

Exercise 16.4, page 68

As usual, taking derivatives is straightforward when the quantity is written in index nota-
tion. For notational simplicity, we temporarily suppress the X and Y subscripts. Thus, the
sum total variance is

γY = E [(ys − E[ys]−Pskrk) Wss′ (ys′ − E[ys′]−Ps′k′rk′)] . (22.82)

176 ANSWERS TO EXERCISES

Differentiating with respect to P yields

∂γY
∂Pab

= (−2)E [rbWas′ (ys′ − E[ys′]−Ps′k′rk′)] (22.83)

= (−2)W (cov[y, r]−P cov[r, r]) . (22.84)

Since W is positive definite, the derivative vanishes only if the term in parentheses van-
ishes. Setting this term to zero and solving for P yields the desired solution.

In the finite sample case, the sum total variance is

γ̇Y =
(
Ẏns −RnkPsk

)
Wss′

(
Ẏns′ −Rnk′Ps′k′

)
, (22.85)

where products of repeated indices are implicitly summed. Differentiating with respect to
P yields

∂γ̇Y
∂Pab

= (−2)RnbWas′

(
Ẏns′ −Rnk′Ps′k′

)
(22.86)

= (−2)W
(
Ẏ −RPT

)T
R (22.87)

= (−2)W
(
ẎTR−PRTR

)
. (22.88)

Since W is positive definite, the derivative vanishes only if the term in parentheses van-
ishes. Setting this term to zero and solving for P yields the desired solution.

Exercise 16.5, page 68

A useful trick is to re-write λ as

λ =
qT∆q

qTΣY q
+ 1 (22.89)

where ∆ = ΣX − ΣY . If H0 is true, then ∆ = 0 and qT∆q vanishes for all q. On
the other hand, if H0 is false, ∆ must differ from zero in at least one element. Suppose
this non-zero element occurs at the i’th diagonal element. Then, choosing q to be vector
with a one at the i’th element and zero everywhere else yields qT∆q = ∆ii, which is
non-zero by assumption. Moreover, this expression depends only on ∆ii, so the value of
the other elements of ∆ are irrelevant in this argument. Now, suppose all the diagonal
elements of ∆ vanish. IfH0 is false, then ∆ must be non-zero for at least one off-diagonal
element. Suppose ∆ij 6= 0. Then, choosing q to be a vector that has ones at the i’th
and j’th elements and zero everywhere else yields qT∆q = ∆ij , which is non-zero by
assumption. Moreover, this expression depends only on ∆ij , so the value of the other off-
diagonal elements are irrelevant. This proof exhausts all possible cases, therefore if the
hypothesis H0 is false, then λ must differ from one for at least one choice of q.

177

Exercise 16.6, page 68

Substituting Ẏ = RY ṖT
Y and using standard properties of the trace gives

‖Ẏ‖2W =
1

NY − 1
tr
[
RY PTWPRT

Y

]
= tr

[
PTWP

(
RT
Y RY

NY − 1

)]
= tr

[
PTWP

]
=

T∑
k=1

pTkWpk. (22.90)

The last equation shows that the sum total variance equals the sum of inner products of
the loading vectors with no cross terms. Thus, pTkWpk may be interpreted as the variance
explained by the k’th component.

Exercise 16.7, page 69

A function that computes MIC and performs CDA is the following

178 ANSWERS TO EXERCISES

1 cda.eof = function(xdata,ydata,eof.list) {
2 ### PERFORMS COVARIANCE DISCRIMINANT ANALYSIS ON X AND Y
3 ### INPUT:
4 ### XDATA[NX,MDIM]
5 ### YDATA[NY,MDIM]
6 ### EOF.LIST: LIST FROM EOF CALCULATION
7 ### OUTPUT:
8 ### MIC[NEOF]: MIC AS A FUNCTION OF NUMBER OF PCS
9 ### NMIN: LOCATION OF MINIMUM MIC

10 ### DISCR.RATIO[NEOF]: DISCRIMINANT RATIOS VS. NUMBER OF PCS
11 ### RX[NX,NMIN]: VARIATE TIME SERIES FOR X
12 ### RY[NY,NMIN]: VARIATE TIME SERIES FOR Y
13 ### PMAT[SPACE,NMIN]: LOADING VECTOR
14

15 neof = eof.list$neof
16 if (length(xdata) %% neof != 0) stop(’xdata not a multiple of neof’)
17 if (length(ydata) %% neof != 0) stop(’ydata not a multiple of neof’)
18 nx = length(xdata) / neof
19 ny = length(ydata) / neof
20 dim(xdata) = c(nx,neof)
21 dim(ydata) = c(ny,neof)
22

23 nmax = min(nx-1,ny-1,neof)
24

25 nt = nx + ny
26 cov.x = cov(xdata) * (nx-1)/nx
27 cov.y = cov(ydata) * (ny-1)/ny
28 cov.t = (nx * cov.x + ny * cov.y)/nt
29

30 mic = as.numeric(rep(NA,nmax))
31 penalty = as.numeric(rep(NA,nmax))
32 for (ne in 1:nmax) penalty[ne] = ne * (nx*(nx+1)/(nx-ne-2) + ny*(ny+1)/(ny-ne-2) - nt*(nt+1)/(nt-ne-2))
33 for (ne in 1:nmax) {
34 mic[ne] = nx * log(det(cov.x[1:ne,1:ne,drop=FALSE])) +
35 ny * log(det(cov.y[1:ne,1:ne,drop=FALSE])) -
36 nt * log(det(cov.t[1:ne,1:ne,drop=FALSE])) + penalty[ne]
37 }
38

39 penalty = penalty / nt
40 mic = mic / nt
41 nmin = which.min(mic)
42

43 ### rescale covariances to be unbiased
44 cov.x = cov.x * nx / (nx-1)
45 cov.y = cov.y * ny / (ny-1)
46

47 gev.list = gev(cov.x[1:nmin,1:nmin],cov.y[1:nmin,1:nmin])
48 discr.ratio = gev.list$lambda
49 rx = xdata[,1:nmin] %*% gev.list$q
50 ry = ydata[,1:nmin] %*% gev.list$q
51 pmat = eof.list$eof[,1:nmin] %*% cov.y[1:nmin,1:nmin] %*% gev.list$q
52

53 list(mic=mic,nmin=nmin,discr.ratio=discr.ratio,rx=rx,ry=ry,pmat=pmat)
54 }

The MIC values for the data is

1 > mic
2 [1] -0.19404378 -0.60912246 -0.60089462 -0.77768582 -0.97252532

Exercise 16.8, page 70

1 $discr.ratio
2 [1] 21.8064448 1.1885098 1.0114935 0.8586228 0.8169091

179

Exercise 16.9, page 70

The variates should look like those in fig. 16.3. The diagonal elements of the 20C variates
match the discriminant ratios:

1 > diag(cov(cda.eof.list$rx))
2 [1] 21.8064448 1.1885098 1.0114935 0.8586228 0.8169091
3 > diag(cov(cda.eof.list$ry))
4 [1] 1 1 1 1 1

Exercise 16.10, page 70

The loading vector should look like that in fig. 16.3.

Exercise 16.11, page 70

An R code for Monte Carlo experiments is the following:

1 ntrials = 1000
2 cov.identity = diag(1,nrow=nmin,ncol=nmin)
3 lambda.mc = array(NA,dim=c(nmin,ntrials))
4 for (nt in 1:ntrials) {
5 cov.x = rWishart(1,dof.20c-1,cov.identity)[,,1]/(dof.20c-1)
6 cov.y = rWishart(1,dof.ctr-1,cov.identity)[,,1]/(dof.ctr-1)
7 lambda.mc[,nt] = gev(cov.x,cov.y)$lambda
8 }
9 lambda.crit = array(NA,dim=c(nmin,2))

10 for (n in 1:nmin) lambda.crit[n,] = quantile(lambda.mc[n,],probs=c(alpha/2,1-alpha/2))

The percentiles are

1 > lambda.crit
2 [,1] [,2]
3 [1,] 1.1030110 1.4559969
4 [2,] 0.9907935 1.2569631
5 [3,] 0.8839713 1.1269708
6 [4,] 0.7872901 1.0173159
7 [5,] 0.6806821 0.8910988

180 ANSWERS TO EXERCISES

Exercise 16.12, page 70

The 95% percentiles as a function of T are

1 [1] "5% significance for univariate F-test= 1.59949546683544"
2 > lambda.crit
3 [1] 1.603912 2.029011 2.235836 2.562755 2.863984 3.197075
4 [7] 3.511517 3.839611 4.128509 4.473972 4.912822 5.326827
5 [13] 5.847943 6.402706 6.933168 7.538059 8.366698 9.042997
6 [19] 9.557897 10.486632 11.228660 12.446608 13.606677 14.982855
7 [25] 16.511167 18.575636 19.861070 22.171482 24.300277 27.020040

The critical values increase with dimension because each model is nested within the next,
and the algorithm maximizes the discriminant ratio for each model. Looking in the reverse
direction, as the dimension decreases, some of the parameters that were available for tuning
become constrained, so then the maximum must decrease.

Exercise 17.1, page 73

An R function that performs ANOVA on a spatial field is the following:

1 f.anova.array = function(x,nspace,nens,ncon,alpha=0.05) {
2 ### COMPUTES THE F-STATISTIC IN ANOVA FOR EACH ELEMENT IN NSPACE
3 # INPUT:
4 # X: [NSPACE,NENS,NCON] ARRAY OF DATA
5 # NSPACE: NUMBER OF SPATIAL ELEMENTS FOR INDIVIDUALLY COMPUTING F
6 # NENS: NUMBER OF ENSEMBLE MEMBERS
7 # NCON: NUMBER OF CONDITIONS
8 # ALPHA: SIGNIFICANCE LEVEL
9 # OUTPUT: LIST WITH THE FOLLOWING VARIABLES

10 # F: [NSPACE] VECTOR CONTAINING THE F-VALUES
11 # F.CRIT: THE CRITICAL F-VALUE FOR F AT THE ALPHA*100% SIGNIFICANCE LEVEL
12

13 ## COMPUTE GRAND MEAN
14 dim(x) = c(nspace,nens*ncon)
15 gmean = rowMeans(x)
16

17 ## COMPUTE ENSEMBLE MEAN
18 dim(x) = c(nspace,nens,ncon)
19 emean = array(NA,dim=c(nspace,ncon))
20 for (nc in 1:ncon) emean[,nc] = rowMeans(x[,,nc,drop=FALSE])
21

22 ## COMPUTE SIGNAL VARIANCE
23 var.sig = rowSums((emean - gmean)ˆ2) / (ncon-1)
24

25 ### COMPUTE NOISE
26 noise = array(NA,dim=c(nspace,nens,ncon))
27 for (nc in 1:ncon) noise[,,nc] = x[,,nc] - emean[,nc]
28

29 ### COMPUTE NOISE VARIANCE
30 dim(noise) = c(nspace,nens*ncon)
31 var.nos = rowSums(noiseˆ2)/ncon/(nens-1)
32

33 ### COMPUTE F
34 f = nens * var.sig / var.nos
35 f.crit = qf(alpha,ncon-1,ncon*(nens-1),lower.tail=FALSE)
36

37 list(f=f,f.crit=f.crit)
38

39 }

181

Exercise 17.2, page 74

The F-map should look like fig. 18.1 in the notes. The summary is

1 > summary(fval)
2 Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s
3 1.512 2.698 3.700 4.064 4.918 32.843 3720

Exercise 17.3, page 74

The results should like figure 18.1 from the notes.

Exercise 17.4, page 75

Generally, F values decay as the number ensemble members decreases and as the lead time
decreases.

Exercise 18.1, page 78

An R code for estimating significance levels of the eigenvalues from PrCA is the following:

182 ANSWERS TO EXERCISES

1 prca.null.fixdim = function(ndim,ncon,nens,alpha=0.01,ntrial=10000) {
2 ## ESTIMATES SIGNIFICANCE LEVEL OF THE ALL EIGENVALUES FROM PRCA/MANOVA
3 ## FOR FIXED TRUNCATION NDIM
4 ## BY MONTE CARLO METHODS
5 ## INPUT:
6 # NDIM: DIMENSION OF THE RANDOM VECTOR
7 # NCOM: NUMBER OF CONDITIONS (E.G., NUMBER OF YEARS)
8 # NENS: NUMBER OF ENSEMBLE MEMBERS (E.G., NUMBER OF REPITITIONS)
9 # ALPHA: DESIRED SIGNIFICANCE LEVELS (CAN BE MORE THAN ONE)

10 # NTRIALS: NUMBER OF MONTE CARLO TRIALS
11 ## OUTPUT:
12 # EVAL.CRIT[2,NDIM]: (alpha,1-alpha) SIGNIFICANCE THRESHOLDS FOR EACH EIGENVALUE
13

14 eval.max = array(NA,dim=c(ndim,ntrial))
15

16 dof.sig = ncon - 1
17 dof.nos = ncon*(nens-1)
18 for (nt in 1:ntrial) {
19 x = array(rnorm(ndim*ncon*nens),dim=c(ndim*ncon,nens))
20 x.emean = rowMeans(x)
21 x.noise = x - x.emean
22

23 dim(x.emean) = c(ndim,ncon)
24 cov.sig = nens * cov(t(x.emean))
25

26 dim(x.noise) = c(ndim,ncon*nens)
27 cov.nos = x.noise %*% t(x.noise) / dof.nos
28

29 eval.max[,nt] = gev(cov.sig,cov.nos)$lambda
30 }
31

32 eval.crit = array(NA,dim=c(2,ndim))
33 for (n in 1:ndim) eval.crit[,n] = quantile(eval.max[n,],probs=c(alpha,1-alpha))
34 rownames(eval.crit) = paste(c(alpha,1-alpha)*100,’%’,sep=’’)
35

36 eval.crit
37 }

The resulting 1% significance thresholds for ndim = 6 are

1 > fval.crit
2 [,1] [,2] [,3] [,4] [,5] [,6]
3 1% 1.274289 0.9646709 0.7218789 0.5190632 0.3530367 0.1903565
4 99% 2.728496 1.9477712 1.4799000 1.1425884 0.8754198 0.6339855

Exercise 18.2, page 78

1 > mic
2 [1] -0.2422784468 -0.1859868967 -0.2475338825 -0.2474193296
3 [5] -0.3759129623 -0.5164772016 -0.4870610152 -0.4322602904
4 [9] -0.4153250531 -0.4605784420 -0.3959601760 -0.3631133884
5 [13] -0.3060199465 -0.2622818018 -0.1989315625 -0.1834919804
6 [17] -0.1291759564 -0.1230023572 -0.0768296814 -0.0253331366
7 [21] 0.0003693148 -0.1127739471 -0.0523793555 0.0607204885
8 [25] 0.1454873891 0.2427903034 0.2756050003 0.3125827453
9 [29] 0.2887010746 0.2935311458

183

Exercise 18.3, page 78

An R code that performs all steps in PrCA is the following:

184 ANSWERS TO EXERCISES

1 prca.eof = function(data.eof,nens,ncon,alpha=0.01) {
2 [PREAMBLE OMITTED]
3

4 neof = data.eof$neof
5 ntot = dim(data.eof$pc)[1]
6 if (nens * ncon != ntot) stop(’time dimension inconsistent with nens,ncon’)
7

8 ######### COMPUTE MLE OF COVARIANCE MATRICES
9 fx = data.eof$pc

10 dim(fx) = c(nens,ncon*neof)
11 emean = colMeans(fx)
12 noise = t(t(fx)-emean)
13 dim(emean) = c(ncon,neof)
14 dim(noise) = c(nens*ncon,neof)
15 dim(fx) = c(nens*ncon,neof)
16 cov.s = cov(emean) * (ncon-1)/ncon
17 cov.n = cov(noise) * (ncon*nens-1)/(ncon*nens)
18 cov.t = cov(fx) * (ncon*nens-1)/(ncon*nens)
19

20 ######### COMPUTE MIC
21 mic = as.numeric(rep(NA,neof))
22 penalty = as.numeric(rep(NA,neof))
23 for (n in 1:neof) if (nens*ncon-n-ncon-2>0){
24 penalty.random = (nens*ncon+1)*((n+ncon)/(nens*ncon-n-ncon-2) - n/(nens*ncon-n-2) - ncon/(nens*ncon-ncon-2))
25 penalty.fixed = 2*(ncon-1)*n/(nens*ncon)
26 penalty.fixedc = (2*ncon*n + n*(n+1))/(ncon*nens-ncon-n-1) - (2*n+n*(n+1))/(ncon*nens-1-n-1)
27 penalty[n] = penalty.fixedc
28 mic[n] = log(det(cov.n[1:n,1:n,drop=FALSE])) -
29 log(det(cov.t[1:n,1:n,drop=FALSE])) +
30 penalty[n]
31 }
32 nmin = which.min(mic)
33

34 ######### COMPUTE SIGNIFICANCE THRESHOLD FOR MIC
35 nu.e = ncon*(nens-1)
36 nu.h = ncon-1
37 mic.crit = as.numeric(rep(NA,neof))
38 for (n in 1:neof) if (nens*ncon-n-ncon-2>0) mic.crit[n] = -qchisq(1-alpha,n*nu.h)/(nu.e-(n-nu.h+1)/2) + penalty[n]
39

40 ######### SOLVE PRCA/MANOVA
41 dof.s = ncon - 1
42 dof.n = ncon * (nens - 1)
43 dof.t = ncon * nens - 1
44 cov.s = cov.s * ncon / dof.s
45 cov.n = cov.n * ncon * nens / dof.n
46 cov.t = cov.t * ncon * nens / dof.t
47 gev.list = gev(cov.s[1:nmin,1:nmin],cov.n[1:nmin,1:nmin])
48 q = gev.list$q
49 f.max = gev.list$lambda * nens
50 rsqr.adj = (f.max-1)/(f.max + ncon*(nens-1)/(ncon-1))
51 snr.adj = (f.max-1)/nens
52

53 ### NORMALIZE Q
54 for (n in 1:nmin) q[,n] = q[,n]/sqrt(as.numeric(t(q[,n])%*% cov.t[1:nmin,1:nmin] %*% q[,n]))
55

56 ### COMPUTE VARIATES AND LOADING PATTERN
57 dim(fx) = c(nens*ncon,neof)
58 r = fx[,1:nmin] %*% q
59 p = data.eof$eof[,1:nmin] %*% cov.t[1:nmin,1:nmin] %*% q
60

61 ### FLIP SIGN
62 for (n in 1:nmin) if (sum(p[,n],na.rm=TRUE) < 0) {p[,n] = -p[,n]; r[,n] = -r[,n]; q[,n] = -q[,n]}
63

64 ### COMPUTE EXPLAINED VARIANCES
65 total.var = sum(data.eof$svalˆ2)/(ntot-1)
66 lgood = !data.eof$lbad
67 fexpvar = numeric(nmin)
68 for (n in 1:nmin) fexpvar[n] = sum(data.eof$weight[lgood]ˆ2 * p[lgood,n]ˆ2) / total.var
69

70 ###
71 ######### WRITE OUT RESULTS
72 ###
73 list(mic=mic,mic.crit=mic.crit,f.max=f.max,r=r,p=p,fexpvar=fexpvar,rsqr.adj=rsqr.adj,snr.adj=snr.adj,
74 nmin=nmin,ncon=ncon,nens=nens,alpha=alpha)
75 }

185

The maximized F-ratios are

1 > prca.list$f.max
2 [1] 19.4746501 3.1956229 2.7206396 1.0809605 0.6636562 0.6385614
3 > prca.list$rsqr.adj
4 [1] 0.527391997 0.117092530 0.094146488 0.004866437 -0.020737369
5 [6] -0.022319127
6 > prca.list$snr.adj
7 [1] 1.154665632 0.137226433 0.107539975 0.005060034 -0.021021486
8 [6] -0.022589909

Exercise 18.4, page 79

See fig. 22.18.

Exercise 18.5, page 79

The following shows that the sample covariance matrix of the predictable components
equals the identity matrix.

1 > signif(cov(r),4)
2 [,1] [,2] [,3] [,4] [,5]
3 [1,] 1.000e+00 6.578e-18 -2.864e-16 8.649e-17 1.190e-17
4 [2,] 6.578e-18 1.000e+00 -1.558e-16 2.514e-16 1.173e-16
5 [3,] -2.864e-16 -1.558e-16 1.000e+00 8.631e-17 -1.065e-16
6 [4,] 8.649e-17 2.514e-16 8.631e-17 1.000e+00 -2.067e-16
7 [5,] 1.190e-17 1.173e-16 -1.065e-16 -2.067e-16 1.000e+00
8 [6,] -1.353e-16 -4.863e-17 -8.512e-17 1.338e-16 -3.679e-16
9 [,6]

10 [1,] -1.353e-16
11 [2,] -4.863e-17
12 [3,] -8.512e-17
13 [4,] 1.338e-16
14 [5,] -3.679e-16
15 [6,] 1.000e+00

Exercise 18.6, page 79

See fig. ??

Exercise 19.2, page 83

A function that solves the Kalman Filter equations is the following:

186 ANSWERS TO EXERCISES

 −0.5
 0.5

 1

 1

 1

 1

 1.5

 1.5
 2

 2

 −0.5
 0.5

 1

 1

 1

 1

 1.5

 1.5
 2

 2

CFSv2 Forecasts 2m−Temp; Nov start; Apr target; E= 16; 1982−2009
Predictable Component 1 6EOFs 22%

1985 1990 1995 2000 2005 2010

−
2

0
1

y.
em

n

Predictable Variate 1
6EOFs; F=19; R2=0.53; SNR=1.2

Figure 22.17 First predictable component.

1 kalman.population = function(mub,sigmab,hop,r.cov,obs) {
2 ##########
3 ## EVALUATES THE KALMAN FILTER EQUATIONS FOR THE MEAN AND COVARIANCE MATRIX OF THE ANALYSIS
4 ## BASED ON *POPULATION* COVARIANCE MATRICES AND MEANS
5 ## INPUT:
6 # MUB: [NDIM] MEAN OF THE BACKGROUND DISTRIBUTION
7 # SIGMAB: [NDIM,NDIM] BACKGROUND COVARIANCE MATRIX
8 # HOP: [NOBS,NDIM] INTERPOLATION OPERATOR
9 # R.COV: [NOBS,NOBS] COVARIANCE MATRIX OF THE OBSERVATIONAL ERROR

10 # OBS: [NOBS] THE OBSERVATIONS
11 ## OUTPUT
12 # MUA: [NDIM] VECTOR OF THE ANALYSIS DISTRIBUTION
13 # SIGMAA: [NDIM,NDIM] COVARIANCE MATRIX OF THE ANALYSIS DISTRIBUTION
14

15 xo.cov = sigmab %*% t(hop)
16 o.cov = hop %*% xo.cov + r.cov
17 o.cov.inv = chol2inv(chol(o.cov))
18 kgain = xo.cov %*% o.cov.inv
19

20 mua = mub + kgain %*% (obs - hop %*% mub)
21 sigmaa = sigmab - kgain %*% t(xo.cov)
22

23 list(mua=mua,sigmaa=sigmaa)
24 }

187

 −0.5

 0.5

 0.5

 1

 1
 −0.5

 0.5

 0.5

 1

 1

Predictable Component 2 6EOFs 8.6%

1985 1990 1995 2000 2005 2010

−
1.

0
0.

0
1.

0

y.
em

n

Predictable Variate 2
6EOFs; F=3.2; R2=0.12; SNR=0.14

Figure 22.18 Second predictable component

Exercise 19.3, page 83

A loop that solves for the analysis based on observations and background distribution is
the following:

188 ANSWERS TO EXERCISES

0 20 40 60 80 100

0
10

20
30

time

A
na

ly
si

s
E

rr
or

s

x[1]
x[2]
x[3]

Figure 22.19 Time series of the standard error of the analysis.

1 ### ASSIMILATE OBSERVATIONS
2 mua = matrix(rep(0,ndim*ntot),nrow=ndim)
3 pa = array(rep(0,ndimˆ2*ntot),dim=c(ndim,ndim,ntot))
4 for (n in 1:ndim) pa[n,n,1] = 400
5

6 for (n in 2:ntot) {
7 muf = dynop %*% mua[,n-1]
8 pf = dynop %*% pa[,,n-1] %*% t(dynop) + q.cov
9

10 kf = kalman.population(muf,pf,hop,r.cov,obs[,n])
11 mua[,n] = kf$mua
12 pa[,,n] = kf$sigmaa
13 }

Exercise 19.4, page 83

A plot of the analysis errors for the three elements of xt, as given by the square root of the
diagonal elements of ΣB

t , is shown in fig. 22.19. The errors asymptote to a constant after
a long time.

189

Exercise 19.5, page 83

Plots for the case Rt = 1 are shown in fig. 22.20. The standard error of the analysis is
much smaller in this case, because the observational uncertainty is much smaller and hence
provides more information about the true state than in the previous case. The analysis
errors are always smaller than either the background or observational uncertainties.

Exercise 19.6, page 83

To assimilate the linear combination z(t) = (xt)1 + (xt)2, we would use the following
operators in the observation equation

H =
(
1 1 0

)
and Rt = 25. (22.91)

The result of assimilating these observations to estimate (xt)1 is shown in fig. 22.21.

Exercise 19.7, page 85

The mean square error of the prediction model ŷ = Ao + b is

MSE = E
[
(y −Ao− b)

T
(y −Ao− b)

]
(22.92)

Taking the derivative with respect to A and b gives

∂MSE
∂A

= −2E
[
(y −Ao− b) oT

]
= −2E

[
yoT −AooT − boT

]
(22.93)

∂MSE
∂b

= −2E [y −Ao− b] . (22.94)

Setting the second equation to zero and solving yields

b = E[y]−AE[o]. (22.95)

Substituting this into the first equation yields

∂MSE
∂A

= −2E
[
yoT −AooT − (E[y]−AE[o]) oT

]
(22.96)

= (−2)
(
E[yoT]− E[x]E[o]T

)
+ 2

(
AE[ooT]−AE[o]E[oT]

)
(22.97)

= (−2) (ΣY O −AΣOO) , (22.98)

where we have used the fact that for any random vectors x and y,

ΣXY = E
[
(x− E[x]) (y − E[y])

T
]

= E[xyT]− E[x]E[y]T . (22.99)

Setting the derivative to zero and solving yields

A = ΣY OΣ−1OO, (22.100)

as desired.

190 ANSWERS TO EXERCISES

Given o = Hy + r, it follows that

E[o] = HE[y] + E[r] = HµB (22.101)
cov[o,y] = cov[Hy + r,y] = H cov[y] + cov[r,y] = HΣB (22.102)

cov[o] = cov[Hy + r,Hy + r] = H cov[y]HT + cov[r] = HΣBHT + R.
(22.103)

where we used E[r] = 0 and cov[r,y] = 0. Substituting these expressions into the least
squares estimates for A gives

A = (HΣB)
T (

HΣBHT + R
)−1

= ΣBHT
(
HΣBHT + R

)−1
. (22.104)

Substituting the expressions into the least squares estimate for b gives

b = µB −ΣBHT
(
HΣBHT + R

)−1
HµB (22.105)

Therefore, the least squares prediction ŷ is

ŷ = Ao + b = µB + ΣBHT
(
HΣBHT + R

)−1
(o−HµB) (22.106)

Exercise 20.1, page 88

The symmetric square root requires

I− βwwT =
(
I− δβwwT

) (
I− δβwwT

)
. (22.107)

Expanding the right hand side yields

I− βwwT = I− 2δβwwT + δ2β2
(
wTw

)
wwT . (22.108)

Simplifying this equation yields(
δ2β

(
wTw

)
− 2δβ + β

)
wwT = 0. (22.109)

This equation is satisfied only for the choices

δ =
1±

√
1− βwTw

βwTw
. (22.110)

Multiplying the top and bottom by the conjugate gives

δ =
1±

√
1− βwTw

βwTw

1∓
√

1− βwTw

1∓
√

1− βwTw

=
1−

(
1− βwTw

)
βwTw

1

1∓
√

1− βwTw

=
1

1∓
√

1− βwTw
(22.111)

191

To obtain a positive semi-definite square root matrix, we chose δ to render

xT
(
I− δβwwT

)
x ≥ 0 for all x. (22.112)

Expanding the left hand side yields

xT
(
I− δβwwT

)
x = xTx− δβ

(
xTw

)2
. (22.113)

The Cauch-Schwartz inequality implies

ε =

(
xTw

)2
(xTx) (wTw)

≤ 0. (22.114)

Therefore, we have

xTx− δβ
(
xTw

)2
=
(
xTx

) (
wTw

)(1

wTw
− δβε

)
=
(
xTx

) (
1−

(
1±

√
1− βwTw

)
ε
)

=
(
xTx

) (
1− ε∓ ε

√
1− βwTw

)
(22.115)

Since β ≤ wTw, the term in the radical is between 0 and 1. Since ε also is between 0 and
1, the quadratic form is positive for all ε, including ε = 1, only if δ is chosen as

δ =
1−

√
1− βwTw

βwTw
=

1

1 +
√

1− βwTw
(22.116)

Exercise 20.2, page 88

Proof. First consider the case in which B is rank-1, which implies that B = uuT for
some vector u. Then

C ◦B = C ◦ uuT = Cijuiuj = DuCDu, (22.117)

where Du is a diagonal matrix whose diagonal elements equal the vector elements of u.
The last matrix on the right hand side is positive semi-definite, as shown below:

xT (C ◦B) x = xTDuCDux = yTCy ≥ 0, (22.118)

where we have defined y = Dux. Since the above inequality holds for arbitrary x, C ◦B
is positive semi-definite. Now consider rank greater than 1. By the spectral factorization
theorem, B =

∑
uiu

T
i for some set of vectors u1,u2, . . .uN . Then

C ◦B = C ◦
∑
i

uiu
T
i = C ◦ u1u

T
1 + C ◦ u2u

T
2 + · · ·+ C ◦ uNuTN . (22.119)

Each term is positive semi-definite, so therefore the sum is too. QED

192 ANSWERS TO EXERCISES

Exercise 21.1, page 90

1 > cold.x
2

3 fevd(x = t.cold)
4 ...
5 Estimated parameters:
6 location scale shape
7 6.5115237 3.5662767 -0.2347719
8

9 Standard Error Estimates:
10 location scale shape
11 0.58044433 0.40333521 0.09324019
12

13 Estimated parameter covariance matrix.
14 location scale shape
15 location 0.33691562 0.01740978 -0.020276953
16 scale 0.01740978 0.16267929 -0.019456804
17 shape -0.02027695 -0.01945680 0.008693734

The return levels are

1 > return.level(cold.x)
2 fevd(x = t.cold)
3 get(paste("return.level.fevd.", newcl, sep = ""))(x = x, return.period = return.period)
4

5 GEV model fitted to t.cold
6 Data are assumed to be stationary
7 [1] "Return Levels for period units in years"
8 2-year level 20-year level 100-year level
9 7.763954 14.138334 16.543253

Exercise 21.2, page 90

The shape parameter is

ξ = −0.23± 0.09, (22.120)

so it is negative even for 2 standard errors, which means it is a Weibull distribution.

Exercise 21.3, page 90

193

1 > cold.x.tele
2

3 fevd(x = t.cold, location.fun = ˜index)
4

5 [1] "Estimation Method used: MLE"
6

7 ...
8 Estimated parameters:
9 mu0 mu1 scale shape

10 6.4879640 -1.4483469 3.0933949 -0.1545121
11

12 Standard Error Estimates:
13 mu0 mu1 scale shape
14 0.5231300 0.4817077 0.3851407 0.1244832
15

16 Estimated parameter covariance matrix.
17 mu0 mu1 scale shape
18 mu0 0.27366503 0.03729961 0.05315883 -0.02825529
19 mu1 0.03729961 0.23204226 0.04143058 -0.02199465
20 scale 0.05315883 0.04143058 0.14833340 -0.02640878
21 shape -0.02825529 -0.02199465 -0.02640878 0.01549606

The coefficient for the location parameter is

µ = −1.45± 0.48. (22.121)

This is non-zero even for 2 standard errors, so it is significant. A more accurate test is the
likelihood ratio test:

1 > lr.test(cold.x,cold.x.tele)
2

3 Likelihood-ratio Test
4

5 data: t.coldt.cold
6 Likelihood-ratio = 8.2806, chi-square critical value = 3.8415,
7 alpha = 0.0500, Degrees of Freedom = 1.0000, p-value = 0.004007
8 alternative hypothesis: greater

The p-value is less than 5%, hence significant.

The shape parameter is not significantly different from zero or positive at the 5% level,
so it could be any of the 3 distributions.

Exercise 21.4, page 90

The probability that an exceedance occurs in year 1 is p. The probability that an exceedance
occurs in year 2 is the probability that it did not occur in year 1, times the probability that
it did occur in year 2, which gives (1−p)p. Similarly, exceedance in year 3 has probability
(1−p)2p, and exceedance in year y has probability p(1−p)y−1. Thus, the average waiting

194 ANSWERS TO EXERCISES

time is

return period = p

∞∑
y=1

y (1− p)y−1 . (22.122)

To evaluate this sum, recall the sum of an infinite geometric series is

∞∑
k=0

qk =
1

1− q
for |q| < 1. (22.123)

Differentiating this equation with respect to q yields the identity

∞∑
k=0

kqk−1 =
1

(1− q)2
for |q| < 1. (22.124)

This identity gives the sum in (22.122) in the case q = 1− p, thus

return period = p
1

(1− (1− p))2
=

1

p
. (22.125)

Thus, if the probability of exceeding xp in any given year is p, then the return period is 1/p
years.

195

0 20 40 60 80 100

−
10

−
5

0
5

10
15

time

x 1

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●
●●

●
●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●●●

●●●

●
●●

●

●
●

●●
●

●
●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●●
●

●
●●

●

●

●●

●

●
●

●

truth
observation
KF−estimate

0 20 40 60 80 100

−
6

−
4

−
2

0
2

4
6

8

time

x 2

truth
KF−estimate

Figure 22.20 A particular realization of the first (top) and second (bottom) elements of
y(t) generated by the vector autoregressive model (solid curve), corresponding observations
(dots), and the analysis mean plus a standard deviation, as estimated state by the Kalman
Filter (grey shading), but using Rt = 1

196 ANSWERS TO EXERCISES

0 20 40 60 80 100

−
20

−
10

0
10

20
30

time

x 1

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●
●

●

●
●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

truth
observation
KF−estimate

0 20 40 60 80 100

−
6

−
4

−
2

0
2

4
6

8

time

x 2

truth
KF−estimate

Figure 22.21 A particular realization of the first (top) and second (bottom) elements of
y(t) generated by the vector autoregressive model (solid curve), corresponding observations
(dots), and the analysis mean plus a standard deviation, as estimated state by the Kalman
Filter (grey shading), but using Rt = 25, and observing the sum of the first two elements.

