
1 Sterile Resources

In this chapter, we introduce the simple conception of a scarce resource, locally

owned and globally traded. It is the classic Quadrant 1 resource, valuable and scarce.

Production amounts to making it available for sale into an economic market in which

its scarcity affects its price. Accordingly, price is endogenous to the resource sys-

tem. Production is the same as consumption, which is tantamount to destruction:

irreversible conversion to other chemical forms with no recycling. The owner’s basic

decision is how fast to produce.

That the resource is finite is a first principle. The fact that some portion of the

resource is undiscovered at any point in time does not change its finiteness. What

does change, over time, is the improving state of knowledge about how much of the

resource there is. Decisions about how fast to produce are always reached within

an environment of imperfect knowledge and speculation about future discoveries.

There is a need to make decisions in this uncertain environment and a need to adjust

continually as new information becomes available. Exploration reduces, but does not

eliminate, uncertainty.

This case is extreme in its simplicity. It is elaborated below; the example of

petroleum is used throughout. Many critical concepts of resource economics are

introduced and carried forward into subsequent chapters.

1.1 COSTLESS PRODUCTION OF A STERILE RESOURCE

1.1.1 Base Case

This is the simplest case of exhaustion of a finite resource. We will use the terminology

S(t) = amount of the resource remaining to be produced and sold

X (t) = production rate

P(t) = market price per unit of production
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It is assumed that the resource is owned unambiguously, that it costs nothing to

produce it, and that S, X , and P are known with perfect certainty. Three relations

govern:

Mass balance:

dS
dt

= −X (1.1)

Price-sensitive demand:

X = a
Pβ

(1.2)

Optimal economic decision making:

dP
dt

= rP (1.3)

The decision equation is reached by considering a tradeoff between a unit of resource

produced and sold today versus waiting and doing the same later. If P grows faster

than r, the interest rate available for investment of money, then conserving the

resource for later sale is profitable and producers will do so – the value of the resource

grows faster than money. If, on the other hand, P grows slower than r, then conser-

vation is a bad investment and selling now is preferable – money grows faster than

the value of the resource, and a resource owner would prefer to produce now and

invest the proceeds at rate r. The price equation expresses the point of indifference

between these two options; it would be realized in a situation of competition among

many producers. (This is Hotelling’s Rule [42]. There will be more to say about this

later.)

The solution for P is

P = P0ert (1.4)

and thus we have the production rate X , from the demand function

X = a

P0
β

e−βrt (1.5)

and the initial production rate is

X0 = a

P0
β

(1.6)

Since dS/dt = −X , we have

S(t) = S0 −
∫ t

0
Xdt = S0 − a

P0
ββr

[
1 − e−βrt ] (1.7)

We require two conditions to close the system: S0, the present amount of the resource,

and P0, the initial price.
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Figure 1.1. Five different depletion histories, identical except for initial price. P0 increases by factors of 2
in the direction of the arrows.

S0 is presumed known; P0 is not. If P0 is set too high, the demand will be stunted

and the resource will go unutilized. If P0 is set too low, the demand will be too large

and the resource will be depleted prematurely, leaving our mathematics of decision

making invalid (Figure 1.1). The system is closed by invoking the Terminal Condition

(TC): complete resource exhaustion as time goes to infinity:

S → 0 as t → ∞ (1.8)

Thus,

S0 = a

P0
ββr

(1.9)

The initial price is thus

P0 =
[

a
S0βr

] 1
β

(1.10)

and the initial production rate is

X0 = a

P0
β

= βrS0 (1.11)

If P0 is too high (X0 too low), then S is never exhausted. If P0 is too low (X0 too high),

then the resource is exhausted prematurely. In either case, production would be

adjusted to satisfy the TC (Figure 1.2).

Rent is the integrated present worth of all net revenues:

R =
∫ ∞

0
e−rt X (t)P(t)dt (1.12)

Since P = P0ert , we have

R = P0

∫ ∞

0
X (t)dt = P0S0 (1.13)
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Figure 1.2. Exhaustion history that matches the TC. Demand is X = a/Pβ , with (a, β) = (100, 0.5).

For this simple case, the present worth of all future production is equal to today’s

price times today’s total supply.

Program Oil1 illustrates the exhaustion history under these conditions. The 2

ODE’s are integrated forward in time with an explicit (Euler) forward-difference

method. The initial price P0 needs to be adjusted manually to satisfy the TC.

Because numerical integration is not perfect, the relations developed above

using the calculus correspond only approximately to the Oil1 simulation; the

discrepancies vanish as the numerical timestep �t becomes infinitesimally

small.

1.1.2 Finite Demand

Next, add a ceiling price P, which limits demand (Figure 1.3). Above this price, cus-

tomers purchase a substitute product. The previous solution, in which P rises without

bound, is invalid. Equations 1.1–1.3 still govern, but the TC needs to be altered. The

correct TC in this case is

S → 0 as P → P (1.14)



1.1 Costless Production of a Sterile Resource 5

0 0.5 1 1.5
0

1

2

3

4

5

P
ro

du
ct

io
n 

ra
te

, X

0 0.5 1 1.5
0

1

2

3

4

5

0 0.5 1 1.5
0

1

2

3

4

5

Price, P

P
ro

du
ct

io
n 

ra
te

, X

0 0.5 1 1.5
– 2

 –1

0

1

2

3

Price, P

(a) (b)

(c) (d)

Figure 1.3. Four different demand functions X (P ). (a) base case X a = P−β ; (b) base case with P ≤ P =
1; (c) linear demand X c = X 0(1 − P ); (d) base case shifted, X d + 2 = P−β . The dash lines indicate the
continuation of the base case curve beyond X ≤ 0. Cases b, c, and d have finite demand.

which leads to exhaustion at finite time T . From Equations 1.1 and 1.3, we have

P = P0erT (1.15)

S0 = a

P0
ββr

[
1 − e−βrT

]
(1.16)

from which we obtain the final results

P0 =
[

a
βrS0 + a

P
β

] 1
β

(1.17)

X0 = βrS0 + a

P
β

(1.18)

T = 1
βr

ln

[
βrS0P

β

a
+ 1

]
(1.19)

These relations reduce to the previous ones as P → ∞.

The above relations must govern at any time during the extraction history, else

the trajectory would not be optimal and it would be altered, contrary to hypothesis.
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Hence, we may drop the subscripts “0” and it is always true that

P =
[

a
βrS + a

P
β

] 1
β

(1.20)

X = βrS + a

P
β

(1.21)

T = 1
βr

ln

[
βrSP

β

a
+ 1

]
(1.22)

with S the remaining unexploited resource at any time t and P, X , T the contemporary

price, production rate, and remaining time to exhaustion. Equations 1.20, 1.21, and

1.22 completely characterize the solution to Equations 1.1, 1.2, and 1.3, subject to the

TC of exhaustion as price reaches the ceiling P.

Program Oil1a illustrates these relationships. Figure 1.4 displays simulation results

for finite P and T , achieved with the decision rule X = X (S) (Equation 1.21).

Rent is, as above, the integrated present worth of all future production:

R =
∫ ∞

0
PXe−rt dt = P0

∫ T

0
Xdt = P0S0 (1.23)
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Figure 1.4. Extraction history with finite demand, X a = 100P−β with P = 90 (case (b) in Figure 1.3).
This leads to exhaustion at finite time as shown.
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Figure 1.5. P , X , and T as funtions of the total reserve S at any time (Equations 1.20–1.22). Demand:
X = aP−β ; a = 100; β = 0.5; r = 0.05; P = (10, 20, 30) as indicated by the linestyles.

This result is unchanged by the imposition of a ceiling price and the resultant finite T .

Since P0 decreases as P decreases, ceiling price has the effect of diminishing overall

rent, in accord with intuition.

Equations 1.20–1.22 give P, X , and T as funtions of the total reserve S at any time,

assuming complete exhaustion, X = aP−β and P ≤ P . Figure 1.5 plots these for three

different values of P . Rent peaks and begins to decline with S at high abundance in

this scenario.

Consumers’ Surplus

Consumption at price P indicates a willingness to pay at least P – that is, the value

of the consumption V ≥ P. The consumer obtains a surplus equal to the difference

V −P. Figure 1.6 illustrates a demand curve made up of individual uses �X , each with

its own value V . If price is set at P, those users with higher value will purchase, and

those with lower value will not. The consumers’ surplus (CS) is their accumulation:

CS =
∑

(V − P)�X (1.24)

for all increments where (V − P) > 0. In the limit,

CS(P) =
∫ X (P)

0
(V − P)dx (1.25)
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Figure 1.6. Demand curve built up of individual increments �X , ordered by decreasing individual value,
plotted on the horizontal axis.
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Figure 1.7. Demand curve as in Figure 1.6, adding the actual price P . The area to the right of the price
line is the consumers’ surplus; that to the left is the rent transferred to the seller.

Clearly, CS is a function of P. Graphically, this is illustrated in Figure 1.7 as the area

“under the demand curve, to the right of P”. The amount PX shown graphically is the

total rent transferred to the seller. So transactions at P generate consumers’ surplus

as well as rent.

Graphically, it is easy to see that an equivalent integral is

CS(P) =
∫ P

P
XdV (1.26)

An analogous concept of producers’ surplus (PS) divides the rent into production

cost plus surplus: net rent. When production is costly, the producers’ surplus is the

net rent.
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Consumers’ surplus is a static concept; time is fixed in its construction. Clearly in

a depletion context, as P rises over time, CS will decrease: CS(P) = CS(P(t)). Suppose

we have the base case demand X = aP−β , with a ceiling price P . Then it is easy to

verify that CS may be integrated to obtain

CS(P) = a
1 − β

[
P

1−β − P1−β
]

(1.27)

The present worth of the consumers’ surplus is explored in Problem 34.

1.1.3 Linear Demand

As an extension of the preceding, consider the alternative demand function

P = P − bX (1.28)

We still have the requirement of exponential price growth

P = P0ert (1.29)

and thus

X = P − P0ert

b
(1.30)

Integrating dS/dt = −X gives

S(t) = S0 + 1
b

[
P0

r
(ert − 1) − Pt

]
(1.31)

The Terminal Condition is

S(T ) → 0 as P(T ) → P (1.32)

and therefore

P0erT = P (1.33)

rT = ln

(
P
P0

)
(1.34)

and

S0 = − 1
b

[
P0

r
(erT − 1) − PT

]
(1.35)
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Figure 1.8. Optimal extraction relations for the linear demand case: r = 0.05; P = 1−X ; competitive case.

A little rearrangement leads to

T = 1
r

ln

(
P
P0

)
(1.36)

S0 = P
br

[
P0

P
− 1 + ln

(
P
P0

)]
(1.37)

X0 = P − P0

b
(1.38)

These last three equations relate S, X , and T to P0; they comprise implicit functions

X (S), T (S), and P0(S). There are no simple closed-form solutions, but X (S), T (S),

and P0(S) can be evaluated numerically as in Oil6M+C; the plots shown therein are

reproduced in Figure 1.8. They characterize this system under linear demand, as did

the closed-form Equations 1.20–1.22 for the earlier demand function.

As before, rent R = P0S0. It is interesting to note here that as S increases, P0

ultimately decreases toward the limiting case P0 → 0 as S → ∞. As a result, the R

initially grows with S but ultimately peaks and then decreases with increasing S. The

point of maximum rent is found by setting dR/dt = 0; the result is

ln

(
P

P0

)
= 2

(
1 − P0

P

)
(1.39)
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There is one root of this equation in the range P0

P
< 1: P0

P
∼ 0.2. The peak value

of S is

S∗ = P
br

[
1 − P0

P

]
∼ P

br
[.8] (1.40)

More resource beyond this limit results in less overall rent. Consumers’ surplus for

this case is explored in Problem 35.

The program Oil6M+C provides a simulation of X , P, S, and R versus time.

1.1.4 Expanding Demand

Going back to the base case of an unbounded demand curve, Equation 1.2, consider

the case a = a(t), an exogenous trend toward higher demand. This represents the

same general price sensitivity, but growth in a represents an outward shift in demand:

X = a(t)
Pβ

(1.41)

This is illustrated in Figure 1.9. For example, a simple doubling of the number of

resource-consuming machines would be expected to double the demand for the

resource, all other things (including P) being constant. Increasing the intrinsic use-

per-machine would have the same effect. Growth in a would reflect the product of

these two effects, extrinsic and intrinsic resource use or, equivalently, the resource

intensity of individual use and the number of uses.
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Figure 1.9. Expanding demand curve, Equation 1.41, with β = 0.5.
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As before we have

dS
dt

= −X (1.42)

dP
dt

= rP (1.43)

Integrating the P equation gives the price and production history:

P(t) = P0ert (1.44)

X (t) = a(t)

Pβ

0

e−βrt (1.45)

Exponential Demand Growth

For this case,

a(t) = a0egt (1.46)

X (t) = a0

Pβ

0

e(g−βr)t = X0e(g−βr)t (1.47)

With g < βr, we have an unbounded future of finite production and the TC of

resource exhaustion at T → ∞. Integrating gives us

S0 = a0

Pβ

0

1
βr − g

= X0

βr − g
(1.48)

and finally,

X0 = (βr − g)S0 (1.49)

P0 =
[

a0

(βr − g)S0

] 1
β

(1.50)

By comparison with the no-growth case, X is initially smaller and decays at the

slower rate e(g−βr)t . Price is initially higher, and its growth rate is unchanged, ert .

Rent = P0S0 is higher, proportional to P0. As the demand growth g approaches

βr, pumping becomes infinitesimally small and nearly constant over time; price

responds inversely and grows without bound. For g > βr, the resource is never

produced; the owner conserves in the face of rapidly escalating demand.

The case of declining demand (contraction) is the reverse: g < 0. In this case, X is

initially larger than the constant-demand (g = 0) reference case, and its decay rate is

faster.

Linear Demand Growth

Next we examine the linear growth case

a(t) = ao + a1t (1.51)



1.1 Costless Production of a Sterile Resource 13

with exponential price growth

P = P0ert (1.52)

Production is again according to the demand curve

X =
[

ao + a1t

Pβ

0

]
e−βrt (1.53)

At long time, X → 0; but early growth in X is possible. Differentiating,

dX
dt

= 1

Pβ

0

[a1 − βr(a0 + a1t)] e−βrt (1.54)

This is positive at t = 0 when

a1 > a0βr (1.55)

and if that is the case, there is a maximum in X at t∗:

t∗ = (a1 − a0βr)
a1βr

(1.56)

For t > t∗, production declines toward zero at T → ∞. For exhaustion at that point,

we require

S0 = a0

Pβ

0 βr

[
1 + a1

a0βr

]
= X0

βr

[
1 + a1

a0βr

]
(1.57)

Equivalently,

X0 = βrS0[
1 + a1

a0βr

] (1.58)

Compared with the no-growth case (a1 = 0), growth introduces a smaller initial

production that peaks early, then decays to zero, asymptotically as te−βrt . (Small

demand growth may not produce the peak.) Initial price is higher, growing at the

rate ert .

P0 =

a0

[
1 + a1

a0βr

]
βrS0




1
β

(1.59)

Rent is accordingly higher, P0S0.

Figure 1.10 illustrates the production history in this case, for peaking parameters

a1 > a0βr.
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Figure 1.10. Time history of production with linear growth in demand. Parameters: a0 = 0.1; a1 = 0.01;
X 0 = 1.; β = 0.5; r = .05. Production peaks at t ∗ = 30.

Saturating Demand Growth

Consider the demand function in Equation 1.41 with

a(t) = a0
(
1 − e−st ) (1.60)

Demand is initially zero and rises toward the saturation level a0 at the exponential

rate s. Again with P = P0ert , we have the production rate

X = a0

Pβ

0

(
1 − e−st ) e−βrt (1.61)

and the reserve history

S(t) = S0 − a0

Pβ

0

[
1 − e−βrt

βr
− 1 − e−(s+βr)t

s + βr

]
(1.62)

Applying the TC of complete exhausition as t → ∞ gives

S0 = a0

βrPβ

0

[
s

s + βr

]
(1.63)

and Equations 1.61 and 1.62 for production and remaining stock become

X (t) = S0

[
s + βr

s

] [
1 − e−st ] e−βrt (1.64)
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S(t) = βrS0

[
s + βr

s

] [
1 −

(
βr

s + βr

)
e−st

]
e−βrt (1.65)

Starting from zero, demand growth produces early growth in production X , a peak at

t∗, and a decline at the rate βr once demand has reached saturation at a0. The peak

production occurs at

t∗ = 1
s

ln
[

s + βr
βr

]
(1.66)

In the limit of extremely fast saturation (very large s → ∞), we recover the base

case: instantaneous onset of production, followed by monotonic decay (t∗ = 0) at

the rate −βr. For intermediate saturation rates (s > βr), production at long time

approaches the limiting relation X (t) = βrS(t), both decaying at the asymptotic rate

βr. Essentially, at saturated demand we recover asymptotically the initial base case

of constant demand.

When demand development is very slow, s < βr, then its development domi-

nates production; but the peak production time t∗ remains early and insensitive to s.

Expanding t∗ in a Taylor series gives

t∗ → 1
βr

(1.67)

This limit recovers the comparable result for linear demand growth, Equation 1.56,

as it should.

Figure 1.11 illustrates the production history for demand saturating exponentially

at a finite rate. Figure 1.12 illustrates the effect of s with all other parameters constant,

including S0.
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Figure 1.11. Time history of production with exponentially saturating growth in demand. Parameters: a0 =
1; s = 0.02; β = 0.5; r = 0.05. Peak production at t ∗ = 29.4.
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Figure 1.12. Time history of production X for slow, intermediate, and fast growth saturation. Parameters:
a0 = 1; s = 0.0002, 0.02, and 2.0; β = 0.5; r = 0.05; initial supply fixed at S0 = 170.

Note that this analysis requires knowledge from the beginning that demand will

ultimately reach a0. That knowledge is embedded in the decision making.

Endogenous Demand Growth

It is interesting to speculate on what drives demand growth. We imagine a resource,

like oil, which requires capitalization in combustion (fuels) and/or chemical manu-

facturing (plastics) in order to be used; and these secondary products have their own

consumer markets. In these cases, capital formation has an intrinsic lifetime of order

5–20 years (decay rate ρ = 0.05 − 0.20). So we speculate that the growth in a would

be related to capital formation in the secondary industry:

da
dt

+ ρa = f (S, X , S/X , aS/X , P, π) (1.68)

Increases in a could be driven by perception of large reserves S, large production

X , large increases in reserves dS/dt , the exhaustion timescale S/X , changes in P as

a metric of scarcity, and/or the rate of rent formation π . Clearly, the dynamics of

the secondary industry, and their linkage to the primary resource industry, become

critical here. This is beyond our scope.

1.2 DECISION RULES

The decision rule used so far has been

dP
dt

= rP (1.69)

with r the interest rate applicable to investment of the proceeds of resource sale. This

has been applicable to costless production in a competitive market. Three complica-

tions need to be explored: taxation, the finite cost of production, and the possibility

of monopoly production.
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1.2.1 Taxation

If we introduce a tax θ , we have a wedge between the price seen by the con-

sumer P and the net rent P − θ accruing to the producer. Adapting the principle

of intertemporal maximization of net rent (as used above), we have the decision rule

d(P − θ)

dt
= r(P − θ) (1.70)

and

(P − θ) = (P0 − θ)ert (1.71)

Two cases are interesting. First, consider a constant tax θ , which might be

conceived as a consumption tax. In this case, we have

P(t) = θ + (P0 − θ)ert (1.72)

With θ fixed, it loses relevance as P grows. Consumption will be according to the

demand function – for example,

X (t) = a
Pβ

= a
[
θ + (P0 − θ)ert ]−β

(1.73)

All other things remaining the same, initial price P0 will rise with θ , but it will not

completely offset it; P0 − θ will be less, so that initial net rent is less because of θ .

This effect will be less pronounced as production proceeds; ultimately, growth in P

overwhelms constant θ .

For example, for [S0, r, β, a, �t] = [1000, 0.1, 0.5, 100, 0.5] and exhaustion at t → ∞:

for θ = 0, we find [P0, X0] = [4.4, 47.67]. The tax case θ = 2 gives [P0, X0] =
[5.75, 41.70]. The early production is delayed by the imposition of the tax; later

production is affected less. Program Oil1-tax simulates this.

A second case is a proportional tax, θ = τP. This amounts to a tax on rent, not on

consumption per se. Following (1.70), we have

dP(1 − τ)

dt
= rP(1 − τ) (1.74)

With τ constant, the factor (1−τ) cancels, leaving P = P0ert and the whole production

history unaffected by τ . The only effect is to redirect a portion of the rent, τR, to the

public treasury, leaving the balance (1 − τ)R for the original resource owner.

1.2.2 Costly Production

Again we generalize the concept of rent here as the present worth of resource sales

minus expenses:

PX − CX (1.75)
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where P and X are the price and extraction rate as before and C is the unit cost of

production. We will consider the case where C depends on the remaining stock of

resource, C = C(S). This would reflect the case where production becomes more

costly as extraction proceeds, with C increasing as S decreases. The contributions to

rent R from two adjacent production periods separated in time by �t are

R =
{

[P1 − C(S1)] X1 + 1
1 + r�t

[P2 − C(S2)] X2

}
(1.76)

We wish to discover the effect of adjusting a hypothetical production pattern by

moving a quantity�of production forward in time, at the expense of later production,

leaving all other things the same. We introduce the perturbations

�X1 = �

�X2 = −�

�S1 = 0

�S2 = −� · �t

(1.77)

Perturbing R with the changes �X and �S, we obtain

�R =
{

[P1 − C(S1)] �X1 − X1
dC
dS

�S1 + 1
1 + r�t

[
[P2 − C(S2)] �X2 − X2

dC
dS

�S2

]}
(1.78)

With the perturbations above, we obtain

�R =
{

[P1 − C(S1)] � − 1
1 + r�t

[
[P2 − C(S2)] � − X2

dC
dS

� · �t
]}

(1.79)

The point of indifference to such an adjustment is �R = 0:

[P1 − C(S1)] = 1
1 + r�t

[
[P2 − C(S2)] − X2

dC
dS

�t
]

(1.80)

Rearranging this, we obtain

[P2 − C(S2)] = [1 + r�t] [P1 − C(S1)] + X2
dC
dS

�t (1.81)

and taking the limit as �t → 0, we have

d(P − C)

dt
= r(P − C) + X

dC
dS

(1.82)

Here we find two effects:

1. The rent rate (P − C), not price alone, must generally increase at the rate r

with time.
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2. There is an additional effect of variable costs, XdC/dS, called the “stock effect.”

With X > 0 and dC/dS < 0 (C increasing as resource exhaustion proceeds), this

term will be negative. Thus, the rate of rise in (P − C) will be slowed by the stock

effect.

Finally, we can rearrange this equation to a more convenient form by noting that

−X = dS/dt and therefore by the chain rule,

X
dC
dS

= −dC
dS

dS
dt

= −dC
dt

(1.83)

Thus, we have the simpler form of the decision rule under costly production:

dP
dt

= r(P − C) (1.84)

Again it is clear that as C becomes significant, it slows the exponential growth that

would characterize P in the costless production case. As the resource dwindles, we

expect growth in C to bring rent toward zero, with growth in P slowing and P finally

stabilizing at P . The TC becomes R → 0, P → P , C → P , and S → S, where S is the

small residual left in storage that is not ecomonical to extract:

C(S) = P (1.85)

Naturally, these relations reduce to the costless case studied earlier when C = 0.

Program Oil2 simulates the simple case of constant cost – for example, a tax on

production. In this case, we have the simple rule

d(P − C)

dt
= r(P − C) (1.86)

that is, there is no stock effect. Demand remains sensitive only to P alone, so the

solution is not simply to shift P from the costless case. Oil4 simulates the stock effect

with cost function

C(S) = γ /Sδ (1.87)

1.2.3 Monopoly versus Competitive Production

Next we turn to the monopoly case, wherein a single producer supplies the whole

market. Under this condition, production decisions directly affect price; while under

competetive conditions, the effect is only via the aggregate of several producers’

independent decisions. The effect is on the revenue from sales PX . Perturbing this

product gives two terms:

�(PX ) = P�X + X�P (1.88)
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And with the demand function P = P(X ), we have

�(PX ) = P�X + X
dP
dX

�X (1.89)

Defining the demand elasticity ε ≡ X
P

dP
dX , we have

�(PX ) = P(1 + ε)�X (1.90)

Redoing the perturbation analysis in the previous section, we obtain the additional

elasticity terms as follows:

dP(1 + ε)

dt
= r [P(1 + ε) − C] (1.91)

which is the decision rule under costly monopoly production. (The reader should

check this.)

For the demand function

X = a
Pβ

(1.92)

we have

ε = − 1
β

(1.93)

that is, a constant; for this demand function, monopoly and competitive producers

would behave the same. For the linear demand function

P = P − bX (1.94)

we have

ε = −
(

P

P
− 1

)
(1.95)

Thus, in this case ε is negative and increases toward 0 as P increases toward P .

In the monopoly case, it is convenient to introduce the variable Q ≡ P(1 + ε). The

equation

dQ
dt

= r(Q − C) (1.96)

then replaces its competitive version with P replacing Q. The example below

illustrates this.

Monopoly Production under Linear Demand (Costless)

As an example, consider the linear demand case

P = P − bX (1.97)
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for which we have

ε = −
(

P

P
− 1

)
(1.98)

This case can be integrated in closed form as follows. First, introduce the quantity

Q ≡ P(1 + ε). In the present case,

Q = 2P − P (1.99)

and equivalently

P = 1
2
(Q + P ) (1.100)

Since dQ/dt = rQ, we have

Q = Q0ert (1.101)

and from the demand function,

X = P − Q0ert

2b
(1.102)

Integrating dS
dt = −X gives

S(t) = S0 − 1
2b

[
P t − Q0

r

(
ert − 1

)]
(1.103)

The various Initial Conditions are

Q0 = 2P0 − P

P0 = 1
2
(Q0 + P ) (1.104)

X0 = 1
b

(P − P0)

The Terminal Condition requires S(T ) → 0 as P(T ) → P , and therefore we have

S(T ) = 0

P(T ) = P (1.105)

Q(T ) = P

and since Q(T ) = Q0erT ,

rT = ln
(

Q(T )

Q0

)
(1.106)
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After some manipulations, we arrive at the final set of relations among (S0, X0, T )

and P0:

T = 1
r

ln

(
P

2P0 − P

)
(1.107)

S0 = 1
rb

[
P

2
ln

(
P

2P0 − P

)
+ (

P0 − P
)]

(1.108)

X0 = 1
b

(
P − P0

)
(1.109)

This solution requires P0 > P/2.

The reader is encouraged to compare these relations with the comparable results

for competitive production in Equations 1.36–1.38 (Problems 6 and 7). Generally,

monopoly production results in higher initial prices, longer exhaustion times, and

higher overall rent than competitive production. There would be an incentive for

competitive producers to form a monopoly and share the extra rent generated. It is

interesting that this leads to slower overall resource exhaustion.

Total rent under this scenario is

R =
∫ ∞

0
P(t)X (t)e−rt dt

=
∫ T

0

(Q0ert + P )

2
(P − Q0ert )

2b
e−rt dt

= 1
4b

∫ T

0
(P

2 − Q2
0e2rt )e−rt dt

= 1
4b

∫ T

0
(P

2
e−rt − Q2

0ert )dt

= 1
4rb

(P
2[1 − e−rT ] + Q2

0[1 − erT ]) (1.110)

With some effort, one can simplify this as follows. Using

1 − e−rT = 2

(
P − P0

P

)
and 1 − erT = 2

(
P0 − P

2P0 − P

)
(1.111)

the final result becomes

R = 1
br

(
P − P0

)2
(1.112)

Monopoly rent in this case is clearly always nonnegative. There is no peak at

intermediate S, unlike the competitive case illustrated in Figure 1.8.

Figure 1.13 illustrates these relations among X0, T , P0, S0, and R for monopoly

production. The competitive case plotted in Figure 1.8 is replicated for comparison.

Oil6M+C provides a simulation of this system’s time evolution.
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Figure 1.13. Optimal extraction relations for the linear demand case: r = 0.05; P = 1 − X ; monopoly
case (dash line). The competitive case (solid line) is replicated from Figure 1.8 for comparison.

1.3 DISCOVERY

Next we add an inventory of undiscovered resource U to the picture and the rate of

discovery D:

dS
dt

= −X + D (1.113)

dU
dt

= −D (1.114)

(S + U ) is the total unproduced resource; initial values are S0 and U0. To close the

equations, we need expressions for X and D.

1.3.1 Exogenous Discovery

Consider first the simple case where discovery is exogenous – that is, it is completely

independent of P, X , and S. A example would be the first-order discovery rate

D = ρU (1.115)

This discovery rate is proportional to the remaining undiscovered resource; it is high

when there is a lot to find, and it decreases as the discovery history proceeds and the

remaining U decreases.
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For production, we invoke the result of the previous analyses: With demand X =
a/Pβ , ceiling price P, and zero production cost, we have

X = βrS + a

P
β

(1.116)

Essentially, we assume the production decision is pessimistic, based on a forecast of

zero future discovery. This production relation is rational (optimal) according to the

previous analyses.

The complete system is now

dS
dt

+ βrS = ρU − a

P
β

(1.117)

dU
dt

+ ρU = 0 (1.118)

The solution for U is straightforward:

U = U0e−ρt (1.119)

and for S, we now have

dS
dt

+ βrS = ρU0e−ρt − a

P
β

(1.120)

The solution for S will have two parts: a “homogeneous” part of the form e−βrt , as

in the cases without discovery; and a “particular” part of the form dictated by the

right-hand side, e−ρt plus a constant:

S(t) = Ae−βrt + Be−ρt + C (1.121)

Plugging 1.121 into 1.120, we obtain

A [−βr + βr] e−βrt + B [−ρ + βr] e−ρt + C [βr] = ρU0e−ρt − a

P
β

(1.122)

The first term vanishes identically. The balance of the equation requires

B = U0

[
ρ

βr − ρ

]
(1.123)

C =
[
− a

βrP
β

]
(1.124)

and the Initial Condition requires S0 = A + B + C , so

A = S0 − B − C (1.125)
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The complete solution is

S(t) = [S0 − B − C] e−βrt + Be−ρt + C (1.126)

Two cases are interesting. If production is fast relative to discovery, then S decays

monotonically, with the slow discovery persisting and extending production over a

longer time than in the no-discovery case. The criterion for this case is dS/dt < 0 at

t = 0. This requires

βr(S0 − C)

ρU0
> 1 (1.127)

If, on the other hand, initial discovery is fast relative to production, then S rises

initially. In this case, there will be a peak in S at intermediate time, after which

discovery is largely over, production dominates, and S declines. It is easy to find the

peak time tp by setting dS/dt to zero. The result for the case C = 0 (P = ∞) is

tp =
(

1
ρ − βr

)
ln


 ρ

βr
(
1 − S0

B

)

 (1.128)

(The student should verify this and develop the case C �= 0.) Beyond t = tp, we are

essentially in a depletion phase with discovery largely over.

For example: with r = 10% per year, ρ = 10% per year, β = .5, P = ∞, S0 = 10,

and U0 = 10, we have S peaking at 11.25, at tp = 5.75 years. If, instead, U0 = 50,

then S peaks at 30.26 and tp occurs at 11.96 years. These are illustrated in Figure 1.14.

Figure 1.15 illustrates the slower discovery rate, ρ = 0.04, which does not exhibit

a peak. The Excel and Matlab programs Oil5a simulate this system.

More-complex discovery relations are interesting, and their solution is possible

via simulation. For example, the price-sensitive discovery rate

D = ρU
(

P
P0

)γ

(1.129)

simulates enhanced exploration effort as the resource scarcity causes price to

increase. This may be examined in Oil5a. Additional features include the introduction

of stochastic disturbances to the otherwise smooth discovery rate. That is available

in Oil5aRandom.

1.3.2 Discovery Rate: Effort and Efficiency

It is useful to pick apart the various factors influencing the discovery rate: the

discovery efficiency; the discovery effort; and the amount left to be discovered.

The efficiency of discovery embodies accumulated geological knowledge, includ-

ing both where not to look (already looked there) and what features to look for. Thus,

we expect a monotonically rising curve as discovery proceeds – a learning curve,
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Figure 1.14. Discovery and extraction history, as in the example
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Figure 1.15. Discovery and extraction history, as in Figure 1.14; but ρ is slower, changed from 0.10
to 0.04.

for example, of the form
[
1 − e−(U0−U )/U∗]

, with U0 − U the cumulative discovery

and U∗ a scaling factor. In addition, we have the inescapable effect of technological

invention of devices, sensors, information bases, etc., which we expect will only rise

over time in their amplification of discovery rate by the exogenous multiplier A(t).
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Figure 1.16. Discovery efficiency ε versus cumulative discovery, as in Equation 1.130.

The composite of these leads to the hypothetical efficiency function

ε = A(t)
[
1 − e−(U0−U )/U∗]

(1.130)

This relation is sketched in Figure 1.16. Saturation of the learning curve at its

technological limit A occurs when cumulative discovery reaches 4U∗.

The effect of discovery effort E is monotonically related to the discovery rate. At low

levels of effort, the relationship should be linear. At higher levels of effort, we expect

decreasing returns to scale due to crowding and duplication of effort. An example of

such an effort function, f (E), is

f (E) =
[
1 − e−E/E∗]

(1.131)

where E∗ is a scaling factor. Like the learning curve above, it saturates at E ≈ 4E∗.

This function is illustrated in Figure 1.17.

These relations together give us the discovery rate D:

D = ε · f (E) · U (1.132)

At low effort, E 
 E∗, we have the linear relationship

f (E) � E/E∗ (1.133)
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Figure 1.17. Discovery effort multiplier f (E ), an increasing function of effort, as in Equation 1.131. This is
the effect of effort on discovery rate.

and thus

D � ε

E∗ EU (1.134)

1.3.3 Effort Level and Exploration Profit

So far, we have a dynamical system involving proven and undiscovered reserves S

and U , the production rate X , which is closed in terms of S, and the discovery rate D,

which is closed in terms of discovery effort E .

dS
dt

= −X + D (1.135)

dU
dt

= −D (1.136)

X = βrS + a

P
β

(1.137)

D = ε · f (E) · U (1.138)

What sets the level of effort?

To fix ideas, imagine an exploration company selling rights to new discoveries, at

the price pd , to production companies. What is at stake in selling such a new discov-

ery is the present worth of all future rent that could be derived from producing that

resource; the rate of rent transfer to the selling company would be pd · D if a compet-

itive market existed among buyers. (In a costless production economy, pd would be

equal to the market price P of produced resource; otherwise, it would be less.)



1.3 Discovery 29

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Discovery effort/E*

$

pdD

wE

p

Figure 1.18. Profitability of exploration as a function of effort E . The curved line is the value of discovery;
the straight line is its cost. The profitability π is the difference. Parameters: pd εU = 1.; wE ∗ = .4.

Assume that the cost of exploration is proportional to effort, wE . Then we have the

rate of profit earned by exploration as

π = pdD − wE = pdεf (E)U − wE (1.139)

This is illustrated in Figure 1.18. Competition in the exploration business would drive

the effort to its maximum profitable rate, where π = 0:

E = pd

w
D ⇒ f (E)

E
= w

pdεU
(1.140)

This is the “open access,” or “free entry,” situation. All effort is free to mobilize and

enter the exploration competitively. It does so until profitability becomes zero.

If, on the other hand, discovery effort could be controlled, then effort would be

limited to the point of maximum π , where dπ/dE = 0:

df
dE

= w
pdεU

(1.141)

This is the “controlled access,” or “restricted entry,” case. A monopoly on exploraton

would presumably keep effort at this lower level. For the parameters illustrated in

Figure 1.18, visual inspection shows that E ≈ 2.2E∗ for the open, competitive case,

and E ≈ .75E∗ for the controlled-access case. Competition in exploration gives higher

effort, faster discovery, and therefore early production.
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1.3.4 Effort Dynamics

How does E change with time? In the competitive case, it is reasonable to postulate

that rent attracts effort. Denoting by ν the first-order rate constant for this process,

we have the 3-state system:

dE
dt

= νπ (1.142)

dS
dt

= −X + D (1.143)

dU
dt

= −D (1.144)

X = βrS + a

P
β

(1.145)

D = ε · f (E) · U (1.146)

π = (pdD − wE) (1.147)

P =
( a

X

) 1
β

; P(t) ≤ P (1.148)

The Excel program Oil7 simulates these dynamics, under the assumption of cost-

less production (pd = P, the market value of production), efficiency saturation
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Figure 1.19. Time history with discovery adjusted as in Equations 1.142–1.148, with constant effort.
Parameters: r = .10; a = 1; β = .5; P = ∞; ε = .1; E ∗ = 10; pd = P (t ); w = 1; ν = 0.
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Figure 1.20. Same as in Figure 1.19, except rent-sensitive discovery, ν = 0.3.

(extensive geological knowledge and exploration experience), and constant tech-

nology. For small ν, there is an orderly approach to quasi-equilibrium wherein

exploration proceeds gradually as S is exhausted. Faster effort response (higher

ν) generates a boom-or-bust cycle in exploration, with periodic episodes of dis-

covery followed by layoffs in the exploration business and simple depletion of

known reserves as production proceeds. When price rises sufficiently to reinvigorate

exploration effort, the cycle is repeated.

An example is presented in Figures 1.19 and 1.20. In Figure 1.19, we plot the

case ν = 0, wherein the initial effort E = 20 is held constant. Discovery proceeds

at a constant proportional rate. The production floods the market, suppressing the

price. The exploration is not profitable, but there is no adjustment. Figure 1.20 is

the same case, but with ν = 0.3. The initial unprofitable level of effort is reduced

quickly, essentially shutting down exploration until roughly t = 40, at which point it

is profitable to re-initiate exploration effort. There is a complex cycling of effort.

1.4 SOME UNCLOSED ISSUES

The development above is a framework for examining the exhaustible resources.

Several questions remain:

• Demand changes reflecting more uses or changes in efficiency; substitution

dynamics; technical progress; changes in market participation in the resource

consumption. What is da/dt?
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• Discovery and the effect of technical progress. What is dA/dt?

• What is the effect of production capacity, the maximum X and dX/dt which is

possible? Clearly, that puts a constraint on short-term changes in production.

• The cost of extraction generally: what is C(S)?

• How is rent distributed?

• The role of uncertainty, error, bogus data, and uncontrolled stochastic distur-

bances, generally, on resource management.

Each of these items deserves careful scrutiny in more-elaborate developments.

1.5 RECAP

As mentioned at the outset, this is an extreme case; the example used (petroleum)

is not meant to be definitive, only illustrative and helpful to the exposition. Several

key ideas emerge, including the role of the owner in setting the decision context and

“collecting the rent”; the role of the demand funtion in representing value and “con-

sumers’ surplus”; the role of finite demand and substitution; the dynamic of public

policy in conditioning decision making as well as rent dispersal; the role of discovery;

and the view of exploration as a subsidiary industry. From a sustainability perspec-

tive, this resource has only one fate: exhaustion over a finite interval. The sustainable

substitute needs to be found during the process: That can be the accumulated rent,

treated as a renewable asset; the knowledge gained during the process of exhaus-

tion (“learning how do do without”); the capitalization of a substitute; and/or the

social progress achieved during resource exhaustion. Ultimately, substitution alone

is inadequate if it necessarily progresses through a series of finite resource exhaus-

tions. Without a sustainable finale, one simply exhausts all resources, irreversibly,

leaving no opportunity.

There are several introductory texts on natural resource economics, including

Conrad and Clark [13], Neher [68], and Conrad [12]. Griffin [35] covers water

resources, which is a necessary supplement for natural resources generally. Conrad

[12] includes a valuable annotated bibliography.

All of the above lead to the more general coverage of public goods – for example,

Musgrave and Musgrave [66] and Cornes and Sandler [14]. Contemporary scholarship

is reemphasizing the foundational notion of merit goods introduced by Musgrave

(Ver Eecke [22]; Meier [63]). There are several works that have incorporated global-

ization as a starting point, notably the work of Kaul et al. [49, 47, 48]. Further study in

all of these works is encouraged.

1.6 PROGRAMS

The following programs illustrate the ideas in these lectures. In most cases, there are

.xls and .m versions:
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• Oil1: Costless production, constant-elasticity demand. P0 is adjustable to meet

TC.

• Oil1a: Costless production, constant-elasticity demand. Simulation with

X = X (S).

• Oil1-tax: Costless production, constant-elasticity demand, constant tax.

• Oil2: Constant-cost production.

• Oil4: Variable-cost production: C(S) = γ /Sδ .

• Oil5a: Simulates price-sensitive discovery and production.

• Oil5aRandom: Adds stochastic perturbation to discovery rate in Oil5a.

• Oil6Monop: Simulates costless production with linear demand; monopoly

production.

• Oil6Cmptn: Simulates costless production with linear demand; competitive

production.

• Oil6M+C_Rent: Combines the two Oil6 programs; adds the calculation of P0, X0, T

and the total present worth of rent, as functions of S0 for the two cases monopoly

and competitive production.

• Oil7: Like OiL5a but adds exploration effort as an endogenous state variable. Dis-

covery rate is the product of fixed efficiency, an increasing function of exploration

effort, and remaining undiscovered resource. Effort growth is proportional to the

current profitability of exploration.

1.7 PROBLEMS

1 Costless production of a sterile resource:

dS
dt

= −X (1.149)

dP
dt

= rP (1.150)

X = a
Pβ

(1.151)

where S is the amount in storage, X is the annual production, and P is the price.

Simulate the evolution of this system using the following parameters:

S0 = 1, 000

β = 0.5

r = .10/year

a = 100.

Plot S, P, and X as functions of time. Confirm that P grows at the rate r and that S

decays at the rate βr. By trial and error, confirm that the initial price that exhausts
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the resource at infinite time is

P0 =
[

a
S0βr

] 1
β

(1.152)

2 Derive Equations 1.17, 1.18, and 1.19, which summarize the solution with finite

demand capped at the substitution price P .

3 Repeat Problem 1 with P = 12. What is the Terminal Condition, and what is the

theoretical value of P0 that achieves it? Does that work in the simulation? Compare

results with the simulation of Problem 1, wherein P is unbounded.

4 The same as Problem 3, but add a sudden, unanticipated reduction of P from 12 to 8

at time = 10 years, due to unanticipated technical progress at t = 10. Clearly describe

what changes need to occur at t = 10 and say why.

5 Redo the simulation in Problem 3, adding the unit cost of production C (dollars per

unit produced):

C = γ

S
1
3

(1.153)

such that annual revenues are= (P−C)X . Study an interesting range of the parameter

γ , ranging from 10 to 100. (Begin with γ = 50.) Describe how you obtained the initial

price and how you altered the equations. Compare with the Problem 3 simulation

in terms of initial price, time to exhaustion, production rate, and any other relevant

quantities.

6 Costless production of a sterile resource:

dS
dt

= −X (1.154)

dP
dt

= rP (1.155)

X = 5
P

(1.156)

where S is the amount in storage, X is the annual production, P is the price, and r is

the interest rate.

Today, S = 400. There is no substitute for this resource. Interest rate r = 0.10 per

year.

(a) What is today’s price?

(b) At t = 10, what will the price be? What amount of resource will remain in

storage?

(c) At t = 10, there is a new discovery of 300 units of resource. What will the price

change to?

(d) Sketch the time history of P, S, and X , from t = 0, until the resource is

exhausted.
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7 Costless production of a sterile resource; with the linear demand function

P = P − bX (1.157)

In the text, we solve analytically for S, X , and P as functions of time under competitive

extraction. Confirm that analysis by simulation using P = 1 and b = 1 and P0, which

meets the appropriate Terminal Condition.

We also have expressions for S0, X0, and T as functions of the initial price P0.

Evaluate these functions over a useful range of P0, using P = 1 and b = 1. Use these

evaluations to plot the implicit functions X0, T , and P0 as functions of the initial

storage S0.

8 Costless competitive production of a sterile resource with finite demand:

X + K = a
Pβ

(1.158)

This is illustrated in Figure 1.3.

(a) What is the ceiling price P ?

(b) Confirm the following relations:

S0(T ) = K
βr

[
eβrT − 1

]
+ KT (1.159)

X0(T ) = K
[
eβrT − 1

]
(1.160)

P0(T ) = a

KeβrT
(1.161)

At any time, these must relate S, X , and P to the remaining life T of the

resource.

(c) Plot S, X , and P versus T .

(d) Using the same relations, plot X , P, and T versus S, the amount of resource

remaining.

9 Repeat Problem 7 but use monopoly production. Compare the results with Problem 7.

Do you find that monopoly production is more or less conservative than competitive

production?

10 Costless production of a sterile resource is governed by

dS
dt

= −X (1.162)

dP
dt

= rP (1.163)

X = a
Pβ

(1.164)

where S is the amount in storage, X is the annual production, and P is the price.

Parameters are: a = 20; β = 0.5; and r = 0.1. Today (t = 0), S = 100.
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(a) Calculate P, S, and X at t = 0 and at t = 5.

(b) At t = 5, new laws are enacted that will regulate and tax production. The new

laws will become effective in 10 years, that is, at t = 15. Details are unclear;

but it is highly likely that production will be either unprofitable, illegal, or

both, beginning at t = 15. What adjustments to P and X will occur and why?

Calculate the new values of P and X following this adjustment.

(c) Sketch the time history of P, X , and S from t = 0 to t = 15 and beyond.

11 Costless production of a sterile resource, S0 = 1,000. Demand is

X = 1√
P

(1.165)

subject to the ceiling price P = 15. Interest rate is r = .05.

(a) What are today’s price P? production rate X ? time to exhaustion T ?

(b) A new substitute is about to be announced; the net effect will be that demand

will begin decaying over time:

X = e−0.1t
√

P
(1.166)

What changes will occur in P, X , and T as soon as this substitute is

announced?

(c) What is the value of the research that led to the substitute? Who is happy,

who is sad?

12 Costless, competitive production of a sterile resource. Demand is the standard used

frequently in class:

X = 100√
P

(1.167)

Owner is conservative in the face of discovery. Interest rate is 0.10. Price is observed

to be constant over many years, at P = 100.

(a) What is the discovery rate?

(b) What is the amount of reserves (S) today?

13 For the case summarized in Equations 1.20–1.23: At what initial abundance S∗ does

the present worth of rent peak? Obtain this as a function of the parameters r, a, β, P .

Confirm your analysis graphically that rent decreases with S for S > S∗.

14 Costless, competitive production of a sterile resource. The demand function is

given by

X = 1
b

ln

(
P

P

)
(1.168)

or equivalently,

P = Pe−bX (1.169)



1.7 Problems 37

Find the initial price P0 and the time to exhaustion T , both as functions of the initial

storage S0.

15 Costless production of a sterile resource, with demand given by

P = P − bX (1.170)

Price today is .6P . The interest rate is 10%. There is no discovery. Predict the price in

one year under

(a) monopoly production

(b) competitive production

16 Costless, competitive production of a sterile resource. Demand is

X = 100√
P

(1.171)

with no price ceiling, interest rate r = .10, and total reserves today S0 = 1,000.

It is widely accepted that another 200 units of resource are under a national park; but

it is believed that production there will never be allowed.

(a) What are price P and production X today (i.e., year 2001)?

(b) Public policy is suddenly changed to allow production in the national park.

What changes? Forecast P, X , and S five years from now (i.e., year 2006).

(c) After five years of drilling, it is realized that the 200 units under the park was

overestimated by a factor of 2. What changes? What do P and X become now

(year 2006, immediately following the realization)?

(d) Sketch the evolution of P, X , and S over time from year 2001 to 2010.

17 Costless competitive production of a sterile resource. Demand is

X = 100

P
1
3

(1.172)

S0 = 1,000, interest rate r = .05, and the ceiling price is infinite. You are considering

selling production rights to all of this resource.

(a) What price should you expect?

(b) The buyer expects that there is a ceiling price P = 8. What is the most this

buyer will pay?

(c) You have secret knowledge about a substitute product that your own R&D

unit has developed. This substitute makes P = 6. With the offer from the

buyer above in hand, you should be happy. Quantify your happiness.

18 Derive Equation 1.128 for the time to peak when discovery rate is fast relative to

production.

19 Simulate the discovery system described in the text, Section 1.3.1, under three scenar-

ios: (a) fast discovery (ρ = .1, βr = .05); (b) moderate discovery (ρ = .02, βr = .05);

and (c) slow discovery (ρ = .005, βr = .05). Use S0 = 100 and U0 = 600; assume the

ceiling price P is infinite. Do the simulation results agree with the text discussion?
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20 Derive the discovery solutions for S and U as in the text, but with “optimistic”

production that anticipates future discovery:

X = βr(S + αU ) + a

P
β

(1.173)

with 0 < α < 1. (a) Compare the results with the pessimistic solutions given in the

text. (b) What happens when α > 1? Is there a critical (large) value of α? Explain why

or why not.

21 Redo the simulations in Problem 19, but with “optimistic” production:

X = βr
(

S + U
2

)
(1.174)

as in Problem 20. Assume the ceiling price P is infinite. Compare these simulations

to a) the analytic solutions from Problem 20; and (b) the pessimistic production

simulations in Problem 19.

22 Equations 1.39 and 1.40 give the point beyond which rent decreases as S increases,

for costless competitive production with linear demand.

(a) Derive those equations.

(b) Confirm the root given in the text.

(c) Plot R versus S∗ for several combinations of the fixed parameters P , r, and b,

and confirm that 1.39 and 1.40 are true.

23 Ten units of a nonrenewable resource are available under costless production. The

market for it is described by the demand function

P =
√

1 − X 2 (1.175)

where P is the price and X is the production rate. There is no exploration; interest

rate r = 0.10.

(a) Confirm: ε = −X 2/P2.

(b) Confirm: Q ≡ P(1 + ε) = 2P − 1/P.

(c) Confirm: Given Q, then P = 1
4

(
Q +√

Q2 + 8
)
.

(d) What are the limits on P? X ? Q?

(e) What is the Terminal Condition?

Find the initial price, the initial production rate, and the time to exhaustion

under (f) competitive production; and (g) monopoly production. Do (f) and (g) by

simulation.

24 Costless production of a sterile nonrenewable resource; S0 = 100; r = 6%; β = .5.

It is observed that demand is growing linearly with time; in the coming year, it will

grow by 4% and will continue linearly forever.

(a) What is the production from now until exhaustion? Compute and plot X

and P.

(b) Compare with the no-growth-in-demand scenario, all other things being

unchanged.



1.7 Problems 39

(c) Simulate (a) and (b).

(d) Compute the rent under (a) and (b).

25 Costless production of a sterile resource. Demand is

X = 1√
P

(1.176)

Interest rate r = .10. Today, it is known that P = 25. There is no ceiling price.

(a) What are S and X today?

(b) What is the financial value of exclusive production rights to this resource?

(c) How long will it take before S is depleted to 25% of today’s amount?

26 Continuation of Problem 25. A new conservation technology is about to be

introduced. As a result, demand will shrink gradually over time:

X = e−αt
√

P
(1.177)

with α = .06 and r = .10. Note: Here you may still assume that dP
dt = rP. P0 may

change, however.

(a) What are P, X , and S as functions of time?

(b) What is today’s price? Today’s production rate? How have they changed from

your Problem 25 answers? (In problem 25, α = 0.)

(c) How long will it take before S is depleted to 25% of today’s amount?

(d) What is the total value today of this new technology? Who is happy,

customers, technologists, and/or resource owners?

27 Redo Problems 25 and 26; but add a price ceiling P = 15. In addition to the questions

there, evaluate the resource lifetime in each case.

28 Costless, competitive production of a sterile resource. Demand is

X = 200√
P

(1.178)

There is no ceiling price; interest rate r = .10. There is exploration. But producers

always act conservatively, forecasting zero discovery until it actually happens.

Production one year ago was X = 100. Today, X = 120.

(a) What is the discovery rate?

(b) What are the total reserves S today?

(c) A company wants to buy exclusive rights to your resource. What will you sell

for, today?

(d) The Supreme Court just ruled that 500 units of your S actually lie under a

national park; your right to that amount is voided. Quantify your

(un)happiness as an owner.
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29 Costless production, no ceiling price, with constant-elasticity demand, shrinking

exponentially:

X = e−αt

Pβ
(1.179)

What is the relation between the decay rate α and P0? between α and total rent?

30 Costless production, constant elasticity β = .5. Parameters: S0 = 1,000, r = .05,

a = 1.

(a) Compute and plot X , S, and P for the first 10 years of production.

(b) At t = 10, an attractive substitute for the resource becomes instantly

available. As a result, demand begins to shrink exponentially, at the rate

g = −0.20 per year. What changes in X and P will occur instantly?

(c) Plot the time history of X , S, and P from t = 0 (as in (a) above) and continuing

through the change in demand, out to t = 30.

31 You own 6,000 units of a sterile resource; production is costless, and there is no

discovery. Demand is

X = 7√
P

(1.180)

Interest rate r = .05 and there is no price ceiling.

(a) What is today’s price?

(b) How much resource is left after 10 years?

(c) At t = 10 years, you decide to sell all rights to future production. How much

money will you sell out for?

(d) Engineers in another firm have worked secretly on a new use for your

resource. You are ignorant of this. This new technology is “ready to go” at

t = 10. Once announced, it is expected that demand will instantly expand to

X = 9√
P

(1.181)

Assuming they first buy the production rights from you as in (c) above,

quantify their happiness.

(e) The technical announcement about the new use in (d) is made, at t = 10.

What immediate adjustments will occur in price, supply, and production

rate? With this in hand, sketch the time history of these quantities from today

(t = 0) through t = 15.

32 Costless production of a sterile resource, with demand

X = 7√
P

(1.182)

Interest rate r = .05, and there is no price ceiling. You own 6,000 units of the resource

today.
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(a) What is today’s price?

(b) What is today’s production rate?

You read the following in the evening news: “The government announced today that,

effective in eight years, production of this resource will be illegal due to unacceptable

health risks.”

(c) What changes should you make?

(d) What is the new price, effective tomorrow morning?

(e) What is the new production rate, effective tomorrow morning?

(f) You will sue the government for damages. What is the dollar value of your

suit?

33 Costless production of a sterile resource, with demand

X = √
1 − P (1.183)

Interest rate r = .05. It is known that in exactly four years, this resource will be

exhausted.

(a) What is the production rate and price, both now and in four years, under

competitive production? (Your answer should consist of four numbers.)

(b) Same, under monopoly production.

34 Compute the present worth of the consumers’ surplus,
∫

CS · e−rt dt , as given in

Equation 1.27, assuming P(t) = P0ert .

35 For linear demand given by

P = P − bX (1.184)

(a) Find an expression for consumers’ surplus as a function of P.

(b) Find an expression for the present worth of consumers’ surplus,
∫

CS · e−rt dt

assuming P(t) = P0ert .


