
The Weighted Mean

When there is a range of opinions or views on a particular matter, we tend to adopt
the view that we consider to carry the greatest ‘weight’. The weight normally reflects
the degree of authority, based on expertise and experience, that supports the view.
For example, when the need for nuclear power stations is debated, we are likely to
regard as more important the views of experts such as physicists, engineers, economists,
environmentalists and health professionals than the views of non-experts. It is interesting
that in German (for example) the word for ‘important’, wichtig, is obviously related to
the English ‘weight’.

The concept of ‘weight’ in the domain of measurement arises from the common
situation that ‘not all measurements are equal’ and that those that have less uncertainty
should carry greater ‘weight’. For various reasons such as the experience, competence
or diligence of the experimenter, or the quality of the measuring instrument or system,
the result of a measurement (such as the resistance of a coil of wire, or the emission
wavelength of a particular laser) will differ both in its value and the uncertainty in
that value from one experimenter to another. In situations where we need to combine
values of the same particular quantity as obtained by different experimenters in order to
determine a ‘mean’ — that is, a ‘consensus’ value — how do we account for the different
uncertainties in the values that they report? We address this question as follows.

If we take a set of measurements, and all the measured values are equally accurate,
we end up with the ‘ordinary mean’ or ‘average’ of them. If all the values are not equally
accurate, we would like our so-called ‘mean’ to be ‘pulled’ towards those values that are

accepted as the more accurate ones. Then we end up with a ‘weighted mean’. We see
that ‘accurate’ here is roughly the equivalent of ‘important’ in the top paragraph. We
now proceed to discuss how the weighted mean is estimated using least-squares.

In section 5.2.1 (‘The mean as a least-squares fit’), a single value m was fitted by
least-squares to the six values 4.1, 4.3, 4.4, 4.2, 4.3, 3.9. Such a single value is often
required in order to summarise or represent individual values. The resulting value of m
was the mean, m = 4.20, of these six values. This is of course a very common statistical
operation: to summarises a set of values by a single value, we generally take their mean

or, in everyday language, their average.

We recall how m was estimated using least-squares: the six measurements were
written in the form:

4.1 = m + ε1

4.3 = m + ε2

4.4 = m + ε3

4.2 = m + ε4 (1)

4.3 = m + ε5

3.9 = m + ε6
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where the ε1, ε2, ...ε6 are the ‘residuals’. The least-squares procedure, after estimating
m, yielded the following values for the residuals:

ε1 = −0.10

ε2 = +0.10

ε3 = +0.20

ε4 = 0.00 (2)

ε5 = +0.10

ε6 = −0.30.

These six residuals sum to zero (so they have only five degrees of freedom).

Up till now we considered the six original values as carrying ‘equal weight’. In
practice, this implies that all were measured with equal accuracy. But it sometimes
happens that we have advance knowledge that all values were not obtained with equal
accuracy. For example, the first value 4.1 might have been measured with a top-of-the-
range instrument, and the other five with an instrument of lower quality. We would then
naturally claim that 4.1 has ‘greater weight’ than the other five. We would like to be
able to incorporate this advance knowledge when summarising the six values by a single
value.

(Of course, it sometimes happens that the ‘advance knowledge’ only comes to light
after the measurements are made. This does not affect the following analysis).

To reflect the different weights of the original six values, we ‘scale’ the residuals in
(1) accordingly. The natural scaling factors to use are the standard uncertainties of the
respective measurements. Call these u1, u2, ...u6. Then we have, in place of (1),

4.1 = mw + u1ε1

4.2 = mw + u2ε2

4.4 = mw + u3ε3

4.2 = mw + u4ε4 (3)

4.3 = mw + u5ε5

3.9 = mw + u6ε6.

We denote in (3) the single estimate as mw, in anticipation of the fact that this estimate
will be the ‘weighted mean’.

If, for example, the first value 4.1 is measured with high accuracy, then u1 will be
much smaller than any of u2, u3, ...u6. (We recall that each u is a (standard) uncertainty,
so the reciprocal 1/u is a measure of the corresponding accuracy). The product u1ε1 will
then be small, and effectively the resulting estimate of mw will be such that mw is forced
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to be ‘closer’ to the high-accuracy value 4.1 than it would be if all six measurements had
equal weight.

As in the unweighted case, we now evaluate the quantity Q as the sum of squares of
the residuals ε1, ε2, ...ε6:

Q = ε2

1 + ε2

2 + ε2

3 + ε2

4 + ε2

5 + ε2

6, (4)

and from (3) this is equivalent to

Q =
(4.1 − mw)2

u2

1

+
(4.2 − mw)2

u2

2

+
(4.4 − mw)2

u2

3

+

(4.2 − mw)2

u2

4

+
(4.3 − mw)2

u2

5

+
(3.9 − mw)2

u2

6

. (5)

We wish to find that value of mw for which Q is a minimum (and we observe that
u1, u2, ...u6 are treated as known-in-advance constants). Differentiating Q with respect
to mw gives:

∂Q

∂mw

= −2
(4.1 − mw)

u2
1

− 2
(4.2 − mw)

u2
2

− 2
(4.4 − mw)

u2
3

− 2
(4.2 − mw)

u2

4

− 2
(4.3 − mw)

u2

5

− 2
(3.9 − mw)

u2

6

(6)

and (6) is equal to zero for an extremum value of Q (maximum or minimum). (It can
be easily shown, taking the second derivative ∂2Q/∂m2

w, that this extremum is in fact a
minimum value of Q). Cancelling out the −2 in (6), the solution for mw is:

mw =

4.1

u2

1

+ 4.2

u2

2

+ 4.4

u2

3

+ 4.2

u2

4

+ 4.3

u2

5

+ 3.9

u2

6

1

u2

1

+ 1

u2

2

+ 1

u2

3

+ 1

u2

4

+ 1

u2

5

+ 1

u2

6

. (7)

The formula (7) gives the weighted mean of the six values.

Thus, suppose as before that u1 is very small, and the other five u’s are much larger.
Then in (7) the dominating term in the numerator will be 4.1/u2

1
, and in the denominator,

1/u2

1
. So in this case,

mw ∼

4.1

u2

1

1

u2

1

= 4.1. (8)

As we expect, since the high-accuracy first value, 4.1, has much greater weight than the
other five, we have mw ∼ 4.1 rather than m = 4.20 as in the unweighted case.

In (7), the coefficients 1/u2
1
, 1/u2

2
,...u2

6
are called the ‘weights’ w1, w2, ...w6 respec-

tively. In the general case of n originally measured values y1, y2, ...yn, we have, in place
of (3),

yi = mw + uiεi (i = 1, 2, ...n), (9)
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and the weighted mean is then given by

mw =

∑

n

i=1
wiyi

∑

n

i=1
wi

(10)

where wi = 1/u2

i
for i = 1, 2, ..., n. We observe that the weights are inversely proportional

to the variances (the squares of the standard uncertainties). This is so even though, in
(3), the scaling factors for the residuals were the standard uncertainties themselves.

In (10), if the weights wi (i = 1, 2, ..., n) all have the same value, say w0, then (10)
reduces to

mw =
w0

∑

n

i=1
yi

nw0

=

∑

n

i=1
yi

n
, (11)

which is, as we would expect, the ordinary mean m.

The effect of weighting can be clearly seen if we imagine just two values, say y1 = +1
and y2 = +2. Then m = 1.5. Now suppose that y1 = +1 was measured with twice the
uncertainty of the measurement of y2 = +2, so that we can take, for example, w1 = 1
and w2 = 4. We note that (as is true for the general case of n measurements), it is only
the ratio of the weights that matters; the same result for mw would be obtained if we
took (say) w1 = 2 and w2 = 8. (This is why the equally-weighted case can also be called
simply the ‘unweighted’ case). Equ. (10) gives

mw =
(1 × 1) + (4 × 2)

1 + 4
= +1.8. (12)

The higher accuracy of y2 = 2 ‘pulls’ our single-value estimate away from the unweighted
mean 1.5 towards that higher-accuracy value.

We next consider the standard uncertainty of mw. We may regard (10) as stating a
relationship between ‘inputs’ yi and the output mw, with wi = 1/u2

i
as constant factors.

Provided that the yi (i = 1, 2, ..., n) are all uncorrelated with one another, we can then
use the relationship (7.14) in Chapter 7, which in the present notation becomes:

u2(mw) =

(

∂mw

∂y1

)2

u2(y1) +

(

∂mw

∂y2

)2

u2(y2) + ... +

(

∂mw

∂yn

)2

u2(yn). (13)

Since u2

i
= 1/wi (i = 1, 2, ..., n) in (13), we have

u2(mw) =
1

w1

(

∂mw

∂y1

)2

+
1

w2

(

∂mw

∂y2

)2

+ ... +
1

wn

(

∂mw

∂yn

)2

. (14)

Now from (10), for all k = 1, 2, ..., n,

∂mw

∂yk

=
wk

∑

n

i=1
wi

, (15)

so

u2(mw) =
1

w1

w2
1

(
∑

n

i=1
wi)2

+
1

w2

w2
2

(
∑

n

i=1
wi)2

+ ... +
1

wn

w2
n

(
∑

n

i=1
wi)2
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=

∑

n

i=1
wi

(
∑

n

i=1
wi)2

=
1

∑

n

i=1
wi

=
1

∑

n

i=1
(1/u2

i
)
. (16)

In the particular case where all the weights are equal, so that the uk (k = 1, 2, ..., n) are
equal at the value, say, u0, (16) gives:

u2(mw) =
1

∑

n

i=1
(1/u0)2

=
1

n/u2
0

=
u2

0

n
, (17)

or
u(mW ) = u0/

√
n. (18)

Equ. (18) may be recognised as the standard uncertainty of the mean of equally-weighted
and uncorrelated values (see, for example, equation (7.31) in Chapter 7). In this equal-
weight case, therefore, the scaling factor u0 is estimated simply as the standard deviation
of the original values yi (i = 1, 2, ..., n). (This standard deviation should be obtained as
the square root of the unbiased variance of the original values; see for example equ. 5.13
in the book).

In the equally-weighted case, the residuals sum to zero:

∑

i=1n

εi =
n

∑

i=1

(yi − m) = 0, (19)

as can be seen in the particular example in (2). The counterpart of (19) in the weighted
case is:

n
∑

i=1

wi(yi − mw) = 0. (20)

Equ. (20) can also be written
∑

n

i=1
εi/ui = 0, using yi − mw = uiεi and wi = 1/u2

i
for

i = 1, 2, ..., n. Then we see that, as in the equally-weighted case, the residuals have n−1
degrees of freedom.

The proof of (20) is as follows. Using (10), the left side of (19) is

n
∑

i=1

wi

(

yi −

∑

n

k=1
wkyk

∑

n

k=1
wk

)

=
n

∑

i=1

wiyi −
(
∑

n

i=1
wi)

(
∑

n

i=1
wk)

n
∑

k=1

wkyk

=
n

∑

i=1

wiyi −

n
∑

i=1

wkyk = 0. (21)

We may easily check (19) in the case of the two values (n = 2) in the previous example,
with y1 = 1 and y2 = 2, with w1 = 1 and w2 = 4. We obtained mw = 1.8. Then (19)
translates into:

1 × (1 − 1.8) + 4 × (2 − 1.8) = −0.8 + 0.8 = 0.0,

verifying (20).

As a graphed example, here are six measured values and their corresponding standard
uncertainties:
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Ordinary mean compared with weighted mean

Measurement number measured value standard uncertainty

1 1.41 0.02
2 1.39 0.05
3 1.34 0.06
4 1.43 0.02
5 1.44 0.01
6 1.40 0.02

The ordinary mean is 1.40167, whereas the weighted mean is 1.42637. The graph shows
the six points each with an attached error bar. The length of the error bar measured
from its centre to either end is equal to the standard uncertainty. (Sometimes error
bars are drawn with the centre-to-end length equal to the expanded uncertainty, which
is often about twice the standard uncertainty; see Ch. 10 in the book). We observe that
the weighted mean is considerably greater than the ordinary mean, because the larger
measured values tend to be the more accurate ones.

If we ignore the weights in this example, and assume uncorrelated values, the
standard uncertainty of the unweighted mean is about 0.0354. If we take into account
the different weights and use (16), the standard uncertainty of the weighted mean is
considerably less at 0.0074.
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