
CN Chapter 3

CT Supplement: Frequency Dependence
And Symmetry Properties Of The
Nonlinear Susceptibility

In Section 2.2 of “Compact Blue–Green Lasers,” we have described the second-order
nonlinear susceptibility as a frequency domain quantity, and have also suggested that

it may possess certain symmetry properties (e.g., χ(2)(−2ω1) =
[
χ(2)(2ω1)

]∗
). In this

supplementary note, we examine the nature of χ(2) in more detail. The frequency depen-
dence of χ(2) can be more complicated that we have implied thus far. The value of χ(2)

may depend on all the frequencies involved in the interaction; that is, on both the applied
and generated frequencies; thus, in describing the sum-frequency component on page 40
of the text, we should really have written P̃

(ω1+ω2)
NL = 2εoχ

(2)(ω1 + ω2;ω1, ω2)Ẽ
(ω1)
1 Ẽ

(ω2)
2 .

We have already suggested, in our second harmonic generation example, that χ(2) might
depend on the generated frequency. Compare second-harmonic generation with op-
tical rectification using the simple “electron on a spring” model described earlier. In
both cases, the same electric fields are applied; however, in the former case the response
of the electron is at an optical frequency (ω =2ω1), whereas in the latter case, the re-
sponse of the electron is at ω = 0. It does not seem unreasonable to anticipate that
the electron might oscillate differently at 0 Hz than at 1015 Hz. Thus, we might expect
that the value of χ(2) depends on the frequency we are trying to generate.

Similarly, the value of χ(2) might depend on the applied frequencies, even if the
generated frequency is the same. For example, suppose that we compare generation
of 490-nm light by frequency doubling of a 980-nm laser with generation of the same
wavelength by frequency mixing of two lasers: one at 1300 nm and the other at 786 nm.
Even though the generated wavelength is the same in both cases, we might expect that
the response of the electron is different when excited at a wavelength of 980 nm than
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when simultaneously excited at both 1300 and 786 nm.
In the text, we mentioned, but did not elaborate, on the fact that the nonlinear

polarization and the applied electric fields are vectors, and are represented by three
scalar components in a x − y − z cartesian coordinate system. On page 40 of the
text, we wrote that the sum-frequency component of induced polarization could be
written as P̃

(ω1+ω2)
NL = 2εoχ

(2)(ω1 + ω2)Ẽ
(ω1)
1 Ẽ

(ω2)
2 , and mentioned that P̃

(ω1+ω2)
NL , Ẽ

(ω1)
1

and Ẽ
(ω2)
2 are all vectors, each potentially having three vector components. A particular

vector component of P̃
(ω1+ω2)
NL —the x-component P̃

(ω1+ω2)
NL,x , for example—can receive

contributions from nine separate terms: Ẽ(ω1)
x Ẽ(ω2)

x , Ẽ(ω1)
x Ẽ(ω2)

y , Ẽ(ω1)
x Ẽ(ω2)

z ; Ẽ(ω1)
y Ẽ(ω2)

x ,

Ẽ(ω1)
y Ẽ(ω2)

y , Ẽ(ω1)
y Ẽ(ω2)

z ; Ẽ(ω1)
z Ẽ(ω2)

x , Ẽ(ω1)
z Ẽ(ω2)

y , Ẽ(ω1)
z Ẽ(ω2)

z , (where we have dropped the

1,2 subscript from Ẽ, and distinguish the two separate applied signals through the ω1, ω2

notation). Each of these product terms contributes to P̃ (ω1+ω2)
x through a component

of the χ(2) tensor. Each of these components may be different, corresponding to
the different polarizations involved. This polarization dependence should not be too
surprising if we again consider the simple-minded “mass-on-a-spring” model. If we
contemplate the extension of this analogy to three dimensions, we might imagine three
springs governing the response of the electron cloud, each accounting for the restoring
force which arises when the cloud is displaced along spatial x, y, and z axes. Each
of these springs may have a different stiffness—thus, the response of the electron may
be different when it is displaced in the x -direction compared to its response when
displaced along the y- or z - axes. (This simple model does not account very well for
“cross-coupling”, in which, for example, displacement along the y-axis results in motion
along the x -axis, but this behavior occurs—and is of great practical importance—in the
polarization response of nonlinear crystals.) Hence, to account for the polarization
dependence in the nonlinear interaction, we can write something like:

P̃
(ω1+ω2)
i = 2εo

∑
j,k

χ
(2)
ijkẼ

(ω1)
j Ẽ

(ω2)
k (3.1)

where, in principle, 27 χ(2) components are required to determine P̃ (ω1+ω2) from Ẽ(ω1)

and Ẽ(ω2).
In actuality, a number of factors reduce the number of independent components of

the χ(2) tensor. We briefly review them here; a more extended discussion may be found
in books by Boyd [?] or Shen [?].

1. Reality of signals. Since P (z, t) is a real signal, we would expect its Fourier
transform to have the property that P(z, ω) = P∗(z,−ω). The real-valued electric

field has the same property. Thus, if P̃
(ω3)
i = 2εo

∑
j,k

χ
(2)
ijk(ω3;ω2, ω1)Ẽ

(ω1)
j Ẽ

(ω2)
k , this must

be equal to P̃
∗(−ω3)
i = 2εo

∑
j,k

χ
(2)∗
ijk (−ω3;−ω2,−ω1)Ẽ

∗(−ω1)
j Ẽ

∗(−ω2)
k , which requires that

χ
(2)
ijk(ω3;ω2, ω1) = χ

(2)∗
ijk (−ω3;−ω2,−ω1). Furthermore, it can be shown that for lossless
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media with no externally applied magnetic fields, all components of χ
(2)
ijk are real-

valued.
2. Intrinsic permutation symmetry. In Eq. 3.1, the ω1 signal is associated

with the j index, and the ω2 signal is associated with the k index. The order in
which j and k are written in describing χ

(2)
ijk is a matter of convention. They can

be interchanged, as long as ω1 continues to be associated with the j index, and the
ω2 signal continues to be associated with the k index. Thus, χ

(2)
ijk(ω1 + ω2;ω1, ω2) =

χ
(2)
ikj(ω1 + ω2;ω2, ω1).
3. Overall permutation symmetry. This symmetry arises from the argument

that the nonlinear medium cannot “tell the difference” between generated and generat-
ing field—all it “knows” is that three waves with frequencies ω1, ω2, and ω3 are present
within it, but not which were applied and which were produced. Thus, the same non-
linear susceptibility that applies to sum-frequency generation of a signal at ω3 = ω1+ω2

from applied fields at ω1 and ω2 applies to difference frequency generation of a signal at
ω1 from applied fields at ω2 and ω3, e.g., χ

(2)
ijk(ω3;ω1, ω2) = χ

(2)
jki(ω1;ω2, ω3). Thus, any

of the ijk indices can be interchanged, as long as the corresponding frequencies are also
interchanged.

4. Kleinman symmetry. If all the frequencies involved in the interaction lie suffi-
ciently far away from any resonance frequencies of the nonlinear material, the χ

(2)
ijk are

not strongly dependent on frequency. Hence, as far as the medium is concerned, the
frequencies ω1, ω2, and ω3 are virtually indistinguishable. Thus, the indices can be in-
terchanged without interchanging the corresponding frequencies, as would be otherwise
be required by overall permutation symmetry.

5. Spatial symmetry. If the nonlinear medium is a crystal, its constituent
atoms are arranged in an orderly lattice. The orderliness of this arrangement may
lead to spatial symmetries, such that if the crystalline structure were rotated about
an axis, inverted through a point, or reflected across a plane, an identical arrangement
of atoms would be obtained. Since the interacting fields would encounter the same
arrangement of atoms in both the original crystal and the transformed version obtained
through such a symmetry operation, the form of the χ(2) tensor must be the same in
both cases. By applying the symmetry operations valid for the crystal to the χ(2)

tensor and requiring it to remain unchanged, certain elements can be shown to be zero
or related to others.
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