
Appendix G

Fourier transform: an overview

In this appendix, we provide an overview of the key concepts and properties relating
to the Fourier analysis of functions of time and space variables that are essential to
a deeper understanding of the digital filters (Chapter 21). In the following, we use
the term functions and signals interchangeably.

G.1 Fourier transforms of continuous signals (infinite
duration)

A signal g : R −→ R is said to belong to a class D of functions if (a) g is piecewise
smooth and (b) is absolutely integrable, that is∫ ∞

−∞
|g(t)|dt < ∞. (G.1.1)

It can be verified that

g+(t) = 1
λ

e− t
λ for t ≥ 0

= 0 for t < 0 (G.1.2)

belongs to the class D since g+(t) has one discontinuity at the origin t = 0 and∫ ∞

−∞
g+(t)dt = 1.

But the periodic and continuous function g(t) = sin 2π f t does not belong to class
D.

The (direct or forward) continuous time Fourier transform (CTFT) G( f ) of g(t)
is a function G : R −→ R defined by

G( f ) = F[g(t)]

= ∫ ∞
−∞g(t)e−i2π f t dt (G.1.3)

where i = √−1, the standard unit imaginary number and the variable f is called
the (rotational) frequency and w = 2π f is called the angular frequency.
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734 Fourier transform: an overview

The importance and the utility of the Fourier transform lies in the fact that we
can recover the function g(t) from G( f ) using the inverse transform defined by

g(t) = F−1[G( f )]

= 1
2π

∫ ∞
−∞G( f )ei2π f t d f. (G.1.4)

Since

g(t) = F−1[G( f )] = F−1[F(g(t))]

and

G( f ) = F[g(t)] = F[F−1(G( f ))]

g(t) and G( f ) are two equivalent but different representations of the same function.
G( f ) is often called the spectral representation of g(t).

Example G.1.1 The Fourier transform of g+(t) in (G.1.2) is given by

G+( f ) = F[g+(t)]

= 1
λ

∫ ∞
0 e− t

λ e−i2π f t dt

= 1
λ

∫ ∞
0 e−( 1+i2π f λ

λ
)t dt

= 1
1+i2π f . (G.1.5)

Clearly, G(f) is a (rational) complex function in the frequency f whose amplitude
and phase is given by

|G( f )| = 1

1 + 4π2 f 2λ2
(G.1.6)

and

Arg[G( f )] = tan−1[−2π f λ]. (G.1.7)

For completeness, we now demonstrate the computation of the inverse transform
of G( f ) in (G.1.5)

F−1[G( f )] = 1

2π

∫ ∞

−∞

ei2π f t

1 + i2π f t
d f.

Example G.1.2 Consider the so-called Gaussian pulse

g(t) = e−π t2
. (G.1.8)

Its Fourier transform G( f ) is given by

G( f ) = ∫ ∞
−∞e−π t2

e−i2π f t dt

= eπ f 2∫ ∞
−∞e−π (t+i f )2

dt.
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Setting

√
π (t + i f ) = x√

2
with dt = 1√

2π
dx

we obtain

G( f ) = e−π f 2
[

1√
2π

∫ ∞
−∞e− x2

2 dx
]

= e−π f 2
(G.1.9)

since the integral within the square bracket is the integral of the standard Gaussian
or normal distribution whose value is unity.

We encourage the reader to verify that the inverse transform of G( f ) in (G.1.9)
gives g(t) in (G.1.8).

G.2 Properties of Fourier transform

We now state several basic properties of the Fourier transform pairs.

(a) Linearity If g(t) and h(t) are two functions in class D, and a and b are two
real constants, then

F[ag(t) + bh(t)] = aF[g(t)] + bF[h(t)].

(b) Shifting property For any real τ ,

F[g(t − τ )] = e−i2π f τ F[g(t)].

(c) Stretching property For any non-zero real constant a,

F[g(at)] = 1

|a|G

(
f

a

)
where as usual G( f ) = F[g(t)].

(d) Derivative/Integral of functions If G( f ) = F[g(t)], then

F

[
dg(t)

dt

]
= i2π f G( f )

and

F

[∫ t

−∞
g(τ )dτ

]
= G( f )

i2π f
.

(e) Moment property The nth derivative of G( f )

dnG( f )

d f n
= (−i2π )n F[tng(t)].
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Hence, the nth moment of g(t) is given by∫ ∞

−∞
tng(t)dt =

(
i

2π

)n dnG( f )

d f n
| f =0.

(f) Parseval’s theorem The total energy in the signal is the same in both the
representations: ∫ ∞

−∞
|g(t)|2dt =

∫ ∞

−∞
|G( f )|2d f.

(g) Time reversal property

F[g(−t)] = ∫ ∞
−∞ g(−t)e−i2π f t dt

= G(− f )

by changing the variable −t = x and simplifying.

Example G.2.1 Using g+(t) in (G.1.2), define

g−(t) = g+(−t) = 1
λ

e
t
λ for t ≤ 0

= 0 for t > 0. (G.2.1)

Then

G−( f ) = F[g−(t)] = 1

1 − i2π f λ
. (G.2.2)

(h) Convolution theorem If g(t) and h(t) are functions in class D, then the con-
volution of g(t) and h(t) denoted by (g ∗ h)(t) is defined by

(g ∗ h)(t) =
∫ ∞

−∞
g(r )h(t − r )dr. (G.2.3)

The following properties of the convolution are easily verified:

(1) g ∗ h = h ∗ g Commutative

(2) g ∗ (h ∗ f ) = (g ∗ h) ∗ f Associative

(3) g ∗ ( f + h) = (g ∗ f ) + (g ∗ h) Distributive

We now state one of the most fundamental properties that is widely used in
signal analysis. The Fourier transform of the convolution of g(t) and h(t) is the
product of their individual Fourier transforms, that is,

F[g ∗ h] = F(g)F(h). (G.2.4)

Example G.2.2 Let

g+(t) = 1
λ

e− t
λ if t ≥ 0

= 0 if t < 0



G.2 Properties of Fourier transform 737

and

g−(t) = 1
λ

e
t
λ if t ≤ 0

= 0 if t > 0.

Let u(t) denote the unit step function

u(t) = 1 if t ≥ 0

= 0 if t < 0.

Then

g+(t) = 1
λ

e− t
λ u(t) for 0 < t < ∞

and

g−(t) = 1
λ

e
t
λ u(−t) for 0 < t < ∞

⎫⎪⎬
⎪⎭ (G.2.5)

The convolution of g+(t) and g−(t) in (G.1.1) is given by [since u(−t) =
(1 − u(t))]

s(t) = (g− ∗ g+)(t)

=
∫ ∞

−∞
g−(τ ) g+(t − τ )dτ

= 1

λ2

∫ ∞

−∞
[1 − u(τ )]u(t − τ )e

t
τ e−( t−τ

λ
)dτ.

Since [1 − u(t)] = 0 for τ > 0, we obtain

s(t) = e− t
λ

λ2

∫ ∞

−∞
[1 − u(τ )]u(t − τ )e

2τ
λ dτ.

At t = 0

s(0) = 1

λ2

∫ 0

−∞
e

2τ
λ dτ = 1

2λ
.

For any t > 0,

s(t) = e− t
λ

λ2

∫ 0

−∞
e

2τ
λ dτ

= 1

2λ
e− t

λ .

For any t < 0

s(t) = e− t
λ

λ2

∫ t

−∞
e

2τ
λ dτ

= 1

2λ
e

t
λ .
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Hence,

s(t) = 1

2λ
e− |t |

λ (G.2.6)

which is an even symmetric function since s(t) = s(−t).
By the convolution theorem,

F[s(t)] = F[g−(t) ∗ g+(t)]

= F[g−(t)]F[g+(t)]

= 1

1 + 4π2 f 2t2
. (G.2.7)

Example G.2.3 We leave it to the reader to verify that the convolution of s(t)
with itself is given by

s∗2(t) = (s ∗ s)(t)

= ∫ ∞
−∞ s(τ )s(t − τ )dτ

= (λ + |t |)
4λ2

e− |t |
λ .

(G.2.8)

It is interesting to explore what happens if we take repeated convolution of
a function with itself. To this end, let

g∗n(t) = (g ∗ g ∗ · · · ∗ g)︸ ︷︷ ︸(t)

n times

denote the n-fold convolution of g(t) with itself. It turns out that under some
broad conditions on g(t), the limit of g∗n(t), as n becomes large, is independent
of g(t).

(i) Repeated convolution: a form of a central limit theorem Let g(t) ∈ D be
such that for some positive constants α and β, its Fourier transform can be
approximated by

G( f ) = α − β f 2 (G.2.9)

for small f . Then

lim
n−→∞

[√
ng(

√
nt)

α

]∗n

=
√

πα

β
exp

[
−π2α

β
t2

]
. (G.2.10)

Since this result is central to deriving properties of (spatial) recursive filters in
Chapter 21, we now provide a proof of this result.

By the stretching property, we obtain n > 0

F
[
[
√

ng(
√

nt)]
] = G

(
f√
n

)
. (G.2.11)
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Now using the well-known result,

lim
n−→∞

(
1 − a

n

)n
= e−a (G.2.12)

and the convolution theorem, we get

F
[

1
αn [

√
ng(

√
nt)]∗n

] = 1
αn Gn

(
f√
n

)
[by convolution theorem]

= 1
αn

[
α − β

(
f 2

n

)]n
[by (G.2.9)]

=
[
1 − β

α

f 2

n

]n

≈ e− β

α
f 2

[by (G.2.12)]. (G.2.13)

Now taking the inverse transform of both sides of (G.2.13), we get

1
αn [

√
ng(

√
nt)]∗n = F−1

[
e− β

α
f 2

]

= F−1

[
e
−π

(√
β

απ
f
)2]

= F−1

[
e−π

[
f√
απ
β

]2
]

=
√

απ
β

e
−π

[
t
√

απ
β

]2

=
√

απ
β

e− α
β
π2t2

(G.2.14)

where we have used the result relating to the Gaussian pulse from Example
G.1.2 and the stretching property. Clearly, the r.h.s. of (G.2.14) is independent
of g(t).

We now need to extract the n-fold convolution of g(t) from that of
√

ng(
√

nt).
To this end, observe from the derivation leading to (G.2.13) that

Gn

(
f√
n

)
≈ αe− α

β
f 2

. (G.2.15)

By changing the variables, we immediately get

Gn( f ) ≈ αne− nβ
α

f 2
. (G.2.16)

Taking the inverse transform of both sides,

g∗n(t) = F−1[Gn( f )]

= F−1
[
αne− nβ

α
f 2

]
= αn F−1

[
e−π

(
f
r

)2
]

(G.2.17)
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where

r =
√

πα

βn
. (G.2.18)

Again, from Example G.1.2 and the stretching property, we obtain

g∗n(t) = αnre−π (r t)2

= αn
√

πα
βn e− π2α

βn t2

(G.2.19)

which is the desired result.

Example G.2.4 We compute the n-fold convolution of s(t) in (G.2.2). The
Fourier transform pairs are such that

s(t) = 1

2π
e− |t |

λ ⇐⇒ 1

1 + 4π2 f 2λ2
= s( f ). (G.2.20)

This s( f ) satisfies the condition (G.2.9) since

s( f ) = [1 + 4π2 f 2λ2]−1 ≈ 1 − (4π2λ2) f 2.

Comparing this with (G.2.9), we get α = 1 and β = 4π2λ2. Substituting this
into (G.2.19), we readily obtain

[s(t)]∗n = 1
2λ

√
πn

exp
[
− t2

4λ2n

]
= 1√

2πσ
exp

[
− t2

2σ 2

]
(G.2.21)

where

σ 2 = 2λ2n (G.2.22)

that is, [s(t)]∗n has the shape of the Gaussian with mean zero and variance
σ 2 = 2λ2n.

G.3 Fourier transform of discrete signals (infinite duration)

Let z = {. . . ,−3, −2, −1, 0, 1, 2, 3, . . .} be the set of all integers, N+ =
{0, 1, 2, 3, . . .} be the set of all nonnegative integers. The function g : z −→ R is
called a two-way infinite sequence and is denoted by {. . . , g−2, g−1, g0, g1, g2, . . .}.
Likewise g+ : N+ −→ R is denoted by {g0, g1, g2, . . .} and g− : N− −→ R, is
denoted by {g0, g−1, g−2, . . .} are one-way finite sequences.

The sequence g : z −→ R is said to be absolutely summable if

∞∑
n=−∞

|gn| < ∞. (G.3.1)
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The discrete time Fourier transform (DTFT) of g is given by

G( f ) =
∞∑

n=−∞
gne−i2π f n. (G.3.2)

Since

e±i2π f = cos 2π f ± sin 2π f

it follows that G( f ) is periodic with period = 1, that is

G( f + 1) = G( f ). (G.3.3)

Henceforth, we define conveniently in the range [−1/2, 1/2). The inverse transform
is defined by

gn =
∫ 1

2

− 1
2

G( f )ei2π f nd f n = 0, ±1, ±2, . . . (G.3.4)

Example G.3.1 For some 0 < α < 1, let g+ : z −→ R be defined by

g+
n = (1 − α)αn for n ≥ 0

= 0 for n < 0
(G.3.5)

and its dual g− : z −→ R given by

g−
n = (1 − α)α−n for n ≤ 0.

= 0 for n > 0.
(G.3.6)

It can be verified that
∞∑

n=0

g+
n =

−1∑
n=−∞

g−
n = 1. (G.3.7)

Given α, there exists a real constant a > 0 such that α = e−a . Substituting in (G.3.5)
and (G.3.6), we obtain,

g+
n = (1 − e−a)e−an for n ≥ 0

= 0 for n > 0 (G.3.8)

and

g−
n = (1 − e−a)ean for n ≤ 0

= 0 for n > 0. (G.3.9)

Setting a = 1/λ, from

(1 − e−a) = 1 − e− 1
λ ≈ 1

λ
.

the reader can ascertain that (G.3.5) and (G.3.6) are the discrete analogs of the
exponential functions g+(t) and g−(t) in Example G.2.2.
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The DTFT of g+ in (G.3.5) is given by

G+( f ) = (1 − α)
∞∑

n=0

αne−2π f n

= (1 − α)
∞∑

n=0

e−[a+i2π f ]n [using α = e−a]

= 1 − α

1 − e−[a+i2π f ]

= 1 − α

1 − αe−i2π f
. (G.3.10)

Similarly, the DTFT of g− in (G.3.6) is given by

G−( f ) = (1 − α)
0∑

n=−∞
e[a−i2π f ]n

= (1 − α)
∞∑

n=0

e−[a−i2π f ]n

= 1 − α

1 − e−[a−i2π f ]

= 1 − α

1 − αei2π f
= G+(− f ). (G.3.11)

It is readily verified that G+( f ) and G−( f ) in (G.3.10) and (G.3.11) are complex
conjugates of each other, that is, they share a common amplitude but are of opposite
phase.

Discrete convolution Let g = {gn} and h = {hn} be two sequences. The (dis-
crete) convolution of g and h is a sequence s = {sn} denoted by s = g ∗ h = h ∗ g
where

sn =
∞∑

k=−∞
gkhn−k . (G.3.12)

Example G.3.2 Let s = {sn} denote the convolution of the two sequences g+ and
g− defined in Example G.3.1, where

sn =
∞∑

k=−∞
g−

k g+
n−k . (G.3.13)

When n = 0, using the definition in (G.3.5) and (G.3.6),

s0 = ∑∞
k=−∞ g−

k g+
−k

= ∑0
k=−∞ g−

k g+
−k (since g−

k = 0 for k > 0)

= g−
0 g+

0 + g−1
−1 g+1

1 + g−
−2g+

2 + · · ·
= (1 − α)2 ∑∞

k=0 α2k

= 1 − α

1 + α
.
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When n = 1,

s1 = ∑0
k=−∞ g−

k g+
1−k

= g−
0 g+

1 + g−
−1g+

2 + g−
−2g+

3 + · · ·
= (1 − α)2{α + α3 + α5 + · · · }
= α(1 − α)2 ∑∞

k=0 α2k

=
(

1 − α

1 + α

)
α.

Similarly, it can be verified that

s−1 =
(

1 − α

1 + α

)
α.

Indeed, for any n, it can be verified that

s±n =
(

1 − α

1 + α

)
α|n| (G.3.14)

which is a symmetric function.

Discrete Convolution Theorem Let g = {gn} and h = {hn} be two sequences.
The (discrete) convolution of g and h is a sequence s = {sn} denoted by s = g ∗ h
where

sn =
∞∑

k=−∞
gkhn−k . (G.3.15)

The DTFT S( f ) of sn is given by

S( f ) = ∑∞
n=−∞ sne−i2π f n

= ∑∞
n=−∞

(∑∞
n=−∞ gkhn−k

)
e−i2π f n

= ∑∞
r=−∞

∑∞
k=−∞ gkhr e−i2π f (k+r )

= ∑∞
r=−∞ hr e−i2π f r

∑∞
k=−∞ gke−i2π f k

= H ( f )G( f ) = G( f )H ( f ).

That is, the DTFT of the convolution of two sequences g and h is the product of
the DTFT of g and h.

Example G.3.3 We now compute the DTFT of the convolution of the two
sequences g+ and g− described in Example G.3.1. Indeed, the DTFT S( f ) of
the sequence s in (G.3.14) which is the convolution of g+ and g− in (G.3.5) and
(G.3.6) is obtained as the product of the DTFT G+( f ) and G−( f ) in (G.3.10) and
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(G.3.11). Thus,

S( f ) = G+( f )G−( f )

= (1 − α)2

(1 − αe−i2π f )(1 − αei2π f )

= (1 − α)2

(1 − α)2 + 2α[1 − cos 2π f ]

= 1

1 + α

(1 − α)2
[2 sin π f ]2

. (G.3.16)

G.4 Fourier series

We begin by defining orthogonal functions over the interval [a, b] where a < b are
two real numbers.

(A) Functions in one dimension Let f and g be two real-valued functions over
[a, b]. The inner product < f, g > of f and g is defined by

< f, g >=
∫ b

a
f (x)g(x)dx . (G.4.1)

The norm ‖ f ‖ of f (x) is given by

‖ f ‖ =< f, f >=
∫ b

a
f 2(x)dx > 0. (G.4.2)

If ‖ f ‖ = 1, then f is said to be normalized. We say that the functions f and
g are orthogonal when

< f, g >= 0. (G.4.3)

A sequence of functions {gk(x)}∞k=0 is said to be a (pair-wise) orthogonal system
if

< gm, gn >= 0 for m 
= n (G.4.4)

and

‖gn‖2 = λ2
n > 0 for all m. (G.4.5)

If λn = 1, then {gk(x)}∞k=0 is called an orthonormal system.

Example G.4.1 The trigonometric sequence{
1√
2π

,
1√
π

sin x,
1√
π

cos x, . . . ,
1√
π

sinkx,
1√
π

coskx, . . .

}
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is an orthonormal system over [−π, π ]. That is,

g0(x) = 1√
2π

g2k−1(x) = 1√
π

sinkx

g2k(x) = 1√
π

coskx

⎫⎪⎬
⎪⎭ for k = 1, 2, 3, . . .

Example G.4.2 The trigonometric sequence

{1, sin
πx

a
, cos

πx

a
, . . . sin

kπx

a
, cos

kπx

a
. . .}

is an orthogonal system over the interval [−a, a]. Thus,

g0(x) = 1

g2k−1(x) = sin kπx
a

g2k(x) = cos kπx
a

⎫⎬
⎭ for k = 1, 2, 3, . . .

Similarly, it can be verified that

g0(x) = 0 and gk(x) =
√

2

π
sin kx, for k = 1, 2, 3, . . .

is an orthonormal system over [0, π ].

Fourier series expansion Given an orthogonal system {gk(x)}∞k=0 over the
interval [a, b], any piecewise, continuous function f (x) over [a, b] can be
represented by a (formal) series

f (x) =
∞∑

k=0

ck gk(x) (G.4.6)

called the Fourier series of f (x) where the Fourier coefficients ck are obtained
using the orthogonality of {gk}∞k=0 as

ck = 1

‖gk‖
∫ b

a
f (x)gk(x)dx . (G.4.7)

Clearly, if {gk} is orthonormal, then ‖gk‖ = 1 for all k.
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Example G.4.3 Using the orthonormal system over [−π, π ] in Example
G.4.1, it can be verified that the Fourier coefficients ck are given by

c0 = 1

2π

∫ π

−π

f (x)dx

c2k−1 = 1
π

∫ π

−π
f (x) sinkx dx

c2k = 1
π

∫ π

−π
f (x) coskx dx

⎫⎬
⎭ for k = 1, 2, 3, . . .

Combining this with (G.4.6) and (G.4.7), we obtain the standard Fourier
expansion

f (x) = c0

2
+

∞∑
k=1

(c2k−1 coskx + c2k sinkx). (G.4.8)

Example G.4.4 Let f (x) be an odd periodic function with period 2π where

f (x) = 1 for 0 < x < π

= −1 for − π < x < 0.

Then, it can be verified that the Fourier expansion of f (x) is given by

f (x) = 4

π

∞∑
k=1

sin(2k − 1)x

(2k − 1)
. (G.4.9)

Example G.4.5 Let f (x) = x2 for 0 < x < 2π . Then,

f (x) = 4π2

3
+ 4

∞∑
k=1

cos kx

k2
− 4π

∞∑
k=1

sin kx

k
. (G.4.10)

One of the most fundamental property of the Fourier series expansion is the
inherent optimality property as expressed in the following.

Least squares property Let {gk}∞k=0 be an orthogonal system over [a, b].
Let the (finite) linear combination

∑N
k=0 ak gk(x) with arbitrary coefficients

a0, a1, . . . , aN denote an approximation f (x) over [a, b]. Then [ f (x) −∑N
k=0 ak gk(x)] denotes the error in this approximation. The norm of this error

is a minimum exactly when ak = ck , the Fourier coefficients defined in (G.4.7).
That is,

‖ f (x) −
N∑

k=0

ck gk(x)‖ ≤ ‖ f (x) −
N∑

k=0

ak gk(x)‖ (G.4.11)

for any arbitrary set of coefficients a0, a1, . . . , aN .

Remark G.4.1 This is the infinite-dimensional analog of the projection theo-
rem described in Appendix A.
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(B) Functions in two dimensions Consider a rectangle [a, b] × [c, d] in R
2 for

some a < b and c < d . The system {gk(x, y)}∞k=0 is said to be orthogonal over
[a, b] × [c, d] if there inner product

< gm, gn >=
∫ d

c

∫ b

a
gm(x, y)gn(x, y)dxdy = 0 for m 
= n (G.4.12)

and

‖gm‖2 =< gm, gm >=
∫ d

c

∫ b

a
g2

m(x, y)dxdy > 0 for all m. (G.4.13)

Again, if ‖gk‖ = 1 for all k, then {gk(x, y)} is an orthonormal system.
Fourier series expansion Let f (x, y) be given over [a, b] × [c, d]. Then,

f (x, y) =
∞∑

k=0

ck gk(x, y) (G.4.14)

where

ck = 1

‖gk‖2

∫ d

c

∫ b

a
f (x, y)gk(x, y)dxdy (G.4.15)

are the Fourier coefficients.
Let {gk(x)}∞i=0 and {h j (y)}∞j=0 be two orthogonal systems over the one-

dimensional intervals [a, b] and [c, d] respectively. Then, it can be verified
that the product system

{gi (x)h j (y) | 0 ≤ i < ∞ and 0 ≤ j < ∞}
is an orthogonal system over [a, b] × [c, d]. Consequently,

{cos mx cos ny, cos mx sin ny, sin mx cos ny, sin mx sin ny|0
≤ m < ∞, 0 ≤ n < ∞}

is an orthogonal system over [−π, π ] × [−π, π ]. Using (G.4.13) that ‖1‖2 =
4π2,

‖ cos ny‖2 = ‖ cos mx‖2 = ‖ sin mx‖2 = ‖ sin ny‖2 = 2π2

‖ cos mx cos ny‖2 = π2

‖ cos mx sin ny‖2 = π2

‖ sin mx sin ny‖2 = π2

‖ sin mx cos ny‖2 = π2.

Hence, any piecewise continuous function f (x) over [a, b] × [c, d] can be
expressed in a double Fourier Series as

f (x, y) =
∑
m,n

λmn[Amn cos mx cos ny + Bmn sin mx cos ny

+ Cmn cos mx sin ny + Dmn sin mx sin ny] (G.4.16)
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where

λmn = 1
4 if m = 0, n = 0

= 1
2 if m = 0, n 
= 0, or m 
= 0, n = 0

= 1 if m 
= 0, n 
= 0

Amn = 1

π2

∫ π

−π

∫ π

−π

f (x, y) cos mx cos nydxdy

Bmn = 1

π2

∫ π

−π

∫ π

−π

f (x, y) sin mx cos nydxdy

Cmn = 1

π2

∫ π

−π

∫ π

−π

f (x, y) cos mx sin nydxdy

and

Dmn = 1

π2

∫ π

−π

∫ π

−π

f (x, y) sin mx sin nydxdy.

Example G.4.6 Let f (x, y) = xy2 on [−π, π ] × [−π, π ]. Then, the double
Fourier series for f (x, y) is

f (x, y) = 2π2

3

∞∑
m=1

(−1)m+1

m
sin mx

− 8
∞∑

m,n=1

(−1)m+1

mn2
sin mx cos ny. (G.4.17)

Example G.4.7 Let f (x, y) = xy on [0, 2π ] × [0, 2π ]. Then,

f (x, y) = π2 − 2π

∞∑
m=1

sin mx

m
− 2π

∑∞
n=1

sin ny

n

+ 4
∞∑

m,n=1

sin mx sin ny

mn
. (G.4.18)

The least squares property (G.4.11) also carries over to double Fourier Series.

Notes and references

Fourier analysis in one dimension is covered extensively in Gary and Goodman
(1995), Papoulis (1962) and Bracewell (1965). For an introduction to Fourier anal-
ysis in multiple dimensions, refer to Walker (1988) and Rees et al. (1981). Our
treatment in this Appendix follows from Gary and Goodman (1995) and Walker
(1988).


