CLASSICAL MECHANICS

ERRATA

appearing in the first printing

November 2006

Please report any further errors by emailing cm.corrections@btinternet.com

CHAPTER 1

• **Problem 1.1** First **answer** in part (i) should be 8i + 17j - 26k.

CHAPTER 2

• Problem 2.18 Answers should be: $\omega = \Omega b \cos \Omega t \left(a^2 - b^2 \sin^2 \Omega t\right)^{-1/2}, \text{ speed of } C \text{ is } \frac{1}{2}\Omega ab |\cos \Omega t| \left(a^2 - b^2 \sin^2 \Omega t\right)^{-1/2}.$

CHAPTER 4

• **Page 79** Both *M* and *m* are present. They should all be *m*.

CHAPTER 5

- **Page 107** The relation between α and Ω should be $\alpha = m\Omega^2$.
- **Problem 5.8** Answer should be: Lower block leaves the floor after time $(a/g)^{1/2} \cos^{-1}(-5/6)$.
- **Problem 5.9** Question should have said to take $g = 10 \text{ m s}^{-2}$.

CHAPTER 6

- **Problem 6.11** Question should have said that "The block is now lifted so that its *underside* is at height 3a/2 above the floor"
- **Problem 6.16 Question** should read:

A bead of mass *m* can slide on a smooth circular wire of radius *a*, which is fixed in a vertical plane. The bead is connected to the highest point of the wire by a light spring of natural length 3a/2 and strength α . Determine the stability of the equilibrium position at the lowest point of the wire in the cases (i) $\alpha = 2mg/a$, and (ii) $\alpha = 5mg/a$.

• **Problem 6.20** Question should have stated that the initial speed of the particle is u. The hint is irrelevant! Answer should be: Time taken to hit post is $b^2/2au$.

CHAPTER 7

• **Problem 7.6** Answer for the distance of closest approach should be $((p^2V^4 + \gamma^2)^{1/2} - \gamma)/V^2$.

© Cambridge University Press, 2006

- **Problem 7.9** Answer for the time taken should be $\pi a^2/(2\sqrt{2\gamma})$.
- Problem 7.23 Answer: Velocity boost should be given at the perigee.
- **Problem 7.25** Answers should be: $\Delta v = 2.77$ km per second and apogee is 71,340 km from the Earth's surface.

CHAPTER 8

1. Problem 8.13 Answer should be

$$x(t) = -\frac{\cos pt}{p^2 - 1} + \left(\frac{3p^3 \sin pt}{4(p^2 - 1)^4} - \frac{p^3 \sin 3pt}{4(p^2 - 1)^3(9p^2 - 1)}\right)\epsilon + O\left(\epsilon^2\right),$$

valid when $p \neq 1, 1/3, 1/5, ...$

2. **Problem 8.14** This is actually a **computer assisted** problem.

CHAPTER 10

• **Problem 10.7** Answers given in the **question** refer to the case of zero gravity. With gravity included these become $u \ln \gamma - g\tau$ and

$$u\tau\left(1-\frac{\ln\gamma}{\gamma-1}\right)-\frac{1}{2}g\tau^2.$$

- **Problem 10.12** Answer is missing. It should read: The proportions are 2/5, 2/5 and 1/5.
- **Problem 10.14** Answer is wrongly numbered as 10.13.
- **Problem 10.15** Answer for the recoil angle should be 62°.

CHAPTER 11

• Problem 11.17 Answer for the reaction at the floor should be $-\frac{1}{6}Mgi - \frac{1}{6}Mgj + Mgk$.

CHAPTER 13

• **Problem 13.2** In the **question**, J[y] should be J[x].

CHAPTER 14

• Problem 14.1 Answer should be: $G = -v_1^2 - 3v_1v_2 - 2v_2^2 + 6wv_1 + 9wv_2 - 9w^2.$

© Cambridge University Press, 2006

• **Problem 14.9** In the question, the integrand should be $H(q, p, t) - \dot{q} \cdot p$.

CHAPTER 16

• **Problem 16.5** Answer for the maximum speed should be $2h \cos \alpha |\dot{\theta}|$.

CHAPTER 17

• **Problem 17.7** The **question** should read: "Show that the effect of the Earth's rotation is to deflect the shell to the west by a distance ...".

CHAPTER 18

• **Problem 18.3** Answer for \mathbf{v} should be (1, 1, -1).

CHAPTER 19

• **Problem 19.11** Answer should be $Cn\Omega$, where $C = Ma^2$.