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Preface

Network information theory aims to establish the fundamental limits on information �ow
in networks and the optimal coding schemes that achieve these limits. It extends Shan-
non’s fundamental theorems on point-to-point communication and the Ford–Fulkerson
max-�owmin-cut theorem for graphical unicast networks to general networks with mul-
tiple sources and destinations and shared resources. Although the theory is far from com-
plete, many elegant results and techniques have been developed over the past forty years
with potential applications in real-world networks. �is book presents these results in a
coherent and simpli�ed manner that should make the subject accessible to graduate stu-
dents and researchers in electrical engineering, computer science, statistics, and related
�elds, as well as to researchers and practitioners in industry.

�e �rst paper on network information theory was on the two-way channel by Shan-
non (). �is was followed a decade later by seminal papers on the broadcast channel
by Cover (), the multiple access channel by Ahlswede (, ) and Liao (),
and distributed lossless compression by Slepian and Wolf (a). �ese results spurred
a �urry of research on network information theory from the mid s to the early s
withmanynew results and techniques developed; see the survey papers by van derMeulen
() and El Gamal and Cover (), and the seminal book by Csiszár and Körner
(b). However, many problems, including Shannon’s two-way channel, remained open
and there was little interest in these results from communication theorists or practition-
ers. �e period from themid s to themid s represents a “lost decade” for network
information theory during which very few papers were published and many researchers
shi�ed their focus to other areas. �e advent of the Internet and wireless communica-
tion, fueled by advances in semiconductor technology, compression and error correction
coding, signal processing, and computer science, revived the interest in this subject and
there has been an explosion of activities in the �eld since the mid s. In addition to
progress on old open problems, recent work has dealt with new network models, new
approaches to coding for networks, capacity approximations and scaling laws, and topics
at the intersection of networking and information theory. Some of the techniques devel-
oped in network information theory, such as successive cancellation decoding, multiple
description coding, successive re�nement of information, and network coding, are being
implemented in real-world networks.
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Development of the Book

�e idea of writing this book started a long time ago when TomCover and the �rst author
considered writing a monograph based on their aforementioned  survey paper. �e
�rst author then put together a set of handwritten lecture notes and used them to teach
a course on multiple user information theory at Stanford University from  to .
In response to high demand from graduate students in communication and information
theory, he resumed teaching the course in  and updated the early lecture notes with
recent results. �ese updated lecture notes were used also in a course at EPFL in the
summer of . In  the second author, who was in the  class, started teaching a
similar course at UC San Diego and the authors decided to collaborate on expanding the
lecture notes into a textbook. Various versions of the lecture notes have been used since
then in courses at Stanford University, UC San Diego, the Chinese University of Hong
Kong, UC Berkeley, Tsinghua University, Seoul National University, University of Notre
Dame, and McGill University among others. �e lecture notes were posted on the arXiv
in January . �is book is based on these notes. Although we have made an e�ort to
provide a broad coverage of the results in the �eld, we do not claim to be all inclusive.
�e explosion in the number of papers on the subject in recent years makes it almost
impossible to provide a complete coverage in a single textbook.

Organization of the Book

We considered several high-level organizations of the material in the book, from source
coding to channel coding or vise versa, from graphical networks to general networks, or
along historical lines. We decided on a pedagogical approach that balances the intro-
duction of new network models and new coding techniques. We �rst discuss single-hop
networks and then multihop networks. Within each type of network, we �rst study chan-
nel coding, followed by their source coding counterparts, and then joint source–channel
coding. �ere were several important topics that did not �t neatly into this organization,
which we grouped under Extensions. �e book deals mainly with discrete memoryless
and Gaussian network models because little is known about the limits on information
�ow for more complex models. Focusing on these models also helps us present the cod-
ing schemes and proof techniques in their simplest possible forms.

�e �rst chapter provides a preview of network information theory using selected ex-
amples from the book. �e rest of the material is divided into four parts and a set of
appendices.

Part I. Background (Chapters  and ). We present the needed basic information theory
background, introduce the notion of typicality and related lemmas used throughout the
book, and review Shannon’s point-to-point communication coding theorems.

Part II. Single-hop networks (Chapters  through ).Wediscuss networks with single-
round one-way communication. Here each node is either a sender or a receiver. �e
material is divided into three types of communication settings.

∙ Independent messages over noisy channels (Chapters  through ). We discuss noisy
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single-hop network building blocks, beginning with multiple access channels (many-
to-one communication) in Chapter , followed by broadcast channels (one-to-many
communication) in Chapters  and , and interference channels (multiple one-to-one
communications) in Chapter . We split the discussion on broadcast channels for a
pedagogical reason—the study of general broadcast channels in Chapter  requires
techniques that are introduced more simply through the discussion of channels with
state in Chapter . In Chapter , we study Gaussian vector channels, which model
multiple-antenna (multiple-input multiple-output/MIMO) communication systems.

∙ Correlated sources over noiseless links (Chapters  through ). We discuss the source
coding counterparts of the noisy single-hop network building blocks, beginning with
distributed lossless source coding in Chapter , followed by lossy source coding with
side information inChapter , distributed lossy source coding inChapter , andmul-
tiple description coding in Chapter . Again we spread the discussion on distributed
coding over three chapters to help develop new ideas gradually.

∙ Correlated sources over noisy channels (Chapter ). We discuss the general setting of
sending uncompressed sources over noisy single-hop networks.

Part III. Multihop networks (Chapters  through ). We discuss networks with
relaying and multiple rounds of communication. Here some of the nodes can act as both
sender and receiver. In an organization parallel to Part II, the material is divided into
three types of settings.

∙ Independent messages over graphical networks (Chapter ).Wediscuss coding for net-
works modeled by graphs beyond simple routing.

∙ Independent messages over noisy networks (Chapters  through ). In Chapter , we
discuss the relay channel, which is a simple two-hop network with a sender, a receiver,
and a relay. We then discuss channelswith feedback and the two-way channel inChap-
ter . We extend results on the relay channel and the two-way channel to general noisy
networks in Chapter . We further discuss approximations and scaling laws for the
capacity of large wireless networks in Chapter .

∙ Correlated sources over graphical networks (Chapter ). We discuss source coding
counterparts of the channel coding problems in Chapters  through .

Part IV. Extensions (Chapters  through ). We study extensions of the theory
discussed in the �rst three parts of the book to communication for computing in Chap-
ter , communication with secrecy constraints in Chapter , wireless fading channels in
Chapter , and to problems at the intersection of networking and information theory in
Chapter .

Appendices. To make the book as self-contained as possible, Appendices A, B, and E
provide brief reviews of the necessary background on convex sets and functions, probabil-
ity and estimation, and convex optimization, respectively. Appendices C and D describe
techniques for bounding the cardinality of auxiliary random variables appearing in many
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capacity and rate region characterizations, and the Fourier–Motzkin elimination proce-
dure, respectively.

Presentation of the Material

Each chapter typically contains both teaching material and advanced topics. Starred sec-
tions contain topics that are either too technical to be discussed in detail or are not essen-
tial to the main �ow of the material. �e chapter ends with a bulleted summary of key
points and open problems, bibliographic notes, and problems on missing proof steps in
the text followed by exercises around the key ideas. Some of the more technical and less
central proofs are delegated to appendices at the end of each chapter in order to help the
reader focus on the main ideas and techniques.

�e book follows the adage “a picture is worth a thousand words.” We use illustra-
tions and examples to provide intuitive explanations of models and concepts. �e proofs
follow the principle of making everything as simple as possible but not simpler. We use
elementary tools and techniques, requiring only basic knowledge of probability and some
level of mathematical maturity, for example, at the level of a �rst course on information
theory. �e achievability proofs are based on joint typicality, which was introduced by
Shannon in his  paper and further developed in the s by Forney and Cover. We
take this approach one step further by developing a set of simple lemmas to reduce the
repetitiveness in the proofs. We show how the proofs for discrete memoryless networks
can be extended to their Gaussian counterparts by using a discretization procedure and
taking appropriate limits. Some of the proofs in the book are new and most of them are
simpli�ed—and in some cases more rigorous—versions of published proofs.

Use of the Book in Courses

As mentioned earlier, the material in this book has been used in courses on network in-
formation theory at several universities over many years. We hope that the publication of
the bookwill helpmake such a coursemore widely adopted. One of ourmainmotivations
for writing the book, however, is to broaden the audience for network information theory.
Current education of communication and networking engineers encompasses primarily
point-to-point communication and wired networks. At the same time, many of the inno-
vations in modern communication and networked systems concern more e�cient use of
shared resources, which is the focus of network information theory. We believe that the
next generation of communication and networking engineers can bene�t greatly from
having a working knowledge of network information theory. We have made every e�ort
to present some of the most relevant material to this audience as simply and clearly as
possible. In particular, the material on Gaussian channels, wireless fading channels, and
Gaussian networks can be readily integrated into an advanced course on wireless com-
munication.

�e book can be used as a main text in a one-quarter/semester �rst course on infor-
mation theory with emphasis on communication or a one-quarter second course on in-
formation theory, or as a supplementary text in courses on communication, networking,
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computer science, and statistics. Most of the teachingmaterial in the book can be covered
in a two-quarter course sequence. Slides for such courses are posted at http://arxiv.org/abs
/./.

Dependence Graphs

�e following graphs depict the dependence of each chapter on its preceding chapters.
Each box contains the chapter number and lighter boxes represent dependence on pre-
vious parts. Solid edges represent required reading and dashed edges represent recom-
mended reading.
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Part IV.

, 





  

21 Communication for computing 22 Information theoretic secrecy

23 Wireless fading channels 24 Networking and information theory

In addition to the dependence graphs for each part, we provide below some interest-
based dependence graphs.

Communication.

,













, 



 



Data compression.

,

,,,









Abbas El Gamal Palo Alto, California
Young-Han Kim La Jolla, California

July 



Acknowledgments

�e development of this book was truly a community e�ort. Many colleagues, teaching
assistants of our courses on network information theory, and our postdocs and PhD stu-
dents provided invaluable input on the content, organization, and exposition of the book,
and proofread earlier dra�s.

First and foremost, we are indebted to Tom Cover. He taught us everything we know
about information theory, encouraged us to write this book, and provided several insight-
ful comments. We are also indebted to our teaching assistants—Ehsan Ardestanizadeh,
Chiao-Yi Chen, Yeow-Khiang Chia, Shirin Jalali, Paolo Minero, Haim Permuter, Han-I
Su, Sina Zahedi, and Lei Zhao—for their invaluable contributions to the development of
this book. In particular, we thank Sina Zahedi for helping with the �rst set of lecture notes
that ultimately led to this book. We thank Han-I Su for his contributions to the chapters
on quadratic Gaussian source coding and distributed computing and his thorough proof-
reading of the entire dra�. Yeow-Khiang Chiamade invaluable contributions to the chap-
ters on information theoretic secrecy and source coding over graphical networks, con-
tributed several problems, and proofread many parts of the book. Paolo Minero helped
with some of the material in the chapter on information theory and networking.

We are also grateful to our PhD students. Bernd Bandemer contributed to the chapter
on interference channels and proofread several parts of the book. Sung Hoon Lim con-
tributed to the chapters on discrete memoryless and Gaussian networks. JamesMammen
helped with the �rst dra� of the lecture notes on scaling laws. Lele Wang and Yu Xiang
also provided helpful comments on many parts of the book.

We bene�ted greatly from discussions with several colleagues. Chandra Nair con-
tributed many of the results and problems in the chapters on broadcast channels. David
Tse helped with the organization of the chapters on fading and interference channels.
MehdiMohseni helpedwith key proofs in the chapter onGaussian vector channels. Amin
Gohari helpedwith the organization and several results in the chapter on information the-
oretic secrecy. Olivier Lévêque helped with some of the proofs in the chapter on Gauss-
ian networks. We o�en resorted to John Gill for stylistic and editorial advice. Jun Chen,
Sae-Young Chung, Amos Lapidoth, Prakash Narayan, Bobak Nazer, Alon Orlitsky, Ofer
Shayevitz, Yossi Steinberg, Aslan Tchamkerten, Dimitris Toumpakaris, Sergio Verdú, Mai
Vu,MichèleWigger, RamZamir, andKenZeger provided helpful input during thewriting
of this book. We would also like to thank Venkat Anantharam, François Baccelli, Stephen
Boyd, Max Costa, Paul Cu�, Suhas Diggavi, Massimo Franceschetti, Michael Gastpar,



xxiv Acknowledgments

Andrea Goldsmith, Bob Gray, Te Sun Han, Tara Javidi, Ashish Khisti, Gerhard Kramer,
MohammadMaddah-Ali, AndreaMontanari, Balaji Prabhakar, Bixio Rimoldi, Anant Sa-
hai, Anand Sarwate, Devavrat Shah, Shlomo Shamai, Emre Telatar, Alex Vardy, Tsachy
Weissman, and Lin Zhang.

�is book would not have been written without the enthusiasm, inquisitiveness, and
numerous contributions of the students who took our courses, some of whom we have
already mentioned. In addition, we would like to acknowledge Ekine Akuiyibo, Lorenzo
Coviello, Chan-Soo Hwang, Yashodhan Kanoria, Tae Min Kim, Gowtham Kumar, and
MosheMalkin for contributions to some of the material. Himanshu Asnani, Yuxin Chen,
Aakanksha Chowdhery, Mohammad Naghshvar, Ryan Peng, Nish Sinha, and Hao Zou
provided many corrections to earlier dra�s. Several graduate students fromUC Berkeley,
MIT, Tsinghua, University of Maryland, Tel Aviv University, and KAIST also provided
valuable feedback.

We would like to thank our editor Phil Meyler and the rest of the Cambridge sta�
for their exceptional support during the publication stage of this book. We also thank
Kelly Yilmaz for her wonderful administrative support. Finally, we acknowledge partial
support for the work in this book from the DARPA ITMANET and the National Science
Foundation.



Notation

We introduce the notation and terminology used throughout the book.

Sets, Scalars, and Vectors

We use lowercase letters x , y, . . . to denote constants and values of random variables. We
use x j

i = (xi , xi+1 , . . . , x j) to denote an ( j − i + 1)-sequence/column vector for 1 ≤ i ≤ j.

When i = 1, we always drop the subscript, i.e., x j = (x1 , x2 , . . . , x j). Sometimes we write
x, y, . . . for constant vectors with speci�ed dimensions and x j for the j-th component of
x. Let x(i) be a vector indexed by time i and x j(i) be the j-th component of x(i). �e
sequence of these vectors is denoted by xn = (x(1), x(2), . . . , x(n)). An all-one column
vector (1, . . . , 1) with a speci�ed dimension is denoted by 1.

Let α, β ∈ [0, 1]. �en ᾱ = (1 − α) and α ∗ β = αβ̄ + βᾱ.
Let xn , yn ∈ {0, 1}n be binary n-vectors. �en xn ⊕ yn is the componentwisemodulo-

sum of the two vectors.
Calligraphic letters X , Y , . . . are used exclusively for �nite sets and |X | denotes the

cardinality of the set X . �e following notation is used for common sets:

∙ ℝ is the real line and ℝ
d is the d-dimensional real Euclidean space.

∙ Fq is the �nite �eld GF(q) and F
d
q is the d-dimensional vector space over GF(q).

Script letters C , R , P , . . . are used for subsets of ℝd .
For a pair of integers i ≤ j, we de�ne the discrete interval [i : j] = {i , i + 1, . . . , j}.

More generally, for a ≥ 0 and integer i ≤ 2a, we de�ne

∙ [i : 2a) = {i , i + 1, . . . , 2⌊a⌋}, where ⌊a⌋ is the integer part of a, and

∙ [i : 2a] = {i , i + 1, . . . , 2⌈a⌉}, where ⌈a⌉ is the smallest integer ≥ a.

Probability and Random Variables

�e probability of an event A is denoted by P(A) and the conditional probability of A
given B is denoted by P(A |B). We use uppercase letters X ,Y , . . . to denote random vari-
ables. �e random variables may take values from �nite sets X , Y , . . . or from the real
line ℝ. By convention, X =  means that X is a degenerate random variable (unspeci�ed
constant) regardless of its support. �e probability of the event {X ∈ A} is denoted by
P{X ∈ A}.
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In accordance with the notation for constant vectors, we use X j
i = (Xi , . . . , X j) to de-

note a ( j − i + 1)-sequence/column vector of random variables for 1 ≤ i ≤ j. When i = 1,
we always drop the subscript and use X j = (X1 , . . . , X j).

Let (X1 , . . . , Xk) be a tuple of k random variables and J ⊆ [1 : k]. �e subtuple of
random variables with indices from J is denoted by X(J ) = (X j : j ∈ J ). Similarly,
given k random vectors (Xn

1 , . . . , Xn
k ),

Xn
(J ) = (Xn

j : j ∈ J ) = (X1(J ), . . . , Xn(J )).

Sometimes we writeX, Y, . . . for random (column) vectors with speci�ed dimensions
and X j for the j-th component of X. Let X(i) be a random vector indexed by time i

and X j(i) be the j-th component of X(i). We denote the sequence of these vectors by
Xn

= (X(1), . . . , X(n)).
�e following notation is used to specify random variables and random vectors.

∙ Xn
∼ p(xn) means that p(xn) is the probability mass function (pmf) of the discrete

random vector Xn. �e function pXn(x̃n) denotes the pmf of Xn with argument x̃n,
i.e., pXn(x̃n) = P{Xn = x̃n} for all x̃n ∈ X n. �e function p(xn) without subscript is
understood to be the pmf of the random vector Xn de�ned over X1 × ⋅ ⋅ ⋅ × Xn.

∙ Xn ∼ f (xn) means that f (xn) is the probability density function (pdf) of the contin-
uous random vector Xn.

∙ Xn ∼ F(xn)means that F(xn) is the cumulative distribution function (cdf) of Xn.

∙ (Xn ,Yn) ∼ p(xn , yn)means that p(xn , yn) is the joint pmf of Xn and Yn.

∙ Yn | {Xn ∈ A} ∼ p(yn |Xn ∈ A) means that p(yn |Xn ∈ A) is the conditional pmf of
Yn given {Xn ∈ A}.

∙ Yn
| {Xn = xn} ∼ p(yn|xn) means that p(yn|xn) is the conditional pmf of Yn given

{Xn = xn}.

∙ p(yn|xn) is a collection of (conditional) pmfs on Yn, one for every xn ∈ X n.
f (yn|xn) and F(yn|xn) are similarly de�ned.

∙ Yn ∼ pXn(yn)means that Yn has the same pmf as Xn, i.e., p(yn) = pXn(yn).
Similar notation is used for conditional probability distributions.

Given a random variable X, the expected value of its function (X) is denoted by
EX((X)), or E((X)) in short. �e conditional expectation of X given Y is denoted by
E(X|Y). We use Var(X) = E[(X − E(X))2] to denote the variance of X and Var(X|Y) =
E[(X − E(X|Y))2 |Y] to denote the conditional variance of X given Y .

For random vectors X = Xn and Y = Y k , KX = E[(X − E(X))(X − E(X))T ] denotes
the covariance matrix ofX, KXY = E[(X − E(X))(Y − E(Y))T ] denotes the crosscovariance
matrix of (X, Y), and KX|Y = E[(X − E(X|Y))(X − E(X|Y))T ] = KX−E(X|Y) denotes the con-
ditional covariance matrix of X given Y, that is, the covariance matrix of the minimum
mean squared error (MMSE) for estimating X given Y.
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We use the following notation for standard random variables and random vectors:

∙ X ∼ Bern(p): X is a Bernoulli random variable with parameter p ∈ [0, 1], i.e.,

X = ®1 with probability p,

0 with probability 1 − p.

∙ X ∼ Binom(n, p): X is a binomial random variable with parameters n ≥ 1 and p ∈
[0, 1], i.e.,

pX(k) = �n
k
�pk(1 − p)n−k , k ∈ [0 : n].

∙ X ∼ Unif(A): X is a discrete uniform random variable over a �nite setA.
X ∼ Unif[i : j] for integers j > i: X is a discrete uniform random variable over [i : j].

∙ X ∼ Unif[a, b] for b > a: X is a continuous uniform random variable over [a, b].

∙ X ∼ N(μ, σ2): X is a Gaussian random variable with mean μ and variance σ2.
Q(x) = P{X > x}, x ∈ ℝ, where X ∼ N(0, 1).

∙ X = Xn ∼ N(μ, K): X is a Gaussian random vector withmean vector μ and covariance
matrix K , i.e.,

f (x) = 1

x(2π)n|K |
e−

1

2
(x−μ)TK−1

(x−μ).

We use the notation {Xi} = (X1 , X2 , . . .) to denote a discrete-time random process.
�e following notation is used for common random processes:

∙ {Xi} is a Bern(p) process means that (X1 , X2 , . . .) is a sequence of independent and
identically distributed (i.i.d.) Bern(p) random variables.

∙ {Xi} is a WGN(P) process means that (X1 , X2 , . . .) is a sequence of i.i.d. N(0, P) ran-
dom variables. More generally, {Xi ,Yi} is a -WGN(P , ρ) process means that (X1 ,Y1),
(X2 ,Y2), . . . are i.i.d. jointly Gaussian random variable pairs with E(X1) = E(Y1) = 0,
E(X2

1 ) = E(Y2
1 ) = P, and correlation coe�cient ρ = E(X1Y1)/P.

We say that X → Y → Z form aMarkov chain if p(x , y, z) = p(x)p(y|x)p(z|y). More
generally, we say that X1 → X2 → X3 → ⋅ ⋅ ⋅ formaMarkov chain if p(xi|x

i−1
) = p(xi|xi−1)

for i ≥ 2.

Common Functions

�e following functions are used frequently. �e logarithm function log is assumed to be
base  unless speci�ed otherwise.

∙ Binary entropy function: H(p) = −p log p − p̄ log p̄ for p ∈ [0, 1].

∙ Gaussian capacity function: C(x) = (1/2) log(1 + x) for x ≥ 0.

∙ Quadratic Gaussian rate function: R(x) = max{(1/2) log x , 0} = (1/2)[log x]+.
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є–δ Notation

Weuse є, є� > 0 exclusively to denote “small” constants such that є� < є. Weuse δ(є) > 0 to
denote a function of є that tends to zero as є → 0. When there aremultiple such functions
δ1(є), δ2(є), . . . , δk(є), we denote them all by a generic function δ(є) that tends to zero as
є → 0 with the understanding that δ(є) = max{δ1(є), δ2(є), . . . , δk(є)}. Similarly, we use
єn ≥ 0 to denote a generic function of n that tends to zero as n → ∞.

We say that an ≐ 2nb for some constant b if there exists some δ(є) (with є de�ned in
the context) such that for n su�ciently large,

2n(b−δ(є)) ≤ an ≤ 2n(b+δ(є)).

Matrices

We use uppercase letters A, B , . . . to denote matrices. �e entry in the i-th row and the
j-th column of a matrix A is denoted by A(i , j) or A i j . A transpose of a matrix A is

denoted by AT , i.e., AT
(i , j) = A( j , i). We use diag(a1 , a2 , . . . , ad) to denote a d × d di-

agonal matrix with diagonal elements a1 , a2 , . . . , ad . �e d × d identity matrix is denoted
by Id . �e subscript d is omitted when it is clear from the context. For a square matrix A,
|A| = det(A) denotes the determinant of A and tr(A) denotes its trace.

A symmetric matrix A is said to be positive de�nite (denoted by A ≻ 0) if xTAx > 0

for all x ̸= 0. If instead xTAx ≥ 0 for all x ̸= 0, then the matrix A is said to be positive
semide�nite (denoted by A ⪰ 0). For symmetricmatrices A and B of the same dimension,
A ≻ B means that A − B ≻ 0 and A ⪰ B means that A − B ⪰ 0.

A singular value decomposition of an r × t matrixG of rank d is given byG = ΦΓΨT ,
where Φ is an r × d matrix with ΦTΦ = Id , Ψ is a t × d matrix with ΨTΨ = Id , and
Γ = diag(γ1 , . . . , γd) is a d × d positive diagonal matrix.

For a symmetric positive semide�nitematrixK with an eigenvalue decompositionK =
ΦΛΦT , we de�ne its symmetric square root as K1/2 = ΦΛ1/2ΦT , where Λ1/2 is a diagonal
matrix with diagonal elements xΛ ii . Note that K

1/2 is symmetric positive de�nite with
K1/2K1/2 = K . We de�ne the symmetric square root inverseK−1/2 of a symmetric positive
de�nite matrix K as the symmetric square root of K−1.

Order Notation

Let 1(N) and 2(N) be nonnegative functions on natural numbers.

∙ 1(N) = o(2(N))means that 1(N)/2(N) tends to zero as N → ∞.

∙ 1(N) = O(2(N)) means that there exist a constant a and an integer n0 such that
1(N) ≤ a2(N) for all N > n0.

∙ 1(N) = Ω(2(N))means that 2(N) = O(1(N)).

∙ 1(N) = Θ(2(N))means that 1(N) = O(2(N)) and 2(N) = O(1(N)).



CHAPTER 1

Introduction

We introduce the general problem of optimal information �ow in networks, which is the
focus of network information theory. We then give a preview of the book with pointers
to where the main results can be found.

1.1 NETWORK INFORMATION FLOW PROBLEM

A networked system consists of a set of information sources and communication nodes
connected by a network as depicted in Figure .. Each node observes one ormore sources
and wishes to reconstruct other sources or to compute a function based on all the sources.
To perform the required task, the nodes communicate with each other over the network.

∙ What is the limit on the amount of communication needed?

∙ How can this limit be achieved?

Communication network

Figure .. Elements of a networked system. �e information sources (shaded cir-
cles) may be data, video, sensor measurements, or biochemical signals; the nodes
(empty circles) may be computers, handsets, sensor nodes, or neurons; and the net-
work may be a wired network, a wireless cellular or ad-hoc network, or a biological
network.
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�ese information �ow questions have been answered satisfactorily for graphical uni-
cast (single-source single-destination) networks and for point-to-point communication
systems.

1.2 MAX-FLOW MIN-CUT THEOREM

Consider a graphical (wired) network, such as the Internet or a distributed storage system,
modeled by a directed graph (N , E)with link capacitiesC jk bits from node j to node k as
depicted in Figure .. Assume a unicast communication scenario in which source node 
wishes to communicate an R-bit message M to destination node N . What is the network
capacity C , that is, the maximum number of bits R that can be communicated reliably?

�e answer is given by themax-�owmin-cut theorem due to Ford and Fulkerson ()
and Elias, Feinstein, and Shannon (). �ey showed that the capacity (maximum�ow)
is equal to the minimum cut capacity, i.e.,

C = min
S⊂N :1∈S ,N∈S c

C(S),

where C(S) = ∑ j∈S , k∈S c C jk is the capacity of the cut (S , S c). �ey also showed that the
capacity is achieved without errors using simple routing at the intermediate (relay) nodes,
that is, the incoming bits at each node are forwarded over its outgoing links. Hence, under
this networked system model, information can be treated as a commodity to be shipped
over a transportation network or electricity to be delivered over a power grid.

1

2

3

4

j

k

C12

C13

C14
N

M M̂

Figure .. Graphical single-source single-destination network.

�e max-�ow min-cut theorem is discussed in more detail in Chapter .

1.3 POINT-TO-POINT INFORMATION THEORY

�e graphical unicast network model captures the topology of a point-to-point network
with idealized source and communication link models. At the other extreme, Shannon
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(, ) studied communication and compression over a single link with more com-
plex source and link (channel) models. He considered the communication system archi-
tecture depicted in Figure ., where a sender wishes to communicate a k-symbol source
sequenceU k to a receiver over a noisy channel. To perform this task, Shannon proposed a
general block coding scheme, where the source sequence is mapped by an encoder into an
n-symbol input sequence Xn

(U k
) and the received channel output sequenceYn ismapped

by a decoder into an estimate (reconstruction) sequence Û k(Yn). He simpli�ed the anal-
ysis of this system by proposing simple discrete memoryless models for the source and
the noisy channel, and by using an asymptotic approach to characterize the necessary and
su�cient condition for reliable communication.

U k

Encoder Channel Decoder
Xn Yn Û k

Figure .. Shannon’s model of a point-to-point communication system.

Shannon’s ingenious formulation of the point-to-point communication problem led
to the following four fundamental theorems.

Channel coding theorem. Suppose that the source is a maximally compressed k-bit mes-
sage M as in the graphical network case and that the channel is discrete and memoryless
with input X, output Y , and conditional probability p(y|x) that speci�es the probability
of receiving the symbol y when x is transmitted. �e decoder wishes to �nd an estimate
M̂ of the message such that the probability of decoding error P{M̂ ̸= M} does not exceed
a prescribed value Pe . �e general problem is to �nd the tradeo� between the number of
bits k, the block length n, and the probability of error Pe .

�is problem is intractable in general. Shannon () realized that the di�culty lies
in analyzing the system for any given �nite block length n and reformulated the problem
as one of �nding the channel capacity C , which is the maximum communication rate
R = k/n in bits per channel transmissions such that the probability of error can be made
arbitrarily small when the block length n is su�ciently large. He established a simple and
elegant characterization of the channel capacityC in terms of themaximumof themutual
information I(X ;Y) between the channel input X and output Y :

C = max
p(x)

I(X ;Y) bits/transmission.

(See Section . for the de�nition of mutual information and its properties.) Unlike the
graphical network case, however, capacity is achieved only asymptotically error-free and
using sophisticated coding.

Lossless source coding theorem. As a “dual” to channel coding, consider the following
lossless data compression setting. �e sender wishes to communicate (store) a source
sequence losslessly to a receiver over a noiseless binary channel (memory) with the min-
imum number of bits. Suppose that the source U is discrete and memoryless, that is, it
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generates an i.i.d. sequence U k . �e sender encodes U k at rate R = n/k bits per source
symbol into an n-bit indexM(U k) and sends it over the channel. Upon receiving the index
M, the decoder �nds an estimate Û k(M) of the source sequence such that the probability
of error P{Û k ̸= U k

} is less than a prescribed value. Shannon again formulated the prob-
lem as one of �nding the minimum lossless compression rate R∗ when the block length
is arbitrarily large, and showed that it is characterized by the entropy ofU :

R∗ = H(U) bits/symbol.

(See Section . for the de�nition of entropy and its properties.)

Lossy source coding theorem. Now suppose U k is to be sent over the noiseless binary
channel such that the receiver can reconstruct it with some distortion instead of loss-
lessly. Shannon assumed the per-letter distortion (1/k)∑k

i=1 E(d(Ui , Ûi)), where d(u, û)

is a measure of the distortion between the source symbol u and the reconstruction sym-
bol û. He characterized the rate–distortion function R(D), which is the optimal tradeo�
between the rate R = n/k and the desired distortion D, as the minimum of the mutual
information betweenU and Û :

R(D) = min
p(û|u):E(d(U ,Û))≤D

I(U ; Û) bits/symbol.

Source–channel separation theorem. Nowwe return to the general point-to-point com-
munication system shown in Figure .. Let C be the capacity of the discrete memory-
less channel (DMC) and R(D) be the rate–distortion function of the discrete memoryless
source (DMS), and assume for simplicity that k = n. What is the necessary and su�cient
condition for communicating the DMS over the DMC with a prescribed distortion D?
Shannon () showed that R(D) ≤ C is necessary. Since R(D) < C is su�cient by the
lossy source coding and channel coding theorems, separate source coding and channel
coding achieves the fundamental limit. Although this result holds only when the code
block length is unbounded, it asserts that using bits as a “universal” interface between
sources and channels—the basis for digital communication—is essentially optimal.

We discuss the above results in detail in Chapter . Shannon’s asymptotic approach to
network performance analysis will be adopted throughout the book.

1.4 NETWORK INFORMATION THEORY

�e max-�ow min-cut theorem and Shannon’s point-to-point information theory have
had a major impact on communication and networking. However, the simplistic model
of a networked information processing system as a single source–destination pair com-
municating over a noisy channel or a graphical network does not capturemany important
aspects of real-world networks:

∙ Networked systems have multiple sources and destinations.

∙ �e task of the network is o�en to compute a function or to make a decision.
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∙ Wireless communication uses a shared broadcast medium.

∙ Networked systems involve complex tradeo�s between competition for resources and
cooperation for the common good.

∙ Many networks allow for feedback and interactive communication.

∙ Source–channel separation does not hold for networks in general.

∙ Network security is o�en a primary concern.

∙ Data from the sources is o�en bursty and network topology evolves dynamically.

Network information theory aims to answer the aforementioned information �ow ques-
tions while capturing some of these aspects of real-world networks. In the following, we
illustrate some of the achievements of this theory using examples from the book.

1.4.1 Multiple Sources and Destinations

Coding for networks with many sources and destinations requires techniques beyond
routing and point-to-point source/channel coding. Consider the following settings.

Graphicalmulticast network. Suppose wewish to send amovie over the Internet tomul-
tiple destinations (multicast). Unlike the unicast case, routing is not optimal in general
even if we model the Internet by a graphical network. Instead, we need to use coding of
incoming packets at the relay nodes.

We illustrate this fact via the famous “butter�y network” shown in Figure ., where
source node  wishes to send a -bit message (M1 , M2) ∈ {0, 1}2 to destination nodes 
and . Assume link capacities C jk = 1 for all edges ( j , k). Note that using routing only,
both M1 and M2 must be sent over the edge (4, 5), and hence the message cannot be
communicated to both destination nodes.

However, if we allow the nodes to perform simple modulo- sum operations in ad-
dition to routing, the -bit message can be communicated to both destinations. As illus-
trated in Figure ., relay nodes , , and  forward multiple copies of their incoming bits,

1

2

3

4 5

6

7

M1

M2

M1

M2

M1 or M2
(M1 , M2)

M̂6

M̂7

Figure .. Butter�y network. �e -bit message (M1 , M2) cannot be sent using
routing to both destination nodes  and .
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and relay node  sends the modulo- sum ofM1 andM2. Using this simple scheme, both
destination nodes  and  can recover the message error-free.

1

2

3

4 5

6

7

M1

M2

M1

M2

M1 ⊕M2

M1

M2

M1 ⊕M2

M1 ⊕M2

(M1 , M2)

M̂6

M̂7

Figure .. �e -bit message can be sent to destination nodes  and  using linear
network coding.

In Chapter , we show that linear network coding, which is a generalization of this
simple scheme, achieves the capacity of an arbitrary graphical multicast network. Exten-
sions of this multicast setting to lossy source coding are discussed in Chapters  and .

Distributed compression. Suppose that a sensor network is used to measure the temper-
ature over a geographical area. �e output from each sensor is compressed and sent to
a base station. Although compression is performed separately on each sensor output, it
turns out that using point-to-point compression is not optimal when the sensor outputs
are correlated, for example, because the sensors are located close to each other.

Consider the distributed lossless compression system depicted in Figure .. Two se-
quences Xn

1 and Xn
2 are drawn from correlated discrete memoryless sources (X1 , X2) ∼

p(x1 , x2) and compressed separately into an nR1-bit index M1 and an nR2-bit index M2,
respectively. A receiver (base station) wishes to recover the source sequences from the
index pair (M1 , M2). What is the minimum sum-rate R∗

sum, that is, the minimum over
R1 + R2 such that both sources can be reconstructed losslessly?

If each sender uses a point-to-point code, then by Shannon’s lossless source coding
theorem, the minimum lossless compression rates for the individual sources are R∗

1 =
H(X1) and R∗

2 = H(X2), respectively; hence the resulting sum-rate is H(X1) + H(X2).
If instead the two sources are jointly encoded, then again by the lossless source coding
theorem, the minimum lossless compression sum-rate is H(X1 , X2), which can be much
smaller than the sum of the individual entropies. For example, let X1 and X2 be binary-
valued sources with pX1 ,X2

(0, 0) = 0.495, pX1 ,X2
(0, 1) = 0.005, pX1 ,X2

(1, 0) = 0.005, and
pX1 ,X2

(1, 1) = 0.495; hence, the sources have the same outcome . of the time. From
the joint pmf, we see that X1 and X2 are both Bern(1/2) sources with entropy H(X1) =
H(X2) = 1 bit per symbol. By comparison, their joint entropy H(X1 , X2) = 1.0808 ≪ 2

bits per symbol pair.

Slepian andWolf (a) showed that R∗
sum = H(X1 , X2) and hence that the minimum
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Xn
1

Xn
2

Encoder 

Encoder 

Decoder
X̂n
1 , X̂n

2

M1

M2

Figure .. Distributed lossless compression system. Each source sequence Xn
j ,

j = 1, 2, is encoded into an index M j(X
n
j ) ∈ [1 : 2nR j ), and the decoder wishes to

reconstruct the sequences losslessly from (M1 , M2).

sum-rate for distributed compression is asymptotically the same as for centralized com-
pression! �is result is discussed in Chapter . Generalizations to distributed lossy com-
pression are discussed in Chapters  and .

Communication for computing. Now suppose that the base station in the tempera-
ture sensor network wishes to compute the average temperature over the geographical
area instead of the individual temperature values. What is the amount of communication
needed?

While in some cases the rate requirement for computing a function of the sources is the
same as that for recovering the sources themselves, it is sometimes signi�cantly smaller.
As an example, consider an n-round online game, where in each round Alice and Bob
each select one card without replacement from a virtual hat with three cards labeled , ,
and . �e one with the larger number wins. Let Xn and Yn be the sequences of numbers
on Alice and Bob’s cards over the n rounds, respectively. Alice encodes her sequence Xn

into an index M ∈ [1 : 2nR] and sends it to Bob so that he can �nd out who won in each
round, that is, �nd an estimate Ẑn of the sequence Zi = max{Xi ,Yi} for i ∈ [1 : n], as
shown in Figure .. What is the minimum communication rate R needed?

By the aforementioned Slepian–Wolf result, the minimum rate needed for Bob to re-
construct X is the conditional entropy H(X|Y) = H(X ,Y) − H(Y) = 2/3 bit per round.
By exploiting the structure of the function Z = max{X ,Y}, however, it can be shown that
only 0.5409 bit per round is needed.

�is card game example as well as general results on communication for computing
are discussed in Chapter .

Xn

Yn

M Ẑn

Encoder Decoder
(Alice) (Bob)

Figure .. Online game setup. Alice has the card number sequence Xn and Bob
has the card number sequence Yn. Alice encodes her card number sequence into
an index M ∈ [1 : 2nR] and sends it to Bob, who wishes to losslessly reconstruct the
winner sequence Zn.
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1.4.2 Wireless Networks

Perhaps the most important practical motivation for studying network information the-
ory is to deal with the special nature of wireless channels. We study models for wireless
communication throughout the book.

�e �rst and simplest wireless channelmodel we consider is the point-to-point Gauss-
ian channelY = X + Z depicted in Figure ., where Z ∼ N(0, N0/2) is the receiver noise
and  is the channel gain. Shannon showed that the capacity of this channel under a
prescribed average transmission power constraint P on X, i.e., ∑n

i=1 X
2
i ≤ nP for each

codeword Xn, has the simple characterization

C = 1

2
log(1 + S) = C(S),

where S = 22P/N0 is the received signal-to-noise ratio (SNR).

X


Y

Z ∼ N(0, N0/2)

Figure .. Gaussian point-to-point channel.

Awireless network can be turned into a set of separate point-to-point Gaussian chan-
nels via time or frequency division. �is traditional approach to wireless communication,
however, does not take full advantage of the broadcast nature of the wireless medium as
illustrated in the following example.

Gaussian broadcast channel. �e downlink of awireless system ismodeled by theGauss-
ian broadcast channel

Y1 = 1X + Z1 ,

Y2 = 2X + Z2 ,

as depicted in Figure .. Here Z1 ∼ N(0, N0/2) and Z2 ∼ N(0, N0/2) are the receiver noise
components, and 21 > 22 , that is, the channel to receiver  is stronger than the channel to
receiver . De�ne the SNRs for receiver j = 1, 2 as S j = 22jP/N0. Assume average power
constraint P on X.

�e sender wishes to communicate a message M j at rate R j to receiver j for j = 1, 2.
What is the capacity region C of this channel, namely, the set of rate pairs (R1 , R2) such
that the probability of decoding error at both receivers can be made arbitrarily small as
the code block length becomes large?

If we send the messages M1 and M2 in di�erent time intervals or frequency bands,
then we can reliably communicate at rate pairs in the “time-division region” R shown in
Figure .. Cover () showed that higher rates can be achieved by adding the code-
words for the two messages and sending this sum over the entire transmission block. �e
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stronger receiver  decodes for both codewords, while the weaker receiver  treats the
other codeword as noise and decodes only for its own codeword. Using this superposition
coding scheme, the sender can reliably communicate the messages at any rate pair in the
capacity region C shown in Figure .b, which is strictly larger than the time-division
region R.

X

1

2

Z1 ∼ N(0, N0/2)

Z2 ∼ N(0, N0/2)

Y1

Y2

R

C

R1

R2

C(S2)

C(S1)

(a) (b)

Figure .. (a) Gaussian broadcast channel with SNRs S1 = 21P > 22P = S2. (b) �e
time-division inner bound R and the capacity region C .

�is superposition scheme and related results are detailed in Chapter . Similar im-
provements in rates can be achieved for the uplink (multiple access channel) and the in-
tercell interference (interference channel), as discussed in Chapters  and , respectively.

Gaussian vector broadcast channel.Multiple transmitter and receiver antennas are com-
monly used to enhance the performance of wireless communication systems. Coding
for thesemultiple-inputmultiple-output (MIMO) channels, however, requires techniques
beyond single-antenna (scalar) channels. For example, consider the downlink of aMIMO
wireless system modeled by the Gaussian vector broadcast channel

Y1 = G1X + Z1 ,

Y2 = G2X + Z2 ,

where G1 , G2 are r-by-t channel gain matrices and Z1 ∼ N(0, Ir) and Z2 ∼ N(0, Ir) are
noise components. Assume average power constraint P onX. Note that unlike the single-
antenna broadcast channel shown in Figure ., in the vector case neither receiver is nec-
essarily stronger than the other. �e optimum coding scheme is based on the following
writing on dirty paper result. Suppose we wish to communicate amessage over a Gaussian
vector channel,

Y = GX + S + Z

where S ∼ N(0, KS) is an interference signal, which is independent of the Gaussian noise
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Z ∼ N(0, Ir). Assume average power constraint P on X. When the interference sequence
Sn is available at the receiver, it can be simply subtracted from the received sequence and
hence the channel capacity is the same as when there is no interference. Now suppose that
the interference sequence is available only at the sender. Because of the power constraint,
it is not always possible to presubtract the interference from the transmitted codeword.
It turns out, however, that the e�ect of interference can still be completely canceled via
judicious precoding and hence the capacity is again the same as that with no interference!

�is scheme is applied to the Gaussian vector broadcast channel as follows.

∙ To communicate the message M2 to receiver , consider the channel Y2 = G2X2 +
G2X1 + Z2 with input X2, Gaussian interference G2X1, and additive Gaussian noise
Z2. Receiver  recovers M2 while treating the interference signal G2X1 as part of the
noise.

∙ To communicate the message M1 to receiver , consider the channel Y1 = G1X1 +
G1X2 + Z1, with input X1, Gaussian interference G1X2, and additive Gaussian noise
Z1, where the interference sequence G1X

n
2(M2) is available at the sender. By the writ-

ing on dirty paper result, the transmission rate of M1 can be as high as that for the
channel Y�

1 = G1X1 + Z1 without interference.

�e writing on dirty paper result is discussed in detail in Chapter . �e optimality of this
scheme for the Gaussian vector broadcast channel is established in Chapter .

Gaussian relay channel. An ad-hoc or amesh wireless network is modeled by a Gaussian
multihop network in which nodes can act as relays to help other nodes communicate their
messages. Again reducing such a network to a set of links using time or frequency division
does not take full advantage of the shared wireless medium, and the rate can be greatly
increased via node cooperation.

As a canonical example, consider the -node relay channel depicted in Figure .a.
Here node  is located on the line between nodes  and  as shown in Figure .b. We
assume that the channel gain fromnode k to node j is  jk = r−3/2

jk
, where r jk is the distance

between nodes k and j. Hence 31 = r−3/231 , 21 = r−3/221 , and 32 = (r31 − r21)
−3/2. Assume

average power constraint P on each of X1 and X2.
Suppose that sender node  wishes to communicate a message M to receiver node 

with the help of relay node . On the one extreme, the sender and the receiver can commu-
nicate directly without help from the relay. On the other extreme, we can use a multihop

scheme where the relay plays a pivotal role in the communication. In this commonly used
scheme, the sender transmits the message to the relay in the �rst hop and the relay recov-
ers the message and transmits it to the receiver concurrently in the second hop, causing
interference to the �rst-hop communication. If the receiver is far away from the sender,
that is, the distance r31 is large, this scheme performs well because the interference due to
the concurrent transmission is weak. However, when r31 is not large, the interference can
adversely a�ect the communication of the message.

In Chapter , we present several coding schemes that outperform both direct trans-
mission and multihop.
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X1

21

Z2 ∼ N(0, N0/2)

Y2 X2 32

Z3 ∼ N(0, N0/2)

Y331

(a)

1 2 3

r21

r31

(b)

Figure .. (a) Gaussian relay channel. (b) Node placements: relay node  is placed
along the lines between sender node  and receiver node .

∙ Decode–forward. �e direct transmission and multihop schemes are combined and
further enhanced via coherent transmission by the sender and the relay. �e receiver
decodes for the signals from both hops instead of treating the transmission from the
�rst hop as interference. Decode–forward performs well when the relay is closer to
the sender, i.e., r21 < (1/2)r31.

∙ Compress–forward. As an alternative to the “digital-to-digital” relay interface used
in multihop and decode–forward, the compress–forward scheme uses an “analog-to-
digital” interface in which the relay compresses the received signal and sends the com-
pression index to the receiver. Compress–forward performs well when the relay is
closer to the receiver.

∙ Amplify–forward. Decode–forward and compress–forward require sophisticated op-
erations at the nodes. �e amplify–forward scheme provides a much simpler “analog-
to-analog” interface in which the relay scales the incoming signal and transmits it
to the receiver. In spite of its simplicity, amplify–forward can outperform decode–
forward when the relay is closer to the receiver.

�e performance of the above relaying schemes are compared in Figure .. In general,
it can be shown that both decode–forward and compress–forward achieve rates within
1/2 bit of the capacity, while amplify–forward achieves rates within 1 bit of the capacity.

We extend the above coding schemes to general multihop networks in Chapters 
and . In particular, we show that extending compress–forward leads to a noisy network
coding scheme that includes network coding for graphical multicast networks as a special
case. When applied to Gaussian multihop multicast networks, this noisy network coding
scheme achieves within a constant gap of the capacity independent of network topology,
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r21

RDF
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Figure .. Comparison of the achievable rates for the Gaussian relay channel us-
ing direct transmission (RDT), multihop (RMH), decode–forward (RDF), compress–
forward (RCF), and amplify–forward (RAF) for N0/2 = 1, r31 = 1 and P = 10.

channel parameters, and power constraints, while extensions of the other schemes do not
yield such performance guarantees.

To study the e�ect of interference and path loss in large wireless networks, in Chap-
ter  we also investigate how capacity scales with the network size. We show that relaying
and spatial reuse of frequency/time can greatly increase the rates over naive direct trans-
mission with time division.

Wireless fading channels. Wireless channels are time varying due to scattering of signals
over multiple paths and user mobility. In Chapter , we study fading channel models
that capture these e�ects by allowing the gains in the Gaussian channels to vary randomly
with time. In some settings, channel capacity in the Shannon sense is not well de�ned.
We introduce di�erent coding approaches and corresponding performance metrics that
are useful in practice.

1.4.3 Interactive Communication

Real-world networks allow for feedback and node interactions. Shannon () showed
that feedback does not increase the capacity of a memoryless channel. Feedback, how-
ever, can help simplify coding and improve reliability. �is is illustrated in the following
example.

Binary erasure channel with feedback. �e binary erasure channel is a DMCwith binary
input X ∈ {0, 1} and ternary output Y ∈ {0, 1, e}. Each transmitted bit ( or ) is erased
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(Y = e) with probability p. �e capacity of this channel is 1 − p and achieving it requires
sophisticated block coding. Now suppose that noiseless causal feedback from the receiver
to the sender is present, that is, the sender at each time i has access to all previous received
symbols Y i−1. �en we can achieve the capacity simply by retransmitting each erased
bit. Using this simple feedback scheme, on average n = k/(1 − p) transmissions su�ce to
reliably communicate k bits of information.

Unlike point-to-point communication, feedback can achieve higher rates in networks
with multiple senders/receivers.

Binary erasure multiple access channel with feedback. Consider the multiple access
channel (MAC) with feedback depicted in Figure ., where the channel inputs X1 and
X2 are binary and the channel output Y = X1 + X2 is ternary, i.e., Y ∈ {0, 1, 2}. Suppose
that senders  and wish to communicate independentmessagesM1 andM2, respectively,
to the receiver at the same rate R. Without feedback, the symmetric capacity, which is the
maximum rate R, is maxp(x1)p(x2)

H(Y) = 3/4 bits/transmission.
Noiseless causal feedback allows the senders to cooperate in communicating theirmes-

sages and hence to achieve higher symmetric rates than with no feedback. To illustrate
such cooperation, suppose that each sender �rst transmits its k-bit message uncoded.
On average k/2 bits are “erased” (that is, Y = 0 + 1 = 1 + 0 = 1 is received). Since the
senders know through feedback the exact locations of the erasures as well as the corre-
sponding message bits from both messages, they can cooperate to send the erased bits
from the �rst message (which is su�cient to recover both messages). �is cooperative
retransmission requires k/(2 log 3) transmissions. Hence we can increase the symmetric
rate to R = k/(k + k/(2 log 3)) = 0.7602. �is rate can be further increased to 0.7911 by
using a more sophisticated coding scheme that sends new messages simultaneously with
cooperative retransmissions.

In Chapter , we discuss the iterative re�nement approach illustrated in the binary
erasure channel example; the cooperative feedback approach for multiuser channels il-
lustrated in the binary erasure MAC example; and the two-way channel. In Chapters 

M1

M2

X1i

X2i

Encoder 

Encoder 

Decoder
Yi

Y i−1

Y i−1

M̂1 , M̂2

Figure .. Feedback communication over a binary erasure MAC. �e channel
inputs X1i and X2i at time i ∈ [1 : n] are functions of (M1 ,Y i−1

) and (M2 ,Y i−1
),

respectively.
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through , we show that interaction can also help in distributed compression, distributed
computing, and secret communication.

1.4.4 Joint Source–Channel Coding

As we mentioned earlier, Shannon showed that separate source and channel coding is
asymptotically optimal for point-to-point communication. It turns out that such sepa-
ration does not hold in general for sending correlated sources over multiuser networks.
In Chapter , we demonstrate this breakdown of separation for lossless communication
of correlated sources over multiple access and broadcast channels. �is discussion yields
natural de�nitions of various notions of common information between two sources.

1.4.5 Secure Communication

Con�dentiality of information is a crucial requirement in networking applications such
as e-commerce. In Chapter , we discuss several coding schemes that allow a legitimate
sender (Alice) to communicate a message reliably to a receiver (Bob) while keeping it
secret (in a strong sense) from an eavesdropper (Eve). When the channel from Alice
to Bob is stronger than that to Eve, a con�dential message with a positive rate can be
communicated reliably without a shared secret key between Alice and Bob. By contrast,
when the channel from Alice to Bob is weaker than that to Eve, no con�dential message
can be communicated reliably. We show, however, that Alice and Bob can still agree on a
secret key through interactive communication over a public (nonsecure) channel that Eve
has complete access to. �is key can then be used to communicate a con�dential message
at a nonzero rate.

1.4.6 Network Information Theory and Networking

Many aspects of real-world networks such as bursty data arrivals, random access, asyn-
chrony, and delay constraints are not captured by the standard models of network infor-
mation theory. In Chapter , we present several examples for which such networking
issues have been successfully incorporated into the theory. We present a simple model for
randommedium access control (used for example in the ALOHAnetwork) and show that
a higher throughput can be achieved using a broadcasting approach instead of encoding
the packets at a �xed rate. In another example, we establish the capacity region of the
asynchronous multiple access channel.

1.4.7 Toward a Unified Network Information Theory

�e above ideas and results illustrate some of the key ingredients of network information
theory. �e book studies this fascinating subject in a systematicmanner, with the ultimate
goal of developing a uni�ed theory. We begin our journey with a review of Shannon’s
point-to-point information theory in the next two chapters.



CHAPTER 2

Information Measures and Typicality

We de�ne entropy and mutual information and review their basic properties. We intro-
duce basic inequalities involving these informationmeasures, including Fano’s inequality,
Mrs. Gerber’s lemma, the maximum di�erential entropy lemma, the entropy power in-
equality, the data processing inequality, and the Csiszár sum identity. We then introduce
the notion of typicality adopted throughout the book. We discuss properties of typical se-
quences and introduce the typical average lemma, the conditional typicality lemma, and
the joint typicality lemma. �ese lemmas as well as the aforementioned entropy and mu-
tual information inequalities will play pivotal roles in the proofs of the coding theorems
throughout the book.

2.1 ENTROPY

Let X be a discrete random variable with probability mass function (pmf) p(x) (in short
X ∼ p(x)). �e uncertainty about the outcome of X is measured by its entropy de�ned as

H(X) = −H
x∈X

p(x) log p(x) = − EX(log p(X)).

For example, if X is a Bernoulli random variable with parameter p = P{X = 1} ∈ [0, 1] (in
short X ∼ Bern(p)), the entropy of X is

H(X) = −p log p − (1 − p) log(1 − p).

Since the Bernoulli random variable will be frequently encountered, we denote its entropy
by the binary entropy function H(p). �e entropy function H(X) is a nonnegative and
concave function in p(x). �us, by Jensen’s inequality (see Appendix B),

H(X) ≤ log |X | ,

that is, the uniform pmf over X maximizes the entropy.
Let X be a discrete random variable and (X) be a function of X. �en

H((X)) ≤ H(X),

where the inequality holds with equality if  is one-to-one over the support of X, i.e., the
set {x ∈ X : p(x) > 0}.
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Conditional entropy. Let X ∼ F(x) be an arbitrary random variable and Y | {X = x} ∼
p(y|x) be discrete for every x. Since p(y|x) is a pmf, we can de�ne the entropy function
H(Y |X = x) for every x. �e conditional entropy (or equivocation) H(Y |X) of Y given X

is the average of H(Y |X = x) over X, i.e.,

H(Y |X) = XH(Y |X = x) dF(x)

= − EX ,Y�log p(Y |X)�.
Conditional entropy is a measure of the remaining uncertainty about the outcome of Y
given the “observation” X. Again by Jensen’s inequality,

H(Y |X) ≤ H(Y) (.)

with equality if X and Y are independent.

Joint entropy. Let (X ,Y) ∼ p(x , y) be a pair of discrete random variables. �e joint en-
tropy of X and Y is de�ned as

H(X ,Y) = − E�log p(X ,Y)�.
Note that this is the same as the entropy of a single “large" random variable (X ,Y). �e
chain rule for pmfs, p(x , y) = p(x)p(y|x) = p(y)p(x|y), leads to a chain rule for joint
entropy

H(X ,Y) = H(X) + H(Y |X) = H(Y) + H(X |Y).

By (.), it follows that

H(X ,Y) ≤ H(X) + H(Y) (.)

with equality if X and Y are independent.
�e de�nition of entropy extends to discrete random vectors. Let Xn ∼ p(xn). �en

again by the chain rule for pmfs,

H(Xn
) = H(X1) + H(X2 |X1) + ⋅ ⋅ ⋅ + H(Xn |X1 , . . . , Xn−1)

= nH
i=1

H(Xi |X1 , . . . , Xi−1)

= nH
i=1

H(Xi |X
i−1

).

Using induction and inequality (.), it follows that H(Xn) ≤ ∑n
i=1 H(Xi) with equality if

X1 , X2 , . . . , Xn are mutually independent.
Next, we consider the following two results that will be used in the converse proofs of

many coding theorems. �e �rst result relates equivocation to the “probability of error.”
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Fano’s Inequality. Let (X ,Y) ∼ p(x , y) and Pe = P{X ̸= Y}. �en

H(X |Y) ≤ H(Pe) + Pe log |X | ≤ 1 + Pe log |X |.

�e second result provides a lower bound on the entropy of the modulo- sum of two
binary random vectors.

Mrs. Gerber’s Lemma (MGL). Let H−1 : [0, 1] → [0, 1/2] be the inverse of the binary
entropy function, i.e., H(H−1(v)) = v.

∙ Scalar MGL: Let X be a binary random variable and let U be an arbitrary random
variable. If Z ∼ Bern(p) is independent of (X ,U) and Y = X ⊕ Z, then

H(Y |U) ≥ H�H−1
(H(X |U)) ∗ p�.

∙ VectorMGL: Let Xn be a binary random vector andU be an arbitrary random vari-
able. If Zn is a vector of independent and identically distributed Bern(p) random
variables independent of (Xn ,U) and Yn = Xn ⊕ Zn, then

H(Yn|U)

n
≥ H �H−1�H(Xn|U)

n
� ∗ p� .

�e proof of this lemma follows by the convexity of the function H(H−1
(v) ∗ p) in v

and using induction; see Problem ..

Entropy rate of a stationary random process. Let X = {Xi} be a stationary random pro-
cess with Xi taking values in a �nite alphabet X . �e entropy rate H(X) of the process X
is de�ned as

H(X) = lim
n→∞

1

n
H(Xn

) = lim
n→∞

H(Xn |X
n−1

).

2.2 DIFFERENTIAL ENTROPY

Let X be a continuous random variable with probability density function (pdf) f (x) (in
short X ∼ f (x)). �e di�erential entropy of X is de�ned as

h(X) = −X f (x) log f (x) dx = − EX�log f (X)�.
For example, if X ∼ Unif[a, b], then

h(X) = log(b − a).

As another example, if X ∼ N(μ, σ2), then

h(X) = 1

2
log(2πeσ2).
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�e di�erential entropy h(X) is a concave function of f (x). However, unlike entropy
it is not always nonnegative and hence should not be interpreted directly as a measure
of information. Roughly speaking, h(X) + n is the entropy of the quantized version of X
using equal-size intervals of length 2−n (Cover and �omas , Section .).

�e di�erential entropy is invariant under translation but not under scaling.

∙ Translation: For any constant a, h(X + a) = h(X).

∙ Scaling: For any nonzero constant a, h(aX) = h(X) + log |a|.

�e maximum di�erential entropy of a continuous random variable X ∼ f (x) under
the average power constraint E(X2

) ≤ P is

max
f (x):E(X2)≤P

h(X) = 1

2
log(2πeP)

and is attained when X is Gaussian with zero mean and variance P, i.e., X ∼ N(0, P); see
Remark . and Problem .. �us, for any X ∼ f (x),

h(X) = h(X − E(X)) ≤ 1

2
log(2πe Var(X)). (.)

Conditional di�erential entropy. Let X ∼ F(x) be an arbitrary random variable and
Y | {X = x} ∼ f (y|x) be continuous for every x. �e conditional di�erential entropy h(Y |X)
of Y given X is de�ned as

h(Y |X) = X h(Y |X = x) dF(x)

= − EX ,Y�log f (Y |X)�.
As for the discrete case in (.), conditioning reduces entropy, i.e.,

h(Y |X) ≤ h(Y) (.)

with equality if X and Y are independent.
We will o�en be interested in the sum of two random variablesY = X + Z, where X is

an arbitrary random variable and Z is an independent continuous random variable with
bounded pdf f (z), for example, a Gaussian random variable. It can be shown in this case
that the sum Y is a continuous random variable with well-de�ned density.

Joint di�erential entropy. �e de�nition of di�erential entropy can be extended to a
continuous random vector Xn with joint pdf f (xn) as

h(Xn
) = − E�log f (Xn

)�.
For example, if Xn is a Gaussian random vector with mean μ and covariance matrix K ,
i.e., Xn ∼ N(μ, K), then

h(Xn
) = 1

2
log�(2πe)n |K |�.
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By the chain rule for pdfs and (.), we have

h(Xn
) = nH

i=1

h(Xi |X
i−1

) ≤ nH
i=1

h(Xi) (.)

with equality if X1 , . . . , Xn are mutually independent. �e translation and scaling prop-
erties of di�erential entropy continue to hold for the vector case.

∙ Translation: For any real-valued vector an, h(Xn + an) = h(Xn).

∙ Scaling: For any real-valued nonsingular n × nmatrix A,

h(AXn
) = h(Xn

) + log |det(A)| .

�e following lemmawill be used in the converse proofs of Gaussian source and chan-
nel coding theorems.

MaximumDifferential Entropy Lemma. LetX ∼ f (xn) be a random vector with co-
variance matrix KX = E[(X − E(X))(X − E(X))T ] ≻ 0. �en

h(X) ≤ 1

2
log �(2πe)n |KX |� ≤ 1

2
log�(2πe)n|E(XXT

)|� , (.)

where E(XXT
) is the correlation matrix of Xn. �e �rst inequality holds with equality

if and only if X is Gaussian and the second inequality holds with equality if and only if
E(X) = 0. More generally, if (X, Y) = (Xn ,Y k) ∼ f (xn , yk) is a pair of random vectors
KX|Y = E[(X − E(X|Y))(X − E(X|Y))T ] is the covariance matrix of the error vector of
the minimum mean squared error (MMSE) estimate of X given Y, then

h(X|Y) ≤ 1

2
log �(2πe)n |KX|Y |� (.)

with equality if (X, Y) is jointly Gaussian.

�e proof of the upper bound in (.) is similar to the proof for the scalar case in (.);
see Problem .. �e upper bound in (.) follows by applying (.) to h(X|Y = y) for
each y and Jensen’s inequality using the concavity of log |K | in K . �e upper bound on
di�erential entropy in (.) can be further relaxed to

h(Xn
) ≤ n

2
log�2πe� 1

n

nH
i=1

Var(Xi)�� ≤ n

2
log�2πe� 1

n

nH
i=1

E(X2
i )��. (.)

�ese inequalities can be proved usingHadamard’s inequality ormore directly using (.),
(.), and Jensen’s inequality.

�e quantity 22h(X
n
)/n
/(2πe) is o�en referred to as the entropy power of the random

vector Xn. �e inequality in (.) shows that the entropy power is upper bounded by the
average power. �e following inequality shows that the entropy power of the sum of two
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independent random vectors is lower bounded by the sum of their entropy powers. In a
sense, this inequality is the continuous analogue of Mrs. Gerber’s lemma.

Entropy Power Inequality (EPI).

∙ Scalar EPI: Let X ∼ f (x) and Z ∼ f (z) be independent random variables and Y =
X + Z. �en

22h(Y) ≥ 22h(X) + 22h(Z)

with equality if both X and Z are Gaussian.

∙ Vector EPI: Let Xn ∼ f (xn) and Zn ∼ f (zn) be independent random vectors and
Yn = Xn + Zn. �en

22h(Y
n
)/n ≥ 22h(X

n
)/n + 22h(Z

n
)/n

with equality if Xn and Zn are Gaussian with KX = aKZ for some scalar a > 0.

∙ Conditional EPI: Let Xn and Zn be conditionally independent given an arbitrary
random variableU , with conditional pdfs f (xn|u) and f (zn|u), andYn = Xn + Zn.
�en

22h(Y
n
|U)/n ≥ 22h(X

n
|U)/n + 22h(Z

n
|U)/n.

�e scalar EPI can be proved, for example, using a sharp version of Young’s inequality
or de Bruijn’s identity; see Bibliographic Notes. �e proofs of the vector and conditional
EPIs follow by the scalar EPI, the convexity of the function log(2v + 2w) in (v, w), and
induction.

Di�erential entropy rate of a stationary random process. Let X = {Xi} be a stationary
continuous-valued random process. �e di�erential entropy rate h(X) of the process X is
de�ned as

h(X) = lim
n→∞

1

n
h(Xn

) = lim
n→∞

h(Xn |X
n−1

).

2.3 MUTUAL INFORMATION

Let (X ,Y) ∼ p(x , y) be a pair of discrete random variables. �e information about X
obtained from the observation Y is measured by the mutual information between X and
Y de�ned as

I(X ;Y) = H
(x,y)∈X×Y

p(x , y) log
p(x , y)

p(x)p(y)

= H(X) − H(X |Y)

= H(Y) − H(Y |X)

= H(X) + H(Y) − H(X ,Y).
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�e mutual information I(X ;Y) is a nonnegative function of p(x , y), and I(X ;Y) = 0 if
and only if (i�) X and Y are independent. It is concave in p(x) for a �xed p(y|x), and
convex in p(y|x) for a �xed p(x). Mutual information can be de�ned also for a pair of
continuous random variables (X ,Y) ∼ f (x , y) as

I(X ;Y) = X f (x , y) log
f (x , y)

f (x) f (y)
dxdy

= h(X) − h(X |Y)

= h(Y) − h(Y |X)

= h(X) + h(Y) − h(X ,Y).

Similarly, let X ∼ p(x) be a discrete random variable and Y | {X = x} ∼ f (y|x) be contin-
uous for every x. �en

I(X ;Y) = h(Y) − h(Y |X) = H(X) − H(X |Y).

In general, mutual information can be de�ned for an arbitrary pair of random variables
(Pinsker ) as

I(X ;Y) = X log
dμ(x , y)

d(μ(x)×μ(y)) dμ(x , y),

where dμ(x , y)/d(μ(x)×μ(y)) is the Radon–Nikodym derivative (see, for example, Roy-
den ) of the joint probability measure μ(x , y) with respect to the product probability
measure μ(x)×μ(y). Equivalently, it can be expressed as

I(X ;Y) = sup
x̂, ŷ

I(x̂(X); ŷ(Y)),

where x̂(x) and ŷ(y) are �nite-valued functions, and the supremum is over all such func-
tions. �ese de�nitions can be shown to include the above de�nitions of mutual informa-
tion for discrete and continuous random variables as special cases (Gray , Section )
by considering

I(X ;Y) = lim
j,k→∞

I([X] j ; [Y]k),

where [X] j = x̂ j(X) and [Y]k = ŷk(Y) can be any sequences of �nite quantizations of X
and Y , respectively, such that the quantization errors (x − x̂ j(x)) and (y − ŷk(y)) tend to
zero as j , k → ∞ for every x , y.

Remark . (Relative entropy). Mutual information is a special case of the relative en-
tropy (Kullback–Leibler divergence). Let P andQ be two probability measures such that P
is absolutely continuous with respect toQ, then the relative entropy is de�ned as

D(P | |Q) = X log
dP

dQ
dP ,

where dP/dQ is the Radon–Nikodym derivative. �us, mutual information I(X ;Y) is
the relative entropy between the joint and product measures of X andY . Note that by the
convexity of log(1/x), D(P||Q) is nonnegative and D(P||Q) = 0 i� P = Q.
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Conditional mutual information. Let (X ,Y) | {Z = z} ∼ F(x , y|z) and Z ∼ F(z). De-
note the mutual information between X and Y given {Z = z} by I(X ;Y |Z = z). �en the
conditional mutual information I(X ;Y |Z) between X and Y given Z is de�ned as

I(X ;Y |Z) = X I(X ;Y |Z = z) dF(z).

For (X ,Y , Z) ∼ p(x , y, z),

I(X ;Y |Z) = H(X |Z) − H(X |Y , Z)

= H(Y |Z) − H(Y |X , Z)

= H(X |Z) + H(Y |Z) − H(X ,Y |Z).

�e conditional mutual information I(X ;Y |Z) is nonnegative and is equal to zero i� X

and Y are conditionally independent given Z, i.e., X → Z → Y form a Markov chain.
Note that unlike entropy, no general inequality relationship exists between the conditional
mutual information I(X ;Y |Z) and the mutual information I(X ;Y). �ere are, however,
two important special cases.

∙ Independence: If p(x , y, z) = p(x)p(z)p(y|x , z), that is, if X and Z are independent,
then

I(X ;Y |Z) ≥ I(X ;Y).

�is follows by the convexity of I(X ;Y) in p(y|x) for a �xed p(x).

∙ Conditional independence: If Z → X → Y form a Markov chain, then

I(X ;Y |Z) ≤ I(X ;Y).

�is follows by the concavity of I(X ;Y) in p(x) for a �xed p(y|x).

�e de�nition ofmutual information can be extended to random vectors in a straight-
forward manner. In particular, we can establish the following useful identity.

Chain Rule for Mutual Information. Let (Xn ,Y) ∼ F(xn , y). �en

I(Xn ;Y) = nH
i=1

I(Xi ;Y |X i−1
).

�e following inequality shows that processing cannot increase information.

Data Processing Inequality. If X → Y → Z form a Markov chain, then

I(X ; Z) ≤ I(X ;Y).
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Consequently, for any function , I(X ; (Y)) ≤ I(X ;Y), which implies the inequal-
ity in (.). To prove the data processing inequality, we use the chain rule to expand
I(X ;Y , Z) in two ways as

I(X ;Y , Z) = I(X ;Y) + I(X ; Z |Y) = I(X ;Y)

= I(X ; Z) + I(X ;Y |Z) ≥ I(X ; Z).

�e chain rule can be also used to establish the following identity, which will be used in
several converse proofs.

Csiszár Sum Identity. Let (U , Xn ,Yn
) ∼ F(u, xn , yn). �en

nH
i=1

I(Xn
i+1 ;Yi |Y

i−1 ,U) = nH
i=1

I(Y i−1 ; Xi |X
n
i+1 ,U),

where Xn
n+1 ,Y0 = .

2.4 TYPICAL SEQUENCES

Let xn be a sequence with elements drawn from a �nite alphabet X . De�ne the empirical

pmf of xn (also referred to as its type) as

π(x |xn) = |{i : xi = x}|

n
for x ∈ X .

For example, if xn = (0, 1, 1, 0, 0, 1, 0), then

π(x |xn) = ®4/7 for x = 0,

3/7 for x = 1.

Let X1 , X2 , . . . be a sequence of independent and identically distributed (i.i.d.) random
variables with Xi ∼ pX(xi). �en by the (weak) law of large numbers (LLN), for each
x ∈ X ,

π(x |Xn
) → p(x) in probability.

�us, with high probability, the random empirical pmf π(x|Xn
) does not deviate much

from the true pmf p(x). For X ∼ p(x) and є ∈ (0, 1), de�ne the set of є-typical n-sequences
xn (or the typical set in short) as

T
(n)
є (X) = �xn : |π(x |xn) − p(x)| ≤ єp(x) for all x ∈ X � .

When it is clear from the context, we will use T (n)
є instead of T (n)

є (X). �e following
simple fact is a direct consequence of the de�nition of the typical set.
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Typical Average Lemma. Let xn ∈ T (n)
є (X). �en for any nonnegative function (x)

on X ,

(1 − є) E((X)) ≤ 1

n

nH
i=1

(xi) ≤ (1 + є) E((X)).

Typical sequences satisfy the following properties:

. Let p(xn) = ∏n
i=1 pX(xi). �en for each xn ∈ T (n)

є (X),

2−n(H(X)+δ(є)) ≤ p(xn) ≤ 2−n(H(X)−δ(є)) ,

where δ(є) = єH(X). �is follows by the typical average lemmawith (x) = − log p(x).

. �e cardinality of the typical set is upper bounded as

!!!!T (n)
є (X)!!!! ≤ 2n(H(X)+δ(є)).

�is can be shown by summing the lower bound in property  over the typical set.

. If X1 , X2 , . . . are i.i.d. with Xi ∼ pX(xi), then by the LLN,

lim
n→∞

P�Xn ∈ T
(n)
є (X)� = 1.

. �e cardinality of the typical set is lower bounded as

!!!!T (n)
є (X)!!!! ≥ (1 − є)2n(H(X)−δ(є))

for n su�ciently large. �is follows by property  and the upper bound in property .

�e above properties are illustrated in Figure ..

X n

T (n)
є (X)

typical xn

p(xn) ≐ 2−nH(X)|T (n)
є (X)| ≐ 2nH(X)

P{Xn ∈ T (n)
є (X)} ≥ 1 − є

Figure .. Properties of typical sequences. Here Xn ∼ ∏n
i=1 pX(xi).
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2.5 JOINTLY TYPICAL SEQUENCES

�e notion of typicality can be extended to multiple random variables. Let (xn , yn) be a
pair of sequences with elements drawn from a pair of �nite alphabets (X , Y). De�ne their
joint empirical pmf (joint type) as

π(x , y |xn , yn) = |{i : (xi , yi) = (x , y)}|

n
for (x , y) ∈ X × Y .

Let (X ,Y) ∼ p(x , y). �e set of jointly є-typical n-sequences is de�ned as

T
(n)
є (X ,Y) = �(xn , yn) : |π(x , y |xn , yn) − p(x , y)| ≤ єp(x , y) for all (x , y) ∈ X × Y�.

Note that this is the same as the typical set for a single “large” random variable (X ,Y),
i.e., T (n)

є (X ,Y) = T (n)
є �(X ,Y)�. Also de�ne the set of conditionally є-typical n sequences

as T (n)
є (Y |xn) = �yn : (xn , yn) ∈ T (n)

є (X ,Y)�. �e properties of typical sequences can be
extended to jointly typical sequences as follows.

. Let (xn , yn) ∈ T (n)
є (X ,Y) and p(xn , yn) = ∏n

i=1 pX ,Y (xi , yi). �en

(a) xn ∈ T (n)
є (X) and yn ∈ T (n)

є (Y),

(b) p(xn) ≐ 2−nH(X) and p(yn) ≐ 2−nH(Y),

(c) p(xn|yn) ≐ 2−nH(X|Y) and p(yn|xn) ≐ 2−nH(Y |X), and

(d) p(xn , yn) ≐ 2−nH(X ,Y).

. |T (n)
є (X ,Y)| ≐ 2nH(X ,Y).

. For every xn ∈ X n, !!!!T (n)
є (Y |xn)!!!! ≤ 2n(H(Y |X)+δ(є)) ,

where δ(є) = єH(Y |X).

. Let X ∼ p(x) andY = (X). Let xn ∈ T (n)
є (X). �en yn ∈ T (n)

є (Y |xn) i� yi = (xi) for
i ∈ [1 : n].

�e following property deserves a special attention.

Conditional Typicality Lemma. Let (X ,Y) ∼ p(x , y). Suppose that xn ∈ T
(n)

є�
(X) and

Yn ∼ p(yn|xn) = ∏n
i=1 pY |X(yi|xi). �en, for every є > є�,

lim
n→∞

P�(xn ,Yn
) ∈ T

(n)
є (X ,Y)� = 1.

�e proof of this lemma follows by the LLN. �e details are given in Appendix A.
Note that the condition є > є� is crucial to applying the LLN because xn could otherwise
be on the boundary of T (n)

є (X); see Problem ..
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�e conditional typicality lemma implies the following additional property of jointly
typical sequences.

. If xn ∈ T
(n)

є�
(X) and є� < є, then for n su�ciently large,

!!!!T (n)
є (Y |xn)!!!! ≥ (1 − є)2n(H(Y |X)−δ(є)).

�e above properties of jointly typical sequences are illustrated in two di�erent ways
in Figure ..

xn

yn

T (n)
є (Y)

�| ⋅ | ≐ 2nH(Y)�

T (n)
є (X) �| ⋅ | ≐ 2nH(X)�

T (n)
є (X ,Y)

�| ⋅ | ≐ 2nH(X ,Y)�

T (n)
є (Y |xn) T (n)

є (X|yn)

T (n)
є (X)

xn

X n Yn

T (n)
є (Y)

T (n)
є (Y |xn)

�| ⋅ | ≐ 2nH(Y |X)�

Figure .. Properties of jointly typical sequences.



2.5 Jointly Typical Sequences 29

2.5.1 Joint Typicality for a Triple of Random Variables

Let (X ,Y , Z) ∼ p(x , y, z). �e set of jointly є-typical (xn , yn , zn) sequences is de�ned as

T
(n)
є (X ,Y , Z) = �(xn , yn , zn) : |π(x , y, z |xn , yn , zn) − p(x , y, z)| ≤ єp(x , y, z)

for all (x , y, z) ∈ X × Y × Z�.
Since this is equivalent to the typical set for a single “large” random variable (X ,Y , Z) or
a pair of random variables ((X ,Y), Z), the properties of (jointly) typical sequences con-
tinue to hold. For example, suppose that (xn , yn , zn) ∈ T (n)

є (X ,Y , Z) and p(xn , yn , zn) =∏n
i=1 pX ,Y ,Z(xi , yi , zi). �en

. xn ∈ T (n)
є (X) and (yn , zn) ∈ T (n)

є (Y , Z),

. p(xn , yn , zn) ≐ 2−nH(X ,Y ,Z),

. p(xn , yn|zn) ≐ 2−nH(X ,Y |Z),

. |T (n)
є (X|yn , zn)| ≤ 2n(H(X|Y ,Z)+δ(є)), and

. if (yn , zn) ∈ T
(n)

є�
(Y , Z) and є� < є, then for n su�ciently large, |T (n)

є (X|yn , zn)| ≥
2n(H(X|Y ,Z)−δ(є)).

�e following two-part lemma will be used in the achievability proofs of many coding
theorems.

Joint Typicality Lemma. Let (X ,Y , Z) ∼ p(x , y, z) and є� < є. �en there exists
δ(є) > 0 that tends to zero as є → 0 such that the following statements hold:

. If (x̃n , ỹn) is a pair of arbitrary sequences and Z̃n ∼ ∏n
i=1 pZ|X(z̃i |x̃i), then

P�(x̃n , ỹn , Z̃n
) ∈ T

(n)
є (X ,Y , Z)� ≤ 2−n(I(Y ;Z|X)−δ(є)).

. If (xn , yn) ∈ T
(n)

є�
and Z̃n ∼ ∏n

i=1 pZ|X(z̃i|xi), then for n su�ciently large,

P�(xn , yn , Z̃n
) ∈ T

(n)
є (X ,Y , Z)� ≥ 2−n(I(Y ;Z|X)+δ(є)).

To prove the �rst statement, consider

P�(x̃n , ỹn , Z̃n
) ∈ T

(n)
є (X ,Y , Z)� = H

z̃n∈T (n)
å (Z|x̃n , ỹn)

p(z̃n | x̃n)

≤ !!!!T (n)
є (Z | x̃n , ỹn)!!!! ⋅ 2−n(H(Z|X)−єH(Z|X))

≤ 2n(H(Z|X ,Y)+єH(Z|X ,Y))2−n(H(Z|X)−єH(Z|X))

≤ 2−n(I(Y ;Z|X)−δ(є)).
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Similarly, for every n su�ciently large,

P�(xn , yn , Z̃n
) ∈ T

(n)
є (X ,Y , Z)� ≥ !!!!T (n)

є (Z |xn , yn)!!!! ⋅ 2−n(H(Z|X)+єH(Z|X))

≥ (1 − є)2n(H(Z|X ,Y)−єH(Z|X ,Y))2−n(H(Z|X)+єH(Z|X))

≥ 2−n(I(Y ;Z|X)+δ(є)) ,

which proves the second statement.

Remark .. As an application of the joint typicality lemma, it can be easily shown that
if (Xn ,Yn) ∼ ∏n

i=1 pX ,Y (xi , yi) and Z̃n | {Xn = xn ,Yn = yn} ∼ ∏n
i=1 pZ|X(z̃i |xi), then

P�(Xn ,Yn , Z̃n
) ∈ T

(n)
є � ≐ 2−nI(Y ;Z|X).

Other applications of the joint typicality lemma are given in Problem ..

2.5.2 Multivariate Typical Sequences

Let (X1 , X2 , . . . , Xk) ∼ p(x1 , x2 , . . . , xk) andJ be a nonempty subset of [1 : k]. De�ne the
subtuple of random variables X(J ) = (X j : j ∈ J ). For example, if k = 3 and J = {1, 3},
then X(J ) = (X1 , X3). �e set of є-typical n-sequences (xn1 , xn2 , . . . , xnk ) is de�ned as
T (n)
є (X1 , X2 , . . . , Xk) = T (n)

є ((X1 , X2 , . . . , Xk)), that is, as the typical set for a single ran-
dom variable (X1 , X2 , . . . , Xk). We can similarly de�ne T (n)

є (X(J )) for every J ⊆ [1 : k].
It can be easily checked that the properties of jointly typical sequences continue to

hold by considering X(J ) as a single random variable. For example, if (xn1 , xn2 , . . . , xnk ) ∈
T (n)
є (X1 , X2 , . . . , Xk) and p(xn1 , xn2 , . . . , xnk ) = ∏n

i=1 pX1 ,X2 ,...,Xk
(x1i , x2i , . . . , xki), then for

all J , J � ⊆ [1 : k],

. xn(J ) ∈ T (n)
є (X(J )),

. p(xn(J )|xn(J �
)) ≐ 2−nH(X(J )|X(J �

)),

. |T (n)
є (X(J )|xn(J �))| ≤ 2n(H(X(J )|X(J �

))+δ(є)), and

. if xn(J �) ∈ T
(n)

є�
(X(J �)) and є� < є, then for n su�ciently large,

|T
(n)
є (X(J )|xn(J �

))| ≥ 2n(H(X(J )|X(J �
))−δ(є)).

�e conditional and joint typicality lemmas can be readily generalized to subsets J1,
J2, and J3 and corresponding sequences xn(J1), x

n(J2), and xn(J3) that satisfy similar
conditions.

SUMMARY

∙ Entropy as a measure of information

∙ Mutual information as a measure of information transfer
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BIBLIOGRAPHIC NOTES

Shannon () de�ned entropy andmutual information for discrete and continuous ran-
dom variables, and provide justi�cations of these de�nitions in both axiomatic and oper-
ational senses. Many of the simple properties of these quantities, including the maximum
entropy property of the Gaussian distribution, are also due to Shannon. Subsequently,
Kolmogorov () and Dobrushin (a) gave rigorous extensions of entropy and mu-
tual information to abstract probability spaces.

Fano’s inequality is due to Fano (). Mrs. Gerber’s lemma is due to Wyner and Ziv
(). Extensions of the MGL were given by Witsenhausen (), Witsenhausen and
Wyner (), and Shamai and Wyner ().

�e entropy power inequality has a longer history. It �rst appeared in Shannon ()
without a proof. Full proofs were given subsequently by Stam () and Blachman ()
using de Bruijn’s identity (Cover and �omas , �eorem ..). �e EPI can be
rewritten in the following equivalent inequality (Costa and Cover ). For a pair of
independent random vectors Xn ∼ f (xn) and Zn ∼ f (zn),

h(Xn + Zn
) ≥ h(X̃n + Z̃n

), (.)

where X̃n and Z̃n are a pair of independent Gaussian random vectors with proportional
covariance matrices, chosen so that h(Xn) = h(X̃n) and h(Zn) = h(Z̃n). Now (.) can be
proved by the strengthened version of Young’s inequality (Beckner , Brascamp and
Lieb ); see, for example, Lieb () and Gardner (). Recently, Verdú and Guo
() gave a simple proof by relating the minimum mean squared error (MMSE) and
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mutual information in Gaussian channels; see Madiman and Barron () for a similar
proof from a di�erent angle. Extensions of the EPI are given by Costa (), Zamir and
Feder (), and Artstein, Ball, Barthe, and Naor ().

�ere are several notions of typicality in the literature. Our notion of typicality is that
of robust typicality due to Orlitsky and Roche (). As is evident in the typical average
lemma, it is o�enmore convenient than themore widely known notion of strong typicality
(Berger , Csiszár and Körner b) de�ned as

A
∗(n)
є = �xn : |π(x |xn) − p(x)| ≤ є

|X |
if p(x) > 0, π(x |xn) = 0 otherwise� .

Another widely used notion is weak typicality (Cover and �omas ) de�ned as

A
(n)
є (X) = �xn :

!!!!!!− 1

n
log p(xn) − H(X)

!!!!!! ≤ є� , (.)

where p(xn) = ∏n
i=1 pX(xi). �is is a weaker notion than the one we use, since T (n)

є ⊆
A

(n)
δ

for δ = єH(X), while in general for some є > 0 there is no δ� > 0 such that A(n)

δ�
⊆

T (n)
є . For example, every binary n-sequence is weakly typical with respect to theBern(1/2)

pmf, but not all of them are typical. Weak typicality is useful when dealing with discrete
or continuous stationary ergodic processes because it is tightly coupled to the Shannon–
McMillan–Breiman theorem (Shannon ,McMillan , Breiman , Barron ),
commonly referred to as the asymptotic equipartition property (AEP), which states that for
a discrete stationary ergodic process X = {Xi},

lim
n→∞

− 1

n
log p(Xn

) = H(X).

However, we will encounter several coding schemes that require our notion of typicality.
Note, for example, that the conditional typicality lemma fails to hold under weak typical-
ity.

PROBLEMS

.. Prove Fano’s inequality.

.. Prove the Csiszár sum identity.

.. Prove the properties of jointly typical sequences with δ(є) terms explicitly speci-
�ed.

.. Inequalities. Label each of the following statements with =, ≤, or ≥. Justify each
answer.

(a) H(X|Z) vs. H(X|Y) + H(Y |Z).

(b) h(X + Y) vs. h(X), if X and Y are independent continuous random variables.

(c) h(X + aY) vs. h(X + Y), if Y ∼ N(0, 1) is independent of X and a ≥ 1.
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(d) I(X1 , X2 ;Y1 ,Y2) vs. I(X1 ;Y1) + I(X2 ;Y2), if p(y1 , y2|x1 , x2) = p(y1|x1)p(y2|x2).

(e) I(X1 , X2 ;Y1 ,Y2) vs. I(X1 ;Y1) + I(X2 ;Y2), if p(x1 , x2) = p(x1)p(x2).

(f) I(aX + Y ; bX) vs. I(X + Y/a; X), if a, b ̸= 0 and Y ∼ N(0, 1) is independent
of X.

.. Mrs. Gerber’s lemma. Let H−1 : [0, 1] → [0, 1/2] be the inverse of the binary en-
tropy function.

(a) Show that H(H−1(v) ∗ p) is convex in v for every p ∈ [0, 1].

(b) Use part (a) to prove the scalar MGL

H(Y |U) ≥ H�H−1
(H(X |U)) ∗ p�.

(c) Use part (b) and induction to prove the vector MGL

H(Yn|U)

n
≥ H �H−1�H(Xn|U)

n
� ∗ p� .

.. Maximum di�erential entropy. Let X ∼ f (x) be a zero-mean random variable with
�nite variance and X∗ ∼ f (x∗) be a zero-meanGaussian random variable with the
same variance as X.

(a) Show that

−X f (x) log fX∗(x) dx = −X fX∗(x) log fX∗(x) dx = h(X∗
).

(b) Using part (a) and the nonnegativity of relative entropy (see Remark .), con-
clude that

h(X) = −D( fX | | fX∗) − X f (x) log fX∗(x) dx ≤ h(X∗
)

with equality i� X is Gaussian.

(c) Following similar steps, show that if X ∼ f (x) is a zero-mean random vector
andX∗ ∼ f (x∗) is a zero-mean Gaussian random vector with the same covari-
ance matrix, then

h(X) ≤ h(X∗
)

with equality i� X is Gaussian.

.. Maximum conditional di�erential entropy. Let (X, Y) = (Xn ,Y k) ∼ f (xn , yk) be a
pair of random vectors with covariance matrices KX = E[(X − E(X))(X − E(X))T ]

and KY = E[(Y − E(Y))(Y − E(Y))T ], and crosscovariance matrix KXY = E[(X −
E(X))(Y − E(Y))T ] = KT

YX
. Show that

h(X|Y) ≤ 1

2
log�(2πe)n |KX − KXYK

−1
Y
KYX |�

with equality if (X, Y) is jointly Gaussian.
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.. Hadamard’s inequality. Let Yn ∼ N(0, K). Use the fact that

h(Yn
) ≤ 1

2
log�(2πe)n nI

i=1

Kii�
to prove Hadamard’s inequality

det(K) ≤ nI
i=1

Kii .

.. Conditional entropy power inequality. Let X ∼ f (x) and Z ∼ f (z) be independent
random variables and Y = X + Z. �en by the EPI,

22h(Y) ≥ 22h(X) + 22h(Z)

with equality i� both X and Z are Gaussian.

(a) Show that log(2v + 2w) is convex in (v, w).

(b) Let Xn and Zn be conditionally independent given an arbitrary random vari-
ableU , with conditional densities f (xn|u) and f (zn|u), respectively. Use part
(a), the scalar EPI, and induction to prove the conditional EPI

22h(Y
n
|U)/n ≥ 22h(X

n
|U)/n + 22h(Z

n
|U)/n.

.. Entropy rate of a stationary source. Let X = {Xi} be a discrete stationary random
process.

(a) Show that
H(Xn)

n
≤ H(Xn−1)

n − 1
for n = 2, 3, . . . .

(b) Conclude that the entropy rate

H(X) = lim
n→∞

H(Xn
)

n

is well-de�ned.

(c) Show that for a continuous stationary process Y = {Yi},

h(Yn
)

n
≤ h(Yn−1

)

n − 1
for n = 2, 3, . . . .

.. Worst noise for estimation. Let X ∼ N(0, P) and Z be independent of X with zero
mean and variance N . Show that the minimum mean squared error (MMSE) of
estimating X given X + Z is upper bounded as

E�(X − E(X |X + Z))2� ≤ PN

P + N

with equality if Z is Gaussian. �us, Gaussian noise is the worst noise if the input
to the channel is Gaussian.
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.. Worst noise for information. Let X and Z be independent, zero-mean random
variables with variances P and N , respectively.

(a) Show that

h(X |X + Z) ≤ 1

2
log�2πePN

P + N
�

with equality i� both X and Z are Gaussian. (Hint: Use the maximum di�er-
ential entropy lemma or the EPI or Problem ..)

(b) Let X∗ and Z∗ be independent zero-mean Gaussian random variables with
variances P and N , respectively. Use part (a) to show that

I(X∗ ; X∗ + Z∗
) ≤ I(X∗ ; X∗ + Z)

with equality i� Z is Gaussian. �us, Gaussian noise is the worst noise when
the input to an additive channel is Gaussian.

.. Joint typicality. Let (X ,Y) ∼ p(x , y) and є > є�. Let Xn ∼ p(xn) be an arbitrary
random sequence and Yn | {Xn = xn} ∼ ∏n

i=1 pY |X(yi |xi). Using the conditional
typicality lemma, show that

lim
n→∞

P�(Xn ,Yn
) ∈ T

(n)
є

!!!! Xn ∈ T
(n)

є�
� = 1.

.. Variations on the joint typicality lemma. Let (X ,Y , Z) ∼ p(x , y, z) and 0 < є� < є.
Prove the following statements.

(a) Let (Xn ,Yn
) ∼ ∏n

i=1 pX ,Y (xi , yi) and Z̃
n
|{Xn= xn ,Yn= yn}∼ ∏n

i=1 pZ|X(z̃i |xi),
conditionally independent of Yn given Xn. �en

P�(Xn ,Yn , Z̃n
) ∈ T

(n)
є (X ,Y , Z)� ≐ 2−nI(Y ;Z|X).

(b) Let (xn , yn) ∈ T
(n)

є�
(X ,Y) and Z̃n ∼ Unif(T (n)

є (Z|xn)). �en

P�(xn , yn , Z̃n
) ∈ T

(n)
є (X ,Y , Z)� ≐ 2−nI(Y ;Z|X).

(c) Let xn ∈ T
(n)

є�
(X), ỹn be an arbitrary sequence, and Z̃n ∼ p(z̃n|xn), where

p(z̃n |xn) = .6>6F
∏n

i=1 pZ|X(z̃i |xi)∑zn∈T (n)
å (Z|xn) ∏n

i=1 pZ|X(zi |xi)
if z̃n ∈ T (n)

є (Z|xn),

0 otherwise.

�en
P�(xn , ỹn , Z̃n

) ∈ T
(n)
є (X ,Y , Z)� ≤ 2−n(I(Y ;Z|X)−δ(є)).

(d) Let (X̃n , Ỹn , Z̃n) ∼ ∏n
i=1 pX(x̃i)pY ( ỹi)pZ|X ,Y (z̃i |x̃i , ỹi). �en

P�(X̃n , Ỹn , Z̃n
) ∈ T

(n)
є (X ,Y , Z)� ≐ 2−nI(X ;Y).
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.. Jointly typical triples. Given (X ,Y , Z) ∼ p(x , y, z), let

An = �(xn , yn , zn) : (xn , yn) ∈ T
(n)
є (X ,Y),

(yn , zn) ∈ T
(n)
є (Y , Z), (xn , zn) ∈ T

(n)
є (X , Z)�.

(a) Show that

|An | ≤ 2n(H(X ,Y)+H(Y ,Z)+H(X ,Z)+δ(є))/2.

(Hint: First show that |An| ≤ 2n(H(X ,Y)+H(Z|Y)+δ(є)).)

(b) Does the corresponding lower bound hold in general? (Hint: Consider X =
Y = Z.)

Remark: It can be shown that |An| ≐ 2n(maxH(X̃ ,Ỹ ,Z̃)), where the maximum is over
all joint pmfs p(x̃ , ỹ, z̃) such that p(x̃ , ỹ) = pX ,Y (x̃ , ỹ), p( ỹ, z̃) = pY ,Z( ỹ, z̃), and
p(x̃, z̃) = pX ,Z(x̃ , z̃).

.. Multivariate typicality. Let (U , X ,Y , Z) ∼ p(u, x , y, z). Prove the following state-
ments.

(a) If (Ũn , X̃n , Ỹn , Z̃n) ∼ ∏n
i=1 pU (ũi)pX(x̃i)pY ( ỹi)pZ(z̃i), then

P�(Ũn , X̃n , Ỹn , Z̃n
) ∈ T

(n)
є (U , X ,Y , Z)� ≐ 2−n(I(U ;X)+I(U ,X ;Y)+I(U ,X ,Y ;Z)).

(b) If (Ũn , X̃n , Ỹn , Z̃n) ∼ ∏n
i=1 pU ,X(ũi , x̃i)pY |X( ỹi|x̃i)pZ(z̃i), then

P�(Ũn , X̃n , Ỹn , Z̃n
) ∈ T

(n)
є (U , X ,Y , Z)� ≐ 2−n(I(U ;Y |X)+I(U ,X ,Y ;Z)).

.. Need for both є and є�. Let (X ,Y) be a pair of independent Bern(1/2) random
variables. Let k = ⌊(n/2)(1 + є)⌋ and xn be a binary sequence with k ones followed
by (n − k) zeros.

(a) Check that xn ∈ T (n)
є (X).

(b) Let Yn be an i.i.d. Bern(1/2) sequence, independent of xn. Show that

P�(xn ,Yn
) ∈ T

(n)
є (X ,Y)� ≤ P® kH

i=1

Yi < (k + 1)/2¯ ,

which converges to 1/2 as n → ∞. �us, the fact that xn ∈ T (n)
є (X) and Yn ∼∏n

i=1 pY |X(yi|xi) does not necessarily imply that P{(xn ,Yn) ∈ T (n)
є (X ,Y)}.

Remark: �is problem illustrates that in general we need є > є� in the conditional
typicality lemma.
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APPENDIX 2A PROOF OF THE CONDITIONAL TYPICALITY LEMMA

We wish to show that

lim
n→∞

P�|π(x , y |xn ,Yn
) − p(x , y)| > єp(x , y) for some (x , y) ∈ X × Y� = 0.

For x ∈ X such that p(x) ̸= 0, consider

P�|π(x , y |xn ,Yn
) − p(x , y)| > єp(x , y)�

= P�!!!!!!!!π(x , y|xn ,Yn
)

p(x)
− p(y |x)

!!!!!!!! > єp(y |x)�
= P�!!!!!!!!π(x , y|xn ,Yn)π(x|xn)

p(x)π(x|xn)
− p(y |x)

!!!!!!!! > єp(y |x)�
= P�!!!!!!!! π(x , y|xn ,Yn

)

π(x|xn)p(y|x)
⋅
π(x|xn)

p(x)
− 1

!!!!!!!! > є�
≤ P� π(x , y|xn ,Yn)

π(x|xn)p(y|x)
⋅
π(x|xn)

p(x)
> 1 + є� + P� π(x , y|xn ,Yn)

π(x|xn)p(y|x)
⋅
π(x|xn)

p(x)
< 1 − є� .

Now, since xn ∈ T
(n)

є�
(X), 1 − є� ≤ π(x|xn)/p(x) ≤ 1 + є�,

P� π(x , y|xn ,Yn
)

π(x|xn)p(y|x)
⋅
π(x|xn)

p(x)
> 1 + є� ≤ P�π(x , y|xn ,Yn

)

π(x|xn)
> 1 + є

1 + є�
p(y |x)� (.)

and

P� π(x , y|xn ,Yn)

π(x|xn)p(y|x)
⋅
π(x|xn)

p(x)
< 1 − є� ≤ P�π(x , y|xn ,Yn)

π(x|xn)
< 1 − є

1 − є�
p(y |x)� . (.)

Since є� < є, we have (1 + є)/(1 + є�) > 1 and (1 − є)/(1 − є�) < 1. Furthermore, since Yn

is generated according to the correct conditional pmf, by the LLN, for every y ∈ Y ,

π(x , y|xn ,Yn
)

π(x|xn)
→ p(y |x) in probability.

Hence, both upper bounds in (.) and (.) tend to zero as n → ∞, which, by the union
of events bound over all (x , y) ∈ X × Y , completes the proof of the conditional typicality
lemma.



CHAPTER 3

Point-to-Point Information Theory

We review Shannon’s basic theorems for point-to-point communication. Over the course
of the review, we introduce the techniques of random coding and joint typicality encoding
and decoding, and develop the packing and covering lemmas. �ese techniques will be
used in the achievability proofs for multiple sources and channels throughout the book.
We rigorously show how achievability for a discrete memoryless channel or source can be
extended to its Gaussian counterpart. We also show that under our de�nition of typical-
ity, the lossless source coding theorem is a corollary of the lossy source coding theorem.
�is fact will prove useful in later chapters. Along the way, we point out some key di�er-
ences between results for point-to-point communication and for the multiuser networks
discussed in subsequent chapters.

3.1 CHANNEL CODING

Consider the point-to-point communication system model depicted in Figure ., where
a sender wishes to reliably communicate a messageM at a rate R bits per transmission to
a receiver over a noisy communication channel (or a noisy storage medium). Toward this
end, the sender encodes themessage into a codeword Xn and transmits it over the channel
in n time instances (also referred to as transmissions or channel uses). Upon receiving the
noisy sequence Yn, the receiver decodes it to obtain the estimate M̂ of the message. �e
channel coding problem is to �nd the channel capacity, which is the highest rate R such
that the probability of decoding error can be made to decay asymptotically to zero with
the code block length n.

We �rst consider the channel coding problem for a simple discrete memoryless chan-

nel (DMC) model (X , p(y|x), Y) (in short p(y|x)) that consists of a �nite input set (or
alphabet) X , a �nite output set Y , and a collection of conditional pmfs p(y|x) on Y for
every x ∈ X . �us, if an input symbol x ∈ X is transmitted, the probability of receiv-
ing an output symbol y ∈ Y is p(y|x). �e channel is stationary and memoryless in the

M M̂Xn Yn

Encoder p(y|x) Decoder

Figure .. Point-to-point communication system.
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sense that when it is used n times with messageM drawn from an arbitrary set and input
Xn ∈ X n, the outputYi ∈ Y at time i ∈ [1 : n] given (M , X i ,Y i−1) is distributed according
to p(yi|x

i , yi−1 , m) = pY |X(yi|xi). �roughout the book, the phrase “discrete memoryless
(DM)” will refer to “�nite-alphabet and stationary memoryless”.

A (2nR , n) code for the DMC p(y|x) consists of

∙ a message set [1 : 2nR] = {1, 2, . . . , 2⌈nR⌉},

∙ an encoding function (encoder) xn : [1 : 2nR] → X n that assigns a codeword xn(m) to
each messagem ∈ [1 : 2nR], and

∙ a decoding function (decoder) m̂ : Yn → [1 : 2nR] ∪ {e} that assigns an estimate m̂ ∈
[1 : 2nR] or an error message e to each received sequence yn.

Note that under the above de�nition of a (2nR , n) code, the memoryless property im-
plies that

p(yn |xn , m) = nI
i=1

pY |X(yi |xi). (.)

�e set C = {xn(1), xn(2), . . . , xn(2⌈nR⌉)} is referred to as the codebook associated with the
(2nR , n) code. We assume that the message is uniformly distributed over the message set,
i.e., M ∼ Unif[1 : 2nR].

�e performance of a given code is measured by the probability that the estimate of
the message is di�erent from the actual message sent. More precisely, let λm(C) = P{M̂ ̸=
m |M = m} be the conditional probability of error given that messagem is sent. �en, the
average probability of error for a (2nR , n) code is de�ned as

P(n)
e (C) = P{M̂ ̸= M} = 1

2⌈nR⌉

2⌈nR⌉H
m=1

λm(C).

A rate R is said to be achievable if there exists a sequence of (2nR , n) codes such that
limn→∞ P(n)

e (C) = 0. �e capacity C of a DMC is the supremum over all achievable rates.

Remark .. Although the messageM depends on the block length n (through the mes-
sage set), we will not show this dependency explicitly. Also, from this point on, we will
not explicitly show the dependency of the probability of error P(n)

e on the codebook C.

3.1.1 Channel Coding Theorem

Shannon established a simple characterization of channel capacity.

Theorem . (Channel Coding Theorem). �e capacity of the discrete memoryless
channel p(y|x) is given by the information capacity formula

C = max
p(x)

I(X ;Y).
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In the following, we evaluate the information capacity formula for several simple but
important discrete memoryless channels.

Example 3.1 (Binary symmetric channel). Consider the binary symmetric channel with
crossover probability p (in short BSC(p)) depicted in Figure .. �e channel input X and
output Y are binary and each binary input symbol is �ipped with probability p. Equiva-
lently, we can specify the BSC asY = X ⊕ Z, where the noise Z ∼ Bern(p) is independent
of the input X. �e capacity is

C = max
p(x)

I(X ;Y)

= max
p(x)

(H(Y) − H(Y |X))

= max
p(x)

(H(Y) − H(X ⊕ Z |X))

= max
p(x)

(H(Y) − H(Z |X))

(a)= max
p(x)

H(Y) − H(Z)

= 1 − H(p),

where (a) follows by the independence of X and Z. Note that the capacity is attained by
X ∼ Bern(1/2), which, in turn, results in Y ∼ Bern(1/2).

0

1

0

1
1 − p

1 − p

X Y

X Y

Z ∼ Bern(p)

Figure .. Equivalent representations of the binary symmetric channel BSC(p).

Example 3.2 (Binary erasure channel). Consider the binary erasure channelwith erasure
probability p (BEC(p)) depicted in Figure .. �e channel input X and output Y are
binary and each binary input symbol is erased (mapped into an erasure symbol e) with
probability p. �us, the receiver knows which transmissions are erased, but the sender
does not. �e capacity is

C = max
p(x)

(H(X) − H(X |Y))

(a)= max
p(x)

(H(X) − pH(X))

= 1 − p,

where (a) follows since H(X |Y = y) = 0 if y = 0 or 1, and H(X |Y = e) = H(X). �e
capacity is again attained by X ∼ Bern(1/2).
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0

1

0

1

e

1 − p

1 − p

X Y

Figure .. Binary erasure channel BEC(p).

Example 3.3 (Product DMC). Let p(y1|x1) and p(y2|x2) be two DMCs with capacities
C1 andC2 , respectively. �e product DMC is a DMC (X1 ×X2 , p(y1|x1)p(y2|x2), Y1 × Y2)

in which the symbols x1 ∈ X1 and x2 ∈ X2 are sent simultaneously in parallel and the re-
ceived outputs Y1 and Y2 are distributed according to p(y1 , y2|x1 , x2) = p(y1|x1)p(y2|x2).
�e capacity of the product DMC is

C = max
p(x1 ,x2)

I(X1 , X2 ;Y1 ,Y2)

= max
p(x1 ,x2)

�I(X1 , X2 ;Y1) + I(X1 , X2 ;Y2 |Y1)�
(a)= max

p(x1 ,x2)
�I(X1 ;Y1) + I(X2 ;Y2)�

= max
p(x1)

I(X1 ;Y1) + max
p(x2)

I(X2 ;Y2)

= C1 + C2 ,

where (a) follows since Y1 → X1 → X2 → Y2 form a Markov chain, which implies that
I(X1 , X2 ;Y1) = I(X1 ;Y1) and I(X1 , X2 ;Y2|Y1) ≤ I(Y1 , X1 , X2 ;Y2) = I(X2 ;Y2) with equal-
ity i� X1 and X2 are independent.

More generally, let p(y j|x j) be a DMC with capacity C j for j ∈ [1 : d]. A product

DMC consists of an input alphabetX = ⨉d
j=1 X j , an output alphabetY = ⨉d

j=1 Y j , and a
collection of conditional pmfs p(y1 , . . . , yd |x1 , . . . , xd) = ∏d

j=1 p(y j|x j). �e capacity of
the product DMC is

C = dH
j=1

C j .

To prove the channel coding theorem, we need to show that the information capacity
in �eorem . is equal to the operational capacity de�ned in the channel coding setup.
�is involves the veri�cation of two statements.

∙ Achievability. For every rate R < C = maxp(x) I(X ;Y), there exists a sequence of

(2nR , n) codes with average probability of error P(n)
e that tends to zero as n → ∞. �e

proof of achievability uses random coding and joint typicality decoding.

∙ Converse. For every sequence of (2nR , n) codes with probability of error P(n)
e that

tends to zero as n → ∞, the rate must satisfy R ≤ C = maxp(x) I(X ;Y). �e proof of
the converse uses Fano’s inequality and basic properties of mutual information.
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We �rst prove achievability in the following subsection. �e proof of the converse is
given in Section ...

3.1.2 Proof of Achievability

For simplicity of presentation, we assume throughout the proof that nR is an integer.

Random codebook generation. We use random coding. Fix the pmf p(x) that attains
the information capacityC . Randomly and independently generate 2nR sequences xn(m),
m ∈ [1 : 2nR], each according to p(xn) = ∏n

i=1 pX(xi). �e generated sequences constitute
the codebook C. �us

p(C) = 2nRI
m=1

nI
i=1

pX(xi(m)).

�e chosen codebook C is revealed to both the encoder and the decoder before transmis-
sion commences.

Encoding. To send messagem ∈ [1 : 2nR], transmit xn(m).

Decoding. We use joint typicality decoding. Let yn be the received sequence. �e receiver
declares that m̂ ∈ [1 : 2nR] is sent if it is the unique message such that (xn(m̂), yn) ∈ T (n)

є ;
otherwise—if there is none or more than one such message—it declares an error e.

Analysis of the probability of error. Assuming that message m is sent, the decoder
makes an error if (xn(m), yn) ∉ T (n)

є or if there is another message m� ̸= m such that
(xn(m�), yn) ∈ T (n)

є . Consider the probability of error averaged over M and codebooks

P(E) = EC �P(n)
e �

= EC� 1

2nR

2nRH
m=1

λm(C)�
= 1

2nR

2nRH
m=1

EC(λm(C))

(a)= EC(λ1(C))= P(E |M = 1),

where (a) follows by the symmetry of the random codebook generation. �us, we assume
without loss of generality that M = 1 is sent. For brevity, we do not explicitly condition
on the event {M = 1} in probability expressions whenever it is clear from the context.

�e decoder makes an error i� one or both of the following events occur:

E1 = �(Xn
(1),Yn

) ∉ T
(n)
є �,

E2 = �(Xn
(m),Yn

) ∈ T
(n)
є for somem ̸= 1�.

�us, by the union of events bound,

P(E) = P(E1 ∪ E2) ≤ P(E1) + P(E2).
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We now bound each term. By the law of large numbers (LLN), the �rst term P(E1)

tends to zero as n → ∞. For the second term, since form ̸= 1,

(Xn
(m), Xn

(1),Yn
) ∼ nI

i=1

pX(xi(m))pX ,Y (xi(1), yi),

we have (Xn(m),Yn) ∼ ∏n
i=1 pX(xi(m))pY (yi). �us, by the extension of the joint typi-

cality lemma in Remark .,

P�(Xn
(m),Yn

) ∈ T
(n)
є � ≤ 2−n(I(X ;Y)−δ(є)) = 2−n(C−δ(є)).

Again by the union of events bound,

P(E2) ≤ 2nRH
m=2

P�(Xn
(m),Yn

) ∈ T
(n)
є � ≤ 2nRH

m=2

2−n(C−δ(є)) ≤ 2−n(C−R−δ(є)) ,

which tends to zero as n → ∞ if R < C − δ(є).
Note that since the probability of error averaged over codebooks, P(E), tends to zero

as n → ∞, there must exist a sequence of (2nR , n) codes such that limn→∞ P(n)
e = 0, which

proves that R < C − δ(є) is achievable. Finally, taking є → 0 completes the proof.

Remark 3.2. To bound the average probability of error P(E), we divided the error event
into two events, each of which comprises events with (Xn

(m),Yn
) having the same joint

pmf. �is observation will prove useful when we analyze more complex error events in
later chapters.

Remark 3.3. By the Markov inequality, the probability of error for a random codebook,
that is, a codebook consisting of random sequences Xn(m),m ∈ [1 : 2nR], tends to zero as
n → ∞ in probability. Hence, most codebooks are good in terms of the error probability.

Remark 3.4. �e capacity with the maximal probability of error λ∗ = maxm λm is equal
to that with the average probability of error P(n)

e . �is can be shown by discarding the
worst half of the codewords (in terms of error probability) from each code in the sequence
of (2nR , n) codes with limn→∞ P(n)

e = 0. �e maximal probability of error for each of the
codeswith the remaining codewords is atmost 2P(n)

e , which again tends to zero as n → ∞.
As we will see, the capacity with maximal probability of error is not always equal to that
with average probability of error for multiuser channels.

Remark 3.5. Depending on the structure of the channel, the rate R = C may or may not
be achievable. We will sometimes informally say that C is achievable to mean that every
R < C is achievable.

3.1.3 Achievability Using Linear Codes

Recall that in the achievability proof, we used only pairwise independence of codewords
Xn

(m),m ∈ [1 : 2nR], rather than mutual independence among all of them. �is observa-
tion has an interesting consequence—the capacity of a BSC can be achieved using linear
codes.
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Consider a BSC(p). Let k = ⌈nR⌉ and (u1 , u2 , . . . , uk) ∈ {0, 1}k be the binary expan-
sion of the message m ∈ [1 : 2k − 1]. Generate a random codebook such that each code-
word xn(uk) is a linear function of uk (in binary �eld arithmetic). In particular, let

(0008
x1
x2
...
xn

)1119 = (0008
11 12 . . . 1k
21 22 . . . 2k
...

...
. . .

...
n1 n2 . . . nk

)1119
(0008
u1
u2
...
uk

)1119 ,

where i j ∈ {0, 1}, i ∈ [1 : n], j ∈ [1 : k], are generated i.i.d. according to Bern(1/2).

Now we can easily check that X1(u
k), . . . , Xn(u

k) are i.i.d. Bern(1/2) for each uk ̸= 0,
and Xn

(uk) and Xn
(ũk) are independent for each uk ̸= ũk . �erefore, using the same steps

as in the proof of achievability for the channel coding theorem, it can be shown that the
error probability of joint typicality decoding tends to zero as n → ∞ if R < 1 − H(p) −
δ(є). �is shows that for a BSC there exists not only a good sequence of codes, but also a
good sequence of linear codes.

It can be similarly shown that random linear codes achieve the capacity of the binary
erasure channel, or more generally, channels for which the input alphabet is a �nite �eld
and the information capacity is attained by the uniform pmf.

3.1.4 Proof of the Converse

We need to show that for every sequence of (2nR , n) codes with limn→∞ P(n)
e = 0, we must

have R ≤ C = maxp(x) I(X ;Y). Again for simplicity of presentation, we assume that nR is

an integer. Every (2nR , n) code induces a joint pmf on (M , Xn ,Yn) of the form

p(m, xn , yn) = 2−nRp(xn |m)

nI
i=1

pY |X(yi |xi).

By Fano’s inequality,
H(M |M̂) ≤ 1 + P(n)

e nR = nєn ,

where єn tends to zero as n → ∞ by the assumption that limn→∞ P(n)
e = 0. �us, by the

data processing inequality,

H(M |Yn
) ≤ H(M |M̂) ≤ nєn. (.)

Now consider

nR = H(M)

= I(M ;Yn
) + H(M |Yn

)

(a)≤ I(M ;Yn
) + nєn

= nH
i=1

I(M ;Yi |Y
i−1

) + nєn
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≤ nH
i=1

I(M ,Y i−1 ;Yi) + nєn

(b)= nH
i=1

I(Xi , M ,Y i−1 ;Yi) + nєn

(c)= nH
i=1

I(Xi ;Yi) + nєn

≤ nC + nєn , (.)

where (a) follows from (.), (b) follows since Xi is a function of M, and (c) follows
since the channel is memoryless, which implies that (M ,Y i−1

) → Xi → Yi form aMarkov
chain. �e last inequality follows by the de�nition of the information capacity. Since єn
tends to zero as n → ∞, R ≤ C , which completes the proof of the converse.

3.1.5 DMC with Feedback

Consider the DMC with noiseless causal feedback depicted in Figure .. �e encoder
assigns a symbol xi(m, yi−1) to each message m ∈ [1 : 2nR] and past received output se-
quence yi−1 ∈ Y i−1 for i ∈ [1 : n]. Hence (.) does not hold in general and a (2nR , n)

feedback code induces a joint pmf of the form

(M , Xn ,Yn
) ∼ p(m, xn , yn) = 2−nR

nI
i=1

p(xi |m, yi−1)pY |X(yi |xi).

Nonetheless, it can be easily shown that the chain of inequalities (.) continues to hold
in the presence of such causal feedback. Hence, feedback does not increase the capacity of
the DMC. In Chapter  we will discuss the role of feedback in communication in more
detail.

M M̂Xi Yi

Y i−1

p(y|x)Encoder Decoder

Figure .. DMC with noiseless causal feedback.

3.2 PACKING LEMMA

�e packing lemma generalizes the bound on the probability of the decoding error event
E2 in the achievability proof of the channel coding theorem; see Section ... �e lemma
will be used in the achievability proofs of many multiuser source and channel coding
theorems.

Recall that in the bound on P(E2), we had a �xed input pmf p(x) and a DMC p(y|x).
As illustrated in Figure ., we considered a set of (2nR − 1) i.i.d. codewords Xn

(m),
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m ∈ [2 : 2nR], each distributed according to ∏n
i=1 pX(xi), and an output sequence Ỹn ∼∏n

i=1 pY ( ỹi) generated by the codeword Xn(1) ∼ ∏n
i=1 pX(xi), which is independent of

the set of codewords. We showed that the probability that (Xn(m), Ỹn) ∈ T (n)
є for some

m ∈ [2 : 2nR] tends to zero as n → ∞ if R < I(X ;Y) − δ(є).

Xn
(2)

Xn
(m)

X n Yn T (n)
є (Y)

Ỹn

Figure .. Illustration of the setup for the bound on P(E2).

�e following lemma extends this bound in three ways:

. �e codewords that are independent of Ỹn need not be mutually independent.

. �e sequence Ỹn can have an arbitrary pmf (not necessarily∏n
i=1 pY ( ỹi)).

. �e sequence Ỹn and the set of codewords are conditionally independent of a sequence
Un that has a general joint pmf with Ỹn.

Lemma . (Packing lemma). Let (U , X ,Y) ∼ p(u, x , y). Let (Ũn , Ỹn) ∼ p(ũn , ỹn) be
a pair of arbitrarily distributed random sequences, not necessarily distributed accord-
ing to ∏n

i=1 pU ,Y (ũi , ỹi). Let X
n(m), m ∈ A, where |A| ≤ 2nR, be random sequences,

each distributed according to ∏n
i=1 pX|U (xi |ũi). Further assume that Xn(m), m ∈ A,

is pairwise conditionally independent of Ỹn given Ũn, but is arbitrarily dependent on
other Xn(m) sequences. �en, there exists δ(є) that tends to zero as є → 0 such that

lim
n→∞

P�(Ũn , Xn
(m), Ỹn

) ∈ T
(n)
є for somem ∈ A� = 0,

if R < I(X ;Y |U) − δ(є).

Note that the packing lemma can be readily applied to the linear coding case where
the Xn

(m) sequences are only pairwise independent. We will later encounter cases for
whichU ̸=  and (Ũn , Ỹn) is not generated i.i.d.

Proof. De�ne the events

Ẽm = �(Ũn , Xn
(m), Ỹn

) ∈ T
(n)
є � form ∈ A.
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By the union of events bound, the probability of the event of interest can be bounded as

P� ]
m∈A

Ẽm� ≤ H
m∈A

P(Ẽm).

Now consider

P(Ẽm) = P�(Ũn , Xn
(m), Ỹn

) ∈ T
(n)
є (U , X ,Y)�

= H
(ũn , ỹn)∈T (n)

å

p(ũn , ỹn) P�(ũn , Xn
(m), ỹn) ∈ T

(n)
є (U , X ,Y) | Ũn = ũn , Ỹn = ỹn�

(a)= H
(ũn , ỹn)∈T (n)

å

p(ũn , ỹn) P�(ũn , Xn
(m), ỹn) ∈ T

(n)
є (U , X ,Y) | Ũn = ũn�

(b)≤ H
(ũn , ỹn)∈T (n)

å

p(ũn , ỹn)2−n(I(X ;Y |U)−δ(є))

≤ 2−n(I(X ;Y |U)−δ(є)) ,

where (a) follows by the conditional independence of Xn(m) and Ỹn given Ũn, and (b)

follows by the joint typicality lemma in Section . since (ũn , ỹn) ∈ T (n)
є and Xn

(m) | {Ũn =
ũn , Ỹn = ỹn} ∼ ∏n

i=1 pX|U (xi |ũi). Hence

H
m∈A

P(Ẽm) ≤ |A|2−n(I(X ;Y |U)−δ(є)) ≤ 2−n(I(X ;Y |U)−R−δ(є)) ,

which tends to zero as n → ∞ if R < I(X ;Y |U) − δ(є). �is completes the proof of the
packing lemma.

3.3 CHANNEL CODING WITH INPUT COST

Consider aDMC p(y|x). Suppose that there is a nonnegative cost function b(x) associated
with each input symbol x ∈ X . Assume without loss of generality that there exists a zero-
cost symbol x0 ∈ X , i.e., b(x0) = 0. We further assume an average input cost constraint

nH
i=1

b(xi(m)) ≤ nB for everym ∈ [1 : 2nR],

(in short, average cost constraint B on X). Now, de�ning the channel capacity of theDMC
with cost constraint B, or the capacity–cost function,C(B) in a similar manner to capacity
without cost constraint, we can establish the following extension of the channel coding
theorem.

Theorem .. �e capacity of the DMC p(y|x) with average cost constraint B on X is

C(B) = max
p(x):E(b(X))≤B

I(X ;Y).
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Note that C(B) is nondecreasing, concave, and continuous in B.

Proof of achievability. �e proof involves a minor change to the proof of achievability
for the case with no cost constraint in Section .. to ensure that every codeword satis�es
the cost constraint.

Fix the pmf p(x) that attainsC(B/(1 + є)). Randomly and independently generate 2nR

sequences xn(m), m ∈ [1 : 2nR], each according to ∏n
i=1 pX(xi). To send message m, the

encoder transmits xn(m) if xn(m) ∈ T (n)
є , and consequently, by the typical average lemma

in Section ., the sequence satis�es the cost constraint ∑n
i=1 b(xi(m)) ≤ nB. Otherwise,

it transmits (x0 , . . . , x0). �e analysis of the average probability of error for joint typicality
decoding follows similar lines to the case without cost constraint. AssumeM = 1. For the
probability of the �rst error event,

P(E1) = P�(Xn
(1),Yn

) ∉ T
(n)
є �

= P�Xn
(1) ∈ T

(n)
є , (Xn

(1),Yn
) ∉ T

(n)
є � + P�Xn

(1) ∉ T
(n)
є , (Xn

(1),Yn
) ∉ T

(n)
є �

≤ H
xn∈T (n)

å

nI
i=1

pX(xi) H
yn∉T (n)

å (Y |xn)

nI
i=1

pY |X(yi |xi) + P�Xn
(1) ∉ T

(n)
є �

≤ H
(xn ,yn)∉T (n)

å

nI
i=1

pX(xi)pY |X(yi |xi) + P�Xn
(1) ∉ T

(n)
є �.

�us, by the LLN for each term, P(E1) tends to zero as n → ∞. �e probability of the
second error event, P(E2), is upper bounded in exactly the same manner as when there is
no cost constraint. Hence, every rate R < I(X ;Y) = C(B/(1 + є)) is achievable. Finally,
by the continuity of C(B) in B, C(B/(1 + є)) converges to C(B) as є → 0, which implies
the achievability of every rate R < C(B).

Proof of the converse. Consider a sequence of (2nR , n) codes with limn→∞ P(n)
e = 0 such

that for every n, the cost constraint∑n
i=1 b(xi(m)) ≤ nB is satis�ed for everym ∈ [1 : 2nR]

and thus ∑n
i=1 E[b(Xi)] = ∑n

i=1 EM[b(xi(M))] ≤ nB. As before, by Fano’s inequality and
the data processing inequality,

nR ≤ nH
i=1

I(Xi ;Yi) + nєn

(a)≤ nH
i=1

C(E[b(Xi)]) + nєn

(b)≤ nC� 1

n

nH
i=1

E[b(Xi)]� + nєn (.)

(c)≤ nC(B) + nєn ,

where (a) follows by the de�nition of C(B), (b) follows by the concavity of C(B), and (c)

follows by the monotonicity of C(B). �is completes the proof of �eorem ..
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3.4 GAUSSIAN CHANNEL

Consider the discrete-time additive white Gaussian noise channel model depicted in Fig-
ure .. �e channel output corresponding to the input X is

Y = X + Z , (.)

where  is the channel gain, or path loss, and Z ∼ N(0, N0/2) is the noise. �us, in trans-
mission time i ∈ [1 : n], the channel output is

Yi = Xi + Zi ,

where {Zi} is a white Gaussian noise process with average power N0/2 (in short, {Zi} is
a WGN(N0/2) process), independent of the channel input Xn = xn(M). We assume an
average transmission power constraint

nH
i=1

x2i (m) ≤ nP for everym ∈ [1 : 2nR]

(in short, average power constraint P on X). �e Gaussian channel is quite popular be-
cause it provides a simple model for several real-world communication channels, such as
wireless and digital subscriber line (DSL) channels. Wewill later studymore sophisticated
models for these channels.

X


Y

Z

Figure .. Additive white Gaussian noise channel.

Weassumewithout loss of generality thatN0/2 = 1 (since one can de�ne an equivalent
Gaussian channel by dividing both sides of (.) byxN0/2 ) and label the received power
(which is now equal to the received signal-to-noise ratio (SNR)) 2P as S. Note that the
Gaussian channel is an example of the channel with cost discussed in the previous section,
but with continuous (instead of �nite) alphabets. Nonetheless, its capacity under power
constraint P can be de�ned in the exact samemanner as for theDMCwith cost constraint.

Remark 3.6. If causal feedback from the receiver to the sender is present, then Xi de-
pends only on the messageM and the past received symbolsY i−1. In this case Xi is not in
general independent of the noise process. However, the messageM and the noise process
{Zi} are always assumed to be independent.

Remark 3.7. Since we discuss mainly additive white Gaussian noise channels, for brevity
we will consistently use “Gaussian” in place of “additive white Gaussian noise.”
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3.4.1 Capacity of the Gaussian Channel

�e capacity of the Gaussian channel is a simple function of the received SNR S.

Theorem .. �e capacity of the Gaussian channel is

C = sup
F(x):E(X2)≤P

I(X ;Y) = C(S),

where C(x) = (1/2) log(1 + x), x ≥ 0, is the Gaussian capacity function.

For low SNR (small S),C grows linearly with S, while for high SNR, it grows logarith-
mically.

Proof of the converse. First note that the proof of the converse for the DMC with input
cost constraint in Section . applies to arbitrary (not necessarily discrete) memoryless
channels. �erefore, continuing the chain of inequalities in (.)with b(x) = x2, we obtain

C ≤ sup
F(x):E(X2)≤P

I(X ;Y).

Now for any X ∼ F(x) with E(X2
) ≤ P,

I(X ;Y) = h(Y) − h(Y |X)

= h(Y) − h(Z |X)

= h(Y) − h(Z)

(a)≤ 1

2
log(2πe(S + 1)) − 1

2
log(2πe)

= C(S),

where (a) follows by themaximumdi�erential entropy lemma in Section . with E(Y2) ≤
2P + 1 = S + 1. Since this inequality becomes equality if X ∼ N(0, P), we have shown
that

C ≤ sup
F(x):E(X2)≤P

I(X ;Y) = C(S).

�is completes the proof of the converse.

Proof of achievability. We extend the achievability proof for the DMC with cost con-
straint to show that C ≥ C(S). Let X ∼ N(0, P). �en, I(X ;Y) = C(S). For every j =
1, 2, . . . , let [X] j ∈ {− jΔ, −( j − 1)Δ, . . . , −Δ, 0, Δ, . . . , ( j − 1)Δ, jΔ}, Δ = 1/x j , be a quan-
tized version of X, obtained by mapping X to the closest quantization point [X] j = x̂ j(X)

such that |[X] j | ≤ |X|. Clearly, E([X]2j) ≤ E(X2
) = P. Let Yj = [X] j + Z be the output

corresponding to the input [X] j and let [Yj]k = ŷk(Yj) be a quantized version ofYj de�ned
in the samemanner. Now, using the achievability proof for the DMCwith cost constraint,
we can show that for each j , k, any rate R < I([X] j ; [Yj]k) is achievable for the channel
with input [X j] and output [Yj]k under power constraint P.
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We now show that I([X] j ; [Yj]k) can be made as close to I(X ;Y) as desired by taking
j , k su�ciently large. First, by the data processing inequality,

I([X] j ; [Yj]k) ≤ I([X] j ;Yj) = h(Yj) − h(Z).

SinceVar(Yj) ≤ S + 1, h(Yj) ≤ h(Y) for all j. �us, I([X] j ; [Yj]k) ≤ I(X ;Y). For the other
direction, we have the following.

Lemma .. lim inf j→∞ limk→∞ I([X] j ; [Yj]k) ≥ I(X ;Y).

�e proof of this lemma is given in Appendix A. Combining both bounds, we have

lim
j→∞

lim
k→∞

I([X] j ; [Yj]k) = I(X ;Y),

which completes the proof of �eorem ..

Remark .. �is discretization procedure shows how to extend the coding theorem for
a DMC to a Gaussian or any other well-behaved continuous-alphabet channel. Similar
procedures can be used to extend coding theorems for �nite-alphabet multiuser channels
to their Gaussian counterparts. Hence, in subsequent chapters we will not provide formal
proofs of such extensions.

3.4.2 Minimum Energy Per Bit

In the discussion of the Gaussian channel, we assumed average power constraint P on
each transmitted codeword and found the highest reliable transmission rate under this
constraint. A “dual” formulation of this problem is to assume a given transmission rate
R and determine the minimum energy per bit needed to achieve it. �is formulation can
be viewed as more natural since it leads to a fundamental limit on the energy needed to
reliably communicate one bit of information over a Gaussian channel.

Consider a (2nR , n) code for the Gaussian channel. De�ne the average power for the
code as

P = 1

2nR

2nRH
m=1

1

n

nH
i=1

x2i (m),

and the average energy per bit for the code asE = P/R (that is, the energy per transmission
divided by bits per transmission).

Following similar steps to the converse proof for the Gaussian channel in the previous
section, we can show that for every sequence of (2nR , n) codes with average power P and
limn→∞ P(n)

e = 0, we must have

R ≤ 1

2
log(1 + 2P).

SubstitutingP = ER, we obtain the lower boundon the energy per bitE ≥ (22R − 1)/(2R).
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We also know that if the average power of the code is P, then any rate R < C(2P) is
achievable. �erefore, reliable communication at rate R with energy per bit E > (22R −
1)/R is possible. Hence, the energy-per-bit–rate function, that is, the minimum energy-
per-bit needed for reliable communication at rate R, is

Eb(R) = 1

2R
(22R − 1).

�is is a monotonically increasing and strictly convex function of R (see Figure .). As R
tends to zero, Eb(R) converges to E

∗
b = (1/2)2 ln 2, which is the minimum energy per bit

needed for reliable communication over a Gaussian channel with noise power N0/2 = 1

and gain .

R

Eb

E∗
b

Figure .. Minimum energy per bit versus transmission rate.

3.4.3 Gaussian Product Channel

�e Gaussian product channel depicted in Figure . consists of a set of parallel Gaussian
channels

Yj =  jX j + Z j for j ∈ [1 : d],

where  j is the gain of the j-th channel component and Z1 , Z2 , . . . , Zd are independent
zero-mean Gaussian noise components with the same average power N0/2 = 1. We as-
sume an average transmission power constraint

1

n

nH
i=1

dH
j=1

x2ji(m) ≤ P form ∈ [1 : 2nR].

�e Gaussian product channel is a model for continuous-time (waveform) additive
Gaussian noise channels; the parallel channels represent di�erent frequency bands, time
slots, or more generally, orthogonal signal dimensions.



3.4 Gaussian Channel 53

X1 Y1

Z1

1

X2 Y2

Z2

2

Xd Yd

Zd

d

Figure .. Gaussian product channel: d parallel Gaussian channels.

�e capacity of the Gaussian product channel is

C = max
P1 ,P2 ,...,Pd
∑d

j=1 P j≤P

dH
j=1

C(2jP j). (.)

�e proof of the converse follows by noting that the capacity is upper bounded as

C ≤ sup
F(xd):∑d

j=1 E(X2
j )≤P

I(Xd ;Y d
) = sup

F(xd):∑d
j=1 E(X2

j )≤P

dH
j=1

I(X j ;Yj)

and that the supremum is attained by mutually independent X j ∼ N(0, P j), j ∈ [1 : d].
For the achievability proof, note that this bound can be achieved by the discretization
procedure for each component Gaussian channel. �e constrained optimization problem
in (.) is convex and can be solved by forming the Lagrangian; see Appendix E. �e
solution yields

P∗

j = ¨λ − 1

2j
©+

= max®λ − 1

2j
, 0¯ ,

where the Lagrange multiplier λ is chosen to satisfy the condition

dH
j=1

¨λ − 1

2j
©+

= P.

�is optimal power allocation has the water-�lling interpretation illustrated in Figure ..
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P j

−21 −2d

−2j

λ

Figure .. Water-�lling interpretation of optimal power allocation.

Although this solution maximizes the mutual information and thus is optimal only in
the asymptotic sense, it has been proven e�ective in practical subcarrier bit-loading algo-
rithms for DSL and orthogonal frequency division multiplexing (OFDM) systems.

3.5 LOSSLESS SOURCE CODING

In the previous sections, we considered reliable communication of a maximally com-
pressed information source represented by a uniformly distributed message over a noisy
channel. In this section we consider the “dual” problem of communicating (or storing)
an uncompressed source over a noiseless link (or in a memory) as depicted in Figure ..
�e source sequence Xn is encoded (described or compressed) into an index M at rate
R bits per source symbol, and the receiver decodes (decompresses) the index to �nd the
estimate (reconstruction) X̂n of the source sequence. �e lossless source coding problem
is to �nd the lowest compression rate in bits per source symbol such that the probability
of decoding error decays asymptotically to zero with the code block length n.

We consider the lossless source coding problem for adiscretememoryless source (DMS)
model (X , p(x)), informally referred to as X, that consists of a �nite alphabetX and a pmf
p(x) overX . �eDMS (X , p(x)) generates an i.i.d. randomprocess {Xi}with Xi ∼ pX(xi).
For example, the Bern(p) source X for p ∈ [0, 1] has a binary alphabet and the Bern(p)

pmf. It generates a Bern(p) random process {Xi}.

Xn M X̂n

Encoder Decoder

Figure .. Point-to-point compression system.
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A (2nR , n) lossless source code of rate R bits per source symbol consists of

∙ an encoding function (encoder)m : X n → [1 : 2nR) = {1, 2, . . . , 2⌊nR⌋} that assigns an
indexm(xn) (a codeword of length ⌊nR⌋ bits) to each source n-sequence xn, and

∙ a decoding function (decoder) x̂n : [1 : 2nR) → X n ∪ {e} that assigns an estimate
x̂n(m) ∈ X n or an error message e to each indexm ∈ [1 : 2nR).

�e probability of error for a (2nR , n) lossless source code is de�ned as P(n)
e = P{X̂n ̸= Xn}.

A rate R is said to be achievable if there exists a sequence of (2nR , n) codes such that
limn→∞ P(n)

e = 0 (hence the coding is required to be only asymptotically error-free). �e
optimal rate R∗ for lossless source coding is the in�mum of all achievable rates.

3.5.1 Lossless Source Coding Theorem

�e optimal compression rate is characterized by the entropy of the source.

Theorem . (Lossless Source Coding Theorem). �e optimal rate for lossless
source coding of a discrete memoryless source X is

R∗ = H(X).

For example, the optimal lossless compression rate for a Bern(p) source X is R∗ =
H(X) = H(p). To prove this theorem, we again need to verify the following two state-
ments:

∙ Achievability. For everyR > R∗ = H(X) there exists a sequence of (2nR , n) codes with
limn→∞ P(n)

e = 0. We prove achievability using properties of typical sequences. Two
alternative proofs will be given in Sections .. and ...

∙ Converse. For every sequence of (2nR , n) codes with limn→∞ P(n)
e = 0, the source cod-

ing rate R ≥ R∗ = H(X). �e proof uses Fano’s inequality and basic properties of en-
tropy and mutual information.

We now prove each statement.

3.5.2 Proof of Achievability

For simplicity of presentation, assume nR is an integer. For є > 0, let R = H(X) + δ(є)

with δ(є) = єH(X). Hence, |T (n)
є | ≤ 2n(H(X)+δ(є)) = 2nR.

Encoding. Assign a distinct indexm(xn) to each xn ∈ T (n)
є . Assignm = 1 to all xn ∉ T (n)

є .

Decoding. Upon receiving the index m, the decoder declares x̂n = xn(m) for the unique
xn(m) ∈ T (n)

є .

Analysis of the probability of error. All typical sequences are recovered error-free. �us,
the probability of error is P(n)

e = P�Xn ∉ T (n)
є �, which tends to zero as n → ∞. �is com-

pletes the proof of achievability.
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3.5.3 Proof of the Converse

Given a sequence of (2nR , n) codes with limn→∞ P(n)
e = 0, let M be the random variable

corresponding to the index generated by the encoder. By Fano’s inequality,

H(Xn
|M) ≤ H(Xn

| X̂n
) ≤ 1 + nP(n)

e log |X | = nєn ,

where єn tends to zero as n → ∞ by the assumption that limn→∞ P(n)
e = 0. Now consider

nR ≥ H(M)

= I(Xn ; M)

= nH(X) − H(Xn
|M)

≥ nH(X) − nєn.

By taking n → ∞, we conclude that R ≥ H(X). �is completes the converse proof of the
lossless source coding theorem.

3.6 LOSSY SOURCE CODING

Recall the compression system shown in Figure .. Suppose that the source alphabet is
continuous, for example, the source is a sensor that outputs an analog signal, then lossless
reconstruction of the source sequence would require an in�nite transmission rate! �is
motivates the lossy compression setup we study in this section, where the reconstruction
is only required to be close to the source sequence according to some �delity criterion (or
distortion measure). In the scalar case, where each symbol is separately compressed, this
lossy compression setup reduces to scalar quantization (analog-to-digital conversion),
which o�en employs a mean squared error �delity criterion. As in channel coding, how-
ever, it turns out that performing the lossy compression in blocks (vector quantization)
can achieve better performance.

Unlike the lossless source coding setupwhere there is an optimal compression rate, the
lossy source coding setup involves a tradeo� between the rate and the desired distortion.
�e problem is to �nd the limit on such tradeo�, which we refer to as the rate–distortion
function. Note that this function is the source coding equivalent of the capacity–cost
function in channel coding.

Although the motivation for lossy compression comes from sources with continuous
alphabets, we �rst consider the problem for a DMS (X , p(x)) as de�ned in the previous
section. We assume the following per-letter distortion criterion. Let X̂ be a reconstruction
alphabet and de�ne a distortion measure as a mapping

d : X × X̂ → [0, ∞).

�ismappingmeasures the cost of representing the symbol x by the symbol x̂. �e average
distortion between xn and x̂n is de�ned as

d(xn , x̂n) = 1

n

nH
i=1

d(xi , x̂i).
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For example, when X = X̂ , theHamming distortion measure (loss) is the indicator for an
error, i.e.,

d(x , x̂) = ®1 if x ̸= x̂ ,

0 if x = x̂.

�us, d(x̂n , xn) is the fraction of symbols in error (bit error rate for the binary alphabet).
Formally, a (2nR , n) lossy source code consists of

∙ an encoder that assigns an indexm(xn) ∈ [1 : 2nR) to each sequence xn ∈ X n, and

∙ a decoder that assigns an estimate x̂n(m) ∈ X̂ n to each indexm ∈ [1 : 2nR).

�e set C = {x̂n(1), . . . , x̂n(2⌊nR⌋)} constitutes the codebook.
�e expected distortion associated with a (2nR , n) lossy source code is de�ned as

E(d(Xn , X̂n
)) = H

xn
p(xn)d�xn , x̂n(m(xn))�.

A rate–distortion pair (R, D) is said to be achievable if there exists a sequence of (2nR , n)

codes with
lim sup
n→∞

E(d(Xn , X̂n
)) ≤ D. (.)

�e rate–distortion function R(D) is the in�mum of rates R such that (R, D) is achievable.

3.6.1 Lossy Source Coding Theorem

Shannon showed that mutual information is again the canonical quantity that character-
izes the rate–distortion function.

Theorem . (Lossy Source Coding Theorem). �e rate–distortion function for a
DMS X and a distortion measure d(x , x̂) is

R(D) = min
p(x̂|x):E(d(X ,X̂))≤D

I(X ; X̂)

for D ≥ Dmin = minx̂(x) E[d(X , x̂(X))].

Similar to the capacity–cost function in Section ., the rate–distortion function R(D)

is nonincreasing, convex, and continuous in D ≥ Dmin (see Figure .). Unless noted
otherwise, we will assume throughout the book that Dmin = 0, that is, for every symbol
x ∈ X there exists a reconstruction symbol x̂ ∈ X̂ such that d(x , x̂) = 0.

Example . (Bernoulli source with Hamming distortion). �e rate–distortion func-
tion for a Bern(p) source X, p ∈ [0, 1/2], and Hamming distortion measure is

R(D) = ®H(p) − H(D) for 0 ≤ D < p,

0 for D ≥ p.
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D

R

H(X)

R(Dmin)

DmaxDmin

Figure .. Graph of a typical rate–distortion function. Note that R(D) = 0 for
D ≥ Dmax = minx̂ E(d(X , x̂)) and R(Dmin) ≤ H(X).

To show this, recall that

R(D) = min
p(x̂|x):E(d(X ,X̂))≤D

I(X ; X̂).

If D ≥ p, R(D) = 0 by simply taking X̂ = 0. If D < p, we �nd a lower bound on R(D)

and then show that there exists a test channel p(x̂|x) that attains it. For any joint pmf that
satis�es the distortion constraint E(d(X , X̂)) = P{X ̸= X̂} ≤ D, we have

I(X ; X̂) = H(X) − H(X | X̂)

= H(p) − H(X ⊕ X̂ | X̂)

≥ H(p) − H(X ⊕ X̂)

(a)≥ H(p) − H(D),

where (a) follows since P{X ̸= X̂} ≤ D. �us

R(D) ≥ H(p) − H(D).

It can be easily shown that this bound is attained by the backward BSC (with X̂ and Z

independent) shown in Figure ., and the associated expected distortion is D.

X̂ ∼ Bern� p−D
1−2D

�
Z ∼ Bern(D)

X ∼ Bern(p)

Figure .. �e backward BSC (test channel) that attains the rate–distortion func-
tion R(D).
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3.6.2 Proof of the Converse

�e proof of the lossy source coding theorem again requires establishing achievability and
the converse. We �rst prove the converse.

We need to show that for any sequence of (2nR , n) codes with

lim sup
n→∞

E(d(Xn , X̂n
)) ≤ D , (.)

we must have R ≥ R(D). Consider

nR ≥ H(M)

≥ I(M ; Xn
)

≥ I(X̂n ; Xn
)

= nH
i=1

I(Xi ; X̂
n
|X i−1

)

(a)= nH
i=1

I(Xi ; X̂
n , X i−1

)

≥ nH
i=1

I(Xi ; X̂i)

(b)≥ nH
i=1

R�E[d(Xi , X̂i)]�
(c)≥ nR�E[d(Xn , X̂n

)]�,

where (a) follows by the memoryless property of the source, (b) follows by the de�nition
of R(D) = min I(X ; X̂), and (c) follows by the convexity of R(D). Since R(D) is continu-
ous and nonincreasing in D, it follows from the bound on distortion in (.) that

R ≥ lim sup
n→∞

R�E[d(Xn , X̂n
)]� ≥ R�lim sup

n→∞
E[d(Xn , X̂n

)]� ≥ R(D).

�is completes the proof of the converse.

3.6.3 Proof of Achievability

�e proof uses random coding and joint typicality encoding. Assume that nR is an integer.

Random codebook generation. Fix the conditional pmf p(x̂|x) that attains R(D/(1 + є)),
where D is the desired distortion, and let p(x̂) = ∑x p(x)p(x̂|x). Randomly and indepen-
dently generate 2nR sequences x̂n(m),m ∈ [1 : 2nR], each according to∏n

i=1 pX̂(x̂i). �ese
sequences constitute the codebook C, which is revealed to the encoder and the decoder.

Encoding. We use joint typicality encoding. Given a sequence xn, �nd an index m such
that (xn , x̂n(m)) ∈ T (n)

є . If there is more than one such index, choose the smallest one
among them. If there is no such index, setm = 1.
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Decoding. Upon receiving the index m, the decoder sets the reconstruction sequence
x̂n = x̂n(m).

Analysis of expected distortion. Let є� < є and M be the index chosen by the encoder.
We bound the distortion averaged over the random choice of the codebook C. De�ne the
“encoding error” event

E = �(Xn , X̂n
(M)) ∉ T

(n)
є �,

and consider the events

E1 = �Xn ∉ T
(n)

є�
�,

E2 = �Xn ∈ T
(n)

є�
, (Xn , X̂n

(m)) ∉ T
(n)
є for allm ∈ [1 : 2nR]�.

�en by the union of events bound,

P(E) ≤ P(E1) + P(E2).

We bound each term. By the LLN, the �rst term P(E1) tends to zero as n → ∞. Consider
the second term

P(E2) = H
xn∈T (n)

å�

p(xn) P�(xn , X̂n
(m)) ∉ T

(n)
є for allm | Xn = xn�

= H
xn∈T (n)

å�

p(xn)
2nRI
m=1

P�(xn , X̂n
(m)) ∉ T

(n)
є �

= H
xn∈T (n)

å�

p(xn)�P�(xn , X̂n
(1)) ∉ T

(n)
є ��2nR .

Since xn ∈ T
(n)

є�
and X̂n(1) ∼ ∏n

i=1 pX̂(x̂i), it follows by the second part of the joint typi-
cality lemma in Section . that for n su�ciently large

P�(xn , X̂n
(1)) ∈ T

(n)
є � ≥ 2−n(I(X ;X̂)+δ(є)) ,

where δ(є) tends to zero as є → 0. Since (1 − x)k ≤ e−kx for x ∈ [0, 1] and k ≥ 0, we have

H
xn∈T (n)

å�

p(xn)�P�(xn , X̂n
(1)) ∉ T

(n)
є ��2nR ≤ �1 − 2−n(I(X ;X̂)+δ(є))�2nR

≤ exp�−2nR ⋅ 2−n(I(X ;X̂)+δ(є))�
= exp�−2n(R−I(X ;X̂)−δ(є))�,

which tends to zero as n → ∞ if R > I(X ; X̂) + δ(є).
Now, by the law of total expectation and the typical average lemma,

EC ,Xn�d(Xn , X̂n
(M))� = P(E) EC ,Xn�d(Xn , X̂n

(M))!!!!E� + P(E
c
) EC ,Xn�d(Xn , X̂n

(M))!!!!E c�
≤ P(E)dmax + P(E

c
)(1 + є) E(d(X , X̂)),
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where dmax = max
(x,x̂)∈X×X̂ d(x , x̂). Hence, by the assumption on the conditional pmf

p(x̂|x) that E(d(X , X̂)) ≤ D/(1 + є),

lim sup
n→∞

EC ,Xn�d(Xn , X̂n
(M))� ≤ D

if R > I(X ; X̂) + δ(є) = R(D/(1 + є)) + δ(є). Since the expected distortion (averaged over
codebooks) is asymptotically ≤ D, there must exist a sequence of codes with expected
distortion asymptotically ≤ D, which proves the achievability of the rate–distortion pair
(R(D/(1 + є)) + δ(є), D). Finally, by the continuity ofR(D) inD, it follows that the achiev-
able rate R(D/(1 + є)) + δ(є) converges to R(D) as є → 0, which completes the proof of
achievability.

Remark .. �e above proof can be extended to unbounded distortion measures, pro-
vided that there exists a symbol x̂0 such that d(x , x̂0) < ∞ for every x. In this case,
encoding is modi�ed so that x̂n = (x̂0 , . . . , x̂0) whenever joint typicality encoding fails.
For example, for an erasure distortion measure with X = {0, 1} and X̂ = {0, 1, e}, where
d(0, 0) = d(1, 1) = 0, d(0, e) = d(1, e) = 1, and d(0, 1) = d(1, 0) = ∞, we have x̂0 = e.
When X ∼ Bern(1/2), it can be easily shown that R(D) = 1 − D.

3.6.4 Lossless Source Coding Revisited

We show that the lossless source coding theorem can be viewed as a corollary of the lossy
source coding theorem. �is leads to an alternative random coding achievability proof of
the lossless source coding theorem. Consider the lossy source coding problem for a DMS
X, reconstruction alphabet X̂ = X , and Hamming distortion measure. Setting D = 0, we
obtain

R(0) = min
p(x̂|x):E(d(X ,X̂))=0

I(X ; X̂) = I(X ; X) = H(X),

which is equal to the optimal lossless source coding rate R∗ as we have already seen in the
lossless source coding theorem.

Here we prove that operationally R∗ = R(0) without resorting to the fact that R∗ =
H(X). To prove the converse (R∗ ≥ R(0)), note that the converse for the lossy source
coding theoremunder the above conditions implies that for any sequence of (2nR , n) codes
if the average symbol error probability

1

n

nH
i=1

P{X̂i ̸= Xi}

tends to zero as n → ∞, then R ≥ R(0). Since the average symbol error probability is
smaller than or equal to the block error probability P{X̂n ̸= Xn}, this also establishes the
converse for the lossless case.

To prove achievability (R∗ ≤ R(0)), we can still use random coding and joint typicality
encoding! We �x a test channel

p(x̂ |x) = ®1 if x = x̂ ,

0 otherwise,



62 Point-to-Point Information Theory

and de�ne T (n)
є (X , X̂) in the usual way. �en, (xn , x̂n) ∈ T (n)

є implies that xn = x̂n. Fol-
lowing the achievability proof of the lossy source coding theorem, we generate a random
code x̂n(m), m ∈ [1 : 2nR], and use the same encoding and decoding procedures. �en,
the probability of decoding error averaged over codebooks is upper bounded as

P(E) ≤ P�(Xn , X̂n
) ∉ T

(n)
є �,

which tends to zero as n → ∞ if R > I(X ; X̂) + δ(є) = R(0) + δ(є). �us there exists a
sequence of (2nR , n) lossless source codes with limn→∞ P(n)

e = 0.

Remark .. We already know how to construct a sequence of asymptotically optimal
lossless source codes by uniquely labeling each typical sequence. �e above proof, how-
ever, shows that random coding can be used to establish all point-to-point communica-
tion coding theorems. Such uni�cation shows the power of random coding and is aes-
thetically pleasing. More importantly, the technique of specializing a lossy source coding
theorem to the lossless case will prove crucial later in Chapters  and .

3.7 COVERING LEMMA

�e covering lemma generalizes the bound on the probability of the encoding error event
E in the achievability proof of the lossy source coding theorem. �e lemma will be used
in the achievability proofs of several multiuser source and channel coding theorems.

Recall that in the bound on P(E), we had a �xed conditional pmf p(x̂|x) and a source
X ∼ p(x). As illustrated in Figure ., we considered a set of 2nR i.i.d. reconstruction se-
quences X̂n

(m),m ∈ [1 : 2nR], each distributed according to∏n
i=1 pX̂(x̂i) and an indepen-

dently generated source sequence Xn ∼ ∏n
i=1 pX(xi). We showed that the probability that

(Xn , X̂n
(m)) ∈ T (n)

є for somem ∈ [1 : 2nR] tends to one as n → ∞ if R > I(X ; X̂) + δ(є).
�e following lemma extends this bound by assuming that Xn and the set of code-

words are conditionally independent given a sequenceUn with the condition thatUn and
Xn are jointly typical with high probability. As such, the covering lemma is a dual to the
packing lemma in which we do not wish any of the untransmitted (independent) code-
words to be jointly typical with the received sequence givenUn.

Lemma . (Covering Lemma). Let (U , X , X̂) ∼ p(u, x , x̂) and є� < є. Let (Un , Xn
) ∼

p(un , xn) be a pair of random sequences with limn→∞ P{(Un , Xn) ∈ T
(n)

є�
(U , X)} = 1,

and let X̂n(m), m ∈ A, where |A| ≥ 2nR, be random sequences, conditionally indepen-
dent of each other and of Xn givenUn, each distributed according to∏n

i=1 pX̂|U (x̂i |ui).
�en, there exists δ(є) that tends to zero as є → 0 such that

lim
n→∞

P�(Un , Xn , X̂n
(m)) ∉ T

(n)
є for allm ∈ A� = 0,

if R > I(X ; X̂|U) + δ(є).
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X̂n
(1)

X̂n
(m)

X̂ n X n T
(n)

є�
(X)

Xn

Figure .. Illustration of the setup for the bound on P(E).

Proof. De�ne the event

E0 = �(Un , Xn
) ∉ T

(n)

є�
�.

�en, the probability of the event of interest can be upper bounded as

P(E) ≤ P(E0) + P(E ∩ E
c
0 ).

By the condition of the lemma, P(E0) tends to zero as n → ∞. For the second term, recall
from the joint typicality lemma that if (un , xn) ∈ T

(n)

є�
, then for n su�ciently large,

P�(un , xn , X̂n
(m)) ∈ T

(n)
є |Un = un , Xn = xn� = P�(un , xn , X̂n

(m)) ∈ T
(n)
є |Un = un�

≥ 2−n(I(X ;X̂|U)+δ(є))

for eachm ∈ A for some δ(є) that tends to zero as є → 0. Hence, for n su�ciently large,

P(E ∩ E
c
0 ) = H

(un ,xn)∈T (n)

å�

p(un , xn) P�(un , xn , X̂n
(m)) ∉ T

(n)
є for allm |Un = un , Xn = xn�

= H
(un ,xn)∈T (n)

å�

p(un , xn) I
m∈A

P�(un , xn , X̂n
(m)) ∉ T

(n)
є |Un = un�

≤ �1 − 2−n(I(X ;X̂|U)+δ(є))�|A|

≤ exp�−|A| ⋅ 2−n(I(X ;X̂|U)+δ(є))�
≤ exp�−2n(R−I(X ;X̂|U)−δ(є))�,

which tends to zero as n → ∞, provided R > I(X ; X̂|U) + δ(є). �is completes the proof.

Remark .. �e covering lemma continues to hold even when independence among
all the sequences X̂n

(m),m ∈ A, is replaced with pairwise independence; see the mutual
covering lemma in Section ..
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3.8 QUADRATIC GAUSSIAN SOURCE CODING

Wemotivated the need for lossy source coding by considering compression of continuous-
alphabet sources. In this section, we study lossy source coding of aGaussian source, which
is an important example of a continuous-alphabet source and is o�en used to model real-
world analog signals such as video and speech.

Let X be aWGN(P) source, that is, a source that generates aWGN(P) random process
{Xi}. We consider a lossy source coding problem for the source X with quadratic (squared
error) distortion measure d(x , x̂) = (x − x̂)2 on ℝ2. �e rate–distortion function for this
quadratic Gaussian source coding problem can be de�ned in the exact samemanner as for
the DMS case. Furthermore, �eorem . with the minimum over arbitrary test channels
applies and the rate–distortion function can be expressed simply in terms of the power-
to-distortion ratio.

Theorem .. �e rate–distortion function for a WGN(P) source with squared error
distortion measure is

R(D) = inf
F(x̂|x):E((X−X̂)2)≤D

I(X ; X̂) = R � P
D
� ,

where R(x) = (1/2)[log x]+ is the quadratic Gaussian rate function.

Proof of the converse. It is easy to see that the converse proof for the lossy source coding
theorem extends to continuous sources with well-de�ned density such as Gaussian, and
we have

R(D) ≥ inf
F(x̂|x):E((X−X̂)2)≤D

I(X ; X̂). (.)

For D ≥ P, we set X̂ = E(X) = 0; thus R(D) = 0. For 0 ≤ D < P, we �rst �nd a lower
bound on the in�mum in (.) and then show that there exists a test channel that attains
it. Consider

I(X ; X̂) = h(X) − h(X | X̂)

= 1

2
log(2πeP) − h(X − X̂ | X̂)

≥ 1

2
log(2πeP) − h(X − X̂)

≥ 1

2
log(2πeP) − 1

2
log(2πe E[(X − X̂)2])

(a)≥ 1

2
log(2πeP) − 1

2
log(2πeD)

= 1

2
log

P

D
,

where (a) follows since E((X − X̂)2) ≤ D. It is easy to show that this bound is attained by
the backward Gaussian test channel shown in Figure . and that the associated expected
distortion is D.
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X̂ ∼ N(0, P − D)

Z ∼ N(0, D)

X ∼ N(0, P)

Figure .. �e backward Gaussian test channel that attains the minimum in (.).

Proof of achievability. We extend the achievability proof for the DMS to the case of a
Gaussian source with quadratic distortion measure by using the following discretization
procedure. Let D be the desired distortion and let (X , X̂) be a pair of jointly Gauss-
ian random variables attaining I(X ; X̂) = R((1 − 2є)D) with distortion E((X − X̂)2) =
(1 − 2є)D. Let [X] and [X̂] be �nitely quantized versions of X and X̂ , respectively, such
that

E�([X] − [X̂])2� ≤ (1 − є)2D ,

E�(X − [X])2� ≤ є2D. (.)

�en by the data processing inequality,

I([X]; [X̂]) ≤ I(X ; X̂) = R((1 − 2є)D).

Now, by the achievability proof for the DMS [X] and reconstruction [X̂], there exists a
sequence of (2nR , n) rate–distortion codes with asymptotic distortion

lim sup
n→∞

1

n
E�d([X]n , [X̂]n)� ≤ (1 − є)2D , (.)

if R > R((1 − 2є)D) ≥ I([X]; [X̂]). We use this sequence of codes for the original source
X by mapping each xn to the codeword [x̂]n that is assigned to [x]n. �en

lim sup
n→∞

E�d(Xn , [X̂]n)� = lim sup
n→∞

1

n

nH
i=1

E�(Xi − [X̂]i)
2�

= lim sup
n→∞

1

n

nH
i=1

E��(Xi − [Xi]) + ([Xi] − [X̂]i)�2�
(a)≤ lim sup

n→∞

1

n

nH
i=1

�E�(Xi − [Xi])
2� + E�([Xi] − [X̂]i)

2��
+ lim sup

n→∞

2

n

nH
i=1

yE�(Xi − [Xi])
2� E�([Xi] − [X̂]i)

2�
(b)≤ є2D + (1 − є)2D + 2є(1 − є)D

= D ,

where (a) follows by Cauchy’s inequality and (b) follows by (.) and (.), and Jensen’s
inequality. �us, R > R((1 − 2є)D) is achievable for distortion D. Using the continuity of
R(D) completes the proof of achievability.
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3.9 JOINT SOURCE–CHANNEL CODING

In previous sections we studied limits on communication of compressed sources over
noisy channels and uncompressed sources over noiseless channels. In this section, we
study the more general joint source–channel coding setup depicted in Figure .. �e
sender wishes to communicate k symbols of an uncompressed source U over a DMC
p(y|x) in n transmissions so that the receiver can reconstruct the source symbols with a
prescribed distortion D. A straightforward scheme would be to perform separate source
and channel encoding and decoding. Is this separation scheme optimal? Canwe do better
by allowing more general joint source–channel encoding and decoding?

U k

Encoder Channel Decoder
Xn Yn Û k

Figure .. Joint source–channel coding setup.

It turns out that separate source and channel coding is asymptotically optimal for
sending a DMS over a DMC, and hence the fundamental limit depends only on the rate–
distortion function of the source and the capacity of the channel.

Formally, let U be a DMS and d(u, û) be a distortion measure with rate–distortion
function R(D) and p(y|x) be a DMC with capacity C . A (|U |k , n) joint source–channel
code of rate r = k/n consists of

∙ an encoder that assigns a codeword xn(uk) ∈ X n to each sequence uk ∈ U k and

∙ a decoder that assigns an estimate ûk(yn) ∈ Û
k
to each sequence yn ∈ Yn.

A rate–distortion pair (r, D) is said to be achievable if there exists a sequence of (|U |k , n)

joint source–channel codes of rate r such that

lim sup
k→∞

E�d(U k , Û k
(Yn

))� ≤ D.

Shannon established the following fundamental limit on joint source–channel coding.

Theorem . (Source–Channel Separation Theorem). Given aDMSU and a distor-
tion measure d(u, û) with rate–distortion function R(D) and a DMC p(y|x) with ca-
pacity C , the following statements hold:

∙ If rR(D) < C , then (r, D) is achievable.

∙ If (r, D) is achievable, then rR(D) ≤ C .

Proof of achievability. We use separate lossy source coding and channel coding.
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∙ Source coding: For any є > 0, there exists a sequence of lossy source codes with rate
R(D/(1 + є)) + δ(є) that achieve expected distortion less than or equal to D. We treat
the index for each code in the sequence as a message to be sent over the channel.

∙ Channel coding: �e sequence of source indices can be reliably communicated over
the channel if r(R(D/(1 + є)) + δ(є)) ≤ C − δ�(є).

�e source decoder �nds the reconstruction sequence corresponding to the received
index. If the channel decoder makes an error, the distortion is upper bounded by dmax.
Because the probability of error tends to zero as n → ∞, the overall expected distortion
is less than or equal to D.

Proof of the converse. We wish to show that if a sequence of codes achieves the rate–
distortion pair (r, D), then rR(D) ≤ C . By the converse proof of the lossy source coding
theorem, we know that

R(D) ≤ 1

k
I(U k ; Û k

).

Now, by the data processing inequality,

1

k
I(U k ; Û k

) ≤ 1

k
I(U k ;Yn

).

Following similar steps to the converse proof for the DMC, we have

1

k
I(U k ;Yn

) ≤ 1

k

nH
i=1

I(Xi ;Yi) ≤ 1

r
C .

Combining the above inequalities completes the proof of the converse.

Remark 3.12. Since the converse of the channel coding theorem holds when causal feed-
back is present (see Section ..), the separation theoremcontinues to holdwith feedback.

Remark 3.13. As in Remark ., there are cases where rR(D) = C and the rate–distortion
pair (r, D) is achievable via joint source–channel coding; see Example .. However, if
rR(D) > C , the rate–distortion pair (r, D) is not achievable. Hence, we informally say
that source–channel separation holds in general for sending a DMS over a DMC.

Remark 3.14. As a special case of joint source–channel coding, consider the problem of
sending U over a DMC losslessly, i.e., limk→∞ P{Û k ̸= U k} = 0. �e separation theorem
holds with the requirement that rH(U) ≤ C .

Remark 3.15. �e separation theorem can be extended to sending an arbitrary stationary
ergodic source over a DMC.

Remark 3.16. As we will see in Chapter , source–channel separation does not hold in
general for communicating multiple sources over multiuser channels, that is, even in the
asymptotic regime, it may be bene�cial to leverage the structure of the source and channel
jointly rather than separately.
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3.9.1 Uncoded Transmission

Sometimes optimal joint source–channel coding is simpler than separate source and chan-
nel coding. �is is illustrated in the following.

Example .. Consider communicating a Bern(1/2) source over a BSC(p) at rate r = 1

with Hamming distortion less than or equal to D. �e separation theorem shows that
1 − H(D) < 1 − H(p), or equivalently, D > p, can be achieved using separate source and
channel coding. More simply, we can transmit the binary sequence over the channelwith-
out any coding and achieve average distortion D = p !

Similar uncoded transmission is optimal also for communicating a Gaussian source
over aGaussian channelwith quadratic distortion (with proper scaling to satisfy the power
constraint); see Problem ..

Remark .. In general, we have the following condition for the optimality of uncoded
transmission. A DMSU can be communicated over a DMC p(y|x) uncoded if X ∼ pU (x)

attains the capacity C = maxp(x) I(X ;Y) of the channel and the test channel pY |X(û|u)

attains the rate–distortion function R(D) = minp(û|u):E(d(U ,Û))≤D I(U ; Û) of the source. In
this case, C = R(D).

SUMMARY

∙ Point-to-point communication system architecture

∙ Discrete memoryless channel (DMC), e.g., BSC and BEC

∙ Coding theorem: achievability and the converse

∙ Channel capacity is the limit on channel coding

∙ Random codebook generation

∙ Joint typicality decoding

∙ Packing lemma

∙ Feedback does not increase the capacity of a DMC

∙ Capacity with input cost

∙ Gaussian channel:

∙ Capacity with average power constraint is achieved via Gaussian codes

∙ Extending the achievability proof from discrete to Gaussian

∙ Minimum energy per bit

∙ Water �lling

∙ Discrete memoryless source (DMS)
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∙ Entropy is the limit on lossless source coding

∙ Joint typicality encoding

∙ Covering lemma

∙ Rate–distortion function is the limit on lossy source coding

∙ Rate–distortion function for Gaussian source with quadratic distortion

∙ Lossless source coding theorem is a corollary of lossy source coding theorem

∙ Source–channel separation

∙ Uncoded transmission can be optimal

BIBLIOGRAPHIC NOTES

�e channel coding theorem was �rst proved in Shannon (). �ere are alternative
proofs of achievability for this theorem that yield stronger results, including Feinstein’s
() maximal coding theorem and Gallager’s () random coding exponent tech-
nique, which yield stronger results. For example, it can be shown (Gallager ) that the
probability of error decays exponentially fast in the block length and the random coding
exponent technique gives a very good bound on the optimal error exponent (reliability
function) for the DMC. �ese proofs, however, do not extend easily to many multiuser
channel and source coding problems. In comparison, the current proof (Forney ,
Cover b), which is based on Shannon’s original arguments, is much simpler and can
be readily extended to more complex settings. Hence we will adopt random codebook
generation and joint typicality decoding throughout.

�e achievability proof of the channel coding theorem for the BSC using a random
linear code is due to Elias (). Even though random linear codes allow for computa-
tionally e�cient encoding (by simply multiplying the message by a generator matrix G),
decoding still requires an exponential search, which limits its practical value. �is prob-
lem can be mitigated by considering a linear code ensemble with special structures, such
as Gallager’s () low density parity check (LDPC) codes, which have e�cient decoding
algorithms and achieve rates close to capacity (Richardson and Urbanke ). A more
recently developed class of capacity-achieving linear codes is polar codes (Arıkan ),
which involve an elegant information theoretic low-complexity decoding algorithm and
can be applied also to lossy compression settings (Korada and Urbanke ). Linear
codes for the BSC or BEC are examples of structured codes. Other examples include lat-
tice codes for the Gaussian channel, which have been shown to achieve the capacity by
Erez and Zamir (); see Zamir () for a survey of recent developments.

�e converse of the channel coding theorem states that if R > C , then P(n)
e is bounded

away from zero as n → ∞. �is is commonly referred to as theweak converse. In compar-
ison, the strong converse (Wolfowitz ) states that if R > C , then limn→∞ P(n)

e = 1. A
similar statement holds for the lossless source coding theorem. However, except for a few
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cases to be discussed later, it appears to be di�cult to prove the strong converse for most
multiuser settings. As such, we only present weak converse proofs in ourmain exposition.

�e capacity formula for theGaussian channel under average power constraint in�e-
orem . is due to Shannon (). �e achievability proof using the discretization proce-
dure followsMcEliece (). Alternative proofs of achievability for the Gaussian channel
can be found in Gallager () and Cover and �omas (). �e discrete-time Gauss-
ian channel is themodel for a continuous-time (waveform) bandlimitedGaussian channel
with bandwidthW = 1/2, noise power spectral density (psd) N0/2, average transmission
power P (area under psd of signal), and channel gain . If the channel has bandwidthW ,
then it is equivalent to 2W parallel discrete-time Gaussian channels (per second) and the
capacity (see, for example, Wyner () and Slepian ()) is

C =W log¤1 + 2P

WN0

¥ bits/second.

For a wideband channel, the capacity C converges to (S/2) ln 2 as W → ∞, where S =
22P/N0. �us the capacity grows linearly with S and can be achieved via simple binary
code as shown by Golay (). �e minimum energy per bit for the Gaussian channel
also �rst appeared in this paper. �e minimum energy per bit can be also viewed as a
special case of the reciprocal of the capacity per unit cost studied by Csiszár and Körner
(b, p. ) and Verdú (). �e capacity of the spectral Gaussian channel, which is
the continuous counterpart of theGaussian product channel, and its water-�lling solution
are due to Shannon (a).

�e lossless source coding theorem was �rst proved in Shannon (). In many ap-
plications, one cannot a�ord to have any errors introduced by compression. Error-free
compression (P{Xn ̸= X̂n} = 0) for �xed-length codes, however, requires that R ≥ log |X |.
Using variable-length codes, Shannon () also showed that error-free compression is
possible if the average rate of the code is larger than the entropy H(X). Hence, the limit
on the average achievable rate is the same for both lossless and error-free compression.
�is is not true in general for distributed coding of correlated sources; see Bibliographic
Notes in Chapter .

�e lossy source coding theorem was �rst proved in Shannon (), following an
earlier result for the quadratic Gaussian case in Shannon (). �e current achievabil-
ity proof of the quadratic Gaussian lossy source coding theorem follows McEliece ().
�ere are several other ways to prove achievability for continuous sources and unbounded
distortionmeasures (Berger , Dunham , Bucklew , Cover and�omas ).
As an alternative to the expected distortion criterion in (.), several authors have con-
sidered the stronger criterion

lim
n→∞

P�d�Xn , x̂n(m(Xn
))� ≤ D� = 0

in the de�nition of achievability of a rate–distortion pair (R, D). �e lossy source cod-
ing theorem and its achievability proof in Section . continue to hold for this alterna-
tive distortion criterion. In the other direction, a strong converse—if R < R(D), then
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P{d(Xn , X̂n
) ≤ D} tends to zero as n → ∞—can be established (Csiszár andKörner b,

�eorem .) that implies the converse for the expected distortion criterion.
�e lossless source coding theorem can be extended to discrete stationary ergodic (not

necessarily i.i.d.) sources (Shannon ). Similarly, the lossy source coding theorem can
be extended to stationary ergodic sources (Gallager ) with the following characteri-
zation of the rate–distortion function

R(D) = lim
k→∞

min
p(x̂k |xk):E(d(Xk ,X̂k))≤D

1

k
I(Xk ; X̂k

).

However, the notion of ergodicity for channels is more subtle and involved. Roughly
speaking, the capacity is well-de�ned for discrete channels such that for every time i ≥ 1

and shi� j ≥ 1, the conditional pmf p(y j+i
i |x

j+i
i ) is time invariant (that is, independent

of i) and can be estimated using appropriate time averages. For example, ifYi = (Xi , Zi)

for some stationary ergodic process {Zi}, then it can be shown (Kim b) that the ca-
pacity is

C = lim
k→∞

sup
p(xk)

1

k
I(Xk ;Y k

).

�e coding theorem for more general classes of channels with memory can be found in
Gray () andVerdú andHan (). As for point-to-point communication, the essence
of the multiuser source and channel coding problems is captured by thememoryless case.
Moreover, the multiuser problems with memory o�en have only uncomputable “multi-
letter” expressions as above. We therefore restrict our attention to discrete memoryless
and white Gaussian noise sources and channels.

�e source–channel separation theorem was �rst proved in Shannon (). �e gen-
eral condition for optimality of uncoded transmission in Remark . is given by Gastpar,
Rimoldi, and Vetterli ().

PROBLEMS

.. Memoryless property. Show that under the given de�nition of a (2nR , n) code, the
memoryless property p(yi|x

i , yi−1 , m) = pY |X(yi|xi), i ∈ [1 : n], reduces to

p(yn |xn , m) = nI
i=1

pY |X(yi |xi).

.. Z channel. �e Z channel has binary input and output alphabets, and conditional
pmf p(0|0) = 1, p(1|1) = p(0|1) = 1/2. Find the capacity C .

.. Capacity of the sum channel. Find the capacity C of the union of two DMCs (X1 ,

p(y1|x1), Y1) and (X2 , p(y2|x2), Y2), where, in each transmission, one can send a
symbol over channel  or channel  but not both. Assume that the output alphabets
are distinct, i.e., Y1 ∩ Y2 = .
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.. Applications of the packing lemma. Identify the random variables U , X, and Y in
the packing lemma for the following scenarios, andwrite down the packing lemma
condition on the rate R for each case.

(a) Let (X1 , X2 , X3) ∼ p(x1)p(x2)p(x3|x1 , x2). Let X
n
1 (m), m ∈ [1 : 2nR], be each

distributed according to∏n
i=1 pX1

(x1i), and (X̃
n
2 , X̃n

3 ) ∼ ∏n
i=1 pX2 ,X3

(x̃2i , x̃3i) be

independent of Xn
1 (m) form ∈ [1 : 2nR].

(b) Let (X1 , X2 , X3) ∼ p(x1 , x2)p(x3|x2) and R = R0 + R1. Let X
n
1 (m0), m0 ∈ [1 :

2nR0], be distributed according to∏n
i=1 pX1

(x1i). For each m0, let X
n
2 (m0 , m1),

m1 ∈ [1 : 2nR1], be distributed according to∏n
i=1 pX2|X1

(x2i |x1i(m0)). Let X̃
n
3 ∼∏n

i=1 pX3
(x̃3i) be independent of (Xn

1 (m0), X
n
2 (m0 , m1)) for m0 ∈ [1 : 2nR0],

m1 ∈ [1 : 2nR1].

.. Maximum likelihood decoding. �e achievability proof of the channel coding theo-
rem in Section .. uses joint typicality decoding. �is technique greatly simpli�es
the proof, especially for multiuser channels. However, given a codebook, the joint
typicality decoding is not optimal in terms of minimizing the probability of de-
coding error (it is in fact surprising that such a suboptimal decoding rule can still
achieve capacity).

Since the messages are equally likely, maximum likelihood decoding (MLD)

m̂ = arg max
m

p(yn |m) = arg max
m

nI
i=1

pY |X(yi |xi(m))

is the optimal decoding rule (when there is a tie, choose an arbitrary index that
maximizes the likelihood). Achievability proofs using MLD are more complex
but provide tighter bounds on the optimal error exponent (reliability function);
see, for example, Gallager ().

In this problem we use MLD to establish achievability of the capacity for a
BSC(p), p < 1/2. De�ne the Hamming distance d(xn , yn) between two binary
sequences xn and yn as the number of positions where they di�er, i.e., d(xn , yn) =
|{i : xi ̸= yi}|.

(a) Show that theMLD rule reduces to theminimumHamming distance decoding
rule—declare m̂ is sent if d(xn(m̂), yn) < d(xn(m), yn) for allm ̸= m̂.

(b) Now �x X ∼ Bern(1/2). Using random coding and minimum distance decod-
ing, show that for every є > 0, the probability of error averaged over codebooks
is upper bounded as

P(n)
e = P{M̂ ̸= 1 |M = 1}

≤ P�d(Xn
(1),Yn

) > n(p + є) !!!!M = 1�
+ (2nR − 1) P�d(Xn

(2),Yn
) ≤ n(p + є) !!!!M = 1�.

(c) Show that the �rst term tends to zero as n → ∞. It can be shown using the
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Cherno�–Hoe�ding bound (Hoe�ding ) that

P�d(Xn
(2),Yn

) ≤ n(p + є) !!!!M = 1� ≤ 2−n(1−H(p+є)).

Using these results, show that any R < C = 1 − H(p) is achievable.

.. Randomized code. Suppose that in the de�nition of the (2nR , n) code for the DMC
p(y|x), we allow the encoder and the decoder to use random mappings. Specif-
ically, letW be an arbitrary random variable independent of the message M and
the channel, i.e., p(yi|x

i , yi−1 , m, w) = pY |X(yi |xi) for i ∈ [1 : n]. �e encoder gen-
erates a codeword xn(m,W),m ∈ [1 : 2nR], and the decoder generates an estimate
m̂(yn ,W). Show that this randomization does not increase the capacity of the
DMC.

.. Nonuniform message. Recall that a (2nR , n) code for the DMC p(y|x) consists of
an encoder xn = ϕn(m) and a decoder m̂ = ψn(y

n). Suppose that there exists a se-
quence of (2nR , n) codes such thatP(n)

e = P{M ̸= M̂} tends to zero as n → ∞, where
M is uniformly distributed over [1 : 2nR]. (In other words, the rate R is achievable.)
Now suppose that we wish to communicate a message M� that is arbitrarily (not
uniformly) distributed over [1 : 2nR].

(a) Show that there exists a sequence of (2nR , n) codes with encoder–decoder pairs
(ϕ�

n , ψ�
n) such that

lim
n→∞

P{M� ̸= M̂�
} = 0.

(Hint: Consider a random ensemble of codes Φ�
n = ϕn ∘ σ and Ψ�

n = σ−1 ∘ ψn,
where σ is a random permutation. Show the probability of error, averaged over
M� and σ , is equal to P(n)

e and conclude that there exists a good permutation σ

for each M�.)

(b) Does this result imply that the capacity for the maximal probability of error is
equal to that for the average probability of error?

.. Independently generated codebooks. Let (X ,Y) ∼ p(x , y), and p(x) and p(y) be
their marginals. Consider two randomly and independently generated codebooks
C1 = {Xn(1), . . . , Xn(2nR1)} and C2 = {Yn(1), . . . ,Yn(2nR2)}. �e codewords of C1
are generated independently each according to ∏n

i=1 pX(xi), and the codewords
for C2 are generated independently according to∏n

i=1 pY (yi). De�ne the set

C = {(xn , yn) ∈ C1 × C2 : (xn , yn) ∈ T
(n)
є (X ,Y)}.

Show that
E |C | ≐ 2n(R1+R2−I(X ;Y)).

.. Capacity with input cost. Consider the DMC p(y|x) with cost constraint B.

(a) Using the operational de�nition of the capacity–cost functionC(B), show that
it is nondecreasing and concave for B ≥ 0.



74 Point-to-Point Information Theory

(b) Show that the information capacity–cost functionC(B) is nondecreasing, con-
cave, and continuous for B ≥ 0.

.. BSC with input cost. Find the capacity–cost functionC(B) for a BSC(p) with input
cost function b(1) = 1 and b(0) = 0.

.. Channels with input–output cost. Let b(x , y) be a nonnegative input–output cost
function on X × Y . Consider a DMC p(y|x) in which every codeword xn(m),
m ∈ [1 : 2nR], must satisfy the average cost constraint

E(b(xn(m),Yn
)) = 1

n

nH
i=1

E(b(xi(m),Yi)) ≤ B ,

where the expectation is with respect to the channel pmf ∏n
i=1 pY |X(yi|xi(m)).

Show that the capacity of the DMC with cost constraint B is

C(B) = max
p(x):E(b(X ,Y))≤B

I(X ;Y).

(Hint: Consider the input-only cost function b�(x) = E(b(x ,Y)), where the expec-
tation is taken with respect to p(y|x).)

.. Output scaling. Show that the capacity of the Gaussian channel Y = X + Z re-
mains the same if we scale the output by a nonzero constant a.

.. Water-�lling. Consider the -component Gaussian product channel Yj =  jX j +
Z j , j = 1, 2, with 1 < 2 and average power constraint P.

(a) Above what power P should we begin to use both channels?

(b) What is the energy-per-bit–rate function Eb(R) needed for reliable commu-
nication at rate R over the channel? Show that Eb(R) is strictly monotoni-
cally increasing and convex in R. What is the minimum energy per bit for the
-component Gaussian product channel, i.e., limR→0 Eb(R)?

.. List codes. A (2nR , 2nL , n) list code for a DMC p(y|x) with capacity C consists of
an encoder that assigns a codeword xn(m) to each message m ∈ [1 : 2nR] and a
decoder that upon receiving yn tries to �nds the list of messages L(yn) ⊆ [1 : 2nR]

of size |L| ≤ 2nL that contains the transmitted message. An error occurs if the
list does not contain the transmitted message M, i.e., P(n)

e = P{M ∉ L(Yn
)}. A

rate–list exponent pair (R, L) is said to be achievable if there exists a sequence of
(2nR , 2nL , n) list codes with P(n)

e → 0 as n → ∞.

(a) Using random coding and joint typicality decoding, show that any (R, L) is
achievable, provided R < C + L.

(b) Show that for every sequence of (2nR , 2nL , n) list codes with P(n)
e → 0 as n →

∞, we must have R ≤ C + L. (Hint: You will need to develop a modi�ed Fano’s
inequality.)
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.. Strong converse for source coding. Given a sequence of (2nR , n) lossless source codes
with R < H(X), show that P(n)

e → 1 as n → ∞. (Hint: A (2nR , n) code can repre-
sent only 2nR points inX n. Using typicality, show that if R < H(X), the probability
of these 2nR points converges to zero, no matter how we choose them.)

.. In�nite alphabet. Consider the lossless source coding problem for a discrete, but
in�nite-alphabet source X with �nite entropy H(X) < ∞. Show that R∗ = H(X).
(Hint: For the proof of achievability, consider a truncated DMS [X] such that
P{Xn ̸= [X]n} tends to zero as n → ∞.)

.. Rate–distortion function. Consider the lossy source coding for a DMS X with dis-
tortion measure d(x , x̂).

(a) Using the operational de�nition, show that the rate–distortion function R(D)

is nonincreasing and convex for D ≥ 0.

(b) Show that the information rate–distortion function R(D) is nonincreasing,
convex, and continuous for D ≥ 0.

.. Bounds on the quadratic rate–distortion function. Let X be an arbitrarymemoryless
(stationary) source with variance P, and let d(x , x̂) = (x − x̂)2 be the quadratic
distortion measure.

(a) Show that the rate–distortion function is bounded as

h(X) − 1

2
log(2πeD) ≤ R(D) ≤ 1

2
log� P

D
�

with equality i� X is a WGN(P) source. (Hint: For the upper bound, consider
X̂ = (P − D)X/P + Z, where Z ∼ N(0, D(P − D)/P) is independent of X.)

Remark: �e lower bound is referred to as the Shannon lower bound.

(b) Is the Gaussian source harder or easier to describe than other sources with the
same variance?

.. Lossy source coding from a noisy observation. Let X ∼ p(x) be a DMS and Y be
another DMS obtained by passing X through a DMC p(y|x). Let d(x , x̂) be a dis-
tortion measure and consider a lossy source coding problem in which Y (instead
of X) is encoded and sent to the decoder who wishes to reconstruct X with a pre-
scribed distortion D.

Unlike the regular lossy source coding setup, the encoder maps each yn se-
quence to an index m ∈ [1 : 2nR). Otherwise, the de�nitions of (2nR , n) codes,
achievability, and rate–distortion function are the same as before.

Let Dmin = minx̂(y) E[d(X , x̂(Y))]. Show that the rate–distortion function for
this setting is

R(D) = min
p(x̂|y):E(d(X ,X̂))≤D

I(Y ; X̂) for D ≥ Dmin.

(Hint: De�ne a new distortion measure d�
(y, x̂) = E(d(X , x̂) |Y = y), and show
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that

E�d�Xn , x̂n(m(Yn
))�� = E�d��Yn , x̂n(m(Yn

))��. )
.. To code or not to code. Consider aWGN(P) sourceU and a Gaussian channel with

output Y = X + Z, where Z ∼ N(0, 1). We wish to communicate the source over
the channel at rate r = 1 symbol/transmission with the smallest possible squared
error distortion. Assume an expected average power constraint

1

n

nH
i=1

E(x2i (U
n
)) ≤ nP.

(a) Find theminimumdistortion achieved by separate source and channel coding.

(b) Find the distortion achieved when the sender transmits Xi = Ui , i ∈ [1 : n],
i.e., performs no coding, and the receiver uses the (linear) MMSE estimate Ûi

ofUi given Yi . Compare this to the distortion in part (a) and comment on the
results.

.. Two reconstructions. Let X be a DMS, and d1(x , x̂1), x̂1 ∈ X̂1, and d2(x , x̂2), x̂2 ∈
X̂2, be two distortion measures. We wish to reconstruct X under both distortion
measures from the same description as depicted in Figure ..

Xn M
Encoder

Decoder 

Decoder 

(X̂n
1 , D1)

(X̂n
2 , D2)

Figure .. Lossy source coding with two reconstructions.

De�ne a (2nR , n) code, achievability of the rate–distortion triple (R, D1 , D2),
and the rate–distortion function R(D1 , D2) in the standard way. Show that

R(D1 , D2) = min
p(x̂1 ,x̂2|x):E(d j(x,x̂ j))≤D j , j=1,2

I(X ; X̂1 , X̂2).

.. Lossy source coding with reconstruction cost. Let X be a DMS and d(x , x̂) be a
distortion measure. Further let b(x̂) ≥ 0 be a cost function on X̂ . Suppose that
there is an average cost constraint on each reconstruction sequence x̂n(m),

b(x̂n(m)) ≤ nH
i=1

b(x̂i(m)) ≤ nB for everym ∈ [1 : 2nR),

in addition to the distortion constraint E(d(Xn , X̂n
)) ≤ D. De�ne a (2nR , n) code,
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achievability of the triple (R, D , B), and rate–distortion–cost function R(D , B) in
the standard way. Show that

R(D , B) = min
p(x̂|x):E(d(X ,X̂))≤D , E(b(X̂))≤B

I(X ; X̂).

Note that this problem is not a special case of the above two-reconstruction prob-
lem.

APPENDIX 3A PROOF OF LEMMA 3.2

We �rst note that I([X] j ; [Yj]k) → I([X] j ;Yj) = h(Yj) − h(Z) as k → ∞. �is follows
since ([Yj]k − Yj) tends to zero as k → ∞; recall Section .. Hence it su�ces to show
that

lim inf
j→∞

h(Yj) ≥ h(Y).

First note that the pdf of Yj converges pointwise to that of Y ∼ N(0, S + 1). To prove this,
consider

fYj
(y) = X fZ(y − x) dF[X] j (x) = E� fZ(y − [X] j)�.

Since the Gaussian pdf fZ(z) is continuous and bounded, fYj
(y) converges to fY (y) for

every y by the weak convergence of [X] j to X. Furthermore, we have

fYj
(y) = E� fZ(y − [X] j)� ≤ max

z
fZ(z) = 1$2π

.

Hence, for each a > 0, by the dominated convergence theorem (Appendix B),

h(Yj) = X∞

−∞
− fYj

(y) log fYj
(y) dy

≥ Xa

−a
− fYj

(y) log fYj
(y) dy + P{|Yj | ≥ a} ⋅ min

y
(− log fYj

(y)),

which converges to

Xa

−a
− f (y) log f (y) dy + P{|Y | ≥ a} ⋅ min

y
(− log f (y))

as j → ∞. Taking a → ∞, we obtain the desired result.



CHAPTER 6

Interference Channels

We introduce the interference channel as a model for single-hop multiple one-to-one
communications, such as pairs of base stations–handsets communicating over a frequency
band that su�ers from intercell interference, pairs of DSL modems communicating over
a bundle of telephone lines that su�ers from crosstalk, or pairs of people talking to each
other in a cocktail party. �e capacity region of the interference channel is not known
in general. In this chapter, we focus on coding schemes for the two sender–receiver pair
interference channel that are optimal or close to optimal in some special cases.

We �rst study simple coding schemes that use point-to-point channel codes, namely
time division, treating interference as noise, and simultaneous decoding. We show that
simultaneous decoding is optimal under strong interference, that is, when the interfer-
ing signal at each receiver is stronger than the signal from its respective sender. �ese
inner bounds are compared for the Gaussian interference channel. We extend the strong
interference result to the Gaussian case and show that treating interference as noise is
sum-rate optimal when the interference is su�ciently weak. �e converse proof of the
latter result uses the new idea of a genie that provides side information to each receiver
about its intended codeword.

We then present the Han–Kobayashi coding scheme, which generalizes the aforemen-
tioned simple schemes by also using rate splitting (see Section .) and superposition cod-
ing (see Section .). We show that the Han–Kobayashi scheme is optimal for the class of
injective deterministic interference channels. �e converse proof of this result is extended
to establish an outer bound on the capacity region of the class of injective semidetermin-
istic interference channels, which includes the Gaussian interference channel. �e outer
bound for theGaussian case, and hence the capacity region, is shown to bewithin half a bit
per dimension of the Han–Kobayashi inner bound. �is gap vanishes in the limit of high
signal and interference to noise ratios for the normalized symmetric capacity (degrees
of freedom). We discuss an interesting correspondence to q-ary expansion deterministic
(QED) interference channels in this limit.

Finally, we introduce the new idea of interference alignment through a QED interfer-
ence channel withmany sender–receiver pairs. Interference alignment for wireless fading
channels will be illustrated in Section ..
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6.1 DISCRETE MEMORYLESS INTERFERENCE CHANNEL

Consider the two sender–receiver pair communication system depicted in Figure .,
where each sender wishes to communicate a message to its respective receiver over a
shared interference channel. Each messageM j , j = 1, 2, is separately encoded into a code-
word Xn

j and transmitted over the channel. Upon receiving the sequence Yn
j , receiver

j = 1, 2 �nds an estimate M̂ j of message M j . Because communication takes place over
a shared channel, the signal at each receiver can su�er not only from the noise in the
channel, but also from interference by the other transmitted codeword. �is leads to a
tradeo� between the rates at which both messages can be reliably communicated. We
seek to determine the limits on this tradeo�.

We �rst consider a two sender–receiver (-user) pair discrete memoryless interference

channel (DM-IC) model (X1 × X2 , p(y1 , y2|x1 , x2), Y1 × Y2) that consists of four �nite
sets X1, X2, Y1, Y2, and a collection of conditional pmfs p(y1 , y2|x1 , x2) on Y1 × Y2. A
(2nR1 , 2nR2 , n) code for the interference channel consists of

∙ two message sets [1 : 2nR1] and [1 : 2nR2],

∙ two encoders, where encoder  assigns a codeword xn1 (m1) to each message m1 ∈ [1 :

2nR1] and encoder  assigns a codeword xn2 (m2) to each messagem2 ∈ [1 : 2nR2], and

∙ two decoders, where decoder  assigns an estimate m̂1 or an error message e to each
received sequence yn1 and decoder  assigns an estimate m̂2 or an error message e to
each received sequence yn2 .

We assume that the message pair (M1 , M2) is uniformly distributed over [1 : 2nR1] × [1 :

2nR2]. �e average probability of error is de�ned as

P(n)
e = P�(M̂1 , M̂2) ̸= (M1 , M2)�.

A rate pair (R1 , R2) is said to be achievable for the DM-IC if there exists a sequence of
(2nR1 , 2nR2 , n) codes such that limn→∞ P(n)

e = 0. �e capacity region C of the DM-IC is
the closure of the set of achievable rate pairs (R1 , R2) and the sum-capacity Csum of the
DM-IC is de�ned as Csum = max{R1 + R2 : (R1 , R2) ∈ C }.

As for the broadcast channel, the capacity region of the DM-IC depends on the chan-
nel conditional pmf p(y1 , y2|x1 , x2) only through the conditional marginals p(y1|x1 , x2)

and p(y2|x1 , x2). �e capacity region of the DM-IC is not known in general.

M1

M2

Xn
1

Xn
2

Yn
1

Yn
2

M̂1

M̂2

Encoder 

Encoder 

Decoder 

Decoder 

p(y1 , y2|x1 , x2)

Figure .. Two sender–receiver pair communication system.
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6.2 SIMPLE CODING SCHEMES

We �rst consider several simple coding schemes for the interference channel.

Time division. �e maximum achievable individual rates for the two sender–receiver
pairs are

C1 = max
p(x1), x2

I(X1 ;Y1 |X2 = x2),

C2 = max
p(x2), x1

I(X2 ;Y2 |X1 = x1).

�ese capacities de�ne the time-division inner bound consisting of all rate pairs (R1 , R2)

such that

R1 < αC1 ,

R2 < ᾱC2

(.)

for some α ∈ [0, 1]. �is bound is tight in some special cases.

Example . (Modulo- sum IC). Consider a DM-IC where the channel inputs X1 , X2

and outputs Y1 ,Y2 are binary, and Y1 = Y2 = X1 ⊕ X2. �e time-division inner bound
reduces to the set of rate pairs (R1 , R2) such that R1 + R2 < 1. In the other direction, by
allowing cooperation between the receivers, we obtain the upper bound on the sum-rate

R1 + R2 ≤ C12 = max
p(x1)p(x2)

I(X1 , X2 ;Y1 ,Y2).

Since in our example,Y1 = Y2, this bound reduces to the set of rate pairs (R1 , R2) such that
R1 + R2 ≤ 1. Hence the time-division inner bound is tight.

�e time-division inner bound is not tight in general, however.

Example . (No interference). Consider an interference channelwith orthogonal com-
ponents p(y1 , y2|x1 , x2) = p(y1|x1)p(y2|x2). In this case, the channel can be viewed sim-
ply as two separate DMCs and the capacity region is the set of rate pairs (R1 , R2) such that
R1 ≤ C1 and R2 ≤ C2. �is is clearly larger than the time-division inner bound.

Treating interference as noise. Another inner bound on the capacity region of the inter-
ference channel can be achieved using point-to-point codes, time sharing, and treating
interference as noise. �is yields the interference-as-noise inner bound consisting of all
rate pairs (R1 , R2) such that

R1 < I(X1 ;Y1 |Q),

R2 < I(X2 ;Y2 |Q)
(.)

for some pmf p(q)p(x1|q)p(x2|q).

Simultaneous decoding. At the opposite extreme of treating interference as noise, we
can have each receiver recover both messages. Following the achievability proof for the
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DM-MAC using simultaneous decoding and coded time sharing in Section .. (also see
Problem .), we can easily show that this scheme yields the simultaneous-decoding inner
bound on the capacity region of the DM-IC consisting of all rate pairs (R1 , R2) such that

R1 < min�I(X1 ;Y1 |X2 ,Q), I(X1 ;Y2 |X2 ,Q)�,
R2 < min�I(X2 ;Y1 |X1 ,Q), I(X2 ;Y2 |X1 ,Q)�,

R1 + R2 < min�I(X1 , X2 ;Y1 |Q), I(X1 , X2 ;Y2 |Q)� (.)

for some pmf p(q)p(x1|q)p(x2|q).

Remark .. Let R(X1 , X2) be the set of rate pairs (R1 , R2) such that

R1 < min�I(X1 ;Y1 |X2), I(X1 ;Y2 |X2)�,
R2 < min�I(X2 ;Y2 |X1), I(X2 ;Y1 |X1)�,

R1 + R2 < min�I(X1 , X2 ;Y1), I(X1 , X2 ;Y2)�
for some pmf p(x1)p(x2). Unlike the DM-MAC, the inner bound in . can be strictly
larger than the convex closure of R(X1 , X2) over all p(x1)p(x2). Hence, coded time shar-
ing can achieve higher rates than (uncoded) time sharing, and is needed to achieve the
inner bound in (.).

�e simultaneous-decoding inner bound is sometimes tight.

Example .. Consider a DM-ICwith output alphabetsY1 = Y2 and pY1|X1 ,X2
(y|x1 , x2) =

pY2|X1 ,X2
(y|x1 , x2). �e simultaneous-decoding inner bound reduces to the set of rate pairs

(R1 , R2) such that

R1 < I(X1 ;Y1 |X2 ,Q),

R2 < I(X2 ;Y2 |X1 ,Q),

R1 + R2 < I(X1 , X2 ;Y1 |Q)

for some pmf p(q)p(x1|q)p(x2|q). Now, using standard converse proof techniques, we can
establish the outer bound on the capacity region of the general DM-IC consisting of all
rate pairs (R1 , R2) such that

R1 ≤ I(X1 ;Y1 |X2 ,Q),

R2 ≤ I(X2 ;Y2 |X1 ,Q),

R1 + R2 ≤ I(X1 , X2 ;Y1 ,Y2 |Q)

for some pmf p(q)p(x1|q)p(x2|q). �is bound can be further improved by using the fact
that the capacity region depends only on the marginals of p(y1 , y2|x1 , x2). If a rate pair
(R1 , R2) is achievable, then it must satisfy the inequalities

R1 ≤ I(X1 ;Y1 |X2 ,Q),

R2 ≤ I(X2 ;Y2 |X1 ,Q),

R1 + R2 ≤ min
p̃(y1 ,y2|x1 ,x2)

I(X1 , X2 ;Y1 ,Y2 |Q)

(.)

for some pmf p(q)p(x1|q)p(x2|q), where the minimum in the third inequality is over all
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conditional pmfs p̃(y1 , y2|x1 , x2)with the samemarginals p(y1|x1 , x2) and p(y2|x1 , x2) as
the given channel conditional pmf p(y1 , y2|x1 , x2).

Now, since the marginals of the channel in our example are identical, the minimum
in the third inequality of the outer bound in (.) is attained for Y1 = Y2, and the bound
reduces to the set of all rate pairs (R1 , R2) such that

R1 ≤ I(X1 ;Y1 |X2 ,Q),

R2 ≤ I(X2 ;Y2 |X1 ,Q),

R1 + R2 ≤ I(X1 , X2 ;Y1 |Q)

for some pmf p(q)p(x1|q)p(x2|q). Hence, simultaneous decoding is optimal for the DM-
IC in this example.

Simultaneous nonunique decoding. We can improve upon the simultaneous-decoding
inner bound via nonunique decoding, that is, by not requiring each receiver to recover the
message intended for the other receiver. �is yields the simultaneous-nonunique-decoding

inner bound consisting of all rate pairs (R1 , R2) such that

R1 < I(X1 ;Y1 |X2 ,Q),

R2 < I(X2 ;Y2 |X1 ,Q),

R1 + R2 < min�I(X1 , X2 ;Y1 |Q), I(X1 , X2 ;Y2 |Q)� (.)

for some pmf p(q)p(x1|q)p(x2|q).
�e achievability proof of this inner bound uses techniques we have already encoun-

tered in Sections . and .. Fix a pmf p(q)p(x1|q)p(x2|q). Randomly generate a sequence
qn ∼ ∏n

i=1 pQ(qi). Randomly and conditionally independently generate 2nR1 sequences
xn1 (m1),m1 ∈ [1 : 2nR1], each according to∏n

i=1 pX1|Q
(x1i |qi), and 2nR2 sequences xn2 (m2),

m2 ∈ [1 : 2nR2], each according to ∏n
i=1 pX2|Q

(x2i |qi). To send (m1 , m2), encoder j = 1, 2

transmits xnj (m j).

Decoder  �nds the unique message m̂1 such that (qn , xn1 (m̂1), x
n
2 (m2), y

n
1 ) ∈ T (n)

є for
some m2. By the LLN and the packing lemma, the probability of error for decoder 
tends to zero as n → ∞ if R1 < I(X1 ;Y1 , X2|Q) − δ(є) = I(X1 ;Y1|X2 ,Q) − δ(є) and R1 +
R2 < I(X1 , X2 ;Y1|Q) − δ(є). Similarly, decoder  �nds the unique message m̂2 such that
(qn , xn1 (m1), x

n
2 (m̂2), y

n
2 ) ∈ T (n)

є for some m1. Again by the LLN and the packing lemma,
the probability of error for decoder  tends to zero as n → ∞ if R2 < I(X2 ;Y2|X1 ,Q) −
δ(є) and R1 + R2 < I(X1 , X2 ;Y2|Q) − δ(є). �is completes the achievability proof of the
simultaneous-nonunique-decoding inner bound.

6.3 STRONG INTERFERENCE

Suppose that each receiver in an interference channel is physically closer to the interfering
transmitter than to its own transmitter and hence the received signal from the interfer-
ing transmitter is stronger than that from its transmitter. Under such strong interference
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condition, each receiver can essentially recover the message of the interfering transmitter
without imposing an additional constraint on its rate. We de�ne two notions of strong
interference for the DM-IC and show that simultaneous decoding is optimal under both
notions.

Very strong interference. A DM-IC is said to have very strong interference if

I(X1 ;Y1 |X2) ≤ I(X1 ;Y2),

I(X2 ;Y2 |X1) ≤ I(X2 ;Y1)
(.)

for all p(x1)p(x2). �e capacity region of the DM-IC with very strong interference is the
set of rate pairs (R1 , R2) such that

R1 ≤ I(X1 ;Y1 |X2 ,Q),

R2 ≤ I(X2 ;Y2 |X1 ,Q)

for some pmf p(q)p(x1|q)p(x2|q). �e converse proof is quite straightforward, since this
region constitutes an outer bound on the capacity region of the general DM-IC. �e proof
of achievability follows by noting that under the very strong interference condition, the
sum-rate inequality in the simultaneous (unique or nonunique) decoding inner bound is
inactive. Note that the capacity region can be achieved also via successive cancellation de-
coding and time sharing. Each decoder successively recovers the other message and then
its ownmessage. Because of the very strong interference condition, only the requirements
on the achievable rates for the second decoding step matter.

Strong interference. A DM-IC is said to have strong interference if

I(X1 ;Y1 |X2) ≤ I(X1 ;Y2 |X2),

I(X2 ;Y2 |X1) ≤ I(X2 ;Y1 |X1)
(.)

for all p(x1)p(x2). Note that this is an extension of the more capable condition for the
DM-BC. In particular, Y2 is more capable than Y1 given X2, and Y1 is more capable than
Y2 given X1. Clearly, if the channel has very strong interference, then it also has strong
interference. �e converse is not necessarily true as illustrated by the following.

Example .. Consider the DM-IC with binary inputs X1 , X2 and ternary outputs Y1 =
Y2 = X1 + X2. �en

I(X1 ;Y1 |X2) = I(X1 ;Y2 |X2) = H(X1),

I(X2 ;Y2 |X1) = I(X2 ;Y1 |X1) = H(X2).

�erefore, this DM-IC has strong interference. However,

I(X1 ;Y1 |X2) = H(X1) ≥ H(X1) − H(X1 |Y2) = I(X1 ;Y2),

I(X2 ;Y2 |X1) = H(X2) ≥ H(X2) − H(X2 |Y1) = I(X2 ;Y1)

with strict inequality for some pmf p(x1)p(x2). �erefore, this channel does not satisfy
the very strong interference condition.
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We now show that the simultaneous-nonunique-decoding inner bound is tight under
the strong interference condition.

Theorem .. �e capacity region of the DM-IC p(y1 , y2|x1 , x2) with strong interfer-
ence is the set of rate pairs (R1 , R2) such that

R1 ≤ I(X1 ;Y1 |X2 ,Q),

R2 ≤ I(X2 ;Y2 |X1 ,Q),

R1 + R2 ≤ min�I(X1 , X2 ;Y1 |Q), I(X1 , X2 ;Y2 |Q)�
for some pmf p(q)p(x1|q)p(x2|q) with |Q| ≤ 4.

Proof of the converse. �e �rst two inequalities can be easily established. By symmetry
it su�ces to show that R1 + R2 ≤ I(X1 , X2 ;Y2|Q). Consider

n(R1 + R2) = H(M1) + H(M2)

(a)≤ I(M1 ;Yn
1 ) + I(M2 ;Yn

2 ) + nєn
(b)= I(Xn

1 ;Yn
1 ) + I(Xn

2 ;Yn
2 ) + nєn≤ I(Xn

1 ;Yn
1 |X

n
2 ) + I(Xn

2 ;Yn
2 ) + nєn

(c)≤ I(Xn
1 ;Yn

2 |X
n
2 ) + I(Xn

2 ;Yn
2 ) + nєn= I(Xn

1 , Xn
2 ;Yn

2 ) + nєn

≤ nH
i=1

I(X1i , X2i ;Y2i) + nєn

= nI(X1 , X2 ;Y2 |Q) + nєn ,

where (a) follows by Fano’s inequality and (b) follows since M j → Xn
j → Yn

j for j = 1, 2

(by the independence of M1 and M2). Step (c) is established using the following.

Lemma .. For a DM-IC p(y1 , y2|x1 , x2) with strong interference, I(Xn
1 ;Yn

1 |X
n
2 ) ≤

I(Xn
1 ;Yn

2 |X
n
2 ) for all (X

n
1 , Xn

2 ) ∼ p(xn1 )p(x
n
2 ) and all n ≥ 1.

�is lemma can be proved by noting that the strong interference condition implies that
I(X1 ;Y1|X2 ,U) ≤ I(X1 ;Y2|X2 ,U) for all p(u)p(x1|u)p(x2|u) and using induction on n.

�e other bound R1 + R2 ≤ I(X1 , X2 ;Y1|Q) follows similarly, which completes the
proof of the theorem.

6.4 GAUSSIAN INTERFERENCE CHANNEL

Consider the -user-pair Gaussian interference channel depicted in Figure ., which is
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a simple model for a wireless interference channel or a DSL cable bundle. �e channel
outputs corresponding to the inputs X1 and X2 are

Y1 = 11X1 + 12X2 + Z1 ,

Y2 = 21X1 + 22X2 + Z2 ,

where  jk , j , k = 1, 2, is the channel gain from sender k to receiver j, and Z1 ∼ N(0, N0/2)

and Z2 ∼ N(0, N0/2) are noise components. Assume average power constraint P on each
of X1 and X2. We assume without loss of generality that N0/2 = 1 and de�ne the received
SNRs as S1 = 211P and S2 = 222P and the received interference-to-noise ratios (INRs) as
I1 = 212P and I2 = 221P.

Z1

Z2

X1

X2

Y1

Y2

12

21

22

11

Figure .. Gaussian interference channel.

�e capacity region of the Gaussian IC is not known in general.

6.4.1 Inner Bounds

We specialize the inner bounds in Section . to the Gaussian case.

Time division with power control. Using time division and power control, we obtain the
time-division inner bound on the capacity region of the Gaussian IC that consists of all
rate pairs (R1 , R2) such that

R1 < α C(S1/α),

R2 < ᾱ C(S2/ᾱ)

for some α ∈ [0, 1].

Treating interference as noise. Consider the inner bound in (.) subject to the power
constraints. By setting X1 ∼ N(0, P) , X2 ∼ N(0, P), andQ = , we obtain the inner bound
on the capacity region of the Gaussian IC consisting of all rate pairs (R1 , R2) such that

R1 < C�S1/(1 + I1)�,

R2 < C�S2/(1 + I2)�.
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Note, however, that Gaussian input signals are not necessarily optimal when evaluating
the mutual information characterization in (.) under the power constraints. Also note
that the above inner bound can be further improved via time sharing and power control.

Simultaneous nonunique decoding. �e inner bound in (.) subject to the power con-
straints is optimized by setting X1 ∼ N(0, P) , X2 ∼ N(0, P), andQ = . �is gives the in-
ner bound on the capacity region of the Gaussian IC that consists of all rate pairs (R1 , R2)

such that

R1 < C(S1),

R2 < C(S2),

R1 + R2 < min�C(S1 + I1), C(S2 + I2)�.
Although this bound is again achieved using optimal point-to-point Gaussian codes, it
cannot be achieved in general via successive cancellation decoding.

�e above inner bounds are compared in Figure . for symmetric Gaussian ICs with
SNRs S1 = S2 = S = 1 and increasing INRs I1 = I2 = I . When interference is weak (Fig-
ure .a), treating interference as noise can outperform time division and simultaneous
nonunique decoding, and is in fact sum-rate optimal as we show in Section ... As in-
terference becomes stronger (Figure .b), simultaneous nonunique decoding and time
division begin to outperform treating interference as noise. As interference becomes even
stronger, simultaneous nonunique decoding outperforms the other two coding schemes
(Figures .c,d), ultimately achieving the interference-free rate region consisting of all
rate pairs (R1 , R2) such that R1 < C1 and R2 < C2 (Figure .d).

6.4.2 Capacity Region of the Gaussian IC with Strong Interference

AGaussian IC is said to have strong interference if |21| ≥ |11| and |12| ≥ |22|, or equiv-
alently, I2 ≥ S1 and I1 ≥ S2.

Theorem .. �e capacity region of the Gaussian IC with strong interference is the
set of rate pairs (R1 , R2) such that

R1 ≤ C(S1),

R2 ≤ C(S2),

R1 + R2 ≤ min�C(S1 + I1), C(S2 + I2)�.
�e proof of achievability follows by using simultaneous nonunique decoding. �e

proof of the converse follows by noting that the above condition is equivalent to the strong
interference condition for the DM-IC in (.) and showing that X1 ∼ N(0, P) and X2 ∼
N(0, P) optimize the mutual information terms.

�e nontrivial step is to show that the condition I2 ≥ S1 and I1 ≥ S2 is equivalent
to the condition I(X1 ;Y1|X2) ≤ I(X1 ;Y2|X2) and I(X2 ;Y2|X1) ≤ I(X2 ;Y1|X1) for every
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RTD

RSND

RIAN

R1

R2

RTD

RSND

RIAN
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(a) I = 0.1 (b) I = 0.5

RTD

RSND

R1

R2

RIAN

RTD RSND

R1

R2

RIAN

(c) I = 1.1 (d) I = 5.5

Figure.. Comparison of time division (regionRTD), treating interference as noise
(region RIAN), and simultaneous nonunique decoding (region RSND) for S =  and
di�erent values of I . Treating interference as noise achieves the sum-capacity for
case (a), while RSND is the capacity region for cases (c) and (d).

F(x1)F(x2). If I2 ≥ S1 and I1 ≥ S2, then it can be easily shown that the Gaussian BC from
X1 to (Y2 − 22X2 ,Y1 − 12X2) given X2 is degraded and theGaussian BC from X2 to (Y1 −
11X1 , Y2 − 21X1) given X1 is degraded, and hence each is more capable. �is proves one
direction of the equivalence. To prove the other direction, assume that h(11X1 + Z1) ≤
h(21X1 + Z2) and h(22X2 + Z2) ≤ h(12X2 + Z1). Substituting X1 ∼ N(0, P) and X2 ∼
N(0, P) shows that I2 ≥ S1 and I1 ≥ S2, respectively.

Remark .. AGaussian IC is said to have very strong interference if S2 ≤ I1/(1 + S1) and
S1 ≤ I2/(1 + S2). It can be shown that this condition is the same as the very strong in-
terference condition for the DM-IC in (.) when restricted to Gaussian inputs. Under
this condition, the capacity region is the set of rate pairs (R1 , R2) such that R1 ≤ C(S1) and
R2 ≤ C(S2) and hence interference does not impair communication.
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6.4.3 Sum-Capacity of the Gaussian IC with Weak Interference

A Gaussian IC is said to have weak interference if for some ρ1 , ρ2 ∈ [0, 1],

yI1/S2 (1 + I2) ≤ ρ2y1 − ρ21 ,

yI2/S1 (1 + I1) ≤ ρ1y1 − ρ22.
(.)

Under this weak interference condition, treating interference as noise is optimal for the
sum-rate.

Theorem .. �e sum-capacity of the Gaussian IC with weak interference is

Csum = C� S1
1 + I1

� + C� S2
1 + I2

� .

�e interesting part of the proof is the converse. It involves the use of a genie to es-
tablish an upper bound on the sum-capacity. For simplicity of presentation, we consider
the symmetric case with I1 = I2 = I and S1 = S2 = S. In this case, the weak interference
condition in (.) reduces to xI/S (1 + I) ≤ 1

2
(.)

and the sum-capacity is Csum = 2 C(S/(1 + I)).

Proof of the converse. Consider the genie-aided Gaussian IC depicted in Figure . with
side information

T1 = xI/P (X1 + ηW1),

T2 = xI/P (X2 + ηW2),

whereW1 ∼ N(0, 1) andW2 ∼ N(0, 1) are independent noise components with E(Z1W1) =
E(Z2W2) = ρ and η ≥ 0. Suppose that a genie reveals T1 to decoder  and T2 to decoder .
Clearly, the sum-capacity of this channel C̃sum ≥ Csum.

We �rst show that if η2I ≤ (1 − ρ2)P (useful genie), then the sum-capacity of the
genie-aided channel is achieved by using Gaussian inputs and treating interference as
noise. We then show that if in addition, ηρxS/P = 1 + I (smart genie), then the sum-
capacity of the genie-aided channel is the same as that of the original channel. Since
C̃sum ≥ Csum, this also shows that Csum is achieved by using Gaussian inputs and treating
interference as noise. Using the second condition to eliminate η from the �rst condi-

tion gives xI/S(1 + I) ≤ ρy1 − ρ2. Taking ρ = x1/2, which maximizes the range of I ,
gives the weak interference condition in the theorem. �e proof steps involve properties
of di�erential entropy, including the maximum di�erential entropy lemma; the fact that
Gaussian is the worst noise with a given average power in an additive noise channel with
Gaussian input (see Problem .); and properties of jointly Gaussian random variables
(see Appendix B).
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Z1 ηW1

Z2 ηW2

X1

X2

Y1

Y2

T1

T2

xI/P

xI/P
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xI/P

xS/P

xS/P

Figure .. Genie-aided Gaussian interference channel.

Let X∗
1 and X∗

2 be independent N(0, P) random variables, and Y∗
1 ,Y∗

2 and T∗
1 , T∗

2

be the corresponding channel outputs and side information. �en we can establish the
following condition under which C̃sum is achieved by treating interference as Gaussian
noise.

Lemma . (Useful Genie). If η2I ≤ (1 − ρ2)P, then the sum-capacity of the above
genie-aided channel is

C̃sum = I(X∗

1 ;Y∗

1 , T∗

1 ) + I(X∗

2 ;Y∗

2 , T∗

2 ).

�e proof of this lemma is in Appendix A.

Remark .. If ρ = 0, η = 1, and I ≤ P, then the genie is always useful.

Continuing the proof of the converse, suppose that the following smart genie condition

ηρxS/P = 1 + I

holds. Note that combined with the (useful genie) condition for the lemma, the smart
genie gives the weak interference condition in (.). Now by the smart genie condition,

E(T∗

1 |X
∗

1 ,Y∗

1 ) = E�T∗

1
!!!! X∗

1 , xI/P X∗

2 + Z1�
= xI/P X∗

1 + ηxI/P E�W1
!!!! xI/P X∗

2 + Z1�
= xI/P X∗

1 + ηρxI/P

1 + I
�xI/P X∗

2 + Z1�
= xI/S Y∗

1= E(T∗

1 |Y
∗

1 ).



6.5 Han–Kobayashi Inner Bound 143

Since all randomvariables involved are jointly Gaussian, this implies that X∗
1 → Y∗

1 → T∗
1

form a Markov chain, or equivalently, I(X∗
1 ; T∗

1 |Y
∗
1 ) = 0. Similarly I(X∗

2 ; T∗
2 |Y

∗
2 ) = 0.

Finally, by the useful genie lemma,

Csum ≤ C̃sum = I(X∗

1 ;Y∗

1 , T∗

1 ) + I(X∗

2 ;Y∗

2 , T∗

2 ) = I(X∗

1 ;Y∗

1 ) + I(X∗

2 ;Y∗

2 ).

�is completes the proof of the converse.

Remark .. �e idea of a genie providing each receiver with side information about
its intended codeword can be used to obtain outer bounds on the capacity region of the
general Gaussian IC; see Problem .. �is same idea will be used also in the converse
proof for the injective deterministic IC in Section ..

6.5 HAN–KOBAYASHI INNER BOUND

�e Han–Kobayashi inner bound is the best-known bound on the capacity region of the
DM-IC. It includes all the inner boundswe discussed so far, and is tight for all interference
channels with known capacity regions. We consider the following characterization of this
inner bound.

Theorem . (Han–Kobayashi Inner Bound). A rate pair (R1 , R2) is achievable for
the DM-IC p(y1 , y2|x1 , x2) if

R1 < I(X1 ;Y1 |U2 ,Q),

R2 < I(X2 ;Y2 |U1 ,Q),

R1 + R2 < I(X1 ,U2 ;Y1 |Q) + I(X2 ;Y2 |U1 ,U2 ,Q),

R1 + R2 < I(X2 ,U1 ;Y2 |Q) + I(X1 ;Y1 |U1 ,U2 ,Q),

R1 + R2 < I(X1 ,U2 ;Y1 |U1 ,Q) + I(X2 ,U1 ;Y2 |U2 ,Q),

2R1 + R2 < I(X1 ,U2 ;Y1 |Q) + I(X1 ;Y1 |U1 ,U2 ,Q) + I(X2 ,U1 ;Y2 |U2 ,Q),

R1 + 2R2 < I(X2 ,U1 ;Y2 |Q) + I(X2 ;Y2 |U1 ,U2 ,Q) + I(X1 ,U2 ;Y1 |U1 ,Q)

for some pmf p(q)p(u1 , x1|q)p(u2 , x2|q), where |U1| ≤ |X1| + 4, |U2| ≤ |X2| + 4, and
|Q| ≤ 6.

Remark 6.5. �e Han–Kobayashi inner bound reduces to the interference-as-noise in-
ner bound in (.) by setting U1 = U2 = . At the other extreme, the Han–Kobayashi
inner bound reduces to the simultaneous-nonunique-decoding inner bound in (.) by
settingU1 = X1 andU2 = X2. �us, the bound is tight for the class of DM-ICs with strong
interference.

Remark 6.6. �e Han–Kobayashi inner bound can be readily extended to the Gaussian
IC with average power constraints and evaluated using Gaussian (U j , X j), j = 1, 2; see
Problem .. It is not known, however, if the restriction to the Gaussian distribution is
su�cient.
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6.5.1 Proof of the Han–Kobayashi Inner Bound

�e proof uses rate splitting. We represent each message M j , j = 1, 2, by independent
“public” message M j0 at rate R j0 and “private” message M j j at rate R j j . �us, R j = R j0 +
R j j . �ese messages are sent via superposition coding, whereby the cloud center U j

represents the public message M j0 and the satellite codeword X j represents the mes-
sage pair (M j0 , M j j). �e public messages are to be recovered by both receivers, while
each private message is to be recovered only by its intended receiver. We �rst show that
(R10 , R20 , R11 , R22) is achievable if

R11 < I(X1 ;Y1 |U1 ,U2 ,Q),

R11 + R10 < I(X1 ;Y1 |U2 ,Q),

R11 + R20 < I(X1 ,U2 ;Y1 |U1 ,Q),

R11 + R10 + R20 < I(X1 ,U2 ;Y1 |Q),

R22 < I(X2 ;Y2 |U1 ,U2 ,Q),

R22 + R20 < I(X2 ;Y2 |U1 ,Q),

R22 + R10 < I(X2 ,U1 ;Y2 |U2 ,Q),

R22 + R20 + R10 < I(X2 ,U1 ;Y2 |Q)

for some pmf p(q)p(u1 , x1|q)p(u2 , x2|q).

Codebook generation. Fix a pmf p(q)p(u1 , x1|q)p(u2 , x2|q). Generate a sequence q
n ∼∏n

i=1 pQ(qi). For j = 1, 2, randomly and conditionally independently generate 2nR j0 se-
quences unj (m j0), m j0 ∈ [1 : 2nR j0], each according to ∏n

i=1 pU j |Q
(u ji|qi). For each m j0,

randomly and conditionally independently generate 2nR j j sequences xnj (m j0 , m j j), m j j ∈
[1 : 2nR j j ], each according to∏n

i=1 pX j |U j ,Q
(x ji |u ji(m j0), qi).

Encoding. To sendm j = (m j0 , m j j), encoder j = 1, 2 transmits xnj (m j0 , m j j).

Decoding.Weuse simultaneous nonunique decoding. Upon receiving yn1 , decoder  �nds
the unique message pair (m̂10 , m̂11) such that (qn , un1(m̂10), u

n
2(m20), x

n
1 (m̂10 , m̂11), y

n
1 ) ∈

T (n)
є for somem20 ∈ [1 : 2nR20]; otherwise it declares an error. Decoder  �nds themessage

pair (m̂20 , m̂22) similarly.

Analysis of the probability of error. Assume message pair ((1, 1), (1, 1)) is sent. We
bound the average probability of error for each decoder. First consider decoder . As
shown inTable ., we have eight cases to consider (here conditioning on qn is suppressed).
Cases  and , and  and , respectively, share the same pmf, and case  does not cause an
error. �us, we are le� with only �ve error events and decoder  makes an error only if
one or more of the following events occur:

E10 = �(Qn ,Un
1 (1),U

n
2 (1), X

n
1 (1, 1),Yn

1 ) ∉ T
(n)
є �,

E11 = �(Qn ,Un
1 (1),U

n
2 (1), X

n
1 (1, m11),Y

n
1 ) ∈ T

(n)
є for somem11 ̸= 1�,

E12 = �(Qn ,Un
1 (m10),U

n
2 (1), X

n
1 (m10 , m11),Y

n
1 ) ∈ T

(n)
є for somem10 ̸= 1, m11�,
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m10 m20 m11 Joint pmf

    p(un1 , xn1 )p(u
n
2)p(y

n
1 |x

n
1 , un2)

   ∗ p(un1 , xn1 )p(u
n
2)p(y

n
1 |u

n
1 , un2)

 ∗  ∗ p(un1 , xn1 )p(u
n
2)p(y

n
1 |u

n
2)

 ∗   p(un1 , xn1 )p(u
n
2)p(y

n
1 |u

n
2)

  ∗ ∗ p(un1 , xn1 )p(u
n
2)p(y

n
1 |u

n
1)

 ∗ ∗  p(un1 , xn1 )p(u
n
2)p(y

n
1 )

 ∗ ∗ ∗ p(un1 , xn1 )p(u
n
2)p(y

n
1 )

  ∗  p(un1 , xn1 )p(u
n
2)p(y

n
1 |x

n
1 )

Table .. �e joint pmfs induced by di�erent (m10 , m20 , m11) triples.

E13 = �(Qn ,Un
1 (1),U

n
2 (m20), X

n
1 (1, m11),Y

n
1 ) ∈ T

(n)
є for somem20 ̸= 1, m11 ̸= 1�,

E14 = �(Qn ,Un
1 (m10),U

n
2 (m20), X

n
1 (m10 , m11),Y

n
1 ) ∈ T

(n)
є

for somem10 ̸= 1, m20 ̸= 1, m11�.
Hence, the average probability of error for decoder  is upper bounded as

P(E1) ≤ P(E10) + P(E11) + P(E12) + P(E13) + P(E14).

We bound each term. By the LLN, P(E10) tends to zero as n → ∞. By the packing
lemma, P(E11) tends to zero as n → ∞ if R11 < I(X1 ;Y1|U1 ,U2 ,Q) − δ(є). Similarly,
by the packing lemma, P(E12), P(E13), and P(E14) tend to zero as n → ∞ if the con-
ditions R11 + R10 < I(X1 ;Y1|U2 ,Q) − δ(є), R11 + R20 < I(X1 ,U2 ;Y1|U1 ,Q) − δ(є), and
R11 + R10 + R20 < I(X1 ,U2 ;Y1|Q) − δ(є) are satis�ed, respectively. �e average probability
of error for decoder  can be bounded similarly. Finally, substituting R11 = R1 − R10 and
R22 = R2 − R20, and using the Fourier–Motzkin procedure with the constraints 0 ≤ R j0 ≤
R j , j = 1, 2, to eliminate R10 and R20 (see Appendix D for the details), we obtain the seven
inequalities in �eorem . and two additional inequalities R1 < I(X1 ;Y1|U1 ,U2 ,Q) +
I(X2 ,U1 ;Y2|U2 ,Q) and R2 < I(X1 ,U2 ;Y1|U1 ,Q) + I(X2 ;Y2|U1 ,U2 ,Q). �e correspond-
ing inner bound can be shown to be equivalent to the inner bound in �eorem .; see
Problem .. �e cardinality bound onQ can be proved using the convex cover method
in Appendix C. �is completes the proof of the Han–Kobayashi inner bound.

6.6 INJECTIVE DETERMINISTIC IC

Consider the deterministic interference channel depicted in Figure .. �e channel out-
puts are given by the functions

Y1 = y1(X1 , T2),

Y2 = y2(X2 , T1),
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X1

X2

Y1

Y2

T2

T1

t1(x1)

t2(x2)

y1(x1 , t2)

y2(x2 , t1)

Figure .. Injective deterministic interference channel.

where T1 = t1(X1) and T2 = t2(X2) are functions of X1 and X2, respectively. We assume
that the functions y1 and y2 are injective in t1 and t2, respectively, that is, for every x1 ∈ X1,
y1(x1 , t2) is a one-to-one function of t2 and for every x2 ∈ X2, y2(x2 , t1) is a one-to-one
function of t1. Note that these conditions imply that H(Y1|X1) = H(T2) and H(Y2|X2) =
H(T1).

�is class of interference channels is motivated by the Gaussian IC, where the func-
tions y1 and y2 are additions. Unlike the Gaussian IC, however, the channel is noiseless
and its capacity region can be fully characterized.

Theorem .. �e capacity region of the injective deterministic interference channel
is the set of rate pairs (R1 , R2) such that

R1 ≤ H(Y1 |T2 ,Q),

R2 ≤ H(Y2 |T1 ,Q),

R1 + R2 ≤ H(Y1 |Q) + H(Y2 |T1 , T2 ,Q),

R1 + R2 ≤ H(Y1 |T1 , T2 ,Q) + H(Y2 |Q),

R1 + R2 ≤ H(Y1 |T1 ,Q) + H(Y2 |T2 ,Q),

2R1 + R2 ≤ H(Y1 |Q) + H(Y1 |T1 , T2 ,Q) + H(Y2 |T2 ,Q),

R1 + 2R2 ≤ H(Y1 |T1 ,Q) + H(Y2 |Q) + H(Y2 |T1 , T2 ,Q)

for some pmf p(q)p(x1|q)p(x2|q).

�e proof of achievability follows by noting that the above region coincides with the
Han–Kobayashi inner bound (takeU1 = T1,U2 = T2).

Remark .. By the one-to-one conditions on the functions y1 and y2, decoder  knows
Tn
2 a�er decoding for Xn

1 and decoder  knows Tn
1 a�er decoding for Xn

2 . As such, the
interference random variables T1 and T2 can be naturally considered as the auxiliary ran-
dom variables that represent the public messages in the Han–Kobayashi scheme.

Proof of the converse. Consider the �rst two inequalities in the characterization of the
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capacity region. By specializing the outer bound in (.), we obtain

nR1 ≤ nI(X1 ;Y1 |X2 ,Q) + nєn = nH(Y1 |T2 ,Q) + nєn ,

nR2 ≤ nH(Y2 |T1 ,Q) + nєn ,

whereQ is the usual time-sharing random variable.
Now consider the third inequality. By Fano’s inequality,

n(R1 + R2) ≤ I(M1 ;Yn
1 ) + I(M2 ;Yn

2 ) + nєn
(a)≤ I(M1 ;Yn

1 ) + I(M2 ;Yn
2 , Tn

2 ) + nєn≤ I(Xn
1 ;Yn

1 ) + I(Xn
2 ;Yn

2 , Tn
2 ) + nєn

(b)≤ I(Xn
1 ;Yn

1 ) + I(Xn
2 ; Tn

2 ,Yn
2 |T

n
1 ) + nєn= H(Yn

1 ) − H(Yn
1 |X

n
1 ) + I(Xn

2 ; Tn
2 |T

n
1 ) + I(Xn

2 ;Yn
2 |T

n
1 , Tn

2 ) + nєn
(c)= H(Yn

1 ) + H(Yn
2 |T

n
1 , Tn

2 ) + nєn

≤ nH
i=1

�H(Y1i) + H(Y2i |T1i , T2i)� + nєn

= n�H(Y1 |Q) + H(Y2 |T1 , T2 ,Q)� + nєn.

Here step (a) is the key step in the proof. Even if a “genie” gives receiver 2 its common
messageT2 as side information to help it �nd X2, the capacity region does not change! Step
(b) follows by the fact that Xn

2 and Tn
1 are independent, and (c) follows by the equalities

H(Yn
1 |X

n
1 ) = H(Tn

2 ) and I(Xn
2 ; Tn

2 |T
n
1 ) = H(Tn

2 ). Similarly, for the fourth inequality,

n(R1 + R2) ≤ n�H(Y2 |Q) + H(Y1 |T1 , T2 ,Q)� + nєn.

Consider the ��h inequality

n(R1 + R2) ≤ I(Xn
1 ;Yn

1 ) + I(Xn
2 ;Yn

2 ) + nєn= H(Yn
1 ) − H(Yn

1 |X
n
1 ) + H(Yn

2 ) − H(Yn
2 |X

n
1 ) + nєn

(a)= H(Yn
1 ) − H(Tn

2 ) + H(Yn
2 ) − H(Tn

1 ) + nєn≤ H(Yn
1 |T

n
1 ) + H(Yn

2 |T
n
2 ) + nєn≤ n�H(Y1 |T1 ,Q) + H(Y2 |T2 ,Q)� + nєn ,

where (a) follows by the one-to-one conditions of the injective deterministic IC. Following
similar steps, consider the sixth inequality

n(2R1 + R2) ≤ 2I(M1 ;Yn
1 ) + I(M2 ;Yn

2 ) + nєn≤ I(Xn
1 ;Yn

1 ) + I(Xn
1 ;Yn

1 , Tn
1 |T

n
2 ) + I(Xn

2 ;Yn
2 ) + nєn= H(Yn

1 ) − H(Tn
2 ) + H(Tn

1 ) + H(Yn
1 |T

n
1 , Tn

2 ) + H(Yn
2 ) − H(Tn

1 ) + nєn= H(Yn
1 ) − H(Tn

2 ) + H(Yn
1 |T

n
1 , Tn

2 ) + H(Yn
2 ) + nєn≤ H(Yn

1 ) + H(Yn
1 |T

n
1 , Tn

2 ) + H(Yn
2 |T

n
2 ) + nєn≤ n�H(Y1 |Q) + H(Y1 |T1 , T2 ,Q) + H(Y2 |T2 ,Q)� + nєn.
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Similarly, for the last inequality, we have

n(R1 + 2R2) ≤ n�H(Y1 |T1 ,Q) + H(Y2 |Q) + H(Y2 |T1 , T2 ,Q)� + nєn.

�is completes the proof of the converse.

6.7 CAPACITY REGION OF THE GAUSSIAN IC WITHIN HALF A BIT

As we have seen, the capacity (region) of the Gaussian IC is known only under certain
strong and weak interference conditions and is achieved by extreme special cases of the
Han–Kobayashi scheme where no rate splitting is used. How close is the Han–Kobayashi
inner bound in its full generality to the capacity region?

We show that even a suboptimal evaluation of theHan–Kobayashi inner bound di�ers
by no more than half a bit per rate component from the capacity region, independent of
the channel parameters! We prove this result by �rst establishing bounds on the capac-
ity region of a class of semideterministic ICs that include both the Gaussian IC and the
injective deterministic IC in Section . as special cases.

6.7.1 Injective Semideterministic IC

Consider the semideterministic interference channel depicted in Figure .. Here again
the functions y1 , y2 satisfy the condition that for every x1 ∈ X1, y1(x1 , t2) is a one-to-one
function of t2 and for every x2 ∈ X2, y2(x2 , t1) is a one-to-one function of t1. �e gener-
alization comes from making the mappings from X1 to T1 and from X2 to T2 random.

X1

X2

Y1

Y2

T2

T1

y1(x1 , t2)

y2(x2 , t1)

p(t1|x1)

p(t2|x2)

Figure .. Injective semideterministic interference channel.

Note that if we assume the channel variables to be real-valued instead of �nite, the
Gaussian IC becomes a special case of this semideterministic IC with T1 = 21X1 + Z2

and T2 = 12X2 + Z1.

Outer boundon the capacity region. Consider the following outer bound on the capacity
region of the injective semideterministic IC.
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Proposition .. Any achievable rate pair (R1 , R2) for the injective semideterministic
IC must satisfy the inequalities

R1 ≤ H(Y1 |X2 ,Q) − H(T2 |X2),

R2 ≤ H(Y2 |X1 ,Q) − H(T1 |X1),

R1 + R2 ≤ H(Y1 |Q) + H(Y2 |U2 , X1 ,Q) − H(T1 |X1) − H(T2 |X2),

R1 + R2 ≤ H(Y1 |U1 , X2 ,Q) + H(Y2 |Q) − H(T1 |X1) − H(T2 |X2),

R1 + R2 ≤ H(Y1 |U1 ,Q) + H(Y2 |U2 ,Q) − H(T1 |X1) − H(T2 |X2),

2R1 + R2 ≤ H(Y1 |Q) + H(Y1 |U1 , X2 ,Q) + H(Y2 |U2 ,Q) − H(T1 |X1) − 2H(T2 |X2),

R1 + 2R2 ≤ H(Y2 |Q) + H(Y2 |U2 , X1 ,Q) + H(Y1 |U1 ,Q) − 2H(T1 |X1) − H(T2 |X2)

for some pmf p(q)p(x1|q)p(x2|q)pT1|X1
(u1|x1)pT2|X2

(u2|x2).

�is outer bound is established by extending the proof of the converse for the injective
deterministic IC.We again use a genie argument withU j conditionally independent of Tj

given X j , j = 1, 2. �e details are given in Appendix B.

Remark 6.8. If we replace each channel p(t j|x j), j = 1, 2, with a deterministic function
t j(X j), the above outer bound reduces to the capacity region of the injective deterministic
IC in �eorem . by settingU j = Tj , j = 1, 2.

Remark 6.9. �e above outer bound is not tight under the strong interference condition
in (.), and tighter outer bounds can be established.

Remark 6.10. We can obtain a corresponding outer bound for the Gaussian IC with dif-
ferential entropies in place of entropies in the above outer bound.

Inner bound on the capacity region. �e Han–Kobayashi inner bound with the restric-
tion that p(u1 , u2|q, x1 , x2) = pT1|X1

(u1|x1) pT2|X2
(u2|x2) reduces to the following.

Proposition .. A rate pair (R1 , R2) is achievable for the injective semideterministic
IC if

R1 < H(Y1 |U2 ,Q) − H(T2 |U2 ,Q),

R2 < H(Y2 |U1 ,Q) − H(T1 |U1 ,Q),

R1 + R2 < H(Y1 |Q) + H(Y2 |U1 ,U2 ,Q) − H(T1 |U1 ,Q) − H(T2 |U2 ,Q),

R1 + R2 < H(Y1 |U1 ,U2 ,Q) + H(Y2 |Q) − H(T1 |U1 ,Q) − H(T2 |U2 ,Q),

R1 + R2 < H(Y1 |U1 ,Q) + H(Y2 |U2 ,Q) − H(T1 |U1 ,Q) − H(T2 |U2 ,Q),

2R1 + R2 < H(Y1 |Q) + H(Y1 |U1 ,U2 ,Q) + H(Y2 |U2 ,Q)

− H(T1 |U1 ,Q) − 2H(T2 |U2 ,Q),
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R1 + 2R2 < H(Y2 |Q) + H(Y2 |U1 ,U2 ,Q) + H(Y1 |U1 ,Q)

− 2H(T1 |U1 ,Q) − H(T2 |U2 ,Q)

for some pmf p(q)p(x1|q)p(x2|q)pT1|X1
(u1|x1)pT2|X2

(u2|x2).

Considering the Gaussian IC, we obtain a corresponding inner bound with di�eren-
tial entropies in place of entropies. �is inner bound coincides with the outer bound for
the injective deterministic interference channel discussed in Section ., where T1 is a
deterministic function of X1 and T2 is a deterministic function of X2 (thus U1 = T1 and
U2 = T2).

Gap between the inner and outer bounds. For a �xed (Q , X1 , X2) ∼ p(q)p(x1|q)p(x2|q),
let Ro(Q , X1 , X2) be the region de�ned by the set of inequalities in Proposition ., and
let Ri(Q , X1 , X2) denote the closure of the region de�ned by the set of inequalities in
Proposition ..

Lemma .. If (R1 , R2) ∈ Ro(Q , X1 , X2), then

�R1 − I(X2 ; T2 |U2 ,Q), R2 − I(X1 ; T1 |U1 ,Q)� ∈ Ri(Q , X1 , X2).

To prove this lemma, we �rst construct the rate region Ro(Q , X1 , X2) from the outer
boundRo(Q , X1 , X2) by replacing X j in every positive conditional entropy term inRo(Q ,

X1 , X2) withU j for j = 1, 2. Clearly Ro(Q , X1 , X2) ⊇ Ro(Q , X1 , X2). Observing that

I(X j ; Tj |U j) = H(Tj |U j) − H(Tj |X j), j = 1, 2,

and comparing the rate region Ro(Q , X1 , X2) to the inner bound Ri(Q , X1 , X2), we see
that Ro(Q , X1 , X2) can be equivalently characterized as the set of rate pairs (R1 , R2) that
satisfy the statement in Lemma ..

6.7.2 Half-Bit Theorem for the Gaussian IC

We show that the outer bound in Proposition ., when specialized to the Gaussian IC,
is achievable within half a bit per dimension. For the Gaussian IC, the auxiliary random
variables in the outer bound can be expressed as

U1 = 21X1 + Z�

2

U2 = 12X2 + Z�

1 ,
(.)

where Z�
1 and Z

�
2 are N(0, 1), independent of each other and of (X1 , X2 , Z1 , Z2). Substitut-

ing in the outer bound in Proposition ., we obtain an outer bound Ro on the capacity
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region of the Gaussian IC that consists of all rate pairs (R1 , R2) such that

R1 ≤ C(S1),

R2 ≤ C(S2),

R1 + R2 ≤ C� S1
1 + I2

� + C �I2 + S2� ,

R1 + R2 ≤ C� S2
1 + I1

� + C �I1 + S1� ,

R1 + R2 ≤ C�S1 + I1 + I1I2
1 + I2

� + C�S2 + I2 + I1I2
1 + I1

� ,

2R1 + R2 ≤ C� S1
1 + I2

� + C �S1 + I1� + C�S2 + I2 + I1I2
1 + I1

� ,

R1 + 2R2 ≤ C� S2
1 + I1

� + C �S2 + I2� + C�S1 + I1 + I1I2
1 + I2

� .

(.)

Now we show that Ro is achievable with half a bit.

Theorem . (Half-Bit Theorem). For the Gaussian IC, if (R1 , R2) ∈ Ro, then (R1 −
1/2, R2 − 1/2) is achievable.

To prove this theorem, consider Lemma . for the Gaussian IC with the auxiliary
random variables in (.). �en, for j = 1, 2,

I(X j ; Tj |U j ,Q) = h(Tj |U j ,Q) − h(Tj |U j , X j ,Q)

≤ h(Tj −U j) − h(Z j)

= 1

2
.

6.7.3 Symmetric Degrees of Freedom

Consider the symmetric Gaussian IC with S1 = S2 = S and I1 = I2 = I . Note that S and
I fully characterize the channel. De�ne the symmetric capacity of the channel as Csym =
max{R : (R, R) ∈ C } and the normalized symmetric capacity as

dsym = Csym

C(S)
.

We�nd the symmetric degrees of freedom (DoF) d∗
sym, which is the limit of dsym as the SNR

and INR approach in�nity. Note that in taking the limit, we are considering a sequence
of channels rather than any particular channel. �is limit, however, sheds light on the
optimal coding strategies under di�erent regimes of high SNR/INR.
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Specializing the outer bound Ro in (.) to the symmetric case yields

Csym ≤ Csym = min�C (S) ,
1

2
C� S

1 + I
� + 1

2
C (S + I) , C¤S + I + I2

1 + I
¥ ,

2

3
C� S

1 + I
� + 1

3
C(S + 2I + I2)�.

By the half-bit theorem,
Csym − 1/2

C(S)
≤ dsym ≤ Csym

C(S)
.

�us, the di�erence between the upper and lower bounds converges to zero as S → ∞,
and the normalized symmetric capacity converges to the degrees of freedom d∗

sym. �is
limit, however, depends on how I scales as S → ∞. Since it is customary to measure
SNR and INR in decibels (dBs), we consider the limit for a constant ratio between the
logarithms of the INR and SNR

α = log I

log S
,

or equivalently, I = Sα . �en, as S → ∞, the normalized symmetric capacity dsym con-
verges to

d∗

sym(α) = lim
S→∞

Csym|I=Sá

C(S)

= min�1, max{α/2, 1 − α/2}, max{α, 1 − α},

max{2/3, 2α/3} + max{1/3, 2α/3} − 2α/3�.
Since the fourth bound inside the minimum is redundant, we have

d∗

sym(α) = min�1, max{α/2, 1 − α/2}, max{α, 1 − α}�. (.)

�e symmetric DoF as a function of α is plotted in Figure .. Note the unexpected W
(instead of V) shape of the DoF curve. When interference is negligible (α ≤ 1/2), the DoF
is 1 − α and corresponds to the limit of the normalized rates achieved by treating inter-
ference as noise. For strong interference (α ≥ 1), the DoF is min{1, α/2} and corresponds
to simultaneous decoding. In particular, when interference is very strong (α ≥ 2), it does
not impair the DoF. For moderate interference (1/2 ≤ α ≤ 1), the DoF corresponds to the
Han–Kobayashi rate splitting; see Problem .. However, the DoF �rst increases until
α = 2/3 and then decreases to 1/2 as α is increased to 1. Note that for α = 1/2 and α = 1,
time division is also optimal.

Remark .. In the above analysis, we scaled the channel gains under a �xed power con-
straint. Alternatively, we can �x the channel gains and scale the power P to in�nity. It is
not di�cult to see that under this high power regime, limP→∞ d∗ = 1/2, regardless of the
values of the channel gains. �us time division is asymptotically optimal.
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d∗
sym

α

1

2/3

1/2

1/2 2/3 1 2

Figure .. Degrees of freedom for symmetric Gaussian IC versus α = log I/ log S.

6.8 DETERMINISTIC APPROXIMATION OF THE GAUSSIAN IC

We introduce the q-ary expansion deterministic (QED) interference channel and show
that it closely approximates the Gaussian IC in the limit of high SNR. �e inputs to the
QED-IC are q-ary L-vectors X1 and X2 for some “q-ary digit pipe” number L. We express
X1 as [X1,L−1 , X1,L−2 , X1,L−3 , . . . , X10]

T , where X1l ∈ [0 : q − 1] for l ∈ [0 : L − 1], and sim-
ilarly for X2. Consider the symmetric case where the interference is speci�ed by the pa-
rameter α ∈ [0, 2] such that αL is an integer. De�ne the “shi�” parameter s = (α − 1)L.
�e output of the channel depends on whether the shi� is negative or positive.

Downshi�. Here s < 0, i.e., 0 ≤ α < 1, and Y1 is a q-ary L-vector with

Y1l = ®X1l if L + s ≤ l ≤ L − 1,

X1l + X2,l−s (mod q) if 0 ≤ l ≤ L + s − 1.

�is case is depicted in Figure .. �e outputs of the channel can be represented as

Y1 = X1 + GsX2 ,

Y2 = GsX1 + X2 ,
(.)

where Gs is an L × L (down)shi� matrix with Gs( j , k) = 1 if k = j − s and Gs( j , k) = 0,
otherwise.

Upshi�. Here s ≥ 0, i.e., 1 ≤ α ≤ 2, and Y1 is a q-ary αL-vector with

Y1l = .66>66F
X2,l−s if L ≤ l ≤ L + s − 1,

X1l + X2,l−s (mod q) if s ≤ l ≤ L − 1,

X1l if 0 ≤ l ≤ s − 1.

Again the outputs of the channel can be represented as in (.), where Gs is now an
(L + s) × L (up)shi� matrix with Gs( j , k) = 1 if j = k and Gs( j , k) = 0, otherwise.

�e capacity region of the symmetric QED-IC can be obtained by a straightforward
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X1,L−1

X1,L−2

X1,L+s

X1,L+s−1

X1,1

X1,0

X2,L−1

X2,1−s

X2,−s

X2,1

X2,0

Y1,L−1
Y1,L−2

Y1,L+s
Y1,L+s−1

Y1,1
Y1,0

Figure .. �e q-ary expansion deterministic interference channel with downshi�.

evaluation of the capacity region of the injective deterministic IC in �eorem .. Let
R�
j = R j/(L log q), j = 1, 2. �e normalized capacity region C

� is the set of rate pairs

(R�
1 , R�

2) such that

R�

1 ≤ 1,

R�

2 ≤ 1,

R�

1 + R�

2 ≤ max{2α, 2 − 2α},

R�

1 + R�

2 ≤ max{α, 2 − α},

2R�

1 + R�

2 ≤ 2,

R�

1 + 2R�

2 ≤ 2

(.)

for α ∈ [1/2, 1], and

R�

1 ≤ 1,

R�

2 ≤ 1,

R�

1 + R�

2 ≤ max{2α, 2 − 2α},

R�

1 + R�

2 ≤ max{α, 2 − α}

(.)

for α ∈ [0, 1/2) ∪ (1, 2].
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Surprisingly, the capacity region of the symmetric QED-IC can be achieved error-free
using a simple single-letter linear coding scheme. We illustrate this scheme for the nor-
malized symmetric capacityC�

sym = max{R : (R, R) ∈ C
�}. Encoder j = 1, 2 represents its

“single-letter” message by a q-ary LC�
sym-vectorU j and transmits X j = AU j , where A is an

L × LC�
sym q-ary matrix A. Decoder j multiplies its received symbol Yj by a correspond-

ing LC�
sym × Lmatrix B to recoverU j perfectly! For example, consider a binary expansion

deterministic IC with q = 2, L = 12, and α = 5/6. �e symmetric capacity for this case is
Csym = 7 bits/transmission. For encoding, we use the matrix

A =

(000000000000000000008

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 1 0 0 0 0

0 1 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

)111111111111111111119

.

Note that the �rst  bits ofU j are sent twice, while X1,2 = X1,3 = 0. �e transmitted symbol
X j and the two signal components of the received vector Yj are illustrated in Figure ..
Decoding forU1 can also be performed sequentially as follows (see Figure .):

. U1,6 = Y1,11,U1,5 = Y1,10,U1,1 = Y1,1, andU1,0 = Y1,0. AlsoU2,6 = Y1,3 andU2,5 = Y1,2.

. U1,4 = Y1,9 ⊕U2,6 andU2,4 = Y1,4 ⊕U1,6.

. U1,3 = Y1,8 ⊕U2,5 andU1,2 = Y1,7 ⊕U2,4.

�is decoding procedure corresponds to multiplying the output by the matrix

B =
(0000000008

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0 1 0 0 0

1 0 0 0 1 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

)1111111119
.

Note thatBA = I andBGsA = 0, and hence interference is canceled outwhile the intended
signal is recovered perfectly.

Under the choice of the input X j = AU j , j = 1, 2, where U j is uniformly distributed

over the set of binary vectors of length LC�
sym, the symmetric capacity can be expressed as

Csym = H(U j) = I(U j ;Yj) = I(X j ;Yj), j = 1, 2.
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U1,6

U1,5

U1,4

U1,3

U1,2

U1,4

U1,5

U1,6

0

0
U1,1

U1,0

X1 Y1 = X1 + shi�ed X2

⃝

⃝

⃝

⃝

⃝

⃝

Figure .. Transmitted symbol X j and the received vectorYj . �e circled numbers
denote the order of decoding.

Hence, the symmetric capacity is achieved error-free simply by treating interference as
noise! In fact, the same linear coding technique can achieve the entire capacity region,
which is generally characterized as the set of rate pairs (R1 , R2) such that

R1 < I(X1 ;Y1),

R2 < I(X2 ;Y2)
(.)

for some pmf p(x1)p(x2). A similar linear coding technique can be readily developed for
any q-ary alphabet, dimension L, and α ∈ [0, 2] that achieves the entire capacity region
by treating interference as noise.

6.8.1* QED-IC Approximation of the Gaussian IC

Considering the normalized capacity region characterization in (.) and (.), we can
show that the normalized symmetric capacity of the symmetric QED-IC is

C�

sym = min�1, max{α/2, 1 − α/2}, max{α, 1 − α}� (.)

for α ∈ [0, 2]. �is matches the DoF d∗
sym(α) of the symmetric Gaussian IC in (.) ex-

actly. It can be shown that the Gaussian IC can be closely approximated by a QED-IC.
�erefore, if a normalized rate pair is achievable for the QED-IC, then it is achievable for
the corresponding Gaussian IC in the high SNR/INR limit, and vice versa.

We only sketch the proof that achievability carries over from theQED-IC to theGauss-
ian IC. Consider the q-ary expansions of the inputs and outputs of the Gaussian IC,
e.g., X1 = X1,L−1X1,L−2 ⋅ ⋅ ⋅ X1,1X1,0 . X1,−1X1,−2 ⋅ ⋅ ⋅ , where X1l ∈ [0 : q − 1] are q-ary digits.
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Assuming P = 1, we express the channel outputs as Y1 = $SX1 + $IX2 + Z1 and Y2 =$IX1 +$SX2 + Z2. Suppose that $S and $I are powers of q. �en the digits of X1, X2,
Y1, and Y2 align with each other. We further assume that the noise Z1 is peak-power-
constrained. �en, only the least-signi�cant digits of Y1 are a�ected by the noise. �ese
digits are considered unusable for transmission. Now, we restrict each input digit to
values from [0 : ⌊(q − 1)/2⌋]. �us, the signal additions at the q-ary digit-level are in-
dependent of each other, that is, there are no carry-overs, and the additions are e�ec-
tively modulo-q. Note that this assumption does not a�ect the rate signi�cantly because
log �⌊(q − 1)/2⌋� / log q can be made arbitrarily close to one by choosing q su�ciently
large. Under the above assumptions, we arrive at a QED-IC, whereby the (random cod-
ing) achievability proof for rate pairs in (.) carries over to the Gaussian IC.

Remark .. Recall that the capacity region of the QED-IC can be achieved by a simple
single-letter linear coding technique (treating interference as noise) without using the full
Han–Kobayashi coding scheme. Hence, the approximate capacity region and the DoF
of the Gaussian IC can be both achieved simply by treating interference as noise. �e
resulting approximation gap, however, is signi�cantly larger than half a bit.

6.9 EXTENSIONS TO MORE THAN TWO USER PAIRS

Interference channels withmore than two user pairs are far less understood. For example,
the notion of strong interference does not seem to naturally extend tomore than two user
pairs. �ese channels also exhibit the interesting property that decoding at each receiver is
impaired by the joint e�ect of interference from the other senders rather by each sender’s
signal separately. Consequently, coding schemes that deal directly with the e�ect of the
combined interference signal are expected to achieve higher rates. One such coding scheme
is interference alignment, whereby the code is designed so that the combined interfering
signal at each receiver is con�ned (aligned) to a subset of the receiver signal space. �e
subspace that contains the combined interference is discarded, while the desired signal is
reconstructed from the orthogonal subspace. We illustrate this scheme in the following
example.

Example . (k-User-pair symmetric QED-IC). Consider the k-user-pair QED-IC

Yj = X j + Gs H
j� ̸= j

X j� , j ∈ [1 : k],

where X1 , . . . , Xk are q-ary L vectors, Y1 , . . . ,Yk are q-ary Ls vectors, Ls = max{L, L + s},
and Gs is the Ls × L s-shi� matrix for some s ∈ [−L, L]. As before, let α = (L + s)/L. If
α = 1, then the received signals are identical and the normalized symmetric capacity is
C�
sym = 1/k, which is achieved via time division. However, if α ̸= 1, then the normalized

symmetric capacity is

C�

sym = min�1, max{α, 1 − α}, max{α/2, 1 − α/2}�,
which is equal to the normalized symmetric capacity for the -user-pair case, regardless
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of k! To show this, consider the single-letter linear coding technique described earlier
for the -user-pair case. �en it is easy to check that the symmetric capacity is achiev-
able (error-free), since the interfering signals from other senders are aligned in the same
subspace and can be �ltered out simultaneously.

Using the same approximation procedure detailed for the -user-pair case, this deter-
ministic IC example shows that the DoF of the symmetric k-user-pair Gaussian IC is

d∗

sym(α) = ®1/k if α = 1,

min�1, max{α, 1 − α}, max{α/2, 1 − α/2}� otherwise.

�e DoF is achieved simply by treating interference as noise with a carefully chosen input
pmf.

SUMMARY

∙ Discrete memoryless interference channel (DM-IC)

∙ Simultaneous nonunique decoding is optimal under strong interference

∙ Coded time sharing can strictly outperform time sharing

∙ Han–Kobayashi coding scheme:

∙ Rate splitting and superposition coding

∙ Fourier–Motzkin elimination

∙ Optimal for injective deterministic ICs

∙ Gaussian interference channel:

∙ Capacity region under strong interference achieved via simultaneous decoding

∙ Sum-capacity under weak interference achieved by treating interference as noise

∙ Genie-based converse proof

∙ Han–Kobayashi coding scheme achieves within half a bit of the capacity region

∙ Symmetric degrees of freedom

∙ Approximation by the q-ary expansion deterministic IC in high SNR

∙ Interference alignment

∙ Open problems:

6.1. What is the capacity region of the Gaussian IC with weak interference?

6.2. What is the generalization of strong interference to three or more user pairs?
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6.3. What is the capacity region of the -user-pair injective deterministic IC?

6.4. Is the Han–Kobayashi inner bound tight in general?

BIBLIOGRAPHIC NOTES

�e interference channel was �rst studied byAhlswede (), who established basic inner
and outer bounds including the simultaneous decoding inner bound in (.). �e outer
bound in (.) is based on a simple observation by L. Coviello that improves upon the
outer bound in Sato () by reversing the order of the union (over the input pmfs)
and the intersection (over the channel pmfs). Carleial () introduced the notion of
very strong interference for the Gaussian IC and showed that the capacity region is the
intersection of the capacity regions for the two component GaussianMACs. �e capacity
region of the Gaussian IC with strong interference was established by Sato (b) and
Han and Kobayashi (). Costa and El Gamal () extended these results to the DM-
IC.

Carleial () introduced the idea of rate splitting and established an inner bound us-
ing successive cancellation decoding and (uncoded) time sharing. His inner bound was
improved through simultaneous decoding and coded time sharing byHan and Kobayashi
(). �e inner bound in the Han–Kobayashi paper used four auxiliary random vari-
ables representing public and private messages and involved more inequalities than in
�eorem .. �e equivalent characterization with only two auxiliary random variables
and a reduced set of inequalities in �eorem . is due to Chong, Motani, Garg, and
ElGamal (). �e injective deterministic IC in Section .was introduced by ElGamal
and Costa (), who used the genie argument to show that the Han–Kobayashi inner
bound is tight.

Kramer () developed a genie-based outer bound for the Gaussian IC. Shang,
Kramer, and Chen (), Annapureddy and Veeravalli (), andMotahari and Khan-
dani () independently established the sum-capacity of the Gaussian IC with weak
interference in �eorem .. Our proof using the genie method follows the one by Anna-
pureddy and Veeravalli (). �e half-bit theorem was �rst established by Etkin, Tse,
andWang () using the Han–Kobayashi inner bound and a variant of the genie-based
outer bound by Kramer (). �e proof in Section . using the injective semideter-
ministic IC is due to Telatar and Tse ().

�e approximation of the Gaussian IC by the q-ary expansion deterministic channel
was �rst proposed by Avestimehr, Diggavi, and Tse (). Bresler, Parekh, and Tse ()
applied this approach to approximate the many-to-one Gaussian IC. �is approximation
method was further re�ned by Jafar and Vishwanath () and Bresler and Tse ().
�e symmetric capacity achieving linear coding scheme for the QED-IC is due to Jafar
and Vishwanath (). Bandemer () showed that the entire capacity region can be
achieved by this linear coding scheme.

Interference alignment has been investigated for several classes of Gaussian channels
by Maddah-Ali, Motahari, and Khandani (), Cadambe and Jafar (), Ghasemi,
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Motahari, and Khandani (), Motahari, Gharan, Maddah-Ali, and Khandani (),
Gou and Jafar (), and Nazer, Gastpar, Jafar, and Vishwanath (), and for QED-
ICs by Jafar and Vishwanath (), Cadambe, Jafar, and Shamai () and Bandemer,
Vazquez-Vilar, and El Gamal (). Depending on the speci�c channel, this alignment is
achieved via linear subspaces (Maddah-Ali, Motahari, and Khandani ), signal scale
levels (Cadambe, Jafar, and Shamai ), time delay slots (Cadambe and Jafar ), or
number-theoretic irrational bases (Motahari, Gharan, Maddah-Ali, and Khandani ).
In each case, the subspace that contains the combined interference is disregarded, while
the desired signal is reconstructed from the orthogonal subspace.

�ere are very few results on the ICwithmore than two user pairs beyond interference
alignment. A straightforward extension of the Han–Kobayashi coding scheme is shown
to be optimal for the deterministic IC (Gou and Jafar ), where the received signal is
one-to-one to all interference signals given the intended signal. More interestingly, each
receiver can decode for the combined (not individual) interference, which is achieved
using structured codes for the many-to-one Gaussian IC (Bresler, Parekh, and Tse ).
Decoding for the combined interference has been also applied to deterministic ICs with
more than two user pairs (Bandemer and El Gamal ).

PROBLEMS

.. Establish the interference-as-noise inner bound in (.).

.. Prove the outer bound in (.).

.. Prove Lemma ..

.. Verify the outer bound on the capacity region of the Gaussian IC in (.).

.. Show that the normalized capacity region of the QED-IC reduces to the regions
in (.) and (.) and that the normalized symmetric capacity is given by (.).

.. Successive cancellation decoding vs. simultaneous decoding. Consider a DM-IC
p(y1 , y2|x1 , x2). As in the simple coding schemes discussed in Section ., sup-
pose that point-to-point codes are used. Consider the successive cancellation de-
coding scheme, where receiver  �rst decodes forM2 and then decodes for its own
message M1. Likewise receiver  �rst decodes for M1 and then for M2.

(a) Find the rate region achieved by successive cancellation decoding.

(b) Show that this region is always contained in the simultaneous-decoding inner
bound in (.).

.. Successive cancellation decoding for the Gaussian IC. In Chapter  we found that
for the DM-MAC, successive cancellation decoding with time sharing achieves
the same inner bound as simultaneous decoding. In this problem, we show that
this is not the case for the interference channel.
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Consider the Gaussian IC with SNRs S1 and S2 and INRs I1 and I2.

(a) Write down the rate region achieved by successive cancellation decoding with
Gaussian codes and no power control.

(b) Under what conditions is this region equal to the simultaneous-nonunique-
decoding inner bound in Section .?

(c) How much worse can successive cancellation decoding be than simultaneous
nonunique decoding?

.. Hando�. Consider two symmetric Gaussian ICs, one with SNR S and INR I > S,
and the other with SNR I and INR S. �us, the secondGaussian IC is equivalent to
the setting where the messages are sent to the other receivers in the �rst Gaussian
IC. Which channel has a larger capacity region?

.. Power control. Consider the symmetric Gaussian IC with SNR S and INR I .

(a) Write down the rate region achieved by treating interference as noise with time
sharing between two transmission subblocks and power control. Express the
region in terms of three parameters: time-sharing fraction α ∈ [0, 1] and two
power allocation parameters β1, β2 ∈ [0, 1].

(b) Similarly, write down the rate region achieved by simultaneous nonunique de-
coding with time sharing between two transmission subblocks and power con-
trol in terms of α, β1 , β2.

.. Gaussian Z interference channel. Consider the Gaussian IC depicted in Figure .
with SNRs S1 , S2, and INR I1. (Here the INR I2 = 0.)

Z1

Z2

X1

X2

Y1

Y2

12

22

11

Figure .. Gaussian interference channel with I2 = 0.

(a) Find the capacity region when S2 ≤ I1.

(b) Find the sum-capacity when I1 ≤ S2.
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(c) Find the capacity region when S2 ≤ I1/(1 + S1).

.. Minimum-energy-per-bit region. Consider the Gaussian IC with channel gains
11 , 12 , 21, and 22. Find the minimum-energy-per-bit region, that is, the set of
all energy pairs (E1 , E2) = (P1/R1 , P2/R2) such that the rate pair (R1 , R2) is achiev-
able with average code power pair (P1 , P2).

.. An equivalent characterization of the Han–Kobayashi inner bound. Consider the
inner bound on the capacity region of the DM-IC that consists of all rate pairs
(R1 , R2) such that

R1 < I(X1 ;Y1 |U2 ,Q),

R1 < I(X1 ;Y1 |U1 ,U2 ,Q) + I(X2 ,U1 ;Y2 |U2 ,Q),

R2 < I(X2 ;Y2 |U1 ,Q),

R2 < I(X1 ,U2 ;Y1 |U1 ,Q) + I(X2 ;Y2 |U1 ,U2 ,Q),

R1 + R2 < I(X1 ,U2 ;Y1 |Q) + I(X2 ;Y2 |U1 ,U2 ,Q),

R1 + R2 < I(X2 ,U1 ;Y2 |Q) + I(X1 ;Y1 |U1 ,U2 ,Q),

R1 + R2 < I(X1 ,U2 ;Y1 |U1 ,Q) + I(X2 ,U1 ;Y2 |U2 ,Q),

2R1 + R2 < I(X1 ,U2 ;Y1 |Q) + I(X1 ;Y1 |U1 ,U2 ,Q) + I(X2 ,U1 ;Y2 |U2 ,Q),

R1 + 2R2 < I(X2 ,U1 ;Y2 |Q) + I(X2 ;Y2 |U1 ,U2 ,Q) + I(X1 ,U2 ;Y1 |U1 ,Q)

for some pmf p(q)p(u1 , x1|q)p(u2 , x2|q). Show that this inner bound is equivalent
to the characterization of the Han–Kobayashi inner bound in �eorem .. (Hint:
Show that ifR1 ≥ I(X1 ;Y1|U1 ,U2 ,Q) + I(X2 ,U1 ;Y2|U2 ,Q) then the inequalities in
�eorem . imply the above set of inequalities restricted to the choice ofU1 = ,
and similarly for the case R2 ≥ I(X1 ,U2 ;Y1|U1 ,Q) + I(X2 ;Y2|U1 ,U2 ,Q).)

.. A semideterministic interference channel. Consider the DM-IC depicted in Fig-
ure .. Assume that H(Y2|X2) = H(T). A message M j ∈ [1 : 2nR j ] is to be sent
from sender X j to receiver Yj for j = 1, 2. �e messages are uniformly distributed
and mutually independent. Find the capacity region of this DM-IC. (Hint: To
prove achievability, simplify the Han–Kobayashi inner bound.)

X1

X2

Y1

Y2

T

p(y1|x1)

y2(x2 , t)

t(x1)

Figure .. Semideterministic DM-IC.
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.. Binary injective deterministic interference channel. Consider an injective deter-
ministic IC with binary inputs X1 and X2 and ternary outputs Y1 = X1 + X2 and
Y2 = X1 − X2 + 1. Find the capacity region of the channel.

.. Deterministic interference channel with strong interference. Find the conditions on
the functions of the injective deterministic IC in Section . underwhich the chan-
nel has strong interference.

.. Han–Kobayashi inner bound for the Gaussian IC. Consider the Gaussian IC with
SNRs S1, S2 and INRs I1, I2.

(a) Show that the Han–Kobayashi inner bound, when evaluated with Gaussian
random variables, reduces to the set of rate pairs (R1 , R2) such that

R1 < EQ  C¤ S1
1 + λ2Q I1

¥¡ ,

R2 < EQ  C¤ S2
1 + λ1Q I2

¥¡ ,

R1 + R2 < EQ ¨C¬S1 + λ̄2Q I1

1 + λ2Q I1
­ + C¤ λ2QS2

1 + λ1Q I2
¥© ,

R1 + R2 < EQ ¨C¬S2 + λ̄1Q I2

1 + λ1Q I2
­ + C¤ λ1QS1

1 + λ2Q I1
¥© ,

R1 + R2 < EQ ¨C¬λ1QS1 + λ̄2Q I1

1 + λ2Q I1
­ + C¬λ2QS2 + λ̄1Q I2

1 + λ1Q I2
­© ,

2R1 + R2 ≤ EQ ¨C¬S1 + λ̄2Q I1

1 + λ2Q I1
­ + C¤ λ1QS1

1 + λ2Q I1
¥ + C¬λ2QS2 + λ̄1Q I2

1 + λ1Q I2
­© ,

R1 + 2R2 ≤ EQ ¨C¬S2 + λ̄1Q I2

1 + λ1Q I2
­ + C¤ λ2QS2

1 + λ1Q I2
¥ + C¬λ1QS1 + λ̄2Q I1

1 + λ2Q I1
­©

for some λ1Q , λ2Q ∈ [0, 1] and pmf p(q) with |Q| ≤ 6.

(b) Suppose that S1 = S2 = S and I1 = I2 = I . By further specializing the inner
bound in part (a), show that the symmetric capacity is lower bounded as

Csym ≥ max
λ∈[0,1]

min¦C� S

1 + λI
� , C¤λS + λ̄I

1 + λI
¥ ,

1

2
¤C¤S + λ̄I

1 + λI
¥ + C� λS

1 + λI
�¥§ .

(c) Use part (b) to show that the symmetric DoF is lower bounded as

d∗

sym(α) ≥ max{1 − α, min{1 − α/2, α}, min{1, α/2}},

which coincides with (.). (Hint: Consider λ = 0, 1, and 1/(1 + Sα).)
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.. Genie-aided outer bound for the Gaussian IC. Consider the symmetric Gaussian
IC with SNR S and INR I . Establish the outer bound on the capacity region that
consists of the set of rate pairs (R1 , R2) such that

R1 ≤ C(S),

R2 ≤ C(S),

R1 + R2 ≤ C(S) + C(S/(1 + I)),

R1 + R2 ≤ 2 C(I + S/(1 + I)),

2R1 + R2 ≤ C(S + I) + C(I + S/(1 + I)) + C(S) − C(I),

R1 + 2R2 ≤ C(S + I) + C(I + S/(1 + I)) + C(S) − C(I).

(Hint: For the last two inequalities, suppose that receiver  has side information
T1 = xI/PX1 +W1 and receiver  has side information T2 = xI/PX2 +W2, where
W1 andW2 are i.i.d. N(0, 1), independent of (Z1 , Z2).)
Remark: �is bound, which is tighter than the outer bound in (.), is due to
Etkin, Tse, and Wang ().

.. Rate splitting for the more capable DM-BC. Consider the alternative characteriza-
tion of the capacity region in Section .. Prove achievability of this region using
rate splitting and Fourier–Motzkin elimination. (Hint: Divide M1 into two inde-
pendent messages M10 at rate R10 and M11 at rate R11. Represent (M10 , M2) byU
and (M10 , M11 , M2) by X.)

APPENDIX 6A PROOF OF LEMMA 6.2

�e sum-capacity C̃sum is achieved by treating interference as Gaussian noise. �us we
only need to prove the converse. LetQ ∼ Unif[1 : n] be a time-sharing randomvariable in-
dependent of all other random variables and de�ne (T1 , T2 ,Y1 ,Y2) = (T1Q , T2Q ,Y1Q ,Y2Q).
�us, (T1 , T2 ,Y1 ,Y2) = (T1i , T2i ,Y1i ,Y2i) with probability 1/n for i ∈ [1 : n]. Suppose that
a rate pair (R̃1 , R̃2) is achievable for the genie-aided channel. �en by Fano’s inequality,

nR̃1 ≤ I(Xn
1 ;Yn

1 , Tn
1 ) + nєn= I(Xn

1 ; Tn
1 ) + I(Xn

1 ;Yn
1 |T

n
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1 |T
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∗
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where (a) follows since h(Y1i |T
n
1 ) = h(Y1i |T

n
1 ,Q) ≤ h(Y1i|T1Q ,Q) ≤ h(Y1i |T1Q), (b) fol-

lows by the maximum di�erential entropy lemma and concavity, and (c) follows since
h(Tn

1 |X
n
1 ) = h(ηxI/PWn

1 ) = nh(ηxI/PW1) = nh(T∗
1 |X

∗
1 ). Similarly,

nR̃2 ≤ h(Tn
2 ) − nh(T∗

2 |X
∗

2 ) + nh(Y∗

2 |T
∗

2 ) − h(Yn
2 |T

n
2 , Xn

2 ) + nєn.

�us, we can upper bound the sum-rate as

n(R̃1 + R̃2) ≤ h(Tn
1 ) − h(Yn

2 |T
n
2 , Xn

2 ) − nh(T∗

1 |X
∗

1 ) + nh(Y∗

1 |T
∗

1 )+ h(Tn
2 ) − h(Yn

1 |T
n
1 , Xn

1 ) − nh(T∗

2 |X
∗

2 ) + nh(Y∗

2 |T
∗

2 ) + nєn.

Evaluating the �rst two terms, we obtain

h(Tn
1 ) − h(Yn

2 |T
n
2 , Xn

2 ) = h�xI/P Xn
1 + ηxI/PWn

1 � − h�xI/P Xn
1 + Zn

2
!!!!Wn

2 �
= h�xI/P Xn

1 +Vn
1 � − h�xI/P Xn

1 +Vn
2 �,

whereVn
1 = ηxI/PWn

1 is i.i.d.N(0, η2I/P) andVn
2 = Zn

2 − E(Zn
2 |W

n
2 ) is i.i.d.N(0, 1 − ρ2).

Given the useful genie condition η2I/P ≤ 1 − ρ2, expressVn
2 = Vn

1 +Vn, whereVn is i.i.d.
N(0, 1 − ρ2 − η2I/P), independent of Vn

1 . Now let (V ,V1 ,V2 , X1) = (VQ ,V1Q ,V2Q , X1Q)

and consider

h(Tn
1 ) − h(Yn

2 |T
n
2 , Xn

2 ) = h�xI/P Xn
1 +Vn

1 � − h�xI/P Xn
1 +Vn

1 +Vn�
= −I �Vn ; xI/P Xn

1 +Vn
1 +Vn�

= −nh(V ) + h�Vn !!!! xI/P Xn
1 +Vn

1 +Vn�
≤ −nh(V ) + nH

i=1

h�Vi
!!!! xI/P Xn

1 +Vn
1 +Vn�

≤ −nh(V ) + nH
i=1

h�Vi
!!!! xI/P X1i +V1i +Vi�

≤ −nh(V ) + nh�V !!!! xI/P X1 +V1 +V�
(a)≤ −nI�V ; xI/P X∗

1 +V1 +V�
= nh�xI/P X∗

1 +V1� − nh�xI/P X∗

1 +V1 +V�
= nh(T∗

1 ) − nh(Y∗

2 |T
∗

2 , X∗

2 ),

where (a) follows since Gaussian is the worst noise with a given average power in an ad-
ditive noise channel with Gaussian input; see Problem .. �e other terms h(Tn

2 ) −
h(Yn

1 |T
n
1 , Xn

1 ) can be bounded in the samemanner. �is completes the proof of the lemma.

APPENDIX 6B PROOF OF PROPOSITION 6.1

Consider a sequence of (2nR1 , 2nR2) codes with limn→∞ P(n)
e = 0. Furthermore, let Xn

1 , Xn
2 ,

Tn
1 , Tn

2 ,Yn
1 ,Yn

2 denote the random variables resulting from encoding and transmitting
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the independent messages M1 and M2. De�ne random variablesUn
1 , U

n
2 such thatU ji is

jointly distributed with X ji according to pTj |X j
(u ji |x ji), conditionally independent of Tji

given X ji for j = 1, 2 and i ∈ [1 : n]. By Fano’s inequality,

nR j = H(M j)

≤ I(M j ;Y
n
j ) + nєn

≤ I(Xn
j ;Yn

j ) + nєn.

�is directly yields a multiletter outer bound of the capacity region. We are looking for a
nontrivial single-letter upper bound.

Observe that

I(Xn
1 ;Yn

1 ) = H(Yn
1 ) − H(Yn

1 |X
n
1 )= H(Yn

1 ) − H(Tn
2 |X

n
1 )= H(Yn

1 ) − H(Tn
2 )

≤ nH
i=1

H(Y1i) − H(Tn
2 ) ,

sinceYn
1 and Tn

2 are one-to-one given Xn
1 , and T

n
2 is independent of Xn

1 . �e second term
H(Tn

2 ), however, is not easily upper-bounded in a single-letter form. Now consider the
following augmentation

I(Xn
1 ;Yn

1 ) ≤ I(Xn
1 ;Yn

1 ,Un
1 , Xn

2 )= I(Xn
1 ;Un

1 ) + I(Xn
1 ; Xn

2 |U
n
1 ) + I(Xn

1 ;Yn
1 |U

n
1 , Xn

2 )= H(Un
1 ) − H(Un

1 |X
n
1 ) + H(Yn

1 |U
n
1 , Xn

2 ) − H(Yn
1 |X

n
1 ,Un

1 , Xn
2 )

(a)= H(Tn
1 ) − H(Un

1 |X
n
1 ) + H(Yn

1 |U
n
1 , Xn

2 ) − H(Tn
2 |X

n
2 )

≤ H(Tn
1 ) − nH

i=1

H(U1i |X1i) + nH
i=1

H(Y1i |U1i , X2i) − nH
i=1

H(T2i |X2i).

�e second and fourth terms in (a) represent the output of a memoryless channel given
its input. �us they readily single-letterize with equality. �e third term can be upper-
bounded in a single-letter form. �e �rst term H(Tn

1 ) will be used to cancel boxed terms
such as H(Tn

2 ) above. Similarly, we can write

I(Xn
1 ;Yn

1 ) ≤ I(Xn
1 ;Yn

1 ,Un
1 )= I(Xn

1 ;Un
1 ) + I(Xn

1 ;Yn
1 |U

n
1 )= H(Un

1 ) − H(Un
1 |X

n
1 ) + H(Yn

1 |U
n
1 ) − H(Yn

1 |X
n
1 ,Un

1 )= H(Tn
1 ) − H(Un

1 |X
n
1 ) + H(Yn

1 |U
n
1 ) − H(Tn

2 )

≤ H(Tn
1 ) − H(Tn

2 ) − nH
i=1

H(U1i |X1i) + nH
i=1

H(Y1i |U1i),



Appendix 6B Proof of Proposition 6.1 167

and

I(Xn
1 ;Yn

1 ) ≤ I(Xn
1 ;Yn

1 , Xn
2 )= I(Xn

1 ; Xn
2 ) + I(Xn

1 ;Yn
1 |X

n
2 )= H(Yn

1 |X
n
2 ) − H(Yn

1 |X
n
1 , Xn

2 )= H(Yn
1 |X

n
2 ) − H(Tn

2 |X
n
2 )

≤ nH
i=1

H(Y1i |X2i) − nH
i=1

H(T2i |X2i).

By symmetry, similar bounds can be established for I(Xn
2 ;Yn

2 ), namely,

I(Xn
2 ;Yn

2 ) ≤
nH
i=1

H(Y2i) − H(Tn
1 ) ,

I(Xn
2 ;Yn

2 ) ≤ H(Tn
2 ) − nH

i=1

H(U2i |X2i) + nH
i=1

H(Y2i |U2i , X1i) − nH
i=1

H(T1i |X1i),

I(Xn
2 ;Yn

2 ) ≤ H(Tn
2 ) − H(Tn

1 ) − nH
i=1

H(U2i |X2i) + nH
i=1

H(Y2i |U2i),

I(Xn
2 ;Yn

2 ) ≤
nH
i=1

H(Y2i |X1i) − nH
i=1

H(T1i |X1i).

Now consider linear combinations of the above inequalities where all boxed terms are
canceled. Combining them with the bounds using Fano’s inequality and using a time-
sharing variableQ ∼ Unif[1 : n] completes the proof of the outer bound.



CHAPTER 14

Joint Source–Channel Coding

In Chapters  through , we studied reliable communication of independent messages
over noisy single-hop networks (channel coding), and in Chapters  through , we stud-
ied the dual setting of reliable communication of uncompressed sources over noiseless
single-hop networks (source coding). �ese settings are special cases of the more general
information �ow problem of reliable communication of uncompressed sources over noisy
single-hop networks. As we have seen in Section ., separate source and channel coding
is asymptotically su�cient for communicating a DMS over a DMC. Does such separation
hold in general for communicating a k-DMS over a DM single-hop network?

In this chapter, we show that such separation does not hold in general. �us in some
multiuser settings it is advantageous to perform joint source–channel coding. We demon-
strate this breakdown in separation through examples of lossless communication of a
-DMS over a DM-MAC and over a DM-BC.

For the DM-MAC case, we show that joint source–channel coding can help commu-
nication by utilizing the correlation between the sources to induce statistical cooperation
between the transmitters. We present a joint source–channel coding scheme that out-
performs separate source and channel coding. We then show that this scheme can be
improved when the sources have a common part, that is, a source that both senders can
agree on with probability one.

For the DM-BC case, we show that joint source–channel coding can help communi-
cation by utilizing the statistical compatibility between the sources and the channel. We
�rst consider a separate source and channel coding scheme based on the Gray–Wyner
source coding system and Marton’s channel coding scheme. �e optimal rate–region for
the Gray–Wyner system naturally leads to several de�nitions of common information be-
tween correlated sources. We then describe a joint source–channel coding scheme that
outperforms the separate Gray–Wyner and Marton coding scheme.

Finally, we present a general single-hop network that includes as special cases many of
the multiuser source and channel settings we discussed in previous chapters. We describe
a hybrid source–channel coding scheme for this network.

14.1 LOSSLESS COMMUNICATION OF A 2-DMS OVER A DM-MAC

Consider the multiple access communication system depicted in Figure ., where a
-DMS (U1 ,U2) is to be communicated losslessly over a -sender DM-MAC p(y|x1 , x2).
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U
k1
1

U
k2
2

Xn
1

Xn
2

Encoder 

Encoder 

Decoderp(y|x1 , x2)
Yn Û

k1
1 , Û

k2
2

Figure .. Communication of a -DMS over a -sender DM-MAC.

A (|U1|
k1 , |U2|

k2 , n) joint source–channel code of rate pair (r1 , r2) = (k1/n, k2/n) for
this setup consists of

∙ two encoders, where encoder j = 1, 2 assigns a sequence xnj (u
k j

j ) ∈ X n
j to each se-

quence u
k j

j ∈ U
k j

j , and

∙ a decoder that assigns an estimate (ûk11 , û
k2
2 ) ∈ Û

k1
1 × Û

k2
2 to each sequence yn ∈ Yn.

�e probability of error is de�ned as P(n)
e = P{(Û

k1
1 , Û

k2
2 ) ̸= (U

k1
1 ,U

k2
2 )}. We say that the

sources are communicated losslessly over the DM-MAC if there exists a sequence of
(|U1|

k1 , |U2|
k2 , n) codes such that limn→∞ P(n)

e = 0. �e problem is to �nd the necessary
and su�cient condition for lossless communication. For simplicity, we assumehenceforth
the rates r1 = r2 = 1 symbol/transmission.

First consider the following su�cient condition for separate source and channel cod-
ing. We know that the capacity region C of the DM-MAC is the set of rate pairs (R1 , R2)

such that

R1 ≤ I(X1 ;Y |X2 ,Q),

R2 ≤ I(X2 ;Y |X1 ,Q),

R1 + R2 ≤ I(X1 , X2 ;Y |Q)

for some pmf p(q)p(x1|q)p(x2|q). We also know from the Slepian–Wolf theorem that
the optimal rate region R

∗ for distributed lossless source coding is the set of rate pairs
(R1 , R2) such that

R1 ≥ H(U1 |U2),

R2 ≥ H(U2 |U1),

R1 + R2 ≥ H(U1 ,U2).

Hence, if the intersection of the interiors of C and R
∗ is not empty, that is, there exists a

pmf p(q)p(x1|q)p(x2|q) such that

H(U1 |U2) < I(X1 ;Y |X2 ,Q),

H(U2 |U1) < I(X2 ;Y |X1 ,Q),

H(U1 ,U2) < I(X1 , X2 ;Y |Q),

(.)
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then the -DMS (U1 ,U2) can be communicated losslessly over the DM-MAC using sep-
arate source and channel coding. �e encoders use Slepian–Wolf coding (binning) to
encode (Un

1 ,Un
2 ) into the bin indices (M1 , M2) ∈ [1 : 2nR1] × [1 : 2nR2]. �e encoders then

transmit the codeword pair (xn1 (M1), x
n
2 (M2)) selected from a randomly generated chan-

nel codebook; see Section .. �e decoder �rst performs joint typicality decoding to
�nd (M1 , M2) and then recovers (Un

1 ,Un
2 ) by �nding the unique jointly typical sequence

pair in the product bin with index pair (M1 , M2). Since the rate pair (R1 , R2) satis�es
the conditions for both lossless source coding and reliable channel coding, the end-to-
end probability of error tends to zero as n → ∞. Note that although the joint pmf on
(M1 , M2) is not necessarily uniform, the message pair can still be reliably transmitted to
the receiver if (R1 , R2) ∈ C (see Problem .).

Consider the following examples forwhich this su�cient condition for separate source
and channel coding is also necessary.

Example 14.1 (MAC with orthogonal components). Let (U1 ,U2) be an arbitrary -
DMS and p(y|x1 , x2) = p(y1|x1)p(y2|x2) be a DM-MAC with output Y = (Y1 ,Y2) that
consists of two separate DMCs, p(y1|x1) with capacity C1 and p(y2|x2) with capacity C2.
�e sources can be communicated losslessly over this MAC if

H(U1 |U2) < C1 ,

H(U2 |U1) < C2 ,

H(U1 ,U2) < C1 + C2.

Conversely, if one of the following inequalities is satis�ed:

H(U1 |U2) > C1 ,

H(U2 |U1) > C2 ,

H(U1 ,U2) > C1 + C2 ,

then the sources cannot be communicated losslessly over the channel. �us source–
channel separation holds for this case.

Example 14.2 (Independent sources). Let U1 and U2 be independent sources with en-
tropiesH(U1) andH(U2), respectively, and p(y|x1 , x2) be an arbitrary DM-MAC. Source
channel separation again holds in this case. �at is, the sources can be communicated
losslessly over the DM-MAC by separate source and channel coding if

H(U1) < I(X1 ;Y |X2 ,Q),

H(U2) < I(X2 ;Y |X1 ,Q),

H(U1) + H(U2) < I(X1 , X2 ;Y |Q),

for some pmf p(q)p(x1|q)p(x2|q), and the converse holds in general.

Does source–channel separation hold in general for lossless communication of an ar-
bitrary -DMS (U1 ,U2) over an arbitrary DM-MAC p(y|x1 , x2)? In other words, is it al-
ways the case that if the intersection ofR∗ and C is empty for a -DMS and a DM-MAC,
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then the -DMS cannot be communicated losslessly over the DM-MAC? To answer this
question, consider the following.

Example .. Let (U1 ,U2)be a -DMSwith U1 = U2 = {0, 1}, pU1 ,U2
(0, 0) = pU1 ,U2

(0, 1) =
pU1 ,U2

(1, 1) = 1/3, and pU1 ,U2
(1, 0) = 0. Let p(y|x1 , x2) be a binary erasureMACwithX1 =

X2 = {0, 1},Y = {0, 1, 2}, andY = X1 + X2 (see Example .). �e optimal rate regionR
∗

for this -DMS and the capacity region of the binary erasure MAC are sketched in Fig-
ure .. Note that the intersection of these two regions is empty sinceH(U1,U2) = log 3 =
1.585 and maxp(x1)p(x2)

I(X1 , X2 ;Y) = 1.5. Hence, H(U1 ,U2) > maxp(x1)p(x2)
I(X1 , X2 ;Y)

and (U1 ,U2) cannot be communicated losslessly over the erasure DM-MAC using sepa-
rate source and channel coding.

Now consider an uncoded transmission scheme in which the encoders transmit X1i =
U1i and X2i = U2i in time i ∈ [1 : n]. It is easy to see that this scheme achieves error-free
communication! �us using separate source and channel coding for sending a -DMS
over a DM-MAC is not optimal in general.

1

1

R
∗

C

R2

R1

Figure .. Separate source and channel coding fails since R
∗ ∩ C = .

A general necessary and su�cient condition for lossless communication of a -DMS
over a DM-MAC is not known. In the following we present joint source–channel coding
schemes that include as special cases the aforementioned separate source and channel
coding scheme and the uncoded transmission scheme in Example ..

14.1.1 A Joint Source–Channel Coding Scheme

We establish the following su�cient condition for lossless communication of a -DMS
over a DM-MAC.

Theorem .. A -DMS (U1 ,U2) can be communicated losslessly over a DM-MAC
p(y|x1 , x2) at rates r1 = r2 = 1 if

H(U1 |U2) < I(X1 ;Y |U2 , X2 ,Q),

H(U2 |U1) < I(X2 ;Y |U1 , X1 ,Q),
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H(U1 ,U2) < I(X1 , X2 ;Y |Q)

for some conditional pmf p(q, x1 , x2|u1 , u2) = p(q)p(x1|u1 , q)p(x2|u2 , q) with |Q| ≤ 3.

�is theorem recovers the following as special cases:

∙ Separate source and channel coding: We set p(x1|u1 , q)p(x2|u2 , q) = p(x1|q)p(x2|q),
that is, (X1 , X2 ,Q) is independent of (U1 ,U2). �en, the set of inequalities in the
theorem simpli�es to (.).

∙ Example .: SetQ = , X1 = U1, and X2 = U2.

14.1.2 Proof of Theorem 14.1

We establish achievability for |Q| = 1; the rest of the proof follows by time sharing.

Codebook generation. Fix a conditional pmf p(x1|u1)p(x2|u2). For each un1 ∈ Un
1 , ran-

domly and independently generate a sequence xn1 (u
n
1) according to ∏n

i=1 pX1|U1
(x1i |u1i).

Similarly, generate a sequence xn2 (u
n
2), u

n
2 ∈ Un

2 , according to∏n
i=1 pX2|U2

(x2i |u2i).

Encoding. Upon observing un1 , encoder  transmits xn1 (u
n
1). Similarly encoder  transmits

xn2 (u
n
2). Note that with high probability, no more than 2n(H(U1 ,U2)+δ(є)) codeword pairs

(xn1 , xn2 ) can simultaneously occur.

Decoding. �e decoder declares (ûn1 , ûn2) to be the source pair estimate if it is the unique
pair such that (ûn1 , ûn2 , xn1 (û

n
1), x

n
2 (û

n
2), y

n) ∈ T (n)
є ; otherwise it declares an error.

Analysis of the probability of error. �e decoder makes an error i� one or more of the
following events occur:

E1 = �(Un
1 ,Un

2 , Xn
1 (U

n
1 ), X

n
2 (U

n
2 ),Y

n
) ∉ T

(n)
є �,

E2 = �(ũn1 ,Un
2 , Xn

1 (ũ
n
1), X

n
2 (U

n
2 ),Y

n
) ∈ T

(n)
є for some ũn1 ̸= Un

1 �,
E3 = �(Un

1 , ũn2 , Xn
1 (U

n
1 ), X

n
2 (ũ

n
2),Y

n
) ∈ T

(n)
є for some ũn2 ̸= Un

2 �,
E4 = �(ũn1 , ũn2 , Xn

1 (ũ
n
1), X

n
2 (ũ

n
2),Y

n
) ∈ T

(n)
є for some ũn1 ̸= Un

1 , ũn2 ̸= Un
2 �.

�us, the average probability of error is upper bounded as

P(E) ≤ P(E1) + P(E2) + P(E3) + P(E4).

By the LLN, P(E1) tends to zero as n → ∞. Next consider the second term. By the union
of events bound,

P(E2) = H
un1

p(un1) P�(ũn1 ,Un
2 , Xn

1 (ũ
n
1), X

n
2 (U

n
2 ),Y

n
) ∈ T

(n)
є for some ũn1 ̸= un1

!!!!Un
1 = un1�

≤ H
un1

p(un1) H
ũn1 ̸=u

n
1

P�(ũn1 ,Un
2 , Xn

1 (ũ
n
1), X

n
2 (U

n
2 ),Y

n
) ∈ T

(n)
є

!!!!Un
1 = un1�.
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Now conditioned on {Un
1 = un1}, (U

n
2 , Xn

1 (ũ
n
1), X

n
2 (U

n
2 ),Y

n
) ∼ p(un2 , xn2 , yn|un1)p(x

n
1 |ũ

n
1) =∏n

i=1 pU2 ,X2 ,Y |U1
(u2i , x2i , yi |u1i)pX1|U1

(x1i |ũ1i) for all ũ
n
1 ̸= un1 . �us

P(E2) ≤ H
un1

p(un1) H
ũn1 ̸=u

n
1

(ũn1 ,u
n
2 ,x

n
1 ,x

n
2 ,y

n
)∈T (n)

å

p(un2 , xn2 , yn |un1)p(x
n
1 | ũ

n
1)

= H
(ũn1 ,u

n
2 ,x

n
1 ,x

n
2 ,y

n)∈T (n)
å

H
un1 ̸=ũ

n
1

p(un1 , un2 , xn2 , yn)p(xn1 | ũ
n
1)

≤ H
(ũn1 ,u

n
2 ,x

n
1 ,x

n
2 ,y

n)∈T (n)
å

H
un1

p(un1 , un2 , xn2 , yn)p(xn1 | ũ
n
1)

= H
(ũn1 ,u

n
2 ,x

n
1 ,x

n
2 ,y

n)∈T (n)
å

p(un2 , xn2 , yn)p(xn1 | ũ
n
1)

= H
(un2 ,x

n
2 ,y

n)∈T (n)
å

p(un2 , xn2 , yn) H
(ũn1 ,x

n
1 )∈T

(n)
å (U1 ,X1|u

n
2 ,x

n
2 ,y

n)

p(xn1 | ũ
n
1)

≤ H
(ũn1 ,x

n
1 )∈T

(n)
å (U1 ,X1|u

n
2 ,x

n
2 ,y

n)

p(xn1 | ũ
n
1)

≤ 2n(H(U1 ,X1|U2 ,X2 ,Y)−H(X1|U1)+2δ(є)).

Collecting the entropy terms, we have

H(U1 , X1 |U2 , X2 ,Y) − H(X1 |U1)= H(U1 , X1 |U2 , X2 ,Y) − H(U1 , X1 |U2 , X2) − H(X1 |U1) + H(U1 , X1 |U2 , X2)

(a)= −I(U1 , X1 ;Y |U2 , X2) + H(U1 |U2)

(b)= −I(X1 ;Y |U2 , X2) + H(U1 |U2),

where (a) follows since X1 → U1 → U2 → X2 form a Markov chain and (b) follows since
(U1 ,U2) → (X1 , X2) → Y form a Markov chain. �us P(E2) tends to zero as n → ∞ if
H(U1|U2) < I(X1 ;Y |U2 , X2) − 2δ(є). Similarly, P(E3) and P(E4) tend to zero as n → ∞

if H(U2|U1) < I(X2 ;Y |U1 , X1) − 2δ(є) and H(U1 ,U2) < I(X1 , X2 ;Y) − 3δ(є). �is com-
pletes the proof of�eorem ..

Suboptimality of the coding scheme. �e coding scheme used in the above proof is not
optimal in general. Suppose U1 = U2 = U . �en �eorem . reduces to the su�cient
condition

H(U) < max
p(q)p(x1|q,u)p(x2|q,u)

I(X1 , X2 ;Y |Q)

= max
p(x1|u)p(x2|u)

I(X1 , X2 ;Y). (.)

However, since both senders observe the same source, they can �rst encode the source
losslessly at rateH(U) and then transmit the source description using cooperative channel
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coding; see Problem .. �us, the source can be communicated losslessly if

H(U) < max
p(x1 ,x2)

I(X1 , X2 ;Y),

which is a less stringent condition than that in (.). Hence, when U1 and U2 have a
common part, we can improve upon the joint source–channel coding scheme for �eo-
rem .. In the following subsection, we formally de�ne the common part between two
correlated sources. Subsequently, we present separate and joint source–channel coding
schemes that incorporate this common part.

14.1.3 Common Part of a 2-DMS

Let (U1 ,U2) be a pair of random variables. Arrange p(u1 , u2) in a block diagonal form
with the maximum possible number k of nonzero blocks, as shown in Figure .. �e
common part between U1 and U2 is the random variable U0 that takes the value u0 if
(U1 ,U2) is in block u0 ∈ [1 : k]. Note thatU0 can be determined byU1 orU2 alone.

u1
u2

u0 = 1

u0 = 2

u0 = k

0

00

0

0

0

Figure .. Block diagonal arrangement of the joint pmf p(u1 , u2).

Formally, let 1 : U1 → [1 : k] and 2 : U2 → [1 : k] be two functions with the largest
integer k such that P{1(U1) = u0} > 0, P{2(U2) = u0} > 0 for u0 ∈ [1 : k] and P{1(U1) =
2(U2)} = 1. �e common part between U1 and U2 is de�ned as U0 = 1(U1) = 2(U2),
which is unique up to relabeling of the symbols.

To better understand this de�nition, consider the following.

Example .. Let (U1 ,U2) be a pair of random variables with the joint pmf in Table ..
Here k = 2 and the common partU0 has the pmf pU0

(1) = 0.7 and pU0
(2) = 0.3.

Now let (U1 ,U2) be a -DMS. What is the common part between the sequences Un
1

andUn
2 ? It turns out that this common part is alwaysUn

0 (up to relabeling). �us we say
thatU0 is the common part of the -DMS (U1 ,U2).
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u1
u2

u0 = 1 u0 = 2

u0 = 1

u0 = 2 00

0

0

00

0

01

1

2

2

3

3

4

4

0.10.1

0.10.1

0.1

0.10.2

0.2

Table .. Joint pmf for Example ..

14.1.4 Three-Index Separate Source and Channel Coding Scheme

Taking the commonpart into consideration, we can generalize the -index separate source
and channel coding scheme discussed earlier in this section into a -index scheme. Source
coding is performed by encoding Un

1 into an index pair (M0 , M1) and Un
2 into an in-

dex pair (M0 , M2) such that (Un
1 ,Un

2 ) can be losslessly recovered from the index triple
(M0 , M1 , M2) as depicted in Figure ..

Un
1

Un
2

M0

M1

Encoder 

Encoder  M2

Figure .. Source encoding setup for the -index separate source and channel
coding scheme. �e -DMS can be losslessly recovered from (M0 , M1 , M2).

Since M0 must be a function only of Un
0 , it can be easily shown that the optimal rate

region R
∗ is the set of rate triples (R0 , R1 , R2) such that

R1 ≥ H(U1 |U2),

R2 ≥ H(U2 |U1),

R1 + R2 ≥ H(U1 ,U2 |U0),

R0 + R1 + R2 ≥ H(U1 ,U2).

(.)

At the same time, the capacity region C for a DM-MAC p(y|x1 , x2)with a commonmes-
sage (see Problem .) is the set of rate triples (R0 , R1 , R2) such that

R1 ≤ I(X1 ;Y |X2 ,W),

R2 ≤ I(X2 ;Y |X1 ,W),
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R1 + R2 ≤ I(X1 , X2 ;Y |W),

R0 + R1 + R2 ≤ I(X1 , X2 ;Y)

for some pmf p(w)p(x1|w)p(x2|w), where |W | ≤ min{|X1|⋅|X2| + 2, |Y | + 3}. Hence, if
the intersection of the interiors of R

∗ and C is not empty, separate source and channel
coding using three indices can be used to communicate the -DMS losslessly over the
DM-MAC. Note that this coding scheme is not optimal in general as already shown in
Example ..

14.1.5 A Joint Source–Channel Coding Scheme with Common Part

By generalizing the coding schemes in Sections .. and .., we obtain the following
su�cient condition for lossless communication of a -DMS over a DM-MAC.

Theorem .. A -DMS (U1 ,U2) with common part U0 can be communicated loss-
lessly over a DM-MAC p(y|x1 , x2) if

H(U1 |U2) < I(X1 ;Y |X2 ,U2 ,W),

H(U2 |U1) < I(X2 ;Y |X1 ,U1 ,W),

H(U1 ,U2 |U0) < I(X1 , X2 ;Y |U0 ,W),

H(U1 ,U2) < I(X1 , X2 ;Y)

for some conditional pmf p(w)p(x1|u1 , w)p(x2|u2 , w).

In this su�cient condition, the common part U0 is represented by the independent
auxiliary random variable W , which is chosen to maximize cooperation between the
senders.

Remark 14.1. Although the auxiliary random variable W represents the common part
U0, there is no bene�t in making it statistically correlated withU0. �is is a consequence
of Shannon’s source–channel separation theorem in Section ..

Remark 14.2. �e above su�cient condition does not change by introducing a time-
sharing random variableQ.

Proof of �eorem . (outline). For each un0 , randomly and independently generate
w

n
(un0) according to ∏n

i=1 pW (wi). For each (un0 , un1), randomly and independently gen-
erate xn1 (u

n
0 , un1) according to ∏n

i=1 pX1|U1 ,W
(x1i |u1i , wi(u

n
0)). Similarly, for (un0 , un2), ran-

domly and independently generate xn2 (u
n
0 , un2). �e decoder declares (ûn0 , ûn1 , ûn2) to be the

estimate of the sources if it is the unique triple such that (ûn0 , ûn1 , ûn2 , wn(ûn0), x
n
1 (û

n
0 , ûn1),

xn2 (û
n
0 , ûn2), y

n) ∈ T (n)
є (this automatically implies that ûn0 is the common part of ûn1 and

ûn2). Following the steps in the proof of the previous coding scheme, it can be shown that
the above inequalities are su�cient for the probability of error to tend to zero as n → ∞.

Remark .. �e above coding scheme is not optimal in general either.
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14.2 LOSSLESS COMMUNICATION OF A 2-DMS OVER A DM-BC

Now consider the broadcast communication system depicted in Figure ., where a -
DMS (U1 ,U2) is to be communicated losslessly over a -receiver DM-BC p(y1 , y2|x). �e
de�nitions of a code, probability of error, and lossless communication for this setup are
along the same lines as those for the MAC case. As before, assume rates r1 = r2 = 1 sym-
bol/transmission.

Since the private-message capacity region of the DM-BC is not known in general (see
Chapter ), the necessary and su�cient condition for lossless communication of a -DMS
over a DM-BC is not known even when the sources are independent. We will show nev-
ertheless that separation does not hold in general for sending a -DMS over a DM-BC.

Consider the following separate source and channel coding scheme for this setup. �e
encoder �rst assigns an index triple (M0 , M1 , M2) ∈ [1 : 2nR0] × [1 : 2nR1] × [1 : 2nR2] to the
source sequence pair (Un

1 ,Un
2 ) such that Un

1 can be recovered losslessly from the pair of
indices (M0 , M1) and Un

2 can be recovered losslessly from the pair of indices (M0 , M2).
�e encoder then transmits a codeword xn(M0 , M1 , M2) from a channel codebook. De-
coder  �rst decodes for (M0 , M1) and then recoversU

n
1 . Similarly decoder  �rst decodes

for (M0 , M2) and then recoversUn
2 . �e source coding part of this scheme is discussed in

the following subsection.

Un
1 ,Un

2 Xn

p(y1 , y2|x)

Yn
1

Yn
2

Ûn
1

Ûn
2

Encoder

Decoder 

Decoder 

Figure .. Communication of a -DMS over a -receiver DM-BC.

14.2.1 Gray–Wyner System

�e Gray–Wyner system depicted in Figure . is a distributed lossless source coding
setup in which a -DMS (U1 ,U2) is described by three encoders so that decoder , who
receives the descriptions M0 and M1, can losslessly recover Un

1 and decoder , who re-
ceives the descriptionsM0 andM2, can losslessly recoverU

n
2 . We wish to �nd the optimal

rate region for this distributed lossless source coding setup.

A (2nR0 , 2nR1 , 2nR2 , n) code for the Gray–Wyner system consists of

∙ three encoders, where encoder j = 0, 1, 2 assigns the index m j(u
n
1 , un2) ∈ [1 : 2nR j ) to

each sequence pair (un1 , un2) ∈ Un
1 × Un

2 , and

∙ two decoders, where decoder  assigns an estimate ûn1(m0 , m1) to each index pair
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Un
1 ,Un

2

Encoder 

Encoder 

Encoder 

Decoder 

Decoder 

Ûn
1

Ûn
2

M1

M2

M0

Figure .. Gray–Wyner system.

(m0 , m1) ∈ [1 : 2nR0) × [1 : 2nR1) and decoder  assigns an estimate ûn2(m0 , m2) to each
index pair (m0 , m2) ∈ [1 : 2nR0) × [1 : 2nR2).

�e probability of error is de�ned as P(n)
e = P{(Ûn

1 , Ûn
2 ) ̸= (Un

1 ,Un
2 )}. A rate triple (R0 , R1 ,

R2) is said to be achievable if there exists a sequence of (2
nR0 , 2nR1 , 2nR2 , n) codes such that

limn→∞ P(n)
e = 0. �e optimal rate region R

∗ for the Gray–Wyner system is the closure
of the set of achievable rate triples.

�e optimal rate region for the Gray–Wyner system is given in the following.

Theorem .. �e optimal rate region R
∗ for the Gray–Wyner system with -DMS

(U1 ,U2) is the set of rate triples (R0 , R1 , R2) such that

R0 ≥ I(U1 ,U2 ;V ),

R1 ≥ H(U1 |V ),

R2 ≥ H(U2 |V )

for some conditional pmf p(v|u1 , u2) with |V | ≤ |U1|⋅|U2| + 2.

�e optimal rate region has the following extreme points:

∙ R0 = 0: By takingV = , the region reduces to R1 ≥ H(U1) and R2 ≥ H(U2).

∙ R1 = 0: By takingV = U1, the region reduces to R0 ≥ H(U1) and R2 ≥ H(U2|U1).

∙ R2 = 0: By takingV = U2, the region reduces to R0 ≥ H(U2) and R1 ≥ H(U1|U2).

∙ (R1 , R2) = (0, 0): By takingV = (U1 ,U2), the region reduces to R0 ≥ H(U1 ,U2).

Proof of�eorem .. To prove achievability, we use joint typicality encoding to �nd a
vn(m0),m0 ∈ [1 : 2nR0], jointly typical with (un1 , un2).�e indexm0 is sent to both decoders.
Given v

n
(m0), we assign indices m1 ∈ [1 : 2nR1] and m2 ∈ [1 : 2nR2] to the sequences in

T (n)
є (U1|v

n(m0)) and T (n)
є (U2|v

n(m0)), respectively, and send them to decoders  and ,
respectively. For the proof of the converse, we use standard arguments with the auxiliary
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random variable identi�cationVi = (M0 ,U i−1
1 ,U i−1

2 ). �e cardinality bound on V can be
proved using the convex cover method in Appendix C.

14.2.2 Common Information

Arate triple (R0 , R1 , R2) in the optimal rate region for theGray–Wyner systemmust satisfy
the inequalities

R0 + R1 ≥ H(U1),

R0 + R2 ≥ H(U2),

R0 + R1 + R2 ≥ H(U1 ,U2),

2R0 + R1 + R2 ≥ H(U1) + H(U2).

Each of these inequalities is tight as seen from the extreme points above. Interestingly, the
corresponding common rate R0 on these extreme points ofR∗ leads to several notions of
common information.

∙ Gács–Körner–Witsenhausen common information. �e maximum common rate
R0 subject to R0 + R1 = H(U1) and R0 + R2 = H(U2) is the entropyH(U0) of the com-
mon part betweenU1 andU2 (as de�ned in Section ..), denoted by K(U1 ;U2).

∙ Mutual information. �e maximum common rate R0 subject to 2R0 + R1 + R2 =
H(U1) + H(U2) is the mutual information I(U1 ;U2).

∙ Wyner’s common information. �e minimum common rate R0 subject to R0 + R1 +
R2 = H(U1 ,U2) is

J(U1 ;U2) = min I(U1 ,U2 ;V ), (.)

where the minimum is over all conditional pmfs p(v|u1 , u2)with |V | ≤ |U1|⋅|U2| such
that I(U1 ;U2|V ) = 0, i.e.,U1 → V → U2. Recall that this Markov structure appeared
in the converse proofs for the quadratic Gaussian distributed source coding and mul-
tiple description coding problems in Sections . and ., respectively.

�e above three quantities represent common information between the random variables
U1 and U2 in di�erent contexts. �e Gács–Körner–Witsenhausen common information
K(X ;Y) captures the amount of common randomness that can be extracted by knowing
U1 andU2 separately. In comparison, Wyner’s common information captures the amount
of common randomness that is needed to generateU1 andU2 separately. Mutual informa-
tion, as we have seen in the Slepian–Wolf theorem, captures the amount of information
aboutU1 provided by observingU2 and vice versa.

In general, it can be easily shown that

0 ≤ K(U1 ;U2) ≤ I(U1 ;U2) ≤ J(U1 ;U2) ≤ H(U1 ,U2), (.)

and these inequalities can be strict. Furthermore, K(U1 ;U2) = I(U1 ;U2) = J(U1 ;U2) i�
U1 = (V ,V1) andU2 = (V ,V2) for some pmf p(v1)p(v|v1)p(v2|v).
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Example 14.5. Let (U1 ,U2) be a DSBS(p), p ∈ [0, 1/2]. �en it can be easily shown that
J(U1 ;U2) = 1 + H(p) − 2H(α), where α ⋆ α = p. �e minimum in (.) is attained by
settingV ∼ Bern(1/2),V1 ∼ Bern(α), andV2 ∼ Bern(α) to be mutually independent and
U j = V ⊕Vj , j = 1, 2.

Example 14.6. Let (U1 ,U2) be binary with p(0, 0) = p(0, 1) = p(1, 1) = 1/3. �en it can
be shown that J(U1 ;U2) = 2/3, which is attained by setting V ∼ Bern(1/2), and U1 = 0,
U2 ∼ Bern(2/3) ifV = 0, andU1 ∼ Bern(1/3),U2 = 1 ifV = 1.

14.2.3 A Separate Source–Channel Coding Scheme

We return to the discussion on sending a -DMS over a DM-BC using separate source
and channel coding. Recall that Marton’s inner bound in Section . is the best-known
inner bound on the capacity region of the DM-BC. Denote this inner bound as R ⊆ C .
�en, a -DMS can be communicated losslessly over a DM-BC if the intersection of the
interiors of Marton’s inner boundR and the optimal rate regionR

∗ for the Gray–Wyner
system is not empty, that is, if

I(U1 ,U2 ;V ) + H(U1 |V ) < I(W0 ,W1 ;Y1),

I(U1 ,U2 ;V ) + H(U2 |V ) < I(W0 ,W2 ;Y2),

I(U1 ,U2 ;V ) + H(U1 |V ) + H(U2 |V ) < I(W0 ,W1 ;Y1) + I(W2 ;Y2 |W0) − I(W1 ;W2 |W0),

I(U1 ,U2 ;V ) + H(U1 |V ) + H(U2 |V ) < I(W1 ;Y1 |W0) + I(W0 ,W2 ;Y2) − I(W1 ;W2 |W0),

2I(U1 ,U2 ;V ) + H(U1 |V ) + H(U2 |V ) < I(W0 ,W1 ;Y1) + I(W0 ,W2 ;Y2) − I(W1 ;W2 |W0)

(.)

for some pmfs p(v|u1 , u2) and p(w0 , w1 , w2), and function x(w0 , w1 , x2). �is separate
source–channel coding scheme is optimal for some classes of sources and channels.

∙ More capable BC: Suppose that Y1 is more capable than Y2, i.e., I(X ;Y1) ≥ I(X ;Y2)

for all p(x). �en the -DMS (U1 ,U2) can be communicated losslessly if

H(U1 ,U2) < I(X ;Y1),

H(U1 ,U2) < I(X ;Y1 |W) + I(W ;Y2),

H(U2) < I(W ;Y2)

for some pmf p(w, x).

∙ Nested sources: Suppose thatU1 = (V1 ,V2) andU2 = V2 for some (V1 ,V2) ∼ p(v1 , v2).
�en the -DMS (U1 ,U2) can be communicated losslessly if

H(V1 ,V2) = H(U1) < I(X ;Y1),

H(V1 ,V2) = H(U1) < I(X ;Y1 |W) + I(W ;Y2),

H(V2) = H(U2) < I(W ;Y2)

for some pmf p(w, x).
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In both cases, achievability follows by representing (Un
1 ,Un

2 ) by a message pair (M1 , M2)

at rates R2 = H(U2) and R1 = H(U1|U2), respectively, and using superposition coding.
�e converse proofs are essentially the same as the converse proofs for the more capable
BC and degraded message sets BC, respectively.

Source–channel separation is not optimal in general, however, as demonstrated in the
following.

Example .. Consider the -DMS (U1 ,U2) with U1 = U2 = {0, 1} and pU1 ,U2
(0, 0) =

pU1 ,U2
(0, 1) = pU1 ,U2

(1, 1) = 1/3 and the Blackwell channel in Example . de�ned byX =
{0, 1, 2}, Y1 = Y2 = {0, 1}, and pY1 ,Y2|X(0, 0|0) = pY1 ,Y2|X(0, 1|1) = pY1 ,Y2|X(1, 1|2) = 1. �e
capacity region of this channel is contained in the set of rate triples (R0 , R1 , R2) such that

R0 + R1 ≤ 1,

R0 + R2 ≤ 1,

R0 + R1 + R2 ≤ log 3.

However, as we found in Example ., the sources require R0 ≥ J(U1 ;U2) = 2/3 when
R0 + R1 + R2 = log 3, or equivalently, 2R0 + R1 + R2 ≥ log 3 + 2/3 = 2.252, which implies
that R0 + R1 ≥ 1.126 or R0 + R2 ≥ 1.126.

Hence, the intersection of the optimal rate regionR
∗ for the Gray–Wyner system and

the capacity region C is empty and this -DMS cannot be communicated losslessly over
the Blackwell channel using separate source and channel coding.

By contrast, setting X = U1 + U2 achieves error-free transmission since Y1 and Y2
uniquely determineU1 andU2, respectively.�us joint source–channel coding can strictly
outperform separate source and channel coding for sending a -DMS over a DM-BC.

14.2.4 A Joint Source–Channel Coding Scheme

We describe a general joint source–channel coding scheme that improves upon separate
Gray–Wyner source coding and Marton’s channel coding.

Theorem .. A -DMS (U1 ,U2) can be communicated losslessly over a DM-BC
p(y1 , y2|x) if

H(U1 |U2) < I(U1 ,W0 ,W1 ;Y1) − I(U1 ,W0 ,W1 ;U2),

H(U2 |U1) < I(U2 ,W0 ,W2 ;Y2) − I(U2 ,W0 ,W2 ;U1),

H(U1 ,U2) < I(U1 ,W0 ,W1 ;Y1) + I(U2 ,W2 ;Y2 |W0) − I(U1 ,W1 ;U2 ,W2 |W0),

H(U1 ,U2) < I(U1 ,W1 ;Y1 |W0) + I(U2 ,W0 ,W2 ;Y2) − I(U1 ,W1 ;U2 ,W2 |W0),

H(U1 ,U2) < I(U1 ,W0 ,W1 ;Y1) + I(U2 ,W0 ,W2 ;Y2) − I(U1 ,W1 ;U2 ,W2 |W0)− I(U1 ,U2 ;W0)

for some conditional pmf p(w0 , w1 , w2|u1 , u2) and function x(u1 , u2 , w0 , w1 , w2).
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�is theorem recovers the following as special cases:

∙ Separate source and channel coding: We set p(w0 , w1 , w2|u0 , u1) = p(w0 , w1 , w2) and
x(u1 , u2 , w0 , w1 , w2) = x(w0 , w1 , w2), i.e., (W0 ,W1 ,W2 , X) is independent of (U1 ,U2).
�en, the set of inequalities in the theorem simpli�es to (.).

∙ Example .: SetW0 = ,W1 = U1,W2 = U2, X = U1 +U2.

Remark .. �e su�cient condition in�eorem . does not improve by time sharing.

14.2.5 Proof of Theorem 14.4

Codebook generation. Fix a conditional pmf p(w0 , w1 , w2|u1 , u2) and function
x(u1 , u2 , w0 , w1 , w2). Randomly and independently generate 2nR0 sequences wn

0 (m0),
m0 ∈ [1 : 2nR0], each according to ∏n

i=1 pW0
(w0i). For each un1 ∈ Un

1 and m0 ∈ [1 : 2nR0],

randomly and independently generate 2nR1 sequences wn
1 (u

n
1 , m0 , m1), m1 ∈ [1 : 2nR1],

each according to∏n
i=1 pW1|U1 ,W0

(w1i|u1i , w0i(m0)). Similarly, for each un2 ∈ Un
2 andm0 ∈

[1 : 2nR0], randomly and independently generate 2nR2 sequenceswn
2 (u

n
2 , m0 , m2),m2 ∈ [1 :

2nR2], each according to∏n
i=1 pW2|U2 ,W0

(w2i |u2i , w0i(m0)).

Encoding. For each sequence pair (un1 , un2), choose a triple (m0 , m1 , m2) ∈ [1 : 2nR0] ×
[1 : 2nR1] × [1 : 2nR2] such that (un1 , un2 , wn

0 (m0), w
n
1 (u

n
1 , m0 , m1), w

n
2 (u

n
2 , m0 , m2)) ∈ T

(n)

є�
.

If there is no such triple, choose (m0 , m1 , m2) = (1, 1, 1). �en the encoder transmits
xi = x(u1i , u2i , w0i(m0), w1i(u

n
1 , m0 , m1), w2i(u

n
2 , m0 , m2)) for i ∈ [1 : n].

Decoding. Let є > є�. Decoder  declares ûn1 to be the estimate of un1 if it is the unique se-
quence such that (ûn1 , wn

0 (m0), w
n
1 (û

n
1 , m0 , m1), y

n
1 ) ∈ T (n)

є for some (m0 , m1) ∈ [1 : 2nR0] ×
[1 : 2nR1]. Similarly, decoder  declares ûn2 to be the estimate of un2 if it is the unique se-
quence such that (ûn2 , wn

0 (m0), w
n
2 (û

n
2 , m0 , m2), y

n
2 ) ∈ T (n)

є for some (m0 , m2) ∈ [1 : 2nR0] ×
[1 : 2nR2].

Analysis of the probability of error. Assume (M0 , M1 , M2) is selected at the encoder.
�en decoder  makes an error only if one or more of the following events occur:

E0 = �(Un
1 ,Un

2 ,Wn
0 (m0),W

n
1 (U

n
1 , m0 , m1),W

n
2 (U

n
2 , m0 , m2)) ∉ T

(n)

є�

for allm0 , m1 , m2�,
E11 = �(Un

1 ,Wn
0 (M0),W

n
1 (U

n
1 , M0 , M1),Y

n
1 ) ∉ T

(n)
є �,

E12 = �(ũn1 ,Wn
0 (M0),W

n
1 (ũ

n
1 , M0 , m1),Y

n
1 ) ∈ T

(n)
є for some ũn1 ̸= Un

1 , m1�,
E13 = �(ũn1 ,Wn

0 (m0),W
n
1 (ũ

n
1 , m0 , m1),Y

n
1 ) ∈ T

(n)
є for some ũn1 ̸= Un

1 , m0 ̸= M0 , m1�.
�us the probability of error P(E1) for decoder  is upper bounded as

P(E1) ≤ P(E0) + P(E
c
0 ∩ E11) + P(E12) + P(E13).

�e �rst term tends to zero by the following variant of the multivariate covering lemma
in Section ..
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Lemma .. �e probability P(E0) tends to zero as n → ∞ if

R0 > I(U1 ,U2 ;W0) + δ(є�),

R0 + R1 > I(U1 ,U2 ;W0) + I(U2 ;W1 |U1 ,W0) + δ(є�),

R0 + R2 > I(U1 ,U2 ;W0) + I(U1 ;W2 |U2 ,W0) + δ(є�),

R0 + R1 + R2 > I(U1 ,U2 ;W0) + I(U2 ;W1 |U1 ,W0) + I(U1 ,W1 ;W2 |U2 ,W0) + δ(є�).

�e proof of this lemma is given in Appendix A.
By the conditional typicality lemma, P(E c

0 ∩ E11) tends to zero as n → ∞. Following
steps similar to the DM-MAC joint source–channel coding, it can be shown that P(E12)

tends to zero as n → ∞ ifH(U1) + R1 < I(U1 ,W1 ;Y1|W0) + I(U1 ;W0) − δ(є), and P(E13)

tends to zero as n → ∞ if H(U1) + R0 + R1 < I(U1 ,W0 ,W1 ;Y1) + I(U1 ;W0) − δ(є).
Similarly, the probability of error for decoder  tends to zero as n → ∞ if H(U2) +

R2 < I(U2 ,W2 ;Y2|W0) + I(U2 ;W0) − δ(є) and H(U2) + R0 + R2 < I(U2 ,W0 ,W2 ;Y2) +
I(U2 ;W0) − δ(є). �e rest of the proof follows by combining the above inequalities and
eliminating (R0 , R1 , R2) by the Fourier–Motzkin procedure in Appendix D.

14.3 A GENERAL SINGLE-HOP NETWORK

Weend our discussion of single-hop networks with a general networkmodel that includes
many of the setups we studied in previous chapters. Consider the -sender -receiver
communication systemwith general source transmission demand depicted in Figure ..
Let (U1 ,U2) be a -DMS with common part U0, p(y1 , y2|x1 , x2) be a DM single-hop
network, and d11(u1 , û11), d12(u1 , û12), d21(u2 , û21), d22(u2 , û22) be four distortion mea-
sures. For simplicity, assume transmission rates r1 = r2 = 1 symbol/transmission. Sender 
observes the source sequence Un

1 and sender  observes the source sequence Un
2 . Re-

ceiver  wishes to reconstruct (Un
1 ,Un

2 ) with distortions (D11 , D21) and receiver  wishes
to reconstruct (Un

1 ,Un
2 ) with distortions (D12 , D22). We wish to determine the necessary

and su�cient condition for sending the sources within prescribed distortions.
�is general network includes the following special cases we discussed earlier.

∙ Lossless communication of a -DMS over a DM-MAC: Assume that Y2 = , d11 and
d21 are Hamming distortionmeasures, andD11 = D21 = 0. As we have seen, this setup

Un
1

Un
2

Xn
1

Xn
2

Yn
1

Yn
2

Ûn
11 , Ûn

21

Ûn
12 , Ûn

22

Encoder 

Encoder 

Decoder 

Decoder 

p(y1 , y2|x1 , x2)

Figure .. A general single-hop communication network.
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in turn includes as special cases communication of independent and common mes-
sages over aDM-MAC in Problem . and distributed lossless source coding inChap-
ter .

∙ Lossy communication of a -DMS over a DM-MAC: Assume Y2 =  and relabel d11
as d1 and d21 as d2. �is setup includes distributed lossy source coding discussed in
Chapter  as a special case.

∙ Lossless communication of a -DMS over a DM-BC: Assume that X2 = U2 = ,U1 =
(V1 ,V2), d11 and d21 are Hamming distortion measures on V1 and V2, respectively,
andD11 = D21 = 0. As we have seen, this setup includes sending private and common
messages over a DM-BC in Chapter  and the Gray–Wyner system in Section .. as
special cases.

∙ Lossy communication of a -DMS over a DM-BC: Assume that X2 = U2 = , and
relabel d11 as d1 and d21 as d2.�is setup includes several special cases of themultiple-
description coding problem in Chapter  such as successive re�nement.

∙ Interference channel: Assume thatU1 andU2 are independent, d11 and d22 are Ham-
ming distortion measures, and D11 = D22 = 0. �is yields the DM-IC in Chapter .

14.3.1 Separate Source and Channel Coding Scheme

We de�ne separate source and channel coding for this general single-hop network as fol-
lows. A (2nR0 , 2nR10 , 2nR11 , 2nR20 , 2nR22 , n) source code consists of

∙ two source encoders, where source encoder  assigns an index triple (m0 , m10 , m11) ∈
[1 : 2nR0] × [1 : 2nR10] × [1 : 2nR11] to every un1 and source encoder  assigns an index
triple (m0 , m20 , m22) ∈ [1 : 2nR0] × [1 : 2nR20] × [1 : 2nR22] to every un2 (herem0 is a com-
mon index that is a function only of the common part un0), and

∙ two source decoders, where source decoder  assigns an estimate (ûn11 , ûn21) to every in-
dex quadruple (m0 , m10 , m11 , m20) and source decoder  assigns an estimate (ûn12 , ûn22)

to every index quadruple (m0 , m10 , m20 , m22).

Achievability and the rate–distortion regionR(D11 , D12 , D21 , D22) are de�ned as for other
lossy source coding problems. A (2nR0 , 2nR10 , 2nR11 , 2nR20 , 2nR22 , n) channel code consists
of

∙ �ve message sets [1 : 2nR0], [1 : 2nR10], [1 : 2nR11], [1 : 2nR20], and [1 : 2nR22],

∙ two channel encoders, where channel encoder  assigns a codeword xn1 (m0 , m10 , m11)

to every message triple (m0 , m10 , m11) ∈ [1 : 2nR0] × [1 : 2nR10] × [1 : 2nR11] and chan-
nel encoder  assigns a codeword xn2 (m0 , m20 , m22) to every message triple (m0 , m20 ,

m22) ∈ [1 : 2nR0] × [1 : 2nR20] × [1 : 2nR22], and

∙ two channel decoders, where channel decoder  assigns an estimate (m̂01 , m̂101 , m̂11 ,

m̂201) to every received sequence yn1 and channel decoder  assigns an estimate (m̂02 ,

m̂102 , m̂202 , m̂22) to every received sequence yn2 .
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�e average probability of error, achievability, and the capacity region C are de�ned as
for other channel coding settings.

�e sources can be communicated over the channel with distortion quadruple (D11 ,

D12 , D21 , D22) using separate source and channel coding if the intersection of the interiors
of R(D11 , D12 , D21 , D22) and C is nonempty. As we have already seen, source–channel
separation does not hold in general, that is, there are caseswhere this intersection is empty,
yet the sources can be still communicated over the channel as speci�ed.

14.3.2* A Hybrid Source–Channel Coding Scheme

In separate source and channel coding, channel codewords are conditionally independent
of the source sequences given the descriptions (indices). Hence, the correlation between
the sources is not utilized in channel coding. �e hybrid source–channel coding scheme
we discuss here captures this correlation in channel coding, while utilizing the wealth
of known lossy source coding and channel coding schemes. Each sender �rst performs
source encoding on its source sequences. It then maps the resulting codewords and the
source sequence symbol-by-symbol into a channel input sequence and transmits it. Each
receiver performs channel decoding for the codewords generated through source encod-
ing and then maps the codeword estimates and the received sequence symbol-by-symbol
into reconstructions of the desired source sequences.

For simplicity of presentation, we describe this scheme only for the special case of
lossy communication of a -DMS over a DM-MAC.

Proposition .. Let (U1 ,U2) be a -DMS and d1(u1 , û1), d2(u2 , û2) be two distortion
measures.�e -DMS (U1 ,U2) can be communicated over aDM-MAC p(y|x1 , x2)with
distortion pair (D1 , D2) if

I(U1 ;V1 |Q) < I(V1 ;Y ,V2 |Q),

I(U2 ;V2 |Q) < I(V2 ;Y ,V1 |Q),

I(U1 ;V1 |Q) + I(U2 ;V2 |Q) < I(V1 ,V2 ;Y |Q) + I(V1 ;V2 |Q)

for some conditional pmf p(q, v1 , v2|u1 , u2) = p(q)p(v1|u1 , q)p(v2|u2 , q) and functions
x1(u1 , v1 , q), x2(u2 , v2 , q), û1(v1 , v2 , y, q), and û2(v1 , v2 , y, q) such that E(d j(U j , Û j)) ≤
D j , j = 1, 2.

Proof outline. �e coding scheme used to prove this proposition is depicted in Fig-
ure .. For simplicity, let Q = . Fix a conditional pmf p(v1|u1)p(v2|u2) and functions
x1(u1 , v1), x2(u2 , v2), û1(v1 , v2 , y), and û2(v1 , v2 , y). For j = 1, 2, randomly and indepen-
dently generate 2nR j sequences vnj (m j), m j ∈ [1 : 2nR j ], each according to ∏n

i=1 pVj
(v ji).

Given unj , encoder j = 1, 2 �nds an index m j ∈ [1 : 2nR j ] such that (unj , v
n
j (m j)) ∈ T

(n)

є�
.

By the covering lemma, the probability of error for this joint typicality encoding step tends
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Figure .. Hybrid source–channel coding for communicating a -DMS over a
DM-MAC.

to zero as n → ∞ if

R1 > I(U1 ;V1) + δ(є�),

R2 > I(U2 ;V2) + δ(є�).

Encoder j = 1, 2 then transmits x ji = x j(u ji , v ji(m j)) for i ∈ [1 : n]. Upon receiving yn,

the decoder �nds the unique index pair (m̂1 , m̂2) such that (vn1 (m̂1), v
n
2 (m̂2), y

n) ∈ T (n)
є .

It can be shown that the probability of error for this joint typicality decoding step tends
to zero as n → ∞ if

R1 < I(V1 ;Y ,V2) − δ(є),

R2 < I(V2 ;Y ,V1) − δ(є),

R1 + R2 < I(V1 ,V2 ;Y) + I(V1 ;V2) − δ(є).

�e decoder then sets the reconstruction sequences as û ji = û j(v1i(m̂1), v2i(m̂2), yi), i ∈
[1 : n], for j = 1, 2. Eliminating R1 and R2 and following similar arguments to the achiev-
ability proof for distributed lossy source coding completes the proof.

Remark 14.5. By settingVj = (U j , X j) and Û j = U j , j = 1, 2, Proposition . reduces to
�eorem ..

Remark 14.6. Due to the dependence between the codebook {Un
j (m j) : m j ∈ [1 : 2nR j ]}

and the indexM j , j = 1, 2, the analysis of the probability error for joint typicality decoding
requires nontrivial extensions of the packing lemma and the proof of achievability for the
DM-MAC.
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Remark 14.7. �is hybrid coding scheme can be readily extended to the case of sources
with a common part. It can be extended also to the general single-hop network depicted
in Figure . by utilizing the source coding and channel coding schemes discussed in
previous chapters.

SUMMARY

∙ Source–channel separation does not hold in general for communicating correlated
sources over multiuser channels

∙ Joint source–channel coding schemes that utilize the correlation between the sources
for cooperative transmission

∙ Common part of a -DMS

∙ Gray–Wyner system

∙ Notions of common information:

∙ Gács–Körner–Witsenhausen common information K(X ;Y)

∙ Wyner’s common information J(X ;Y)

∙ Mutual information I(X ;Y)

∙ K(X ;Y) ≤ I(X ;Y) ≤ J(X ;Y)

∙ JointGray–Wyner–Marton coding for lossless communication of a -DMSover aDM-
BC

∙ Hybrid source–channel coding scheme for a general single-hop network

BIBLIOGRAPHIC NOTES

�e joint source–channel coding schemes for sending a -DMS over a DM-MAC in�e-
orems . and . are due to Cover, El Gamal, and Salehi (), who also showed via
Example . that source–channel separation does not always hold. �e de�nition of a
common part of a -DMS and its characterization are due to Gács and Körner () and
Witsenhausen (). Dueck (a) showed via an example that the coding scheme used
in the proof of�eorem ., which utilizes the common part, is still suboptimal.

�eorem . is due toGray andWyner (), who also established the rate–distortion
region for the lossy case.�e de�nitions of common information and their properties can
be found inWyner (a). Examples . and . are due toWyner (a) andWitsen-
hausen (a). �eorem . was established by Han and Costa (); see also Kramer
and Nair (). �e proof in Section .. is due toMinero and Kim (). �e hybrid
source–channel coding scheme in Section .. was proposed by Lim, Minero, and Kim
(), who also established Proposition ..
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PROBLEMS

.. Establish the necessarily condition for lossless communication of an arbitrary
-DMS (U1 ,U2) over a DM-MAC with orthogonal components p(y1|x1)p(y2|x2)
in Example ..

.. Consider the -index lossless source coding setup in Section ... Show that the
optimal rate region is given by (.).

.. Provide the details of the proof of�eorem ..

.. Consider the su�cient condition for lossless communication of a -DMS (U1 ,U2)

over a DM-MAC p(y|x1 , x2) in �eorem .. Show that the condition does not
change by considering conditional pmfs p(w|u0)p(x1|u1 , w)p(x2|u2 , w). Hence,
joint source–channel coding of the common part Un

0 via the codewordWn does
not help.

.. Provide the details of the proof of�eorem ..

.. Show that the optimal rate region R
∗ of the Gray–Wyner system can be equiva-

lently characterized by the set of rate pairs (R1 , R2) such that

R0 + R1 ≥ H(U1),

R0 + R2 ≥ H(U2),

R0 + R1 + R2 ≥ H(U1 ,U2).

.. Separate source and channel coding over a DM-BC. Consider the su�cient condi-
tion for lossless communication of a -DMS over a DM-BC via separate source
and channel coding in (.).

(a) Show that, when specialized to a noiseless BC, the condition simpli�es to the
set of rate triples (R0 , R1 , R2) such that

R0 + R1 ≥ I(U1 ,U2 ;V ) + H(U1 |V ),

R0 + R2 ≥ I(U1 ,U2 ;V ) + H(U2 |V ),

R0 + R1 + R2 ≥ I(U1 ,U2 ;V ) + H(U1 |V ) + H(U2 |V ),

for some conditional pmf p(v|u1 , u2).

(b) Show that the above region is equivalent to the optimal rate region for the
Gray–Wyner system in�eorem ..

.. Common information. Consider the optimal rate region R
∗ of the Gray–Wyner

system in�eorem ..

(a) Complete the derivations of the three measures of common information as
extreme points of R∗.

(b) Show that the three measures of common information satisfy the inequalities

0 ≤ K(U1 ;U2) ≤ I(U1 ;U2) ≤ J(U1 ;U2) ≤ H(U1 ,U2).



Problems 357

(c) Show thatK(U1 ;U2) = I(U1 ;U2) = J(U1 ;U2) i�U1 = (V ,V1) andU2 = (V ,V2)

for some (V ,V1 ,V2) ∼ p(v)p(v1|v)p(v2|v).

.. Lossy Gray–Wyner system. Consider the Gray–Wyner system in Section .. for
a -DMS (U1 ,U2) and two distortion measures d1 and d2. �e sources are to
be reconstructed with prescribed distortion pair (D1 , D2). Show that the rate–
distortion region R(D1 , D2) is the set of rate pairs (R1 , R2) such that

R0 ≥ I(U1 ,U2 ;V ),

R1 ≥ I(U1 ; Û1 |V ),

R2 ≥ I(U2 ; Û2 |V )

for some conditional pmf p(v|u1 , u2)p(û1|u1 , v)p(û2|u2 , v) that satisfy the con-
straints E(d j(U j , Û j)) ≤ D j , j = 1, 2.

.. Nested sources over a DM-MAC. Let (U1 ,U2) be a -DMS with common partU0 =
U2. We wish to send this -DMS over a DM-MAC p(y|x1 , x2) at rates r1 = r2 = r

symbol/transmission. Show that source–channel separation holds for this setting.
Remark: �is problem was studied by De Bruyn, Prelov, and van der Meulen
().

.. Nested sources over a DM-BC.Consider the nested -DMS (U1 ,U2) in the previous
problem. Wewish to communicated this -DMSover aDM-BC p(y1 , y2|x) at rates
r1 = r2 = r. Show that source–channel separation holds again for this setting.

.. Lossy communication of a Gaussian source over a Gaussian BC. Consider a Gauss-
ian broadcast channel Y1 = X + Z1 and Y2 = X + Z2, where Z1 ∼ N(0, N1) and
Z2 ∼ N(0, N2) are noise components with N2 > N1. Assume average power con-
straint P on X. We wish to communicate aWGN(P) sourceU with mean squared
error distortions D1 to Y1 and D2 to Y2 at rate r = 1 symbol/transmission.

(a) Find the minimum achievable individual distortions D1 and D2 in terms of P,
N1, and N2.

(b) Suppose we use separate source and channel coding by �rst using successive
re�nement coding for the quadratic Gaussian source in Example . and then
using optimal Gaussian BC codes for independent messages. Characterize the
set of achievable distortion pairs (D1 , D2) using this scheme.

(c) Now suppose we send the source with no coding, i.e., set Xi = Ui for i ∈ [1 : n],
and use the linear MMSE estimate Û1i at Y1 and Û2i at Y2. Characterize the set
of achievable distortion pairs (D1 , D2) using this scheme.

(d) Does source–channel separation hold for communicating a Gaussian source
over a Gaussian BC with squared error distortion measure?
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APPENDIX 14A PROOF OF LEMMA 14.1

�e proof follows similar steps to the mutual covering lemma in Section .. For each
(un1 , un2) ∈ T

(n)

є�
(U1 ,U2), de�ne

A(un1 , un2) = �(m0 , m1 , m2) ∈ [1 : 2nR0] × [1 : 2nR1] × [1 : 2nR2] :

(un1 , un2 ,Wn
0 (m0),W

n
1 (u

n
1 , m0 , m1),W

n
2 (u

n
2 , m0 , m2)) ∈ T

(n)

є�
�.

�en

P(E0) ≤ P�(Un
1 ,Un

2 ) ∉ T
(n)

є�
� + H

(un1 ,u
n
2 )∈T

(n)

å�

p(un1 , un2) P�|A(un1 , un2)| = 0�.
By the LLN, the �rst term tends to zero as n → ∞. To bound the second term, recall from
the proof of the mutual covering lemma that

P�|A(un1 , un2)| = 0� ≤ Var(|A(un1 , un2)|)

(E(|A(un1 , un2)|))
2

.

Now, de�ne the indicator function

E(m0 , m1 , m2) = ®1 if �un1 , un2 ,Wn
0 (m0),W

n
1 (u

n
1 , m0 , m1),W

n
2 (u

n
2 , m0 , m2)� ∈ T

(n)

є�
,

0 otherwise

for each (m0 , m1 , m2). We can then write

|A(un1 , un2)| = H
m0 ,m1 ,m2

E(m0 , m1 , m2),

Let

p1 = E[E(1, 1, 1)]

= P��un1 , un2 ,Wn
0 (m0),W

n
1 (u

n
1 , m0 , m1),W

n
2 (u

n
2 , m0 , m2)� ∈ T

(n)

є�
�,

p2 = E[E(1, 1, 1)E(1, 2, 1)],

p3 = E[E(1, 1, 1)E(1, 1, 2)],

p4 = E[E(1, 1, 1)E(1, 2, 2)],

p5 = E[E(1, 1, 1)E(2, 1, 1)] = E[E(1, 1, 1)E(2, 1, 2)]

= E[E(1, 1, 1)E(2, 2, 1)] = E[E(1, 1, 1)E(2, 2, 2)] = p21.

�en

E(|A(un1 , un2)|) = H
m0 ,m1 ,m2

E[E(m0 , m1 , m2)] = 2n(R0+R1+R2)p1
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and

E(|A(un1 , un2)|
2
) = H

m0 ,m1 ,m2

E[E(m0 , m1 , m2)]

+ H
m0 ,m1 ,m2

H
m�

1 ̸=m1

E[E(m0 , m1 , m2)E(m0 , m�

1 , m2)]

+ H
m0 ,m1 ,m2

H
m�

2 ̸=m2

E[E(m0 , m1 , m2)E(m0 , m1 , m�

2)]

+ H
m0 ,m1 ,m2

H
m�

1 ̸=m1 ,m
�
2 ̸=m2

E[E(m0 , m1 , m2)E(m0 , m�

1 , m�

2)]

+ H
m0 ,m1 ,m2

H
m�

0 ̸=m0 ,m
�
1 ,m

�
2

E[E(m0 , m1 , m2)E(m
�

0 , m�

1 , m�

2)]

≤ 2n(R0+R1+R2)p1 + 2n(R0+2R1+R2)p2 + 2n(R0+R1+2R2)p3

+ 2n(R0+2R1+2R2)p4 + 22n(R0+R1+R2)p5.

Hence

Var(|A(un1 , un2)|) ≤ 2n(R0+R1+R2)p1 + 2n(R0+2R1+R2)p2 + 2n(R0+R1+2R2)p3 + 2n(R0+2R1+2R2)p4.

Now by the joint typicality lemma, we have

p1 ≥ 2−n(I(U1 ,U2 ;W0)+I(U2 ;W1|U1 ,W0)+I(U1 ,W1 ;W2|U2 ,W0)+δ(є
�
)) ,

p2 ≤ 2−n(I(U1 ,U2 ;W0)+2I(U2 ,W2 ;W1|U1 ,W0)+I(U1 ;W2|U2 ,W0)−δ(є
�
)) ,

p3 ≤ 2−n(I(U1 ,U2 ;W0)+I(U2 ;W1|U1 ,W0)+2I(U1 ,W1 ,U1 ;W2|U2 ,W0)−δ(є
�
)) ,

p4 ≤ 2−n(I(U1 ,U2 ;W0)+2I(U2 ;W1|U1 ,W0)+2I(U1 ,W1 ;W2|U2 ,W0)−δ(є
�
)).

Hence

Var(|A(un1 , un2)|)

(E(|A(un1 , un2)|))
2
≤ 2−n(R0+R1+R2−I(U1 ,U2 ;W0)−I(U2 ;W1|U1 ,W0)−I(U1 ,W1 ;W2|U2 ,W0)−δ(є

�
))

+ 2−n(R0+R2−I(U1 ,U2 ;W0)−I(U1 ;W2|U2 ,W0)−3δ(є
�
))

+ 2−n(R0+R1−I(U1 ,U2 ;W0)−I(U2 ;W1|U1 ,W0)−3δ(є
�
))

+ 2−n(R0−I(U1 ,U2 ;W0)−3δ(є
�
)).

�erefore, P{|A(un1 , un2)| = 0} tends to zero as n → ∞ if

R0 > I(U1 ,U2 ;W0) + 3δ(є�),

R0 + R1 > I(U1 ,U2 ;W0) + I(U2 ;W1 |U1 ,W0) + 3δ(є�),

R0 + R2 > I(U1 ,U2 ;W0) + I(U1 ;W2 |U2 ,W0) + 3δ(є�),

R0 + R1 + R2 > I(U1 ,U2 ;W0) + I(U2 ;W1 |U1 ,W0) + I(U1 ,W1 ;W2 |U2 ,W0) + δ(є�).

�is completes the proof of Lemma ..



CHAPTER 19

Gaussian Networks

In this chapter, we discuss models for wireless multihop networks that generalize the
Gaussian channel models we studied earlier. We extend the cutset bound and the noisy
network coding inner bound on the capacity region of the multimessage DMN presented
in Chapter  to Gaussian networks. We show through a Gaussian two-way relay chan-
nel example that noisy network coding can outperform decode–forward and amplify–
forward, achieving rates within a constant gap of the cutset bound while the inner bounds
achieved by these other schemes can have an arbitrarily large gap to the cutset bound.
More generally, we show that noisy network coding for the Gaussianmultimessagemulti-
cast network achieves rates within a constant gap of the capacity region independent of
network topology and channel gains. For Gaussian networks with other messaging de-
mands, e.g., general multiple-unicast networks, however, no such constant gap results
exist in general. Can we still obtain some guarantees on the capacity of these networks?

To address this question, we introduce the scaling-law approach to capacity, where we
seek to �nd the order of capacity scaling as the number of nodes in the network becomes
large. In addition to providing some guarantees on network capacity, the study of capacity
scaling sheds light on the role of cooperation through relaying in combating interference
and path loss in large wireless networks. We �rst illustrate the scaling-law approach via a
simple unicast network example that shows how relaying can dramatically increase the ca-
pacity by reducing the e�ect of high path loss. We then present theGupta–Kumar random
networkmodel in which the nodes are randomly distributed over a geographical area and
the goal is to determine the capacity scaling law that holds formost such networks. We es-
tablish lower and upper bounds on the capacity scaling law for the multiple-unicast case.
�e lower bound is achieved via a cellular time-division scheme inwhich themessages are
sent simultaneously using a simple multihop scheme with nodes in cells along the lines
from each source to its destination acting as relays. We show that this scheme achieves
much higher rates than direct transmission with time division, which demonstrates the
role of relaying in mitigating interference in large networks. �is cellular time-division
scheme also outperforms noncellular multihop through spatial reuse of time enabled by
high path loss. Finally, we derive an upper bound on the capacity scaling law using the
cutset bound and a network augmentation technique. �is upper bound becomes tighter
as the path loss exponent increases and has essentially the same order as the cellular time-
division lower bound under the absorption path loss model.
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19.1 GAUSSIAN MULTIMESSAGE NETWORK

Consider an N-node Gaussian network

Yk = NH
j=1

k jX j + Zk , k ∈ [1 : N],

where k j is the gain from the transmitter of node j to the receiver of node k, and the
noise components Zk ∼ N(0, 1), k ∈ [1 : N] are i.i.d. N(0, 1). We assume expected average
power constraint P on each X j , i.e., ∑n

i=1 E(x2ji(m j ,Y
i−1
j )) ≤ nP, m j ∈ [1 : 2nR j ], j ∈ [1 :

N]. We consider a general multimessage demand where each node j wishes to send a
messageM j to a set of destination nodesD j .�e de�nitions of a code, probability of error,
achievability, and capacity region follow those for themultimessage DMN in Section ..

Consider the following special cases:

∙ If XN =  and D j = {N} for j ∈ [1 : N − 1], then the network reduces to the (N − 1)-
sender Gaussian MAC with generalized feedback.

∙ If N = 2k, Xk+1 = ⋅ ⋅ ⋅ = XN = Y1 = ⋅ ⋅ ⋅ = Yk = , D j = { j + k} for j ∈ [1 : k], then the
network reduces to the k-user-pair Gaussian IC.

∙ IfN = 3, X3 = Y1 = ,D1 = {3}, and R2 = 0, then the network reduces to the Gaussian
RC.

�e Gaussian network can be equivalently written in a vector form

YN = GXN + ZN , (.)

where XN is the channel input vector, G ∈ ℝ
N×N is the channel gain matrix, and ZN is

a vector of i.i.d. N(0, 1) noise components. Using this vector form, the cutset bound in
�eorem . can be easily adapted to the Gaussian network model.

Theorem . (Cutset Bound for the Gaussian Multimessage Network). If a rate
tuple (R1 , . . . , RN ) is achievable for the Gaussian multimessage network with destina-
tion sets (D1 , . . . , DN ), then it must satisfy the inequality

H
j∈S :D j∩S

c ̸=

R j ≤ 1

2
log |I + G(S)K(S |S c

)GT
(S)|

for all S such that S c ∩ D(S) ̸=  for some covariance matrix K ⪰ 0 with K j j ≤ P,
j ∈ [1 : N]. Here D(S) = ⋃ j∈S D j , K(S|S

c
) is the conditional covariance matrix of

X(S) given X(S c) for XN ∼ N(0, K), and G(S) is de�ned such that

 Y(S)
Y(S c)

¡ =  G�
(S) G(S c

)

G(S) G�(S c)
¡  X(S)

X(S c)
¡ +   Z(S)

Z(S c)
¡ ,

for some gain submatrices G�
(S) and G�

(S c
).
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When no cooperation between the nodes is possible, the cutset bound can be tight-
ened as for the DMN by conditioning on a time-sharing random variable Q and consid-
ering XN |{Q = q} ∼ N(0, K(q)), where K(q) is diagonal and EQ(K j j(Q)) ≤ P. �is yields
the improved bound with conditions

H
j∈S :D j∩S

c ̸=

R j ≤ 1

2
EQ(log |I + G(S)K(S |Q)GT

(S)|)

for all S such that S c ∩ D(S) ̸= , where K(S|Q) is the (random) covariance matrix of
X(S) givenQ.

19.1.1 Noisy Network Coding Lower Bound

�e inner bound on the capacity region of the DM multimessage multicast network in
�eorem . can be also adapted to Gaussian networks. By adding the power constraints,
we can readily obtain the noisy network coding inner bound that consists of all rate tuples
(R1 , . . . , RN ) such that

H
j∈S

R j < min
k∈S c∩D

I(X(S); Ŷ(S c
),Yk |X(S

c
),Q) − I(Y(S); Ŷ(S)|XN , Ŷ(S c

),Yk ,Q) (.)

for all S satisfying S c ∩ D ̸=  for some conditional distribution p(q)∏N
j=1 F(x j |q) ⋅

F( ŷ j|y j , x j , q) such that E(X2
j ) ≤ P for j ∈ [1 : N]. �e optimizing conditional distribu-

tion of the inner bound in (.) is not known in general. To compare this noisy network
coding inner bound to the cutset bound in �eorem . and to other inner bounds, we
setQ = , X j , j ∈ [1 : N], i.i.d. N(0, P), and

Ŷk = Yk + Ẑk , k ∈ [1 : N],

where Ẑk ∼ N(0, 1), k ∈ [1 : N], are independent of each other and of (XN ,YN
). Substi-

tuting in (.), we have

I(Y(S); Ŷ(S)|XN , Ŷ(S c
),Yk)

(a)≤ I(Ŷ(S);Y(S)|XN
)

= h(Ŷ(S)|XN
) − h(Ŷ(S)|Y(S), XN

)

= |S|

2
log(4πe) − |S|

2
log(2πe)

= |S|

2

for each k ∈ D and S such that S c ∩ D ̸= . Here step (a) follows since (Ŷ(S c),Yk) →
(XN ,Y(S)) → Ŷ(S) form a Markov chain. Furthermore

I(X(S); Ŷ(S c
),Yk |X(S

c
)) ≥ I(X(S); Ŷ(S c

)|X(S c
))

= h(Ŷ(S c
)|X(S c

)) − h(Ŷ(S c
)|XN

)

= 1

2
log�(2πe)|S c

| !!!!2I + PG(S)GT
(S)!!!!� − |S c

|

2
log(4πe)

= 1

2
log

!!!!!!!I + P

2
G(S)GT

(S)
!!!!!!! .
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Hence, we obtain the inner bound characterized by the set of inequalities

H
j∈S

R j < 1

2
log

!!!!!!!I + P

2
G(S)GT

(S)
!!!!!!! − |S|

2
(.)

for all S with S c ∩D ̸= .

Remark .. As in the compress–forward lower bound for the Gaussian RC in Sec-
tion ., the choice of Ŷk = Yk + Ẑk with Ẑk ∼ N(0, 1) can be improved upon by opti-
mizing over the average powers of Ẑk , k ∈ [1 : N], for the given channel gain matrix. �e
bound can be improved also by time sharing. It is not known, however, if Gaussian test
channels are optimal.

In the following, we compare this noisy network coding inner bound to the cutset
bound and other inner bounds on the capacity region.

19.1.2 Gaussian Two-Way Relay Channel

Consider the -node Gaussian two-way relay channel with no direct links depicted in
Figure . with outputs

Y1 = 13X3 + Z1 ,

Y2 = 23X3 + Z2 ,

Y3 = 31X1 + 32X2 + Z3 ,

where the noise components Zk , k = 1, 2, 3, are i.i.d.N(0, 1). We assume expected average
power constraintP on each of X1, X2, and X3. Denote the received SNR for the signal from
node j to node k as Sk j = 2k jP. Node 1 wishes to communicate a message M1 to node 
and node  wishes to communicate a messageM2 to node  with the help of relay node ,
i.e.,D = {1, 2}; see Problem . for a more general DM counterpart.

X1 X2

X3

Y1 Y2

Y3

Z1 Z2

Z3

31 32

13 23

Figure .. Gaussian two-way relay channel with no direct links.
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�e capacity region of this multimessage multicast network is not known in general.
We compare the following outer and inner bounds on the capacity region.

Cutset bound. �e cutset bound in�eorem . can be readily specialized to this Gauss-
ian two-way channel. If a rate pair (R1 , R2) is achievable, then it must satisfy the inequal-
ities

R1 ≤ min{C(S31), C(S23)},

R2 ≤ min{C(S32), C(S13)}.
(.)

Decode–forward inner bound. �e decode–forward coding scheme for the DM-RC in
Section . can be extended to this two-way relay channel. Node  recovers bothM1 and
M2 over themultiple access channelY3 = 31X1 + 32X2 + Z3 and broadcasts them. It can
be easily shown that a rate pair (R1 , R2) is achievable if

R1 < min{C(S31), C(S23)},

R2 < min{C(S32), C(S13)},

R1 + R2 < C(S31 + S32).

(.)

Amplify–forward inner bound. �e amplify–forward relaying scheme for the RFD
Gaussian RC in Section . can be easily extended to this setting by having node  send a
scaled version of its received symbol. �e corresponding inner bound consists of all rate
pairs (R1 , R2) such that

R1 < C� S23S31
1 + S23 + S31 + S32

� ,

R2 < C� S13S32
1 + S13 + S31 + S32

� .

(.)

Noisy network coding inner bound. By setting Q =  and Ŷ3 = Y3 + Ẑ3, where Ẑ3 ∼
N(0, σ2) is independent of (X3 ,Y3

), in (.), we obtain the inner bound that consists of
all rate pairs (R1 , R2) such that

R1 < min�C�S31/(1 + σ2)�, C(S23) − C(1/σ2)�,
R2 < min�C�S32/(1 + σ2)�, C(S13) − C(1/σ2)� (.)

for some σ2 > 0.
Figure . compares the cutset bound to the decode–forward, amplify–forward, and

noisy network coding bounds on the sum-capacity (with optimized parameters). �e
plots in the �gure assume that nodes  and  are unit distance apart and node  is distance
r ∈ [0, 1] from node  along the line between nodes  and ; the channel gains are of the
form k j = r−3/2

k j
, where rk j is the distance between nodes j and k, hence 13 = 31 =

r−3/2, 23 = 32 = (1 − r)−3/2; and the power P = 10. Note that noisy network coding
outperforms amplify–forward and decode–forward when the relay is su�ciently far from
both destination nodes.
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Figure .. Comparison of the cutset bound RCS, decode–forward lower bound
RDF, amplify–forward lower bound RAF, and noisy network coding lower bound
RNNC on the sum-capacity of the Gaussian two-way relay channel as the function of
the distance r between nodes  and .

In general, it can be shown that noisy network coding achieves the capacity region
within 1/2 bit per dimension, while the other schemes have an unbounded gap to the
cutset bound as P → ∞ (see Problem .).

Remark .. Unlike the case of the RFD Gaussian relay channel studied in Section .,
noisy network coding does not always outperform amplify–forward. �e reason is that
both destination nodes are required to recover the compression index and hence its rate
is limited by the worse channel. �is limitation can be overcome by sending layered de-
scriptions of Yn

3 such that the weaker receiver recovers the coarser description while the
stronger receiver recovers both descriptions.

19.1.3 Multimessage Multicast Capacity Region within a Constant Gap

We show that noisy network coding achieves the capacity region of the Gaussian multi-
message network YN = GXN + ZN within a constant gap uniformly for any channel gain
matrix G.

Theorem . (Constant Gap for Gaussian Multimessage Multicast Network).

For the Gaussian multimessage multicast network, if a rate tuple (R1 , . . . , RN ) is in the
cutset bound in �eorem ., then the rate tuple (R1 − Δ, . . . , RN − Δ) is achievable,
where Δ = (N/2) log 6.
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Proof. Note that the cutset bound in�eorem . can be loosened as

H
j∈S

R j ≤ 1

2
log !!!!I + G(S)KX(S)G

T
(S)!!!!

= 1

2
log !!!!I + KX(S)G

T
(S)G(S)!!!!

≤ 1

2
log

!!!!!!I + KX(S)G
T
(S)G(S) + 2

P
KX(S) + P

2
GT

(S)G(S)
!!!!!!

= 1

2
log�!!!!!!I + 2

P
KX(S)

!!!!!!!!!!!!I + P

2
GT

(S)G(S)
!!!!!!�

(a)≤ |S|

2
log 3 + 1

2
log

!!!!!!I + P

2
G(S)GT

(S)
!!!!!!

≤ N

2
log 3 + 1

2
log

!!!!!!I + P

2
G(S)GT

(S)
!!!!!! (.)

for all S such thatD ∩ S c ̸= , where KX(S) denotes the covariance matrix of X(S) when
XN ∼ N(0, K), and (a) follows by Hadamard’s inequality. In the other direction, by loos-
ening the inner bound in (.), a rate tuple (R1 , . . . , RN ) is achievable if

H
j∈S

R j < 1

2
log

!!!!!!I + P

2
G(S)GT

(S)
!!!!!! − N

2
(.)

for all S such thatD ∩ S c ̸= . Comparing (.) and (.) completes the proof of�eo-
rem ..

19.2 CAPACITY SCALING LAWS

As we have seen, the capacity of Gaussian networks is known only in very few special
cases. For the multimessage multicast case, we are able to show that the capacity region
for any Gaussian network is within a constant gap of the cutset bound. No such constant
gap results exist, however, for other multimessage demands. �e scaling laws approach to
capacity provides another means for obtaining guarantees on the capacity of a Gaussian
network. It aims to establish the optimal scaling order of the capacity as the number of
nodes grows.

In this section, we focus on Gaussian multiple-unicast networks in which each node
in a source-node set S wishes to communicate a message to a distinct node in a disjoint
destination-node setD. �e rest of the nodes as well as the source and destination nodes
themselves can also act as relays. We de�ne the symmetric network capacity C(N) as the
supremum of the set of symmetric rates R such that the rate tuple (R, . . . , R) is achievable.
We seek to establish the scaling law for C(N), that is, to �nd a function (N) such that
C(N) = Θ((N)); see Notation.

We illustrate this approach through the following simple example. Consider the N-
node Gaussian unicast network depicted in Figure .. Assume the power law path loss
(channel gain) (r) = r−í/2, where r is the distance and í > 2 is the path loss exponent.
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11 1

X1 (Y2 , X2) (Y3 , X3) (YN−1 , XN−1)
YN

Figure .. Gaussian unicast network.

Hence the received signal at node k is

Yk = N−1H
j=1, j ̸=k

| j − k |−í/2X j + Zk , k ∈ [2 : N].

We assume expected average power constraint P on each X j , j ∈ [1 : N − 1].
Source node  wishes to communicate a message to destination nodeN with the other

nodes acting as relays to help the communication; thus the source and relay encoders
are speci�ed by xn1 (m) and x ji(y

i−1
j ), i ∈ [1 : n], for j ∈ [2 : N − 1]. As we discussed in

Chapter , the capacity of this network is not known for N = 3 for any nonzero channel
parameter values. How does C(N) scale with N? To answer this question consider the
following bounds on C(N).

Lower bounds. Consider a simple multihop relaying scheme, where signals are Gaussian
and interference is treated as noise. In each transmission block, the source transmits a
newmessage to the �rst relay and node j ∈ [2 : N − 1] transmits its most recently received
message to node j + 1. �en C(N) ≥ min j C(P/(I j + 1)). Now the interference power at

node j ∈ [2 : N] is I j = ∑N−1
k=1,k ̸= j−1, j | j − k|−íP. Since í > 2, I j = O(1) for all j. Hence

C(N) = Ω(1).

Upper bound. Consider the cooperative broadcast upper bound on the capacity

C(N) ≤ sup
F(xN−1):E(X2

j )≤P , j∈[1:N−1]

I(X1 ;Y2 , . . . ,YN |X2 , . . . , XN−1)

≤ 1

2
log |I + APAT

|

= 1

2
log |I + PATA| ,

where A = �1 2−í/2 3−í/2 ⋅ ⋅ ⋅ (N − 1)−í/2�T . Hence
C(N) ≤ Cà¤N−1H

j=1

1

jí
¥Pè .

Since í > 2, C(N) = O(1), which is the same scaling as achieved by the simple multihop
scheme. �us, we have shown that C(N) = Θ(1).

Remark .. �e maximum rate achievable by direct transmission from the source to
the destination using the same total system power NP is C(PN(N − 1)−í) = Θ(N1−í).
Since í > 2, this rate tends to zero as N → ∞.
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�is example shows that relaying can dramatically increase the communication rate
when the path loss exponent í is large. Relaying can also help mitigate the e�ect of inter-
ference as we see in the next section.

19.3 GUPTA–KUMAR RANDOM NETWORK

�e Gupta–Kumar random network approach aims to establish capacity scaling laws that
apply to most large ad-hoc wireless networks. �e results can help our understanding of
the role of cooperation in large networks, which in turn can guide network architecture
design and coding scheme development.

We assume a “constant density” network with 2N nodes, each randomly and inde-
pendently placed according to a uniform pdf over a square of area N as illustrated in
Figure .. �e nodes are randomly partitioned into N source–destination (S-D) pairs.
Label the source nodes as 1, 2, . . . , N and the destination nodes as N + 1, N + 2, . . . , 2N .

Once generated, the node locations and the S-D assignments are assumed to be �xed
and known to the network architect (code designer). We allow each node, in addition to
being either a source or a destination, to act as a relay to help other nodes communicate
their messages.

We assume the Gaussian network model in (.) with power law path loss, that is, if
the distance between nodes j and k is r jk , then the channel gain  jk = r−í/2

jk
for í > 2.

Hence, the output signal at each node k ∈ [1 : 2N] is

Yk = 2NH
j=1, j ̸=k

r−í/2k j X j + Zk .

We consider a multiple-unicast setting in which source node j ∈ [1 : N] wishes to

−$N/2 $N/2
−$N/2

$N/2

1

2

2N

Figure .. Gupta–Kumar random network.
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communicate a messageM j ∈ [1 : 2nR j ] reliably to destination node j + N . �e messages
are assumed to be independent and uniformly distributed. We wish to determine the
scaling law for the symmetric capacityC(N) that holds with high probability (w.h.p.), that
is, with probability ≥ (1 − єN ), where єN tends to zero as N → ∞. In other words, the
scaling law holds for most large networks generated in this random manner.

We establish the following bounds on the symmetric capacity.

Theorem .. �e symmetric capacity of the random network model with path loss
exponent í > 2 has the following order bounds:

. Lower bound: C(N) = Ω�N−1/2(logN)−(í+1)/2� w.h.p.
. Upper bound: C(N) = O�N−1/2+1/í logN� w.h.p.
In other words, there exist constants a1 , a2 > 0 such that

lim
N→∞

P�a1N−1/2
(logN)

−(í+1)/2 ≤ C(N) ≤ a2N
−1/2+1/í logN� = 1.

Before proving the upper and lower order bounds on the symmetric capacity scaling,
consider the following simple transmission schemes.

Direct transmission. Suppose that there is only a single randomly chosen S-D pair. �en
it can be readily checked that the S-D pair is Ω(N−1/2) apart w.h.p. and thus direct trans-
mission achieves the rate Ω(N−í/2

) w.h.p. Hence, for N S-D pairs, using time division
with power control achieves the symmetric rate Ω(N−í/2) w.h.p.

Multihop relaying. Consider a single randomly chosen S-D pair. As we mentioned
above, the S-D pair is Ω(N−1/2) apart. Furthermore, it can be shown that with high prob-
ability, there are roughly Ω((N/ logN)

1/2
) relays placed close to the straight line from

the source to the destination with distance O((logN)1/2) between every two consecu-
tive relays. Using the multihop scheme in Section . with these relays, we can show
that Ω((logN)−í/2) is achievable w.h.p. Hence, using time division and multihop relay-
ing (without power control), we can achieve the lower bound on the symmetric capacity
C(N) = Ω((logN)−í/2/N) w.h.p., which is a huge improvement over direct transmission
when the path loss exponent í > 2 is large.

Remark .. Using relaying, each node transmits at a much lower power than using di-
rect transmission. �is has the added bene�t of reducing interference between the nodes,
which can be exploited through spatial reuse of time/frequency to achieve higher rates.

19.3.1 Proof of the Lower Bound

To prove the lower bound in �eorem ., consider the cellular time-division scheme
illustrated in Figure . with cells of area logN (to guarantee that no cell is empty w.h.p.).
As shown in the �gure, the cells are divided into nine groups. We assume equal trans-
mission rates for all S-D pairs. A block Markov transmission scheme is used, where each
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1 2 3

4 5 6

7 8 9

$N/2

−$N/2−$N/2 $N/2

Cells of area logN

Active cells

Figure .. Cellular time-division scheme.

source node sends messages over several transmission blocks. Each transmission block is
divided into nine cell-blocks. A cell is said to be active if its nodes are allowed to transmit.
Each cell is active only during one out of the nine cell-blocks. Nodes in inactive cells act
as receivers. As shown in Figure ., each message is sent from its source node to the
destination node using other nodes in cells along the straight line joining them (referred
to as an S-D line) as relays.

Transmission from each node in an active cell to nodes in its four neighboring cells
is performed using Gaussian random codes with power P and each receiver treats inter-
ference from other senders as noise. Let S(N) be the maximum number of sources in a
cell and L(N) be the maximum number of S-D lines passing through a cell, over all cells.

S

S�

D

D�

Figure .. Messages transmitted via relays along S-D lines.
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Each cell-block is divided into S(N) + L(N) node-blocks for time-division transmission
by nodes inside each active cell as illustrated in Figure .. Each source node in an ac-
tive cell broadcasts a new message during its node-block using a Gaussian random code
with power P. One of the nodes in the active cell acts as a relay for the S-D pairs that
communicate their messages through this cell. It relays the messages during the allotted
L(N) node-blocks using a Gaussian random code with power P.

1

S(N) L(N)

2 3 9

Cell-blocks

Node-blocks

Figure .. Time-division scheme.

Analysis of the probability of failure. �e cellular time-division scheme fails if one or
both of the following events occur:

E1 = {there is a cell with no nodes in it},

E2 = {transmission from a node in a cell to a node in a neighboring cell fails}.

�en the probability that the scheme fails is upper bounded as

P(E) ≤ P(E1) + P(E2 ∩ E
c
1 ).

It is straightforward to show that P(E1) tends to zero as N → ∞. Consider the second
term P(E2 ∩ E c

1 ). From the cell geometry, the distance between each transmitting node
in a cell and each receiving node in its neighboring cells is always less than or equal to
(5 logN)1/2. Since each transmitting node uses power P, the received power at a node
in a neighboring cell is always greater than or equal to (5 logN)

−í/2P. Under worst-case
placement of the sender, the receiver, and the interfering transmitters during a cell-block
(see Figure .), it can be shown that the total average interference power at a receiver
from all other transmitting nodes is

I ≤ ∞H
j=1

2P�(3 j − 2)2 logN�í/2 + ∞H
j=1

∞H
k=1

4P��(3 j − 2)2 + (3k − 1)2� logN�í/2 . (.)

Hence, if í > 2, I ≤ a3(logN)
−í/2 for some constant a3 > 0.

Since we are using Gaussian random codes, the probability of error tends to zero as
the node-block length n → ∞ if the transmission rate for each node block is less than
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Sender

Receiver

Interferers

Figure .. Placement of the active nodes assumed in the derivation of the bound
on interference power.

C((5 logN)
−í/2P/(1 + a3(logN)

−í/2
)). �us, for a �xed network, P(E2 ∩ E c

1 ) tends to zero
as n → ∞ if the symmetric rate

R(N) < 1

9(S(N) + L(N))
C¤ (5 logN)

−í/2P

1 + a3(logN)−í/2
¥ . (.)

In the following, we bound S(N) + L(N) over a random network.

Lemma .. S(N) + L(N) = O�(N logN)
1/2� w.h.p.

�e proof of this lemma is given in Appendix A. Combining Lemma . and the
bound on R(N) in (.), we have shown that C(N) = Ω(N−1/2

(logN)
−(í+1)/2

) w.h.p.,
which completes the proof of the lower bound in�eorem ..

Remark .. �e lower bound achieved by the cellular time-division scheme represents
a vast improvement over time division with multihop, which, by comparison, achieves
C(N) = Ω((logN)

−í/2
/N) w.h.p. �is improvement is the result of spatial reuse of time

(or frequency), which enables simultaneous transmission with relatively low interference
due to the high path loss.

19.3.2 Proof of the Upper Bound

We prove the upper bound in �eorem ., i.e., C(N) = O(N−1/2+1/í logN) w.h.p. For
a given random network, divide the square area of the network into two halves. Assume
the case where there are at least N/3 sources on the le� half and at least a third of them
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transmit to destinations on the right half. Since the locations of sources and destinations
are chosen independently, it can be easily shown that the probability of this event tends
to one as N → ∞. We relabel the nodes so that these sources are 1, . . . , N � and the cor-
responding destinations are N + 1, . . . , N + N �.

By the cutset bound in�eorem ., the symmetric capacity for these source nodes
is upper bounded by

max
F(xN )

1

N �
I�XN �

;YN+N �

N+1
!!!! XN

N �+1� ≤ max
F(xN

�
)

1

N �
I�XN �

; ỸN+N �

N+1 �,

where Ỹk = ∑N �

j=1 k jX j + Zk for k ∈ [N � + 1 : 2N �
]. Since the symmetric capacity of the

original network is upper bounded by the symmetric capacity of theseN � source–destina-
tion pairs, from this point on, we consider the subnetwork consisting only of these source–
destination pairs and ignore the reception at the source nodes and the transmission at
the destination nodes. To simplify the notation, we relabel N � as N and Ỹk as Yk for k ∈
[N + 1 : 2N].�us, each source node j ∈ [1 : N] transmits X j with the same average power
constraint P and each destination node k ∈ [N + 1 : 2N] receives

Yk = NH
j=1

k jX j + Zk .

We upper bound (1/N)I(XN ;Y2N
N+1) for this 2N-user interference channel.

Let node j (source or destination) be at random location (U j ,Vj). We create an aug-

mented network by adding 2N mirror nodes as depicted in Figure .. For every destina-
tion node Yj , j ∈ [N + 1 : 2N], we add a sender node X j at location (−UN+ j ,VN+ j), and
for every source node X j , j ∈ [1 : N], we add a receiver node Yj at location (−U j ,Vj).

X2

Y3

Y1

X4

Y2

X3

X1

Y4

(U2 ,V2) (−U2 ,V2)

(U3 ,V3)

(U1 ,V1)

(U4 ,V4)

(−U3 ,V3)

(−U1 ,V1)

(−U4 ,V4)

Figure .. Augmented network.
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�e received vector of this augmented network is

Y2N = GX2N + Z2N ,

where Z2N is a vector of i.i.d. N(0, 1) noise components. �e gain matrix G is symmetric
and G j j = (2|U j|)

−í/2. Furthermore, it can be shown that G ⪰ 0 (for í > 0).
Now consider

NC(N) ≤ sup
F(x2N ):E |X2

j |≤P , j∈[1:2N]

I(XN ;Y2N
N+1)

≤ sup
F(x2N ):E |X2

j |≤P , j∈[1:2N]

I(X2N ;Y2N
)

≤ max
KX⪰0:tr(KX)≤2NP

1

2
log |I + GKXG

T
|

= max
P j :∑

2N
j=1 P j≤2NP

1

2

2NH
j=1

log(1 + P jλ
2
j )

≤ 1

2

2NH
j=1

log(1 + 2NPλ2j )

≤ 2NH
j=1

log(1 + (2NP)1/2λ j)

= log |I2N + (2NP)1/2G |

≤ 2NH
j=1

log(1 + (2NP)1/2G j j), (.)

where P j and λ j , j ∈ [1 : 2N], are the eigenvalues of the positive semide�nite matrices KX

and G, respectively, and G j j = (2|U j |)
−í/2. De�ne

D(N) = 2NH
j=1

log�1 + (2|U j |)
−í/2

(2NP)1/2�.
�en we have the following.

Lemma .. D(N) = O�N1/2+1/í logN� w.h.p.
�e proof of this lemma is given in Appendix B.
Combining the lemma with the bound in (.) completes the proof of�eorem ..

Remark .. If we assume the path loss to include absorption, i.e.,

(r) = e−γr/2r−í/2

for some γ > 0, the e�ect of interference in the network becomes more localized and the
upper bound on C(N) reduces to O(N−1/2(logN)2) w.h.p., which has roughly the same
order as the lower bound.
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SUMMARY

∙ Cutset bound for the Gaussian network

∙ Noisy network coding achieves within a constant gap of the cutset bound for Gaussian
multimessage multicast networks

∙ Relaying plays a key role in combating high path loss and interference in large wireless
networks

∙ Scaling laws for network capacity

∙ Random network model

∙ Cellular time-division scheme:

∙ Outperforms time division with relaying via spatial reuse of time/frequency en-
abled by high path loss

∙ Achieves close to the symmetric capacity order for most networks as the path loss
exponent becomes large, and is order-optimal under the absorption model

∙ Use of network augmentation in the proof of the symmetric capacity upper bound

∙ Open problems:

19.1. What is the capacity region of the Gaussian two-way relay channel with no di-
rect links?

19.2. What is the symmetric capacity scaling law for the random network model?

BIBLIOGRAPHIC NOTES

�e noisy network coding inner bound on the capacity region of the Gaussian multi-
message multicast network in (.) and the constant gap result in�eorem . were es-
tablished by Lim, Kim, El Gamal, and Chung (). �e Gaussian two-way relay channel
with and without direct links was studied by Rankov andWittneben (), Katti, Maric,
Goldsmith, Katabi, and Médard (), Nam, Chung, and Lee (), and Lim, Kim,
El Gamal, and Chung (, ). �e layered noisy network coding scheme mentioned
in Remark . was proposed by Lim, Kim, El Gamal, and Chung (), who showed that
it can signi�cantly improve the achievable rates over nonlayered noisy network coding.

�e random network model was �rst introduced by Gupta and Kumar (). �ey
analyzed the network under two network theoreticmodels for successful transmission, the
signal-to-interference ratio (SIR) model and the protocol model. �ey roughly showed
that the symmetric capacity under these models scales as Θ(N−1/2

). Subsequent work
under these network theoretic models include Grossglauser and Tse () and El Gamal,
Mammen, Prabhakar, and Shah (a,b).
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�e capacity scaling of a random network was �rst studied by Xie and Kumar ().
Subsequent work includes Gastpar and Vetterli () and Özgür, Lévêque, and Preiss-
mann (). �e lower bound in �eorem . is due to El Gamal, Mammen, Prab-
hakar, and Shah (a). �is lower bound was improved to C(N) = Ω(N−1/2

) w.h.p.
by Franceschetti, Dousse, Tse, and�iran (). �e upper bound in�eorem . was
established by Lévêque and Telatar (). Analysis of scaling laws based on physical lim-
itations on electromagnetic wave propagation was studied in Franceschetti, Migliore, and
Minero () and Özgür, Lévêque, and Tse ().

PROBLEMS

.. Prove the cutset bound in�eorem ..

.. Consider the Gaussian two-way relay channel in Section ...

(a) Derive the cutset bound in (.), the decode–forward inner bound in (.),
the amplify–forward inner bound in (.), and the noisy network coding inner
bound in (.).

(b) Suppose that in the decode–forward coding scheme, node  uses network cod-
ing and broadcasts the modulo- sum of the binary sequence representations
ofM1 andM2, instead of (M1 , M2), and nodes  and  �nd each other’smessage
by �rst recovering the modulo- sum. Show that this modi�ed coding scheme
yields the lower bound

R1 < min�C(S31), C(S13), C(S23)�,
R2 < min�C(S32), C(S13), C(S23)�,

R1 + R2 < C(S31 + S32).

Note that this bound is worse than the decode–forward lower bound when
node  broadcasts (M1 , M2) ! Explain this surprising result.

(c) Let 31 = 32 = 1 and 13 = 23 = 2. Show that the gap between the decode–
forward inner bound and the cutset bound is unbounded.

(d) Let 31 = 13 = 23 = 1 and 32 = $P. Show that the gap between the amplify–
forward inner bound and the cutset bound is unbounded.

.. Consider the cellular time-division scheme in Section ...

(a) Show that P(E1) tends to zero as n → ∞.

(b) Verify the upper bound on the total average interference power in (.).

.. Capacity scaling of the N-user-pair Gaussian IC. Consider the N-user-pair sym-
metric Gaussian interference channel

YN = GXN + ZN ,
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where the channel gain matrix is

G = (0008
1 a ⋅ ⋅ ⋅ a

a 1 ⋅ ⋅ ⋅ a
...

...
. . .

...
a a ⋅ ⋅ ⋅ 1

)1119 .

Assume average power constraint P on each sender. Denote the symmetric capac-
ity by C(N).

(a) Using time division with power control, show that the symmetric capacity is
lower bounded as

C(N) ≥ 1

N
C(NP).

(b) Show that the symmetric capacity is upper bounded as C(N) ≤ C(P). (Hint:
Consider the case a = 0.)

(c) Tighten the bound in part (b) and show that

C(N) ≤ 1

2N
log |I + GGTP |

= 1

2N
log �(1 + (a − 1)2P)k−1(1 + (a(N − 1) + 1)2P)�.

(d) Show that when a = 1, the symmetric capacity is C(N) = (1/N)C(P).

APPENDIX 19A PROOF OF LEMMA 19.1

It is straightforward to show that the number of sources in each cell S(N) = O(logN)

w.h.p. We now bound L(N). Consider a toruswith the same area and the same square cell
division as the square area. For each S-D pair on the torus, send each packet along the
four possible lines connecting them. Clearly for every con�guration of nodes, each cell in
the torus has at least as many S-D lines crossing it as in the original square. �e reason we
consider the torus is that the pmf of the number of lines in each cell becomes the same,
which greatly simpli�es the proof.

Let H j be the total number of hops taken by packets traveling along one of the four
lines between S-D pair j, j ∈ [1 : N]. It is not di�cult to see that the expected length of
each path is Θ(N1/2). Since the hops are along cells having side-length (logN)1/2,

E(H j) = Θ�(N/ logN)
1/2�.

Fix a cell c ∈ [1 : N/ logN] and de�ne E jc to be the indicator of the event that a line
between S-D pair j ∈ [1 : N] passes through cell c ∈ [1 : N/ logN], i.e.,

E jc = ®1 if a hop of S-D pair j is in cell c,

0 otherwise.



502 Gaussian Networks

Summing up the total number of hops in the cells in two di�erent ways, we obtain

NH
j=1

N/ logNH
c=1

E jc = NH
j=1

H j .

Taking expectations on both sides and noting that the probabilities P{E jc = 1} are equal
for all j ∈ [1 : N] because of the symmetry on the torus, we obtain

N2

logN
P{E jc = 1} = N E(H j),

or equivalently,
P{E jc = 1} = Θ�(logN/N)

1/2�
for j ∈ [1 : N] and c ∈ [1 : N/ logN]. Now for a �xed cell c, the total number of lines
passing through it is Lc = ∑N

j=1 E jc . �is is the sum of N i.i.d. Bernoulli random variables
since the positions of the nodes are independent and E jc depends only on the positions
of the source and destination nodes of S-D pair j. Moreover

E(Lc) = NH
j=1

P{E jc = 1} = Θ�(N logN)
1/2�

for every cell c. Hence, by the Cherno� bound,

P{Lc > (1 + δ) E(Lc)} ≤ exp(− E(Lc)δ
2
/3).

Choosing δ = 2x2 logN/ E(Lc) yields

P{Lc > (1 + δ) E(Lc)} ≤ 1/N2.

Since δ = o(1), Lc = O(E(Lc)) with probability ≥ 1 − 1/N2. Finally using the union of
events bound overN/ logN cells shows that L(N) = maxc∈[1:N/ logN] Lc = O((N logN)

1/2
)

with probability ≥ 1 − 1/(N logN) for su�ciently large N .

APPENDIX 19B PROOF OF LEMMA 19.2

De�ne
W(N) = log �1 + (2U)

−í/2
(2NP)1/2� ,

whereU ∼ Unif[0, N1/2]. Since D(N) is the sum of i.i.d. random variables, we have

E(D(N)) = N E(W(N)),

Var(D(N)) = N Var(W(N)).

We �nd upper and lower bounds on E(W(N)) and an upper bound on E(W2
(N)). For
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simplicity, we assume the natural logarithm here since we are only interested in order

results. Let a = e−
í−1

2 P1/2, í� = í/2, k = N1/2, and u0 = (ak)1/í
�

. Consider

k E(W(N)) = Xk

0
log(1 + au−í

�

k) du

= X1

0
log(1 + au−í

�

k) du + Xu0

1
log(1 + au−í

�

k) du

+ Xk

u0

log(1 + au−í
�

k) du (.)

≤ X1

0
log((1 + ak)u−í

�

) du + Xu0

1
log(1 + ak) du + Xk

u0

au−í
�

k du

= log(1 + ak) + í
� X1

0
log(1/u) du + (u0 − 1) log(1 + ak)

+ ak

í� − 1
�u−(í�−1)0 − k−(í

�−1)�.
�us, there exists a constant b1 > 0 such that for N su�ciently large,

E(W(N)) ≤ b1N
−1/2+1/í logN . (.)

Now we establish a lower bound on E(W(N)). From (.), we have

k E(W(N)) ≥ Xu0

1
log(1 + au−í

�

k) du ≥ Xu0

1
log(1 + a) du = (u0 − 1) log(1 + a).

�us there exists a constant b2 > 0 such that for N su�ciently large,

E(W(N)) ≥ b2N
−1/2+1/í . (.)

Next we �nd an upper bound on E(W2(N)). Consider

k E(W2
(N)) = X1

0
�log(1 + au−í

�

k)�2du + Xu0

1
�log(1 + au−í

�

k)�2du
+ Xk

u0

�log(1 + au−í
�

k)�2du
≤ X1

0
�log((1 + ak)u−í

�

)�2du + Xu0

1
�log(1 + ak)�2du + Xk

u0

a2u−2í
�

k2du

≤ �log(1 + ak)�2 + (í
�
)
2 X1

0
(log(1/u))2du

+ 2í� log(1 + ak)X1

0
log(1/u) du + (u0 − 1)�log(1 + ak)�2

+ a2k2

2í� − 1
�u−(2í�−1)0 − k−(2í

�−1)� .
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�us there exists a constant b3 > 0 such that for N su�ciently large,

E(W2
(N)) ≤ b3N

−1/2+1/í
(logN)

2. (.)

Finally, using the Chebyshev lemma in Appendix B and substituting from (.), (.),
and (.), then for N su�ciently large, we have

P�D(N) ≥ 2b1N
1/2+1/í logN� ≤ P�D(N) ≥ 2 E(D(N))�

≤ Var(D(N))

(E[D(N)])2

≤ N E(W2(N))

N2(E[W(N)])2

≤ b3N
−1/2+1/í(logN)2

b22N
2/í

= ¤b3
b22

¥N−1/2−1/í
(logN)

2 ,

which tends to zero as N → ∞. �is completes the proof of the lemma.



CHAPTER 24

Networking and Information Theory

�e source and network models we discussed so far capture many essential ingredients of
real-world communication networks, including

∙ noise,

∙ multiple access,

∙ broadcast,

∙ interference,

∙ time variation and uncertainty about channel statistics,

∙ distributed compression and computing,

∙ joint source–channel coding,

∙ multihop relaying,

∙ node cooperation,

∙ interaction and feedback, and

∙ secure communication.

Although a general theory for information �ow under these models remains elusive, we
have seen that there are several coding techniques—some of which are optimal or close to
optimal—that promise signi�cant performance improvements over today’s practice. Still,
the models we discussed do not capture other key aspects of real-world networks.

∙ We assumed that data is always available at the communication nodes. In real-world
networks, data is bursty and the nodes have �nite bu�er sizes.

∙ We assumed that the network has a known and �xed number of users. In real-world
networks, users can enter and leave the network at will.

∙ We assumed that the network operation is centralized and communication over the
network is synchronous. Many real-world networks are decentralized and communi-
cation is asynchronous.
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∙ We analyzed performance assuming arbitrarily long delays. In many networking ap-
plications, delay is a primary concern.

∙ We ignored the overhead (protocol) needed to set up the communication as well as
the cost of feedback and channel state information.

While these key aspects of real-world networks have been at the heart of the �eld of com-
puter networks, they have not been satisfactorily addressed by network information the-
ory, either because of their incompatibility with the basic asymptotic approach of infor-
mation theory or because the resultingmodels aremessy and intractable.�ere have been
several success stories at the intersection of networking and network information theory,
however. In this chapter we discuss three representative examples.

We �rst consider the channel coding problem for a DMC with random data arrival.
We show that reliable communication is feasible provided that the data arrival rate is less
than the channel capacity. Similar results can be established for multiuser channels and
multiple data streams. A key new ingredient in this study is the notion of queue stability.

�e second example we discuss is motivated by the random medium access control
scheme for sharing a channel among multiple senders such as in the ALOHA network.
We model a -sender -receiver random access system by a modulo- sum MAC with
multiplicative binary state available partially at each sender and completely at the receiver.
We apply various coding approaches introduced in Chapter  to this model and compare
the corresponding performance metrics.

Finally, we investigate the e�ect of asynchrony on the capacity region of theDM-MAC.
We extend the synchronous multiple access communication system setup in Chapter 
to multiple transmission blocks in order to incorporate unknown transmission delays.
When the delay is small relative to the transmission block length, the capacity region
does not change. However, when we allow arbitrary delay, time sharing cannot be used
and hence the capacity region can be smaller than for the synchronous case.

24.1 RANDOM DATA ARRIVALS

In the point-to-point communication system setup in Section . and subsequent exten-
sions to multiuser channels, we assumed that data is always available at the encoder. In
many networking applications, however, data is bursty and it may or may not be available
at the senders when the channel is free. Moreover, the amount of data at a sender may ex-
ceed its �nite bu�er size, which results in data loss even before transmission takes place. It
turns out that under fairly general data arrival models, if the data rate λ bits/transmission
is below the capacityC of the channel, then the data can be reliably communicated to the
receiver, while if λ > C , data cannot be reliably communicated either because the incom-
ing data exceeds the sender’s queue size or because transmission rate exceeds the channel
capacity. We illustrate this general result using a simple random data arrival process.

Consider the point-to-point communication system with random data arrival at its
input depicted in Figure .. Suppose that data packets arrive at the encoder at the “end”
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M j Xn
j

Encoder Decoderp(y|x)
Yn
j M̂ j

Queue

{A(i)}

Figure .. Communication system with random data arrival.

of transmission time i = 1, 2, . . . according to an i.i.d. process {A(i)}, where

A(i) = ®k with probability p,

0 with probability p̄.

�us, a packet randomly and uniformly chosen from the set of k-bit sequences arrives at
the encoder with probability p and no packet arrives with probability p̄. Assume that the
packets arriving at di�erent transmission times are independent of each other.

A (2nR , n) augmented block code for the DMC consists of

∙ an augmented message set [1 : 2nR] ∪ {0},

∙ an encoder that assigns a codeword xn(m) to eachm ∈ [1 : 2nR] ∪ {0}, and

∙ a decoder that assigns a message m̂ ∈ [1 : 2nR] ∪ {0} or an error message e to each
received sequence yn.

�e code is used in consecutive transmission blocks as follows. LetQ(i) be the number of
bits (backlog) in the sender’s queue at the “beginning” of transmission time i = 1, 2, . . . .

At the beginning of time jn, j = 1, 2, . . . , that is, at the beginning of transmission block
j, nR bits are taken out of the queue ifQ( jn) ≥ nR. �e bits are represented by a message
M j ∈ [1 : 2nR] and the codeword xn(m j) is sent over the DMC. IfQ( jn) < nR, no bits are
taken out of the queue and the “-message” codeword xn(0) is sent. �us, the backlog
Q(i) is a time-varying Markov process with transition law

Q(i + 1) = ®Q(i) − nR + A(i) if i = jn andQ(i) ≥ nR,

Q(i) + A(i) otherwise.
(.)

�e queue is said to be stable if supi E(Q(i)) ≤ B for some constant B < ∞. By theMarkov
inequality, queue stability implies that the probability of data loss can be made as small
as desired with a �nite bu�er size. De�ne the arrival rate λ = kp as the product of the
packet arrival rate p ∈ (0, 1] and packet size k bits. We have the following su�cient and
necessary conditions on the stability of the queue in terms of the transmission rate R and
the arrival rate λ.

Lemma .. If λ < R, then the queue is stable. Conversely, if the queue is stable, then
λ ≤ R.

�e proof of this lemma is given in Appendix ..
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Let p j = P{M j = 0} be the probability that the sender queue has less than nR bits
at the beginning of transmission block j. By the de�nition of the arrival time process,
M j | {M j ̸= 0} ∼ Unif[1 : 2nR]. De�ne the probability of error in transmission block j as

P(n)
e j = P{M̂ j ̸= M j} = p j P{M̂ j ̸= 0 |M j = 0} + (1 − p j)

2nR

2nRH
m=1

P{M̂ j ̸= m |M j = m}.

�e data arriving at the encoder according to the process {A(i)} is said to be reliably com-
municated at rate R over the DMC if the queue is stable and there exists a sequence of
(2nR , n) augmented codes such that limn→∞ sup j P

(n)
e j = 0. We wish to �nd the necessary

and su�cient condition for reliable communication of the data over the DMC.

Theorem .. �e random data arrival process {A(i)} with arrival rate λ can be reli-
ably communicated at rate R over a DMC p(y|x) with capacity C if λ < R < C . Con-
versely, if the process {A(i)} can be reliably communicated at rate R over this DMC,
then λ ≤ R ≤ C .

Proof. To prove achievability, let λ < R < C . �en the queue is stable by Lemma . and
there exists a sequence of (2nR + 1, n) (regular) channel codes such that both the average
probability of error P(n)

e and P{M̂ ̸= M |M = m�
} for some m� tend to zero as n → ∞.

By relabeling m� = 0, we have shown that there exists a sequence of (2nR , n) augmented
codes such that P(n)

e j tends to zero as n → ∞ for every j.
To prove the converse, note �rst that λ ≤ R from Lemma .. Now, for each j, follow-

ing similar steps to the converse proof of the channel coding theorem in Section .., we
obtain

nR = H(M j |M j ̸= 0)

≤ I(M j ;Y
n
|M j ̸= 0) + nєn

≤ nH
i=1

I(Xi ;Yi |M j ̸= 0) + nєn

≤ n(C + єn).

(.)

�is completes the proof of�eorem ..

Remark 24.1. �eorem. continues to hold for arrival processes forwhich Lemma .
holds. It can be also extended to multiuser channels with random data arrivals at each
sender. For example, consider the case of a DM-MAC with two independent i.i.d. arrival
processes {A1(i)} and {A2(i)} of arrival rates λ1 and λ2, respectively. �e stability region
S for the two sender queues is the closure of the set of arrival rates (λ1 , λ2) such that both
queues are stable. We de�ne the augmented code (2nR1 , 2nR2 , n), the average probability
of error, and achievability as for the point-to-point case. Let C be the capacity region of
the DM-MAC.�en it can be readily shown thatS = C . Note that the same result holds
when the packet arrivals (but not the packet contents) are correlated.
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Remark 24.2. �e conclusion that randomly arriving data can be communicated reli-
ably over a channel when the arrival rate is less than the capacity trivializes the e�ect of
randomness in data arrival. In real-world applications, packet delay constraints are as
important as queue stability. However, the above result, and the asymptotic approach of
information theory in general, does not capture such constraints well.

24.2 RANDOM ACCESS CHANNEL

�e previous section dealt with random data arrivals at the senders. In this section, we
consider random data arrivals at the receivers. We discuss random access, which is a
popular scheme for medium access control in local area networks. In these networks, the
number of senders is not �xed a priori and hence using time division can be ine�cient.
�e random access scheme improves upon time division by having each active sender
transmit its packets in randomly selected transmission blocks. In practical random access
control systems, however, the packets are encoded at a �xed rate and if more than one
sender transmits in the same block, the packets are lost. It turns out that we can do better
by using more sophisticated coding schemes.

We model a random access channel by a modulo- sumMAC with multiplicative bi-
nary state components as depicted in Figure .. �e output of the channel at time i

is
Yi = S1i ⋅ X1i ⊕ S2i ⋅ X2i ,

where the states S1i and S2i are constant over each access time interval [(l − 1)k + 1 : lk]

of length k for l = 1, 2, . . . , and the processes {S̄1l}
∞
l=1 = {S1,(l−1)k+1}

∞
l=1 and {S̄2l}

∞
l=1 =

{S2,(l−1)k+1}
∞
l=1 are independent Bern(p) processes. Sender j = 1, 2 is active (has a packet

to transmit) when S j = 1 and is inactive when S j = 0. We assume that the receiver knows
which senders are active in each access time interval, but each sender knows only its own
activity.

M1

M2

S1

S2

Xn
1

Xn
2

Yn

Encoder 

Encoder 

Decoder
M̂1 , M̂2

Figure .. Random access channel.
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Note that this model is analogous to the Gaussian fading MAC in Section ., where
the channel gains are available at the receiver but each sender knows only the gain of its
own channel. Since each sender becomes active at random in each block, the communi-
cation model corresponds to the slow fading scenario. Using the analogy to the fading
MAC, we consider di�erent coding approaches and corresponding performance metrics
for the random access channel. Unlike the fading MAC, however, no coordination is al-
lowed between the senders in the random access channel.

Compound channel approach. In this approach, we code for the worst case in which no
packets are to be transmitted (i.e., S1i = S2i = 0 for all i ∈ [1 : n]). Hence, the capacity
region is {(0, 0)}.

ALOHA. In this approach, sender j = 1, 2 transmits at rate R j = 1 when it is active and
at rate R j = 0 when it is not. When there is collision (that is, both senders are active),
decoding simply fails. �e ALOHA sum-capacity (that is, the average total throughput) is

CALOHA = p(1 − p) + p(1 − p) = 2p(1 − p).

Adaptive coding. By reducing the rates in the ALOHA approach to R̃ j ≤ 1 when sender
j = 1, 2 is active (so that the messages can be recovered even under collision), we can
increase the average throughput.

To analyze the achievable rates for this approach, consider the -sender -receiver
channel depicted in Figure .. It can be easily shown that the capacity region of this
channel is the set of rate pairs (R̃1 , R̃2) such that R̃1 + R̃2 ≤ 1 and is achieved using simul-
taneous decoding without time sharing; see Problem .. Hence, any rate pair (R̃1 , R̃2)

in the capacity region of the -sender -receiver channel is achievable for the random ac-
cess channel, even though each sender is aware only of its own activity. In particular, the
adaptive coding sum-capacity is

CA = max
(R̃1 ,R̃2):R̃1+R̃2≤1

�P{S1 = 1}R̃1 + P{S2 = 1}R̃2� = p.

Broadcast channel approach. In the ALOHA approach, the messages cannot be recov-
ered at all when there is a collision. In the adaptive coding approach, both messages must

M̃1

M̃2

Xn
1

Xn
2

Yn
12

Yn
1

Yn
2

Encoder 

Encoder 

Decoder 

Decoder 

Decoder 

M̂1

M̂1 , M̂2

M̂2

Figure .. Adaptive coding for the random access channel.
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be recovered even when there is a collision. �e broadcast approach combines these two
approaches by requiring only part of each message to be recovered when there is a col-
lision and the rest of the message to be also recovered when there is no collision. �is
is achieved using superposition coding. To analyze the achievable rates for this strategy,
consider the -sender -receiver channel depicted in Figure .. Here the message pair
(M̃ j0 , M̃ j j) from the active sender j is to be recovered when there is no collision, while the

message pair (M̃10 , M̃20), one from each sender is to be recovered when there is collision.
It can be shown (see Problem .) that the capacity region of this -sender -receiver
channel is the set of rate quadruples (R̃10 , R̃11 , R̃20 , R̃22) such that

R̃10 + R̃20 + R̃11 ≤ 1,

R̃10 + R̃20 + R̃22 ≤ 1.
(.)

As for the adaptive coding case, this region can be achieved using simultaneous decoding
without time sharing. Note that taking (R̃11 , R̃22) = (0, 0) reduces to the adaptive coding
case. �e average throughput of sender j ∈ {1, 2} is

R j = p(1 − p)(R̃ j0 + R̃ j j) + p2R̃ j0 = pR̃ j0 + p(1 − p)R̃ j j .

�us, the broadcast sum-capacity is

CBC = max �p(R̃10 + R̃20) + p(1 − p)(R̃11 + R̃22)�,

where the maximum is over all rate quadruples in the capacity region in (.). By sym-
metry, it can be readily checked that

CBC = max{2p(1 − p), p}.

Note that this sum-capacity is achieved by setting R̃11 = R̃22 = 1, R̃10 = R̃20 = 0 for p ≤ 1/2,
and R̃10 = R̃20 = 1/2, R̃11 = R̃22 = 0 for p ≥ 1/2. Hence, ignoring collision (ALOHA)
is throughput-optimal when p ≤ 1/2, while the broadcast channel approach reduces to
adaptive coding when p ≥ 1/2.

Figure . compares the sum-capacitiesCCC (compound channel approach),CALOHA

(ALOHA), CA (adaptive coding), and CBC (broadcast channel approach). Note that the
broadcast channel approach performs better than adaptive coding when the senders are
active less o�en (p ≤ 1/2).

M̃10 , M̃11

M̃20 , M̃22

Xn
1

Xn
2

Yn
12

Yn
1

Yn
2

Encoder 

Encoder 

Decoder 

Decoder 

Decoder 

M̂10 , M̂20

M̂10 , M̂11

M̂20 , M̂22

Figure .. Broadcast coding for the random access channel.
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CA

CALOHA

CBC
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0 11/2
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1

1/2

p

Figure .. Comparison of the sum-capacities of the random access channel—CCC

for the compound approach, CALOHA for ALOHA, CA for adaptive coding, and CBC

for the broadcast channel approach.

24.3 ASYNCHRONOUS MAC

In the single-hop channel models we discussed in Part II of the book, we assumed that
the transmissions from the senders to the receivers are synchronized (at both the symbol
and block levels). In practice, such complete synchronization is o�en not feasible. How
does the lack of synchronization a�ect the capacity region of the channel? We answer
this question for the asynchronous multiple access communication system depicted in
Figure ..

Suppose that sender j = 1, 2 wishes to communicate an i.i.d. message sequence (M j1 ,

M j2 , . . .). Assume that the same codebook is used in each transmission block. Further
assume that symbols are synchronized, but that the blocks sent by the two encoders in-
cur arbitrary delays d1 , d2 ∈ [0 : d], respectively, for some d ≤ n − 1. Assume that the
encoders and the decoder do not know the delays a priori. �e received sequence Yn is
distributed according to

p(yn |xn1,1−d1 , xn2,1−d2) =
nI
i=1

pY |X1 ,X2
(yi |x1,i−d1 , x2,i−d2),

where the symbols with negative indices are from the previous transmission block.

M1l

M2l

X1i

X2i

X1,i−d1

X2,i−d2

Encoder 

Encoder 

d1

d2

Decoderp(y|x1 , x2)
Yi M̂1l , M̂2l

Figure .. Asynchronous multiple access communication system.
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A (2nR1 , 2nR2 , n, d) code for the asynchronous DM-MAC consists of

∙ two message sets [1 : 2nR1] and [1 : 2nR2],

∙ two encoders, where encoder  assigns a sequence of codewords xn1 (m1l) to each mes-
sage sequencem1l ∈ [1 : 2nR1], l = 1, 2, . . . , and encoder  assigns a sequence of code-
words xn2 (m2l) to each message sequencem2l ∈ [1 : 2nR2], l = 1, 2, . . . , and

∙ a decoder that assigns a sequence of message pairs (m̂1l , m̂2l) ∈ [1 : 2nR1] × [1 : 2nR2]

or an error message e to each received sequence y ln+d(l−1)n+1 for each l = 1, 2, . . . (the

received sequence y ln+d(l−1)n+1 can include parts of the previous and next blocks).

We assume that the message sequences {M1l}
∞
l=1 and {M2l}

∞
l=1 are independent and each

message pair (M1l , M2l), l = 1, 2, . . . , is uniformly distributed over [1 : 2nR1] × [1 : 2nR2].
�e average probability of error is de�ned as

P(n)
e = max

d1 ,d2∈[0:d]
sup
l

P(n)
el (d1 , d2),

where P(n)
el

(d1 , d2) = P{(M̂1l , M̂2l) ̸= (M1l , M2l) | d1 , d2}. Note that by the memoryless

property of the channel and the de�nition of the code, supl P
(n)
el

(d1 , d2) = P(n)
el

(d1 , d2)

for all l . �us in the following, we drop the subscript l . Achievability and the capacity
region are de�ned as for the synchronous DM-MAC.

We consider two degrees of asynchrony.

Mild asynchrony. Suppose that d/n tends to zero as n → ∞. �en, it can be shown that
the capacity region is the same as for the synchronous case.

Total asynchrony. Suppose that d1 and d2 can vary from to (n − 1), i.e., d = n − 1. In this
case, time sharing is no longer feasible and the capacity region reduces to the following.

Theorem .. �e capacity region of the totally asynchronous DM-MAC is the set of
all rate pairs (R1 , R2) such that

R1 ≤ I(X1 ;Y |X2),

R2 ≤ I(X2 ;Y |X1),

R1 + R2 ≤ I(X1 , X2 ;Y)

for some pmf p(x1)p(x2).

Note that this region is not convex in general, since time sharing is sometimes neces-
sary; see Problem .. Hence, unlike the synchronous case, the capacity region for net-
works with total asynchrony is not necessarily convex.

Remark 24.3. �e sum-capacity of the totally asynchronous DM-MAC is the same as
that of the synchronous DM-MAC and is given by

Csum = max
p(x1)p(x2)

I(X1 , X2 ;Y).
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Remark 24.4. �e capacity region of the Gaussian MAC does not change with asyn-
chrony because time sharing is not required. However, under total asynchrony, simul-
taneous decoding is needed to achieve all the points in the capacity region.

Remark 24.5. �eorem. also shows that the capacity of a point-to-point channel does
not change with asynchrony.

We prove�eorem . in the next two subsections.

24.3.1 Proof of Achievability

Divide each n-transmission block into (b + 1) subblocks each consisting of k symbols as
illustrated in Figure .; thus n = (b + 1)k and the delays range from 0 to (b + 1)k − 1.
�e �rst subblock labeled j = 0 is the preamble subblock. Also divide the message pair
(M1 , M2) into b independent submessage pairs (M1 j , M2 j) ∈ [1 : 2kR1] × [1 : 2kR2], j ∈ [1 :

b], and send them in the following b subblocks. Note that the resulting rate pair for this
code, (bR1/(b + 1), bR2/(b + 1)), can be made arbitrarily close to (R1 , R2) as b → ∞.

Preamble

Preamble

m11 m12 m1,b−1 m1b

m21 m22 m2,b−1 m2b

k

k(b + 1)

Figure .. Transmission block divided into subblocks.

Codebook generation. Fix a product pmf p(x1)p(x2). Randomly and independently gen-
erate a codebook for each subblock. Randomly generate a preamble codeword xk1 (0) ac-

cording to∏k
i=1 pX1

(x1i). For each j ∈ [1 : b], randomly and independently generate 2kR1

codewords xk1 (m1 j), m1 j ∈ [1 : 2kR1], each according to ∏k
i=1 pX1

(xi1). Similarly gener-

ate a preamble codeword xk2 (0) and codewords xk2 (m2 j), m2 j ∈ [1 : 2kR2], j ∈ [1 : b], each

according to∏k
i=1 pX2

(xi2).

Encoding. To send the submessagesmb
1 , encoder  �rst transmits its preamble codeword

xk1 (0) followed by x
k
1 (m1 j) for each j ∈ [1 : b]. Similarly, encoder  transmits its preamble

codeword xk2 (0) followed by xk2 (m2 j) for each j ∈ [1 : b].

Decoding. �e decoding procedure consists of two steps—preamble decoding and mes-
sage decoding. �e decoder declares d̂1 to be the estimate for d1 if it is the unique num-

ber in [0 : (b + 1)k − 1] such that �xk1 (0), y d̂1+kd̂1+1
� ∈ T (n)

є . Similarly, the decoder declares
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d̂2 to be the estimate for d2 if it is the unique number in [0 : (b + 1)k − 1] such that�xk2 (0), y d̂2+kd̂2+1
� ∈ T (n)

є .

Assume without loss of generality that d̂1 ≤ d̂2. Referring to Figure ., de�ne the
sequences

x1(m
b
1) = �xk1,δ+1(0), xk1 (m11), x

k
1 (m12), . . . , xk1 (m1b), x

δ
1 (0)�,

x2(m̃
b+1
2 ) = �xk2 (m̃21), x

k
2 (m̃22), . . . , xk2 (m̃2,b+1)�,

y = y
(b+1)k+d̂1+δ

d̂1+δ+1
,

where δ = d̂2 − d̂1 (mod k). �e receiver declares that m̂b
1 is the sequence of submessages

sent by sender  if it is the unique submessage sequence such that (x1(m̂
b
1), x2(m̃

b+1
2 ), y) ∈

T (n)
є for some m̃b+1

2 .

m11 m12 m1b

m̃21 m̃22 m̃23 m̃2,b+1

x1(m
b
1)

x2(m̃
b+1
2 )

y

d̂1

d̂2

δ

X1

X2

Y

Figure .. Asynchronous transmission and received sequence.

To recover the message sequence mb
2 , the same procedure is repeated beginning with

the preamble of sender .

Analysis of the probability of error. We bound the probability of decoding error for the
submessagesMb

1 from sender  averaged over the codes. Assumewithout loss of generality
that Mb

1 = 1 = (1, . . . , 1) and d1 ≤ d2. Let M̃
b+1
2 , X1(M

b
1 ), X2(M̃

b+1
2 ), and Y be de�ned as

before (see Figure .) with (d1 , d2) in place of (d̂1 , d̂2).�e decodermakes an error only
if one or more of the following events occur:

E0 = �(d̂1(Y2n−1
), d̂2(Y

2n−1
)) ̸= (d1 , d2)�,

E11 = �(X1(1), X2(M̃
b+1
2 ), Y) ∉ T

(n)
є �,

E12 = �(X1(m
b
1), X2(m̄

b+1
2 ), Y) ∈ T

(n)
є for somemb

1 ̸= 1, m̄b+1
2 ̸= M̃b+1

2 �.
�us, the probability of decoding error for Mb

1 is upper bounded as

P(E1) ≤ P(E0) + P(E11 ∩ E
c
0 ) + P(E12 ∩ E

c
0 ). (.)
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To bound the �rst term, the probability of preamble decoding error, de�ne the events

E01 = ��Xk
1 (0),Y

d1+k
d1+1

� ∉ T
(n)
є �,

E02 = ��Xk
2 (0),Y

d2+k
d2+1

� ∉ T
(n)
є �,

E03 = ��Xk
1 (0),Y

d̃1+k

d̃1+1
� ∈ T

(n)
є for some d̃1 ̸= d1 , d̃1 ∈ [0 : (b + 1)k − 1]�,

E04 = ��Xk
2 (0),Y

d̃2+k

d̃2+1
� ∈ T

(n)
є for some d̃2 ̸= d2 , d̃2 ∈ [0 : (b + 1)k − 1]�.

�en
P(E0) ≤ P(E01) + P(E02) + P(E03) + P(E04).

By the LLN, the �rst two terms tend to zero as k → ∞. To bound the other two terms, we
use the following.

Lemma .. Let (X ,Y) ∼ p(x , y) ̸= p(x)p(y) and (Xn ,Yn
) ∼ ∏n

i=1 pX ,Y (xi , yi). If є >
0 is su�ciently small, then there exists γ(є) > 0 that depends only on p(x , y) such that

P�(Xk ,Y d+k
d+1 � ∈ T

(k)
є � ≤ 2−kγ(є)

for every d ̸= 0.

�e proof of this lemma is given in Appendix B.

Now using this lemma with Xk ← Xk
1 (0) and Y

d+k
d+1 ← Y

d̃1+k

d̃1+1
, we have

P��Xk
1 (0),Y

d̃1+k

d̃1+1
� ∈ T

(k)
є � ≤ 2−kγ(є)

for d̃1 < d1, and the same bound holds also for d̃1 > d1 by changing the role of X and Y
in the lemma. �us, by the union of events bound,

P(E03) ≤ (b + 1)k2−kγ(є) ,

which tends to zero as k → ∞. Similarly, P(E04) tends to zero as k → ∞.
We continuewith bounding the last two terms in (.). By the LLN, P(E11 ∩ E c

0 ) tends
to zero as n → ∞. To upper bound P(E12 ∩ E c

0 ), de�ne the events

E(J1 , J2) = �(X1(m
b
1), X2(m̄

b+1
2 ), Y) ∈ T

(n)
є form1 j1

= 1, j1 ∉ J1 , m̄2 j2
= M̃2 j2

, j2 ∉ J2

and somem1 j1
̸= 1, j1 ∈ J1 , m̄2 j2

̸= M̃2 j2
, j2 ∈ J2�

for each J1 ⊆ [1 : b] and J2 ⊆ [1 : b + 1]. �en

P(E12 ∩ E
c
0 ) ≤ H

̸=J1⊆[1:b],J2⊆[1:b+1]

P(E(J1 , J2)).

We bound each term. Consider the event E(J1 , J2) illustrated in Figure . for b = 5,
J1 = {1, 3}, J2 = {3, 4}. �e (b + 1)k transmissions are divided into the following four
groups:
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∙ Transmissions where both m1 j1
and m̄2 j2

are correct: Each symbol in this group is
generated according to p(x1)p(x2)p(y|x1 , x2). Assume that there are k1 such symbols.

∙ Transmissions wherem1 j1
is in error but m̄2 j2

is correct: Each symbol in this group is
generated according to p(x1)p(x2)p(y|x2). Assume that there are k2 such symbols.

∙ Transmissions where m̄2 j2
is in error butm1 j1

is correct: Each symbol in this group is
generated according to p(x1)p(x2)p(y|x1). Assume that there are k3 such symbols.

∙ Transmissions where both m1 j1
and m̄2 j2

are in error: Each symbol in this group is
generated according to p(x1)p(x2)p(y). Assume that there are k4 such symbols.

Note that k1 + k2 + k3 + k4 = (b + 1)k, k2 + k4 = k|J1|, and k3 + k4 = k|J2|.

x1(m
b
1)

x2(m̃
b+1
2 )

y

6k

k2 k4

k3

Figure .. Illustration of error event E(J1 , J2) partitioning into four groups. �e
shaded subblocks denote the messages in error.

Now, by the independence of the subblock codebooks and the joint typicality lemma,

P�(X1(m
b
1), X2(m̄

b+1
2 ), Y) ∈ T

(n)
є �

≤ 2−k2(I(X1 ;Y |X2)−δ(є)) ⋅ 2−k3(I(X2 ;Y |X1)−δ(є)) ⋅ 2−k4(I(X1 ,X2 ;Y)−δ(є)) (.)

for each submessage sequence pair (mb
1 , m̄b+2

2 )with the given error location. Furthermore,
the total number of such submessage sequence pairs is upper bounded by 2k(|J1|R1+|J2|R2).
�us, by the union of events bound and (.), we have

P(E(J1 , J2)) ≤ 2k(|J1|R1+|J2|R2) ⋅ 2−k2(I(X1 ;Y |X2)−δ(є))−k3(I(X2 ;Y |X1)−δ(є))−k4(I(X1 ,X2 ;Y)−δ(є))

= 2−k2(I(X1 ;Y |X2)−R1−δ(є)) ⋅ 2−k3(I(X2 ;Y |X1)−R2−δ(є)) ⋅ 2−k4(I(X1 ,X2 ;Y)−R1−R2−δ(є)) ,

which tends to zero as k → ∞ if R1 < I(X1 ;Y |X2) − δ(є), R2 < I(X2 ;Y |X1) − δ(є), and
R1 + R2 < I(X1 , X2 ;Y) − δ(є).

�e probability of decoding error for Mb
2 can be bounded similarly. �is completes

the achievability proof of�eorem ..
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24.3.2 Proof of the Converse

Given a sequence of (2nR1 , 2nR2 , n, d = n − 1) codes such that limn→∞ P(n)
e = 0, we wish

to show that the rate pair (R1 , R2)must satisfy the inequalities in�eorem . for some
product pmf p(x1)p(x2). Recall that the codebook is used independently in consecutive
blocks. Assume that d1 = 0 and the receiver can synchronize the decoding with the trans-
mitted sequence from sender . �e probability of error in this case is

max
d2∈[0:n−1]

sup
l

P(n)
el (0, d2) ≤ max

d1 ,d2∈[0:n−1]
sup
l

P(n)
el (d1 , d2) = P(n)

e .

Further assume that D2 ∼ Unif[0 : n − 1]. �en the expected probability of error is upper
bounded as ED2

(supl P
(n)
el

(0, D2)) ≤ P(n)
e . We now prove the converse under these more

relaxed assumptions.
To simplify the notation and ignore the edge e�ect, we assume that the communication

started in the distant past, so (Xn
1 , Xn

2 ,Yn
) has the same distribution as (X2n

1,n+1 , X2n
2,n+1 ,

Y2n
n+1). Consider decoding the received sequence Y (κ+1)n−1 to recover the sequence of κ

message pairs (M1l , M2l) ∈ [1 : 2nR1] × [1 : 2nR2], l ∈ [1 : κ].
By Fano’s inequality,

H(M1l , M2l |Y
(κ+1)n , D2) ≤ H(M1l , M2l |Y

(κ+1)n−1
) ≤ nєn

for l ∈ [1 : κ], where єn tends to zero as n → ∞.
Following the converse proof for the synchronous DM-MAC in Section ., it is easy

to show that

κnR1 ≤ (κ+1)nH
i=1

I(X1i ;Yi |X2,i−D2
, D2) + κnєn ,

κnR2 ≤ (κ+1)nH
i=1

I(X2,i−D2
;Yi |X1i , D2) + κnєn ,

κn(R1 + R2) ≤ (κ+1)nH
i=1

I(X1i , X2,i−D2
;Yi |D2) + κnєn.

Now letQ ∼ Unif[1 : n] (not over [1 : (κ + 1)n − 1]) be the time-sharing random variable
independent of (Xκn

1 , Xκn
2 ,Y (κ+1)n , D2). �en

κnR1 ≤ κ+1H
l=1

nI(X1,Q+(l−1)n ;YQ+(l−1)n |X2,Q+(l−1)n−D2
, D2 ,Q) + κnєn

(a)= (κ + 1)nI(X1Q ;YQ |X2,Q−D2
,Q , D2) + κnєn

= (κ + 1)nI(X1 ;Y |X2 ,Q , D2) + κnєn
(b)≤ (κ + 1)nI(X1 ;Y |X2) + κnєn ,
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where X1 = X1Q , X2 = X2,Q−D2
,Y = YQ , (a) follows since the same codebook is used over

blocks, and (b) follows since (Q , D2) → (X1 , X2) → Y form a Markov chain. Similarly

κnR2 ≤ (κ + 1)nI(X2 ;Y |X1) + κnєn ,

κn(R1 + R2) ≤ (κ + 1)nI(X1 , X2 ;Y) + κnєn.

Note that sinceD2 ∼ Unif[0 : n − 1] is independent ofQ, X2 is independent ofQ and thus
of X1. Combining the above inequalities, and letting n → ∞ and then κ → ∞ completes
the proof of�eorem ..

SUMMARY

∙ DMC with random arrival model:

∙ Queue stability

∙ Channel capacity is the limit on the arrival rate for reliable communication

∙ Extensions to multiuser channels

∙ Random access channel as a MAC with state:

∙ Compound channel approach

∙ ALOHA

∙ Adaptive coding

∙ Broadcast channel approach

∙ Asynchronous MAC:

∙ Capacity region does not change under mild asynchrony

∙ Capacity region under total asynchrony reduces to the synchronous capacity re-
gion without time sharing

∙ Subblock coding and synchronization via preamble decoding

∙ Simultaneous decoding increases the rates under asynchrony

∙ Open problem .. What is the capacity region of the asynchronous MAC when
d = αn for α ∈ (0, 1)?

BIBLIOGRAPHIC NOTES

�e “unconsummated union” between information theory and networking was surveyed
by Ephremides andHajek (). �is survey includes several topics at the intersection of
the two �elds, including multiple access protocols, timing channels, e�ective bandwidth



Problems 615

of bursty data sources, deterministic constraints on data streams, queuing theory, and
switching networks. �e result on the stability region of a DM-MAC mentioned in Re-
mark . can be found, for example, in Kalyanarama Sesha Sayee and Mukherji ().
�e random access (collision) channel is motivated by the ALOHA System �rst described
in Abramson (). A comparative study of information theoretic and collision resolu-
tion approaches to the random access channel is given by Gallager (). �e adaptive
coding approach in Section . is an example of the DM-MAC with distributed state in-
formation studied in Hwang, Malkin, El Gamal, and Cio� (). �e broadcast channel
approach to the random access channel is due to Minero, Franceschetti, and Tse ().
�ey analyzed the broadcast channel approach for the N-sender random access channel
and demonstrated that simultaneous decoding can greatly improve the average through-
put over simple collision resolution approaches as sketched in Figure ..

CA

CALOHA

CBC

0 1
0

1/e

λ

Figure .. Comparison of the sum-capacities (average throughputs) of ALOHA
(CALOHA), adaptive coding (CA), and broadcast channel approach (CBC) versus the
load (average number of active senders) λ.

Cover, McEliece, and Posner () showed that mild asynchrony does not a�ect the
capacity region of the DM-MAC. Massey and Mathys () studied total asynchrony in
the collision channel without feedback and showed that time sharing cannot be used. �e
capacity region of the totally asynchronous DM-MAC in�eorem . is due to Poltyrev
() and Hui and Humblet (). Verdú () extended this result to multiple access
channels with memory and showed that unlike the memoryless case, asynchrony can in
general reduce the sum-capacity.

PROBLEMS

.. Provide the details of the converse proof of�eorem . by justifying the second
inequality in (.).
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.. Consider the DM-MAC p(y1 , y2|x) with two i.i.d. arrival processes {A1(i)} and
{A2(i)} of arrival rates λ1 and λ2, respectively. Show that the stability region S is
equal to the capacity region C .

.. Nonslotted DMCwith random data arrivals. Consider the DMCwith random data
arrival process {A(i)} as de�ned in Section .. Suppose that the sender trans-
mits a codeword if there are more than nR bits in the queue and transmits a �xed
symbol, otherwise. Find the necessary and su�cient conditions for reliable com-
munication (that is, the queue is stable and the message is recovered).

.. Two-sender three-receiver channel with  messages. Consider a DM -sender -
receiver channel p(y1|x1)p(y2|x2)p(y12|x1 , x2), where the message demands are
speci�ed as in Figure ..

(a) Show that the capacity region of this channel is the set of rate pairs (R̃1 , R̃2)

such that

R̃1 ≤ I(X1 ;Y1 |Q),

R̃1 ≤ I(X1 ;Y12 |X2 ,Q),

R̃2 ≤ I(X2 ;Y2 |Q),

R̃2 ≤ I(X2 ;Y12 |X1 ,Q),

R̃1 + R̃2 ≤ I(X1 , X2 ;Y12 |Q)

for some p(q)p(x1|q)p(x2|q).

(b) Consider the special case in Figure ., where X1 and X2 are binary, andY1 =
X1, Y2 = X2, and Y12 = X1 ⊕ X2. Show that the capacity region reduces to the
set of rate pairs (R̃1 , R̃2) such that R̃1 + R̃2 ≤ 1 and can be achieved without
time sharing.

.. Two-sender three-receiver channel with  messages. Consider a DM -sender -
receiver channel p(y1|x1)p(y2|x2)p(y12|x1 , x2), where the message demands are
speci�ed as in Figure ..

(a) Show that a rate quadruple (R̃10 , R̃11 , R̃20 , R̃22) is achievable if

R̃11 ≤ I(X1 ;Y1 |U1 ,Q),

R̃10 + R̃11 ≤ I(X1 ;Y1 |Q),

R̃22 ≤ I(X2 ;Y2 |U2 ,Q),

R̃20 + R̃22 ≤ I(X2 ;Y2 |Q),

R̃10 + R̃20 ≤ I(U1 ,U2 ;Y12 ,Q),

R̃10 ≤ I(U1 ;Y12 |U2 ,Q),

R̃20 ≤ I(U2 ;Y12 |U1 ,Q)

for some pmf p(q)p(u1 , x1|q)p(u2 , x2|q).
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(b) Consider the special case in Figure ., where X1 and X2 are binary, andY1 =
X1, Y2 = X2, and Y12 = X1 ⊕ X2. Show that the above inner bound simpli�es
to (.). (Hint: Show that both regions have the same �ve extreme points
(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), and (0, 1, 0, 1).)

(c) Prove the converse for the capacity region in (.).

.. MAC and BC with known delays. Consider the DM-MAC and the DM-BC with
constant delays d1 and d2 known at the senders and the receivers. Show that the
capacity regions for these channels coincide with those without any delays.

.. Mild asynchrony. Consider theDM-MACwith delays d1 , d2 ∈ [0 : d] such that d/n
tends to zero as n → ∞. Show that the capacity region is equal to that without any
delays. (Hint: Consider all contiguous codewords of length n − d and perform
joint typicality decoding using ynd+1 for each delay pair.)

APPENDIX 24A PROOF OF LEMMA 24.1

We �rst prove the converse, that is, the necessity of λ ≤ R. By the transition law for Q(i)

in (.),

Q(i + 1) ≥ ®Q(i) − nR + A(i) if i = jn,

Q(i) + A(i) otherwise.

Hence, by summing over i and telescoping, we have Q( jn + 1) ≥ ∑ jn
i=1 A(i) − jnR. By

taking expectation on both sides and using the stability condition, we have ∞ > B ≥
E(Q( jn + 1)) ≥ jn(λ − R) for j = 1, 2, . . . . �is implies that R ≥ λ.

Next we prove the su�ciency of λ < R using an elementary form of Foster–Lyapunov
techniques (Meyn and Tweedie ). Let Q̃ j = Q(( j − 1)n + 1) for j = 1, 2, . . . and Ã j =∑ jn

i=( j−1)n+1 A(i). �en, by the queue transition law,

Q̃ j+1 = ®Q̃ j − nR + Ã j if Q̃ j ≥ nR,

Q̃ j + Ã j otherwise

≤ max{Q̃ j − nR, nR} + Ã j

= max{Q̃ j − 2nR, 0} + Ã j + nR.

Since (max{Q̃ j − 2nR, 0})2 ≤ (Q̃ j − 2nR)2,

Q̃2
j+1 ≤ Q̃2

j + (2nR)2 + (Ã j + nR)2 − 2Q̃ j(nR − Ã j).

By taking expectation on both sides and using the independence of Q̃ j and Ã j and the

fact that E(Ã j) = nλ and E((Ã j + nR)2) ≤ n2(k + R)2, we obtain

E(Q̃2
j+1) ≤ E(Q̃2

j ) + n2((k + R)2 + 4R2
)) − 2n(R − λ) E(Q̃ j),
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or equivalently,

E(Q̃ j) ≤ n((k + R)2 + 4R2)

2(R − λ)
+ E(Q̃2

j ) − E(Q̃2
j+1)

2n(R − λ)
.

Since Q̃1 = 0, summing over j and telescoping, we have

1

b

bH
j=1

E(Q̃ j) ≤ n((k + R)2 + 4R2
)

2(R − λ)
+ E(Q̃2

1) − E(Q̃2
b+1)

2nb(R − λ)
≤ n((k + R)2 + 4R2

)

2(R − λ)
.

Recall the de�nition of Q̃ j = Q(( j − 1)n + 1) and note that Q(i) ≤ Q(( j − 1)n + 1) + kn

for i ∈ [( j − 1)n + 1 : jn]. �erefore, we have stability in the mean, that is,

sup
l

1

l

lH
i=1

E(Q(i)) ≤ B < ∞. (.)

To prove stability, i.e., supi E(Q(i)) < ∞, which is a stronger notion than stability in the
mean in (.), we note that the Markov chain {Q̃ j} is positively recurrent; otherwise,
the stability in the mean would not hold. Furthermore, it can be readily checked that the
Markov chain is aperiodic. Hence, the chain has a unique limiting distribution and E(Q̃ j)

converges to a limit (Meyn and Tweedie ). But by the Cesàro mean lemma (Hardy
, �eorem ), (1/b)∑b

j=1 E(Q̃ j) < ∞ for all b implies that lim j E(Q̃ j) < ∞. �us,

sup j E(Q̃ j) < ∞ (since E(Q̃ j) < ∞ for all j). Finally, using the same argument as before,
we can conclude that supi E(Q(i)) < ∞, which completes the proof of stability.

APPENDIX 24B PROOF OF LEMMA 24.2

First consider the case d ≥ k (indices for the underlying k-sequences do not overlap).
�en (X1 ,Yd+1), (X2 ,Yd+2), . . . are i.i.d. with (Xi ,Yd+i) ∼ pX(xi)pY (yd+i). Hence, by the
joint typicality lemma,

P�(Xk ,Y d+k
d+1 ) ∈ T

(n)
є (X ,Y)� ≤ 2−k(I(X ;Y)−δ(є)).

Next consider the case d ∈ [1 : k − 1]. �en Xk and Y d+k
d+1 have overlapping indices

and are no longer independent of each other. Suppose that є > 0 is su�ciently small that
(1 − є)pX ,Y (x

∗ , y∗) ≥ (1 + є)pX(x
∗
)pY (y

∗
) for some (x∗ , y∗). Let p = pX(x

∗
)pY (y

∗
) and

q = pX ,Y (x
∗ , y∗). For i ∈ [1 : k], de�ne Ỹi = Yd+i and

Ei = ®1 if (Xi , Ỹi) = (x∗ , y∗),

0 otherwise.

Now consider

π(x , y |Xk , Ỹ k
) = |{i : (Xi , Ỹi) = (x∗ , y∗)}|

k
= 1

k

kH
i=1

Ei .
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Since {(Xi , Ỹi)} is stationary ergodic with pXi ,Ỹi
(x∗ , y∗) = p for all i ∈ [1 : k],

P�(Xk ,Y d+k
d+1 ) ∈ T

(n)
є (X ,Y)� ≤ P�π(x∗ , y∗ |Xk , Ỹ k

) ≥ (1 − є)q�
≤ P�π(x∗ , y∗ |Xk , Ỹ k

) ≥ (1 + є)p�,
which, by Birkho� ’s ergodic theorem (Petersen , Section .), tends to zero as n → ∞.
To show the exponential tail, however, we should boundP{π(x∗ , y∗|Xk , Ỹ d+k

d+1 ) ≥ (1 + є)p}

more carefully.
Assuming that k is even, consider the following two cases. First suppose that d is odd.

LetU k/2 = ((X2i−1 , Ỹd+2i−1) : i ∈ [1 : k/2]) be the subsequence of odd indices. �enU k/2

is i.i.d. with pUi
(x∗ , y∗) = p and by the Cherno� bound in Appendix B,

P�π(x∗ , y∗ |U k/2
) ≥ (1 + є)p� ≤ e−kpє

2
/6.

Similarly, letV k/2 = {(X2i , Ỹ2i)}
k/2
i=1 be the subsequence of even indices. �en

P�π(x∗ , y∗ |V k/2
) ≥ (1 + є)p� ≤ e−kpє

2
/6.

�us, by the union of events bound,

P�π(x∗ , y∗ |Xk , Ỹ k
) ≥ (1 + є)p�

= P�π(x∗ , y∗ |U k/2 ,V k/2
) ≥ (1 + є)p�

≤ P�π(x∗ , y∗ |U k/2
) ≥ (1 + є)p or π(x∗ , y∗ |V k/2

) ≥ (1 + є)p�
≤ 2e−kpє

2
/6.

Next suppose that d is even. We can construct two i.i.d. subsequences by alternating
even and odd indices for every d indices, we have

U k/2 = �(Xi , Ỹi) : i odd ∈ [(2l − 1)d + 1 : 2l d], i even ∈ [2l d + 1 : 2(l + 1)d]�.
For example, if d = 2, then U k/2 = ((Xi ,Yd+i) : i = 1, 4, 5, 8, 9, 12, . . .). �e rest of the
analysis is the same as before. �is completes the proof of the lemma.
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