
Solutions to exercises in chapter 4

1. Resonance and absorption

m = 0.50(1) kg;k= 5.0(1) N/m; f = 0.90(9)kg/s; Fext = F0cos(Ωt); F0 = 2.0(2)N ; 2π/Ω = 1.00(1)
s.

a) The natural frequency of this spring pendulum is ω =
√
k/m =

√
5N/m/0.5kg =

√
10kg/(s2kg) '

πs−1.

b) The quantity whose error we want to determine is the square root of a ratio, hence we best
work with relative errors and have rω = 1/2

√
r2
k + r2

m, mit rk = rm = 0.02, which yields rω =

1/2
√

0.022 + 0.022 = 0.02/
√

2 ' 1.4%

c) The amplitude is given by x0 = F0√
(mΩ2−k)2+Ω2f2

. With Ω = 2πs−1 given, we have Ω2 ' 40s−2,

and hence mΩ2 − k = 40s−20.5kg − 5N/m = 20 − 5kg/s2 = 15kg/s2. Furthermore we have
(fΩ)2 = 40s−2(0.9)2kg2s−2 = 8.1 ·10−14 ·10kg2s−4 = 32kg2s−4, which yields (mΩ2−k)2 +Ω2f2 =
257kg2s−4 and

√
(mΩ2 − k)2 + Ω2f2 =

√
257kgs−2 '

√
256kgs−2 = 16kgs−2 so we finally get the

amplitude: x0 = 2N/16kgs−2 = 1/8m.

d) Error propagation tells us that we need to know: ∂x0

∂F0
, ∂x0

∂Ω ,
∂x0

∂m ,
∂x0

∂k ,
∂x0

∂f . We will use relative
errors.
∂x0

∂F0
= 1√

(mΩ2−k)2+Ω2f2
= x0/F0

∂x0

∂Ω = − F0√
(mΩ2−k)2+Ω2f2

3 (Ωf2 + (mΩ2 − k)2mΩ) = −x0/Ω
Ω2f2+(mΩ2−k)2mΩ2

(mΩ2−k)2+Ω2f2 = −x0/Ω
32+15·40

256 =

−x0/Ω · 632/256

∂x0

∂m = − F0√
(mΩ2−k)2+Ω2f2

3 ((mΩ2 − k)Ω2) = −x0/m
(mΩ2−k)mΩ2

(mΩ2−k)2+Ω2f2 = −x0/m
15·20
256 = −x0/m ·

300/256

∂x0

∂k = − F0√
(mΩ2−k)2+Ω2f2

3 ((mΩ2 − k)(−1)) = x0/m
(mΩ2−k)k

(mΩ2−k)2+Ω2f2 = x0/m · 75/256

∂x0

∂f = − F0√
(mΩ2−k)2+Ω2f2

3 (fΩ2) = −x0/f
(f2Ω2

(mΩ2−k)2+Ω2f2 = −x0/f · 32/256

Thus the relative error of x0 is:

r2
x0

= r2
F0

+(Ω2f2+(mΩ2−k)2mΩ2

(mΩ2−k)2+Ω2f2 )2r2
Ω+( (mΩ2−k)mΩ2

(mΩ2−k)2+Ω2f2 )2r2
m+( (mΩ2−k)k

(mΩ2−k)2+Ω2f2 )2r2
k+( (f2Ω2

(mΩ2−k)2+Ω2f2 )2r2
f

Numerically:

r2
x0

= r2
F0

+(632/256)2r2
Ω +(300/256)2r2

m+(75/256)2r2
k+(32/256)2r2

f ' r2
F0

+(2.5)2r2
Ω +(1.2)2r2

m+

(0.3)2r2
k + (0.125)2r2

f

With the relative errors: rF0
= 0.1, rΩ = 0.01, rm = 0.02, rk = 0.02, rf = 0.1

and hence r2
x0
' 0.01 + 0.0006 + 0.0006 + 0.00004 + 0.0001 ' 0.01 also rx0 ' 10%

e) No it doesn’t. The oscillation is driven, such that the damping is compensated by the external
force.

2. Elastic waves

a) The string is fixed at both ends, such that the wave-length is λ = 2L for the basic mode. Together
with the frequency ν = 440 Hz t: his gives the speed of the wave v = νλ. For a wave on a taught
string, this is given by: v = sqrtσ/ρ, where σ = Z/(πr2) is the mechanical tension. We therefore
obtain: Z = ρλ2ν2πr2 = 4 · ρL2ν2πr2. Numerically: Z = 4 · 8 · 103kg/m30.32m24.42 · 104Hz2π0.22 ·
10−6m2 = 4 · 8 · 0.09 · π · 19.3 · 0.04 · 10N = 4 · 8 · π · 0.9 · 1.9 · 0.4N ' 70N .

b) From a) we have: Z = 4ρL2ν2πr2. We use relative errors to obtain: r2
Z = 4(r2

r + r2
ν + r2

L).
Numerically we have: rr = 0.1; rL = 1/300; rν = 0.05. This means that we can safely neglect rL, as
it is more than 10 times smaller than rν and obtain rZ = 2

√
50.05 = 4.5 · 0.05 ' 0.22 or σZ ' 15N .
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c) From a) we have
√
σ/ρ = 2Lν, so the maximum frequency is: νmax = 1/(2L)

√
sigmam/ρ. Nu-

merically: νmax = 1/(0.6m)
√

7 · 108N/m2/(8 · 103kg/m3) =
√

7/8 · 105m/s·1/(0.6m) =
√

70/8102/0.6Hz '√
36/4102/0.6Hz = 6/2102/0.6Hz = 102/0.2Hz = 500Hz.

3. Elastic waves 2

The wave train will move with a speed of v = sqrtσ/ρ, where σ is determined by the restoring force
due to gravity, i.e. σ = F/A = mg/A = ρAxg/A = ρxg. This means the speed of the wave is given

by: v =
√
xg. To travel a distance L therefore takes a time of T =

∫ L
0
dx/
√
xg = 2

√
L/g. For

comparison, the falling time of an object falling the same distance is Tfall =
√

2L/g.

4. Sound intensity

Decibel(dB) is a logarithmic unit of sound intensity. 70 dB corresponds to an intensity of 10−5W/m2.
A decrease of 10dB corresponds to a decrease of a factor of 10 in intensity. We are thus looking for
intensities of 10−6, 10−7, 10−8 W/m2. A straight highway of length L emits sound at a distance r
through a surface of area A = πrL. Since the emitted power is constent, the intensity thus decreases
as 1/A ∝ 1/r. Therefore we need to increase our distance by factors of ten, i.e. 500 m, 5 km and
50 km.

5. Hearing threshold

For a length of 2.5 cm to have the largest amplitude of excitation while being attached at one end,
the mode of excitation needs to be the basic standing wave. Therefore the corresponding wavelength
needs to be λ = 10 cm. In order to obtain the frequency of sound that this belongs to, we use the
fact that the speed of sound is given by the product of wavelength and frequency, i.e. ν = vS/λ.
With a speed of sound of 300 m/s, we obtain a frequency of ν ' 3 kHz.

6. Hearing threshold 2

Thermal energy at room temperature is kBT = 4 · 10−21 J. This energy needs to act onto the area
A = 0.25 · 10−4m2 during a time τ = 0.3 · 10−3 s. Then the intensity would be I = kBT/(τA) =
3 · 4 · 10−21J/(10−3s0.25 · 10−4 m2) = 48 · 10−21/10−7 W/m2 ' 5 · 10−13 W/m2. This is only about
half of the hearing threshold of the human ear! If the ear would be more sensitive than it is, we
would actually constantly hear thermal noise!

7. Sound waves

The speed of sound is given by the ratio of the density to the kompressional modulus. While the
densities of gases are smaller (by roughly a factor of 1000), the modulus of compression increases
by many orders of magnitude in liquids (by at least a factor of 104 up to 106)). This more than
compensates the increase in density and thus leads to a larger speed of sound in solids and liquids
compared to gases by a factor of 3 to 30.

8. Sound intensity 2

a) A sperical wave emits into an area A = 4πr2. THe maximum intensity at a distance r therefore
is I(r) = P0

4πr2 . In other words, the distance we are looking for is given by: r2 = P0

4πI . An intensity
of 120 dB corresponds to 1 W/m2. With P0 = 125 W and 4π ' 12.5, we obtain: r2 = 10 m2 or
r ' π m.

b) An intensity of 65 dB corresponds to a decrease of 60 dB or a factor of 106. We are therefore
looking for a time where exp(−t/τ) = 10−6. Taking the (natural) log on both sides gives: t/τ =
6 · ln(10) = 6 · 2.3 ' 14. The time we are looking for thus is: t = 14τ = 140s.

9. Fourier decomposition

a) The reverberation time τ is the time on which the energy of the oscillation decreases.The energy
is proportional to the amplitude squared, hence the reverberation time is τ = m/f .

b) The width (full width at half maximum) of the resonance curve is ∆ω = f/m.
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c) According to a) and b) we have ∆ω = 1/τ . A good frequency resolution corresponds to a long
reverberation time! For the numerical example, we have 5% resolution at a frequency of 100 Hz or
a ∆ω = 100Hz · 0.05 · 2π = 10πs−1 ' 30s−1. The reverberation time is thus about 1/30 s. A faster
sequence of tones at 100Hz cannot be resolved by the human ear.

10. Fourier transform

a) WithA(ω) =
√

2
π

∫∞
0
u(t) cos(ωt)dt and u(t) = u0 exp(−γt) cos(Ωt) we haveA(ω) =

√
2
π

∫∞
0
u0 exp(−γt) cos(Ωt) cos(ωt)dt

Writing the cosine in terms of exponentials we get:

A(ω) = u0

√
1

8π

∫∞
0

exp(−γt)(exp(iΩt) + exp(−iΩt))(exp(iωt) + exp(−iωt))dt.

We thus have to evaluate four different integrals of the exponential function, namely:

exp((−γ + i(Ω + ω))t), exp((−γ + i(Ω− ω))t), exp((−γ + i(−Ω + ω))t) and exp((−γ − i(Ω + ω))t).

This is always of the form
∫∞

0
exp(−at)dt = − 1

a exp(−at)|∞0 = 1
a .

Therefore we obtain for the Fourier transform:

A(ω) = u0

√
1

8π ( 1
γ−i(Ω+ω) + 1

γ−i(Ω−ω) + 1
γ+i(Ω−ω) + 1

γ+i(Ω+ω) ).

Which yields:

A(ω) = u0

√
1

2π ( γ
γ2+(Ω+ω)2 + γ

γ2+(Ω−ω)2 )

or:

A(ω) = u0

√
1

2π (γ(γ2+(Ω+ω)2+γ2+(Ω−ω)2)
(γ2+(Ω+ω)2)(γ2+(Ω−ω)2)

A(ω) = u0

√
2
π ( γ(γ2+Ω2+ω2)

γ4+γ2(Ω+ω)2+γ2(Ω−ω)2+(Ω+ω)2(Ω−ω)2

A(ω) = u0

√
2
π ( γ(γ2+Ω2+ω2)

γ4+2γ2(Ω2+ω2)+(Ω2−ω2)2

With Ω2 = ω2
0 − γ2 we obtain:

A(ω) = u0

√
2
π (

γ(γ2+ω2
0−γ

2+ω2)

γ4+2γ2(ω2
0−γ2+ω2)+(ω2

0−γ2−ω2)2

A(ω) = u0

√
2
π (

γ(ω2
0+ω2)

γ4+2γ2ω2
0−2γ4+2γ2ω2)+γ4−2γ2(ω2

0−ω2)+(ω2
0−ω2)2

A(ω) = u0

√
2
π (

γ(ω2
0+ω2)

4γ2ω2+(ω2
0−ω2)2

11. Fourier transform 2

A(ω) = 1√
2π

∫∞
−∞ z(t) cos(ωt)dt

and

B(ω) = 1√
2π

∫∞
−∞ z(t) sin(ωt)dt.

As z(t) is non-zero only in the interval between zero and τ , we can change to borders of the integral
accordingly:

A(ω) = 1√
2π

∫ τ
0

cos(ωt)dt

and

B(ω) = 1√
2π

∫ τ
0

sin(ωt)dt.

This gives:

A(ω) = 1√
2π

sin(ωτ)
ω

and

B(ω) = 1√
2π

1−cos(ωτ)
ω .

The absolute value then gives
√
A2 +B2 = 1√

2π

2 sin(ωτ/2)
ω .
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12. Standing waves

a) Closed on top means that the pipe is closed on both sides, such that the wave-length of the
basic mode is twice the length of the pipe. THe frequency is then ν = v/λ = v/(2h). Numerically:
ν = 340m/s/(2 · 1.7) m = 100 Hz.

b) The relative error is given by: rν =
√
r2
v + r2

λ. Numerically: rv = rλ/2 = 1/340: rν = 1/340
√

5 '
0.6%.

13. Standing waves 2

a) For a tube open at one end, we have: νn = (2n−1)
4L v. Rearranging for the length: L = (2n−1)

4νn
v. The

lower density of methane relative to air gives an increase in the speed of sound as in v = cair
√

ρair

ρM
.

Hence the length of the tube becomes: L = (2n−1)
4νn

cL
√

ρair

ρM
, where n is the number of nodes.

Numerically: L =
√

29
4·440Hz343m/s = 4.5·343√

2440
m = 4.5·3.43√

24.4
m ' 2.5m

b) Considering relative errors using the result from a): r2
L = r2

ν+ 1
4r

2
ρ, where rν = 0.5% and rρ = 2%.

This yields rL =
√

1.25% ' 1%.

14. Diffraction

a) The first diffraction minimum is at an angle sin(φ) = λ/d, where d is the width of the slit.
Therefore, the wave-length of the microwaves is λ = d sin(φ) = 5cm. Microwave travel at the speed
of light c = 3 · 108 m/s, such that the frequency is ν = c/λ = 3

5 · 1010 Hz = 6 GHz

b) σ2
λ = (∂λ∂d )2σ2

d + (∂λ∂φ )2σ2
φ = (λd )2σ2

d + (λ cos(φ)
sin(φ) )2σ2

φ, where φ is measured in radians. THis implies

for the relative errors: r2
λ = r2

d + cot2(φ)σ2
φ. Finally, we have for an angle of 30◦: cot(30◦) =

√
3,

hence: r2
λ = r2

d + 3σ2
φ = 0.12 + 3π2

602 = 0.01 + 1
120 ' 0.018 and finally rλ = 13%.

15. Interference

You want to moor in a minimum of the interference pattern. Therefore the angle towards the
opening has to fulfil sin(φ) = (m + 1/2)λ/d. For the first minimum, this implies numerically
φ = arcsin( 1

2 ·
10m
50m ) = arcsin(1/10) ' 6 degrees.

16. Sonar and Doppler

a) Die resolution limit for an object corresponds roughly to the wave-length. From the speed of
sound and the frequency, we obtain: x ' λ = v/ν. Numerically: λ = 340 m/s / 60 kHz = 3.4/6
102/104 m = 3.4/6 ·10−2 m '0.55 cm.

b) We divide the problem into two processes: (i) The frequency change experienced by the insect
and (ii) that observed by the bat. From the point of view of the insect, the bat is the source and
the insect the detector. Therefore, the sonar of the bat arrives at the insect with a frequency of

νinsect = ν0
1+vinsect/c

1−vbat/c
. This frequency is reflected by the insect and observed by the bat, now with

the insect as the source and the bat as the detector. Therefore: νbat = νinsect
1+vbat/c

1−vinsect/c
. Inserting

the result from (i) we obtain: νbat = ν0
1+vbat/c

1−vinsect/c
· 1+vinsect/c

1−vbat/c
' ν0(1 + 2(vbat + vinsect)/c, where

we have used that the speeds are small compared to the speed of sound in the final step. The
relative frequency-shift therefore becomes ∆ν/ν0 = 2(vbat + vinsect)/c. Numerisch erhalten wir:
∆ν/ν0 = 26/340 = 7.5%.

c) The errors in the velocities add in squares, therefore the error of vbat + vinsect is 0.14m/s. The
relative error of this velocity is also the relative error of the frequency change, i.e. 0.14/13 or 1%.

17. Sonar and Doppler 2

a) Again, the resolution limit is roughly x = λ. With v = νλ, we obtain the wave-length from
the speed of sound and the frequency. Using the compressional modulus and the density to
determine the speed of sound, we obtain v =

√
K/ρ, and hence x = λ = v/ν =

√
K/ρ/ν.
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Numerically: v =
√
K/ρ =

√
2 · 109Pa/103kg/m3 =

√
2 · 106m2/s2 =

√
2103m/s and hence

x ' λ =
√

2103m/s/(1.5 · 106Hz) ' 10−3m = 1mm.

b) We are using a stationary sender and receiver to measure the blood flow. Hence we have to go
from stationary source to moving observer (blood) and then back from moving source (blood) to

stationary receiver. The frequency that we observe in the receiver therefore is ν′′ = ν 1−vB/v
1+vB/v

, where

vB is the speed of the blood flow and v is the speed of sound, which is v =
√

2103 m/s according
to a), thus vB/v = 10−4/

√
2, which is very small. We may thus Taylor approximate the relation

of the frequency as: ν′′ = ν 1−vB/v
1+vB/v

' ν(1 − vB/v)2 ' ν(1 − 2vB/v). In other words, the relativ

frequency change is: ∆ν/ν = −2vB/v = −
√

2 · 10−4. Therefore the frequency change is about 200
Hz.

c) With the approximation used above, ∆ν/ν = −2vB/v, we can directly write down the relative
error r2

∆ν/ν = r2
vB + r2

v and with the relation for the speed of sound from a), we have the error of v:

r2
v = 1/4(r2

E+r2
ρ) Thus: r2

∆ν/ν = r2
vB +1/4(r2

K+r2
ρ) nach den Angaben ist rvB = 2rK = rρ = r = 0.1

also erhalten wir: r2
∆ν/ν = r2 + 1/4(4r2 + r2) = 2.25r2. The relative error thus is r∆ν/ν = 1.5 · 0.1.

The error in the original frequency is negligibly small, hence r∆ν = 0.15

18. Atomic Physics

a) The Bohr radius is inversely proportional to the mass of the particle, hence for a muon the Bohr
radius is roughly 200 times smaller, i.e. 0.5/200 Å = 0.25 pm.

b) Since the masses are again a factor of 10 larger, the radius decreases by another factor of 10, i.e.
r = 25fm. To be exact, in this case, both particles have the same mass, such that they would both
move around their centre of mass. This would in effect reduce the radius by another factor of two.
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