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Racetrack and Mean Value Inequalities

Theorem 1

Let f , g be differentiable functions from an interval I to R.

1 (Racetrack Inequality) If a, b ∈ I , f (a) ≤ g(a) and f ′(x) ≤ g ′(x) on
[a, b] then f (x) ≤ g(x) on [a, b].

2 (Mean Value Inequality) If a, b ∈ I and m ≤ f ′(x) ≤ M on [a, b]
then m(x − a) ≤ f (x)− f (a) ≤ M(x − a) on [a, b].

3 If a ∈ I and |f ′(x)| ≤ M on I , then |f (x)− f (a)| ≤ M|x − a| on I .

If any of the inequalities involving f ′ is strict, so is the corresponding
inequality for f .

Proof. Part (a) is a consequence of the Monotonicity Theorem. Part (b)
follows by applying (a) to the functions m(x − a), f (x) = f (a), and
M(x − a). The x ≥ a case of (c) is covered by (b). The x < a case is
obtained by symmetry. □
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(Lagrange’s) Mean Value Theorem

Theorem 2

Let f : [a, b] → R satisfy the following:

1 It is continuous on [a, b].

2 It is differentiable on (a, b).

Then there is a c ∈ (a, b) such that f ′(c) =
f (b)− f (a)

b − a
.

Proof. Define g(x) = f (x)− f (a)− f (b)− f (a)

b − a
(x − a). Observe that

g(a) = g(b) = 0, g is continuous on [a, b] and differentiable on (a, b).
By the Extreme Value Theorem, g achieves a maximum value M and a
minimum value m on [a, b]. If M = m, then g is constant and hence
zero. In this case, every c ∈ (a, b) has the desired property.
If M ̸= m then at least one of the maximum and minimum values of g is
achieved at an interior point c ∈ (a, b).

By Fermat’s Theorem, g ′(c) = 0. Hence f ′(c) =
f (b)− f (a)

b − a
. □
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Rolle’s Theorem

Theorem 3

Let f : [a, b] → R satisfy the following:

1 It is continuous on [a, b].

2 It is differentiable on (a, b).

3 f (a) = f (b).

Then there is a c ∈ (a, b) such that f ′(c) = 0.

Task 1

Suppose a < b < c, f : [a, c] → R is twice continuously differentiable
(i.e., the function f ′′ = (f ′)′ is continuous), and f (a) = f (b) = f (c) = 0.
Show that there is α ∈ (a, c) such that f ′′(α) = 0.
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(Cauchy’s) Mean Value Theorem

Theorem 4

Let f , g : [a, b] → R be continuous on [a, b] and differentiable on (a, b).
Suppose that g ′(x) ̸= 0 for every x ∈ (a, b). Then there is a c ∈ (a, b)
such that

f ′(c)

g ′(c)
=

f (b)− f (a)

g(b)− g(a)
.

Proof. First note that g(a) ̸= g(b). If they were equal, Rolle’s Theorem
would give a c ∈ (a, b) such that g ′(c) = 0. Thus both ratios in the
theorem’s conclusion are defined.

Define h(x) = g(x)
f (b)− f (a)

g(b)− g(a)
. We have h(b)− h(a) = f (b)− f (a).

Applying Rolle’s theorem to f (x)− h(x), we get a c ∈ (a, b) such that
f ′(c)− h′(c) = 0. Then,

0 = f ′(c)−h′(c) = f ′(c)−g ′(c)
f (b)− f (a)

g(b)− g(a)
=⇒ f ′(c)

g ′(c)
=

f (b)− f (a)

g(b)− g(a)
.

□
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Remarks

Remark 1: Taking g(x) = x in Cauchy’s Mean Value Theorem gives
Lagrange’s Mean Value Theorem. So it is also called the
Extended or the Generalized Mean Value Theorem.

Remark 2: Its motivation comes from the motion of a particle in a
plane. Let the location at any time t, a ≤ t ≤ b, be given
by (g(t), f (t)). Then its net displacement is
(g(b)− g(a), f (b)− f (a)), while its velocity vector at any
time t is (g ′(t), f ′(t)). Thus Cauchy’s Mean Value
Theorem says that there is a time instant c when the
velocity vector is parallel to the total displacement.

(f (a), g(a)) (f (b), g(b))
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0/0 Indeterminate Form

A limit of the type lim
x→a

f (x)

g(x)
with lim

x→a
f (x) = lim

x→a
g(x) = 0 is said to be

an indeterminate form of type
0

0
. (The limits could also be one-sided)

Theorem 5

Suppose lim
x→a

f (x) = lim
x→a

g(x) = 0, f and g are differentiable at a, and

g ′(a) ̸= 0. Then lim
x→a

f (x)

g(x)
=

f ′(a)

g ′(a)
.

Proof. Since f , g are differentiable at a, they are continuous there, and
so f (a) = g(a) = 0. Further, g ′(a) ̸= 0 implies that there is an interval
centered at a in which g(x) is never zero.

lim
x→a

f (x)

g(x)
= lim

x→a

(f (x)− f (a))/(x − a)

(g(x)− g(a))/(x − a)
=

f ′(a)

g ′(a)
.

□
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Example

We have to evaluate lim
x→0

x + sin x

log(1− x)
.

The functions f (x) = x + sin x , g(x) = log(1− x) satisfy the hypotheses
of the above theorem.

We calculate:

lim
x→0

f ′(x)

g ′(x)
= lim

x→0

1 + cos x

−1/(1− x)
= lim

x→0
(x − 1)(1 + cos x) = −2.

Therefore, lim
x→0

x + sin x

log(1− x)
= −2.
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L’Hôpital’s Rule

Theorem 6

Let f , g : (a, b) → R be differentiable functions which satisfy the
following.

1 lim
x→a+

f (x) = lim
x→a+

g(x) = 0,

2 g ′(x) ̸= 0 for every x ∈ (a, b),

3 lim
x→a+

f ′(x)

g ′(x)
= L ∈ R.

Then lim
x→a+

f (x)

g(x)
= L.

Proof on next slide.
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L’Hôpital’s Rule – Proof

Proof. Extend the domain of f , g to [a, b) by defining f (a) = g(a) = 0.
Then f , g become continuous on [a, b). Further, by Rolle’s Theorem,
g(x) ̸= 0 for every x ∈ (a, b).

Let 0 < h < b − a. Then, for each such h, the functions f (x) and g(x)
satisfy the hypotheses of Cauchy’s Mean Value Theorem on the interval
[a, a+ h]. Hence there is a ch ∈ (a, a+ h) such that

f ′(ch)

g ′(ch)
=

f (a+ h)− f (a)

g(a+ h)− g(a)
=

f (a+ h)

g(a+ h)
.

We have a < ch < a+ h. So the Sandwich Theorem implies that
ch → a+ as h → 0+. Hence

lim
x→a+

f (x)

g(x)
= lim

h→0+

f (a+ h)

g(a+ h)
= lim

h→0+

f ′(ch)

g ′(ch)
= lim

x→a+

f ′(x)

g ′(x)
= L.

□
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Other Versions

Theorem 7

1 (Left-hand limit) Suppose f , g are differentiable on (a, b), g ′(x) ̸= 0
for every x ∈ (a, b), lim

x→b−
f (x) = lim

x→b−
g(x) = 0, and

lim
x→b−

f ′(x)

g ′(x)
= L. Then lim

x→b−

f (x)

g(x)
= L.

2 (Two-sided limit) Suppose a < b < c, f , g are differentiable on
I = (a, b) ∪ (b, c), g ′(x) ̸= 0 for every x ∈ I ,

lim
x→b

f (x) = lim
x→b

g(x) = 0, and lim
x→b

f ′(x)

g ′(x)
= L ∈ R. Then

lim
x→b

f (x)

g(x)
= L.
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Example

Example 8

Consider lim
x→1

log x

x − 1
.

This is an indeterminate form of the type 0/0 and f (x) = log x ,
g(x) = x − 1 satisfy the first three hypotheses of L’Hôpital’s Rule for
two-sided limits with a = 0, b = 1, c = 2.
Further,

lim
x→1

f ′(x)

g ′(x)
= lim

x→1

1/x

1
= 1

Hence lim
x→1

log x

x − 1
= 1. (We could also have used Theorem 5.)
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Example

Example 9

We know that lim
x→0

sin x

x
= 1. This means that for small x , sin x ≈ x .

To improve this approximation we use L’Hôpital’s Rule to compare
sin x − x with higher powers of x . First with x2:

lim
x→0

sin x − x

x2
= lim

x→0

cos x − 1

2x
= lim

x→0

− sin x

2
= 0.

So the gap sin x − x is much smaller than x2. Let’s compare with x3:

lim
x→0

sin x − x

x3
= lim

x→0

cos x − 1

3 x2
= lim

x→0

− sin x

3! x
= − 1

3!
.

Thus
sin x − x

x3
≈ − 1

3!
, or sin x ≈ x − x3

3!
for small x . This process can

be continued to get better and better polynomial approximations to sin x .
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sin x − x with higher powers of x . First with x2:

lim
x→0

sin x − x

x2
= lim

x→0

cos x − 1

2x
= lim

x→0

− sin x

2
= 0.

So the gap sin x − x is much smaller than x2. Let’s compare with x3:

lim
x→0

sin x − x

x3
= lim

x→0

cos x − 1

3 x2
= lim

x→0

− sin x

3! x
= − 1

3!
.

Thus
sin x − x

x3
≈ − 1

3!
, or sin x ≈ x − x3

3!
for small x . This process can

be continued to get better and better polynomial approximations to sin x .

Amber Habib Calculus



Mean Value Theorems Indeterminate Forms Taylor Polynomials

Example

Task 2

Use L’Hôpital’s Rule to compare sin x − x + x3/3! with x5 near zero and

obtain the approximation sin x ≈ x − x3

3!
+

x5

5!
for small x.

The graph below shows the progressive improvements in these
approximations to sin x :

2 4 6 8

−2

−1

1

2 y = x

y = x − x3

3!

y = x − x3

3!
+

x5

5!
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Limits at Infinity

Theorem 10

Suppose f and g are differentiable on (a,∞), g ′(x) ̸= 0 for every

x ∈ (a,∞), lim
x→∞

f (x) = lim
x→∞

g(x) = 0, and lim
x→∞

f ′(x)

g ′(x)
= L ∈ R. Then

lim
x→∞

f (x)

g(x)
= L.

Proof. We begin by recalling that lim
x→∞

f (x) = lim
t→0+

f (1/t). Hence,

lim
x→∞

f (x)

g(x)
= lim

t→0+

f (1/t)

g(1/t)
= lim

t→0+

(f (1/t))′

(g(1/t))′
= lim

t→0+

−f ′(1/t)/t2

−g ′(1/t)/t2

= lim
t→0+

f ′(1/t)

g ′(1/t)
= lim

x→∞

f ′(x)

g ′(x)
.

□
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□
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∞/∞ Form and Infinite Limits
Theorem 11 (L’Hôpital’s Rule)

1 Each version of L’Hôspital’s Rule also holds if f , g → ±∞.

2 Each version of L’Hôspital’s Rule also holds if L = ±∞.

Proof. Recall the standing assumption g ′(x) ̸= 0 and the implication
that g is 1-1.

1. Consider the left-hand limit at c ∈ R. Let lim
x→c−

f ′(x)

g ′(x)
= L. For any

ϵ > 0 there is an x0 such that x0 ≤ x < c implies

L− ϵ <
f ′(x)

g ′(x)
< L+ ϵ.

Now take an x ∈ (x0, c). By Cauchy’s Mean Value Theorem there is a
ξ ∈ (x0, x) such that

f (x)− f (x0)

g(x)− g(x0)
=

f ′(ξ)

g ′(ξ)
.

(continued . . . )
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∞/∞ Form and Infinite Limits

(. . . continued)

Hence L− ϵ <
f (x)− f (x0)

g(x)− g(x0)
< L+ ϵ, which we rearrange to

L− ϵ <
f (x)/g(x)− f (x0)/g(x)

1− g(x0)/g(x)
< L+ ϵ,

and then,

(L− ϵ)
(
1− g(x0)

g(x)

)
+

f (x0)

g(x)
<

f (x)

g(x)
< (L+ ϵ)

(
1− g(x0)

g(x)

)
+

f (x0)

g(x)
.

As x → c−, g(x0)/g(x) → 0 and f (x0)/g(x) → 0. Hence by taking x
close to c we get

L− 2ϵ <
f (x)

g(x)
< L+ 2ϵ.

This gives lim
x→c−

f (x)

g(x)
= L. (continued . . . )
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∞/∞ Form and Infinite Limits
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∞/∞ Form and Infinite Limits

(. . . continued)
2. We show how to modify the proof of the first part of this theorem for
the L = ∞ case. Given any M ∈ R there is an x0 such that x0 ≤ x < c
implies

M + 1 <
f ′(x)

g ′(x)
.

Applying Cauchy’s Mean Value Theorem and proceeding as before we
reach

(M + 1)
(
1− g(x0)

g(x)

)
+

f (x0)

g(x)
<

f (x)

g(x)
, for x ∈ (x0, c).

By taking x close to c we get: M <
f (x)

g(x)
. □
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Example

Example 12

Consider lim
x→∞

x

ex
.

This is an
∞
∞

form, the numerator and denominator are differentiable on

(0,∞), and the derivative of the denominator is always non-zero.

So L’Hôpital’s Rule can be applied:

lim
x→∞

x ′

(ex)′
= lim

x→∞

1

ex
= 0 =⇒ lim

x→∞

x

ex
= 0.
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Example

Example 13

On occasion we may need to apply L’Hôpital’s Rule repeatedly. Consider

lim
x→∞

x2

ex
. This is again an

∞
∞

form, the numerator and denominator are

continuously differentiable on (0,∞) , and the derivative of the
denominator is always non-zero. Further,

lim
x→∞

(x2)′

(ex)′
= 2 lim

x→∞

x

ex
.

The second limit, by another application of L’Hôpital’s Rule (previous

example), is 0. Hence lim
x→∞

x2

ex
= 0.

We can repeat this argument to show that lim
x→∞

xn

ex
= 0 for any n ∈ N.

Thus the exponential function grows faster than any power of x .
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Example

Example 14

Consider lim
x→∞

xp

log x
, with p > 0.

This is an
∞
∞

form, the numerator and denominator are continuously

differentiable on (0,∞) and the derivative of the denominator is always
non-zero. Now

lim
x→∞

(xp)′

(log x)′
= lim

x→∞

p xp−1

1/x
= lim

x→∞
p xp = ∞.

Hence lim
x→∞

xp

log x
= ∞.
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Other Indeterminate Forms

Type ∞ − ∞: These have the form f (x)− g(x) where
f (x), g(x) → ∞. The result depends on which term
dominates. For example, lim

x→∞
(x − x) = 0 and

lim
x→∞

(x2 − x) = lim
x→∞

x(x − 1) = ∞.

Type 0 · ∞: These have the form f (x)g(x) where f (x) → 0 and
g(x) → ∞.

Type 1∞: These have the form f (x)g(x) where f (x) → 1 and
g(x) → ∞. A familiar example is lim

x→0
(1 + x)1/x = e.

Type ∞0: These have the form f (x)g(x) where f (x) → ∞ and
g(x) → 0. Applying log converts this to a 0 · ∞ form.

Type 00: These have the form f (x)g(x) where f (x) → 0 and
g(x) → 0. Applying log converts this to a 0 · ∞ form.
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Example

Example 15

The right-hand side limit of x log x at 0 is a 0 · ∞ form. We can convert
it to a ratio and apply L’Hôspital’s Rule.

lim
x→0+

x log x = lim
t→∞

log(1/t)

t
= − lim

t→∞

log t

t
= − lim

t→∞

1/t

1
= 0.
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Example

Example 16

Consider lim
x→π/2−

(sin x)tan x . This is a 1∞ form. Let y = (sin x)tan x .

Then log y = (tan x) log(sin x) =
log(sin x)

cot x
and lim

x→π/2−

log(sin x)

cot x
is an

∞
∞

form. Apply L’Hôpital’s Rule:

lim
x→π

2 −
log y = lim

x→π
2 −

log(sin x)

cot x
= lim

x→π
2 −

cot x

− csc2 x

= − lim
x→π

2 −
(cos x)(sin x) = 0.

Finally, log y → 0 implies y → 1.
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Example

Example 17

Consider lim
x→0+

xx . This is a 00 form.

Let y = xx . Then log y = x log x =
log x

1/x
, and lim

x→0+

log x

1/x
is an

∞
∞

form.

Apply L’Hôpital’s Rule:

lim
x→0+

(log x)′

(1/x)′
= lim

x→0+

1/x

−1/x2
= − lim

x→0+
x = 0 =⇒ lim

x→0+
log y = 0.

Hence y → 1.
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Alert

Example 18

Suppose f (x) = e−x , g(x) = 1/x , and we have to calculate lim
x→∞

f (x)

g(x)
.

This is an
∞
∞

form and we are allowed to apply L’Hôpital’s Rule. If we

do, we get

lim
x→∞

f ′(x)

g ′(x)
= lim

x→∞

−e−x

−1/x2
,

which is more complicated than the original limit! Of course, we can
easily resolve this by first rearranging the expression to x/ex .
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Alert

Example 19

Consider f (x) = x + sin x and g(x) = 2x . Then lim
x→∞

f (x)

g(x)
is an

∞
∞

form

and we may be tempted to calculate as follows:

lim
x→∞

f (x)

g(x)
= lim

x→∞

f ′(x)

g ′(x)
= lim

x→∞

1 + cos x

2
, hence does not exist.

However, this conclusion is not justified. If lim
x→∞

f ′(x)

g ′(x)
does not exist,

then L’Hôpital’s Rule fails to imply anything about the original limit. In
fact, we can apply the Sandwich Theorem to conclude that the original
limit equals 1/2.
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Approximation by Polynomials
To approximate f (x) by a polynomial near x = a, we shall use
polynomials of the form

Pn(x) = a0 + a1(x − a) + a2(x − a)2 + · · ·+ an(x − a)n.

Suppose that f is differentiable n + 1 times on an open interval I , and
that f (n+1)(x) ≤ M on I . Let a ∈ I . Apply the Mean Value Inequality:

f (n)(x)− f (n)(a) ≤ M(x − a) for x > a.

Now integrate both sides over [a, x ] to get

f (n−1)(x)− f (n−1)(a)− f (n)(a)(x − a) ≤ M

2
(x − a)2.

At the next iteration, we have

f (n−2)(x)− f (n−2)(a)− f (n−1)(a)(x−a)− f (n)(a)

2
(x−a)2 ≤ M

3 · 2
(x−a)3.

Continuing in this fashion, we finally obtain

f (x)−
n∑

k=0

f (k)(a)

k!
(x − a)k ≤ M

(n + 1)!
(x − a)n+1 for x > a. (1)

Amber Habib Calculus



Mean Value Theorems Indeterminate Forms Taylor Polynomials

Approximation by Polynomials
To approximate f (x) by a polynomial near x = a, we shall use
polynomials of the form

Pn(x) = a0 + a1(x − a) + a2(x − a)2 + · · ·+ an(x − a)n.

Suppose that f is differentiable n + 1 times on an open interval I , and
that f (n+1)(x) ≤ M on I . Let a ∈ I . Apply the Mean Value Inequality:

f (n)(x)− f (n)(a) ≤ M(x − a) for x > a.

Now integrate both sides over [a, x ] to get

f (n−1)(x)− f (n−1)(a)− f (n)(a)(x − a) ≤ M

2
(x − a)2.

At the next iteration, we have

f (n−2)(x)− f (n−2)(a)− f (n−1)(a)(x−a)− f (n)(a)

2
(x−a)2 ≤ M

3 · 2
(x−a)3.

Continuing in this fashion, we finally obtain

f (x)−
n∑

k=0

f (k)(a)

k!
(x − a)k ≤ M

(n + 1)!
(x − a)n+1 for x > a. (1)

Amber Habib Calculus



Mean Value Theorems Indeterminate Forms Taylor Polynomials

Approximation by Polynomials
To approximate f (x) by a polynomial near x = a, we shall use
polynomials of the form

Pn(x) = a0 + a1(x − a) + a2(x − a)2 + · · ·+ an(x − a)n.

Suppose that f is differentiable n + 1 times on an open interval I , and
that f (n+1)(x) ≤ M on I . Let a ∈ I . Apply the Mean Value Inequality:

f (n)(x)− f (n)(a) ≤ M(x − a) for x > a.

Now integrate both sides over [a, x ] to get

f (n−1)(x)− f (n−1)(a)− f (n)(a)(x − a) ≤ M

2
(x − a)2.

At the next iteration, we have

f (n−2)(x)− f (n−2)(a)− f (n−1)(a)(x−a)− f (n)(a)

2
(x−a)2 ≤ M

3 · 2
(x−a)3.

Continuing in this fashion, we finally obtain

f (x)−
n∑

k=0

f (k)(a)

k!
(x − a)k ≤ M

(n + 1)!
(x − a)n+1 for x > a. (1)

Amber Habib Calculus



Mean Value Theorems Indeterminate Forms Taylor Polynomials

Approximation by Polynomials
To approximate f (x) by a polynomial near x = a, we shall use
polynomials of the form

Pn(x) = a0 + a1(x − a) + a2(x − a)2 + · · ·+ an(x − a)n.

Suppose that f is differentiable n + 1 times on an open interval I , and
that f (n+1)(x) ≤ M on I . Let a ∈ I . Apply the Mean Value Inequality:

f (n)(x)− f (n)(a) ≤ M(x − a) for x > a.

Now integrate both sides over [a, x ] to get

f (n−1)(x)− f (n−1)(a)− f (n)(a)(x − a) ≤ M

2
(x − a)2.

At the next iteration, we have

f (n−2)(x)− f (n−2)(a)− f (n−1)(a)(x−a)− f (n)(a)

2
(x−a)2 ≤ M

3 · 2
(x−a)3.

Continuing in this fashion, we finally obtain

f (x)−
n∑

k=0

f (k)(a)

k!
(x − a)k ≤ M

(n + 1)!
(x − a)n+1 for x > a. (1)

Amber Habib Calculus



Mean Value Theorems Indeterminate Forms Taylor Polynomials

Approximation by Polynomials
To approximate f (x) by a polynomial near x = a, we shall use
polynomials of the form

Pn(x) = a0 + a1(x − a) + a2(x − a)2 + · · ·+ an(x − a)n.

Suppose that f is differentiable n + 1 times on an open interval I , and
that f (n+1)(x) ≤ M on I . Let a ∈ I . Apply the Mean Value Inequality:

f (n)(x)− f (n)(a) ≤ M(x − a) for x > a.

Now integrate both sides over [a, x ] to get

f (n−1)(x)− f (n−1)(a)− f (n)(a)(x − a) ≤ M

2
(x − a)2.

At the next iteration, we have

f (n−2)(x)− f (n−2)(a)− f (n−1)(a)(x−a)− f (n)(a)

2
(x−a)2 ≤ M

3 · 2
(x−a)3.

Continuing in this fashion, we finally obtain

f (x)−
n∑

k=0

f (k)(a)

k!
(x − a)k ≤ M

(n + 1)!
(x − a)n+1 for x > a. (1)

Amber Habib Calculus



Mean Value Theorems Indeterminate Forms Taylor Polynomials

Taylor Polynomials

Similarly, if we have m ≤ f (n+1)(x) on I , we get

m

(n + 1)!
(x − a)n+1 ≤ f (x)−

n∑
k=0

f (k)(a)

k!
(x − a)k for x > a. (2)

The polynomial defined by

Tn(x) =
n∑

k=0

f (k)(a)

k!
(x − a)k

= f (a) + f (1)(a)(x − a) +
f (2)(a)

2!
(x − a)2 + · · ·+ f (n)(a)

n!
(x − a)n

is called the nth Taylor polynomial of f (x) centred at x = a. When
a = 0 the Taylor polynomials are also called the Maclaurin polynomials.

Task 3

If Tn is the nth Taylor polynomial of f centered at a, show that

T (k)
n (a) = f (k)(a) for k = 0, 1, . . . , n.
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Example

Example 20

Let us calculate the Taylor polynomials of sin x centered at a = 0:

f (x) = sin x =⇒ a0 = f (0) = 0,

f ′(x) = cos x =⇒ a1 = f ′(0) = 1,

f ′′(x) = − sin x =⇒ a2 =
f ′′(0)

2!
= 0,

f ′′′(x) = − cos x =⇒ a3 =
f ′′′(0)

3!
= − 1

3!
.

We see that ak = 0 when k is even. And for odd k = 2ℓ+ 1 we have

ak =
(−1)ℓ

(2ℓ+ 1)!
. Thus the (2n + 1)th Taylor polynomial has the form

T2n+1(x) =
n∑

ℓ=0

(−1)ℓ

(2ℓ+ 1)!
x2ℓ+1 = x − x3

3!
+

x5

5!
· · ·+ (−1)2n+1 x2n+1

(2n + 1)!
.
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Example

Example 21

The Taylor polynomials of cos x centred at a = 0 can be found similarly.

T2n(x) =
n∑

ℓ=0

(−1)ℓ

(2ℓ)!
x2ℓ = 1− x2

2!
+

x4

4!
· · ·+ (−1)2n

x2n

(2n)!
.

1 2 3 4 5 6 7

−2

−1

1

2

y = 1

y = 1− x2

2!

y = 1− x2

2!
+

x4

4!

y = 1− x2

2!
+

x4

4!
− x6

6!
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Example

Example 22

The Taylor polynomials of ex centred at a = 0 are

Tn(x) =
n∑

k=0

xk

k!
= 1 + x +

x2

2!
+

x3

3!
+ · · ·+ xn

n!
.

−2 −1 1 2 3 4

1

2

3

4

5

y = 1

y = 1 + x

y = 1 + x +
x2

2!

y = 1 + x +
x2

2!
+

x3

3!

Putting x = 1 gives e ≈
n∑

k=0

1

k!
= 1 + 1 +

1

2!
+

1

3!
+ · · ·+ 1

n!
.
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Example

Example 23

The Taylor polynomials of f (x) = log x centred at a = 1 are:

Tn(x) =
n∑

k=1

(−1)k−1

k
(x − 1)k

= (x − 1)− (x − 1)2

2
+

(x − 1)3

3
+ · · ·+ (−1)n−1 (x − 1)n

n
.

2 4 6 8 10 12

−2

2

y = x − 1

y = (x − 1)− (x − 1)2

2

y = (x − 1)− (x − 1)2

2
+

(x − 1)3

3
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Taylor’s Theorem

Theorem 24

Let I be an interval, f : I → R, and a ∈ I .

1 Let f (x) be differentiable n + 1 times on I , and suppose
|f (n+1)(x)| ≤ M on I .

2 Let Tn(x) be the nth-degree Taylor polynomial of f (x) centred at a.

Then, for each x ∈ I , |f (x)− Tn(x)| ≤
M

(n + 1)!
|x − a|n+1.

Proof. We have already established this for x ≥ a in equations 1 and 2.
The x < a case can be converted to the x > a case by reflection about
x = a. □
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Example

Example 25

Suppose we need to approximate sin 1.2 to 4 decimal places. Applying
Taylor’s theorem to sin x with a = 0 and x = 1.2, we find that M = 1 and

| sin 1.2− Tn(1.2)| ≤
1.2n+1

(n + 1)!
.

To ensure Tn(1.2) is sufficiently accurate, we need to choose n such that
1.2n+1

(n + 1)!
≤ 5× 10−5. If we take n = 8 we get

1.29

9!
= 1.4× 10−5 < 5× 10−5. So the 8th degree Taylor polynomial

suffices. However the degree 8 term is zero in the Taylor expansion of
sin x and so we only need the terms up to degree 7.

sin 1.2 ≈ 1.2− 1.23

3!
+

1.25

5!
− 1.27

7!
≈ 0.932025.
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Example

Example 26

Now let us approximate Euler’s number e to 4 decimal places. Recall
that we already know e < 4 and so the function ex is bounded by 4 on
[0, 1]. Therefore, applying Taylor’s theorem to ex with a = 0 and x = 1,
we find that

|e − Tn(1)| ≤
4

(n + 1)!
.

To ensure Tn(1) is sufficiently accurate, we need to choose n such that
4

(n + 1)!
≤ 5× 10−5. Again, n = 8 does the job. Therefore,

e ≈ 1 + 1 +
1

2!
+

1

3!
+ · · ·+ 1

8!
= 2.718278 . . . .

(The exact value is 2.718281 . . . )
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Remainder Theorem
Theorem 27

Let I be an interval, f : I → R be n + 1 times continuously differentiable,
a ∈ I . Let Tn(x) be the nth-degree Taylor polynomial of f (x) centered at
a. Then, for each x ∈ I , there is a ξ between a and x such that

f (x)− Tn(x) =
f (n+1)(ξ)

(n + 1)!
(x − a)n+1.

Proof. We give the proof for x > a. By the Extreme Value Theorem,
f (n+1) achieves a minimum value m and a maximum value M on [a, x ].

Then,
m

(n + 1)!
(x − a)n+1 ≤ f (x)− Tn(x) ≤

M

(n + 1)!
(x − a)n+1.

Hence, m ≤
(
f (x)− Tn(x)

) (n + 1)!

(x − a)n+1
≤ M.

Now the Intermediate Value Theorem gives a ξ ∈ (a, x) such that

f (n+1)(ξ) =
(
f (x)− Tn(x)

) (n + 1)!

(x − a)n+1
.

□
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f (n+1) achieves a minimum value m and a maximum value M on [a, x ].

Then,
m

(n + 1)!
(x − a)n+1 ≤ f (x)− Tn(x) ≤

M

(n + 1)!
(x − a)n+1.

Hence, m ≤
(
f (x)− Tn(x)

) (n + 1)!

(x − a)n+1
≤ M.

Now the Intermediate Value Theorem gives a ξ ∈ (a, x) such that

f (n+1)(ξ) =
(
f (x)− Tn(x)

) (n + 1)!

(x − a)n+1
.

□
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Classifying Critical Points

Theorem 28

Let f have a critical point at a and be n times continuously differentiable
at a. Suppose f ′(a) = f ′′(a) = · · · = f (n−1)(a) = 0 and f (n)(a) ̸= 0.

1 If n is even and f (n)(a) > 0 then f has a local minimum at a.

2 If n is even and f (n)(a) < 0 then f has a local maximum at a.

3 If n is odd then f has a saddle point at a.

Proof. By continuity, there is an open interval I containing a such that
f (n) does not change sign in I . For each x ∈ I there is a ξ ∈ I such that

f (x) = f (a) +
f (n)(ξ)

n!
(x − a)n.

If n is even and f (n)(a) > 0 then we have f (n)(ξ) > 0 for every
ξ ∈ I \ {a}. It follows that f (x) > f (a) for every x ∈ I and hence there is
a local minimum at a. The other cases are similar. □
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