

Chapter 6: Mean Value Theorems Part A: Mean Value Theorems, Indeterminate Forms, **Taylor Polynomials**

Table of Contents

Mean Value Theorems

Indeterminate Forms

Taylor Polynomials

Racetrack and Mean Value Inequalities

Theorem 1

Let f, g be differentiable functions from an interval I to \mathbb{R} .

① (Racetrack Inequality) If $a, b \in I$, $f(a) \le g(a)$ and $f'(x) \le g'(x)$ on [a, b] then $f(x) \le g(x)$ on [a, b].

Racetrack and Mean Value Inequalities

Theorem 1

Let f, g be differentiable functions from an interval I to \mathbb{R} .

- ① (Racetrack Inequality) If $a, b \in I$, $f(a) \le g(a)$ and $f'(x) \le g'(x)$ on [a, b] then $f(x) \le g(x)$ on [a, b].
- 2 (Mean Value Inequality) If $a, b \in I$ and $m \le f'(x) \le M$ on [a, b] then $m(x a) \le f(x) f(a) \le M(x a)$ on [a, b].

000000

Racetrack and Mean Value Inequalities

Theorem 1

Let f, g be differentiable functions from an interval I to \mathbb{R} .

- **1** (Racetrack Inequality) If $a, b \in I$, $f(a) \le g(a)$ and $f'(x) \le g'(x)$ on [a, b] then f(x) < g(x) on [a, b].
- (Mean Value Inequality) If a, b \in I and m < f'(x) < M on [a, b] then m(x - a) < f(x) - f(a) < M(x - a) on [a, b].
- **3** If $a \in I$ and $|f'(x)| \leq M$ on I, then $|f(x) f(a)| \leq M|x a|$ on I.

If any of the inequalities involving f' is strict, so is the corresponding inequality for f.

Racetrack and Mean Value Inequalities

Theorem 1

Let f, g be differentiable functions from an interval I to \mathbb{R} .

- ① (Racetrack Inequality) If $a, b \in I$, $f(a) \le g(a)$ and $f'(x) \le g'(x)$ on [a, b] then $f(x) \le g(x)$ on [a, b].
- 2 (Mean Value Inequality) If $a, b \in I$ and $m \le f'(x) \le M$ on [a, b] then $m(x a) \le f(x) f(a) \le M(x a)$ on [a, b].
- **3** If $a \in I$ and $|f'(x)| \le M$ on I, then $|f(x) f(a)| \le M|x a|$ on I.

If any of the inequalities involving f' is strict, so is the corresponding inequality for f.

Proof. Part (a) is a consequence of the Monotonicity Theorem. Part (b) follows by applying (a) to the functions m(x-a), f(x) = f(a), and M(x-a). The $x \ge a$ case of (c) is covered by (b). The x < a case is obtained by symmetry.

Theorem 2

Let $f:[a,b] \to \mathbb{R}$ satisfy the following:

- 1 It is continuous on [a, b].
- 2 It is differentiable on (a, b).

Then there is a $c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

Theorem 2

Let $f:[a,b] \to \mathbb{R}$ satisfy the following:

- **1** It is continuous on [a, b].
- 2 It is differentiable on (a, b).

Then there is a $c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

Proof. Define $g(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a)$. Observe that g(a) = g(b) = 0, g is continuous on [a, b] and differentiable on (a, b).

Theorem 2

Let $f:[a,b] \to \mathbb{R}$ satisfy the following:

- 1 It is continuous on [a, b].
- 2 It is differentiable on (a, b).

Then there is a $c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

Proof. Define $g(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a)$. Observe that g(a) = g(b) = 0, g is continuous on [a, b] and differentiable on (a, b). By the Extreme Value Theorem, g achieves a maximum value M and a minimum value m on [a, b]. If M = m, then g is constant and hence zero. In this case, every $c \in (a, b)$ has the desired property.

Theorem 2

Let $f:[a,b] \to \mathbb{R}$ satisfy the following:

- 1 It is continuous on [a, b].
- 2 It is differentiable on (a, b).

Then there is a $c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

Proof. Define $g(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a)$. Observe that g(a) = g(b) = 0, g is continuous on [a, b] and differentiable on (a, b). By the Extreme Value Theorem, g achieves a maximum value M and a minimum value m on [a, b]. If M = m, then g is constant and hence zero. In this case, every $c \in (a, b)$ has the desired property. If $M \neq m$ then at least one of the maximum and minimum values of g is achieved at an interior point $c \in (a, b)$.

Theorem 2

Let $f: [a, b] \to \mathbb{R}$ satisfy the following:

- 1 It is continuous on [a, b].
- 2 It is differentiable on (a, b).

Then there is a $c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{b}$.

Proof. Define $g(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b}(x - a)$. Observe that g(a) = g(b) = 0, g is continuous on [a, b] and differentiable on (a, b). By the Extreme Value Theorem, g achieves a maximum value M and a minimum value m on [a, b]. If M = m, then g is constant and hence zero. In this case, every $c \in (a, b)$ has the desired property. If $M \neq m$ then at least one of the maximum and minimum values of g is achieved at an interior point $c \in (a, b)$.

By Fermat's Theorem, g'(c) = 0. Hence $f'(c) = \frac{f(b) - f(a)}{b - a}$.

Rolle's Theorem

Theorem 3

Let $f: [a, b] \to \mathbb{R}$ satisfy the following:

- 1 It is continuous on [a, b].
- 2 It is differentiable on (a, b).
- **3** f(a) = f(b).

Then there is a $c \in (a, b)$ such that f'(c) = 0.

Task 1

Suppose a < b < c, $f: [a,c] \to \mathbb{R}$ is twice continuously differentiable (i.e., the function f'' = (f')' is continuous), and f(a) = f(b) = f(c) = 0. Show that there is $\alpha \in (a,c)$ such that $f''(\alpha) = 0$.

Theorem 4

Let $f,g:[a,b]\to\mathbb{R}$ be continuous on [a,b] and differentiable on (a,b). Suppose that $g'(x)\neq 0$ for every $x\in (a,b)$. Then there is a $c\in (a,b)$ such that

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

Theorem 4

Let $f,g:[a,b]\to\mathbb{R}$ be continuous on [a,b] and differentiable on (a,b). Suppose that $g'(x)\neq 0$ for every $x\in (a,b)$. Then there is a $c\in (a,b)$ such that

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

Proof. First note that $g(a) \neq g(b)$. If they were equal, Rolle's Theorem would give a $c \in (a,b)$ such that g'(c) = 0. Thus both ratios in the theorem's conclusion are defined.

Theorem 4

Let $f,g:[a,b]\to\mathbb{R}$ be continuous on [a,b] and differentiable on (a,b). Suppose that $g'(x)\neq 0$ for every $x\in (a,b)$. Then there is a $c\in (a,b)$ such that

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

Proof. First note that $g(a) \neq g(b)$. If they were equal, Rolle's Theorem would give a $c \in (a, b)$ such that g'(c) = 0. Thus both ratios in the theorem's conclusion are defined.

Define
$$h(x) = g(x)\frac{f(b) - f(a)}{g(b) - g(a)}$$
. We have $h(b) - h(a) = f(b) - f(a)$.

Theorem 4

Let $f,g:[a,b]\to\mathbb{R}$ be continuous on [a,b] and differentiable on (a,b). Suppose that $g'(x)\neq 0$ for every $x\in (a,b)$. Then there is a $c\in (a,b)$ such that

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

Proof. First note that $g(a) \neq g(b)$. If they were equal, Rolle's Theorem would give a $c \in (a, b)$ such that g'(c) = 0. Thus both ratios in the theorem's conclusion are defined.

Define
$$h(x) = g(x)\frac{f(b) - f(a)}{g(b) - g(a)}$$
. We have $h(b) - h(a) = f(b) - f(a)$.

Applying Rolle's theorem to f(x) - h(x), we get a $c \in (a,b)$ such that f'(c) - h'(c) = 0. Then,

000000

(Cauchy's) Mean Value Theorem

Theorem 4

Let $f, g: [a, b] \to \mathbb{R}$ be continuous on [a, b] and differentiable on (a, b). Suppose that $g'(x) \neq 0$ for every $x \in (a, b)$. Then there is a $c \in (a, b)$ such that

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

Proof. First note that $g(a) \neq g(b)$. If they were equal, Rolle's Theorem would give a $c \in (a, b)$ such that g'(c) = 0. Thus both ratios in the theorem's conclusion are defined.

Define
$$h(x) = g(x)\frac{f(b) - f(a)}{g(b) - g(a)}$$
. We have $h(b) - h(a) = f(b) - f(a)$.

Applying Rolle's theorem to f(x) - h(x), we get a $c \in (a,b)$ such that f'(c) - h'(c) = 0. Then,

$$0 = f'(c) - h'(c) = f'(c) - g'(c) \frac{f(b) - f(a)}{g(b) - g(a)} \implies \frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

Remarks

Remark 1: Taking g(x) = x in Cauchy's Mean Value Theorem gives Lagrange's Mean Value Theorem. So it is also called the **Extended** or the **Generalized Mean Value Theorem**.

Remark 2: Its motivation comes from the motion of a particle in a plane. Let the location at any time t, $a \le t \le b$, be given by (g(t), f(t)). Then its net displacement is (g(b) - g(a), f(b) - f(a)), while its velocity vector at any time t is (g'(t), f'(t)). Thus Cauchy's Mean Value Theorem says that there is a time instant c when the velocity vector is parallel to the total displacement.

Table of Contents

Mean Value Theorems

Indeterminate Forms

Taylor Polynomials

A limit of the type $\lim_{x\to a}\frac{f(x)}{g(x)}$ with $\lim_{x\to a}f(x)=\lim_{x\to a}g(x)=0$ is said to be an **indeterminate form** of type $\frac{0}{0}$. (The limits could also be one-sided)

A limit of the type $\lim_{x\to a}\frac{f(x)}{g(x)}$ with $\lim_{x\to a}f(x)=\lim_{x\to a}g(x)=0$ is said to be an **indeterminate form** of type $\frac{0}{0}$. (The limits could also be one-sided)

Theorem 5

Suppose $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0$, f and g are differentiable at a, and $g'(a) \neq 0$. Then $\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{f'(a)}{g'(a)}$.

A limit of the type $\lim_{x\to a}\frac{f(x)}{g(x)}$ with $\lim_{x\to a}f(x)=\lim_{x\to a}g(x)=0$ is said to be an **indeterminate form** of type $\frac{0}{0}$. (The limits could also be one-sided)

Theorem 5

Suppose $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0$, f and g are differentiable at a, and $g'(a) \neq 0$. Then $\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{f'(a)}{g'(a)}$.

Proof. Since f, g are differentiable at a, they are continuous there, and so f(a) = g(a) = 0.

A limit of the type $\lim_{x\to a}\frac{f(x)}{g(x)}$ with $\lim_{x\to a}f(x)=\lim_{x\to a}g(x)=0$ is said to be an **indeterminate form** of type $\frac{0}{0}$. (The limits could also be one-sided)

Theorem 5

Suppose $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$, f and g are differentiable at a, and $g'(a) \neq 0$. Then $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{f'(a)}{g'(a)}$.

Proof. Since f, g are differentiable at a, they are continuous there, and so f(a) = g(a) = 0. Further, $g'(a) \neq 0$ implies that there is an interval centered at a in which g(x) is never zero.

A limit of the type $\lim_{x\to a}\frac{f(x)}{g(x)}$ with $\lim_{x\to a}f(x)=\lim_{x\to a}g(x)=0$ is said to be an **indeterminate form** of type $\frac{0}{0}$. (The limits could also be one-sided)

Theorem 5

Suppose $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0$, f and g are differentiable at a, and $g'(a) \neq 0$. Then $\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{f'(a)}{g'(a)}$.

Proof. Since f, g are differentiable at a, they are continuous there, and so f(a) = g(a) = 0. Further, $g'(a) \neq 0$ implies that there is an interval centered at a in which g(x) is never zero.

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{(f(x) - f(a))/(x - a)}{(g(x) - g(a))/(x - a)} = \frac{f'(a)}{g'(a)}.$$

We have to evaluate $\lim_{x\to 0} \frac{x+\sin x}{\log(1-x)}$.

We have to evaluate $\lim_{x\to 0} \frac{x+\sin x}{\log(1-x)}$.

The functions $f(x) = x + \sin x$, $g(x) = \log(1 - x)$ satisfy the hypotheses of the above theorem.

We have to evaluate $\lim_{x\to 0} \frac{x+\sin x}{\log(1-x)}$.

The functions $f(x) = x + \sin x$, $g(x) = \log(1 - x)$ satisfy the hypotheses of the above theorem.

We calculate:

$$\lim_{x \to 0} \frac{f'(x)}{g'(x)} = \lim_{x \to 0} \frac{1 + \cos x}{-1/(1 - x)} = \lim_{x \to 0} (x - 1)(1 + \cos x) = -2.$$

We have to evaluate $\lim_{x\to 0} \frac{x+\sin x}{\log(1-x)}$.

The functions $f(x) = x + \sin x$, $g(x) = \log(1 - x)$ satisfy the hypotheses of the above theorem.

We calculate:

$$\lim_{x \to 0} \frac{f'(x)}{g'(x)} = \lim_{x \to 0} \frac{1 + \cos x}{-1/(1 - x)} = \lim_{x \to 0} (x - 1)(1 + \cos x) = -2.$$

Therefore,
$$\lim_{x\to 0} \frac{x+\sin x}{\log(1-x)} = -2$$
.

L'Hôpital's Rule

Theorem 6

Let $f,g:(a,b)\to\mathbb{R}$ be differentiable functions which satisfy the following.

- **2** $g'(x) \neq 0$ for every $x \in (a, b)$,
- $\lim_{x\to a+}\frac{f'(x)}{g'(x)}=L\in\mathbb{R}.$

Then
$$\lim_{x\to a+} \frac{f(x)}{g(x)} = L$$
.

Proof on next slide.

L'Hôpital's Rule – Proof

Proof. Extend the domain of f, g to [a, b) by defining f(a) = g(a) = 0. Then f, g become continuous on [a, b). Further, by Rolle's Theorem, $g(x) \neq 0$ for every $x \in (a, b)$.

L'Hôpital's Rule – Proof

Proof. Extend the domain of f, g to [a, b) by defining f(a) = g(a) = 0. Then f, g become continuous on [a, b). Further, by Rolle's Theorem, $g(x) \neq 0$ for every $x \in (a, b)$.

Let 0 < h < b-a. Then, for each such h, the functions f(x) and g(x) satisfy the hypotheses of Cauchy's Mean Value Theorem on the interval [a, a+h]. Hence there is a $c_h \in (a, a+h)$ such that

$$\frac{f'(c_h)}{g'(c_h)} = \frac{f(a+h)-f(a)}{g(a+h)-g(a)} = \frac{f(a+h)}{g(a+h)}.$$

L'Hôpital's Rule – Proof

Proof. Extend the domain of f, g to [a, b) by defining f(a) = g(a) = 0. Then f, g become continuous on [a, b). Further, by Rolle's Theorem, $g(x) \neq 0$ for every $x \in (a, b)$.

Let 0 < h < b-a. Then, for each such h, the functions f(x) and g(x) satisfy the hypotheses of Cauchy's Mean Value Theorem on the interval [a, a+h]. Hence there is a $c_h \in (a, a+h)$ such that

$$\frac{f'(c_h)}{g'(c_h)} = \frac{f(a+h)-f(a)}{g(a+h)-g(a)} = \frac{f(a+h)}{g(a+h)}.$$

We have $a < c_h < a+h$. So the Sandwich Theorem implies that $c_h \to a+$ as $h \to 0+$. Hence

$$\lim_{x\to a+}\frac{f(x)}{g(x)}=\lim_{h\to 0+}\frac{f(a+h)}{g(a+h)}=\lim_{h\to 0+}\frac{f'(c_h)}{g'(c_h)}=\lim_{x\to a+}\frac{f'(x)}{g'(x)}=L.$$

Other Versions

Theorem 7

① (Left-hand limit) Suppose f, g are differentiable on (a,b), $g'(x) \neq 0$ for every $x \in (a,b)$, $\lim_{x \to b-} f(x) = \lim_{x \to b-} g(x) = 0$, and f'(x)

$$\lim_{x\to b-}\frac{f'(x)}{g'(x)}=L.\ \ \textit{Then}\ \lim_{x\to b-}\frac{f(x)}{g(x)}=L.$$

2 (Two-sided limit) Suppose a < b < c, f, g are differentiable on $I = (a, b) \cup (b, c)$, $g'(x) \neq 0$ for every $x \in I$,

$$\lim_{x\to b} f(x) = \lim_{x\to b} g(x) = 0, \text{ and } \lim_{x\to b} \frac{f'(x)}{g'(x)} = L \in \mathbb{R}. \text{ Then}$$

$$\lim_{x \to b} \frac{f(x)}{g(x)} = L.$$

Example 8

Consider
$$\lim_{x \to 1} \frac{\log x}{x - 1}$$
.

Example 8

Consider
$$\lim_{x \to 1} \frac{\log x}{x - 1}$$
.

This is an indeterminate form of the type 0/0 and $f(x) = \log x$, g(x) = x - 1 satisfy the first three hypotheses of L'Hôpital's Rule for two-sided limits with a = 0, b = 1, c = 2.

Example 8

Consider $\lim_{x \to 1} \frac{\log x}{x - 1}$.

This is an indeterminate form of the type 0/0 and $f(x) = \log x$, g(x) = x - 1 satisfy the first three hypotheses of L'Hôpital's Rule for two-sided limits with a = 0, b = 1, c = 2.

Further,

$$\lim_{x \to 1} \frac{f'(x)}{g'(x)} = \lim_{x \to 1} \frac{1/x}{1} = 1$$

Example 8

Consider $\lim_{x \to 1} \frac{\log x}{x - 1}$.

This is an indeterminate form of the type 0/0 and $f(x) = \log x$, g(x) = x - 1 satisfy the first three hypotheses of L'Hôpital's Rule for two-sided limits with a = 0, b = 1, c = 2. Further,

$$\lim_{x \to 1} \frac{f'(x)}{g'(x)} = \lim_{x \to 1} \frac{1/x}{1} = 1$$

Hence $\lim_{x\to 1} \frac{\log x}{x-1} = 1$. (We could also have used Theorem 5.)

Example 9

We know that $\lim_{x\to 0} \frac{\sin x}{x} = 1$. This means that for small x, $\sin x \approx x$.

Example 9

We know that $\lim_{x\to 0}\frac{\sin x}{x}=1$. This means that for small x, $\sin x\approx x$. To improve this approximation we use L'Hôpital's Rule to compare $\sin x-x$ with higher powers of x. First with x^2 :

$$\lim_{x \to 0} \frac{\sin x - x}{x^2} = \lim_{x \to 0} \frac{\cos x - 1}{2x} = \lim_{x \to 0} \frac{-\sin x}{2} = 0.$$

Example 9

We know that $\lim_{x\to 0}\frac{\sin x}{x}=1$. This means that for small x, $\sin x\approx x$. To improve this approximation we use L'Hôpital's Rule to compare $\sin x-x$ with higher powers of x. First with x^2 :

$$\lim_{x \to 0} \frac{\sin x - x}{x^2} = \lim_{x \to 0} \frac{\cos x - 1}{2x} = \lim_{x \to 0} \frac{-\sin x}{2} = 0.$$

So the gap $\sin x - x$ is much smaller than x^2 . Let's compare with x^3 :

$$\lim_{x \to 0} \frac{\sin x - x}{x^3} = \lim_{x \to 0} \frac{\cos x - 1}{3x^2} = \lim_{x \to 0} \frac{-\sin x}{3! \, x} = -\frac{1}{3!}.$$

Example 9

We know that $\lim_{x\to 0}\frac{\sin x}{x}=1$. This means that for small x, $\sin x\approx x$. To improve this approximation we use L'Hôpital's Rule to compare $\sin x-x$ with higher powers of x. First with x^2 :

$$\lim_{x \to 0} \frac{\sin x - x}{x^2} = \lim_{x \to 0} \frac{\cos x - 1}{2x} = \lim_{x \to 0} \frac{-\sin x}{2} = 0.$$

So the gap $\sin x - x$ is much smaller than x^2 . Let's compare with x^3 :

$$\lim_{x \to 0} \frac{\sin x - x}{x^3} = \lim_{x \to 0} \frac{\cos x - 1}{3x^2} = \lim_{x \to 0} \frac{-\sin x}{3! \, x} = -\frac{1}{3!}.$$

Thus $\frac{\sin x - x}{x^3} \approx -\frac{1}{3!}$, or $\sin x \approx x - \frac{x^3}{3!}$ for small x. This process can be continued to get better and better polynomial approximations to $\sin x$.

Task 2

Use L'Hôpital's Rule to compare $\sin x - x + x^3/3!$ with x^5 near zero and obtain the approximation $\sin x \approx x - \frac{x^3}{3!} + \frac{x^5}{5!}$ for small x.

The graph below shows the progressive improvements in these approximations to $\sin x$:

Limits at Infinity

Theorem 10

Suppose f and g are differentiable on (a, ∞) , $g'(x) \neq 0$ for every $x \in (a, \infty)$, $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} g(x) = 0$, and $\lim_{x \to \infty} \frac{f'(x)}{g'(x)} = L \in \mathbb{R}$. Then $\lim_{x \to \infty} \frac{f(x)}{g(x)} = L$.

Limits at Infinity

Theorem 10

Suppose f and g are differentiable on (a, ∞) , $g'(x) \neq 0$ for every $x \in (a, \infty)$, $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} g(x) = 0$, and $\lim_{x \to \infty} \frac{f'(x)}{g'(x)} = L \in \mathbb{R}$. Then $\lim_{x \to \infty} \frac{f(x)}{g(x)} = L$.

Proof. We begin by recalling that $\lim_{x\to\infty} f(x) = \lim_{t\to 0+} f(1/t)$. Hence,

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{t \to 0+} \frac{f(1/t)}{g(1/t)} = \lim_{t \to 0+} \frac{(f(1/t))'}{(g(1/t))'} = \lim_{t \to 0+} \frac{-f'(1/t)/t^2}{-g'(1/t)/t^2}$$
$$= \lim_{t \to 0+} \frac{f'(1/t)}{g'(1/t)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}.$$

Theorem 11 (L'Hôpital's Rule)

- **1** Each version of L'Hôspital's Rule also holds if $f, g \to \pm \infty$.
- **2** Each version of L'Hôspital's Rule also holds if $L = \pm \infty$.

Theorem 11 (L'Hôpital's Rule)

- **1** Each version of L'Hôspital's Rule also holds if $f, g \to \pm \infty$.
- **2** Each version of L'Hôspital's Rule also holds if $L = \pm \infty$.

Proof. Recall the standing assumption $g'(x) \neq 0$ and the implication that g is 1-1.

Theorem 11 (L'Hôpital's Rule)

- **1** Each version of L'Hôspital's Rule also holds if $f, g \to \pm \infty$.
- **2** Each version of L'Hôspital's Rule also holds if $L = \pm \infty$.

Proof. Recall the standing assumption $g'(x) \neq 0$ and the implication that g is 1-1.

1. Consider the left-hand limit at $c \in \mathbb{R}$. Let $\lim_{x \to c^-} \frac{f'(x)}{g'(x)} = L$. For any $\epsilon > 0$ there is an x_0 such that $x_0 \le x < c$ implies

$$L - \epsilon < \frac{f'(x)}{g'(x)} < L + \epsilon.$$

Theorem 11 (L'Hôpital's Rule)

- **1** Each version of L'Hôspital's Rule also holds if $f, g \to \pm \infty$.
- **2** Each version of L'Hôspital's Rule also holds if $L = \pm \infty$.

Proof. Recall the standing assumption $g'(x) \neq 0$ and the implication that g is 1-1.

1. Consider the left-hand limit at $c \in \mathbb{R}$. Let $\lim_{x \to c^-} \frac{f'(x)}{g'(x)} = L$. For any $\epsilon > 0$ there is an x_0 such that $x_0 \le x < c$ implies

$$L - \epsilon < \frac{f'(x)}{g'(x)} < L + \epsilon.$$

Now take an $x \in (x_0, c)$. By Cauchy's Mean Value Theorem there is a $\xi \in (x_0, x)$ such that

$$\frac{f(x) - f(x_0)}{g(x) - g(x_0)} = \frac{f'(\xi)}{g'(\xi)}.$$

(continued ...)

Torm and infinite Limits

Output

Output

District Press

District Pre

(...continued) Hence
$$L-\epsilon<\frac{f(x)-f(x_0)}{g(x)-g(x_0)}< L+\epsilon$$
, which we rearrange to
$$L-\epsilon<\frac{f(x)/g(x)-f(x_0)/g(x)}{1-g(x_0)/g(x)}< L+\epsilon,$$

(...continued)

Hence
$$L - \epsilon < \frac{f(x) - f(x_0)}{g(x) - g(x_0)} < L + \epsilon$$
, which we rearrange to

$$L-\epsilon < \frac{f(x)/g(x)-f(x_0)/g(x)}{1-g(x_0)/g(x)} < L+\epsilon,$$

and then,

$$(L-\epsilon)\Big(1-\frac{g(x_0)}{g(x)}\Big)+\frac{f(x_0)}{g(x)}<\frac{f(x)}{g(x)}<(L+\epsilon)\Big(1-\frac{g(x_0)}{g(x)}\Big)+\frac{f(x_0)}{g(x)}.$$

(...continued)

Hence
$$L - \epsilon < \frac{f(x) - f(x_0)}{g(x) - g(x_0)} < L + \epsilon$$
, which we rearrange to

$$L-\epsilon < \frac{f(x)/g(x)-f(x_0)/g(x)}{1-g(x_0)/g(x)} < L+\epsilon,$$

and then,

$$(L-\epsilon)\Big(1-\frac{g(x_0)}{g(x)}\Big)+\frac{f(x_0)}{g(x)}<\frac{f(x)}{g(x)}<(L+\epsilon)\Big(1-\frac{g(x_0)}{g(x)}\Big)+\frac{f(x_0)}{g(x)}.$$

As $x \to c-$, $g(x_0)/g(x) \to 0$ and $f(x_0)/g(x) \to 0$. Hence by taking x close to c we get

$$L-2\epsilon < \frac{f(x)}{g(x)} < L+2\epsilon.$$

(...continued)

Hence
$$L - \epsilon < \frac{f(x) - f(x_0)}{g(x) - g(x_0)} < L + \epsilon$$
, which we rearrange to

$$L-\epsilon < \frac{f(x)/g(x)-f(x_0)/g(x)}{1-g(x_0)/g(x)} < L+\epsilon,$$

and then,

$$(L-\epsilon)\Big(1-\frac{g(x_0)}{g(x)}\Big)+\frac{f(x_0)}{g(x)}<\frac{f(x)}{g(x)}<(L+\epsilon)\Big(1-\frac{g(x_0)}{g(x)}\Big)+\frac{f(x_0)}{g(x)}.$$

As $x \to c-$, $g(x_0)/g(x) \to 0$ and $f(x_0)/g(x) \to 0$. Hence by taking x close to c we get

$$L-2\epsilon < \frac{f(x)}{g(x)} < L+2\epsilon.$$

This gives
$$\lim_{x\to c-} \frac{f(x)}{g(x)} = L$$
. (continued ...)

(...continued)

2. We show how to modify the proof of the first part of this theorem for the $L=\infty$ case. Given any $M\in\mathbb{R}$ there is an x_0 such that $x_0\leq x< c$ implies

$$M+1<\frac{f'(x)}{g'(x)}.$$

(...continued)

2. We show how to modify the proof of the first part of this theorem for the $L=\infty$ case. Given any $M\in\mathbb{R}$ there is an x_0 such that $x_0\leq x< c$ implies

$$M+1<\frac{f'(x)}{g'(x)}.$$

Applying Cauchy's Mean Value Theorem and proceeding as before we reach

$$(M+1)\Big(1-rac{g(x_0)}{g(x)}\Big)+rac{f(x_0)}{g(x)}<rac{f(x)}{g(x)}, \quad \text{for } x\in(x_0,c).$$

(...continued)

2. We show how to modify the proof of the first part of this theorem for the $L=\infty$ case. Given any $M\in\mathbb{R}$ there is an x_0 such that $x_0\leq x< c$ implies

$$M+1<\frac{f'(x)}{g'(x)}.$$

Applying Cauchy's Mean Value Theorem and proceeding as before we reach

$$(M+1)\Big(1-rac{g(x_0)}{g(x)}\Big)+rac{f(x_0)}{g(x)}<rac{f(x)}{g(x)}, \quad \text{for } x\in(x_0,c).$$

By taking x close to c we get: $M < \frac{f(x)}{g(x)}$.

Example 12

Consider
$$\lim_{x\to\infty} \frac{x}{e^x}$$
.

This is an $\frac{\infty}{\infty}$ form, the numerator and denominator are differentiable on $(0,\infty)$, and the derivative of the denominator is always non-zero.

So L'Hôpital's Rule can be applied:

$$\lim_{x \to \infty} \frac{x'}{(e^x)'} = \lim_{x \to \infty} \frac{1}{e^x} = 0 \implies \lim_{x \to \infty} \frac{x}{e^x} = 0.$$

Example 13

On occasion we may need to apply L'Hôpital's Rule repeatedly. Consider $\lim_{x\to\infty}\frac{x^2}{e^x}.$ This is again an $\frac{\infty}{\infty}$ form, the numerator and denominator are continuously differentiable on $(0,\infty)$, and the derivative of the denominator is always non-zero. Further,

$$\lim_{x\to\infty}\frac{(x^2)'}{(e^x)'}=2\lim_{x\to\infty}\frac{x}{e^x}.$$

The second limit, by another application of L'Hôpital's Rule (previous example), is 0. Hence $\lim_{x\to\infty}\frac{x^2}{e^x}=0$.

We can repeat this argument to show that $\lim_{x\to\infty}\frac{x^n}{e^x}=0$ for any $n\in\mathbb{N}$. Thus the exponential function grows faster than any power of x.

Example 14

Consider
$$\lim_{x\to\infty} \frac{x^p}{\log x}$$
, with $p>0$.

This is an $\frac{\infty}{\infty}$ form, the numerator and denominator are continuously differentiable on $(0,\infty)$ and the derivative of the denominator is always non-zero. Now

$$\lim_{x \to \infty} \frac{(x^p)'}{(\log x)'} = \lim_{x \to \infty} \frac{p \, x^{p-1}}{1/x} = \lim_{x \to \infty} p \, x^p = \infty.$$

Hence
$$\lim_{x \to \infty} \frac{x^p}{\log x} = \infty$$
.

Other Indeterminate Forms

- Type $\infty \infty$: These have the form f(x) g(x) where $f(x), g(x) \to \infty$. The result depends on which term dominates. For example, $\lim_{x \to \infty} (x x) = 0$ and $\lim_{x \to \infty} (x^2 x) = \lim_{x \to \infty} x(x 1) = \infty$.
 - Type $\mathbf{0} \cdot \infty$: These have the form f(x)g(x) where $f(x) \to 0$ and $g(x) \to \infty$.
 - Type $\mathbf{1}^{\infty}$: These have the form $f(x)^{g(x)}$ where $f(x) \to 1$ and $g(x) \to \infty$. A familiar example is $\lim_{x \to 0} (1+x)^{1/x} = e$.
 - Type ∞^0 : These have the form $f(x)^{g(x)}$ where $f(x) \to \infty$ and $g(x) \to 0$. Applying log converts this to a $0 \cdot \infty$ form.
 - Type 0^0 : These have the form $f(x)^{g(x)}$ where $f(x) \to 0$ and $g(x) \to 0$. Applying log converts this to a $0 \cdot \infty$ form.

Example 15

The right-hand side limit of $x \log x$ at 0 is a $0 \cdot \infty$ form. We can convert it to a ratio and apply L'Hôspital's Rule.

$$\lim_{x\to 0+} x\log x = \lim_{t\to \infty} \frac{\log(1/t)}{t} = -\lim_{t\to \infty} \frac{\log t}{t} = -\lim_{t\to \infty} \frac{1/t}{1} = 0.$$

Example 16

Consider
$$\lim_{x \to \pi/2-} (\sin x)^{\tan x}$$
. This is a 1^{∞} form. Let $y = (\sin x)^{\tan x}$.

Then
$$\log y = (\tan x) \log(\sin x) = \frac{\log(\sin x)}{\cot x}$$
 and $\lim_{x \to \pi/2-} \frac{\log(\sin x)}{\cot x}$ is an $\frac{\infty}{\cos x}$ form. Apply L'Hôpital's Rule:

 $\stackrel{--}{\infty}$ form. Apply L'Hôpital's Rule:

$$\lim_{x \to \frac{\pi}{2} -} \log y = \lim_{x \to \frac{\pi}{2} -} \frac{\log(\sin x)}{\cot x} = \lim_{x \to \frac{\pi}{2} -} \frac{\cot x}{-\csc^2 x}$$
$$= -\lim_{x \to \frac{\pi}{2} -} (\cos x)(\sin x) = 0.$$

Finally, $\log y \to 0$ implies $y \to 1$.

Example 17

Consider $\lim_{x\to 0+} x^x$. This is a 0^0 form.

Let $y = x^x$. Then $\log y = x \log x = \frac{\log x}{1/x}$, and $\lim_{x \to 0+} \frac{\log x}{1/x}$ is an $\frac{\infty}{\infty}$ form.

Apply L'Hôpital's Rule:

$$\lim_{x \to 0+} \frac{(\log x)'}{(1/x)'} = \lim_{x \to 0+} \frac{1/x}{-1/x^2} = -\lim_{x \to 0+} x = 0 \implies \lim_{x \to 0+} \log y = 0.$$

Hence $y \to 1$.

Alert

Example 18

Suppose $f(x) = e^{-x}$, g(x) = 1/x, and we have to calculate $\lim_{x \to \infty} \frac{f(x)}{g(x)}$.

This is an $\frac{\infty}{\infty}$ form and we are allowed to apply L'Hôpital's Rule. If we do, we get

$$\lim_{x \to \infty} \frac{f'(x)}{g'(x)} = \lim_{x \to \infty} \frac{-e^{-x}}{-1/x^2},$$

which is more complicated than the original limit! Of course, we can easily resolve this by first rearranging the expression to x/e^x .

Alert

Example 19

Consider $f(x) = x + \sin x$ and g(x) = 2x. Then $\lim_{x \to \infty} \frac{f(x)}{g(x)}$ is an $\frac{\infty}{\infty}$ form and we may be tempted to calculate as follows:

$$\lim_{x\to\infty}\frac{f(x)}{g(x)}=\lim_{x\to\infty}\frac{f'(x)}{g'(x)}=\lim_{x\to\infty}\frac{1+\cos x}{2}, \text{ hence does not exist.}$$

However, this conclusion is not justified. If $\lim_{x\to\infty}\frac{f'(x)}{g'(x)}$ does not exist, then L'Hôpital's Rule fails to imply anything about the original limit. In fact, we can apply the Sandwich Theorem to conclude that the original limit equals 1/2.

Table of Contents

Mean Value Theorems

Indeterminate Forms

Taylor Polynomials

To approximate f(x) by a polynomial near x = a, we shall use polynomials of the form

$$P_n(x) = a_0 + a_1(x-a) + a_2(x-a)^2 + \cdots + a_n(x-a)^n.$$

To approximate f(x) by a polynomial near x = a, we shall use polynomials of the form

$$P_n(x) = a_0 + a_1(x-a) + a_2(x-a)^2 + \cdots + a_n(x-a)^n.$$

Suppose that f is differentiable n+1 times on an open interval I, and that $f^{(n+1)}(x) \leq M$ on I. Let $a \in I$. Apply the Mean Value Inequality:

$$f^{(n)}(x) - f^{(n)}(a) \le M(x - a) \qquad \text{for } x > a.$$

To approximate f(x) by a polynomial near x = a, we shall use polynomials of the form

$$P_n(x) = a_0 + a_1(x-a) + a_2(x-a)^2 + \cdots + a_n(x-a)^n.$$

Suppose that f is differentiable n+1 times on an open interval I, and that $f^{(n+1)}(x) \leq M$ on I. Let $a \in I$. Apply the Mean Value Inequality:

$$f^{(n)}(x) - f^{(n)}(a) \le M(x - a)$$
 for $x > a$.

Now integrate both sides over [a, x] to get

$$f^{(n-1)}(x) - f^{(n-1)}(a) - f^{(n)}(a)(x-a) \le \frac{M}{2}(x-a)^2.$$

To approximate f(x) by a polynomial near x = a, we shall use polynomials of the form

$$P_n(x) = a_0 + a_1(x-a) + a_2(x-a)^2 + \cdots + a_n(x-a)^n.$$

Suppose that f is differentiable n+1 times on an open interval I, and that $f^{(n+1)}(x) \leq M$ on I. Let $a \in I$. Apply the Mean Value Inequality:

$$f^{(n)}(x) - f^{(n)}(a) \le M(x - a)$$
 for $x > a$.

Now integrate both sides over [a, x] to get

$$f^{(n-1)}(x) - f^{(n-1)}(a) - f^{(n)}(a)(x-a) \le \frac{M}{2}(x-a)^2.$$

At the next iteration, we have

$$f^{(n-2)}(x) - f^{(n-2)}(a) - f^{(n-1)}(a)(x-a) - \frac{f^{(n)}(a)}{2}(x-a)^2 \le \frac{M}{3 \cdot 2}(x-a)^3.$$

To approximate f(x) by a polynomial near x = a, we shall use polynomials of the form

$$P_n(x) = a_0 + a_1(x-a) + a_2(x-a)^2 + \cdots + a_n(x-a)^n.$$

Suppose that f is differentiable n+1 times on an open interval I, and that $f^{(n+1)}(x) \leq M$ on I. Let $a \in I$. Apply the Mean Value Inequality:

$$f^{(n)}(x) - f^{(n)}(a) \le M(x - a)$$
 for $x > a$.

Now integrate both sides over [a, x] to get

$$f^{(n-1)}(x) - f^{(n-1)}(a) - f^{(n)}(a)(x-a) \le \frac{M}{2}(x-a)^2.$$

At the next iteration, we have

$$f^{(n-2)}(x) - f^{(n-2)}(a) - f^{(n-1)}(a)(x-a) - \frac{f^{(n)}(a)}{2}(x-a)^2 \le \frac{M}{3 \cdot 2}(x-a)^3.$$

Continuing in this fashion, we finally obtain

$$f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k} \le \frac{M}{(n+1)!} (x-a)^{n+1} \quad \text{for } x > a. \quad (1)$$

Taylor Polynomials

Similarly, if we have $m \le f^{(n+1)}(x)$ on I, we get

$$\frac{m}{(n+1)!}(x-a)^{n+1} \le f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k} \quad \text{for } x > a. \quad (2)$$

Taylor Polynomials

Similarly, if we have $m \le f^{(n+1)}(x)$ on I, we get

$$\frac{m}{(n+1)!}(x-a)^{n+1} \le f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k} \quad \text{for } x > a. \quad (2)$$

The polynomial defined by

$$T_n(x) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k$$

= $f(a) + f^{(1)}(a)(x-a) + \frac{f^{(2)}(a)}{2!} (x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!} (x-a)^n$

is called the n^{th} Taylor polynomial of f(x) centred at x = a. When a = 0 the Taylor polynomials are also called the Maclaurin polynomials.

Taylor Polynomials

Similarly, if we have $m \le f^{(n+1)}(x)$ on I, we get

$$\frac{m}{(n+1)!}(x-a)^{n+1} \le f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^k \quad \text{for } x > a. \quad (2)$$

The polynomial defined by

$$T_n(x) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k$$

= $f(a) + f^{(1)}(a)(x-a) + \frac{f^{(2)}(a)}{2!} (x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!} (x-a)^n$

is called the n^{th} Taylor polynomial of f(x) centred at x = a. When a = 0 the Taylor polynomials are also called the Maclaurin polynomials.

Task 3

If T_n is the n^{th} Taylor polynomial of f centered at a, show that

$$T_n^{(k)}(a) = f^{(k)}(a)$$
 for $k = 0, 1, ..., n$.

Example 20

Let us calculate the Taylor polynomials of $\sin x$ centered at a = 0:

$$f(x) = \sin x \qquad \Longrightarrow \qquad a_0 = f(0) = 0,$$

$$f'(x) = \cos x \qquad \Longrightarrow \qquad a_1 = f'(0) = 1,$$

$$f''(x) = -\sin x \qquad \Longrightarrow \qquad a_2 = \frac{f''(0)}{2!} = 0,$$

$$f'''(x) = -\cos x \qquad \Longrightarrow \qquad a_3 = \frac{f'''(0)}{3!} = -\frac{1}{3!}.$$

We see that $a_k=0$ when k is even. And for odd $k=2\ell+1$ we have $a_k=\frac{(-1)^\ell}{(2\ell+1)!}$. Thus the $(2n+1)^{\text{th}}$ Taylor polynomial has the form

$$T_{2n+1}(x) = \sum_{\ell=0}^{n} \frac{(-1)^{\ell}}{(2\ell+1)!} x^{2\ell+1} = x - \frac{x^3}{3!} + \frac{x^5}{5!} \cdots + (-1)^{2n+1} \frac{x^{2n+1}}{(2n+1)!}.$$

Example 21

The Taylor polynomials of $\cos x$ centred at a = 0 can be found similarly.

$$T_{2n}(x) = \sum_{\ell=0}^{n} \frac{(-1)^{\ell}}{(2\ell)!} x^{2\ell} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} \cdots + (-1)^{2n} \frac{x^{2n}}{(2n)!}.$$

Example 22

The Taylor polynomials of e^x centred at a = 0 are

$$T_n(x) = \sum_{k=0}^n \frac{x^k}{k!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!}.$$

Putting
$$x = 1$$
 gives $e \approx \sum_{k=0}^{n} \frac{1}{k!} = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}$.

Example 23

The Taylor polynomials of $f(x) = \log x$ centred at a = 1 are:

$$T_n(x) = \sum_{k=1}^n \frac{(-1)^{k-1}}{k} (x-1)^k$$

= $(x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} + \dots + (-1)^{n-1} \frac{(x-1)^n}{n}.$

Taylor's Theorem

Theorem 24

Let I be an interval, $f: I \to \mathbb{R}$, and $a \in I$.

- **1** Let f(x) be differentiable n+1 times on I, and suppose $|f^{(n+1)}(x)| \leq M$ on I.
- **2** Let $T_n(x)$ be the n^{th} -degree Taylor polynomial of f(x) centred at a.

Then, for each
$$x \in I$$
, $|f(x) - T_n(x)| \le \frac{M}{(n+1)!} |x - a|^{n+1}$.

Taylor's Theorem

Theorem 24

Let I be an interval, $f: I \to \mathbb{R}$, and $a \in I$.

- 1 Let f(x) be differentiable n+1 times on I, and suppose $|f^{(n+1)}(x)| \leq M$ on I.
- **2** Let $T_n(x)$ be the n^{th} -degree Taylor polynomial of f(x) centred at a.

Then, for each
$$x \in I$$
, $|f(x) - T_n(x)| \le \frac{M}{(n+1)!}|x-a|^{n+1}$.

Proof. We have already established this for $x \ge a$ in equations 1 and 2. The x < a case can be converted to the x > a case by reflection about x = a.

Example 25

Suppose we need to approximate $\sin 1.2$ to 4 decimal places. Applying Taylor's theorem to $\sin x$ with a=0 and x=1.2, we find that M=1 and

$$|\sin 1.2 - T_n(1.2)| \le \frac{1.2^{n+1}}{(n+1)!}.$$

To ensure $T_n(1.2)$ is sufficiently accurate, we need to choose n such that $\frac{1.2^{n+1}}{(n+1)!} \le 5 \times 10^{-5}$. If we take n=8 we get $\frac{1.2^9}{9!} = 1.4 \times 10^{-5} < 5 \times 10^{-5}$. So the 8th degree Taylor polynomial suffices. However the degree 8 term is zero in the Taylor expansion of $\sin x$ and so we only need the terms up to degree 7.

$$\sin 1.2 \approx 1.2 - \frac{1.2^3}{3!} + \frac{1.2^5}{5!} - \frac{1.2^7}{7!} \approx 0.932025.$$

Example 26

Now let us approximate Euler's number e to 4 decimal places. Recall that we already know e < 4 and so the function e^x is bounded by 4 on [0,1]. Therefore, applying Taylor's theorem to e^x with a=0 and x=1, we find that

$$|e-T_n(1)| \leq \frac{4}{(n+1)!}.$$

To ensure $T_n(1)$ is sufficiently accurate, we need to choose n such that $\frac{4}{(n+1)!} \le 5 \times 10^{-5}$. Again, n=8 does the job. Therefore,

$$e \approx 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{8!} = 2.718278\dots$$

(The exact value is 2.718281...)

Theorem 27

Let I be an interval, $f: I \to \mathbb{R}$ be n+1 times continuously differentiable, $a \in I$. Let $T_n(x)$ be the n^{th} -degree Taylor polynomial of f(x) centered at a. Then, for each $x \in I$, there is a ξ between a and x such that

$$f(x) - T_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1}.$$

Theorem 27

Let I be an interval, $f: I \to \mathbb{R}$ be n+1 times continuously differentiable, $a \in I$. Let $T_n(x)$ be the n^{th} -degree Taylor polynomial of f(x) centered at a. Then, for each $x \in I$, there is a ξ between a and x such that

$$f(x) - T_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1}.$$

Proof. We give the proof for x > a. By the Extreme Value Theorem, $f^{(n+1)}$ achieves a minimum value m and a maximum value M on [a,x].

Theorem 27

Let I be an interval, $f: I \to \mathbb{R}$ be n+1 times continuously differentiable, $a \in I$. Let $T_n(x)$ be the n^{th} -degree Taylor polynomial of f(x) centered at a. Then, for each $x \in I$, there is a ξ between a and x such that

$$f(x) - T_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1}.$$

Proof. We give the proof for x > a. By the Extreme Value Theorem, $f^{(n+1)}$ achieves a minimum value m and a maximum value M on [a, x].

Then,
$$\frac{m}{(n+1)!}(x-a)^{n+1} \le f(x) - T_n(x) \le \frac{M}{(n+1)!}(x-a)^{n+1}$$
.

Theorem 27

Let I be an interval, $f: I \to \mathbb{R}$ be n+1 times continuously differentiable, $a \in I$. Let $T_n(x)$ be the n^{th} -degree Taylor polynomial of f(x) centered at a. Then, for each $x \in I$, there is a ξ between a and x such that

$$f(x) - T_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1}.$$

Proof. We give the proof for x > a. By the Extreme Value Theorem, $f^{(n+1)}$ achieves a minimum value m and a maximum value M on [a,x].

Then,
$$\frac{m}{(n+1)!}(x-a)^{n+1} \le f(x) - T_n(x) \le \frac{M}{(n+1)!}(x-a)^{n+1}$$
.

Hence,
$$m \le (f(x) - T_n(x)) \frac{(n+1)!}{(x-a)^{n+1}} \le M$$
.

Theorem 27

Let I be an interval, $f: I \to \mathbb{R}$ be n+1 times continuously differentiable, $a \in I$. Let $T_n(x)$ be the n^{th} -degree Taylor polynomial of f(x) centered at a. Then, for each $x \in I$, there is a ξ between a and x such that

$$f(x) - T_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1}.$$

Proof. We give the proof for x > a. By the Extreme Value Theorem, $f^{(n+1)}$ achieves a minimum value m and a maximum value M on [a,x].

Then,
$$\frac{m}{(n+1)!}(x-a)^{n+1} \le f(x) - T_n(x) \le \frac{M}{(n+1)!}(x-a)^{n+1}$$
.

Hence,
$$m \le (f(x) - T_n(x)) \frac{(n+1)!}{(x-a)^{n+1}} \le M$$
.

Now the Intermediate Value Theorem gives a $\xi \in (a, x)$ such that

$$f^{(n+1)}(\xi) = (f(x) - T_n(x)) \frac{(n+1)!}{(x-a)^{n+1}}.$$

Classifying Critical Points

Theorem 28

Let f have a critical point at a and be n times continuously differentiable at a. Suppose $f'(a) = f''(a) = \cdots = f^{(n-1)}(a) = 0$ and $f^{(n)}(a) \neq 0$.

- 1 If n is even and $f^{(n)}(a) > 0$ then f has a local minimum at a.
- 2 If n is even and $f^{(n)}(a) < 0$ then f has a local maximum at a.
- **3** If n is odd then f has a saddle point at a.

Classifying Critical Points

Theorem 28

Let f have a critical point at a and be n times continuously differentiable at a. Suppose $f'(a) = f''(a) = \cdots = f^{(n-1)}(a) = 0$ and $f^{(n)}(a) \neq 0$.

- 1 If n is even and $f^{(n)}(a) > 0$ then f has a local minimum at a.
- 2 If n is even and $f^{(n)}(a) < 0$ then f has a local maximum at a.
- **3** If n is odd then f has a saddle point at a.

Proof. By continuity, there is an open interval I containing a such that $f^{(n)}$ does not change sign in I. For each $x \in I$ there is a $\xi \in I$ such that

$$f(x) = f(a) + \frac{f^{(n)}(\xi)}{n!}(x-a)^n.$$

Classifying Critical Points

Theorem 28

Let f have a critical point at a and be n times continuously differentiable at a. Suppose $f'(a) = f''(a) = \cdots = f^{(n-1)}(a) = 0$ and $f^{(n)}(a) \neq 0$.

- 1 If n is even and $f^{(n)}(a) > 0$ then f has a local minimum at a.
- 2 If n is even and $f^{(n)}(a) < 0$ then f has a local maximum at a.
- 3 If n is odd then f has a saddle point at a.

Proof. By continuity, there is an open interval I containing a such that $f^{(n)}$ does not change sign in I. For each $x \in I$ there is a $\xi \in I$ such that

$$f(x) = f(a) + \frac{f^{(n)}(\xi)}{n!}(x-a)^n.$$

If n is even and $f^{(n)}(a) > 0$ then we have $f^{(n)}(\xi) > 0$ for every $\xi \in I \setminus \{a\}$. It follows that f(x) > f(a) for every $x \in I$ and hence there is a local minimum at a. The other cases are similar.