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Figure 2.1. Sequence dependent regulation of gene expression. Expression of particular genomic
sequences produces various dsRNAs. Dicer is responsible for processing the dsRNAs into small RNAs.
The small RNA is then incorporated into RISC, guiding the protein complex to a specific mRNA. RISC
enforces specific gene suppression either by cleavage of the mRNA or inhibition of translation. The
degree of complementarity between the small RNA and the mRNA determines the fate of the mRNA;
perfect or near perfect complementarity generally results in cleavage of the mRNA, whereas, a few
mismatches results in suppression of translation. In a sequence specific manner, small RNAs also
regulate chromatin structure and hence gene expression. Some of the processes depicted here may
not be present in all organisms or cell types. From a practical standpoint small RNAs can be used
to investigate gene function; several types of small dsRNAs can either be introduced into the cell or
produced inside the cell. In all cases the small RNA is funneled into the RNAi pathway and triggers
specific gene suppression.
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Figure 2.2. Alignment of Dicer homologs. Most Dicer proteins contain six conserved domains:
a DExH helicase domain; a domain of unknown function (DUF283); a PAZ domain; two RNase
Il catalytic domains; and finally a double stranded RNA binding domain. Spacing between the
domains is different for the homologs, which may explain the different size classes of small RNAs
found in some species.
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Figure 3.1. Model for mRNA degradation in the cytoplasm by RNAi. Introduced dsRNAs (red) are
recognized by RDE-4/R2D2, a dsRNA binding protein. These dsRNAs are then processed by Dicer
into 21-23nt duplexes that can associate with an enzyme complex called RISC. After unwinding of
the siRNAs, RISC becomes competent to target homologous mRNA transcripts for degradation.
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Figure 3.2. Amplification of dsRNA by an RNA-dependent RNA polymerase. In certain organisms,
new dsRNAs can be generated by RDRPs, primed by siRNAs on mRNA targets. The new dsRNAs
can be used subsequently by Dicer to create more siRNAs, which can lead to additional rounds of
amplification.

|\
n
A\
|\ N

19:47



0521836778cp

CB790/Appasani 0521812380 October 15, 2004

MAP2

Phalloidin

nucleu's

Figure 3.3. Model for gene silencing in the nucleus by RNAI. RNAi can also silence the transcrip-
tion of targeted genes in certain organisms. In this model a signal can direct a putative nuclear
RNA:i silencing complex (NRISC), composed of chromatin modifying proteins, to the targeted locus,
silencing gene expression at the level of transcription.
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Figure 5.4. Microtubule Associated Protein 2 (MAP2) suppression in primary cortical neurons by
cognate 21nt-siRNAs. A. Double fluorescence staining of neurons transfected with non-specific
siRNA or with MAP2-siRNA. Upper panels-staining with MAP2 monoclonal antibody (green); lower
panels-staining with actin-bound toxin phalloidin (red). B. Distribution of MAP2 expression levels
in control and targeted cells, two different siRNA (siRNA1 and siRNA2) show a very similar effect.
In each experiment, at least 70 random neurons per experimental condition were analyzed and
gene expression was quantified in both control and targeted cells. The figure is reprinted from:
Krichevsky, A. M. and Kosik, K. S. “RNAI functions in cultured mammalian neurons.” Proc Natl Acad
SciUS A., 99(18):11926-9 (2002).
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Figure 10.3. Long Term Silencing of GAPDH with CMV Puro Plasmid. HeLa cells were transfected
with a CMV puro plasmid expressing GAPDH-specific siRNAs. The cells were cloned, and clonal
populations were selected in 2.5 ng/ml puromycin. Three weeks after selection, GAPDH expression
was analyzed by (A) RT-PCR or (B) immunofluorescence. Expression levels of several cell clones are
shown. Green: GAPDH. Blue: DAPI stained nuclei.
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Figure 11.4. Method for identifying effective sShRNA sequences. To screen for siRNAs that are ef-
fective against a gene of interest, the gene to be targeted is cloned into an expression vector as
a translational fusion to a fluorescent protein. This construct is then co-transfected with test and
control siRNA sequences against the gene. If the siRNA sequence is effective, then expression of the
fusion protein will be reduced, resulting in a loss of fluorescence.
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Figure 15.4. RNAI in the neuroepithelium of E10 mouse embryos. E10 mouse embryos were
injected, into the lumen of the telencephalic neural tube, with the two reporter plasmids pEGFP-
N2 (for GFP) and pSVpaXD (for ggal), either without (a=c and g, Control) or with (d-f and g,
siRNA) ggal-directed esiRNAs, followed by directional electroporation and whole embryo culture
for 24 hours. (a-f) Horizontal cryosections through the targeted region of the telencenphalon were
analysed by double fluorescence for expression of GFP (green; a and d) and Agal immunoreactivity
(red; b and e). Co-expression of GFP and Bgal in neuroepithelial cells appears yellow in the merge
(c and f, arrowheads). Note the lack of ggal expression in neuroepithelial cells in the presence
of Bgal-directed esiRNAs. Upper and lower dashed lines indicate the lumenal (apical) surface and
basal border of the neuroepithelium, respectively. Asterisks in (b and e) indicate signal due to the
cross-reaction of the secondary antibody used to detect ggal with the basal lamina and underlying
mesenchymal cells. Scale bar in (f), 20 pm. (g) Quantitation of the percentage of GFP-expressing
neuroepithelial cells that also express ggal without (Control) or with (siRNA) application of ggal-
directed esiRNAs. Data are the mean of three embryos analyzed as in (a-f); bars indicate S.D.
(Reprinted figure with permission from PNAS).
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Figure 16.1. Chicken embryos are a good model system for developmental studies due to their
accessibility. Chicken embryos can be accessed in ovo (A) through a window in the eggshell that
can be resealed after manipulations with a coverslip and melted paraffin. As an alternative approach,
chicken embryos can be used as ex ovo cultures (B). With both methods embryos can be kept alive
throughout embryonic development.

N _/

TDNA spacer

4/ rDNA spacer

Figure 18.2. The pZJM RNAI vector. The tet operator (Tet Op), dual T7 terminators (red octagons), tet-
inducible T7 promoters (T7 arrows), ribosomal DNA spacer (rDNA), actin poly(A) addition sequence
(ACT polyA), phleomycin resistance gene (BLE), splice acceptor site (SAS), aldolase poly(A) addition
sequence (ALD polyA). The plasmid is shown in linearized form, after cleavage in the rDNA spacer,
and is not drawn to scale.
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Figure 20.1. (a) Albino and wild type (yellow) colonies obtained by transformation of the wild
type strain with carB sequences. Segregation of albino (b) and wild-type (¢) transformants after
a cycle of vegetative growth. Colonies showing different phenotypes (arrows) are obtained from
spores of the original transformants. Photographs were taken after illumination with blue light for
24 hours.

Figure 21.1. ACMV-[CMJ-infected N. benthamiana showing recovery phenotype. N. benthamiana
plants imaged at 2-weeks post inoculation [(WPI) (control-A-left; Infected-A-right)] and at 5-WPI
(control-B-left; Infected-B-right).
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Figure 21.2. ACMV-[CM[-infected GFP silenced GFP-
transgenic N. benthamiana (line 16C). Plant photographed
using dissecting microscope (A) Normal light and (B) UV
filter. Symptom-less recovered leaves appeared red under
UV light.

Figure 21.3. Effect of anti-PTGS activity of AC2 gene of EACMCV and ICMV; and AC4 gene of
ACMV-[CM] and SLCMV. Leaf of GFP-transgenic N. benthamiana (line 16C) plant agroinfiltrated
with pBin-GFP alone (A), or bacterial mixture harboring pBin-GFP along with the following viral
gene constructs, P1/HC-Pro of TEV (B); AC4 of ACMV-[CM] (C), AC2 of EACMCV (D), AC4 of SLCMV
(E) and AC2 of ICMV (F). Leaves were photographed 7 days after infiltration using a dissecting
microscope.
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Figure 22.2. Ideal System for systemic delivery of siRNA.
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Figure 23.1. Comparison of HCV-IRES- and 5’ cap- dependent translation A) The HCV-IRES driven
internal translation initiation, starts with the direct recruitment of the 40S ribosomal subunit and
the eukaryotic initiation factor elF 3. In cap-dependent translation initiation, the recruitment of the
405 ribosomal subunit requires the recognition of the m?GpppG cap at the mRNA 5’end, by the
initiation factor elF4AE at which the elF 4F complex, consisting of the initiation factors elF 4E, elF 4G
and elF 4A, is assembled. The recruitment of the 40S ribosomal subunit takes place via elF 3 which
binds to elF4G.
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Figure 23.2. Tobramycin-tag affinity chromatography of translation initiation complex A) The HCV
RNA 5’UTR bearing the HCV-IRES fused to the tobramycin aptamer was incubated with cytoplas-
mic Hela cell extract under physiological conditions. Protein complexes assembled on the 5'UTR
sequence were loaded on a 5-25% sucrose gradient and distributed according to their molecular
weight by ultracentrifugation. The resulting 48S ribosomal peak fractions were subsequently incu-
bated with the sepharose-coupled aminoglycoside tobramycin. Following extensive washing of the
affinity matrix, proteins were eluted from the complex assembled at the HCV-IRES. Proteins eluted
from the HCV-IRES were isolated from a silver stained polyacrylamide gel and identified by mass
spectrometry (LC-MS) according to representative peptides.
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Figure 24.4. Schematic models of interference of protein kinases by RNAi knockdown and dominant
negative mutant. Two Kinases are depicted as interacting with the same target. Inhibition by RNAi or
dominant negative is depicted in red in each part of the figure. A. Knockdown of a kinase by shRNA
removes the targeted kinase from the cell. B. Inhibition of kinases by expression of a dominant
negative mutant.
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Figure 25.3. Consequences of RNAi-mediated knockdown onGABAgR1 and GABAgR?2 re-
ceptors. mRNA levels of GABAgR1 and GABAgR2 were determined 24 hours post transfection with
specific SIRNAs. The green bar indicates the random sequence control, the red bars (1-1, 1-2 and
1-3) are siRNAs specific for GABAgR1, the orange bars (2—1 and 2-2) show siRNAs specific for
GABAgR2. Protein knockdown of GABAgR1 and GABAgR2 was analysed after treatment of cells for
72 hours with siRNAs, and quantified by immunoblot relative to the internal control, a-tubulin. The
phenotype associated with the knockdown of GABAgR1 and GABAgR2 was characterised using a

35S GTPyassay.
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Figure 27.2. Light emitted from living mice as the result of luciferase expression is significantly
reduced in the presence of luciferase siRNAs. Representative images of mice co-transfected with the
luciferase plasmid pGL3-Control and either no siRNA (left), luciferase siRNA (middle) or unrelated
siRNA (right). A pseudocolor image representing intensity of emitted light (red most and blue least
intense) superimposed on a grayscale reference image (for orientation) shows that.RNAi functions
in adult mammals. Forty pg of annealed 21-mer siRNAs (Dharmacon) were hydrodynamically trans-
fected into livers of mice with the 2 ug of pGL3-Control DNA. Seventy two hours after transfection,
mice were anesthetized and given 3 mg of luciferin intraperitoneally 15 min prior to imaging with
a cooled CCD camera. IVIS imaging system (Xenogen, Alameda, CA) courtesy of Dr. Christopher
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Contag, Stanford University. Image reprinted with permission from McCaffrey et al., 2004.
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Figure 30.1. dsRNA delivery methods. (A) Microinjection of the in vitro synthesized dsRNA.
(B) Soaking in the dsRNA solution. (C) Feeding bacteria that express dsRNA. (D) In vivo transcription
of hairpin RNAs from the transgene. By choosing promoters that control the expression of hairpin
RNAs, inducible- or tissue-specific RNAI can be elicited.
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Figure 33.1. siRNA microarray for gene silencing. (A) Experimental strategy for siRNA microarrays.
The desired cDNA and siRNAs are printed as individual spots on glass slides and exposed briefly to
lipid before placing HEK293 cells on the printed slides in culture dish. Transfected cells are visualized
using fluorescent microscopy and evaluated for the effect of RNAI. (B) Parallel RNAi on microarrays.
Fluorescence photomicrograph of cells after reverse transfection of the indicated siRNA and cDNAs
is shown.
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