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CHAPTER 2

PROBLEM 2.1. Torque on Plasma.
Do the ideal MHD equations conserve angular momentum? What is the
torque on the plasma?

SOLUTION. In the same way that momentum conservation implies that
the momentum can be increased or decreased by forces acting on a plasma,
so the angular momentum can be changed by torques.

Consider, for example, an MHD plasma operated on by just a plasma
pressure gradient and a Lorentz force. Then the torque on the plasma may
be found from the curl of the equation of motion, namely,

∇× ρ
dv

dt
= ∇× (j×B) = (B ·∇)j− (j ·∇)B.

In general this will not vanish and so the angular momentum is changed by
the torque.

PROBLEM 2.2. Unidirectional Field.
If the magnetic field is unidirectional, pointing everywhere in the same di-
rection, why can the magnetic field have no gradient in that direction?

SOLUTION. Suppose the magnetic field is pointing in the x-direction,
with B(x, y, z) = B(x, y, z)x̂. Then the equation ∇ · B = 0 implies that
∂B/∂x = 0. In other words, the magnetic field does not vary with x and
there is no gradient in that direction.

PROBLEM 2.3. Consistency of MHD Equations.
The time-dependent MHD equations appear at first sight to represent a set
of 10 equation for 9 variables. Why is this not overprescribed? How is the
argument changed for the steady-state equations and for the equilibrium
equations without flow?
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SOLUTION.
(i) Unsteady case. The set of unsteady MHD equations is

∂B

∂t
= ∇× (v ×B) + η∇2B.

dρ

dt
+ ρ∇ · v = 0

ρ
dv

dt
= −∇p + j×B+ F,

p =
kB
m

ρT

(

R̃

µ̃
ρT

)

,

ργ

γ − 1

d

dt

(

p

ργ

)

= −∇ · q− Lr + j2/σ +H, ∇ ·B = 0.

This represents a set of 10 differential equations for the 9 variablesBx, By, Bz, vx, vy, vz, ρ, p, T .
However, the last equation (∇ ·B = 0) does not have the same status as the
other differential equations, and is really only an initial condition, since, if
we assume ∇ ·B = 0 at t = 0 and take the divergence of the first equation,
then we find

∂

∂t
∇ ·B = 0.

In other words, if ∇ · B = 0 holds initially, then the other equations imply
that it also holds for all time. Thus, we really have 9 differential equations
for 9 variables that need to be solved at each moment of time.

(ii) Steady case. Now the above equations reduce to

0 = ∇× (v ×B) + η∇2B.

∇ · (ρv) = 0

ρ(v ·∇)v = −∇p + j×B+ F,

p =
kB
m

ρT,

ργ

γ − 1
(v ·∇)

(

p

ργ

)

= −∇ · q− Lr + j2/σ +H, ∇ ·B = 0.

At first sight there is a paradox, since the number of equations is 10 and
the number of variables is only 9 (vx, vy, vz, Bx, By, Bz, ρ, p, T ). The paradox
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may be resolved by recognising that the first equation represents only 2
independent equations rather than 3, and so the numbers of independent
equations and variables is the same. This may be shown as follows in two
ways, by writing the equation as ∇× E = 0.

First of all, suppose the z- and x-components of ∇ × E = 0 hold every-
where and the y-component holds just on a plane y = constant. Then we
can show that the y-component holds everywhere as follows.

The z- and x-components are

∂Ey

∂x
=

∂Ex

∂y
,

∂Ey

∂z
=

∂Ez

∂y
.

Then

∂

∂y

(

∂Ez

∂x
−

∂Ex

∂z

)

=
∂

∂x

(

∂Ez

∂y

)

−
∂

∂z

(

∂Ex

∂y

)

=
∂

∂x

(

∂Ey

∂z

)

−
∂

∂z

(

∂Ey

∂x

)

= 0.

Thus, after integrating over y, we have

∂Ez

∂x
−

∂Ex

∂z
= f(x, z),

where f(x, z) is an arbitrary function. However, if ∂Ez/∂x− ∂Ex/∂z = 0 on
y = constant, then f(x, z) ≡ 0 and so

∂Ez

∂x
−

∂Ex

∂z
= 0,

as required.
The alternative approach is use the general solution of∇×E = 0, namely,

E = ∇Φ and to suppose that Ex(x, y, z) and Ey(x, y, z) are given functions
of (x, y, z) everywhere and Ez is given as a boundary condition on, say, the
z-axis as Ez(0, 0, z). Then we can determine Ez(x, y, z) everywhere in terms
of them, as follows.

The x-component of E = ∇Φ, namely, ∂Φ/∂x = Ex(x, y, z) can be inte-
grated to give

Φ(x, y, z) =

∫ x

x=0

Exdx+ g(y, z),

where g(y, z) is an arbitrary function of integration to be determined.
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Next, we can substitute this expression for Φ(x, y, z) into the y-component
of E = ∇Φ, namely, ∂Φ/∂y = Ey(x, y, z) to give

∫ x

x=0

∂Ex

∂y
dx+

∂g(y, z)

∂y
= Ey(x, y, z).

In other words,

∂g(y, z)

∂y
= h(y, z) ≡ Ey(x, y, z)−

∫ x

x=0

∂Ex

∂y
dx.

This can be integrated to yield an expression for g(y, z) as

g(y, z) =

∫ y

y=0

h(y, z)dy + c(z),

in terms of an unknown function of integration c(z).
Then the z-component of E = ∇Φ determines Ez everywhere as

Ez(x, y, z) =
∂Φ

∂z
=

∫ x

x=0

∂Ex

∂z
dx+

∂g(y, z)

∂z
,

or, after substituting for g(y, z),

Ez(x, y, z) =
∂Φ

∂z
=

∫ x

x=0

∂Ex

∂z
dx+

∫ y

y=0

∂h

∂z
dy +

dc

dz

However, dc/dz is determined by the boundary condition on Ez as

dc

dz
= Ez(0, 0, z).

In other words, we have determined Ez everywhere, as required.

(iii) Equilibrium case. For the equilibrium case with no flow, the MHD
equations reduce further to

0 = −∇p + j×B+ F,

p =
kB
m

ρT,

0 = −∇ · q− Lr + j2/σ +H, ∇ ·B = 0.
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Thus, we have now have 6 equations for 6 unknowns (Bx, By, Bz, ρ, p, T ), and
there is no longer any apparent paradox.

PROBLEM 2.4. Incompressibility.
(i) Show that for an adiabatic variation, the incompressible limit may be
obtained formally by letting γ tend to infinity. (ii) Since γ is in reality finite,
establish the condition for incompressibility in MHD.

SOLUTION. (i) Consider a steady situation, for which the continuity and
adiabatic equations are

(v ·∇)ρ+ ρ∇ · v = 0 (1)

and
(v ·∇)p =

γp

ρ
(v ·∇)ρ (2)

One proof would be to assume that (v · ∇)p, p and ρ all remain finite
while γ → ∞. Then Eq.(1) implies that

(v ·∇)ρ = 0,

so that there are no changes in density following the flow – i.e., it is incom-
pressible.

An alternative proof would be to realise that Eq.(2) implies that the
variations δp and δρ in pressure and density are related by

δp

p
= γ

δρ

ρ
.

Thus, if δp/p remains finite but γ → ∞, then δρ/ρ → 0. In other words,
there is no change in density and the plasma is incompressible.

(ii) We have
δρ

ρ
=

δp

γp

and in a nonmagnetic fluid (i.e., β ≫ 1) ρ(v ·∇)v = −∇p implies that

δp = ρv δv,
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so that
δρ

ρ
=

vδv

γp/ρ
=

vδv

c2s
.

Thus, we have an incompressible variation, i.e.,

δρ

ρ
≪

δv

v
,

when
v2 ≪ c2s. (3)

In other words, in a highly subsonic fluid flow, the density variations are much
smaller than the velocity variations and the flow is roughly incompressible –
i.e., compressibility is important only for fast flows.

In MHD there are several possibilities. First of all, if cs ∼ vA, then
v2 ≪ c2s implies v2 ≪ v2A.

On the other hand, if v ∼ vA, this condition becomes

v2A ≪ c2s

or

β ≫
2

γ
∼ 1. (4)

In other words, with the above assumptions, the condition for incompress-
ibility is (3) or (4). Note that the argument would be different when β ≪ 1.

PROBLEM 2.5. Frozen Flux.
Confirm that Eq.2.53 (namely, E + v × B = 0) implies Eq.2.54 (namely,
v⊥ = E×B/B2).

SOLUTION.
We have

E+ v ×B = 0.

The vector product of this equation with B gives

E×B+ (v ×B)×B = 0

or
E×B+B(v ·B)− vB2 = 0.
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Thus, if the flow is perpendicular to the field (v ·B = 0), we have

v⊥ =
E×B

B2
,

as required.

PROBLEM 2.6. Diffusion.
Show that, when there is no E‖ and w exists, in resistive MHD the slip-
page velocity is simply

w − v =
j×B

σ B2
.

SOLUTION. In resistive MHD, Ohm’s law is

E+ v ×B =
j

σ
,

and the flux velocity w satisfies

E+w ×B = ∇Φ,

where the condition that E‖ = 0 implies that B · ∇Φ = 0. Thus ∇Φ is
normal to B and so we may include it in w, so that the equation for w
becomes

E+w ×B = 0.

Now, the vector products of these equations with B give

B× E+B× (v ×B) = B×
j

σ

and
B×E+B× (w ×B) = 0

or

B×E+ vB2
−B(v ·B) = B×

j

σ

and
B× E+wB2

−B(w ·B) = 0
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Then, if we assume that the component of w along the magnetic field is
the same as that of v (i.e., v ·B = w ·B), and subtract one equation from
the other, we find

w − v =
j×B

σ B2
,

as required.

PROBLEM 2.7. Field Lines.
For the magnetic field B = −y x̂ + ŷ sketch the magnetic field lines. From
the sketch, what do you expect qualitatively the magnetic pressure force and
magnetic tension force to be (a) at a point on the x-axis and (b) at a loca-
tion where y > 0. Verify your intuition by calculating the magnetic pressure
force, magnetic tension force and Lorentz force explicitly.

SOLUTION. The magnetic field has components

Bx = −y, By = 1,

and so the fieldlines are given by

dx

dy
= −

1

y
,

or
x = −

1

2
y2 + c.

A sketch of them is shown in Fig.2.1.
From the sketch, the curvature of the field lines produces a tension force

to the right and the decrease in their spacing as one moves away from the x-
axis produces a magnetic pressure force that acts towards the x-axis. Thus,
one expects just a tension force at Q1, as indicated by the force L, and a
combination of pressure and tension forces at Q2 acting inwards normal to
the fieldline towards the centre of curvature of the fieldline, again as indicated
by the direction L.

The magnetic pressure force is

P ≡ −
1

2µ
∇(B2) = −

1

2µ

∂

∂y
(1 + y2)ŷ = −

y

µ
ŷ,

which vanishes at Q1 on the x-axis and is negative at Q2 in y > 0, as indicated
on Fig.??.
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On the other hand, the tension force is

T ≡ (B ·∇)
B

µ
=

1

µ

∂

∂y
(Bx)x̂ = −

1

µ
x̂,

which is uniform and negative, as indicated by the direction T at Q2 and
being the same as L at Q2.

Finally, the electric current is

j =
1

µ
∇×B = −

1

µ

∂Bx

∂y
ẑ =

1

µ
ẑ,

and so the Lorentz force is

L ≡ j×B = −jzByx̂ + jzBxŷ =
1

µ
(−1.− y),

which agrees with P+T as expected and has the same directions at Q1 and
Q2 as expected intuitively.

PROBLEM 2.8. Flux Surfaces in Axisymmetric Cylindrical Polars.

In axisymmetric cylindrical polars (R, φ.z) show that the magnetic field can
be written in terms of the flux function [F (R, z)] as

(BR, Bz) =

(

1

R

∂F

∂z
,−

1

R

∂F

∂R

)

.

SOLUTION. We follow the same lines as the proof for axisymmetric spher-
ical polars in Sec.2.9.3 of the book. Thus, B and F need to satisfy two
equations, namely,

∇ ·B = 0 (a) and B ·∇F = 0 (b). (5)

Eq.(5b) expresses the fact that, if magnetic field lines lie in surfaces F =
constant, then the vector B will lie in those surfaces and ∇F will be per-
pendicular to them.

In axisymmetric cylindrical polars (R, φ, z), we can satisfy Eq.(5a) by
putting

B = ∇× [F (R, z)G(R, z)φ̂] = −
∂

∂z
(FG) R̂+

1

R

∂

∂R
(RFG) ẑ.
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Also, Eq.(5b) becomes BR∂F/∂R +Bz∂F/∂z = 0 or

∂

∂z
(FG)

∂F

∂R
=

1

R

∂

∂R
(RFG)

∂F

∂z

which is satisfied by putting G = −1/R, so that

(BR, Bz) =

(

1

R

∂F

∂z
,−

1

R

∂F

∂R

)

,

as required.
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