
SUPPLEMENTARY PROBLEMS

We split the problems into two sections, Section A and Section B. Section A
problems are fairly standard, whilst Section B problems are a little more demanding.
As usual, more difficult problems are denoted with an asterisk. In Section A, the first
number denotes the chapter of the text the problem refers to. (So Problem 2.3 refers
to a problem supplementary to Chapter 2). Double starred questions are problems
that the author has not yet fully considered, and may be difficult.

Section A

1.1 You pay into an annuity a sum of $P dollars. This annuity pays you $α per
month. The interest is r% (calculated as simple interest on the remaining balance
at the end of each month). If A(n) is the amount remaining at the end of the nth
month, A(0) = P , write down A(n+1) in terms of A(n), and deduce a closed formula
for A(n).

If P = $100, 000, α = $500 and the interest rate is 4% per month, find out how
long the annuity will last.

1.2 Let g(x) = x2 + 1/4. Use induction to show that:

(a) gn(x) → 1/2 as n → ∞, if −1/2 < x < 1/2,

(b) gn(x) → ∞ as n → ∞, if |x| > 1/2.

Deduce that x = 1/2 is a fixed point of g that is stable on the left and unstable
on the right.

1.3 If p(x) is a polynomial of degree n, what is the degree of (i) p2(x), (ii) pk(x)?

2.1 Let f : [0, 1] → [0, 1] be continuous on [0, 1] and differentiable on (0, 1) (a C1

function), with |f ′(x)| < 1 for all x ∈ (0, 1).

(a) Prove that f(x) has a unique fixed point p in [0, 1] (See 1.4 # 2).

(b) Prove that f(x) cannot have a point of period 2 in [0, 1] (Hint: Use the Mean
Value Theorem).

(c) Prove that fn(x) → p as n → ∞, for all x ∈ (0, 1).

2.2 Suppose that f is an odd function, f(α) ̸= 0 and Nf (α) = −α.

(a) Show that fn(x)− x and Nf (x) are odd functions.
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(b) Show that {−α, α} is a 2-cycle for Nf . Use this to find the 2-cycles for Nf when
(i) f(x) = x3 − 4x, (ii) f(x) = sin(x). What happens with f(x) = x3 + 2x.

(c) Show that if {α, β} is a 2-cycle for the odd function f , then so is {−α,−β}.
Give an example of an odd function f with a 2-cycle not of the form {−α, α} (Hint:
Consider f(x) = x3 − λx for some λ > 2).

2.3 (a) Let f(x) be a polynomial that is also an odd function. Note that g(x) =
([f(x)]2 − x2)/x is a polynomial. Show that g(x) divides f 2(x)− x. (Hint: Note that
some 2-cycles arise from solving f(x) = −x).

(b) Check the above for (i) f(x) = x3 − x, (ii) f(x) = x3 − λx for 0 ≤ λ < 3. Find
all the two cycles for f(x) = x3 − 3x/2, and deduce that there are some that don’t
arise from solving f(x) = −x.

2.4 Show that the fixed points of T (the standard tent map) are in the first and sixth
positions of the fixed points of T 3 (we are using the ordering on the line real line).

2.5 (a) Show that if a function f : R → R has a 2-cycle {α, β}, then the line y = −x+a
intersects the graph in the two points (α, β) and (β, α), for some a ∈ R. Conversely,
show that if the line y = −x + a intersects the graph of f in two points equidistant
from the line y = x, then f has a 2-cycle. Illustrate the situation graphically.

(b) Graph the function f : [1, 10] → [1, 10] defined by f(x) =

{
x2; 1 ≤ x ≤

√
10

x2/10;
√
10 < x ≤ 10

,

and use (a) to show that f has a 2-cycle. Find the 2-cycle.

(c)∗∗ Does the function f from (b) have any other periodic orbits? What about the

function g : [1, 10] → [1, 10] defined by g(x) =

{
2x; 1 ≤ x ≤ 5
x/5; 5 < x ≤ 10

. Does g have

any periodic points? Is g transitive.

2.6 fa : [0, 1] → [0, 1] is defined by fa(x) =

{
ax2; 0 ≤ x ≤ 1/2
a(1− x)2; 1/2 < x ≤ 1

.

(a) Find the fixed points for each a ∈ [0, 4] and determine their stability.

(b) For the fixed point x = 0, find the immediate basin of attraction. Deduce that fa
is not chaotic for a ∈ [0, 4].

(c)∗∗ What is the basin of attraction of x = 0. Investigate the dynamics of fa as a
increases (use Mathematica).



3.1 Let f : R → R have a period-16 point. What other periodic points must f have?
What if instead f has a period-18 point?

3.2 Show that if f : R → R is a continuous function for which there exists y ∈ R with
f 2(y) < y < f(y), then f has a fixed point. Give an example to show that f need not
have a 2-cycle (See Exercises 3.2 # 12, where the requirement that f : [a, b] → [a, b]
should be included).

4.1 (a) Let f : X → X be a continuous function on a metric space X. f is a periodic
function if there exists p ∈ Z+ satisfying fp(x) = x for all x ∈ X (the minimum such
p is the period of f). Show that such a function is a homeomorphism and give two
examples of (non-trivial) periodic functions of period p > 1.

(b) Let f : [0, 1] → [0, 1] be a continuous periodic function. What can you say about
p?

5.1 Write down the definition of sensitive dependence on initial conditions as a quan-
tified statement, and use it to write down its negation.

6.1 Show that if f : X → X is a continuous function on a metric space X for which
f 2 is chaotic, then f is chaotic. Is the converse true?

7.1 f : R → R is defined by f(x) = x2 − 2x+ 2. Show that f is linearly conjugate to
g : R → R, g(x) = x2.

7.2 A map f : [0, 1] → [0, 1] is defined by f(x) =

{
−2x+ 1; 0 ≤ x ≤ 1/2
2x− 1; 1/2 < x ≤ 1

. Show

that f is conjugate to the tent map by constructing a conjugacy.

8.1 If x = c is an attracting fixed point of a polynomial p(x) of degree n > 1, we know
that the immediate basin of attraction is an open interval. Why must the interval be
bounded?

8.2 (a) Let p(x) = (x−a)(x−b)(x−c) be a polynomial of degree 3 having three distinct
real roots. Find the Schwarzian derivative and show directly that it is negative.



(b) If p is a polynomial of degree n > 1 having all roots real and distinct, show that
p has a negative Schwarzian derivative.

8.3 Let p(x) be a polynomial of degree n > 1.

(a) If p′ has n − 1 real roots (some of which may be repeated), show that p has a
negative Schwarzian derivative.

(b) If p(x) has n real roots (not necessarily distinct), show that p has a negative
Schwarzian derivative.

(c) Give an example of a degree 3 polynomial not having negative Schwarzian deriv-
ative everywhere.

8.4 Let p(x) = x3 + ax2 + bx+ c, a ̸= 0, where p′(x) > 0 for all x ∈ R. Show that the
Schwarzian derivative Sp(x) is positive on an interval.

9.1 fa : [0, 1] → [0, 1], a > 1, is defined by fa(x) =

{
ax; 0 ≤ x ≤ 1/a
−a(x− 1)/(a− 1); 1/a < x ≤ 1

.

fa is a skewed tent map. Sketch the graph of fa.

(a) Show that fa is conjugate to the tent map. (Hint: Use the methods of Section
9.1).

(b) Show that if h is the conjugacy, then h(0) = 0, and that h cannot be linear near
0. (Hint: Consider h−1 ◦ f ◦ h near 0).

9.2 The polynomial pk(µ) = µk−1−µk−2−µk−3+µk−4−µk−5+· · ·+µ−1, k ≥ 5 (odd),
arises in the solution to Exercise 9.2 # 3(iii). Show that pk(

√
2) = 1 −

√
2 < 0 for

k = 5, 7, 9 . . .. Deduce that T√
2 (Tent map) cannot have points having odd periods

(see also Section 2.8).

10.1 (a) Give a description of points in the Sierpinski Carpet in an analogous way to
the ternary representation of points in the Cantor Set (as a first step in the construc-
tion, take the interval [0, 1] × [0, 1]). Deduce that the Sierpinski Carpet is invariant
under the Iterated Function System defined by the maps

fi

(
x
y

)
=

(
x/3 + ai
y/3 + bi

)
,



i = 1, . . . , 8, where

(
ai
bi

)
are the points

(
0
0

)
,

(
0
1/3

)
,

(
0
2/3

)
,

(
1/3
0

)
,(

1/3
2/3

)
,

(
2/3
0

)
,

(
2/3
1/3

)
and

(
2/3
2/3

)
.

(b) Give a description of Menger sponge in terms of ternary expansions.

10.2 (a) Show that the Sierpinski triangle has topological dimension zero.

(b) Show that the Sierpinski triangle is invariant under the Iterated Function System
given in Example 10.5.9.

10.3 For each n ≥ 1, set An = {(k/n, ℓ/n) : 0 ≤ k ≤ n, 0 ≤ ℓ ≤ n}, a discrete subset
of B = [0, 1] × [0, 1]. If D denotes the Hausdorff metric on the compact subsets of
R2, show that limn→∞ An = B with respect to the Hausdorff metric.

10.4 Let F1, F2 : R → R be an iterated function system given by F1(x) = x/4 and
F2(x) = x/2 + 1/2. Describe the attractor and find its fractal dimension.

14.1 f : C → C is defined by f(z) = z̄. Show that f is not differentiable at any point
in C.

14.2 A function f : C → C is defined by f(z) = z8. Find the fixed points of f .
Use your calculations to find the real linear and quadratic factors of the polynomial
p(z) = z7 − 1.

14.3. Prove that if fc(z) = z2 + c has an attracting periodic point, then c ∈ M, the
Mandelbrot set. (Hint: Use any appropriate results from Section 14.5).

14.4. Show that p(z) = az + b, a ̸= 1 on C, is conjugate to q(z) = az.

14.5. Let fc(z) = z2 + c. Find the values of c so that z = i is a period-2 point. Find
the fixed points in each case and determine their stability. Does c ∈ M? (Hint: It is
useful to use Mathematica to find the square roots of complex numbers).



14.6 Show that the function H(z) =
z − i

z + i
gives a conjugacy between the Newton

map Nf1 , where f1(z) = z2 + 1, and the function f0(z) = z2. Deduce the Julia set of
Nf1 , and that it is chaotic on its Julia set. (Hint: Find H−1(z) and set z = eiθ).

14.7 Is it possible for a polynomial p(z) to satisfy
p2(z)− z

p(z)− z
= p(z)+ z? If so, find all

such polynomials and their period-2 points. What does this say about the periodic
points of the polynomial?

(b) What about
p2(z)− z

p(z)− z
= p(z)− z?

Section B

1. Consider the family of functions fλ : R → R, fλ(x) = x3 − λx, for a parameter
λ ∈ R.

(a) Find all the fixed points and determine their nature and where they are created
as λ varies.

(b) Find where a two cycle is created (you may use a computer algebra facility),
and give the graph of where this happens. Determine the stability of the hyperbolic
2-cycles.

(c) Use a computer algebra facility to find an approximate value of λ where the 3-cycle
is created. Give the graph of this situation.

2. Let f(x) = ax3 + bx + c where a and b satisfy a/b > 0. Denote by Nf the
corresponding Newton function.

(a) Show that Nf has a unique fixed point.

(b) Show that Nf cannot have any period-2 points.

(c) Why does it follow that Nf has no points of period n, n > 2?

3. This question is related to Exercise 4.2 # 8, parts (a), (b) and (c).

(a) Show that the function f(x) = −1/(x + 1) has the property that f 3(x) = x
for all x ̸= −1, x ̸= 0.



(b) Let f : R → R be a function defined on a set I, with f 3(x) = x for all x ∈ I? Set
g(x) = f 2(x). Show that g3(x) = x for all x ∈ I. Deduce a different function from
the one in (a) with this property.

(c) In general, show that such a function cannot have a 2-cycle.

(d) Deduce that a function f : R → R with the property f 3(x) = x cannot be
continuous (i.e., there must be some points of discontinuity for f , where we may not
have f 3(x) = x).

(e) Show that f is one-to-one. Need f be onto? Show that f is strictly decreasing and
investigate any symmetry. What if f : [−∞,∞] → [−∞,∞] - consider the example
in (a) above?

(f) If f ′(x) exists for all x ∈ I, show that the 3-cycles are non-hyperbolic, (assume
that f(x) is not the function y = x) .

(g) Suppose that f(x) =
ax+ b

cx+ d
satisfies f 3(x) = x, show that if f(x) is not the

function y = x, and a ̸= d then

a2 + bc+ ad+ d2 = 0.

(i) Show that if ad− bc > 0, then such a function cannot have any fixed points.

(ii) Deduce two other functions with the property that f 3(x) = x wherever defined,
one having fixed points and one with no fixed points.

4.∗∗ (check). If f : D → D has the property |f ′(z)| < 1 for all z ∈ D \ S1, show
that |f(z) − f(w)| < |z − w| for all z, w ∈ D. Does it follow that f is a contraction
mapping (consider some examples)? Show that f has a unique fixed point α. Why
can we deduce that Bf (α) = D? (D = {z ∈ C : |z| ≤ 1}).

5. There is a correspondence between functions of the form f(z) =
az + b

cz + d
and

matrices

[
a b
c d

]
, when a, b, c, d ∈ R, ad − bc ̸= 0. To be more precise, show that

there is a group homomorphism Φ : GL2(R) → F , where GL2(R) is the multiplicative
group of 2 × 2 matrices having real entries and non-zero determinant, and F is

the group (under composition) of linear fractional transformations f(z) =
az + b

cz + d
,

(ad− bc ̸= 0), where Φ is defined by Φ

(
a b
c d

)
= f(z). Is the map Φ one-to-one or

onto?



6. (a) Show that fc : R → R, fc(x) = x2 + c has a 3-cycle for c ≤ −7/4.

(b) Deduce that Lµ : R → R, Lµ(x) = µx(1− x) has a 3-cycle for µ ≤ 1−
√
8.

7.∗ Use the following steps to show that the Koch curve is continuous, i.e., there is
a continuous function f : [0, 1] → R2, whose range is the top part of the Koch curve
(see Section 10.1):

(a) Denote by fn : [0, 1] → R2 the piecewise defined function which is linear on each
of the 4n segments defined at the nth stage of the construction of the Koch curve.
Show that |fn(t)− fn+1(t)| ≤ 3−n for all t ∈ [0, 1].

(b) Deduce that (fn(t)) is a Cauchy sequence for each t ∈ [0, 1], so that f(t) =
limn→∞ fn(t) exists for all t ∈ [0, 1].

(c) Show that convergence of the sequence of functions (fn) to f is uniform on [0, 1]
(i.e., limn→∞

[
sup0≤t≤1 |fn(t)− f(t)|

]
= 0).

(d) Now complete the proof using the fact that the uniform limit of a sequence of
continuous functions on an interval [a, b] is a continuous function. That f is not
differentiable anywhere can be deduced from the fact that the length of the graph of
f is infinite on any arbitrarily small interval.


