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Question 2.1.  Calculate atomic weights.   
 

a) Using the numbers from the Chart of the Nuclides, what is the atomic weight of calcium 

Isotope Percentage atomic mass 
40Ca 96.941 39.9625912 
42Ca 0.647 41.9586183 
43Ca 0.135 42.958766 
44Ca 2.086 43.955481 
46Ca 0.004 45.953693 
48Ca 0.187 47.952534 
[Answer:  40.078] 
 

B) The atomic weight of scandium is 44.955910.  Why is the atomic weight of scandium 
known to higher precision than the atomic weight of calcium, a much-more-abundant 
element? 

 
[Answer:  There is only one stable isotope of scandium, so its mass can be determined by our 
most precise isotope techniques.  Calcium has six stable isotopes, and its atomic weight 
depends on both the isotopic masses (each of which has a small uncertainty) and the 
abundances of the different isotopes, which aren’t always the same.] 
 

c) What is the atomic weight of tellurium. 

Isotope Percentage atomic mass 
120Te 0.09 119.90402 
122Te 2.55 121.903047 
123Te 0.89 122.904273 
124Te 4.74 123.902819 
125Te 7.07 124.904425 
126Te 18.84 125.903306 
128Te 31.74 127.904461 
130Te 34.08 129.906223 
[Answer:  127.060446] 
 

d) What is unusual about the atomic weight of tellurium compared to other elements? 
[Answer:  It is higher than that of iodine, which has a higher atomic number (A), by 2/3 of an 
amu.] 
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Question 2.2.  Atomic Binding Energy calculations. 
 

a) Using the information in the Chart of the Nuclides and the masses of a proton and a 
neutron, calculate the binding energy (mass defect) of these nuclides: 28Si, 40Ca, 56Fe, 
107Ag, 197Au, 238U.  What is the binding energy/nucleon? 

 
Particle Mass (grams)  Mass (Daltons) Mass (MeV) 
Proton 1.673 x 10-24  1.00728 938.256 
Neutron 1.675 x 10-24  1.00866 939.550 
Electron 9.110 x 10-28   0.511 

[Answer: in units of Daltons (Da)] 

Nuclide Atomic Mass Mass of Parts Binding Energy B. E./nucleon 
28Si 27.976926533 28.22596 0.249033467 0.008894052 
40Ca 39.9625912 40.3228 0.3602088 0.00900522 
56Fe 55.934942 56.45508 0.520138 0.009288179 
107Ag 106.90509 107.87376 0.96867 0.009052991 
197Au 196.966552 198.6206 1.654048 0.008396183 
238U 238.050783 239.96332 1.912537 0.00803587 
 

b) Convert the results from Daltons to MeV ( MeV/Dalton conversion factor = 
931.3867093). 

[Answer: in units of MeV] 

Nuclide Atomic Mass Mass of Parts Binding Energy B. E./nucleon 
28Si 26057.33754 26289.284 231.9464613 8.28380219 
40Ca 37220.62631 37556.12 335.4936889 8.38734222 
56Fe 5209706156 52581.156 484.0944382 8.64454354 
107Ag 99569.97998 100471.032 901.0520222 8.42104694 
197Au 183452.0287 184989.124 1537.095299 7.80251421 
238U 221717.3354 223493.852 1776.516586 7.4643554 
 

c) What happens to the binding energy as the nuclide’s atomic mass increases? 
 
[Answer:  the binding energy increases with atomic mass. 
 

d) What happens to the binding energy per nucleon as the nuclide’s atomic mass 
increases? 

 
[Answer:  the binding energy per nucleon increases with atomic mass until approximately 56Fe, 
and then decreases slowly with further increase in atomic mass. 
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Question 4.1:  Normalizing to the CI composition. 
 
The relative abundances of the elements depend on fundamentally on the nucleosynthetic 
processes that produced the elements.  Abundances in various objects also depend on the 
processes that produced the objects.  We will discuss these processes in Chapter 7.  Teasing out 
the unique signals of various processes from the compositions of their products is a critical part 
of cosmochemistry.  In this exercise, we will look at Rare Earth Elements (REEs).  These 
elements have similar, but not identical, electronic structures and behave as a group in some 
processes and behave very differently in others.  But to interpret these compositions in terms 
of processes requires elimination of the large abundance variations that resulted from 
nucleosynthesis. 
 
The solar system abundances of the REEs exhibit large differences (see column 2 of Table 4.1p 
below).  A major cause of the abundance variation is the nuclear structure of the atoms 
(discussed in chapter 2).  Table 4.1p also shows the REE abundances in four different 
constituents of chondritie meteorites, an Al-rich chondrule and three different CAIs.  Before we 
manipulate the data, let’s just look at it. 
 
Table 4.1:  Data for question 4.1 about normalization 
Element Solar System Al-rich Melilite-rich Hibonite-rich Hibonite-rich 
 Abundances Chondrule CAI CAI Microspherule 
La 0.242 3.60 12.12 23.14 34.71 
Ce 0.622 8.30 30.01 0.12 94.94 
Pr 0.0946 1.30 4.55 3.99 11.81 
Nd 0.471 6.20 26.53 31.00 71.93 
Sm 0.152 1.80 9.58 6.60 21.33 
Eu 0.0578 0.42 1.99 1.53 2.04 
Gd 0.205 2.90 4.54 11.89 24.58 
Tb 0.384 0.55 0.58 3.65 4.68 
Dy 0.255 2.80 3.48 38.37 33.13 
Ho 0.0572 0.78 0.28 13.15 7.94 
Er 0.163 2.10 0.88 40.38 20.37 
Tm 0.0261 0.40 1.17 4.59 3.24 
Yb 0.169 2.30 6.70 1.48 26.96 
Lu 0.0253 0.29 0.16 7.30 3.32 

 
1) Plot each of the compositions above as a function of the element list in column 1 of 

Table 4.1.  What stands out to you about these plots? 
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[Answer:   
 

 

   

   
 
All plots are dominated by a zig-zag abundance pattern (remember the Oddo-Harkins rule) and 
the light REEs tend to be more abundant that the heavy REEs.  What are the important 
differences between the various plots?  Can you see through the zig-zag, pattern and the 
abundance differences across the REEs to understand what the true differences are?] 
 

2) Let’s try plotting the data in a different way.  Divide the abundances for columns 3-6 in 
Table 4.1 above by the corresponding abundance in column 2.  You will be “normalizing” 
the data to the abundances in CI chondrites. 
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[Answer:  You should generate a Table that looks like this: 
 

Table 4.2:  CI normalized data for four objects from Table 4.1. 
Element Al-rich Melilite-rich Hibonite-rich Hibonite-rich 
 Chondrule CAI CAI Microspherule 
La 14.88 50.09 95.63 143.44 
Ce 13.34 48.25 0.19 152.64 
Pr 13.74 48.08 42.20 124.80 
Nd 13.16 56.33 65.80 152.72 
Sm 11.84 63.00 43.45 140.33 
Eu 7.66 34.49 26.45 35.27 
Gd 14.15 22.15 58.02 119.88 
Tb 14.32 14.98 95.10 121.76 
Dy 10.98 13.66 150.47 129.92 
Ho 13.64 4.86 229.98 138.81 
Er 12.88 5.41 247.71 124.96 
Tm 15.33 45.02 175.98 124.15 
Yb 13.61 39.66 8.75 159.52 
Lu 11.46 6.29 288.43 131.11 

] 
3) Plot the CI-normalized abundances versus the elements listed in column 1.  This time it 

will be helpful to make the vertical scale logarithmic. 
 

[Answer: 

   

   
] 
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4) What do you notice about these plots. 
 

[Answer:  The normalization has removed the zig-zag pattern and the general decrease in 
abundance from La to Lu.  This leaves other features that can be interpreted. 
 
For example, the Al-rich chondrule and the hibonite-rich microspherule have flat patterns 
except for a small depletion in europium.  The Al-rich chondrule is enriched by a little more 
than a factor of 10 compared to CI chondrites.  The hibonite-rich microspherule is enriched 
by a little more than a factor of 100.  These enrichments are a signature of volatility-based 
fractionations—the more-volatile elements have been lost from these objects (we will 
discuss volatility-based fractionations in Chapter 7).  The depletion in europium is because 
europium 2+ is slightly more volatile that its 3+ neighbors. 
 
The melilite-rich CAI has what is known as a Group II REE pattern.  This pattern is deficient in 
the most refractory elements, suggesting that the CAI condensed from a gas after the most 
refractory elements had already condensed and had been removed from the system. 
 
The hibonite-rich CAI is enriched in REEs by a factor of ~100 compared to CI chondrites, with 
heavy REEs enriched somewhat more than light REEs.  But is this CAI is highly depleted in 
cerium and ytterbium and somewhat depleted in europium.  Cerium is volatile in an 
oxidizing gas and so could be preferentially lost if the environment was oxidizing.  This does 
not explain the low ytterbium abundance, however, and europium is more volatile in a 
reducing environment. 
 
None of the details of the REE patterns of the inclusions discussed above would be visible 
without normalizing the composition to CI chondrites, taken to be representative of the 
bulk solar system.  The implicit assumption in the interpretation of the patterns is that they 
all formed from the bulk solar system pattern.  So normalizing serves two purposes.  It 
eliminates the abundance variations caused by the nuclear structure of the atoms, and it 
provides a framework for interpreting the observed compositions.  For objects that did not 
form in the solar accretion disk, other compositions can be used for normalization (e.g., the 
bulk composition of a magma chamber can provide a framework for determining the 
partitioning of REEs among co-crystallizing minerals.  Be aware of any normalizations that 
are done to sets of data—they can reveal processes not visible otherwise, but can also 
obscure processes if the wrong normalization is used.] 
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Question 6.1:  Mineral compositions. 
 
Mineral compositions are typically reported as weight percent oxides.  This is a convention left 
over from the time when compositions were determined by wet chemical analysis.  The 
products of the analysis were weighed and reported as weight percent; they were reported as 
oxides because that is their natural form in the analysis.  But reporting data as weight percent 
oxides is really not very useful because this convention convolves the atomic weight of the 
element, its oxidation state, and its abundance together in a single number.  We are typically 
interested in each of these three properties separately.  So this exercise will start with an 
analysis in units of weight percent oxides, convert the analysis into weight percent elements, 
and then into atomic percentages.   
 
Table 6.1 shows the chemical composition of a calcium-rich clinopyroxene.  The data are 
presented in the standard weight percent oxides in column 2.  We first convert the weight 
percent oxides to weight percent elements.  To do this, we need the atomic weights of the 
elements (column 4 of Table 6.1).  Use the atomic weights of the elements and oxygen to 
calculate the how much of the oxide compound is made of the element.  For example, SiO2 
consists of two silicon atoms and one oxygen atom.  The weight fraction of SiO2 that is made up 
of silicon is (2*28.0855)/( 2*28.0855+15.9994).  Multiply this factor by the weight percent SiO2 
to get the weight percent Si.  Follow this recipe to reproduce all of the values in column 5 of 
Table 6.1.  In an analogous way, calculate the weight percent oxygen in each compound. 
 
Next, we convert the weight percent elements into atom percent element and atom percent 
oxygen.  This is done by dividing the element weight percent by the atomic weight of the 
element.  This calculation gives the atom fraction of each cation and oxygen in the pyroxene.  
Reproduce the numbers in columns 7 and 8 of Table 6.1. 
 
Table 6.1: Chemical composition of a calcium-rich clinopyroxene in three formats. 
Compound Wt % 

Oxide 
Element Element 

Atomic 
Weight 

Wt % 
Element 

Wt. % 
Oxygen 

Atom 
Fraction 
Element 

Atom % 
Fraction 
Oxygen 

SiO2 52.92    Si 28.0855 24.74 28.18 0.88076 1.76153 
Al2O3 2.80    Al 26.981538 1.48 1.32 0.05492 0.08238 
TiO2 0.50    Ti 47.867 0.30 0.20 0.00626 0.01252 
Fe2O3 0.85    Fe 55.845 0.59 0.26 0.01065 0.01597 
Cr2O3 0.88    Cr 51.9961 0.60 0.28 0.01158 0.01737 
FeO 5.57    Fe 55.845 4.33 1.24 0.07753 0.07753 
MnO 0.15    Mn 54.938049 0.12 0.034 0.00211 0.00211 
NiO 0.10    Ni 58.6934 0.08 0.021 0.00134 0.00134 
MgO 16.40    Mg 24.3050 9.89 6.51 0.40690 0.40690 
CaO 19.97    Ca 40.078 14.27 5.70 0.35611 0.35611 
Na2O 0.35    Na 22.989770 0.26 0.090 0.01129 0.00565 
K2O 0.01    K 39.0983 0.0083 0.0017 0.00021 0.00011 
     O 15.9994 43.84   2.73952 
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Table 6.2 gives the compositions of several different minerals as weight percent oxides.  
Convert these values into atom percent for each composition.  You will have to renormalize the 
composition to convert from atom fraction to atom percent.   
 
Table 6.2:  Compositions of six minerals given in units of oxide weight percent. 
Compound Subcalcic 

Augite 
Pigeonite Albite Anorthite Fayalite Forsterite 

SiO2 49.68 49.72 67.41 44.17 30.56 41.07 
TiO2 0.56 0.85   0.72 0.05 
Al2O3 0.78 0.90 20.50 34.95 0.09 0.56 
Fe2O3 3.29 1.72 0.07 0.56 0.10 0.65 
FeO 18.15 27.77  0.08 60.81 3.78 
MnO 0.59 0.98   3.43 0.23 
MgO 16.19 12.69 0.10  3.47 54.06 
CaO 9.90 3.80 0.81 18.63 1.13  
Na2O 0.65 0.23 10.97 0.79   
K2O 0.15 0.12 0.36 0.05   
Total 99.94 98.78 100.22 99.23 100.31 100.40 

 
 [Answer: 
 
Table 6.3: Compositions of minerals in Table 6.2 in units of atom percent (normalized to 100%). 
Compound Subcalcic 

Augite 
Pigeonite Albite Anorthite Fayalite Forsterite 

Si 18.98 19.73 22.67 15.83 14.28 13.97 
Ti 0.16 0.25   0.25 0.01 
Al 0.35 0.42 8.12 14.76 0.05 0.22 
Fe3+ 0.95 0.51 0.02 0.15 0.04 0.17 
Fe2+ 5.80 9.22  0.02 23.76 1.07 
Mn 0.19 0.33   1.36 0.07 
Mg 9.22 7.51 0.05  2.42 27.40 
Ca 4.05 1.62 0.29 7.15 0.57  
Na 0.48 0.18 7.15 0.55   
K 0.07 0.06 0.15 0.02   
O 59.75 60.17 61.54 61.50 57.29 57.09 
Total 100.00 100.00 100.00 100.00 100.00 100.00 
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Question 6.2:  Structural formulas.  
 
Atom fractions or atom percentages can be used to calculate structural formulas of minerals.  
This information can be used to validate the chemical composition of a mineral.  An accurate 
chemical composition for a mineral can be converted into valid structural formula.  The 
structural formula can give information about the oxidation state of elements such as iron.  If 
the composition does not give a valid structural formula, the composition is probably not 
accurate. 
 
Table 6.4 gives the atom fractions and structural information of the clinopyroxene from Table 
6.1.  Minerals have fixed proportions of cations to oxygen, but the proportion is different from 
mineral to mineral.  To calculate a structural formula it is necessary to know what that 
proportion is.  The calculation can be done using that proportion or an integral multiple of that 
proportion (this is useful when calculating structural formulae for a group of minerals).  
Clinopyroxene has a chemical formula in the form of X1-pY1+pZ2O6.  The Z site is occupied by 
silicon and perhaps Al, while X and Y are occupied by divalent and trivalent cations, 
respectively.  The letter “p” describes the partitioning of charge.  The structural formula of 
pyroxene is typically calculated based on 6 oxygen atoms.   
 
In order to calculate the structural formula, the atom fractions must be normalized to 6 oxygen 
atoms (our clinopyroxene in Table 6.4 has 2.73952 oxygen atoms).  We must calculate a factor 
that normalizes the composition of 6 oxygens (in this case 6/2.73952).  Column 4 in Table 6.4 
given the normalized atom fractions.   
 
Table 6.4: Structural Formula for clinopyroxene from Table 6.1 based on 6 oxygens. 
Element Atom 

Fraction 
Element 

Atom 
Fraction 
Oxygen 

Atoms per 
6 oxygen 

Cations 
Partitioned 

Cations per 
cite 

 

Si 0.88076 1.76153 1.9290 1.9290   
Al 0.05492 0.08238 0.1203 0.0710 2.00000  
Al    0.0493   
Ti 0.00626 0.01252 0.01371 0.01371   
Fe3+ 0.01065 0.01597 0.02332 0.02332   
Cr 0.01158 0.01737 0.02536 0.02536   
Fe2+ 0.07753 0.07753 0.16980 0.16980 1.98539  
Mn 0.00211 0.00211 0.00463 0.00463   
Ni 0.00134 0.00134 0.00293 0.00293   
Mg 0.40690 0.40690 0.89118 0.89118   
Ca 0.35611 0.35611 0.77995 0.77995   
Na 0.01129 0.00565 0.02474 0.02474   
K 0.00021 0.00011 0.00047 0.00047   
O  2.73952   3.98539  
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To calculate the structural formula, we assign all of the silicon to the Z site.  For every six 
oxygens, there should be two silicon atoms.  We have slightly less than that (1.9290).  
Aluminum can substitute for silicon, so we assign enough aluminum to the Z site to make it 
equal to 2.000 (cf., Table 6.4, column 5).  The rest of the aluminum and all of the other 
elements are assigned to the X and Y sites.  For this exercise, we will not distinguish between 
the two sites and simply total all of the remaining cations.  Our expectation from the formula 
for a pyroxene is that these elements should add up to 2.000 (one X and one Y for every two Z 
and six oxygens).  For this analysis, the total is 1.98537.  This is about 0.7% lower than the 
expected value, but this is within the analytical uncertainty of most electron microprobe data. 
 
Calculate the structural formulae for the minerals in Table 6.3.  You will need to know the 
number of oxygens for each of the minerals.  Augite and pigeonite are pyroxenes and so will 
have six oxygens per formula unit.  There are always two silicon atoms per six oxygens in 
pyroxene.   
 
[Answer for subcalcic augite: 
Table 6.5: Structural Formula for subcalcic augite from Table 6.3 based on 6 oxygens. 
Element Atom 

Fraction 
Element 

Atom 
Fraction 
Oxygen 

Atoms per 
6 oxygen 

Cations 
Partitioned 

Cations per 
cite 

 

Si 0.82684 1.65368 1.9054 1.9290   
Al 0.01530 0.02295 0.0353 0.0710 2.0000  
Al    0.0493   
Ti 0.00701 0.01402 0.0162 0.0137   
Fe3+ 0.04121 0.06181 0.0950 0.0233   
Fe2+ 0.25263 0.25263 0.5822 0.1698 1.9854  
Mn 0.00832 0.00832 0.0192 0.0046   
Mg 0.40169 0.40169 0.9256 0.8912   
Ca 0.17654 0.17654 0.4068 0.7800   
Na 0.02097 0.02097 0.0483 0.0247   
K 0.00318 0.00159 0.0073 0.0005   
O  2.60372     

] 
 
[Answer for pigeonite 
 
Table 6.6: Structural formula for pigeonite from Table 6.3 based on 6 oxygens. 
Element Atom 

Fraction 
Element 

Atom 
Fraction 
Oxygen 

Atoms per 
6 oxygen 

Cations 
Partitioned 

 Cations 
per cite 

 

Si 0.82750 1.65501 1.9679 1.9679   
Al 0.01765 0.02648 0.0419 0.0321 2.0000  
Al    0.0099   
Ti 0.01064 0.02129 0.0253 0.0253   
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Fe3+ 0.02154 0.03231 0.0512 0.0512   
Fe2+ 0.38653 0.38653 0.9192 0.9192 1.9720  
Mn 0.01381 0.01381 0.0328 0.0328   
Mg 0.31485 0.31485 0.7488 0.7488   
Ca 0.06776 0.06776 0.1611 0.1611   
Na 0.00742 0.00742 0.0176 0.0176   
K 0.00255 0.00255 0.0061 0.0061   
O  2.52303   3.9720  

] 
 
Plagioclase is a solid solution between albite, the sodium-rich end member, and anorthite, thee 
calcium-rich end member.  The chemical formula is Na[AlSi3O8] – Ca[Al2Si2O8] and the structural 
formula of plagioclase can be calculated with respect to eight oxygens.  Aluminum and silicon 
occupy one site with four atoms per eight oxygens.  Calcium, sodium, and trace elements 
occupy the other, totaling one atom per eight oxygens.  Calculate the structural formulae for 
albite and anorthite from Table 6.3. 
 
[Answer for albite 
 
Table 6.7: Structural formula for albite from Table 6.3 based on 8 oxygens. 
Element Atom 

Fraction 
Element 

Atom 
Fraction 
Oxygen 

Atoms per 
8 oxygen 

Cations 
Partitioned 

 Cations 
per cite 

 

Si 1.1219 2.2439 2.9465 2.9465   
Al 0.4021 0.6032 1.0561  4.0026  
Fe3+ 0.0009 0.0013 0.0023 0.0023   
Mg 0.0025 0.0025 0.0065 0.0065 0.9965  
Ca 0.0144 0.0144 0.0379 0.0379   
Na 0.3540 0.1770 0.9297 0.9297   
K 0.0076 0.0038 0.0201 0.0201   
O  3.0461   4.9991  

] 
 
[Answer for anorthite 
 
Table 6.8: Structural formula for anorthite from Table 6.3 based on 8 oxygens. 
Element Atom 

Fraction 
Element 

Atom 
Fraction 
Oxygen 

Atoms per 
8 oxygen 

Cations 
Partitioned 

 Cations 
per cite 

 

Si 0.7351 1.4703 2.0594 2.0594   
Al 0.6855 1.0283 1.9205 1.9205 3.9799  
Fe3+ 0.0070 0.0105 0.0196 0.0196   
Fe2+ 0.0011 0.0011 0.0031 0.0031 1.0278  
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Ca 0.3322 0.3322 0.9307 0.9307   
Na 0.0255 0.0128 0.0714 0.0714   
K 0.0011 0.0005 0.0030 0.0030   
O  2.8557   5.0057  

] 
 
Olivine is also a solid solution between iron-rich fayalite and magnesium-rich forsterite [Fe2SiO4 
– Mg2SiO4].  The structural formula can be calculated with respect to four oxygens, with one 
silicon atom and two magnesium or iron atoms (and trace elements) per four oxygens.   
 
[Answer for fayalite 
 
Table 6.9: Structural formula for fayalite from Table 6.3 based on 4 oxygens. 
Element Atom 

Fraction 
Element 

Atom 
Fraction 
Oxygen 

Atoms per 
6 oxygen 

Cations 
Partitioned 

 Cations 
per cite 

 

Si 0.5086 1.0172 0.9969 0.9969   
Al 0.0018 0.0027 0.0035 0.0035 1.0004  
Ti 0.0090 0.0180 0.0177 0.0177   
Fe3+ 0.0013 0.0019 0.0025 0.0025   
Fe2+ 0.8464 0.8464 1.6590 1.6590 1.9821  
Mn 0.0484 0.0484 0.0948 0.0948   
Mg 0.0861 0.0861 0.1687 0.1687   
Ca 0.0202 0.0202 0.0394 0.0394   
O  2.0408   2.9825  

] 
 
[Answer for forsterite 
 
Table 6.9: Structural formula for forsterite from Table 6.3 based on 4 oxygens. 
Element Atom 

Fraction 
Element 

Atom 
Fraction 
Oxygen 

Atoms per 
6 oxygen 

Cations 
Partitioned 

 Cations 
per cite 

 

Si 0.6835 1.3671 0.9785 0.9785   
Al 0.0110 0.0165 0.0157 0.0157 0.9942  
Ti 0.0006 0.0013 0.0009 0.0009   
Fe3+ 0.0081 0.0122 0.0117 0.0117   
Fe2+ 0.0526 0.0526 0.0753 0.0753 2.0126  
Mn 0.0032 0.0032 0.0046 0.0046   
Mg 1.3413 1.3413 1.9201 1.9201   
O  2.7942   3.0068  

] 
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Question 7.1:  Volatility Fractionation. 
 
The purpose of this exercise is to show how volatility of elements controls elemental 
fractionation in the nebula.  The Table below lists a number of elements along with their solar 
system abundances on a scale of atoms/106 silicon atoms (see Table 4.1 in Chapter 4).  Also 
listed are their 50% condensation temperatures from (from Table 7.1).   
 
Put the data into a spreadsheet.  To make the calculations easier, renormalize the data to 100% 
(add up the abundances, then divide each abundance by the sum of the abundances and 
multiply by 100). 
 

Element CI Cond T. 
Li 55.59 1225 
Be 0.6116 1490 
B 18.816 964 

Na 55,300 970 
Mg 1,045,000 1340 
Al 82,730 1650 
Si 1,000,000 1340 
K 3,607 1000 

Ca 61,670 1518 
Ti 2,574 1549 
V 276.7 1455 
Cr 13,340 1301 

Mn 9,107 1190 
Fe 872,700 1337 
Co 2,270 1356 
Ni 48,350 1354 
Zn 1,212 684 
Sb 0.3126 912 
La 0.4424 1544 
Sm 0.2672 1560 
Eu 0.1003 1338 
Yb 0.2564 1493 
Lu 0.0380 1598 
Os 0.7046 1812 
Ir 0.6404 1603 

Au 0.1946 1284 
Pb 3.332 520 
U 0.00893 1580 

 
Now we want to compare the compositions of solar system material that has been processed to 
different temperatures.  Sort the data according to condensation temperature, from lowest 
temperature to highest.  Starting with the CI abundances in atom percent, generate three new 
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compositions:  1) all elements with condensation temperatures above 700 K, 2) all elements 
with condensation temperatures above 1200 K, and 3) all elements with condensation 
temperatures above 1400 K.  Normalize each of these new compositions to 100 % (divide each 
abundance by the total for that composition and multiply by 100). 
 

[Answer: 
 
Element CI abundances 

(/106 Si) 
Cond 

Temp. (K) 
CI abundances 
(atom percent) 

700 K 1200 K 1400 K 

In 0.1779 470 0.0000049    
S 426,660 648 11.77    
Pb 3.332 520 0.000092    
Zn 1,212 684 0.0334    
Sb 0.3126 912 0.0000086 0.0000086   
B 18.816 964 0.000519 0.000519   
Na 55,300 970 1.526 1.526   
K 3,607 1000 0.100 0.100   
Mn 9,107 1190 0.251 0.251   
Li 55.59 1225 0.00153 0.00153 0.00153  
Au 0.1946 1284 0.0000054 0.0000054 0.0000054  
Cr 13,340 1301 0.3680 0.3680 0.3680  
Fe 872,700 1337 24.075 24.075 24.075  
Eu 0.1003 1338 0.0000028 0.0000028 0.0000028  
Mg 1,045,000 1340 28.829 28.829 28.829  
Si 1,000,000 1340 27.587 27.587 27.587  
Ni 48,350 1354 1.334 1.334 1.334  
Co 2,270 1356 0.0626 0.0626 0.0626  
V 276.7 1455 0.0076 0.0076 0.0076 0.0076 
Be 0.6116 1490 0.000017 0.000017 0.000017 0.000017 
Yb 0.2564 1493 0.0000071 0.0000071 0.0000071 0.0000071 
Ca 61,670 1518 1.701 1.701 1.701 1.701 
La 0.4424 1544 0.0000122 0.0000122 0.0000122 0.0000122 
Ti 2,574 1549 0.0710 0.0710 0.0710 0.0710 
Sm 0.2672 1560 0.0000074 0.0000074 0.0000074 0.0000074 
U 0.00893 1580 0.00000025 0.00000025 0.00000025 0.00000025 
Lu 0.0380 1598 0.0000010 0.0000010 0.0000010 0.0000010 
Ir 0.6404 1603 0.000018 0.000018 0.000018 0.000018 
Al 82,730 1650 2.282 2.282 2.282 2.282 
Os 0.7046 1812 0.000019 0.000019 0.000019 0.000019 

 
Now normalize the three new compositions to CI abundances in atom percent (divide the 
compositions by that of CI chondrites, column 4 in the Table above). 
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[Answer: 
 
Element CI abundances 

(atom 
percent) 

Cond 
Temp. (K) 

CI abundances 
(atom percent) 

700 K / CI 1200 K / CI 1400 K / CI 

In 0.0000049 470 0.0000049    
S 11.77 648 11.77    
Pb 0.000092 520 0.000092    
Zn 0.0334 684 0.0334    
Sb 0.0000086 912 0.0000086 1.1338   
B 0.000519 964 0.000519 1.1338   
Na 1.526 970 1.526 1.1338   
K 0.100 1000 0.100 1.1338   
Mn 0.251 1190 0.251 1.1338   
Li 0.00153 1225 0.00153 1.1338 1.1585  
Au 0.0000054 1284 0.0000054 1.1338 1.1585  
Cr 0.3680 1301 0.3680 1.1338 1.1585  
Fe 24.075 1337 24.075 1.1338 1.1585  
Eu 0.0000028 1338 0.0000028 1.1338 1.1585  
Mg 28.829 1340 28.829 1.1338 1.1585  
Si 27.587 1340 27.587 1.1338 1.1585  
Ni 1.334 1354 1.334 1.1338 1.1585  
Co 0.0626 1356 0.0626 1.1338 1.1585  
V 0.0076 1455 0.0076 1.1338 1.1585 24.617 
Be 0.000017 1490 0.000017 1.1338 1.1585 24.617 
Yb 0.0000071 1493 0.0000071 1.1338 1.1585 24.617 
Ca 1.701 1518 1.701 1.1338 1.1585 24.617 
La 0.0000122 1544 0.0000122 1.1338 1.1585 24.617 
Ti 0.0710 1549 0.0710 1.1338 1.1585 24.617 
Sm 0.0000074 1560 0.0000074 1.1338 1.1585 24.617 
U 0.00000025 1580 0.00000025 1.1338 1.1585 24.617 
Lu 0.0000010 1598 0.0000010 1.1338 1.1585 24.617 
Ir 0.000018 1603 0.000018 1.1338 1.1585 24.617 
Al 2.282 1650 2.282 1.1338 1.1585 24.617 
Os 0.000019 1812 0.000019 1.1338 1.1585 24.617 

 
Plot the three compositions as a function of element, ordered by condensation temperature. 
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[Answer: 

  
 
Note that as the volatile elements are removed, the abundances of the remaining elements 
increase.  This is because the compositions always total ~100%, so when you remove one 
component, the others become more abundant in what remains.  If you were to add elements 
to the mixture, the relative abundances of the original elements would go down because some 
of the 100% is taken up by the new elements.  “Some of it plus the rest of it equals all of it.” 
 
Mixtures of components:  Plots of the elements making up an object arranged in the order of 
their relative volatility can provide a lot of information.  Using the CI composition and the three 
compositions you calculated above, construct the composition of an object composed of 60% 
unfractionated material, 38.5% of the 1200K component and 1.5% of the 1400K component.  
Plot the resulting composition on plots like those you made above. 
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Compare the plot you just made with Figure 7.10 in the Cosmochemistry textbook.  It should 
now be obvious how one can interpret CM chondrites to consist of `60% fine-grained matrix 
material rich in volatile elements, ~38..5% chondrules and related material that has lost its 
volatile elements but retains elements more refractory than Mn, and ~1.5% high-temperature 
materials, mostly CAIs, that retains only the most refractory elements.,  
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Question 7.2  Trace element partitioning. 
 
Trace-element partitioning among minerals and between minerals and melt provides lets us 
probe of igneous processes.  When minerals crystallize from a melt at equilibrium, partitioning 
of trace elements between liquid and crystals is given by the Distribution Coefficient:   
 
  D = CS/CL  
 
Where CS is the concentration of an element in the solid, and CL is the concentration of an 
element in the accompanying liquid.  Table 7.1 shows a set of distribution coefficients for some 
rare-earth elements in minerals crystallizing from basaltic liquid. 
 
Table 7.1: Distribution Coefficients (CS/CL) for some REEs in minerals crystallizing from basalt. 
Element Olivine OPX Cpx Garnet Plagioclase Amphibole Magnetite 
La 0.0067 0.030 0.056 0.001 0.1477 0.544 2 
Ce 0.0060 0.020 0.092 0.007 0.0815 0.843 2 
Nd 0.0059 0.030 0.230 0.026 0.0551 1.340 2 
Sm 0.0070 0.050 0.445 0.102 0.0394 1.804 1.6 
Eu 0.0074 0.050 0.474 0.243 1.1255 1.557 1 
Dy 0.0130 0.150 0.582 1.940 0.0228 2.024 1 
Er 0.0256 0.230 0.583 4.700 0.0202 1.740 1.5 
Yb 0.0491 0.340 0.542 6.167 0.0232 1.642 1.4 
Lu 0.0454 0.420 0.506 6.950 0.0187 1.563  

Data table based on Rollinson (1993). 
 

1)   Plot the distribution coefficients as a function of element for each mineral in the Table.  
These plots show the patterns of rare-earth element enrichments or depletions for the 
minerals relative to the melt.  What do these plots tell you about REEs in basaltic melts? 

 
[Answer to #1:   
 

  
The plot on the right shows that garnet also prefers heavy REEs, and in this case the 
distribution coefficients for Dy, Er, Yb, and Lu are >1.  This means that these elements 
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will be depleted from the melt by crystallization of garnet.  The light REEs are very 
incompatible in garnet and so would increase significantly through the crystallization of 
garnet.  Magnetite has distribution coefficients for REEs of ³1.  Plagioclase excludes 
REEs as it crystallizes from basaltic melt, except for Eu, which is much more compatible 
than the other REEs.  Large excesses of Eu are observed in many plagioclase-rich rocks.]   
 

Olivine and pyroxene have distribution coefficients of <1 relative to basaltic melts.  This means 
that the REEs are concentrated in the melt as these minerals crystallize.  The left plot shows 
that olivine and pyroxene preferentially accept the heavy REEs.  As these minerals crystallize, 
the light REEs are enriched more than the heavy REEs in the basaltic melt 
 
What would you expect the rare-earth element pattern for a rock composed of plagioclase, 
olivine, and clinopyroxene to look like?  The bulk distribution coefficients for a rock can be 
calculated from the individual distribution coefficients weighted by the proportion of each 
mineral in the rock.   

  DBi = x1D1 + x2D2 + x3D3 . . . 

where DBi is the bulk distribution coefficient for element i, and x1 and D1 etc. are the percentage 
of mineral 1 in the rock and the distribution coefficient of element i in mineral 1, respectively.   
 

2)  Calculate the REE pattern for a bulk rock (Rock #1) consisting of 25% plagioclase, 40% 
olivine, and 35% clinopyroxene that crystallized from a basaltic melt.  Use the 
distribution coefficients from Table 7.1 above.   

 
3) Plot the resulting bulk distribution coefficients versus the REEs.  Would you expect a 

rock composed of these three minerals to be enriched or depleted in REEs.  Why?] 
 
[Answer to #2 
Table 7.2:  Bulk distribution coefficients 
for a rock consisting of 25% Plag., 40%  
Oliv., and 35% Cpx. 
La 0.0592 
Ce 0.0550 
Nd 0.0966 
Sm 0.1684 
Eu 0.4502 
Dy 0.2146 
Er 0.2193 
Yb 0.2151 
Lu 0.1999 

 
[Answer to #3 

 
Figure 7.3:  Bulk distribution coefficients for 
REEs For a rock composed of 25% Plag., 40% 
Oliv., and 35% Cpx] 

 
[Because all of the individual distribution coefficients are less than unity, the rock will be 
depleted in REEs compared to the parent melt.] 
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Question 7.3  Modeling trace-element distributions in melts and crystals.   
Equilibrium melting and crystallization:  One can model the trace elements distributions in 
melts and associated crystal using the distribution coefficients.  One such model assumes 
equilibrium crystallization, where the melt and the crystals remain in equilibrium during the 
crystallization process.  The behavior of the melt in this model can be describe by: 
 

𝐶!
𝐶"
=

1
𝐷 + 𝐹(1 − 𝐷) 

where CL is the concentration in the liquid, C0 is the initial concentration in the liquid, D is the 
distribution coefficient, and F is the fraction of liquid remaining (for F = 1, the system is entirely 
liquid).  The behavior of the solid is describe by:  
 

𝐶#
𝐶"
=

𝐷
𝐷 + 𝐹(1 − 𝐷) 

Where CS is the concentration in the solid and C0, D, and F are the same as before. 
 

1)  Calculate the value of CL/C0 for various degrees of melting (F) and for different values of 
D ranging from 0.1 to 10.  Plot the results on a CL/C0 vs F diagram. 
 
What happens to the concentration of the trace element in the liquid as F changes for 
values of D > 1?  What about for D < 1?   
 

2) Calculate the value of CS/C0 for various degrees of melting (F) and for different values of 
D ranging for 0.1 to 10.  Plot the results on a CS/C) vs F diagram.   
 
What happens to the concentration of the trace element in the solid as a F changes for a 
given value of D?   
 
What happens to the concentrations of the trace element in the liquid and solid when D 
< 1?  Which case describes an “incompatible” element? 

 
[Answers:  See plots at the top of the next page. 

On the CL/C0 diagram, when D > 1, the trace elements are preferentially extract into the 
crystals from the melt.  As crystallization proceeds, the amount of trace elements left in the 
liquid declines.  For D < 1, the trace elements preferentially remain in the melt and as 
crystallization proceeds the trace-element concentrations in the melt increase. 
 
On the CS/C0, we see that when D > 1, the concentration of trace elements in the crystal 
starts out high, but as crystallization proceeds, the liquid becomes depleted in trace 
elements and the degree of enrichment in the melt declines.  When the system is 
completely crystallized, the solid has the same CS as the bulk system. 



 22 

   
For D > 1, the concentration of the trace element in the liquid decreases in the fraction 
of melt remaining decreases.  The concentration in the solid increases.  D >1 describes a 
“compatible” element, and the more crystals form, the greater the fraction of the 
compatible element is sequestered in the solid.  For D < 1, and “incompatible” element, 
the concentration of the trace element in the liquid increases as the crystals grow and 
exclude the trace element from their structure.] 

Fractional crystallization:  The equilibrium melting model does not describe natural systems 
very well.  In most systems, either the melt is removed as it is produced, or crystals form from 
the melt that separate from the bulk of the liquid by crystal settling or by flotation.  In its pure 
form, where the crystals and liquid are separated from each other as they form, this type of 
fractionation is known as Rayleigh fractionation.  The equation that describes the composition 
of the liquid as it crystallizes and the crystals are immediately removed from the system is:    

    $!
$"
=	𝐹(&'() 

where CL in the concentration of the trace element in the liquid, C0 in the initial concentration 
in the liquid, F is the fraction of liquid remaining, and D is the distribution coefficient. 

The equation for the trace-element concentration in the solid that is crystallizing from the melt 
and is removed immediately from contact with the liquid is:  

    $#
$"
= 𝐷𝐹(('&) 

where CS in the concentration of the trace element in the instantaneous solid, C0 in the initial 
concentration in the liquid, F is the fraction of liquid remaining, and D is the distribution 
coefficient.   

The equation for the trace-element concentration in the bulk solid that has been separated 
from the liquid is: 

    $#
$"
=	 ('(*)

('*

&
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where CS in the concentration of the trace element in the bulk solid, C0 in the initial 
concentration in the liquid, F is the fraction of liquid remaining, and D is the distribution 
coefficient. 
 

3)  Calculate the value of CL/C0 using the equation for Rayleigh fractionation for various 
degrees of melting (F) and for different values of D ranging from 0.1 to 10.  Plot the 
results on a CL/C0 vs F diagram. 
 

What happens to the concentration of the trace element in the liquid as F changes 
for values of D > 1 (compatible trace element)?  How does this compare to the 
equilibrium case?   
 

4) Calculate the value of CS/C0 for the instantaneous solid using the equation for Rayleigh 
fractionation for various degrees of melting (F) and for different values of D ranging 
from 0.1 to 10.  Plot the results on a CS/C0 vs F diagram.   
 

How does the behavior of the trace elements in the solid differ between the Rayleigh 
case and the equilibrium case?  Why does CS/C0 decrease so rapidly in the 
instantanceous solid when D > 1? 

 

5) Calculate the value of CS/C0 for the bulk solid using the appropriate Rayleigh equation 
for various degrees of melting (F) and for different values of D ranging from 0.1 to 10.  
Plot the results on a CS/C0 vs F diagram. 

 

How does the behavior of the trace elements in the solid differ from the instantaneous 
case?  What is going on that explains this difference.  Why does the bulk solid not match 
the solid in the equilibrium case, especially for D > 1? 

 

[Answers:   
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On the CL/C0 diagram, when D > 1, the trace elements are preferentially extract into the 
crystals from the melt, as in the equilibrium case.  But in this case, because the crystals are 
removed from the system, the liquid composition evolves much more quickly and to more 
extreme levels of depletion.  The crystals have lower trace-element concentrations that the 
original melt, but they are always extracting a higher fraction of the trace elements from 
the melt, as given by the distribution coefficient, thereby depleting the liquid in trace 
elements.  For D < 1, the trace elements preferentially remain in the melt, as in the 
equilibrium case, so as crystallization proceeds, the melt becomes increasingly enrich in 
trace elements.  But because the crystals are removed from contact with the liquid as they 
form, the trace-element concentrations in the melt increase.  The shaded region at the top 
of the liquid diagram cannot be reached in the liquid during fractionational crystallization. 
 
The middle diagram above shows the composition of the instantaneous solid as a function 
of F.  When D > 1, the concentration of trace elements in the crystal is always greater than 
that in the liquid, but as each crystal forms and is removed from the system, it removes a 
high proportion of the trace elements from the liquid.  The next crystal forms from a 
depleted melt, and thus gets less of the trace elements.  As this continues, the liquid is 
rapidly stripped of its trace elements and that last crystals to form have to pull trace 
elements out of a very depleted liquid.  When D < 1, the crystal takes only a little bit of trace 
elements and leaves most of them in the liquid.  The concentration in the liquid builds up.  
Each subsequent crystal grows from a more-enriched liquid, so even though it takes only a 
small amount of trace elements, the amount is higher than it was in the first crystal.  As the 
amount of liquid gets very small, the concentration of trace elements can get quite high in 
the last crystals to form. 
 
The right-hand diagram shows the behavior of the integrated bulk solid that has been 
removed from contact with the liquid.  When D > 1, the crystals that form are initially 
enriched in trace elements.  Each subsequent crystal that is removed from the liquid and 
added to the bulk solid brings down the total trace element abundances because each is 
forming from a depleted liquid.  The composition of the total solid approaches that of the 
bulk system so the curve goes to 1.  For D < 1, the trace element abundances in the solid 
start out very low, but each subsequent crystal obtains slightly higher abundances and the 
concentrations in the liquid build up.  As the amount of liquid remaining becomes small, the 
concentration of trace elements becomes high.  The last crystals are enriched in trace 
elements (see middle diagram) and the trace element abundances in the total solid 
approach the concentrations in the bulk system. 
 

Detailed discussion of trace-element partitioning can be found in Rollinson (1995) Using 
Geochemical Data: evaluation, presentation, interpretation.  E-book (2014) and in Alberède F. 
(1995) Introduction to Geochemical Modeling. Cambridge University Press, Cambridge.543 pp. 
 
Question 7.4:  Generating a trace-element model of a natural system. 
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We have discussed REE patterns and shown how they can be used to infer something about the 
partitioning of trace elements, which in turn can tell you about geologic processes (Question 
7.2).  We also looked at the behavior of trace elements in systems undergoing melting a 
crystallization (Question 7.3).  Suppose you have table of distribution coefficients for Rare Earth 
Elements in several igneous mineral such as olivine, pyroxene, plagioclase, apatite, and 
hornblende.  The Table would look something like Table 7.1.  Now suppose you have an silicate 
that is cooling down and crystallizing the minerals listed above.  As they form, the crystals settle 
to the bottom of the magma chamber and become isolated from the melt.  You know the 
temperature range over which each mineral crystallizes, and you know how much of each 
mineral will form.  How would you model the trace element behavior of this system as it cools?  
What would the REE pattern of each mineral look like.   
 
[Answer:  We did not give you enough information to carry out a numerical model (although 
you could provide your own information and do the calculation).  The goal here is to have you 
lay out the steps necessary to make a model like that described.   
 
The outline of a model:  Your data would have several dimensions.  Each element would have a 
distribution coefficient and the evolution of its concentration could be modeled as discussed in 
question 7.3.  You would create a model for each element in each mineral.  From that data, you 
would extract the REE pattern for each mineral at several different levels of crystallization (e.g., 
every 10% crystallized).  Every mineral would extract REEs at a different rate, so you would have 
to model how the REE concentrations in the liquid change as the minerals crystalize.  Alberède 
(1995) outlines an example of such a calculation in his Chapter 9.] 
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Questions 8.1:  Delta values for hydrogen isotopes 
 
8.1.  Delta values are widely used in stable-isotope geochemistry and cosmochemistry.  For 
example, the equation for dD is:   
 

dD = (((D/H)measured/(D/H)VSMOW)-1)*1000 
 
Where (D/H)VSMOW = 155.76 ppm  (= 0.00015576 – 1.5576x10-4) 
 
The Table below gives various D/H ratios ranging from very small to very large.  Calculate the dD 
values for each of these ratios.   
 
D/H Ratio [Answers: dD] 
100 x 0.00015576 = 0.015576 99000 ‰ 
10 x 0.00015576 = 0.0015576 9000 ‰ 
2 x 0.00015576 = 0.00031152 1000 ‰ 
1.5 x 0.00015576 = 0.00023374 500 ‰ 
0.00015576 0 
0.75 x 0.00015576 = 0.00011682 -250 ‰ 
0.5 x 0.00015576 = 0.00007788 -500 ‰ 
0.1 x 0.00015576 = 0.000015576 -900 ‰ 
0.01*0.00015576 = 0.0000015576 -990 ‰ 
 
What do you notice about the delta values as the ratio gets larger?  What is the largest delta 
value you can calculate? 
 
[Answer:  The delta value grows proportional to the ratio.  Two times the standard ratio gives 
+1000 ‰, four times the standard ratio gives 3000 ‰, and 8 times the standard ratio gives 
7000 ‰.  The largest delta value you can calculate is +infinity.] 
 
What do you notice about the delta values as the ratio gets smaller?  What is the smallest delta 
value you can calculate?   
 
[Answer:  The delta value shrinks as the ratio shrinks, but the farther the ratio gets from the 
standard ratio, the more slowly the delta value changes.  The smallest delta value you can 
calculate is -1000 ‰.] 
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Questions 9.1:  Construct plots of the decay of 26Al over time. 
a) Plot the curve for the day of 26Al (t1/2 = 717,000 years) starting with 10,000 atoms of 26Al 

for a period of 10 million years.  Plot the vertical axis on both linear and log scales. 
 
[Answer] 

  
 
How many 26Al atoms remain after three half-lives.  
 
[Answer:  1250] 
 
How many half-lives does it take for the initial 10,000 atoms to decay to less than 1 atom?  Or, 
to say it another way, how many half-lives does it take for the abundance of 26Al to drop by a 
factor of 10,000?   
 
Answer:  ~13.4 half-lives] 
 

b) Plot the curve for the ingrowth of radiogenic 26Mg* from the decay of 26Al over 10 million 
years, assuming a starting abundances of 510 atoms. 
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Question 9. 2. 26Al-26Mg data: Determine the initial 26Al/27Al ratio [(26Al/27Al)0] by ion probe 
 
Sample:  Calcium-aluminum inclusion (CAI) consisting of spinel and hibonite.  Both minerals are 
highly resistant to metamorphism.  This problem walks you through the steps to determine the 
(26Al/27Al)0 for this CAI. 
 
Standards:  Relative sensitivity factor (RSF).  The ion probe ionizes each element with a different 
efficiency, so we need mineral standards with known elemental composition (usually 
determined by electron microprobe) for each mineral in our sample.  From these standards, we 
can calculate a factor to correct for the differential ionization of aluminum and magnesium in 
the ion probe measurements, the RSF.   

Instrumental Mass Fractionation (IMF):  The ion probe also fractionates isotopes, and does so 
differently for each mineral.  So we need mineral standards for each mineral in our sample with 
known magnesium isotopic composition.  From these standards, we can calculate a factor to 
correct for the IMF for magnesium in spinel and hibonite.  In this example, we are interested in 
radiogenic 26Mg* from the decay of 26Al.  In most samples, the underlying magnesium falls on 
the terrestrial mass fractionation line.  If this is true, then we can combine the instrumental 
mass fractionation and any intrinsic mass fractionation in the sample into a single factor to 
correct for all mass-dependent isotope fractionation.  

 
Data:  The Tables below contain data for our spinel standard and our hibonite standard, and for 
spinel and hibonite in our CAI.  The measured isotope ratios are given along with the 
measurement uncertainties, which are dominated by counting statistics.  Columns 4 and 5 give 
the delta values for these ratios relative to the terrestrial magnesium isotopic composition 
(official values).  The delta values are given with capital delta, by convention for magnesium 
data.  The deviation of a measurement from the terrestrial mass fractionation line is presented 
in terms of small delta (see below).  This convention is confusing because oxygen isotope data 
are presented with small deltas.  For magnesium, the small delta (d26Mg*) represents the 
excess of radiogenic 26Mg* from the decay of 26Al.  You will calculate this number below.   
 
Here are the data that we will use in this calculation.  The first Table gives data for our spinel 
standard., the second for our hibonite standard, the third for spinel in the CAI, and the fourth 
for hibonite in the CAI.  Note that the 27Al/24Mg ratio is given with a 2% uncertainty.  This is 
larger than the uncertainty based on counting statistics and takes into account other systematic 
sources of error. 
 
Material 25Mg/24Mg 26Mg/24Mg D25Mg D26Mg 27Al/24Mg 

Spinel 0.127071±0.000144 0.140313±0.000192 3.48±1.14 7.13±1.38 2.081±0.042 
Spinel 0.126899±0.000122 0.139918±0.000183 2.12±0.96 4.29±1.31 2.109±0.042 
Spinel 0.126626±0.000135 0.139331±0.000198 -0.03±1.07 0.08±1.42 2.098±0.042 

Official values:  25Mg/24Mg = 0.12663; 26Mg/24Mg = 0.13932;  27Al/24Mg = 2.53 
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Material 25Mg/24Mg 26Mg/24Mg D25Mg D26Mg 27Al/24Mg 
Hibonite 0.126606±0.000134 0.139221±0.000133 -0.19±1.06 -0.71±0.95 24.08±0.48 
Hibonite 0.126684±0.000116 0.139306±0.000127 0.43±0.92 -0.10±0.91 23.53±0.47 
Hibonite 0.127088±0.000155 0.140580±0.000198 3.62±1.22 9.04±1.42 24.28±0.49 

Official values:  25Mg/24Mg = 0.12663; 26Mg/24Mg = 0.13932;  27Al/24Mg = 30.12 
 
CAI Spinel 25Mg/24Mg 26Mg/24Mg D25Mg D26Mg 27Al/24Mg 

Spinel #1 0.126205±0.000111 0.138387±0.000137 -3.36±0.88 -6.70±0.98 2.046±0.041 
Spinel #2 0.126187±0.000101 0.138676±0.000103 -3.50±0.80 -4.62±0.74 2.118±0.042 
Spinel #3 0.126126±0.000100 0.138304±0.000119 -3.98±0.79 -7.29±0.85 2.056±0.041 

 
CAI Hibonite 25Mg/24Mg 26Mg/24Mg D25Mg D26Mg 27Al/24Mg 

Hibonite #1 0.127051±0.000164 0.143037±0.000192 3.32±1.30 26.68±1.38 39.47±0.79 
Hibonite #2 0.127225±0.000133 0.142385±0.000174 4.70±1.05 22.00±1.25 29.52±0.59 
Hibonite #3 0.127283±0.000144 0.142609±0.000198 5.16±1.14 23.61±1.42 27.25±0.54 
Hibonite #4 0.126860±0.000153 0.142106±0.000165 1.82±1.21 20.00±1.18 33.59±0.67 
Hibonite #5 0.126756±0.000146 0.141989±0.000173 1.00±1.15 19.16±1.24 33.83±0.68 
Hibonite #6 0.126213±0.000136 0.140389±0.000176 -3.29±1.07   7.67±1.26 30.26±0.61 
Hibonite #7 0.129637±0.000161 0.147337±0.000184 23.75±1.27 57.54±1.32 25.32±0.51 
Hibonite #8 0.128068±0.000223 0.144418±0.000262 11.36±1.76 36.59±1.88 25.19±0.50 

 
Data reduction calculations: 
 
1)  The first step will be to determine the relative sensitivity factor (RSF) for aluminum and 
magnesium for each mineral.  Determine the average 27Al/24Mg ratio for the standard spinel 
and hibonite measurements.  Determine the uncertainty in these average values by calculating 
the standard deviation of measurement values for each. 
 
[Answer:   Average 27Al/24Mg for spinel standards:  2.096 ± 0.028   
 Average 27Al/24Mg for hibonite standards:  23.95 ± 0.77] 
 
2)  Compare the average ratio from the standard measurements with the true 27Al/24Mg ratio 
for each standard.  The true ratio is given below the table for each standard.  We use the 
isotope ratio rather than the elemental ratio because the ion probe measures only one isotope 
at a time.  The RSF can be defined either as the true ratio divided by the measured ratio or the 
measured ratio divided by the true ratio.  For this calculation we will divide the true ratio by the 
measured ratio, which gives an RSF of >1.  What are the RSFs for spinel and hibonite in these 
measurements?  What is the uncertainty in the RSF; propagate the uncertainty in the mean of 
the standard measurements to the RSF. 
 
[Answer: RSF for spinel = 1.207 ± 0.016 
 RSF for hibonite = 1.257 ± 0.041] 
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3)  Use the RSF values that you determined to calculate the true 27Al/24Mg ratios for the 
measurements in Tables 3 and 4.  Because the RSF is defined as “true ratio/measure ratio”, we 
must multiply the measured ratios for the CAI by the appropriate RSF to get the true 27Al/24Mg 
ratios.  The uncertainties in the true 27Al/24Mg ratios are the quadratic sum of the measurement 
uncertainty (2%) and the uncertainty in the RSF (1.3% for spinel and 3% for hibonite). 
 
[Answer:  See Table 6 below.] 
 
4) To determine the initial ratio [(26Al/27Al)0] in our CAI, we need to correct the measured 
magnesium isotopic compositions for both intrinsic mass fractionation in the sample and for 
the instrumental fractionation produced by the ion probe.  We will be using the delta values for 
this part of the exercise, so the first task is to make sure that we understand delta values and 
their uncertainties.  Calculate the D25Mg and D26Mg values for each measurement from the 
measured ratios in the Tables above.  The equation for D25Mg is: 
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The equation of D26Mg is analogous.  Check your calculation against the values in the Tables 
above.  How do you calculate the uncertainty on D25Mg?  The delta value calculates the 
difference between the measurement and the standard composition in parts per thousand.  For 
the uncertainty, we just need to convert the uncertainty on the ratio into the same units as the 
delta values:   
 

Uncertainty	in	Δ 𝑀𝑔01 =

⎝

⎜
⎛
A 𝑀𝑔01

𝑀𝑔02B C
3456789:48;

A 𝑀𝑔01

𝑀𝑔02B C
<894=97= ⎠

⎟
⎞
× 1000 

 
Make sure you can reproduce the delta values and their uncertainties in the Tables above 
before continuing.   
 
5)  If the underlying magnesium that makes up the CAI is isotopically normal (the same as the 
Earth), we can assume that the magnesium in the samples and standards, before addition of 
26Mg* to the magnesium in the CAI, will all plot on a single slope ~0.5 mass fractionation line.  
(Considerable effort has gone into determining the exact numerical value for the slope of the 
mass fractionation line, but we will not get into that here.  For the purpose of this exercise, we 
will just assume a slope of 0.5.)  If this is true, then the excess 26Mg*, reported as d26Mg*, can 
be calculated from D25Mg and D26Mg using this equation: 
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  d26Mg* = D26Mg – (2 ´ D25Mg) 
 
Calculate d26Mg* for each spinel and hibonite measurement for the CAI.  Calculate the 
uncertainties for each of these values. The uncertainties for d26Mg come from the quadratic 
sum of the weighted uncertainties on D25Mg and D26Mg: 
 
 d26Mg*uncertainty = sqrt((D26Mguncertainty)^2 + (2 ´ D24Mguncertainty)^2)  
 
Finally, we have to convert the d26Mg* values back into ratios in order to plot the data on a 
diagram where the slope of the isochron gives the initial ratio. 
 
[Answer: 
 
Table 5:  d26Mg* and 26Mg*/24Mg for our CAI 
Analysis      d26Mg*          26Mg*/24Mg 
Spinel #1 0.016 ± 2.010 0.139322 ± 0.000280 
Spinel #2 2.374 ± 1.758 0.139651 ± 0.000245 
Spinel #3 0.668 ± 1.796 0.139413 ± 0.000250 
Hibonite #1 20.03 ± 2.93 0.142111 ± 0.000409 
Hibonite #2 12.60 ± 2.44 0.141076 ± 0.000340 
Hibonite #3 13.29 ± 2.68 0.141172 ± 0.000374 
Hibonite #4 16.36 ± 2.69 0.141600 ± 0.000375 
Hibonite #5 17.17 ± 2.62 0.141712 ± 0.000365 
Hibonite #6 14.26 ± 2.49 0.141307 ± 0.000347 
Hibonite #7 10.05 ± 2.86 0.140720 ± 0.000399 
Hibonite #8 13.88 ± 3.99 0.141254 ± 0.000556 

] 
 
6)  The final step in the analysis is to make an isochron diagram, which is a plot of 26Mg*/24Mg 
on the Y axis versus 27Al/24Mg on the X-axis.  The slope of the regression line on the isochron 
plot gives (26Al/27Al)0 ratio for the CAI (see Chapter 9 for the derivation of this diagram.  The 
data that we will use are given in Table 6. 
 
The best way to calculate the regression line on the isochron plot is to use a weighted linear 
regression that takes into account the uncertainties in both X and Y.  Unfortunately, Excel does 
cannot make this plot.  Regression methods that take into account the uncertainties in both X 
and Y and provide as output the slope and intercept of the isochron along with their 
uncertainties and a measure of the goodness of fit to the data are available in the literature 
(York, 1966, 1969; Williamson, 1968; Mahon, 1996; Ludwig 2003).  For this exercise, one can 
use the program ISOPLOT, written by Ken Ludwig, which runs as an Add In in older versions of 
Excel.  There is also now a web version, written in R, that can also be used. 
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Table 6:  Data for the isochron plot for our CAI 
Analysis      27Al/24Mg          26Mg*/24Mg 
Spinel #1 2.470 ± 0.049 0.139322 ± 0.000280 
Spinel #2 2.557 ± 0.051 0.139651 ± 0.000245 
Spinel #3 2.482 ± 0.050 0.139413 ± 0.000250 
Hibonite #1 49.61 ± 0.99 0.142111 ± 0.000409 
Hibonite #2 37.10 ± 0.74 0.141076 ± 0.000340 
Hibonite #3 34.25 ± 0.68 0.141172 ± 0.000374 
Hibonite #4 42.22 ± 0.84 0.141600 ± 0.000375 
Hibonite #5 42.52 ± 0.85 0.141712 ± 0.000365 
Hibonite #6 38.03 ± 0.76 0.141307 ± 0.000347 
Hibonite #7 31.83 ± 0.64 0.140720 ± 0.000399 
Hibonite #8 31.66 ± 0.63 0.141254 ± 0.000556 

 
Below is the final result.  The data form a nice linear array.  The regression line and the error 
envelope for the 95% confidence interval for the slope are shown.  The slope of the regression 
line is statistically identical to the value that we believe represents the oldest objects that 
formed in the solar system ((26Al/27Al)0 = 5.25 x 10-5; see Chapter 10).  The MSWD of ~1 
indicates that the scatter in the data around the regression line is consistent with variations 
caused by counting statistics. 

 
Isochron plot for the spinel hibonite CAI (data from Table 6).  The three points at 
the left are spinel and the points on the right half of the diagram are hibonite.  
The initial ratio of 5.29 x 10-5 is consistent with the earliest-formed solar system 
objects. 
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Question 9. 3:  Calculating relative time differences between objects. 
 
Below are a series of (26Al/27Al)0 ratios for objects that formed at different times from the same 
early solar system material reservoir.  This reservoir had a (26Al/27Al)0 ratio of 5.25 x 10-5 when 
the solar system formed.  Using the half-life of 26Al (Table 9.8) and the radioactive decay 
equation (equation 9.56), calculate the relative ages for the listed objects based on their 
(26Al/27Al)0 ratios.  Enter the data into the Table below.  What is the order of formation for the 
ten objects listed in the Table?  You can put these relative ages on an absolute time scale if you 
know that the oldest object in your list formed at 4567.3 Ga.  Enter the absolute formation 
times into the Table.  Determine the percentage of the original 26Al abundance that remained 
when each of the objects formed and enter that into the Table. 
 
 (26Al/27Al)0 DT (years) Formation 

time (Ma) 
Amount of initial 26Al 

remaining. 
#1 5.25 ´ 10-5 0 4,567.3  100 % 
#2 2 ´ 10-6 3.4 ´ 106 4,563.9  3.8 % 
#3 3.3 ´ 10-5    
#4 7 ´ 10-7    
#5 5.1 ´ 10-8    
#6 2.2 ´ 10-5    
#7 2 ´ 10-7    
#8 1.2 ´ 10-5    
#9 6 ´ 10-6    
#10 1.2 ´ 10-8    

 
[Answer:  see completed Table below.  The order of formation of the ten objects is: #1, #3, #6, 
#8, #9, #2, #4, #7,#5, #10.] 
  
Calculate the percentage of 26Al that remains after 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 half-lives.  
Enter these numbers along with (26Al/27Al)0, DT and formation time for each half-life.  What is 
the approximate age of the youngest object that you can date using 26Al. 
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[Answer:  see bottom half of the Table below.  Most radiometric dating systems are useful for 
somewhere between seven and ten half-lives.  After seven half-lives, the radionuclide 
abundance is down to less than 1% of what was present initially, and after ten half-lives, only 
about 0.1% of the original abundance remains.] 
 
 (26Al/27Al)0 DT (years) Formation 

time (Ma) 
Amount of initial 26Al 

remaining. 
#1 5.25 ´ 10-5 0 4,567.30  100 % 
#3 3.3 ´ 10-5 4.80 ´ 105 4,566.82 62.9 % 
#6 2.2 ´ 10-5 9.00 ´ 105 4,558.30 41.9 % 
#8 1.2 ´ 10-5 1.53 ´ 106 4,565.77 22.9 % 
#9 6 ´ 10-6 2.24 ´ 106 4,565.06 11.4 % 
#2 2 ´ 10-6 3.38 ´ 106 4,563.92  3.81 % 
#4 7 ´ 10-7 4.47 ´ 106 4562.83 1.33 % 
#7 2 ´ 10-7 5.76 ´ 106 4,561.54 0.39 % 
#5 6 ´ 10-8 7.01 ´ 106 4,560.29 0.114 % 
#10 1.2 ´ 10-8 8.67 ´ 106 4,558.63 0.023 % 
1 half-life 2.63 ´ 10-5 7.15 ´ 105 4,566.58 50 % 
2 half-lives 1.31 ´ 10-5 1.43 ´ 106 4,565.87 25 % 
3 half-lives 6.56 ´ 10-6 2.15 ´ 106 4,565.15 12.5 % 
4 half-lives 3.28 ´ 10-6 2.87 ´ 106 4,564.43 6.25 % 
5 half-lives 1.64 ´ 10-6 3.59 ´ 106 4,563.72 3.13 % 
6 half-lives 8.20 ´ 10-7 4.30 ´ 106 4,563.00 1.56% 
7 half-lives 4.10 ´ 10-7 5.02 ´ 106 4,562.28 0.78 % 
8 half-lives 2.05 ´ 10-7 5.74 ´ 106 4,561.56 0.39 % 
9 half-lives 1.03 ´ 10-7 6.45 ´ 106 4,560.85 0.20 % 
10 half-lives 5.13 ´ 10-8 7.17 ´ 106 4,560.13 0.098 % 
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Question 10.1:  Cosmic-ray-exposure ages and terrestrial ages of meteorites. 
 
Cosmic rays are very energetic protons and other atomic nuclei that travel through space at 
relativistic velocities.  When a cosmic ray encounters another atom, it can split that atom into 
smaller pieces, which are stable and radioactive isotopes of other elements.  Measuring the 
amount of cosmic-ray-produced (cosmogenic) nuclides can provide a means of estimating how 
long a meteorite or planetary surface has been exposed to cosmic rays. 
 
Examples of stable cosmogenic nuclides that can be used to investigate cosmic ray exposure 
include 3He, 21Ne, and 38Ar.  Assuming that the flux of cosmic rays is constant, the number of 
atoms of 21Ne of 36Ar produced in a small body traveling through space is given by: 
 
 𝑁< = 𝑃<𝑡   10.1.1 
 
where Ns is the number of stable atoms produced, Ps is the production rate, and t is time.  
There are many potential complications to getting quantitative results.  For example, the 
production rate is a function of the cosmic ray flux, the size and shape of the body exposed to 
the cosmic rays, and the chemistry of the body, among other things.  But the basic principles 
are straight-forward.   
 

1) Using data generated from equation 10.1.1 Make a plot of Ns versus time.  We will 
assume a constant cosmic ray flux and no changes to the target body.  The production 
rate can be arbitrary, but a ballpark number might be 8´1010 atoms/gram/million years.  
What do you observe? 

 
[Answer: 

 
 
The number of atoms of a stable nuclide increases linearly with time. ]  
 

Measurements of minor isotopes of noble gases generally give good measurements of 
exposure age.  Noble gas atoms are used because the inherent abundance of these nuclides in 
most solids is very low, so the cosmogenic component is easy to see. 
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Cosmic rays also produce radioactive isotopes such as 10Be, 26Al, and 36Cl.  But these isotopes 
start to decay with their characteristic half-lives as soon as they are created.  The equation 
describing the change in the number of radioactive nuclides produced by interaction with a 
constant flux of cosmic rays as a function of time has two terms:  a term for the production rate 
(the first term on the right side of equation 10.1.2) and a term for the decay of the newly 
produced nuclides ( the second term on the right of equation 10.1.2). 
 

=>0
=8

= 𝑃7 − 𝜆𝑁7    10.1.2 
 
where Nr is the number of radioactive nuclides, Pr is the production rate, and l is the decay 
constant.  This equation is analogous to equation 9.2 in Chapter 9 of the Cosmochemistry 
textbook with the addition of a production term.  Integrating this equation gives the number of 
radioactive cosmogenic nuclides at any time t: 
 

𝑁7 =
?0@('612-A

B
    10.1.3 

 
[We leave as an exercise for the student the derivation of equation 10.1.3.] 

 
2) Using data generated from equation 10.1.3, make a plot of Nr versus time.  Let’s 

consider 26Al, which has a decay constant of 9.667´10-7 (half-life of 7.17´105 yrs).  Again, 
we will assume a constant cosmic ray flux and no changes to the target body.  For 
comparison purposed, use the same production rate that you used for question 1 above 
( 8´1010 atoms/gram/million years).  What do you observe? 

 
[Answer:   

 
 

The number of radiogenic nuclides grows rapidly and nearly linearly at first.  This is because 
they have not yet had time to decay.  As time goes by, the radioactive decay becomes 
noticeable and the line describing the data begins to curve.  After about 5 million years of 
exposure to cosmic rays, the number of 26Al atoms in the target reaches a constant value as 
decay balances production.  When the time, t, becomes long with respect to the half-life, 
the exponential term in equation 10.1.3 goes to zero and equation 10.1.3 approaches Nr = 
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Pr/l.  How many half-lives for 26Al are required before that number of 26Al atoms in the 
target object has reached steady state?   

 
Suppose now that our object that is being irradiated by cosmic rays suddenly is shielded from 
cosmic rays.  This can happens when a meteorite falls to Earth.  The Earth’s magnetic field and 
atmosphere stop the vast majority of the cosmic rays before they reach the Earth’s surface.  
Some do penetrate to the altitude where commercial airliners fly, so passengers and crew are 
irradiated during flight.  Airline crews have to worry at some level about their exposure to 
cosmic rays.  When the meteorites falls to Earth, it is shielded from cosmic rays, to the 
production of cosmogenic nuclides stops. 
 

3) What would the curve for 26Al as a function of time look like if after 10 million years of 
cosmic ray irradiation, a meteorite fell to Earth?  Using the same input data that you 
used for question 2, generate a plot of the number of 26Al atoms as a function of time 
for a total of 10 million years.  Now, using equation 9.3 from the Cosmochemistry 
textbook, calculate a curve for the decay of 26Al starting with the number of atoms that 
was generated during 10 million years of irradiation.  Add the new data to the end of 
the data that you calculated for the irradiation.  Make a plot.  What do you see? 

 
[Answer: 

 
 

The radioactive nuclide decays away following the normal decay equation.  But notice now 
that the number of atoms of the radioactive nuclide can be the same for more than one 
time.   
 

4) If you only have the number of atoms of 26Al (e.g., 3x1016), how could you tell whether 
the meteorite was exposed for about half a million years or about 11 million years? 

 
[Answer:  Cosmic rays produce many different cosmogenic nuclides at the same time.  Some 
are stable and some are not.  If you were to measure both 21Ne and 26Al, you can distinguish 
which possibility give the real exposure age.] 
 

In addition to the cosmic ray exposure age, cosmogenic nuclides can give the “terrestrial age” 
of a meteorite, i.e. the time since the meteorite fell to Earth and became shield from cosmic 
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rays.  If the meteorite was exposed long enough to reach the steady state abundance for a 
radioactive nuclide, then when it fell to Earth and was shielded, the number of nuclides 
decreased following the decay curve you plotted in question 3.   
 

5) How can you be sure that the radioactive nuclide(s) reached the steady-state abundance 
so you can use it to determine the terrestrial age? 

 
[Answer:  You know the half-lives of the radionuclides that are produced from cosmic rays.  
All of the nuclides in a meteorite were produced in the same irradiation episode.  So you 
can compare the measure abundances for two or more radionuclides with the expected 
abundances as a function of time.  You also have the stable nuclides.  Taken together, if the 
irradiation history is simple, it should be possible to derive a unique irradiation history for 
your meteorite, giving both the exposure age and the terrestrial age.   

 
Caution:  This discussion of cosmogenic nuclides and how they can be used for dating has not 
probed the details of getting reliable data from real samples.  This is a hard business.  If you 
want to learn more about it, we suggest looking at Herzog G.F. and Caffee M. W. (2014) Cosmic-
ray exposure ages of meteorites.  In Treatise on Geochemistry, 2nd Edition, Vol. 1: Meteorites 
and Cosmochemical Processes, Davis, A. M., editor, pp. 419–453, Elsevier, Oxford, and 
references therein. 
 
Derivation of equation for production and decay of radioactive isotopes produced by cosmic 
ray interactions. 
 
The differential equation describing the production and decay of a radioactive isotope 
produced by a constant flux of cosmic rays has two terms:  a term for the production rate (the 
first term on the right side of equation 10.1.4 below) and a term for the decay of the newly 
produced nuclides ( the second term on the right of equation 10.1.4).  The production term is 
just a constant production rate (by definition—the equation could be modified to include a 
more complicate function).  The decay term is equation 9.2 from the Cosmochemistry textbook.  
 

=>0
=8

= 𝑃7 − 𝜆𝑁7     10.1.4 
 
where Nr is the number of radioactive nuclides, Pr is the production rate, and l is the decay 
constant.  To integrate this equation, we define: 
 

𝑥 = 𝑃7 − 𝜆𝑁7     10.1.5 
and 

𝑑𝑥 = −𝜆𝑑𝑁7  
 
When Nr = 0, then x = Pr. 
 
Re-arrange and integrate: 
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𝑑𝑥
𝑑𝑁7

= −𝜆 

 

𝑑𝑁7 =
1
−𝜆 𝑑𝑥 

 
From this equation and equations 10.1.1 and 10.1.2: 
 

1
−𝜆 𝑑𝑥 ∙

1
𝑑𝑡 = 𝑥 

 
1
𝑥 𝑑𝑥 = −𝜆𝑑𝑡 

Integrate 
 

∫ (
C

C
" 𝑑𝑥 = 	−𝜆 ∫ 𝑑𝑡8

"   
 

ln 𝑥(𝑡) − ln 𝑥(0) = 	−𝜆𝑡 − −𝜆0 
 
We know that at t = 0, Nr = 0, so x = Pr.  We also know that -l(0) = 0.  So: 
 

ln 𝑥 − ln𝑃7 = −𝜆𝑡 
Take the log of both sides 

𝑥
𝑃7
= 𝑒'B8 

 
Substitute back in for x: 
 

𝑃7 − 𝜆𝑁7
𝑃7

= 𝑒'B8 

 
𝑃7 − 𝜆𝑁7 = 𝑃7𝑒'B8 

 
𝑃7N1 − 𝑒'B8O = 𝜆𝑁7  

 

𝑁7 =
𝑃7N1 − 𝑒'B8O

𝜆  

 
This is the equation that describes the number of radioactive nuclides present at any one time 
in an object that has been exposed to a constant flux of cosmic rays. 
 


