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Continuous Time Markov Process

A stochastic process Z (t) defined over a discrete state space Ω of
cardinality n = |Ω| is a continuous-time discrete-state Markov process (or
Markov chain - CTMC) if:

t

Z(t)

sk

sj

si

t′ t′′ t′′′ t′v tv tv ′

for any ordered sequence of time instants
(0 < t1 < t2 < . . . < tm−1 < tm)

The following property holds:
P {Z (tm) = sjm |Z (tm−1) = sjm−1 , . . . ,Z (t1) = sj1}

= P {Z (tm) = sjm |Z (tm−1) = sjm−1 }
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Transition Probability Matrix

Let us introduce the following notation:

pij(u, t) = P {Z (t) = j |Z (u) = i } (u ≤ t)

With:

pii (t, t) = 1 ; pij(t, t) = 0

where pij(u, t) is the conditional probability that the Markov chain Z (t)
is in state j at time t, given it was in state i at time u (transition
probability).

πi (t) = P {Z (t) = si }

πi (t) is the (unconditional) probability that Z (t) is in state i at time t
and is called the state occupancy probability, or simply the state
probability. From the above definitions:

n∑
j=1

pij(u, t) = 1 ;
n∑

i=1
πi (t) = 1
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Matrix notation

PPP(u, t) = [pij(u, t)] is a square matrix of dimension (n × n) and is called
the transition probability matrix of the CTMC.

πππ(t) = [πi (t)] is a row vector of dimension (1× n) and is called the
(transient) state probability vector of the CTMC.

In matrix notation, the initial condition assumes the form:

PPP(t, t) = III ,

where III is the identity matrix of appropriate dimensions, and the
normalization condition, the form

PPP(t, t)eeeT = eeeT ; πππ(0)eeeT = 1

where eee is a row vector of appropriate dimension with all entries equal to
one, and T means transposition.
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Chapman-Kolmogorov (CK) Equations

The Markov property, combined with the theorem of the total probability,
implies the following Chapman-Kolmogorov (CK) equations:

πj(t) =
∑

i πi (u) · pij(u, t)
pij(u, v) =

∑
k pik(u, t) · pkj(t, v) for u ≤ t ≤ v

time

i

j

u t
a) time

j

k

t

i

u v
b)

In matrix notation
πππ(t) = πππ(u) ·PPP(u, t)
PPP(u, v) = PPP(u, t) ·PPP(t, v)
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Homogeneous CTMC

A Markov chain is said to be homogeneous when the transition
probabilities in matrix P(u, x) depend only on the length of the time
interval (x − u) and not on the values of the time instants x and u.

Formally given time instants t1 and t2, the time homogeneous property is
written as:

P(t1, t1 + x) = P(t2, t2 + x) = P(0, x)

Most of the modeling techniques in availability and reliability analysis are
based on homogeneous Markov chains.
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Homogeneous CTMC

If the Markov chain is homogeneous, by substituting u = 0 and θ = v − t
in the CK equations, we get:

πππ(t) = πππ(0) ·PPP(t) given πππ(0) = π0

PPP(t + θ) = PPP(t) ·PPP(θ) PPP(0) = III

where πππ(0) is the initial state probability vector of the CTMC.
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The Infinitesimal Generator Matrix

Define, for i 6= j and for ∆ t ≥ 0:

qij = d pij(t)
d t

∣∣∣∣
t=0

= lim
∆t→0

pij(∆t)− pij(0)
∆ t = lim

∆t→0

pij(∆t)
∆ t (1)

From equation (1) it is easy to see that qij ≥ 0. Similarly, define for i = j
and for ∆ t ≥ 0:

qii = d pii (t)
d t

∣∣∣∣
t=0

= lim
∆t→0

pii (∆t)− pii (0)
∆ t = − lim

∆t→0

1 − pii (∆t)
∆ t (2)

From equation (2) it can be seen that qii ≤ 0.
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Physical interpretation of the quantities qij

We rewrite the above equations in the following form:

pij(∆ t) = P {Z (t + ∆ t)} = j |Z (t) = i} = qij ∆t + o(∆ t)

pii (∆ t) = P {Z (t + ∆ t)} = i |Z (t) = i} = 1 + qii ∆t + o(∆t)
qij ∆ t is the conditional probability of jumping to state j in interval ∆ t,
given that the CTMC was in state i at the beginning of the interval.

The quantities qij are called the transition rates of the CTMC.

Since the transition from state i to some state j ∈ Ω in the interval
(t, t + ∆t] is a certain event:

1 =
∑

j
pij(∆t) = 1 + qii ∆t +

∑
j: j 6=i

qij ∆t

Hence,
qii = −

∑
j: j 6=i

qij
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The Infinitesimal Generator Matrix

The values qij can be grouped into matrix QQQ = [qij ] called the
infinitesimal generator matrix of the CTMC. Matrix QQQ is defined as:

QQQ = [ qij ] where qij ≥ 0 i 6= j
qii ≤ 0 qii = −

∑
j: j 6=i

qij .

the off-diagonal entries are non negative, the diagonal entries are non
positive and the row sum is equal to 0.

The off diagonal entries of row i represent the transitions out of state i ,
while off diagonal entries of column i the transitions into state i .
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Kolmogorov Differential Equation

The CK equations, in a small interval (t, t + ∆t] can be written as:

pij(t + ∆ t) =
∑

k
pik(t) pkj(∆ t)

= pij(t)(1 + qjj ∆t) +
∑

k:k 6=j
pik(t) qkj ∆ t + o(∆t) .

Rearranging, we get:

pij(t + ∆ t) − pij(t)
∆ t =pij(t) qjj +

∑
k:k 6=j

pik(t) qkj + o(∆t)
∆t

=
∑

k
pik(t) qkj + o(∆t)

∆t .

Taking the limit as ∆t → 0,

d pij(t)
d t =

∑
k

pik(t) qkj with initial condition pij(0) =
{

1 i = j
0 i 6= j .
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Kolmogorov Differential Equation

In matrix notation:

d PPP(t)
d t = PPP(t) · QQQ ; PPP(0) = III .

Let πππ(t) be the (transient) state probability vector at time t.
Differentiating both sides, we have:

d πππ(t)
d t = πππ(0) · d P

PP(t)
d t = πππ(0) ·PPP(t) ·QQQ .

From which we derive the state probability equation:

d πππ(t)
d t = πππ(t) ·QQQ with initial condition πππ(0) = πππ0 . (3)

These are the fundamental equations for CTMC, known as Kolmogorov
differential equations.
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The State Probability Vector - 2

Equation 3 is in the form of a Ordinary Differential Equation Initial Value
Problem (ODEIVP).

The ODEIVP Equation (3) has formal solution:

πππ(t) = πππ(0) · eQQQ t ,

where eQQQ t = PPP(t) is defined by the following series expansion:

eQQQ t = III + QQQ t + 1
2 (QQQ t)2 + 1

3 ! (QQQ t)3 + . . . =
∞∑

i=0

1
i ! (QQQ t)i .
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Physical interpretation of the transition rates

Suppose a state i is directly connected to a state j and the two states
differ by the value of a single binary variable Xk .

Assume that in the source state i , Xk = 1 (k-th component up) and in
the destination state j , Xk = 0 (k-th component down).

Then the transition i → j represents the failure of component k.

qij ∆ t is the probability of a transition to state j in the interval
(t , t + ∆ t] given that the CTMC was in state i at time t, but because
of the physical meaning of transition i → j , in our case, qij coincides with
the definition of the failure rate of component k in state i .
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One repairable component: Availability

The CTMC state diagram for this system, whose state space consists of
two states, is shown in Figure

QQQ =

(1) (0)
(1) −λ λ
(0) µ −µ

1 0

λ

µ[
d π1(t)
d t

d π0(t)
d t

]
=
[
π1(t) π0(t)

]
·
[
−λ λ
µ −µ

]
From the above matrix equation, we obtain:

d π1(t)
d t = −λπ1(t) + µπ0(t)

d π0(t)
d t = λπ1(t) − µπ0(t)

We assume as initial probability vector πππ(0) =
[
1 0

]
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One repairable component: Availability

Taking the Laplace transform on both sides, we can write:

{
s π∗1 (s) − 1 = −λπ∗1 (t) + µπ∗0 (t)

s π∗0 (s) = λπ∗1 (t) − µπ∗0 (t)

Solving the algebraic set of equations in the Laplace domain, we obtain:
π∗1 (s) = s + µ

s (s + λ + µ)
π∗0 (s) = λ

s (s + λ + µ)

Taking the inverse Laplace transform we obtain in the time domain:
π1(t) = µ

λ + µ
+ λ

λ + µ
e−(λ+µ) t

π0(t) = λ

λ + µ
− λ

λ + µ
e−(λ+µ) t
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One repairable component: Availability

The pointwise or instantaneous system availability A(t) is the probability
that the system is up at time t.

In the two-state example, we have A(t) = π1(t).

Correspondingly, the unavailability U(t) is obtained in this case as
U(t) = 1− A(t) = π0(t).

The asymptotic solution for the steady-state availability exists, and is
given by:

lim
t→∞

π1(t) = π1 = µ

λ + µ

lim
t→∞

π0(t) = π0 = λ

λ + µ
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Sojourn time in state i

We isolate state i by deleting transitions entering state i . We have:

i

qi1

qi2

qil

qi = −∑
j:j 6=i qij

d πi (t)
d t =− πi (t) qi

πi (t) =e− qi t πi (0) = 1

Where: qi = − qii =
∑

j: j 6=i qij is a negative constant equal to the sum
of the rates out of state i .

The sojourn time in each state is exponentially distributed with a rate
equal to the sum of the exit rates.

The probability that the sojourn time in state i terminates by a transition
toward state j , is:

pij(t) = qij
qi

(1− e− qi t)
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Classification of states and stationary distribution

The states of a CTMC can be partitioned in two classes: recurrent states
and transient states.

A state is recurrent if the CTMC will eventually return to that state with
probability 1, otherwise the state is transient.

The state space of a CTMC can always be partitioned into a set of (zero
or more) transient states and one or more closed sets of recurrent states.

A state j is reachable from i for some t > 0, if pij(t) > 0. A closed set of
recurrent states is a set in which all pairs of states are mutually
reachable. Once the CTMC has reached a state in a closed set of
recurrent states, it never leaves the set again.

If a closed set of recurrent states contains a single state, this state is an
absorbing state, and the corresponding row of the infinitesimal generator
matrix has only 0 entries.
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Irreducible Markov Chain

A CTMC is irreducible if its state space is formed by a single set of
recurrent states, so that every state is reachable from every other state.

For an irreducible CTMC the state probabilities reach an asymptotic
value as the time goes to infinity and this asymptotic value is
independent of the initial condition.

We call the asymptotic solution the steady state solution.

If the steady state solution exists, then, for any i :

lim
t→∞

πi (t) = πi lim
t→∞

d πi (t)
d t = 0

and in matrix form:

πππ ·QQQ = 000 with πππ eeeT = 1 . (4)

Where 0 is the zero vector of appropriate dimension.
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Properties of the steady-state distribution

The steady-state distribution for an irreducible CTMC has the following
properties:

♦ for all initial conditions, the occupancy state probability πi (t) tends
to a constant value πi as t →∞, and the πi ’s form a probability
distribution.

♦ if the initial probability is πi ,∀i , then πi (t) = πi for all t;

♦ the fraction of time spent in state i during the interval (0, t] tends
to πi as t →∞. In steady state, the fraction of time spent by the
CTMC in state i is equal to πi .
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Irreducible Markov Chain

The steady state equation can be written as:

πππ ·QQQ = 0 with πππ eT = 1

The above Equation is a linear homogeneous set of n equations with
constant coefficients, subject to the normalization condition.

To force the set of equations to have a single positive solution, we can
incorporate the normalization condition into the the set of equations by
replacing any one of the n equations with the normalization condition.

[π1 π2 . . . πn−1 πn]


q11 q12 . . . q1,n−1 1
q21 q22 . . . q2,n−1 1
. . . . . . . . . . . . . . .

qn−1,1 qn−1,2 . . . qn−1,n−1 1
qn,1 qn2 . . . qn,n−1 1

 = [0 0 . . . 0 1] (5)
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The balance equation

The steady state equation can be interpreted as a probability balance
equation.

The balance equation means that for every state the probability flow-in
equals the probability flow-out.

This equation can be written directly from the observation of the CTMC
transition graph, without the need of deriving the infinitesimal generator.

Solving the steady-state equation for state i , we can write

πiqii = π1q1i + π2q2i + . . .+ πnqni

where the left-hand-side is the probability flow out of state i and the
right-hand-side is the probability flow in state i .
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One repairable component: Availability

Application of (5) provides:

[ π1 π0 ]
[
−λ 1
µ 1

]
= [ 0 1 ] . (6)

1 0

λ

µ
Expanding, we get:{

−λπ1 + µπ0 = 0
π1 + π0 = 1 .

Note that the first equation is the probability balance equation of state 1
that could have been written directly.
From the above equation we obtain the steady state availability and
unavailability, respectively as:

Ass = π1 = µ

λ + µ
= MTTF

MTTR + MTTF
Uss = π0 = λ

λ + µ
= MTTR

MTTR + MTTF
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Expected State Occupancy in (0, t]

The total time spent by the CTMC Z (t) in a generic state i during the
interval (0, t] is a random variable whose expected value is denoted by
bi (t). Note that such a sojourn can be collected over multiple visits to
the state.

We introduce an indicator variable Ii (t) defined as follows:{
Ii (t) = 1 if Z (t) = i
Ii (t) = 0 if Z (t) 6= i .

Then, the total time spent by the CTMC in state i in the interval (0, t] is:

total time spent in state i =
∫ t

0
Ii (u) du

with initial condition bi (0) = 0.
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Expected State Occupancy in (0, t]

Hence, the expected value bi (t) becomes:

bi (t) = E
[ ∫ t

0
Ii (u) du

]
=
∫ t

0
E [ Ii (u) ] du

=
∫ t

0
[0 · P{Ii (u) = 0} + 1 · P{Ii (u) = 1}]du

=
∫ t

0
πi (u) du .

Define the vector bbb(t) = [ bi (t) ] , then:

bbb(t) =
∫ t

0
πππ(u) du .

Direct integration of Equation (3), yields:

d bbb(t)
d t = bbb(t)QQQ + πππ(0) ,

under the initial condition bbb(0) = 000.
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Expected State Occupancy in (0, t]

The time-averaged expected state occupancy, denoted by the vector
ggg(t) = (1/t)bbb(t), is defined as:

d ggg(t)
d t = ggg(t)

(
QQQ − III

t

)
+ πππ(0)

t , with ggg(0)=000. (7)

The following normalization condition for bbb(t) and ggg(t), hold:

bbb(t)eeeT = t and ggg(t)eeeT = 1 .

The sum of the expected times spent over all states equals the length of
the interval.

Equation (7) has a singularity at t = 0; however, as t increases, solving
Equation (7) is numerically more convenient because of the following
asymptotic property:

lim
t→∞

gi (t) = lim
t→∞

1
t bi (t) = lim

t→∞
πi (t) = πi , (8)

where πππ is the steady state probability vector of the CTMC.
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Dependability Models Defined on a CTMC

The state space Ω of a dependability model can be partitioned into a
subset Ωu of up states and a subset Ωd of down states.

The states in Ωu are the up states in which the structure function of the
system is equal to 1, and the states in Ωd are the down states in which
the structure function of the system is equal to 0.

From the above, the infinitesimal generator matrix of the CTMC can be
partitioned in the following way

Quu

Ωu

Qdd

Ωd

Qud

Qdu

QQQ =
[
QQQuu QQQud
QQQdu QQQdd

]
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Availability model

In an availability model both QQQud and QQQdu must have non-zero entries.

In a reliability model, the states in Ωd are absorbing so that QQQdu and QQQdd
are zero matrices (matrices with all entries equal to 0).

The instantaneous system availability at time t is defined as the sum of
the state probabilities at time t over the up states, and the unavailability
at time t as the sum over the down state at time t.

A(t) =
∑
i∈Ωu

πi (t) ; U(t) =
∑
j∈Ωd

πj(t)

The steady-state availability and unavailability are defined in similar way
utilizing the steady-state probability vector.

A =
∑
i∈Ωu

πi ; U =
∑
j∈Ωd

πj
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Expected Uptime and Expected Downtime

The expected uptime UI(t) is defined as the expected total amount of
time that the CTMC spends in the up states Ωu in (0, t]:

UI(t) =
∑
i∈Ωu

bi (t) .

In steady state, the expected uptime over an interval TI turns out to be

UI = TI
∑
i∈Ωu

gi = TI A .

Similarly, the expected downtime DI(t) is defined as the total amount of
time that the CTMC spends in the down states Ωd in (0, t]:

DI(t) =
∑
i∈Ωd

bi (t)

and, in steady state, the expected downtime over any interval TI turns
out to be:

DI = TI
∑
i∈Ωd

gi = TI U .
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Two Repairable Components: Non-shared - 1

Non-shared (independent) repair

A parallel system consists of two identical repairable components with
failure rate λ and repair rate µ.

There are as many repair persons as failed components.

2 1 0

2λ λ

µ 2µ

Application of the balance equation gives:


2λπ2 = µπ1
(λ+ µ)π1 = 2λπ2 + 2µπ0
λπ1 = 2µπ0
π2 + π1 + π0 = 1
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Two Repairable Components: Non-shared - 2


π2 = (µ/2λ)π1
π1 = (2µ/λ)π0
µ

2λ
2µ
λ
π0 + 2µ

λ
π0 + π0 = 1

from which, the steady-state system unavailability Uns is given as:

π0 = Uns = 1

1 + 2µ
λ

+ 2µ2
2λ2

= 1(
1 + µ

λ

)2 =
(

λ

λ+ µ

)2

and the steady-state availability Ans is given as,

Ans = 1− Uns = 1−
(

λ

λ+ µ

)2
= µ(2λ+ µ)

(λ+ µ)2
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Two Repairable Components: Shared - 3

Shared (dependent) repair

A parallel system consists of two identical repairable components with
failure rate λ and repair rate µ.

Only one repair person is available.

2 1 0

2λ λ

µ µ

Application of the balance equation gives:


2λπ2 = µπ1
(λ+ µ)π1 = 2λπ2 + µπ0
λπ1 = µπ0
π2 + π1 + π0 = 1
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Two Repairable Components: Shared - 4


π2 = (µ/2λ)π1
π1 = (µ/λ)π0
µ

2λ
µ

λ
π0 + µ

λ
π0 + π0 = 1

from which, the steady-state system unavailability Ush is given as:

Ush = π0 = 1

1 + µ

λ
+ µ2

2λ2

= 2λ2
2λ2 + 2λµ+ µ2

and the steady-state availability Ash is given as,

Ash = 1− Ush = µ(2λ+ µ)
2λ2 + 2λµ+ µ2
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Two Repairable Components: Comparison - 5

Comparing the availability in the two cases, we get:

Ans

Ash = 2λ2 + 2λµ+ µ2

λ2 + 2λµ+ µ2
> 1

Ans > Ash

The non-shared, independent, case provides better availability.
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Two Repairable Components: Imperfect coverage

Upon failure, the detection and recovery process may complete
successfully with a coverage probability c, and with probability (1− c)
the system incurs a complete failure and moves to the down state 0.

2 1 0
2λc

2λ(1− c)

λ

µ µ

The steady state balance equations can be written as:
2λπ2 = µπ1
(λ+ µ)π1 = 2λc π2 + µπ0
µπ0 = 2λ(1− c)π2 + λπ1
π2 + π1 + π0 = 1

from which, the steady state system unavailability U(sh) is obtained as:

U(sh) = π0 = 2λ2 + 2λµ(1− c)
2λ2 + 2λµ(2− c) + µ2

.
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Two Repairable Components: Common Cause Failure

Common Cause Failures (CCF) are defined as the result of one or more
events, causing the concurrent failure of one or more components.

2 1 0
2λ

λCCF

λ+ λCCF

µ µ

The steady state balance equations can be written as:
(2λ+ λCCF )π2 = µπ1
(λ+ λCCF + µ)π1 = 2λπ2 + µπ0
µπ0 = λCCF π2 + (λ+ λCCF )π1
π2 + π1 + π0 = 1

from which, an expression for the steady state system unavailability
U(CCF ) = π0 can be easily derived.
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Availability of Combined Hardware-Software system

When the system is down caused by the failure of any one of the two
components the only possible action is the repair of the failed
component. In other words, software cannot fail when the hardware is
down and vice versa.

hs(1) h(2)

s(3)

λh

λs

µh

µs

The balance equations in the
steady state are:

π1 (λh + λs) =π2 µh + π3 µs

π1 λh =π2 µh

π1 λs =π3 µs

ACTMC = π1 = 1

1 + λh
µh

+ λs
µs

= µhµs
µhµs + λhµs

+ µhλs
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Availability of Combined Hardware-Software system

Consider the RBD model for the same (independent) system

Hw Sw

The system steady state availability ARBD is then:

ARBD = µ h
(λ h + µ h)

µ s
(λ s + µ s) (9)

We note that the independence assumption implies that the Sw may
incur cycles of failure/repair even if the Hw is down, and viceversa.

Compare ARBD vs ACTMC

K. Trivedi & A. Bobbio Chapter 9 - Continuous Time Markov Chain: Availability Models Jan 2017 41 / 88



Introduction State classification Dependability Models Markov Reward Models MRM Measures Case study Sensitivity Numerical Methods

Availability of Combined Hardware-Software system

Comparing the results we see that ACTMC > ARBD .

hs(1) h(2)

s(3) hs(4)

λh

λs

µh

µs

λh

µh

λsµs

This conclusion is not evident at the first sight. To give a full
justification, we develop the CTMC for the independent case in Figure,
where the only up state is still State 1.

Solving the CTMC of the Figure would provide the same ARBD expression.

The independent case has an additional failed state (State 4) that
increases the system unavailability as compared with the dependent case.
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Telecommunication Switching System Model

A telecommunications switching system has n trunks.

All trunks are subject to failure and repair. We assume the failure and
repair times of each trunk are exponentially distributed with rates γ and
τ , respectively.

n n-1 n-2 . . . 1 0

nγ

τ

(n− 1)γ

τ

(n− 2)γ

τ

2γ

τ

γ

τ

Assume that a single repair facility is shared by all trunks in the system.
Then, the pure availability model of the system is a homogeneous CTMC
as shown in the Figure, where state i indicates that there are i non-failed
trunks in the system.
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Telecommunication Switching System Model

The steady state probability can be computed by solving the following
balance equations:

nγπn = τπn−1

(kγ + τ)πk = (k + 1)γπk+1 + τπk−1, k = 1, 2, ...n − 1
γπ1 = τπ0.

Solving the linear system of equations above, the steady state probability
of being in state i is given by:

πi =
( τγ )i/i!∑n

k=0( τγ )k/k!
. (10)

If we assume that the system is up as long as at least l trunks are
functioning properly, then the system steady state availability is given by:

A(l) =
n∑

i=l
πi .
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A repairable fluid level controller - 1

Components are repairable but a single shared crew is available.

S L P V

If more than one component is failed, the repair-person must decide
which component to repair first.

Different preemptive and non-preemptive repair policies can be envisaged
and they can be easily represented as a CTMC on the whole state space.

By adopting a preemptive repair priority policy, a priority list is defined
and the repair crew repairs the components according to the order
defined in the priority list.
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A repairable fluid level controller - 2

We assume that the priority list is ordered according to the decreasing
values of the MTTR:

P � V � S � L

0011

0111 0101 0001

1011 0110 0010

1111 0000

1101 1001 0100

1110 1010 1000

1100
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A repairable fluid level controller - 3

Given the failure and repair rates of the Table

Table: Failure and repair rates for system of the Example

Component MTTF MTTF−1 MTTR MTTR−1
1
λ (hours) λ 1

µ (hours) µ

P 5000 2e-4 16 0.0625
V 10000 1e-4 8 0.125
S 2500 4e-4 4 0.25
L 2000 5e-4 2 0.5

From the CTMC, we can compute the exact steady state availability
ASys = 0.993414494.
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A redundant repairable fluid level controller - 4

We consider now redundant repairable subsystems as shown in Figure

3 2 1 0

a)

3λS

µS

2λS

µS

λS

µS

2 1 0

b)

2λLc

µL

λL

µL

2λL(1− c)

11

10

01

00

c) αλP

λP

λP

λP

µP

2 1d 1 0

d)

2λV

δ

λV

µV
µV
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A redundant repairable fluid level controller - 5

Subsystem S - There are 3 sensors that work in a 2-out-of-3 logic with a
single repair-person. AS = π3 + π2.

Subsystem L - The control logic is duplicated in parallel and the recovery
mechanism has a coverage probability c. AL = π2 + π1.

Subsystem P - The pump system is duplicated in warm stand-by
configuration (α is the dormancy factor for the standby unit), and the
unit is repaired at once upon system failure. AP = π11 + π01 + π10.

Subsystem V - The valve subsystem is duplicated but the reconfiguration
upon failure of one component takes an exponentially distributed
reconfiguration time with rate δ - AV = π2 + π1.

The monolithic CTMC for the whole system has n = 4 ∗ 3 ∗ 4 ∗ 4 = 192
states.
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A redundant repairable fluid level controller - 6

In a more realistic model, if the repair person is not on site he/she must
be notified and the travel time must be accounted for.

To include travel time, we duplicate all the states in which repair service
is required, to distinguish whether the repair-person is on site or not.

3 2u 1u 0u

2t 1t 0t

a)

3λS 2λS λS

µS

µt µt µt2λS

µS

λS

µS

2u 1u 0u

1t 0t

b)

2λLc λL

2λL(1− c)

µL λL

µL

µt µt

11

10

01

0u

0t

c) αλP

λP

λP

λP

µP

µt

2 1d 1u 0u

1t 0t

d)

2λV

δ

λV

µV

µV
µt µt
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A redundant repairable fluid level controller - 7

In the CTMCs for each subsystem we have denoted by a subscript u the
states in which the repair-person is not on site and by a subscript t the
states in which the repair-person is already on site.

From the states labeled t, when the repair person is on site, the repair is
accomplished with the given repair rate, while from the states labeled u
the travel transition with rate µt is accounted.

If a single repair-person is shared among all the subsystems with the
same preemptive priority order, the monolithic CTMC model has
5 ∗ 6 ∗ 5 ∗ 7 = 1050 states.

K. Trivedi & A. Bobbio Chapter 9 - Continuous Time Markov Chain: Availability Models Jan 2017 51 / 88



Introduction State classification Dependability Models Markov Reward Models MRM Measures Case study Sensitivity Numerical Methods

Markov Reward Models

♦ Markov Reward Models (MRM) are obtained by associating real
valued reward rates with each state of a Markov chain.

♦ The reward rate often represents a performance level associated to a
given state, or some property of the state.

♦ The CTMC will be referred to as the structure-state process, while
the reward variables form the reward structure.

♦ Changing the reward structure on the same structure state process
provides different views of the model and enables the computation of
different (reward-based) measures for the CTMC.

♦ Two ways can be envisaged to assign rewards: Reward rates are
non-negative real constants associated with states. Impulse rewards
are non-negative real constants associated with states or transitions.
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Markov Reward Models

Let ri be the real valued reward rate attached to state i .

Define rrr = [ri ] to be the reward vector of dimension n defined over the
state space Ω of a CTMC.

This definition implies that a reward ri ∆ t is accumulated when the
process Z (t) stays in state i for a time duration ∆ t.

The structure-state Markov process Z (t), together with the reward rates
attached to each state, form the Markov Reward Model (MRM).

Instantaneous as well as cumulative reward measures are defined in the
following.
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Expected instantaneous reward

Let X (t) denote the instantaneous reward rate at time t. By definition:

X (t) = ri if Z (t) = i .

The expected instantaneous reward rate at time t is computed as:

E [X (t)] =
n∑

i=1
ri P{Z (t) = i} =

n∑
i=1

ri πi (t)

and expected reward rate in steady-state as:

E [X ] =
n∑

i=1
ri πi

In matrix notation:

E [X (t)] = πππ(t) rrrT E [X ] = πππ rrrT

The solution techniques for the reward Equations are the same as those
for solving the standard Markov equations for the state probability vector,
in transient or in steady state, respectively.
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Expected accumulated reward

Cumulative measures are related to the accumulation of the reward
during a finite time interval.
The total accumulated reward up to time t is the random variable:

Y (t) =
∫ t

0
X (u) du

The expected accumulated reward is given by:

E [Y (t)] = E [
∫ t

0
X (u) du ] =

∑
i

ri
∫ t

0
πi (u)du =

∑
i

ri bi (t)

A related measure is the time averaged accumulated reward
E [W (t)] = E [Y (t)]/t, which can also be seen as the average reward is
accumulated in the interval (0, t].

In matrix notation as:

E [Y (t)] = bbb(t) rrrT E [W (t)] = ggg(t) rrrT
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Two repairable components: expected cost of repair

The non-shared repair policy, in which there are as many repair persons
as failed components, provides a higher availability with respect to a
shared repair policy with single repairperson.

Now we compare the expected cost of the repair with the same two
policies by means of a MRM.

We assign to each state a reward rate equal to the cost of repairing the
components that are failed in that state. Further, we assume that the
cost of repair per unit time is c.
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Two repairable components: expected cost of repair

In the non-shared repair the following reward rates are assigned:

r2 = 0 ; r1 = c ; r0 = 2 c .

The expected repair cost in steady state per unit time becomes:

E [C (ns)] = c π1 + 2 c π0 = 2λ c (λ+ µ)
(λ+ µ)2 .

In the shared repair case the following reward rates are assigned:

r2 = 0 ; r1 = c ; r0 = c .

The steady state expected repair cost per unit time becomes:

E [C (sh)] = c π1 + c π0 = 2λ c (λ+ µ)
2λ2 + 2λµ+ µ2

.

Comparing the two costs it is easy to see that C (ns) > C (sh). The
non-shared repair policy provides a higher availability but at a higher
expected repair cost.
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Availability defined on a MRM

For a dependability model we define the following reward rates:{
ri = 1 if i ∈ Ωu
ri = 0 if i ∈ Ωd .

(11)

In vector form Equation (11) becomes:

rrr = [rururu rdrdrd ] with rururu = eee and rdrdrd = 000 .

The transient availability A(t) and the steady state availability A can be
rewritten as:

A(t) = πππ(t) rrrT A = πππ rrrT .

Using the reward rates as in Equation (11), the expected interval
availability in the interval (0, t] becomes:

AI(t) = ggg(t) rrrT .

K. Trivedi & A. Bobbio Chapter 9 - Continuous Time Markov Chain: Availability Models Jan 2017 58 / 88



Introduction State classification Dependability Models Markov Reward Models MRM Measures Case study Sensitivity Numerical Methods

Expected Uptime and Expected Downtime

Adopting the reward rates as in Equation (11), the expected uptime
becomes:

UI(t) = bbb(t) rrrT .

In steady state, the expected uptime over any interval TI will then turn
out to be,

UI = TI πππ rrrT = TI A .

Similarly, adopting the following reward rates:

rrr = [rururu rdrdrd ] with rururu = 000 and rdrdrd = eee ,

the expected downtime DI(t) in the interval (0, t] is given by:

DI(t) = bbb(t) rrrT .

In steady state, the expected downtime over any interval TI will then
turn out to be,

DI = TI πππ rrrT = TI U .
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Expected number of transitions

Let qij (i 6= j) be a generic non-zero, non-diagonal entry of the
infinitesimal generator QQQ. State i is directly connected to state j by
means of the transition rate qij . The expected number of transitions
E [Nij(t)] from state i to state j in the interval (0, t] is given by:

E [Nij(t)] = qij

∫ t

0
πi (u) du = qij bi (t) . (12)

In steady state the expected number of transitions i → j per unit time is:

ηij = lim
t→∞

E [Nij(t)]/t = lim
t→∞

qij bi (t)/t = qij πi . (13)

Defining the reward structure, as:{
rk = qij if k = i
rk = 0 if k 6= i

the measures in (12) and (13) are examples of the expected accumulated
reward in the interval (0, t] and the expected reward rate in steady state.
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Expected Number of Visits

When computing the expected number of visits into a state we need to
distinguish whether the visits occur entering or exiting the state.

The expected number of input visits to state j in the interval (0, t]
(denoted as E [Nj(t)]) can be computed as the sum of the expected
number of transitions entering state j .

The transition rates of the transitions entering state j are located on the
j-th column of the infinitesimal generator QQQ (excluding the diagonal
element), hence,

E [Nj(t)] =
n∑

i=1,i 6=j
qij

∫ t

0
πi (u) du =

n∑
i=1,i 6=j

qij bi (t),

in steady state the expected number of visits to state j per unit time is:

ηj =
n∑

i=1,i 6=j
qij πi .
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Expected Number of Visits

Alternatively, the number of visits out of state j can be evaluated as:

E [Nj(t)] =
n∑

i=1,i 6=j
qji

∫ t

0
πj(u) du =

n∑
i=1,i 6=j

qji bj(t) = qjbj(t) ,

in steady state the expected number of visits to state j per unit time is:

ηj =
n∑

i=1,i 6=j
qji πj = qjπj .
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Expected number of system failures/repairs

The expected number of system failures in the interval (0, t], E [NF (t)], is
given by the total expected number of transitions from any state in Ωu to
any state in Ωd .

The transitions that contribute to the expected number of system failures
are those that connects an up state with a down state, and correspond to
the non-zero entries in the partition QQQud . Hence:

E [NF (t)] = bbbu(t)QQQud eeeT
d

where QQQud eeeT
d is the row sum of matrix QQQud .

The expected number of system failures in the interval (0, t] can be
incorporated into a MRM by defining the following reward structure{

rrru = QQQud eeeT
d

rrrd = 000
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Expected number of system failures/repairs

To compute the expected number of system repairs E [NR(t)] we proceed
in a similar way.

If the matrix QQQdu has non-zero entries, then

E [NR(t)] = bbbd (t)QQQdu eeeT
u

Taking the limit (after dividing by t) as t →∞ we obtain the expected
number of system failures ηF and of system repairs ηR , respectively, per
unit time in steady state.

The quantities ηF and ηR can also be seen as the unconditional failure
intensity (failure frequency) and the unconditional repair intensity (repair
frequency).

ηF = πππu QQQud eeeT
d ηR = πππd QQQdu eeeT

u .
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One repairable component

Consider a system with one repairable component; we obtain

E [NF (t)] = b1(t)λ = λ

∫ t

0

[
µ

λ + µ
+ λ

λ + µ
e−(λ+µ) u

]
du

= λµ

λ + µ
t + λ2

(λ + µ)2 (1 − e−(λ+µ) t)

As t →∞ the expected number of system failures grows linearly with
slope λµ/(λ + µ).

In the limit the expected number of failure per unit time in steady state,
that results to be

ηF = λµ/(λ + µ)

K. Trivedi & A. Bobbio Chapter 9 - Continuous Time Markov Chain: Availability Models Jan 2017 65 / 88



Introduction State classification Dependability Models Markov Reward Models MRM Measures Case study Sensitivity Numerical Methods

Equivalent failure and repair rate

In steady state availability modeling it is sometimes useful to have a
high-level view of the system, and reduce the system to a two state
model.

The single up state and the single down state communicate via an
equivalent failure rate and an equivalent repair rate.

Quu

Ωu

Qdd

Ωd

u d

λeq

µeq

Qud

Qdu
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Equivalent failure and repair rate

For this aggregation, we define an equivalent failure rate λeq and an
equivalent repair rate µeq such that the steady state availability of the
original model can be written as:

A = µeq
λeq + µeq

= MTTFeq
MTTFeq + MTTReq

with MTTFeq = 1/λeq and MTTReq = 1/µeq.

λeq and µeq are defined as:

λeq = P{transition u → d takes place | system is up } = ηF
A

µeq = P{transition d → u takes place | system is down } = ηR
1− A

where ηF is the unconditional failure intensity and A is the steady state
availability; similarly, ηR is the unconditional repair intensity.
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High Availability Platform from Sun Microsystem - 1

In the present example, we consider the detailed lower-level CTMC model
of the fan subsystem.

2 1 0

2λF

µF2

λF

µF1

States 2 and 1 are up states while state 0 is a down state. For this
model, writing out the balance equations, we get

2λF π2 = µF1 π1 + µF2 π0
(λF + µF1)π1 = 2λF π2
µF2 π0 = λF π1
π0 + π1 + π2 = 1 .
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High Availability Platform from Sun Microsystem - 2

Solving the balance equations, we get

π2 = (λF µF2 + µF1 µF2)
(2λ2F + 3λF µF2 + µF1 µF2)

π1 = 2λF µF2

(2λ2F + 3λF µF2 + µF1 µF2)

π0 = 2λ2F
(2λ2F + 3λF µF2 + µF1 µF2) .

The steady state unavailability Uss and availability Ass are given by:

Uss = π0 = 2λ2F
(2λ2F + 3λF µF2 + µF1 µF2)

Ass = 1− Uss = (3λF µF2 + µF1 µF2)
(2λ2F + 3λF µF2 + µF1 µF2)

The expected downtime DI of the system in minutes per year is given by:

DI = 60× 24× 365× (1− Ass) .
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High Availability Platform from Sun Microsystem - 3

Substituting,

λF = 3.4905147 × 10−7 f /h
µF1 = 0.24 r/h
µF2 = 0.226415 r/h

we get the steady state availability of the cooling subsystem, the steady
state unavailability and the expected steady state downtime, respectively,

Ass = 0.9999999999955
Uss = 4.48425628 × 10−12

DI = 60× 24× 365× Uss = 2.35692510 × 10−6 min/yr
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Defects Per Million

Defects per million (DPM) is a commonly used service (un)reliability
measure for telecommunication systems.

The metric counts the number of unsuccessful attempts per million
attempts at obtaining a service.

A simple approach to calculate the DPM is to multiply the unavailability
by a constant of proportionality, because if the system is unavailable at
the moment the service is requested, then the request can be considered
lost or unsuccessful.

Given the system unreliability Uss in steady state, the DPM metric can
be approximated as,

DPM = Uss × 106 .
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Defects Per Million for an application server

This example, presents the modeling of an application server that services
Session Initiation Protocol (SIP) request messages.

2 1 3

0

γ

δ

cαp

(1− c)αp

αn

One method of providing fault-
tolerance is to use application
server replication in cold-standby
mode, that acts as the backup for
the primary server.

The server is available for handling incoming requests in State 0. The
unavailability in State 1 is not observable until the failure is detected.
After detection the system enters State 2 in which recovery is initiated.

If the threshold of the number of failures within a certain interval has not
been reached, the process is restarted on the same node otherwise
reaches State 3.
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Defects Per Million for an application server

Writing the balance equations for this model, we get:
γ π0 = cαp π2 + αn π3
δ π1 = γ π0
αp π2 = δ π1
αn π3 = (1− c)αp π2
π0 + π1 + π2 + π3 = 1 .

Solving the balance equations, we get for the steady state availability:

Ass = π0 = 1
γ

[ 1
γ

+ 1
δ

+ 1
αp

+ (1− c)
αn

]−1
.

For this system, the DPM can be approximated as,

DPM = (1− Ass)× 106 .

Substituting 1/γ = 10 days, 1/δ = 1 sec, 1/αp = 30 sec, 1/αn = 15 sec,
and c = 0.95, we get Ass = 0.99996325, and DPM = 36.75.
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IBM Blade Server System availability

Using a CTMC to model the availability of the whole system will be too
complex.

Instead, we will illustrate the use of CTMC for several subsystems.

The high level FT will be combined with the CTMC models of the
subsystems presented here as a hierarchical modeling case study.

This example and the CTMC models are derived from:

W. E. Smith, K. S. Trivedi, L. Tomek, and J. Ackaret, “Availability analysis of blade
server systems,” IBM Systems Journal, vol. 47, no. 4, pp. 621–640, 2008.
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Midplane Availability Model of the IBM Blade Server

2 1 0

3

(1− fm)γm

fmγm

fmγm

δm
δmµm

Balance equations,
γm π2 = µm π3
(fmγm + δm)π1 = (1− fm) γm π2
δm π0 = fmγm (π2 + π1)
µm π3 = δm (π0 + π1)
π0 + π1 + π2 + π3 = 1 .

Solving the above balance equations, the steady state availability is given
as AMd = π2 + π1.

A closed-form expression for the midplane steady state availability is:

AMd = δmµm(γm + δm)
(δm + fmγm)(γmµm + δmµm + γmδm) .
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Cooling and Power Domain of the IBM Blade Server

2

4 3

5

1 0
2γc / 2cpsγps

2(1− cps)γps

γc / γps

µsp

µsp

µ2c / µps2

µ2c / µps2

γc / γps

µc / µps1

Let dC represent the denominator for the closed-form expression for
steady state availability of this submodel.

dC = 1
γ2c

( 1
γc

+ 1
µc

+ 3
µsp

)
+ 1

γc

( 2
µ2sp

+ 2
µ2c

( 1
µc

+ 1
µsp

) + 3
µcµsp

)
+ 2

µcµsp

( 1
µ2c

+ 1
µsp

)
Then, the steady state availability of the cooling subsystem, AC , is:

AC = 1
γc dC

( 2
µcγc

+ ( 1
γc

+ 1
µc

)( 1
γc

+ 1
µsp

) + 2
µsp

( 1
γc

+ 1
µc

)
)
.
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Cooling and Power Domain of the IBM Blade Server

The BladeCenter contains two identical power domain subsystems.

Let dP represents the expression for the denominator.

dP = 1
γ2ps

( 1
γps

+ 2cps
(µps1 − µps2) + 1

µps1
+ 2
µps2

+ 3
µsp

)
+

1
γps

( 2
µ2sp

+ 2
µps2

( 1
µps2

+ 1
µsp

) + 3
µps1µsp

)
+

2
µps1µsp

( 1
µps2

+ 1
µsp

)
.

Then, a closed-form expression for the steady state availability of the
power supply subsystem, AP , is given by:

AP = 1
γps dP

( 2cps
µps1γps

+( 1
γps

+ 1
µps1

)( 1
γps

+ 1
µsp

)+2cps
µsp

( 1
γps

+ 1
µps1

)
)
.
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Processor and Memory Model of the IBM Blade Server

2 3 1

4

5

0

2γcpu/2γmem

cptµboot1 (1− cpt)µboot1/µboot1

γcpu/γmemµspµcpu/µmem

µsp
µcpu/µmem

Let dCPU denote the denominator for the closed-form expression of the
steady state availability,

dCPU =
(

2
µboot1

+ 1
γcpu

+ 2(1− cpt)
µcpu

+ 2(1− cpt)
µsp

)
.

A closed-form expression for the steady state availability of the processor
subsystem, ACPU is:

ACPU = 2(1− cpt)
(γcpu + µsp)dCPU

+ 1
γcpu dCPU
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Processor and Memory Model of the IBM Blade Server

Each blade server has two banks of memory.

Let dM denote the denominator for the closed-form expression of the
steady state memory subsystem availability,

dM =
( 2
µboot1

+ 1
γmem

+ 2
µmem

+ 2
µsp

)
.

A closed-form expression for the steady state availability of the memory
subsystem, AM is:

AM = 2
(γmem + µsp) dM

+ 1
γmem dM

.
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2 1 3

6

4 5

0

2γhdd µsp

γhdd

µsp

µhdd2

µhdd2

γhdd

µcopy

γhdd

µhdd

Let dRAID denote the denominator
for a closed-form expression for the
steady state availability of the disc
subsystem utilizing RAID1:

dRAID = 1
γ2hdd

( 1
γhdd

+ 3
µcopy

+ 2
µhdd

+ 3
µsp

)
+

1
γhdd

( 2
µ2

sp
+ 2
µcopy µhdd2

+ 4
µcopy µhdd

+ 3
µcopy µsp

+ 2
µhdd2 µsp

)
+

2
µcopy µsp

( 1
µsp

+ 1
µhdd2

)
.

Then the steady state RAID availability, ARAID , is given by:

ARAID = 1
γhdddRAID

( 2
µcopyγhdd

+( 1
µsp

+ 1
γhdd

)( 1
γhdd

+ 1
µcopy

)+2( 1
µspγhdd

+ 1
µcopyµsp

)
)
.
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Software Availability Model of the IBM Blade Server

0 1 2

34

γsw

(1-c1)µboot1
c1µboot1

(1-c2)µboot2

c2µboot2

µsp

µsw

A closed-form expression for the steady state availability of the software
subsystem is:

ASw = 1
γsw

( 1
µboot1

+(1−c1) 1
µboot2

+ 1
γsw

+(1−c1+c1c2−c2)( 1
µsw

+ 1
µsp

)
)−1

.
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Parametric Sensitivity Analysis

Sensitivity analysis is performed by computing the partial derivatives of
the output metric of interest with respect to each input parameter.

The derivatives are referred to as sensitivity functions.

The sensitivity function of a given measure Y , which depends on a
parameter θ, is computed as in the following Equations for unscaled and
scaled sensitivity.

Sθ(Y ) = ∂Y
∂θ

SSθ(Y ) = ∂Y
∂θ

( θ
Y

)
The absolute values of sensitivity functions provide the ranking that is
used to compare the degree of influence of each input parameter on the
output metric of interest.
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DPM for an application server: Sensitivity analysis

Returning to the application server Example, the steady state availability
is expressed as,

Ass(γ, δ, αp, αn, c) = π0 = 1
γ

[ 1
γ

+ 1
δ

+ 1
αp

+ (1− c)
αn

]−1
.

The unscaled and scaled sensitivities of Ass are shown in the Table.

Parameter θ Sθ(Ass) SSθ(Ass)
γ − 1

γ2

[
1
δ

+ 1
αp

+ (1−c)
αn

]
× −

[
1
δ

+ 1
αp

+ (1−c)
αn

]
×[

1
γ

+ 1
δ

+ 1
αp

+ (1−c)
αn

]−2 [
1
γ

+ 1
δ

+ 1
αp

+ (1−c)
αn

]−1

δ 1
γδ2

[
1
γ

+ 1
δ

+ 1
αp

+ (1−c)
αn

]−2
1
δ

[
1
γ

+ 1
δ

+ 1
αp

+ (1−c)
αn

]−1

αp
1
γα2

p

[
1
γ

+ 1
δ

+ 1
αp

+ (1−c)
αn

]−2
1
αp

[
1
γ

+ 1
δ

+ 1
αp

+ (1−c)
αn

]−1

αn
1−c
γα2

n

[
1
γ

+ 1
δ

+ 1
αp

+ (1−c)
αn

]−2
1−c
αn

[
1
γ

+ 1
δ

+ 1
αp

+ (1−c)
αn

]−1

c 1
γαn

[
1
γ

+ 1
δ

+ 1
αp

+ (1−c)
αn

]−2
c
αn

[
1
γ

+ 1
δ

+ 1
αp

+ (1−c)
αn

]−1
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DPM for an application server: Sensitivity analysis

Substituting the numerical values taken from the DPM Example, (i.e.,
1/γ = 10 days, 1/δ = 1 sec, 1/αp = 30 sec, 1/αn = 15 sec, and
c = 0.95), we get the numerical values, for the scaled sensitivity only:

Parameter, θ SSθ(Ass)
γ -3.6746e-005
αp 3.4721e-005
c 1.6492e-005
δ 1.1574e-006
αn 8.6802e-007
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Numerical Methods for Steady State Analysis of CTMC

A CTMC is completely specified once its infinitesimal generator QQQ and
the initial probability vector πππ(0) are specified.

Instead, the steady state probability vector πππ does not depend on πππ(0)
and is obtained by solving Equation (4).

Numerical techniques for solving Equation (4) are illustrated and
discussed in [*].

A brief survey is given in the following.

[*] W. Stewart, Introduction to the Numerical Solution of Markov Chains.
Princeton University Press, 1994.
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Power method

The equation for steady state probabilities (4) may be rewritten as

πππ = πππ(III +QQQ/q) = πππQQQ? ,

where q ≥ maxi |qii | and QQQ? = III +QQQ/q.

The derivation and meaning of matrix QQQ? is extensively discussed in
Chapter 10.

The entries q?ij represent the ultimate probability of jumping into state j
when a transition out of state i occurs and t →∞.

Note that all the entries of matrix QQQ? are probabilities, i.e. real numbers

QQQ? is a stochastic matrix and is called the generator matrix of the
Discrete Time Markov Chain (DTMC) embedded into the uniformized
CTMC generated by matrix QQQ.
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Power method

In iterative form the above Equation can be written as:

πππ(i) = πππ(i−1)QQQ? ,

where πππ(i) is the value of the iterate at the end of the i-th step.

We start off the iteration by initializing πππ(0) to an initial guess (whose
values does not influence the final solution), as f.i.

πππ(0) = πππ(0),

Since q > maxi |qii | the embedded DTMC is aperiodic and the iteration
converges to a fixed point.

The number of iterations, k, needed for convergence is governed by the
second largest eigenvalue of QQQ?.
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Successive Over Relaxation (SOR)

The equation for steady state probabilities defines the linear system:

πππQQQ = 000 .

Standard numerical techniques are applicable in this case. Iterative
methods such as successive over-relaxation (SOR) are usually more
convenient.
The matrix QQQ is split into three summands:

QQQ = DDD − LLL−UUU ,

where LLL and UUU are strictly upper triangular and lower triangular
respectively and DDD is a diagonal matrix.

Then the SOR iteration equation can be written as:

πππ(k+1) = πππ(k)[(1− ω) + ωLLLDDD−1] + ωπππ(k+1)UUUDDD−1 ,

where πππ(k) is the k-th iterate for πππ, and ω, is the relaxation parameter.
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