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Distributed Computing: Principles, Algorithms, and Systems

Distributed Shared Memory Abstractions

communicate with Read/Write ops in shared virtual space

No Send and Receive primitives to be used by application
I Under covers, Send and Receive used by DSM manager

Locking is too restrictive; need concurrent access

With replica management, problem of consistency arises!

=⇒ weaker consistency models (weaker than von Neumann) reqd
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Distributed Computing: Principles, Algorithms, and Systems

Advantages/Disadvantages of DSM
Advantages:

Shields programmer from Send/Receive primitives

Single address space; simplifies passing-by-reference and passing complex data
structures

Exploit locality-of-reference when a block is moved

DSM uses simpler software interfaces, and cheaper off-the-shelf hardware. Hence
cheaper than dedicated multiprocessor systems

No memory access bottleneck, as no single bus

Large virtual memory space

DSM programs portable as they use common DSM programming interface

Disadvantages:

Programmers need to understand consistency models, to write correct programs

DSM implementations use async message-passing, and hence cannot be more
efficient than msg-passing implementations

By yielding control to DSM manager software, programmers cannot use their own
msg-passing solutions.
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Issues in Implementing DSM Software

Semantics for concurrent access must be clearly specified

Semantics – replication? partial? full? read-only? write-only?

Locations for replication (for optimization)

If not full replication, determine location of nearest data for access

Reduce delays, # msgs to implement the semantics of concurrent access

Data is replicated or cached

Remote access by HW or SW

Caching/replication controlled by HW or SW

DSM controlled by memory management SW, OS, language run-time system
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Comparison of Early DSM Systems

Type of DSM Examples Management Caching Remote access
single-bus multiprocessor Firefly, Sequent by MMU hardware control by hardware
switched multiprocessor Alewife, Dash by MMU hardware control by hardware

NUMA system Butterfly, CM* by OS software control by hardware
Page-based DSM Ivy, Mirage by OS software control by software

Shared variable DSM Midway, Munin by language software control by software
runtime system

Shared object DSM Linda, Orca by language software control by software
runtime system
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Memory Coherence

si memory operations by Pi

(s1 + s2 + . . . sn)!/(s1!s2! . . . sn!) possible interleavings

Memory coherence model defines which interleavings are permitted

Traditionally, Read returns the value written by the most recent Write

”Most recent” Write is ambiguous with replicas and concurrent accesses

DSM consistency model is a contract between DSM system and application
programmer
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invocation

response response
invocationinvocationinvocation

process

local 
memory manager

op3 opkop2
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Strict Consistency/Linearizability/Atomic Consistency

Strict consistency
1 A Read should return the most recent value written, per a global time axis.

For operations that overlap per the global time axis, the following must hold.

2 All operations appear to be atomic and sequentially executed.

3 All processors see the same order of events, equivalent to the global time
ordering of non-overlapping events.

op1

response response
invocation

response response
invocationinvocationinvocation

process

local 
memory manager

op3 opkop2

Sequential invocations and responses to each Read or Write operation.
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Strict Consistency / Linearizability: Examples
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Initial values are zero. (a),(c) not linearizable. (b) is linearizable
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Linearlzability: Implementation

Simulating global time axis is expensive.

Assume full replication, and total order broadcast support.

(shared var)
int: x ;

(1) When the Memory Manager receives a Read or Write from application:
(1a) total order broadcast the Read or Write request to all processors;
(1b) await own request that was broadcast;
(1c) perform pending response to the application as follows
(1d) case Read: return value from local replica;
(1e) case Write: write to local replica and return ack to application.

(2) When the Memory Manager receives a total order broadcast(Write, x, val) from network:

(2a) write val to local replica of x .

(3) When the Memory Manager receives a total order broadcast(Read, x) from network:

(3a) no operation.
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Linearizability: Implementation (2)

When a Read in simulated at other processes, there is a no-op.

Why do Reads participate in total order broadcasts?

Reads need to be serialized w.r.t. other Reads and all Write operations. See
counter-example where Reads do not participate in total order broadcast.

broadcast

Read(x,4)

Read(x,0)

Write(x,4)
P_i

P_j

P_k

total order
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Sequential Consistency

Sequential Consistency.

The result of any execution is the same as if all operations of the processors were
executed in some sequential order.

The operations of each individual processor appear in this sequence in the local
program order.

Any interleaving of the operations from the different processors is possible. But all

processors must see the same interleaving. Even if two operations from different

processors (on the same or different variables) do not overlap in a global time scale, they

may appear in reverse order in the common sequential order seen by all. See examples

used for linearizability.
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Sequential Consistency

Only Writes participate in total order BCs. Reads do not because:

all consecutive operations by the same processor are ordered in that same order (no
pipelining), and

Read operations by different processors are independent of each other; to be
ordered only with respect to the Write operations.

Direct simplification of the LIN algorithm.

Reads executed atomically. Not so for Writes.

Suitable for Read-intensive programs.
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Sequential Consistency using Local Reads

(shared var)
int: x ;

(1) When the Memory Manager at Pi receives a Read or Write from application:
(1a) case Read: return value from local replica;
(1b) case Write(x,val): total order broadcasti (Write(x,val)) to all processors including itself.

(2) When the Memory Manager at Pi receives a total order broadcastj (Write, x, val) from network:

(2a) write val to local replica of x ;

(2b) if i = j then return ack to application.
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Sequential Consistency using Local Writes

(shared var)
int: x ;

(1) When the Memory Manager at Pi receives a Read(x) from application:

(1a) if counter = 0 then
(1b) return x
(1c) else Keep the Read pending.

(2) When the Memory Manager at Pi receives a Write(x,val) from application:

(2a) counter ←− counter + 1;
(2b) total order broadcasti the Write(x , val);
(2c) return ack to the application.

(3) When the Memory Manager at Pi receives a total order broadcastj (Write, x, val) from network:

(3a) write val to local replica of x .
(3b) if i = j then
(3c) counter ←− counter − 1;
(3d) if (counter = 0 and any Reads are pending) then
(3e) perform pending responses for the Reads to the application.

Locally issued Writes get acked immediately. Local Reads are delayed until the locally preceding

Writes have been acked. All locally issued Writes are pipelined.
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Causal Consistency
In SC, all Write ops should be seen in
common order.
For causal consistency, only causally
related Writes should be seen in common
order.

Causal relation for shared memory
systems

At a processor, local order of events
is the causal order

A Write causally precedes Read
issued by another processor if the
Read returns the value written by
the Write.

The transitive closure of the above
two orders is the causal order

Total order broadcasts (for SC) also
provide causal order in shared memory
systems.
Can a simpler algorithm for CO be
devised?
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Pipelined RAM or Processor Consistency

PRAM memory

Only Write ops issued by the same processor are seen by others in the order they
were issued, but Writes from different processors may be seen by other processors
in different orders.

PRAM can be implemented by FIFO broadcast? PRAM memory can exhibit
counter-intuitive behavior, see below.
(shared variables)
int: x , y ;

Process 1 Process 2

... ...
(1a) x ←− 4; (2a) y ←− 6;
(1b) if y = 0 then kill(P2). (2b) if x = 0 then kill(P1).
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Slow Memory

Slow Memory

Only Write operations issued by the same processor and to the same memory
location must be seen by others in that order.
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W(x,2)
P

P
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R(x,7)R(x,0)
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(a) Slow memory but not PRAM consistent
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(b) Violation of slow memory consistency
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Hierarchy of Consistency Models

no consistency model

Linearizability/
Atomic consistency/
Strict consistency

Sequential consistency

Causal consistency

Slow memory

pipelined RAM (PRAM)
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Synchronization-based Consistency Models: Weak
Consistency

Consistency conditions apply only to special ”synchronization” instructions, e.g.,
barrier synchronization

Non-sync statements may be executed in any order by various processors.

E.g.,weak consistency, release consistency, entry consistency

Weak consistency:
All Writes are propagated to other processes, and all Writes done elsewhere are brought
locally, at a sync instruction.

Accesses to sync variables are sequentially consistent

Access to sync variable is not permitted unless all Writes elsewhere have completed

No data access is allowed until all previous synchronization variable accesses have
been performed

Drawback: cannot tell whether beginning access to shared variables (enter CS), or

finished access to shared variables (exit CS).
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Synchronization based Consistency Models: Release
Consistency and Entry Consistency
Two types of synchronization Variables: Acquire and Release

Release Consistency

Acquire indicates CS is to be entered. Hence all Writes from other processors should be
locally reflected at this instruction

Release indicates access to CS is being completed. Hence, all Updates made locally should
be propagated to the replicas at other processors.

Acquire and Release can be defined on a subset of the variables.

If no CS semantics are used, then Acquire and Release act as barrier synchronization
variables.

Lazy release consistency: propagate updates on-demand, not the PRAM way.

Entry Consistency

Each ordinary shared variable is associated with a synchronization variable (e.g., lock,
barrier)

For Acquire /Release on a synchronization variable, access to only those ordinary variables
guarded by the synchronization variables is performed.
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Shared Memory Mutual Exclusion: Bakery Algorithm

(shared vars)
array of boolean: choosing [1 . . . n];
array of integer: timestamp[1 . . . n];

repeat
(1) Pi executes the following for the entry section:
(1a) choosing [i ]←− 1;
(1b) timestamp[i ]←− maxk∈[1...n](timestamp[k]) + 1;
(1c) choosing [i ]←− 0;
(1d) for count = 1 to n do
(1e) while choosing [count] do no-op;
(1f) while timestamp[count] 6= 0 and (timestamp[count], count) < (timestamp[i ], i) do
(1g) no-op.
(2) Pi executes the critical section (CS) after the entry section

(3) Pi executes the following exit section after the CS:
(3a) timestamp[i ]←− 0.
(4) Pi executes the remainder section after the exit section
until false;
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Shared Memory Mutual Exclusion

Mutual exclusion
I Role of line (1e)? Wait for others’ timestamp choice to stabilize ...
I Role of line (1f)? Wait for higher priority (lex. lower timestamp) process to

enter CS

Bounded waiting: Pi can be overtaken by other processes at most once (each)

Progress: lexicographic order is a total order; process with lowest timestamp
in lines (1d)-(1g) enters CS

Space complexity: lower bound of n registers
Time complexity: (n) time for Bakery algorithm
Lamport’s fast mutex algorithm takes O(1) time in the absence of contention.
However it compromises on bounded waiting. Uses W (x)− R(y)−W (y)− R(x)
sequence necessary and sufficient to check for contention, and safely enter CS
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Lamport’s Fast Mutual Exclusion Algorithm

(shared variables among the processes)
integer: x, y ; // shared register initialized
array of boolean b[1 . . . n]; // flags to indicate interest in critical section

repeat
(1) Pi (1 ≤ i ≤ n) executes entry section:

(1a) b[i ]←− true;
(1b) x ←− i ;
(1c) if y 6= 0 then
(1d) b[i ]←− false;
(1e) await y = 0;
(1f) goto (1a);
(1g) y ←− i ;
(1h) if x 6= i then
(1i) b[i ]←− false;
(1j) for j = 1 to N do
(1k) await ¬b[j];
(1l) if y 6= i then
(1m) await y = 0;
(1n) goto (1a);
(2) Pi (1 ≤ i ≤ n) executes critical section:

(3) Pi (1 ≤ i ≤ n) executes exit section:

(3a) y ←− 0;
(3b) b[i ]←− false;
forever.
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Shared Memory: Fast Mutual Exclusion Algorithm

Need for a boolean vector of size n: For Pi , there needs to be a trace of its identity
and that it had written to the mutex variables. Other processes need to know who (and
when) leaves the CS. Hence need for a boolean array b[1..n].

Process Pi Process Pj Process Pk variables

Wj(x) 〈x = j , y = 0〉
Wi (x) 〈x = i, y = 0〉
Ri (y) 〈x = i , y = 0〉

Rj(y) 〈x = i , y = 0〉
Wi (y) 〈x = i , y = i〉

Wj(y) 〈x = i , y = j〉
Ri (x) 〈x = i , y = j〉

Wk(x) 〈x = k, y = j〉
Rj(x) 〈x = k, y = j〉

Examine all possible race conditions in algorithm code to analyze the
algorithm.
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Hardware Support for Mutual Exclusion

Test&Set and Swap are each executed atomically!!
(shared variables among the processes accessing each of the different object types)
register: Reg ←− initial value; // shared register initialized
(local variables)
integer: old ←− initial value; // value to be returned

(1) Test&Set(Reg) returns value:

(1a) old ←− Reg ;
(1b) Reg ←− 1;
(1c) return(old).

(2) Swap(Reg , new) returns value:

(2a) old ←− Reg ;
(2b) Reg ←− new ;
(2c) return(old).
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Mutual Exclusion using Swap

(shared variables)
register: Reg ←− false; // shared register initialized
(local variables)
integer: blocked ←− 0; // variable to be checked before entering CS

repeat
(1) Pi executes the following for the entry section:
(1a) blocked ←− true;
(1b) repeat
(1c) Swap(Reg , blocked);
(1d) until blocked = false;
(2) Pi executes the critical section (CS) after the entry section

(3) Pi executes the following exit section after the CS:
(3a) Reg ←− false;
(4) Pi executes the remainder section after the exit section
until false;
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Mutual Exclusion using Test&Set, with Bounded Waiting
(shared variables)
register: Reg ←− false; // shared register initialized
array of boolean: waiting [1 . . . n];
(local variables)
integer: blocked ←− initial value; // value to be checked before entering CS

repeat
(1) Pi executes the following for the entry section:
(1a) waiting [i ]←− true;
(1b) blocked ←− true;
(1c) while waiting [i ] and blocked do
(1d) blocked ←− Test&Set(Reg);
(1e) waiting [i ]←− false;
(2) Pi executes the critical section (CS) after the entry section

(3) Pi executes the following exit section after the CS:
(3a) next ←− (i + 1)mod n;
(3b) while next 6= i and waiting [next] = false do
(3c) next ←− (next + 1)mod n;
(3d) if next = i then
(3e) Reg ←− false;
(3f) else waiting [next]←− false;
(4) Pi executes the remainder section after the exit section
until false;
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Wait-freedom

Synchronizing asynchronous processes using busy-wait, locking, critical
sections, semaphores, conditional waits etc. =⇒ crash/ delay of a process
can prevent others from progressing.

Wait-freedom: guarantees that any process can complete any synchronization
operation in a finite number of low-level steps, irresp. of execution speed of
others.

Wait-free implementation of a concurrent object =⇒ any process can
complete on operation on it in a finite number of steps, irrespective of
whether others crash or are slow.

Not all synchronization problems have wait-free solutions, e.g.,
producer-consumer problem.

An n − 1-resilient system is wait-free.
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Register Hierarchy and Wait-freedom

During concurrent access, behavior of register is unpredictable

For a systematic study, analyze most elementary register, and build complex
ones based on the elementary register

Assume a single reader and a single writer

Safe register

A Read that does not overlap with a Write returns the most recent value written
to that register. A Read that overlaps with a Write returns any one of the possible
values that the register could ever contain.

2

P

P

1

2

P3

Write1  (x,−6)3

1 1Write1  (x,4) Write2  (x,6)

Read1  (x,?)  Read2  (x,?) Read3  (x,?)2 2
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Register Hierarchy and Wait-freedom (2)

Regular register

Safe register + if a Read overlaps with a Write, value returned is the value before
the Write operation, or the value written by the Write.

Atomic register

Regular register + linearizable to a sequential register

2

P

P

1

2

P3

Write1  (x,−6)3

1 1Write1  (x,4) Write2  (x,6)

Read1  (x,?)  Read2  (x,?) Read3  (x,?)2 2
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Classification of Registers and Register Constructions

Table 12.2. Classification by type, value,
write-access, read-access

Type Value Writing Reading

safe binary Single-Writer Single-Reader
regular integer Multi-Writer Multi-Reader
atomic

R1 . . . Rq are weaker registers that are used
to construct stronger register types R.
Total of n processes assumed.

i

R
1

R q

Reads from individual R

Writes to individual R

i

R
Write to R

Read from R
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Construction 1: SRSW Safe to MRSW Safe

Single Writer P0, Readers P1 . . .Pn. Here, q = n.

Registers could be binary or integer-valued

Space complexity: n times that of a single register

Time complexity: n steps

(shared variables)
SRSW safe registers R1 . . . Rn ←− 0; // Ri is readable by Pi , writable by P0

(1) Write(R, val) executed by single writer P0

(1a) for all i ∈ {1 . . . n} do
(1b) Ri ←− val .

(2) Readi (R, val) executed by reader Pi , 1 ≤ i ≤ n

(2a) val ←− Ri

(2b) return(val).

Construction 2: SRSW Regular to MRSW Regular is similar.
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Construction 3: Bool MRSW Safe to Integer MRSW Safe

For integer of size m, log(m) boolean registers needed.

P0 writes value in binary notation; each of the n readers reads log(m)
registers

Space complexity log(m). Time complexity log(m).

(shared variables)
boolean MRSW safe registers R1 . . . Rlog(m) ←− 0; // Ri readable by all, writable
by P0.

(local variable)
array of boolean: Val [1 . . . log(m)];

(1) Write(R, Val [1 . . . log m]) executed by single writer P0

(1a) for all i ∈ {1 . . . log(m)} do
(1b) Ri ←− Val [i ].

(2) Readi (R, Val [1 . . . log(m)]) executed by reader Pi , 1 ≤ i ≤ n

(2a) for all j ∈ {1 . . . log m} do Val [j ]←− Rj

(2b) return(Val [1 . . . log(m)]).
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Construction 4: Bool MRSW Safe to Bool MRSW Regular

q = 1. P0 writes register R1. The n readers all read R1.
If value is α before; Write is to write α, then a concurrent Read may get
either α or 1− α. How to convert to regular register?
Writer locally tracks the previous value it wrote. Writer writes new value only
if it differs from previously written value.
Space and time complexity O(1).
Cannot be used to construct binary SRSW atomic register.

(shared variables)
boolean MRSW safe register: R′ ←− 0; // R′ is readable by all, writable by P0.

(local variables)
boolean local to writer P0: previous ←− 0;

(1) Write(R, val) executed by single writer P0

(1a) if previous 6= val then
(1b) R′ ←− val ;
(1c) previous ←− val .

(2) Read(R, val) process Pi , 1 ≤ i ≤ n

(2a) val ←− R′;
(2b) return(val).
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Construction 5: Boolean MRSW Regular to Integer
MRSW Regular

q = m, the largest integer. The integer is stored in unary notation.

P0 is writer. P1 to Pn are readers, each can read all m registers.

Readers scan L to R looking for first ”1”; Writer writes ”1” in Rval and then
zeros out entries R to L.

Complexity: m binary registers, O(m) time.
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Construction 5: Algorithm

(shared variables)
boolean MRSW regular registers R1 . . . Rm−1 ←− 0; Rm ←− 1;

// Ri readable by all, writable by P0.
(local variables)
integer: count;

(1) Write(R, val) executed by writer P0

(1a) Rval ←− 1;
(1b) for count = val − 1 down to 1 do
(1c) Rcount ←− 0.

(2) Readi (R, val) executed by Pi , 1 ≤ i ≤ n

(2a) count = 1;
(2b) while Rcount = 0 do
(2c) count ←− count + 1;
(2d) val ←− count;
(2e) return(val).
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Illustrating Constructions 5 and 6:

Write 1

1
R R R

2 3

Zero out entries

Scan for first "1"; then scan backwards 

and update pointer to lowest−ranked
register containing a "1"

R
mval

R

R

Scan for "1"; return index. (bool MRSW reg to int MRSW reg)

(bool MRSW atomic to int MRSW atomic)

Read(     )R

Write val to R
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Construction 6: Boolean MRSW regular to integer-valued
MRSW atomic

Construction 5 cannot be used to construct a MRSW atomic register because
of a possible inversion of values while reading.

In example below, Read2b returns 2 after the earlier Read1b returned 3, and
the value 3 is older than value 2.

Such an inversion of read values is permitted by regular register but not by an
atomic register.

One solution is to require Reader to also scan R to L after it finds ”1” in some
location. In the backward scan, the ”smallest” value is returned to the Read.

Space complexity: m binary registers, Time complexity O(m)

b

P

P

1

Write(R  ,1)2 1Write(R  ,0)

Write2  (R,3)Write1  (R,2)

Write(R  ,1)3 Write(R  ,0) Write(R  ,0)
1

3Read(R  ,1)Read(R  ,0)2Read(R  ,0) Read(R  ,1)2Read(R  ,0)1

Read1  (R,?) returns 3 Read2  (R,?) returns 2

2

b

b

a

a a
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Construction 6: Algorithm

(shared variables)
boolean MRSW regular registers R1 . . . Rm−1 ←− 0; Rm ←− 1.

// Ri readable by all; writable by P0.

(local variables)
integer: count, temp;

(1) Write(R, val) executed by P0

(1a) Rval ←− 1;
(1b) for count = val − 1 down to 1 do
(1c) Rcount ←− 0.

(2) Readi (R, val) executed by Pi , 1 ≤ i ≤ n

(2a) count ←− 1;
(2b) while Rcount = 0 do
(2c) count ←− count + 1;
(2d) val ←− count;
(2e) for temp = count down to 1 do
(2f) if Rtemp = 1 then
(2g) val ←− temp;
(2h) return(val).
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Construction 7: Integer MRSW Atomic to Integer MRMW
Atomic

q = n, each MRSW register Ri is readable by all, but writable by Pi

With concurrent updates to various MRSW registers, a global linearization
order needs to be established, and the Read ops should recognize it.

Idea: similar to the Bakery algorithm for mutex.

Each register has 2 fields: R.data and R.tag , where tag = 〈pid , seqno〉.
The Collect is invoked by readers and the Writers The Collect reads all
registers in no particular order.

A Write gets a tag that is lexicographically greater then the tags read by it.

The Writes (on different registers) get totally ordered (linearized) using the
tag

A Read returns data corresp. lexicographically most recent Write

A Read gets ordered after the Write whose value is returned to it.
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Construction 7: Integer MRSW Atomic to Integer MRMW
Atomic

(shared variables)
MRSW atomic registers of type 〈data, tag〉, where tag = 〈seq no, pid〉: R1 . . . Rn;

(local variables)
array of MRSW atomic registers of type 〈data, tag〉, where tag = 〈seq no, pid〉: Reg Array [1 . . . n];
integer: seq no, j, k;

(1) Writei (R, val) executed by Pi , 1 ≤ i ≤ n

(1a) Reg Array ←− Collect(R1, . . . , Rn);
(1b) seq no ←− max(Reg Array [1].tag .seq no, . . . Reg Array [n].tag .seq no) + 1;
(1c) Ri ←− (val, 〈seq no, i〉).

(2) Readi (R, val) executed by Pi , 1 ≤ i ≤ n

(2a) Reg Array ←− Collect(R1, . . . , Rn);
(2b) identify j such that for all k 6= j , Reg Array [j].tag > Reg Array [k].tag ;
(2c) val ←− Reg Array [j].data;
(2d) return(val).

(3) Collect(R1, . . . , Rn) invoked by Read and Write routines

(3a) for j = 1 to n do
(3b) Reg Array [j]←− Rj ;
(3c) return(Reg Array).
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Construction 8: Integer SRSW Atomic to Integer MRSW
Atomic

Naive solution: q = n. n replicas of R and the Writer writes to all replicas.

Fails! Readi and Readj are serial, and both concurrent with Write. Readi

could get the newer value and Readj could get the older value because this
execution is non-serializable.

Each reader also needs to know what value was last read by each other reader!

Due to SRSW registers, construction needs n2 mailboxes for all reader
process pairs

Reader reads value set aside for it by other readers, as well as the value set
aside for it by the writer (n such mailboxes; from Writer to each reader.

Last Read [0..n] is local array.

Last Read Values[1..n, 1..n] are the reader-to-reader mailboxes.
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Construction 8: Data Structure

R

1,1 1,2 1,n

2,1 2,2 2,n

n,nn,1 n,2

R
1

R
2

Rn

mailboxes Last_Read_Values[1..n,1..n]

(SRSW atomic registers)

SRSW atomic registers, one per process
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Construction 8: Algorithm
(shared variables)

SRSW atomic register of type 〈data, seq no〉, where data, seq no are integers: R1 . . . Rn ←− 〈0, 0〉;
SRSW atomic register array of type 〈data, seq no〉, where data, seq no are integers:

Last Read Values[1 . . . n, 1 . . . n] ←− 〈0, 0〉;

(local variables)
array of 〈data, seq no〉: Last Read [0 . . . n];
integer: seq, count;

(1) Write(R, val) executed by writer P0

(1a) seq ←− seq + 1;
(1b) for count = 1 to n do
(1c) Rcount ←− 〈val, seq〉. // write to each SRSW register

(2) Readi (R, val) executed by Pi , 1 ≤ i ≤ n

(2a) 〈Last Read [0].data, Last Read [0].seq no〉 ←− Ri ; // Last Read [0] stores value of Ri

(2b) for count = 1 to n do // read into Last Read [count], the latest values stored for Pi by Pcount

(2c) 〈Last Read [count].data, Last Read [count].seq no〉 ←−
〈Last Read Values[count, i ].data, Last Read Values[count, i ].seq no〉;

(2d) identify j such that for all k 6= j , Last Read [j].seq no ≥ Last Read [k].seq no;
(2e) for count = 1 to n do
(2f) 〈Last Read Values[i, count].data, Last Read Values[i, count].seq no〉 ←−

〈Last Read [j].data, Last Read [j].seq no〉;
(2g) val ←− Last Read [j].data;
(2h) return(val).
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Wait-free Atomic Snapshots of Shared Objects using
Atomic MRSW objects

Given a set of SWMR atomic registers R1 . . . Rn, where Ri can be written only by Pi and
can be read by all processes, and which together form a compound high-level object,
devise a wait-free algorithm to observe the state of the object at some instant in time.
The following actions are allowed on this high-level object.

Scani : This action invoked by Pi returns the atomic snapshot which is an
instantaneous view of the object (R1, . . . , Rn) at some instant between the
invocation and termination of the Scan.

Updatei (val): This action invoked by Pi writes the data val to register Ri .

snapshot object composed of n MRSW atomic registers

data seq_no old_snapshot data seq_no old_snapshot

R
1

Rn

P P1 n

UPDATE
UPDATE

ScanScan
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Wait-free Atomic Snapshot of MRSW Object

To get an instantaneous snapshot, double-collect (2 scans) may always fail because
Updater may intervene.

Updater is inherently more powerful than Scanner

To have the same power as Scanners, Updater is required to first do double-collect
and then its update action. Additionally, the Updater also writes the snapshot it
collected, in the Register.

If a scanner’s double collect fails (because some Updater has done an Update in
between), the scanner can ”borrow” the snapshot recorded by the Updater in its
register.

changed [k] tracks the number of times Pk spoils Pi ’s double-collect.

changed [k] = 2 implies the second time the Updater spoiled the scanner’s
double-collect, the update was initiated after the Scanner began its task. Hence the
Updater’s recorded snapshot is within the time duration of the scanner’s trails.

Scanner can borrow Updater’s recorded snapshot.

Updater’s recorded snapshot may also be borrowed. This recursive argument holds
at most n − 1 times; the nth time, some double-collect must be successful.

Scans and Updates get linearized.

Local and shared space complexity both are O(n2). Time complexity O(n2)

A. Kshemkalyani and M. Singhal (Distributed Computing) Distributed Shared Memory CUP 2008 46 / 48



Distributed Computing: Principles, Algorithms, and Systems

Wait-free Atomic Snapshot of MRSW Object: Algorithm
(shared variables)
MRSW atomic register of type 〈data, seq no, old snapshot〉, where data, seq no are of type integer, and
old snapshot[1 . . . n] is array of integer: R1 . . . Rn;

(local variables)
array of int: changed [1 . . . n];
array of type 〈data, seq no, old snapshot〉: v1[1 . . . n], v2[1 . . . n], v [1 . . . n];

(1) Updatei (x)

(1a) v [1 . . . n]←− Scani ;
(1b) Ri ←− (x, Ri .seq no + 1, v [1 . . . n]).

(2) Scani

(2a) for count = 1 to n do
(2b) changed [count]←− 0;
(2c) while true do
(2d) v1[1 . . . n]←− collect();
(2e) v2[1 . . . n]←− collect();
(2f) if (∀k, 1 ≤ k ≤ n)(v1[k].seq no = v2[k].seq no) then
(2g) return(v2[1].data, . . . , v2[n].data);
(2h) else
(2i) for k = 1 to n do
(2j) if v1[k].seq no 6= v2[k].seq no then
(2k) changed [k]←− changed [k] + 1;
(2l) if changed [k] = 2 then
(2m) return(v2[k].old snapshot).
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Wait-free Atomic Snapshots of Shared Objects using
Atomic MRSW Objects

j

Double collect

Collect Collect
P
i

i
P

j j

changed[j]=1 changed[j]=2

P   writes in P   writes inj j

Pj

this periodthis period

P   writes P   writes j j

nested within P_j’s SCAN. And so on recursively, up to n times.

(a) Double collect sees identical values in both Collects

(b) P_j’s Double−Collect nested within P_i’s SCAN. The Double−Collect

is successful, or P_j borrowed snapshot from P_k’s Double−Collect

j
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