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Problems
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3.1

3.2

Determine the Cauchy initial conditions such that the solution to the initial
value problem has only positive frequency components. Discuss the conse-
quences of this. HINT: Example 3.1.
The plane wave amplitude of the negative frequencies was found in Exam-
ple 3.1 to be
1. i »
A(K, =) = S (K) = i, (K) e~k
where , (K) and u; (K) are the spatial Fourier transforms of the Cauchy
conditions at time ¢g. In order for this amplitude to vanish we then require
that
~ (. - R
ro (K) = —= 4, (K) — @, (K) = —icKuy, (K)
which, upon inverse Fourier transformation yields

0

au(r,t)h:to = —ZC/ dgK Kﬂto (K)eiK.T = —CV V2u(r,t)|t:t0,

where VV2 is the integral (convolutional) operator

VV2 = (21)3 /d?’KKeiK'r.
™

Compute the plane wave expansion of the free field propagator gf(R,7) =
9+ (R, 7) — g— (R, 7) by employing the general procedure described in Exam-
ple 3.1. [Hint: See problem 1.12.]

The Cauchy initial conditions for the free space propagator were computed
in Problem 1.12 where they were found to be

2 0'(R)

0
gf(R? 7)|r=0, ng(R; T)|7=0 = ¢ iR’

where §’(R) denotes the derivative of the delta function. We then find using
the development employed in Example 3.1 that

i (K), AK, —cK) = ———a (K)

A(K, CK) = —2C—Kut0

_r
2cK
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3.3

where
. &(R) _ixr
’LL;O(K) :/ngCQES .
The simplest way to proceed is to to use the easily proven identity
&'(R)
IR) = - 2R

which yields
iy (K) = —¢ / BRSR)e T HR = 2,

The plane wave amplitudes are then found to be
ic ic

ﬁ, A(K,—CK):ﬁ

The plane wave expansion of the free field propagator is then found from
Eq.(3.11) to be

1 i 1 i
A 1) = d3K _ (K- r—cKt) /dgK i(K-r+cKt)
95(r,?) (27r)3/ =35l e 9K ¢

ic e .
- _ kdk dfd, ik(s'r—ct)
oy |, 19 |

where we have set K = k.
We also note that this leads directly to the following expansion for the
frequency domain free field propagator G¢(r,w)
” _
Gylr,w) = —SZ— dQ, eiks T,

2
™ 4

AK,cK) = —

an expansion that will be used frequently in subsequent chapters.
Compute the plane wave expansion Eq.(3.11) of the field radiated by a source
q(r,t) for times t exceeding the turn-off time ¢ = Ty of the source. Hint:
Express the field for ¢ > Tj in terms of the free field propagator.

If t > Ty we can express the primary field solution to the radiation problem
in terms of the free field propagator in the form

u(r,t):/ dt’/ dr’ q(x’,t)gr(x — 1/t —t).
— 00 T0

Using the plane wave expansion of the free field propagator from the previous
problem we obtain

= ic > ik(s-(r—r')—c(t—t’
u(r,t):/ dt’/ d?’r’q(r’,t’){—m/ kdkA Q) etk (s (r=r)—et=t
—00 T0 —00 ™

ic o .
- __ kdk dQ, Gk L ik(s'r—ct)
gtaep | Mk [ et ke

where

tj(ks,ck):/ dt’/ d3r/q(r/,t/)eﬂ'k(s.rurct/)
— 00 T0



25

Problems

3.4

3.5

is the space-time Fourier transform of the source ¢(K,w) evaluated on the

surface of the Ewald sphere K = ks with k = w/c.

Determine a source ¢(r, t) supported on the space-time boundary ¢ = t( that

radiates a field for ¢ > ¢y which has prescribed Cauchy conditions at ¢t =ty > 0.
On equating the primary field solution of a field radiated by a 3D source to

the solution to the initial value problem given in Eq.(1.40a) we obtain

To
/ dt/ dr'q(r' gy (r =1’ t =)

:—/d?”uto( ) 30 (0 = st = 10) = (e = 1t =t ()]

If we now require the source to be supported on the boundary ¢ = t¢ we obtain
/ d*r" qry (v)) g4 (r — ', — to)
To

1 0
T2 / d*r’ [ueg (r/)(?_tong(r -1t —to) — g+ (r —r', t —to)uy, (x')].

which requires that

10 (8") = 40 1) o301~ t0) — i (#)6( — 10)]

Find the plane wave expansion in the form of Eq.(3.16a) of a wave field that
satisfies the homogeneous Helmholtz equation over all of space and whose
Dirichlet and Neumann conditions on the plane z = 0 are Up(z,y,w) and
Uj(z, y,w), respectively. What must be true of these boundary conditions if
the field is to be finite over all of space?

On taking the spatial Fourier transform of both sides of Eq.(3.16a) we find
that

~ 2
00K p) = A (o) + AT ),
UO/ (Kpa w) = _27T[A(+) (kJr, w) - A(i)(kia w)]
Solving these two coupled equations for the plane wave amplitudes A we
obtain
1. - .
At (kJraW) = _E[WUO (Ky) + UO/(KP)]a
_ 1. = ~
Al )(kJraW) = _E[WUO(KP) - Ué(Kp)]-
The required plane wave expansion is then given by
i [ &K
82
i [&K,
82

Ulr,w) = — 21T (K,) + Uy (K, el

21inUo(K,) — Ug (K,)Je’™ ™.
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3.6

3.7

In order for the field to be finite over all of space requires that the evanescent
plane waves in the above expansion vanish and this requires that

i7Uo(K,) + Ug(K,) =0, V[K,| >k

which will occur if and only if both Up(K,) and Uj(K,) vanish over the
evanescent region.

Compute the plane wave expansion found in Problem 3.5 for a single plane
wave propagating along the positive z axis; i.e., U(r,w) = exp(ikz).

For this case we have that
UO(KPaw) = (27T)25(KP)5 Ué(KpaW) = (277)2ik5(Kp)
from which we find that

AM (K w) = 41 [i7(27)26(K ) + (2m)%ik6 (K, )] = —mi(y + k)5 (K,)

™

AC I ) = — (27 0(K,) — @ik (K,)] = iy — K)3(K, ).

™

The required plane wave expansion is then given by

T on
i [d*K,
27 vy

U(r,w) : /dfp [—wi(”y+k)5(Kp)]eik+'”

[=mi(y — k)O(K,)le™ T,

which, of course, reduces to exp(ikz) as it must.

Compute the plane wave amplitudes and plane wave expansion for a monochro-
matic wave field that propagates into the r.h.s. z > 0 and whose Dirichlet
conditions over the plane z = 0 is the Rect function

1 —Xo<z<+Xg

0 else.

Rect(z) = {

Again we make use of the general plane wave expansion given in Eq.(3.16a)
which, for a wavefield propagating into the r.h.s. z > 0, must have

1 .. - - . e
A(i)(kﬂw) = __W[WUO (Kp) - U(;(Kp)] =0— Ué(Kp) =1yl (Kp)a
so that
1 .. - N i~
AP (0t w) = =900 (K,) + T5(K,)] = 5100 (K, ).

The transform Uy (K,) is readily computed and we find that

sin K, X,

AN (Kt w) = —2i
k™, w) "%

O(Ky)
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3.8

where K, = (K, K,). The plane wave expansion is then found to be

i [d®K, . sinK,X, it
Urw) = 5= [ 2 (-2 T ERa K, e
:l/oo deSiﬂlfngoei(KIH\/mz)_

T J o x

Use the method of stationary phase to derive Eq.(3.17) from the plane wave
expansions in Egs.(3.16a).

The method of stationary phase is treated in some depth in Born and
Wolf and its specific use in evaluating the asymptotic expansion of angular
spectrum integrals is covered in depth in Mandel and Wolf both given in the
bibliography of the book. Here we will use the results for the general case of
2D integrals treated in Appendix III of Born and Wolf and refer the reader
to Mandel and Wolf for a more complete treatment.

For simplicity we will only consider U*t) which is the first term in Eq.(3.16a)
and which we can write the in the form

ik A(kp, k -
U(Jr)(r,w) _ ;_Tr/dpdq ( p;n Qaw)ezk(prrqermz),

where K, = kp, K, = kq, k* = kpx+kqy+kmz and m = /1 —p? — ¢>. It is
shown in Appendix IIT of Born and Wolf that the asymptotic approximation
of an integral of the form given above is given by

A(kpo, k -
U(+) (x, Y, 2, w) ~ — \/|aﬁo’f’72| ( pOT;LOQO;w) elk(?ox+qoy+mgz) (31)

where pg, qo are the so-called critical or stationary points satisfying

0 0
8—p(px+qy+m2) =0, 8—q(px+qy+m2) =0

with m = /1 — p? — ¢2. The various quantities appearing in Eq.(3.1) are
defined as

2 32 32
a= 3—p2(px+qy+mZ), B = 8—q2(px+qy+mZ), V= 8p3q(px+qy+m2)
and
+1 af>~% a>0
c=<-1 aB>+% a<0
—i af <~
We find that
0 0
8—p(px+qy+m2) =z - %Z, 8—q(px+qy+m2) =y- %z,
yielding the following equations for the stationary points
x—p—oz:(), y—q—oz:O. (3.2)

mo mo
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If we now couple the above set of equations with mg = /1 — pg — ¢ and r =

Va2 + y? 4 22 one finds that the solution to Egs.(3.2) are given by pg = x/r
and go = y/r. We also find that

O[:—p0+m0, 6:—

m3

q + mi z
0 Oa Y =DPoqdo—3-
m,

3
My 0

This then yields

o [/ + G/ P+ G2 2
[ (Z/T)g ][ (Z/T)g ] ( / ) (y/ ) (Z/T) - 22,

and af8 > v and o < 0 since z > 0 so that o < 0. Putting the above together

af—y* =z

yields
T Ve a7 Alkpo.kdo.w)/mo eik(PoT+a0utmg =)
z T €T Y ~ eikr
U (z,y, z,w) ~ - —A(k— k=, w) ethr = AP (kT w) .
r z roor r

3.9 Use the multipole expansion of the plane wave given in Eq.(3.35) of Exam-
ple 3.4 in the plane wave expansion Eq.(3.9a) to obtain a multipole expansion
of the field represented by this plane wave expansion. Determine the multipole
moments in terms of the plane wave amplitude A(ks,w).

On substituting the multipole expansion of the plane wave from Eq.(3.35)
into the plane wave expansion Eq.(3.9a) we obtain

eiks-r

Ur,w) = /dQ A(ks,w 4#2 Z it (k)Y (2)Y ] (s)

=0 m=—1

9] l
-3 Y {4nit / Qs Aks, w)Y 7 (8)} o (kr) Y™ ()

=0 m=—1
) l
:Z Z a1 (kr)Y," (%)

=0 m=—1

where

o' = dri / A0 Alks, )Y} (s).

3.10 Use the plane wave expansion of the multipole field j;(kr)Y;"™(f) given in
Eq.(3.36) of Example 3.4 in the multipole expansion of the solution to the
interior boundary value problem for Dirichlet conditions over a sphere given in
Example 3.7 to obtain a plane wave expansion of the solution to this problem.

We showed in Example 3.7 that the solution to the interior Dirichlet prob-
lem for a sphere is given by
0o l
= Z

=0 m=

kr)Y,"(x),
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where
u" = /dQ/ Ylm*(f/)U(r/a W)|r=a-

On substituting the plane wave expansion from Eq.(3.36) we then obtain

Ji(kr) Y™ (£)
) l um i 1 .
U(r,w) = Z lel(lia) (47'() /dQ Ym( ) ks
[eS) l m
:/dﬂs{iz 2 (_i)ljlz(j”lia)ylm(s)}eiksm

= / Qs A(s)es™

which is a homogeneous plane wave expansion with plane wave amplitude

MZZ

=0 m=

Y™ (s).

3.11 Use the multipole expansion of the Dirichlet Green function in Section 3.4
and the solution of the exterior boundary value problem in Section 2.8.2 to
show that the radiation pattern of a field radiated by a source confined to a
sphere of radius ay centered at the origin admits the expansion

s) =Y f"(w)Y"(s), (3.32)
Im

where the expansion coeflicients are given in terms of Dirichlet conditions over
the sphere by

—_HU+1)
) = 0T [ a0y ), (3.3b)

khfr(kao) 4
where €2, is the solid angle on the unit sphere.

The solution to the exterior Dirichlet problem for a sphere can be expressed
using the results of Section 2.8.2 in the form

Urw) = [ 48 U 0) 2 Goler, ),
or n

where G p is the Dirichlet Green function that vanishes over the surface 01 of
the sphere and obeys the SRC at infinity and where the normal derivative is

directed inward into the interior of the sphere. On making use of this Green
function from Eq.(3.46a) we find that

d d ¥
%GD(r,r’,w) ~5.Gnlr, v w _zklzojm;l{kjl (kv ) (kr)
Ji(kao)

—mkhﬂk )hJr (kr')YY,™ (2)Y,™* ('),
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where j; and hfr/ denote the derivatives of these quantities with respect to
their arguments. On setting r’ = ag the above expression simplifies to

D Gl )y = 12 S itk ”((’“k“‘”) i (ao) i (k)Y (5); ()
=0 m=-—1
:ik‘zi zl: jj(kao)h (kafjl(—kjl(kao)hf/(ka())h+(k VY ()Y ()
=0 m=— ! CL())

where we have used the Wronskian
i
(kag)?
On making use of the above expression for the normal derivative of the exterior
Dirichlet Green function we then find that

ji(kao)hj (kao) — ji(kao)hy (kag) = —

l

' Ulans! h+kr 2y
U(r,w):4dQ (aor’, Zzhﬂm Y™ (£)Y,™* (x)

=0 m=

=SS e [ Uaor, W)Y @) (k)Y )
h (kao) Ju
1 T

_Z Z mhy(kr)Y™(E)

=0 m=—1

where

1 / N N
a* = ————— [ d U(apr’,w)Y;""(r')
b (kao) Jun :
are the multipole moments of the radiated field.
The final step is to make use of the far field expression for the spherical
Hankel functions

N N eikr
b (kr) ~ (=) T

to find that

<l+1>a ¢
U~ 30 Y ELa iy

=0 m=—1

which then yields the expression given in Eq.(3.3a) for the radiation pattern.
3.12 Compute the radiation pattern of a field radiated by a source confined to
a sphere of radius ag centered at the origin from the solution of the exte-
rior Dirichlet problem for a sphere presented in Example 3.5. Verify that the
solution you obtained is identical to that given in the previous problem.
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We have from Example 3.5 that the field radiated by a source confined to
a sphere of radius ag centered at the origin can be expressed in the form

0o l

=33 aM (W) (kr) Y™ (0, ),

=0 m=—1
where the expansion coefficients (multipole moments) are given by

(@) = —

W/dw/“*(o, DU (r = a0, 8, 6, w),

where U, (r = ap, 0, ¢,w) is the Dirichlet boundary condition on the sphere
r = ag. On making use of the far field expression for the spherical Hankel
functions

N N eikr
b (kr) ~ (=) T

we then find that

(l+1)a (w) etk
(r,w) ~{Z Z —Ylm(o,w}

r
=0 m=—1

which yields that radiation pattern
s) =D f"(@)Y"(6.9),
lm

where the expansion coeflicients are given in terms of Dirichlet conditions over
the sphere by
m (=) " af"(w) _ (=)
fl (w) = l = +
k kh;" (kao)

[ ao.vtaiyr ).
47

and which are identical to the expressions given in the previous problem.



