
Appendix D

Optimization in finite-dimensional vector space

This appendix introduces the concepts and nomenclature associated with the opti-

mization problem – both the constrained and the unconstrained versions in a finite-

dimensional vector space. The aim is to provide a characterization of the properties

of the optimal solution for both the constrained and unconstrained minimization

problem.

D.1 An optimization problem

Let � be a subset of R
n , and let φ : � −→ R denote a real-valued function. For

reasons that will become apparent soon, it is assumed that φ satisfies the following

condition:

Condition C φ along with the following set of partial derivatives, namely,
∂φ

∂xi
,

∂2φ

∂x2
i

and
∂2φ

∂xi ∂x j
for 1 ≤ i, j ≤ n and i �= j are continuous functions of x ∈ �. That is,

φ belongs to the class of twice continuously differentiable functions.

A function φ(x) is said to attain a relative or local minimum at x = x∗ in �, if

φ(x∗) ≤ φ(x) (D.1.1)

for all points x in a sufficiently small neighborhood Nε(x∗) = {x| ‖x − x∗‖ < ε}. If

strict inequality in (D.1.1) holds for all Nε(x∗) except x∗, then x∗ is called a strict
local minimum. Likewise x∗ is called the absolute or global minimum if (D.1.1)

holds for all x ∈ �. If strict inequality in (D.1.1) holds for all x ∈ � except x∗, then

x∗ is known as the strict global minimum.

A version of the optimization problem may be stated as follows.

Problem P Given � and the function φ satisfying condition C, find the set of

points in � where φ(x) attains minimum value.

If� is a proper subset of R
n , then problem P is called a constrained minimization

problem, otherwise, that is when � = R
n , it is called unconstrained minimization

problem. � is often called the feasible set.
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688 Optimization in finite-dimensional vector space

Example D.1.1 Let x ∈ R
2. An instance of the unconstrained minimization

problem is to find the points at which

φ(x) = 16x2
1 + 4x1x2 + 4x2

2 − 7x1 + 5x2 + 6

is a minimum.

Example D.1.2 Let x ∈ R
3. An instance of the constrained optimization problem

with inequality constraints is to find the minimum of

φ(x) = x1x2x3

when � is given by

� = {
x|x2

1 + x2
2 + x2

3 ≤ 4 and xi > 0, 1 ≤ i ≤ 3
}
.

Notice that in this case the feasible set consists of the points on and inside the sphere

of radius 2 centered at the origin.

Example D.1.3 Let x ∈ R
2. An instance of the constrained minimization with

equality constraints is to minimize φ(x) = x2
1 + x2

2 , when � is defined by

� = {x|x1 + x2 = 1} .

In this case, the feasible set is a straight line.

One can easily visualize constrained problems having both equality and inequal-

ity constraints. In this book we will be concerned exclusively with minimization

problems under equality constraints.

Remark D.1.1 When φ(x) and all the functions defining the constraint set � are

linear functions of x, then problem P is called a linear programming problem. If

φ(x) is a nonlinear function, then problem P is called a nonlinear programming
problem (Luenberger [1973]). Accordingly, the problem of determining the optimal

initial conditions for deterministic models, which is one of the principal topics of

this book, may be viewed as an exercise in nonlinear programming.

D.2 Condition for a minimum-unconstrained problem

In this section we consider the unconstrained minimization problem. In particular,

we provide a characterization of the properties of the optimal solution.

To fix our ideas, first consider φ : R −→ R, a real-valued function of a real

variable satisfying the condition C. For any increment �x in x , we can expand

φ(x + �x) using the standard Taylor series (Appendix C) as

φ(x + �x) = φ(x) + dφ

dx
�x + 1

2

d2φ

dx2
(�x)2 + · · · (D.2.1)
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If �φ(x) denotes the increment in φ resulting from a small increment �x in x , we

have

�φ(x) = φ(x + �x) − φ(x)

≈ dφ

dx
(�x) + 1

2

d2φ

dx2
(�x)2

= δφ(x, �x) + 1

2

d2φ

dx2
(�x)2

(D.2.2)

where

δφ(x, �x) = dφ

dx
(�x) (D.2.3)

is called the first variation in φ resulting from �x (Appendix C). Equation (D.2.2)

constitutes the basis from which all sorts of conditions characterizing the minima

are obtained.

For small values of �x , since δ(x, �x) is the dominant term in (D.2.2), we can

represent �φ(x) to first-order accuracy as

�φ(x) ≈ δ(x, �x) = dφ

dx
(�x). (D.2.4)

Now, consider a point x∗ where φ(x) is a relative minimum. Then, by definition

�φ(x∗) ≥ 0. From (D.2.4), this requires that dφ(x∗)/dx(�x) ≥ 0 for arbitrary

(both positive and negative) �x . Since dφ(x∗)/dx is a constant, this implies that

dφ(x∗)

dx
= 0 (D.2.5)

and hence δφ(x∗, �x) = 0 at the minimum. Condition (D.2.5) is called a first-order
necessary condition for minimum.

To obtain the second-order necessary condition, since dφ(x∗)/dx = 0, from

(D.2.2), it follows that

0 ≤ �φ(x∗) = φ(x∗ + �x) − φ(x) = 1

2

d2φ(x∗)

dx2
(�x)2

which in turn implies that

d2φ(x∗)

dx2
≥ 0. (D.2.6)

Conversely, let x∗ be a point such that

dφ(x∗)

dx
= 0 and

d2φ(x∗)

dx2
> 0.

Then, from (D.2.2), we obtain

�φ(x∗) = φ(x∗ + �x) − φ(x∗) = 1

2

d2φ(x∗)

dx2
(�x)2 > 0
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which, by definition, implies that x∗ is a relative minimum. We summarize these

basic facts as follows:

Necessary Condition In order that φ(x) attains a minimum at x∗, it is necessary

that

dφ(x∗)

dx
= 0 and

d2φ(x∗)

dx2
≥ 0. (D.2.7)

Sufficient condition If x∗ is such that

dφ(x∗)

dx
= 0 and

d2φ(x∗)

dx2
> 0, (D.2.8)

then, φ(x) attains a relative minimum at x∗.

Remark D.2.1 Let I = [a, b] be a closed interval in R and let φ : I → I . If φ is

continuous, then there exists at least one point x∗ in I at which φ attains a minimum.

In other words, the existence of a minimum is guaranteed if the domain is closed

interval and φ is continuous. In this case, the minimum occurs either at an interior
point x∗ satisfying the condition in (D.2.7) or else it occurs at an end point. If the

left end point a is a minimum, then dφ(a)/dx ≥ 0 and if the right end point b is a

minimum then dφ(b)/dx ≤ 0.

Remark D.2.2 Let φ : I −→ I , where I = [a, b]. If φ is strictly convex (refer to

Appendix C), then φ has a unique minimum at x∗ ∈ I . In other words, for a strictly

convex function, the local minimum is indeed a global minimum as well.

Remark D.2.3 In the above discussion we have assumed that φ and its first two

derivatives are continuous. Indeed, the notion of a minimum also carries over to

functions not necessarily continuous, but their treatment is beyond our scope. Most

of the minimization problems of interest to us in this book involve quadratic func-

tions which will fit the framework developed herein.

We now extend the above development to the multivariate case namely φ :

R
n −→ R. That is, φ is a scalar function of a vector x = (x1, x2, . . . , xn)T. Let

�x = (�x1, �x2, . . . , �xn)T denote a vector of infinitesimal change in x. Again,

using the Taylor series expansion (Appendix C), the resulting scalar increment

�φ(x) in φ(x) is given by

�φ(x) = φ(x + �x) − φ(x)

= (�x)T∇φ(x) + 1
2
(�x)T∇2φ(x)�x (D.2.9)

where ∇φ(x) is the gradient of φ(x) and (�x)T∇φ(x) = δφ(x, �x) is called the

first variation in φ that dominates the right-hand side of (D.2.9) when ‖�x‖,

the norm of the vector �x (Appendix A) is small. ∇2φ(x) is the Hessian of φ(x)

(Appendix C).
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The direction cosines αi , 1 ≤ i ≤ n of �x are given by (Appendix A)

αi = �xi

‖�x‖ , 1 ≤ i ≤ n,

and let α = (α1, α2, . . . , αn)T. If x∗ is a local minimum, then �φ(x∗) ≥ 0 from

the definition. Combining this with the first-order representation of �φ(x) using

(D.2.9), we require that

�φ(x∗)

‖�x‖ = δφ(x∗, �x)

‖�x‖ = αT∇φ≥(x)0 (D.2.10)

for every direction vector α. Clearly, this can happen only if

∇φ (x) = 0 (D.2.11)

which is a first-order necessary condition for a minimum of φ. Notice again at

the minimum δφ(x∗, �x) = 0. Using (D.2.11) in (D.2.9), it follows that

�φ(x∗) = ‖�x‖2

2
αT[∇2φ(x∗)]α ≥ 0 (D.2.12)

which, in turn, requires

αT[∇2φ(x∗)]α ≥ 0 (D.2.13)

for all α. (D.2.13) dictates that the Hessian ∇2φ(x∗) must be nonnegative definite
at the minimum.

Conversely, let x∗ be such that

∇φ (x) = 0 and ∇2φ(x∗) is positive definite. (D.2.14)

Then,

�φ(x∗) = φ(x∗ + �x) − φ(x∗)

= (�x)T∇φ+(x) 1
2
(�x)T[∇2φ(x∗)](�x) > 0.

Hence, x∗ is a minimum. Summarizing, we obtain the following:

Necessary condition In order that φ(x) is a minimum at x∗, it is necessary that

∇φ = (x)0 and ∇2φ(x∗) is non-negative definite.

Sufficiency condition If x∗ is such that ∇φ = (x)0 and ∇2φ(x∗) is positive

definite, then φ(x) attains a local minimum at x∗.

Multivariate analogs of the Remarks D.2.1 through D.2.3 carry over to φ :

R
n −→ R. The following example illustrates these concepts.

Example D.2.1 Considering the φ(x) in Example D.1.1., it can be verified that

∇φ(x) =
(

32x1 + 4x2 − 7

4x1 + 8x2 + 5

)
= 2

[
16 2

2 4

] [
x1

x2

]
+

[−7

5

]
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and

∇2φ(x) = 2

[
16 2

2 4

]
.

Solving ∇φ = (x)0, we obtain x∗ = (0.3167, −0.7833)T. Since H(x∗) is positive

definite, indeed x∗ is a strict global (why?) minimum.

In the following section, we move on to characterizing the properties of a mini-

mum when there are equality constraints.

D.3 Lagrangian method: constrained problem

The problem is to minimize φ(x) when � is specified by a collection of k relations

as follows:

fi (x) = 0, 1 ≤ i ≤ k (D.3.1)

where we assume that each fi (x) satisfies the Condition C in the same manner as

the function φ(x). Each of the constraint equations, in principle, defines a surface

in R
n . Clearly � consists of all points common to these k surfaces, the set of points

formed by the intersection of these surfaces. A straightforward approach to solving

this problem is elimination of k variables from φ(x) using the constraint equations

and to solve the resulting unconstrained problem in (n − k) variables.

We illustrate this idea in the following example:

Example D.3.1 Let φ(x) = x2
1 + x2

2 and f1(x) = x1 + x2 − 1 = 0. Eliminating

x2 in φ(x) it can be verified that φ(x) = 2x2
1 − 2x1 + 1 which attains its minimum

at x∗
1 = x∗

2 = 1/2.

Implicit in the above discussion is the notion of degrees of freedom. If there are

no constraints, the number of independent variables in φ(x1, x2, . . . , xn) is defined

as the number of the degrees of freedom. This implies that the minimum could,

in principle, be anywhere in the Euclidean space, R
n . The addition of a constraint

narrows the search region – the minimum must lie along the surface defined by the

constraint. That is, each constraint reduces the degree of freedom by unity. Thus,

if there are k constraints defining �, then the net degree of freedom is (n − k). In

example (D.3.1), the minimum lies along the line x1 + x2 = 1 in R
2, and the degree

of freedom is 1.

Only in exceptionally simple cases such as in Example D.3.1, a constrained

problem can be transformed into an unconstrained problem by elimination. In

general, a methodology is needed that circumvents the solution by elimination of

variables. Such a method was developed by Lagrange and has come to be known

as the Lagrangian method.
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Lagrangian method: one equality constraint
Consider first the problem of minimizing φ(x) when � is defined by only one

constraint equation

f (x) = 0. (D.3.2)

Let �x = (�x1, �x2, . . . , �xn)T and �x/‖�x‖ = α = (α1, α2, . . . , αn)T be such

that

f (x + �x) = 0. (D.3.3)

Then, in view of (D.3.2) and (D.3.3), the first variation of f, δ f is

δ f = f (x + �x) − f (x) = (�x)T∇ f (x) = ‖�x‖ (α)T∇ f = 0. (D.3.4)

In other words, (D.3.4) defines the set of all feasible perturbations of x satisfying

the condition (D.3.2). A number of observations are in order. Notice first that the

direction cosine α corresponding to the perturbation vector �x is orthogonal to ∇ f .

Since ∇ f is normal to the surface f (x) = 0, it follows that the direction cosine α

lies in the plane that is tangential to f (x) at the point x. Secondly, equation (D.3.4)

implies that not all of the components of the vector �x are independent. That is,

we can express one of the components, say �xn (assuming ∂ f /∂xn �= 0) in terms

of the other components as

�xn = −
(

∂ f

∂xn

)−1 [(
∂ f

∂x1

)
�x1 +

(
∂ f

∂x2

)
�x2 + · · · +

(
∂ f

∂xn−1

)
�xn−1

]
.

(D.3.5)

The induced first variation in φ(x) is given by

δφ = φ(x + �x) − φ(x) = (�x)T∇φ(x). (D.3.6)

If x is a relative minimum, then δφ ≥ 0 for all direction cosine α satisfying (D.3.4).

In view of this constraint we cannot automatically require ∇φ = 0 as in the uncon-

strained case. To find the condition for a minimum of φ, first consider the sum

δφ + λδ f (D.3.7)

for some yet to be determined scalar multiplier λ. At the relative minimum of φ(x),

clearly (from D.3.4 and δφ ≥ 0 at the minimum)

δφ + λδ f ≥ 0 (D.3.8)

which becomes(
∂φ

∂x1

+ λ
∂ f

∂x1

)
�x1 +

(
∂φ

∂x2

+λ
∂ f

∂x2

)
�x2 + · · · +

(
∂φ

∂xn
+λ

∂ f

∂xn

)
�xn ≥ 0.
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Substituting for �xn using (D.3.5) and combining the like terms, the above inequal-

ity can be rewritten as

n−1∑
j=1

[(
∂φ

∂x j
+ λ

∂ f

∂x j

)
−

(
∂ f

∂xn

)−1 (
∂ f

∂x j

) (
∂φ

∂xn
+ λ

∂ f

∂xn

)]
�x j ≥ 0.

First choose λ such that

∂φ

∂xn
+ λ

∂ f

∂xn
= 0. (D.3.9)

This in turn requires that at the minimum

n−1∑
j=1

(
∂φ

∂x j
+ λ

∂ f

∂x j

)
�x j ≥ 0 (D.3.10)

for all �x j , 1 ≤ j ≤ n − 1. Clearly, this can happen only if

∂φ

∂xi
+ λ

∂ f

∂xi
= 0 for 1 ≤ i ≤ n − 1. (D.3.11)

Combining (D.3.9) and (D.3.11) at the minimum, we have

∇φ(x) + λ∇ f (x) = 0 (D.3.12)

and hence

δφ + λδ f = 0. (D.3.13)

Rewriting (D.3.13) as

δ(φ + λ f ) = 0,

it can be verified that (D.3.12) is a condition for the unconstrained minimum of the

new function

L(x, λ) = φ(x) + λ f (x) (D.3.14)

called the Lagrangian, and λ is called the Lagrangian multiplier.

Thus the problem of minimizing a real-valued function of n variables under one

constraint is converted to an unconstrained minimization of L(x, λ) with (n + 1)

variables. At the minimum, the derivatives of L(x, λ) with respect to these (n + 1)

variables must vanish which gives rise to

∇xL(x, λ) = ∇φ(x) + λ∇ f (x) = 0

which is (D.3.12) and

∇λL(x, λ) = f (x) = 0

is the given constraint in (D.3.2). By solving these (n + 1) equations we can recover

the values of x and λ corresponding to the minimum of L(x, λ).

The following is an illustration of this method.
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x1

x2

1

1

Fig. D.3.1 An illustration of Example D.3.1.

Example D.3.1(continued) Define

L(x, λ) = x2
1 + x2

2 + λ(x1 + x2 − 1)

∇x L(x, λ) =
[

2x1 + λ

2x2 + λ

]
= 0

from which we obtain x1 = x2 and λ = −2x2. From

∇λL(x, λ) = x1 + x2 − 1 = 0

we get x1 = x2 = 1/2 and λ = −1, at the minimum. The minimum value of φ(x) =
1/2. Refer to Figure D.3.1 for an illustration.

Special case A: Minimization of φ(x) along a line
Let φ : R

n −→ R and consider a line L in R
n passing through a point y ∈ R

n

in the direction p ∈ R
n . Any point x on L can be parametrically represented by

x = y + αp

for some α ∈ R
n . That is,

x ∈ L = y + Span{p}
where L is called the affine subspace of dimension one in R

n . Our aim is to derive

conditions for the minimum of φ(x) on L. To this end, define g : R −→ R as

g(α) = φ(y + αp).

Then, the minimizer α∗ of g(α) is obtained by solving

dg

dα
= pT∇φ(y + αp) = 0.

If we denote x∗ = y + α∗p, then the minimizer x∗ of φ(x) is such that ∇φ(x∗) is

orthogonal to the direction p.
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In the Example D.3.1, p is (1, −1)T and x∗ = (1/2, 1/2)T, and ∇φ(x∗) = (1, 1)T

and hence pT∇φ(x∗) = 0.

This form of the conditions for optimality is used repeatedly in Chapters 9

through 11.

Lagrangian method: multiple equality constraints
We now generalize this Lagrangian method for minimizing φ(x) when � is

specified by k ≥ 1 constraint functions given in (D.3.1). Let λ = (λ1, λ2, . . . , λk)T

be the vector of k Lagrangian multipliers. Construct the Lagrangian

L(x, λ) = φ(x) +
k∑

i=1

λi fi (x). (D.3.15)

By extending the argument for the one constraint case, it can be veri-

fied that at the minimum ∇xφ ≡ (�φ(x)/�x, ∂φ/∂x2, . . . , ∂φ/∂xn)T, ∇x f ≡
(∂ f /∂x1, ∂ f /∂x2, . . . , ∂ f /∂xn)T, and ∇xL ≡ (∂L/∂x1, ∂ f /∂x2, . . . , ∂L/∂xn)T

satisfy

∇xL(x, λ) ≡ ∇xφ(x) +
k∑

i=1

λi∇x fi (x) = 0 (D.3.16)

and

∇λL(x, λ) = fi (x) = 0 for 1 ≤ i ≤ k. (D.3.17)

The values of the (n + k) variables at the minimum are obtained as the solution

of the (n + k) equations in (D.3.16) and (D.3.17). Equation (D.3.16) implies that

at the minimum, ∇xφ(x) is a linear combination of the gradient ∇x fi (x) of the

constraint function fi (x) for 1 ≤ i ≤ k.

Special case B: Minimization of φ in an affine subspace
Let φ : R

n −→ R and let {p0, p1, . . . , pk−1} be a set of linearly independent

vectors in R
n . For any y ∈ R

n and for αi ∈ R, 0 ≤ i < k, define

Lk = {x ∈ R
n|x = y + α0 p0 + α1 p1 + αk−1 pk−1}

= y + Span{p0, p1, . . . , pk−1}
called the affine subspace of dimension k in R

n . Our aim is to minimize φ(x) on

Lk .

Let P ∈ R
n×k , where

P = {p0, p1, . . . , pk−1}
be the matrix built out of the k linearly independent column vectors defining Lk .

Let α = (α0, α1, . . . , αk−1)T ∈ R
k . Any x ∈ Lk can be parametrically represented

as

x = y + Pα
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for some vector α ∈ R
k . Define G : R

k −→ R as

G(α) = φ(y + Pα).

Clearly, the minimizing vector α∗ is obtained as the solution of

0 = ∇G(α) = PT∇φ(y + Pα)

=

⎡
⎢⎢⎢⎣

pT
0

pT
1

...

pT
k−1

⎤
⎥⎥⎥⎦ ∇φ(y + Pα).

If x∗ = (y + Pα∗), then the gradient of φ(x) at x∗, namely, ∇φ(x∗) is simultane-

ously orthogonal to each of the k directions {p0, p1, . . . , pk−1}, that is, ∇φ(x∗) is

orthogonal to the affine subspace Lk .

We conclude this discussion with a statement of a second-order sufficiency

condition for a relative minimum of φ(x) under the constraints (D.3.1). Let H (x) =
∇2φ(x) be the Hessian of φ(x). Likewise, let Fi (x) = ∇2 fi (x) be the Hessian of

fi (x) for 1 ≤ i ≤ k, G(x) is the corresponding Hessian of L(x, λ) in (D.3.15). Thus,

G(x) = H (x) +
k∑

i=1

λi Fi (x). (D.3.18)

Define

T = {
y|yT∇ fi (x) = 0, 1 ≤ i ≤ k

}
.

That is, T consists of all vectors y that are orthogonal to ∇ fi (x), 1 ≤ i ≤ k. T is

indeed the plane that is tangent to fi (x), 1 ≤ i ≤ k. Let x∗ be such that there exists

λ = (λ1, λ2, . . . , λk)T, where

(a)∇xφ(x∗) + ∑k
i=1 λi∇x fi (x∗) = 0, and

(b) the matrix G(x∗) is positive definite on T
(D.3.19)

that is, for any y �= 0 and y ∈ T , yG(x∗)y > 0. Then, x∗ is a relative minimum

under the equality constraints.

The following is an illustration of the sufficiency condition.

Example D.3.2 Let x ∈ R
2, φ(x) = x1 + x1x2 + 3x2

2 and f (x) = x1 + 2x2 −
3 = 0. The Lagrangian is given by L(x, λ) = φ(x) + λ f (x). The first-order neces-

sary condition is given by

1 + x2 + λ = 0

x1 + 6x2 + 2λ = 0, and
f (x) = 0.
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Solving these equations, we get x∗
1 = 4, x∗

2 = −1/2 and λ = −1/2. It can be veri-

fied that

G(x∗) = H (x∗) =
[

0 1

1 6

]
and F(x∗) =

[
0 0

0 0

]
.

Since ∇ f (x∗) = (1, 2)T, it can be verified that T =
{

α√
5
(−2, 1)T for any real α

}
.

From

α√
5

(−2, 1)

(
0 1

1 6

)
α√
5

(−2

1

)
= 2α2

5
> 0

we conclude that x∗ = (4, −1/2) is a strict relative minimum,

Remark D.3.1 It can be verified that the eigenvalues of

H (x∗) =
[

0 1

1 6

]

are given by μ1 = 6+√
40

2
> 0 and μ2 = 6−√

40
2

< 0, that is, H (x∗) is indefinite.

In other words, one cannot characterize the nature of the extremum at x∗ just by

looking at H (x∗) alone. As shown above, G(x∗) in combination with tangent plane

at x∗ provides the clue for determining if x∗ is a minimum.

D.4 Penalty function method

In this section we describe a second approach for converting the constrained mini-

mization to an unconstrained problem using the penalty function method. The basic

idea is to convert the original constrained problem into a sequence of unconstrained

problems such that the minimizing solutions to these latter problems converge in

the limit to the minimizing solution to the original problem.

Let φ : R
n −→ R and f (x) = ( f1(x), f2(x), . . . , fk(x))T, where fi : R

n −→ R

for 1 ≤ i ≤ k. Our aim is to minimize φ(x) subject to the constraints

f (x) = 0. (D.4.1)

Recall that S = {x| f (x) = 0} ⊆ R
n is called the feasible set. In the Lagrangian

formulation, the constraints are enforced at every step of the way. It turns out,

however, algorithmically there is merit in seeking methods that violate feasibility

so long as we can incorporate a penalty for each such violation – larger penalty

for larger violation, where, for example, violation is measured by the distance of

the vector f (x) from the origin. Since the basic idea of minimization algorithm

is strongly grounded on the greedy principle (refer to Chapter 9), in seeking the

minimum, a cleverly designed algorithm would force the iterates in the direction

of reducing the penalty which in turn force the iterates ever so closely towards the

feasible set S.
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One useful way to quantify the penalty for violation of the constraints is to define

a quadratic penalty

g(x) = 1

2

k∑
i=1

f 2
i (x) = 1

2
f T(x) f (x), (D.4.2)

which is the measure of the square of the Euclidean distance of the vector f(x) from

the origin. Clearly, g(x) > 0 when x is not feasible.

Let R
+ = {x |x > 0}. Then, for ρ ∈ R

+, define the penalty function ψ : R
n ×

R
+ −→ R as

ψ(x, ρ) = φ(x) + ρg(x) = φ(x) + ρ

2
fT(x)f(x). (D.4.3)

The minimizer x∗(ρ) of ψ(x, ρ) is indeed the solution of

0 = ∇xψ(x, ρ) = ∇φ(x) + ρ
∑k

i=1 fi (x) ∇ fi (x)

= ∇φ(x) + ρD
T
f (x)f(x) (D.4.4)

where

D f (x) =
[

∂ fi

∂x j

]
, 1 ≤ i ≤ k, 1 ≤ j ≤ n, (D.4.5)

is the Jacobian (Appendix C) of f(x). The idea is to pick an increasing sequence

{ρk}, that is

ρ1 < ρ2 < ρ3 < · · · < ρk < · · ·
such that

lim
k→∞

ρk = ∞ (D.4.6)

and solve for the minimum x∗(ρk) of the function ψ(x, ρk) by repeatedly solving

(D.4.4). It can be shown under mild conditions (such as Condition C in Section

D.1) that

lim
k→∞

x∗(ρk) = x∗ (D.4.7)

is the solution of the original constrained minimization problem.

Define a vector λ(ρ) = (λ1(ρ), λ2(ρ), . . . , λk(ρ))T. We can rewrite (D.4.4) as

∇φ(x) + D
T
f (x)λ(ρ)

= ∇ fi (x) + ∑k
i=1 λi (ρ)∇ fi (x) = 0. (D.4.8)

Comparing this with (D.3.16), it is tempting to conclude that λi (ρ) plays a role

similar to the Lagrangian multiplier. This similarity is more than “skin deep”.

Indeed, it can be shown that

lim
k→∞

λ∗(ρk) = ρk f (x∗(ρk)) = λ∗, (D.4.9)
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Given φ(x) to be minimized along with the constraint f(x) = 0.
Let x0 ∈ R

n and ρ0 > 0 be the initial choice.

For k = 0, 1, 2, 3, . . ., do the following 3 steps:

Step 1 Solve (D.4.4) for the minimizer x∗(ρk ) of ψ(x, ρk ).

Step 2 If f(x∗(ρk )) = 0, then STOP.

Step 3 Define ρk+1 > ρk , and go to Step 1.

Fig. D.4.1 Penalty function method.

is the Lagrangian multiplier that defines the constrained minimum x∗ had we used

the Lagrangian approach to begin with.

Example D.4.1 Let x = (x1, x2)T and k = 1. Consider minimizingφ(x) = x2
1 + x2

2

subject to f (x) = x1 + x2 − 1 = 0. The penalty function is given by

ψ(x, ρ) = φ(x) + ρ

2
f 2(x)

= (x2
1 + x2

2 ) + ρ

2
(x1 + x2 − 1)2.

Solving

0 = ∇ψ(x, ρ) =
[

x1(2 + ρ) + ρx2 − ρ

ρx1 + (2 + ρ) − ρ

]

we get

x∗(ρ) =
(

1

2 + ρ−1
,

1

2 + ρ−1

)T

.

The multiplier

λ∗(ρ) = ρ f (x∗(ρ)) = − 1

1 + ρ−1
.

By letting ρ −→ ∞, it follows that

x∗(ρ) −→ x∗ =
(

1

2
,

1

2

)T

and

λ∗(ρ) −→ λ∗ = −1

which, from Example D.3.1 is the minimizer of the Lagrangian.

The algorithmic framework for the penalty function method is described in

Figure D.4.1.

Remark D.4.1 The implementation of this idea is a bit tricky and challenging

largely due to the requirement that for optimality, the penalty parameters grow

without bound. To get a feel for this numerical instability, let us compute the
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condition number of the Hessian of the penalty function at the successive minima

as the penalty parameter ρk increases with k. To simplify the discussion, let us

consider the sample problem in Example D.4.1. It can be verified that the Hessian

of ψ(x, p) at (x∗(ρk), ρk) is given by

∇2ψ(x∗(ρk), ρk) =
[

(2 + ρk) ρk

ρk (2 + ρk)

]
(D.4.10)

and its eigenvalues are λ1 = (2 + 2ρk) and λ2 = 2, with λ1 > λ2 as ρk > 0. Hence,

the condition number

κ(ρ) = λ1

λ2

= 1 + ρk (D.4.11)

which goes to infinity with ρk . However, while ρk grows unbounded, as x∗(ρk) −→
x∗, the true constrained minimum, the sequence f (x∗(ρk)) move ever so close to

the null vector such that their product λ∗(ρk) = ρk f (x∗(ρk)) tends to a finite limit

λ∗, the Lagrangian multiplier for the minimum x∗.

Remark D.4.2 In the geophysical domain, the Lagrangian formulation has come to

be known as the strong constraint formulation where feasibility is enforced all the

time, and the penalty function approach is called the weak constraint formulation

where feasibility is enforced only in the limit. The asymptotic result (D.4.9) provides

a useful interpretation of the relation between these two useful ways of formulating

and solving the constrained problems.

D.5 Augmented Lagrangian method

One way to reduce the impact of ill-conditioning in penalty methods is to

consider a hybrid method that combines the penalty function with the classi-

cal Lagrangian method. In motivating this idea, let φ : R
n −→ R and f(x) =

( f1(x), f2(x), . . . , fk(x))T, where fi : R
n −→ R, for 1 ≤ i ≤ k. The problem is

to

Minimize φ(x) when f(x) = 0, (D.5.1)

where λ = (λ1, λ2, . . . , λk)T is the Lagrangian multiplier. Since Lagrangian method

enforces feasibility this problem is equivalent to

Minimize L(x, λ) = φ(x) + λTf(x) when f(x) = 0. (D.5.2)

We could now consider the penalty function approach for the latter problem. To

this end, define the augmented Lagrangian

η : R
n × R

k × R
+ −→ R
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Given φ(x) to be minimized subject to the constraint f(x) = 0.
Let x0 ∈ R

n , λ0 ∈ R
k and ρ0 ∈ R

+.

For k = 0, 1, 2, 3, . . . , do the following 4 steps:

Step 1 If ∇L(xk , λk ) = 0, then STOP.

Step 2 Let xk+1 be the minimizer of the unconstrained problem

η(x, λk , ρk ) = φ(x) + λT
k f(x) + ρk

2
fT(xk )f(xk )

Step 3 Define λk+1 = λk + ρk f(xk+1).

Step 4 Choose ρk+1 ≥ ρk , and go to Step 1.

Fig. D.5.1 Augmented Lagrangian Method.

as

η(x, λ, ρ) = L(x, λ) + ρ

2
fT(x)f(x)

= φ(x) + λTf(x) + ρ

2
fT(x)f(x) (D.5.3)

where ρ is the penalty parameter. Computing the gradient of η, we get

∇η(x, λ, ρ) = ∇φ(x) + ∑k
i=1 λi∇ fi (x) + ρ

∑k
i=1 fi (x) ∇ fi (x)

= ∇φ(x) + D
T
f (x)λ + ρD

T
f (x)f(x)

= ∇φ(x) + D
T
f (x)(λ + ρf(x). (D.5.4)

For a given ρ, the minimizing pair (x, λ) is obtained by solving

∇φ(x) + D
T
f (x)(λ + ρφ(x)) = 0. (D.5.5)

This development suggests the following framework for an algorithm described in

Figure D.5.1.

From the definition, it follows that

0 = ∇xη(xk+1, λk, ρk)

= ∇φ(xk+1) + D
T
f (xk+1)[λkρk f (xk+1)]

= ∇φ(xk+1) + D
T
f (xk+1)λk+1

= ∇xL(xk+1, λk+1).

Hence, the algorithm will terminate when

∇λL(xk+1, λk+1) = f(xk+1) = 0.

Example D.5.1 Let φ(x) = x2
1 + x2

2 and f (x) = x1 + x2 − 1. Then,

η(x, λ, ρ) = (x2
1 + x2

2 ) + λ(x1 + x2 − 1) + ρ

2
(x1 + x2 − 1)2

∇(x, λ, ρ) = 2

(
x1

x2

)
+ λ

(
1

1

)
+ ρ

(
x1 + x2 − 1

x1 + x2 − 1

)
.
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For k = 0, 1, 2, 3, . . ., do the following:

Step 1 If ∇L(xk , λk ) = 0, then STOP.

Step 2 Compute xk+1 = (xk+1,1xk+1,2) by solving the linear system(
(2 + ρk ) ρk

ρk (2 + ρk )

) (
xk+1,1

xk+1,2

)
=

(
ρk − λk

ρk − λk

)

Step 3 Define λk+1 = λk + ρk f(xk+1).

Step 4 Choose ρk+1 ≥ ρk , and go to Step 1.

Fig. D.5.2

Setting ∇(x, λ, ρ) = 0, we obtain

(
(2 + ρ) ρ

ρ (2 + ρ)

) (
x1

x2

)
=

(
ρ − λ

ρ − λ

)
.

We now state the algorithm. Pick x0 = (x01, x02)T, λ0, and ρ0 > 0.

We encourage the reader to perform the iterations for various values of ρ and

examine the effect of keeping ρ fixed.

Remark D.5.1 The primary advantage of the augmented Lagrangian approach is

that the penalty factor ρ needs to be large enough and does not have to grow

unbounded. This, in a sense, eliminates the instability resulting from the ill-

conditioning of the Hessian matrix with increasing values of ρ (refer to Remark

D.4.1). The question then is how large a value of ρ to use? It can be shown that any

value ρ that is large enough to render the Hessian of

ψ(x, ρ) = φ(x) + ρ

2
fT(x)f(x) (D.5.6)

positive definite on the domain of consideration is sufficient for the convergence

of the algorithm given above. Indeed, the larger the value of ρ the better is the

convergence rate but it will also increase the condition number of interest to us. Thus,

there is a trade-off betwen avoiding numerical instability and speed of convergence.

The Hessian of the ψ(x, ρ) for the problem in Example D.5.1 is given by

∇2ψ(x, ρ) =
[

(2 + ρ) ρ

ρ (2 + ρ)

]
.

The eigenvalues of this matrix are λ1 = 2 + ρ and λ2 = 2 are positive (since ρ > 0).

We readily see that this Hessian is positive definite. In other words, any positive

value of ρ will work. We encourage the reader to examine the variation of speed of

convergence as a function of ρ.
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Notes and references

This appendix covers some of the basic results from the vast and ever growing

corpus of literature dealing with optimization. For a derivation of conditions for

optimality refer to Luenberger (1969) and (1973), Nash and Sofer (1996), and

Hestenes (1975) and (1980). Our treatment of Lagrangian multipliers is adapted

from Lanczos (1970). Dennis and Schnabel (1996) provide an elegant description

of algorithms for unconstrained optimization. Penalty function methods are treated

extensively in Nash and Sofer (1996). Augmented Lagrangian method was intro-

duced independently by Hestenes and Powell in 1969. Refer to Nash and Sofer

(1996), Pierre and Lowe (1975), and Hestenes (1975) and (1980) for detailed anal-

ysis of this class of methods.


