7. Low-Noise Amplifier Design

Outline

- Low noise amplifier overview
- Tuned LNA design methodology
- Tuned LNA frequency scaling and porting
- Broadband low noise amplifier design methodology

7.1 LNA overview

Tuned LNA topologies

CB/CG (no feedback)

Cascode (L or xfmr feedback)

4

CS/CE (L or xfmr feedback)

Design goal

 Minimize the noise of the amplifier for a given signal source impedance to approach transistor minimum noise figure/factor NF_{MIN}/F_{MIN}

$$F = F_{MIN} + \frac{R_n}{G_s} |Y_s - Y_{sopt}|^2$$

- Input and output matching to source and load.
- Maximize gain (G) and linearity (IIP3)
- Reduce DC power P_{DC} => conflict with F and IIP3

$$FoM_{LNA} = \frac{G \times IIP3 \times f}{(F-1)P_{DC}}$$

Design philosophy

- Take advantage of what silicon does best: transistors.
- Use Si passives only sparingly:
 - Q is fairly low and undermines overall noise figure
 - Inductors are (significantly) larger than transistors, hence expensive.
- Make transistor sizing part of the noise matching step.
- Use only reactive (loss-less) feedback or minimize the noise contribution of resistive feedback components.
- Avoid active loads if at all possible.

LNA design fundamentals

Device noise fundamentals:

♦Re{Z_{sopt}} <> Re{Z_{IN}} and Im{Z_{sopt}} approx. Im {Z_{IN}} (within 15%)
♦Re{Z_{sopt}} = k f_T/(fg_m)

• F_{MIN} is invariant to number of gate fingers N_f , and number of transistors m connected in parallel, but depends on W_f .

•Reactive (lossless) feedback does not affect F_{MIN} and Re{Z_{sopt}}

•Power is dictated by noise impedance matching $(V_{DD} \times J_{OPT} \times f_T / g'_m)$

Saving power comes with the price of compromising noise and linearity!

Tuned and broadband LNA design philosophy

Active device for noise impedance

Find optimal W_f for given frequency

◆Bias for minimum NF_{MIN} and

•sizing (N_f) for Re{ Z_{sopt} } = 50 Ω

$$\frac{\partial F_{MIN}(W_f)}{\partial W_f} = 0$$

$$\frac{\partial F_{50}(N_f)}{\partial N_f} = 0$$

•(lossless) feedback for input impedance matching Z_{IN} and Im{ Z_{sopt} } All lossless feedback configurations work:

Series-series, shunt-series, series-shunt, shunt-shunt

Transimpedance feedback works best for broadband LNAs

Biasing LNA topology for minimum noise

•MOSFET, cascode $J_{OPT} = 0.15$ mA/µm irrespective of W_{f} , node, and frequency

•Lowest current for optimally biased MOS-LNA is 150µA for single 1µm finger

In HBTs J_{OPT} varies with frequency, topology, and technology node

Sizing the MOSFET/HBT (cascode) for R_{SOPT}

FET/HBT (casc) biased at J_{opt} Noise parameters scale with $(I_{F})N_{f}$ for fixed W_{f} .

 $\Re[Z_{sopt}(N_f, f)] = Z_0$ coincides with $\frac{\partial F_{50}(N_f)}{\partial N_f} = 0$

$$\Re[Z_{sopt}(I_E, f)] = Z_0$$
 coincides with $\frac{\partial F_{50}(I_E)}{\partial I_E} = 0$

Sizing the FET (cascode) for R_{SOPT}

$$R_n = \frac{R_{N,FET}}{N_f N} \qquad G_u = G_{N,FET} \omega^2 N_f N$$

$$G_{cor} = G_{C,FET} \omega N_f N \qquad B_{cor} = B_{FET} \omega N_f N$$

$$Y_{sopt} = \sqrt{G_{cor}^2 + \frac{G_u}{R_n}} - jB_{cor} = NN_f W_f \omega \left(\sqrt{G_{C,FET}^2 + \frac{G_{FET}}{R_{FET}}} - jB_{FET} \right)$$

$$Z_{sopt}(FET) \approx \frac{f_{Teff}}{N \cdot N_{f} \cdot W_{f} \cdot f \cdot g'_{meff}} \left[\sqrt{\frac{g'_{m} \cdot R'_{s} + W_{f} \cdot g'_{m} \cdot R'_{g}(W_{f})}{k_{1}}} + j \right] = Z_{0} + j X_{sopt}$$

$$NN_{f} = \frac{f_{Teff}}{Z_{0} \cdot W_{f} \cdot f \cdot g'_{meff}} \sqrt{\frac{g'_{m} \cdot R'_{s} + W_{f} \cdot g'_{m} \cdot R'_{g}(W_{f})}{k_{1}}}$$

Sizing the HBT (cascode) for R_{SOPT}

$$R_{n} = \frac{R_{HBT}}{NI_{E}} \qquad \qquad G_{u} = G_{HBT} \omega^{2} N I_{E}$$

$$G_{cor} = G_{C, HBT} \omega N I_E \qquad B_{cor} = B_{HBT} \omega N I_E$$

$$Y_{sopt} = \sqrt{G_{cor}^2 + \frac{G_u}{R_n}} - jB_{cor} = NI_E \omega \left(\sqrt{G_{C,HBT}^2 + \frac{G_{HBT}}{R_{HBT}}} - jB_{HBT} \right)$$

$$Z_{sopt}(HBT) \approx \frac{f_{Teff}}{f \cdot N \cdot I_{E} \cdot g_{meff}} \left[\sqrt{\frac{g_{m}}{2}} (r_{E} + R_{b}) + j \right] = Z_{0} + j X_{sopt}$$

$$NI_{E} = \frac{f_{Teff}}{Z_{0} \cdot f \cdot g_{meff}} \sqrt{\frac{g_{m}}{2}(r_{E} + R_{b})}$$

RF CMOS/HBT LNA design equations

$$\Re[Z_{sopt}(N_{f}(I_{E}), f)] = Z_{0} \text{ coincides with } \frac{\partial F_{50}(N_{f}(I_{E}))}{\partial N_{f}(I_{E})} = 0$$

$$L_{s} = \frac{Z_{0} - R_{s} - R_{g}}{\omega_{T}(cascode)} \quad L_{s} = \frac{Z_{0} - R_{b} - r_{E}}{\omega_{T}(cascode)}$$

$$Z_{IN} = \omega_{T}L_{s} + R_{g} + R_{s} + j \left[\omega(L_{s} + L_{G}) - \frac{f_{T}}{fg_{m}} \right]$$

$$Z_{IN} = \omega_{T}L_{s} + R_{b} + r_{E} + j \left[\omega(L_{s} + L_{G}) - \frac{f_{T}}{fg_{m}} \right]$$

$$L_{G} = \frac{f_{T}}{2\pi f^{2}g_{m}} - L_{s} \quad G \leq \frac{1}{4} \frac{f_{T}^{2}}{f^{2}} \frac{R_{p}}{Z_{0}}$$

Refinements for mm-waves: S. Nicolson (CSICS-06) (i) Source Impedance

•Without bondwire
$$R_s = \frac{Z_0}{k} \qquad Z_s = \frac{Z_0}{k} - j \frac{\omega C_{PAD} Z_0^2}{k}$$

$$k = 1 + \omega^2 C_{PAD}^2 Z_0^2$$

14

Refinements for mm-wave CMOS LNAs: (ii) f_{τ} of topology with L_M after extraction

 L_{M1} forms artificial t-line with parasitics of M_1 and M_2 An optimal L_{M1} exists that maximized f_T . $L_{M1} \sim W_1^{-1}$ Both the gain and the noise figure are improved

(mm-wave) CMOS/HBT LNA design methodology

•Calculate effective source imp. $Z_s = R + jX_s$ VD •Find optimal $W_f(I_{r})$ and bias at J_{OPT} •Find L_{M1} which maximizes f_{τ} of topology @ • V ... J V_{RAS} O •Find N_f such that R=Re(Z_{SOPT}) @ J_{OPT} •Find $L_s = R/\omega_T$ such that $R = Re\{Z_{IN}\}$ •Find L_{G} such $X_{S} = Imag\{Z_{IN}\} = Imag\{Z_{SOPT}\}$ •Design output matching network: L_{D} , C_{D} for maximum gain

Examples: SiGe HBT vs. 90-nm CMOS Cascode LNAs

Ac-coupled cascode, 1V operation in GP CMOS, insensitive to V_{τ} , yet:

◆2x the DC current

2nd resonant tank reduces bandwidth,

◆extra lossy inductor and MIM cap => higher loss, larger area

140-GHz 65-nm CMOS LNA

6-stage AC-coupled cascode amplifier

- 63 mW at 1.2V
- 20% stage scaling
- 300μm x 500μm inc. pads
- [S. Nicolson RFIC-08]

Measured S-params and linearity

LNA bias network

V_{CE}(Q₂) should be large for
 large IIP3

Bias circuits (ii)

Bias circuits (iii)

Differential noise matching

• Design differential half-circuit to be matched to Z_{sopt} (50 Ω)

•
$$Z_{\text{soptdlff}} = 2Z_{\text{sopt}}(Q_1) + 2j\omega(L_E + L_B)$$

•
$$Z_{\text{INdIff}} = 2\omega_{T}L_{E}$$

Tuned LNA design notes

- MOSFET LNA design usually compromises noise figure for power dissipation (low-noise current is too high!)
- In this approach linearity increases with Z_{0} .
- Pad capacitance and parasitic capacitance of L_B reduce input impedance
- Tail current source in diff-pair adds noise and commonmode instability. Not recommended!

Tuned LNA topologies summary

CS/CE (L or xfmr feedback)

Iow-voltage, low-noise, good linearity,

>poor isolation => difficult to separately design input/output network

CB/CG (no feedback)

moderate noise, good isolation (HBT-only)

•poor linearity, difficult to simultaneously match noise and source impedance

Cascode (L or xfmr feedback)

best isolation, low-to-moderate noise, easy to match, good linearity

higher supply voltage (but available due to mixer)

Frequency scaling of CMOS LNAs

• **Goal**: Scale the LNA centre frequency

$$f_{0} = \alpha f_{0}$$
Step 1: Biasing for Minimum
Noise
$$- J_{OPT} \text{ unchanged } @$$

$$0.15 \text{mA}/\mu\text{m}$$
Step 2: Device Sizing
$$- W_{F} \text{ unchanged}$$

$$M' = M_{F} / \alpha$$

$$N_F = N_F / \alpha$$

 $W' = W / \alpha$

•

Frequency scaling of CMOS LNAs (ii)

Experimental results

LNA	N _f	W _f um	I _{DS} mA	V _{DD} [V]	L _s [pH]	L _g [pH]	L _⊳ pH	L _м pH	C ₁ [fF]	C ₂ [fF]	C _{PAD} [fF]
14 GHz, 90-nm	90	1	13.5	1.5	128	1100	545	-	145	70	20
28 GHz, 90-nm	45	1	6.75	1.5	128	535	235	-	75	59	20
60 GHz, 90-nm	20	1	3	1.5	55	190	140	190	30	-	20
12 GHz, 130-nm	90	1	13.5	1.8	177	1340	492	-	122	135	60
24 GHz, 130-nm	45	1	6.75	1.8	177	718	251	-	80	58	60

Frequency scaling of 90-nm CMOS LNAs

Scaling error less than 8%

•Typical process variation: ~20%!

Design porting of CMOS LNAs

- Goal: Keep center frequency unchanged, port LNA to another technology node
- <u>Step 1:</u> Biasing for Minimum Noise
 Unchanged: J_{OPT} is invariant
 between technology nodes

- <u>Step 2:</u> Device Sizing
 - Unchanged: Z_{OPT} is
 invariant between
 technology nodes

Design porting of CMOS LNAs (ii)

• <u>Step 3:</u> Input Matching

– L_s roughly scaled by $1/f_T$:

$$L_{s} = \frac{Z_{0} - R_{g} - R_{s}}{2 \pi f_{T}}$$

- $-R_{g} + R_{s}$ remains approximately constant if if $W_{f} => W_{f}/S$ and W = ct.
- L_s + L_g unchanged because transistor size unchanged

Benefits of scaling for RF/mm-wave

Gain and NF improve with scaling

Power-constrained LNA design

Problem: GHz-range, noise-matched CMOS LNAs consume significant power

Solutions

•Current re-use with CMOS inverter (doubles V_{DD} but still saves power

•Don't noise match, just bias at J

•Use external capacitor between gate and source: degrades both gain and NF

$$f_{T} \rightarrow \frac{f_{T}}{1 + \frac{C_{1}}{C_{gs} + 2C_{gd}}} \quad L_{S} \rightarrow L_{S} \left(1 + \frac{C_{1}}{C_{gs} + 2C_{gd}}\right)$$

Pad capacitance causes second, parallel resonance

 Series and parallel resonance reduce input impedance matching bandwidth

•R_{sopt}/G_{sopt} is frequency dependent, so noise matching is NOT broadband

Single resonance increases input impedance matching BW
 Reduces the transistor size & current for noise matching
 The noise matching is still narrow band because G_{SOPT} is frequency-dependent

Ex.: W-Band LNA with xfmr feedback

Other low-noise amplifier concepts

"Noise cancellation" idea by Bruccoleri et al. ISSCC-02
CG for impedance matching and TIA/ CS for noise matching
They don't cancel noise, they achieve noise matching over broader bandwidth

Tuned, narrow-band LNA summary

- •Cascode with inductive degeneration is the most common topology for LNAs
- Algorithmic design methodology for MOS and HBT LNAs up to 90 GHz
- •In MOSFETs J_{OPT} & Z_{OPT} invariant between nodes
- •CMOS LNA design scalable in frequency and portable between nodes without redesign
- •Frequency scaling error <8%

Back-up slides

7.2 Tuned LNA design methodology using a simulator

Cascode topology with series inductive feedback

- Good isolation allows for separate input/output matching network design.
- Bias current is shared resulting in low power.
- Limited to about 1.8V supply (HBT) or 1.2V supply (LVT MOSFETs)
- Noise slightly degraded (compared to CE/CS) by common base (gate) device.
- If common base/gate device is sized for max. speed, NF_{min} is degraded by a few tenths of dB.

Tuned LNA design steps

- Set V_{CE}/V_{DS} on transistor to maximize linearity (avoid output clipping as in PA design)
- Bias transistor @ minimum NF current density;
- Size transistor for optimal noise resistance active device matching;
- Add passive (inductive) components for optimal noise impedance, input/output impedance and gain - passive device (classical) matching;
- Add base/gate bias circuitry without impact on noise;
- If linearity goal is not met (typically because of transfer characteristics) use gain control schemes or increase size or current density (may change input matching)

Step 1: find the J_{opt} for the HBT cascode

At low-noise bias read f₋;

use average initial size $I_E = 5 \mu m$ and 2 emitter, 3base, 2col. HBT

Step1b: HBT cascode low-noise bias (read J_{opt})

E-furn-furn 50 is HET Mound & VIC- 44

Step 3a: add L_{F} such that $Re(Z_{N}) = Z_{O}$

Step 3b: add L_B such that $Im(Z_N, Z_{sopt}) = 0$

Step 3c: add L_c for maximum gain

- L_c should be as large as possible for gain
- C_c helps lower impedance
- May use 3-terminal inductor or transformer for impedance transform to Z_o
- Linearity is maximized by setting:

$$R_{CTank} X I_{copt} = V_{CE}(Q2) - V_{CESAT}$$

 R_{CTank} is the equiv. parallel ac resistance at the output node

Step 3d: matching the output

- Use the Smith chart with the series-shunt or shuntseries technique
- Make sure not to short-ckt. the output to ground (use shunt inductor to V_{cc} not to GND.
- Use 2pF ... 5pF (depending on LNA freq) to de-couple cascode bias and V_{cc} to AC ground.

